Please do not upload this copyright pdf document to any other website. Breach of copyright may result in a criminal conviction.

This Acrobat document was generated by me, Colin Hinson, from a document held by me. I requested permission to publish this from Texas Instruments (twice) but received no reply. It is presented here (for free) and this pdf version of the document is my copyright in much the same way as a photograph would be. If you believe the document to be under other copyright, please contact me.

The document should have been downloaded from my website https://blunham.com/Radar, or any mirror site named on that site. If you downloaded it from elsewhere, please let me know (particularly if you were charged for it). You can contact me via my Genuki email page: https://www.genuki.org.uk/big/eng/YKS/various?recipient=colin

You may not copy the file for onward transmission of the data nor attempt to make monetary gain by the use of these files. If you want someone else to have a copy of the file, point them at the website. (https://blunham.com/Radar). Please do not point them at the file itself as it may move or the site may be updated.

It should be noted that most of the pages are identifiable as having been processed by me.

I put a lot of time into producing these files which is why you are met with this page when you open the file.

In order to generate this file, I need to scan the pages, split the double pages and remove any edge marks such as punch holes, clean up the pages, set the relevant pages to be all the same size and alignment. I then run Omnipage (OCR) to generate the searchable text and then generate the pdf file.

Hopefully after all that, I end up with a presentable file. If you find missing pages, pages in the wrong order, anything else wrong with the file or simply want to make a comment, please drop me a line (see above).

It is my hope that you find the file of use to you personally - I know that I would have liked to have found some of these files years ago - they would have saved me a lot of time !

Colin Hinson
In the village of Blunham, Bedfordshire.

Texas Instruments
TI-99/4 Home Computer

Cassette

Software

Model PHT 6008
 Electrical Engineering
 Inrary
 Four powerful programs which assist you in designing

 \square FILTER DESIGN-Computes and two passive filters. three active filters and DESIGN-CaO loop. parameters for a basic phase ${ }^{1}$ ROOOT LOCUS CALC asymptote intersection angles from zeroes arfms various arrival and departure CALCULATIONS-P SMITH CHAR calculations eq inith Chart.graphical constructions on the recorder (not included) for
Requires the use of cassette tape the $T 199 / 4$ Home
10 ding the program
computer memory.

As this manual was designed for the U.S. market, the warranty conditions described herein are not applicable in the U.K. The only valid Guarantee Conditions are those set forth in the "Users Reference Guide" accompanying the Home Computer.
Overview 2
Filter Design
Description 3
Background 4
User Instructions 9
Example 12
Phase-Locked Loop Design
Description 13
Background 14
User Instructions 17
Example 19
Root-Locus Calculations
Description 20
Background 21
User Instructions 22
Example 24
Smith Chart Calculations
Description 25
Background 25
User Instructions 28
Example 30
Loading Cassettes 32
In Case of Difficulty 34
Limited Warranty 35

[^0]```
 Author: Texas Instruments
Language: TI-99/4 BASIC
Hardware: TI-99/4 Home Computer
 Disk Controller and Drive or cassette recorder
 Media: Diskette and Cassette
```

The Electrical Engineering Library is a collection of programs which can assist you in designing components for electrical systems. Each program performs time-saving electrical engineering calculations and thus helps to simplify your design task.

- FILTER DESIGN - Computes component values for the design of active filters (lowpass, highpass, and bandpass) and passive filters (Butterworth and Tchebycheff).
- PHASE-LOCKED LOOP DESIGN - Calculates design parameters for a basic phase-locked loop with either an active or passive loop filter.
- ROOT-LOCUS CALCULATIONS - Computes asymptote intersection point and asymptote angles, and appropriate arrival and departure angles from zeros and poles.
- SMITH CHART CALCULATIONS - Performs various transmission-line calculations equivalent to the graphical constructions on the Smith Chart.

The Filter Design program computes the necessary component values that yield the required performance parameters for various filters. Component values can be computed for both active filters (lowpass, highpass, and handpass) and passive lowpass filters (Butterworth and Tchebycheff). You specify the performance parameters, such as peak, gain, cutoff frequency, and quality. The computer displays the required capacitances, inductances, and resistances.

The corresponding bandpass network function is:

$$
H(s)=\frac{-H_{0} \alpha \omega_{0} s}{s^{2}+\alpha \omega_{0} s+\omega_{0}^{2}}
$$

where $a=1 / Q$
$Q=F / B$, quality factor measure of selectivity of filter $F=$ Center frequency of passband in hertz
$B=3-d B$ bandwidth in hertz
Given $B, A, F, C_{1}$, and $C_{2}$ in microfarads, the program calculates $R_{1}, R_{2}$, and $R_{3}$ as follows:

$$
\begin{aligned}
& \mathrm{R}_{1}=\frac{\mathrm{Q}}{2 \pi \mathrm{FH} \mathrm{H}_{0} \mathrm{C}_{1}} \\
& \mathrm{R}_{2}=\left[\mathrm{Q}\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right) 2 \pi \mathrm{~F}-\left(1 / \mathrm{R}_{1}\right)\right]-1 \\
& \mathrm{R}_{3}=\frac{\mathrm{Q}}{2 \pi \mathrm{~F}}\left(\frac{1}{\mathrm{C}_{1}}+\frac{1}{\mathrm{C}_{2}}\right)
\end{aligned}
$$

## Butterworth Filter

The form of the Butterworth filter, along with its characteristic response, is shown below.


For Butterworth filters with response of the form shown, the component values are computed as follows:

$$
\begin{array}{ll}
C_{1}=\frac{1}{\pi f_{c} R} \sin \left[\frac{(2 i-1) \pi}{2 n}\right] & i=1,3,5, \cdots \\
L_{1}=\frac{R}{\pi f_{c}} \sin \left[\frac{(2 i-1)_{\pi}}{2 n}\right] & i=2,4,6, \cdots
\end{array}
$$

where $f_{c}=$ cutoff frequency in hertz
$n=$ filter order
$R=$ terminal resistance in ohms

Note: This program assumes that the generator resistance Rg is equal to the load resistance $R_{L}$; therefore, $R=R_{g}=R_{L}$.

## Tchebycheff Filter

The form of the Tchebycheff filter, along with its characteristic response, is shown below.


Page 7

For Tchebycheff filters with response of the form shown, the component values are computed as follows:

$$
\begin{array}{ll}
\beta=\ln \left[\operatorname{coth}\left(\frac{\epsilon}{40 \log e}\right)\right] & \\
\gamma=\sinh \left(\frac{\beta}{2 n}\right) & i=1,2,3, \quad, n \\
a_{1}=\sin \left[\frac{(21-1) \pi}{2 n}\right] & i=1,2,3, \ldots, n \\
b_{1}=\gamma^{2}+\sin ^{2}\left(\frac{i \pi}{n}\right) & i=2,3,4, \cdots, n \\
g_{1}=\frac{2 a_{1}}{\gamma} & i=1,3,5, \ldots \\
g_{1}=\frac{4 a_{1-1} a_{1}}{b_{1-1} g_{1-1}} & i=2,4,6, \ldots \\
C=\frac{g_{1}}{2 \pi f_{c} R} & R g_{1} \\
L_{1}=\frac{R f_{1}}{2 \pi} &
\end{array}
$$

Note: For odd-order Tchebycheff filters, the generator resistance $R_{g}$ is equal to the load resistance; therefore, the termination resistance $R=R_{g}=R_{L}$. In the case of even-order Tchebycheff filters, $R_{L}=$ $R_{g} / \operatorname{coth}^{2}(\beta / 4)$ which, for small ripple, results in the generator resistance $R_{g}$ being approximately equal to the load resistance $R_{L}$. Thus, the termination resistance $R=R_{g} \approx R_{L}$.

```
STEP 1: Be sure that the disk drive or cassette
 recorder is attached to the computer and
 turned on. (See the owner's manuals or the
 Users Reference Guide for product details.)
STEP 2: Press any key to pass the title screen. Then
 press 1 to select TI BASIC. To load the
 program from diskette, insert the diskette
 into Disk Drive 1, type
 OLD DSKI.FILTERS
 and press ENTER.
 To load the program from a cassette tape,
 insert the tape into the recorder. Next,
 refer to the "Loading Cassettes" section in
 this manual for instructions on determining
 the program's position on the cassette tape.
 When you have inserted the cassette tape and
 properly positioned the tape counter, type
OLD CS1
and press ENTER. The computer then displays directions for loading the program. Refer to "Loading Cassettes" if you have difficulty in loading the program from the cassette.
STEP 3: When the cursor reappears, type RUN, and press ENTER. The FILTER DESIGN title screen appears. Press ENTER to display the list of options.
```

ACTIVE FILTERS:

1. Lowpass
2. Highpass
3. Bandpass

PASSIVE FILTERS:
4. Butterworth
5. Tchebycheff

OR:
6. EXIT PROGRAM

STEP 4: Select the type of filter you wish to design.

```
OPTION 1: LOWPASS FILTER
```

If you choose option 1 , the program displays a diagram showing the components for a lowpass filter circuit. Next, enter the peaking factor, the passband voltage gain in decibels, the cutoff frequency in hertz, and the value of C 2 in microfarads. The program then calculates and displays the values for C1, R1, R2, and R3. To continue, press ENTER, and the program displays the list of options again. You may then calculate values for another filter or choose option 6 to exit the program.

OPTION 2: HIGHPASS FILTER
If you choose option 2, the program displays a diagram showing the components of a highpass filter circuit. Next, enter the peaking factor, the passband voltage gain in decibels, the cutoff frequency in hertz, and the value of $C$ in microfarads. The program then calculates and displays the values for C1, R1, and R2. To return to the list of options, press ENTER. You may then calculate values for another filter or choose option 6 to exit the program.

OPTION 3: BANDPASS FILTER
If you choose option 3 , the program displays a diagram showing the components of a bandpass filter circuit. Next, enter the frequency of the passband in hertz, the values of C1 and C2 in microfarads, the quality factor, and the voltage ratio or midband voltage gain in decibels. The program then calculates and displays the values for R1, R2, and R3. To return to the list of options, press ENTER. You may then calculate values for another filter or choose option 6 to exit the program.

| OPTION 4 | BUTTERWORTH FILTER <br> If you choose option 4, the program displays a diagram showing the components of a Butterworth filter circuit. Next, enter the filter order ( $n \leq 10$ ) which defines the number of reactive components, the terminal resistance in ohms, and the cutoff frequency in hertz. If you enter a value that is outside the normal range for a variable, the screen displays "INVALID INPUT -- PRESS ENTER" or a warning message, followed by "PRESS ENTER." To return to the list of options, press ENTER. Enter 4 and reenter your parameters for the Butterworth filter. The program then calculates and displays the values for C1, C3, C5, . . ., and L2, L4, L6. Press ENTER to return to the list of options. You may then calculate values for another filter or choose option 6 to exit the program. |
| :---: | :---: |
| OPTION 5: | TCHEBYCHEFF FILTER <br> If you choose option 5, the program displays a diagram showing the components of a Tchebycheff filter circuit. Next, enter the filter order ( $n \leq 10$ ) which defines the number of reactive components, the terminal resistance in ohms, the cutoff frequency in hertz, and the allowable ripple in decibels. If you enter a value that is outside the normal range for a variable, the screen displays "INVALIO INPUT-- PRESS ENTER" or a warning message followed by "PRESS ENTER." The list of options is displayed when you press ENTER. Enter 5 and reenter your parameters for the Tchebycheff filter. The program then calculates and displays the values for C1, C3, C5, ...., and L2, L4, L6 . . . To return to the list of options, press ENTER. You may then calculate values for another filter or choose option 6 to exit the program. |
| OPTION | EXIT PROGRAM <br> If you select option 6 , the message **DONE** is displayed, and the program stops. |

To help you understand how the program functions, work the following example.

Find the component values for an active bandpass filter with a center frequency of 150 hertz, a midband voltage gain of 30 dB , a quality factor of 9.375, and $C 1=C 2=0.1 \mathrm{uF}$.

First, load and run the program as described in Steps 1 and 2 of the "User Instructions." Next, enter 3 to select Bandpass Filter design. You are now ready to input the performance parameters of the desired filter.

| PROMPT | ENTER | COMMENTS |
| :---: | :---: | :---: |
| CTR FREQ? | 150 | Center frequency in hertz |
| $\mathrm{C} 1 \mu \mathrm{~F}$ ? | . 1 | Capacitance in microfarads |
| $\mathrm{C} 2 \mu \mathrm{~F}$ ? | . 1 | Capacitance in microfarads |
| $3-D B$ BW? | 9.375 | Quality factor (CTR FREQ/BANDWITH) |
| GAIN ${ }_{\mu}$ | 30 | Midband voltage gain in $d B$ |

The following answers are displayed.
$R 1=5.37 \mathrm{~K} \Omega$
$R 2=353.4 \Omega$
$R 3=339.53 \mathrm{~K} \Omega$
To return to the list of options, press ENTER.

The Phase-Locked Loop Design program computes the design parameters for basic phase-locked loops. You are given the option of designing a type-2, second-order loop with an active filter or a type-1, second-order loop with a passive filter. You provide the following information.

$$
\begin{aligned}
N & =\text { integer divisor (active filter only) } \\
\text { Gain } & =\text { the loop gain, sec-1 } \\
C & =\text { filter capacitance, } \mu F
\end{aligned}
$$

At this point you have the option of either entering w, the natural angular frequency in radians/second, and $\zeta$, the damping factor, to solve for the resistances $R_{1}$ and $R_{2}$ in ohms, or entering the resistances $R_{1}$ and $R_{2}$ to calculate $\zeta$ and $w$. In either case, the loop-noise bandwidth is calculated and displayed.

After you choose an appropriate loop filter (active or passive), this program computes the resulting design parameters for a basic phaselocked loop (PLL) as illustrated below.



ACTIVE FILTER


PASSIVE FILTER

The basic PLL transfer function is:

$$
\frac{\theta_{o}}{\theta_{1}}(S)=\frac{\mathrm{GF}(\mathrm{~S})}{\mathrm{S}+\mathrm{GF}(\mathrm{~S})}
$$

where $\theta_{0}=$ the output phase
$\theta_{i}=$ the input phase
$G=$ the loop gain
$F(s)=$ the transfer function of the loop filter
$G=K_{p} K_{v}$
where $K_{p}=$ the gain of the phase detector in volt/radian $K_{v}=$ the gain of the $V C 0$ in radians/second-volt

If the loop filter is active, an $N$ counter can be added to the loop, making the output frequency, fout, an integral multiple of the input or reference frequency, fin. Thus, $\mathrm{f}_{\text {out }}=\mathrm{Nf}$ in, where $\mathrm{N} \geq 1$.

For both active and passive filters, the time constants are $\tau_{1}=R_{1} C$ and $\tau_{2}=R_{2} C$.

## Active Filter Calculations

For an active filter with a very large amplifier gain,

$$
\mathrm{F}(\mathrm{~S})=\frac{\mathrm{S} \tau_{2}+1}{\mathrm{~S} \tau_{1}}
$$

The $(\div N)$ counter changes the form of the PLL transfer function,

$$
\frac{\theta_{o}}{\theta_{1}}(S)=\frac{G F(S) / N}{S+G F(S) / N}
$$

Using the transfer function representative $F(S)$, the PLL transfer function becomes

$$
\frac{\theta_{0}}{\theta_{1}}(\mathrm{~S})=\frac{\mathrm{G}\left(\mathrm{~S} \tau_{2}+1\right) / \mathrm{N} r_{1}}{\mathrm{~S}^{2}+\mathrm{S}\left(\mathrm{G} \tau_{2} / \mathrm{N} r_{1}\right)+\mathrm{G} / \mathrm{N} \tau_{1}}
$$

By inserting the natural angular frequency $w_{n}$ and the damping factor $\zeta$ for the time constants $\tau_{1}$ and $\boldsymbol{\tau}_{2}$, the $P L L$ transfer function becomes

$$
\frac{\theta_{0}}{\theta_{1}}(S)=\frac{2 \zeta \omega_{n} S+\omega_{n}^{2}}{S^{2}+2 \zeta \omega_{n} S+\omega_{n}^{2}}
$$

To calculate $\omega_{n}$ and $\zeta$, given $R_{1}$ and $R_{2}$,

$$
\omega_{\mathrm{n}}=\sqrt{\frac{\mathrm{G}}{\mathrm{~N} \tau_{1}}} \quad \text { and } \quad \zeta=\frac{\omega_{\mathrm{n}} \tau_{2}}{2}
$$

To calculate $R_{1}$ and $R_{2}$, given $\omega_{n}$ and $\zeta$,

$$
\begin{aligned}
& \mathrm{R}_{1}=\frac{\mathrm{G}}{\mathrm{~N} \omega_{\mathrm{n}}^{2} \mathrm{C}} \\
& \mathrm{R}_{2}=\frac{2 \zeta}{\omega_{\mathrm{n}} \mathrm{C}}
\end{aligned}
$$

Passive Filter Calculations

For a passive filter,

$$
F(S)=\frac{S \tau_{2}+1}{S\left(\tau_{1}+\tau_{2}\right)+1}
$$

Using the transfer function representative $F(S)$, the basic $P L L$ transfer function becomes

$$
\frac{\theta_{\mathrm{o}}}{\theta_{1}}(\mathrm{~S})=\frac{\mathrm{G}\left(\mathrm{~S} \tau_{2}+1\right) /\left(\tau_{1}+\tau_{2}\right)}{\mathrm{S}^{2}+\mathrm{S}\left(1+\mathrm{G} \tau_{2}\right) /\left(\tau_{1}+\tau_{2}\right)+\mathrm{G} /\left(\tau_{1}+\tau_{2}\right)}
$$

By inserting the natural angular frequency wn and the damping factor $\zeta$ for the time constants $T_{1}$ and $\tau_{2}$, the $P L L$ transfer function becomes

$$
\frac{\theta_{0}}{\theta_{1}}(S)=\frac{S \omega_{n}\left(2 \zeta-\omega_{n} / G\right)+\omega_{n}^{2}}{S^{2}+2 \zeta \omega_{n} S+\omega_{n}^{2}}
$$

To calculate $\omega_{n}$ and $\zeta$, given $R_{1}$ and $R_{2}$,

$$
\omega_{\mathrm{n}}=\sqrt{\frac{\mathrm{G}}{\tau_{1}+\tau_{2}}} \quad \text { and } \quad \zeta=\frac{\omega_{\mathrm{n}}}{2}\left(\tau_{2}+\frac{1}{\mathrm{G}}\right)
$$

To calculate $R_{1}$ and $R_{2}$, given $\omega n$ and $\zeta$,

$$
R_{1}=\frac{G}{\omega_{n}^{2} C}-R_{2} \quad \text { and } \quad R_{2}=\frac{2 \zeta}{\omega_{n} C}-\frac{1}{G C}
$$

For both active and passive loops, the one-sided loop-noise bandwidth BW in hertz is calculated using the formula:

$$
B W=\frac{\omega_{n}}{2}\left(\xi+\frac{1}{4 \zeta}\right)
$$

STEP 1: Be sure that the disk drive or cassette recorder is attached to the computer and turned on. (See the owner's manuals or the Users Reference Guide for product details.)

STEP 2: Press any key to pass the title screen. Then press 1 to select TI BASIC. To load the program from diskette, insert the diskette into Disk Drive 1 , type

> OLD DSK1.PHASELL
and press ENTER.
To load the program from a cassette tape, insert the tape into the recorder. Next, refer to the "Loading Cassettes" section in this manual for instructions on determining the program's position on the cassette tape. When you have inserted the cassette tape and properly positioned the tape counter, type

> OLD CS1
and press ENTER. The computer then displays directions for loading the program. Refer to "Loading Cassettes" if you have difficulty in loading the program from the cassette.

STEP 3: When the cursor reappears, type RUN, and press ENTER. The PHASE LOCKED LOOP DESIGN title screen appears. Press ENTER to display the following list of options:

1. ACTIVE FILTER
2. PASSIVE FILTER
3. EXIT PROGRAM

STEP 4: Next, choose the type of phase-locked loop (PLL) you wish to design. If you select an active loop filter, you are asked to enter the integer divisor ( $N$ ) , where $N \geq 1$. The remaining data entries for active and passive filters are identical. Enter the loop gain ( $G=K p K v$ ) in sec- ${ }^{-1}$. Next, enter the filter capacitance in microfarads. At this point you are asked to enter either $R$ (calculate resistances $R_{1}$ and $R_{2}$ ) or $F$ (calculate natural angular frequency $w$ and damping factor $\zeta$ ).

```
To calculate values for R1 and R2, enter
R. Next, enter the natural angular frequency
w in radians/second, and the damping factor
 \zeta. If you enter a value that is outside the
normal range for a variable, the message
"INVALID INPUT - - PRESS ENTER" is displayed.
Press ENTER to display the list of options.
You may then begin your calculations again.
After you enter all the necessary values, the
program then calculates and displays the
values for the resistances R1 and R2, and
the bandwidth, BW, in hertz. Press ENTER to
display the list of options. You may then
choose another PLL design or enter 3 to exit
the program.
On the other hand, to calculate values for w
and }\zeta\mathrm{ , enter F. You are now asked to enter
the values for resistances R R1 and R2 in
ohms. The program then calculates and
displays the values for the natural angular
frequency w in radians/second, the damping
factor }\xi\mathrm{ , and the bandwidth, BW, in hertz.
Press ENTER to display the list of options.
You may then choose another PLL design or
enter 3 to exit the program.
STEP 5: When you have completed all calculations, select option 3. The message **DONE** is displayed, and the program stops.
```

To help you understand how the program works, the following example is provided.

A phase-locked loop has an overall loop gain of 20000. If the passive filter component values are $R_{1}=5 k \Omega, R_{2}=500 \Omega$, and $C=50 \mu \mathrm{~F}$, what is the natural frequency, damping factor, and noise bandwidth for the loop?

First, load and run the program as described in Steps 1 and 2 of the "User Instructions." Then select option 2 to calculate values for a passive loop filter. Now enter the required data in response to the prompts shown below.

| PROMPT | ENTER | COMMENTS |
| :--- | :--- | :--- |
| GAIN? | 20000 | Enter loop gain |
| C $\mu F ?$ | 50 | Enter capacitance in <br> microfarads |
| FINDR or $F:$ | $F$ | Calculate wand $\zeta$, <br> given $R_{1}$ and $R_{2}$ |
| $R_{1} \Omega ?$ | 5000 | Enter resistance in ohms |
| $R_{2} \Omega ?$ | 500 | Enter resistance in ohms |

The results are displayed as follows.

```
\omega}=269.68 R/S
\zeta}=3.37
BW = 465.43 HZ
```

To return to the list of options, press ENTER.

[^1]Given an equation of the following form

$$
F(s)=\frac{\prod_{=1}^{m}\left(s-z_{1}\right)}{\prod_{k}^{n}\left(s-p_{k}\right)}
$$

where $z_{i}$ is a zero and $p_{k}$ is a pole of $F(s)$, the following equations are used to determine the necessary parameters.

The root-locus has $n-m$ asymptotes. They intersect at the point $\sigma_{0}$ where

$$
\sigma_{0}=\frac{1}{n-m}\left(\sum_{k=1}^{n} p_{k}-\sum_{i=1}^{m} z_{i}\right)
$$

The angles of the asymptotes, $\psi_{v}$, are calculated using the equation:

$$
\psi_{v}=\frac{1}{\mathrm{n}-\mathrm{m}}\left(180^{\circ}+(\nu-1) 360^{\circ}\right) \quad \nu=1,2, \cdots, \mathrm{n}-\mathrm{m}-\mathrm{m} .
$$

The departure angle at any complex pole $p_{j}$ is

$$
\phi_{J}=\sum_{1-1}^{m} \angle\left(p_{j}-z_{1}\right)-\sum_{\substack{k=1 \\ k \neq j}}^{n} \angle\left(p_{J}-p_{k}\right)+180^{\circ} \quad J=1,2, \cdots \text {, n }
$$

The arrival angle at any complex zero $z_{k}$ is

$$
\theta_{k}=-\sum_{\substack{1=1 \\ 1 \neq \kappa}}^{m} \angle\left(z_{k}-z_{1}\right)+\sum_{k-1}^{n} L\left(z_{k}-p_{k}\right)-180^{\circ} \quad K=1,2, \cdots, m
$$

The program calculates $\sigma_{0}, \psi y, \phi_{j}, \theta_{k}$ for up to 30 th order systems ( $n \leq 30, m \leq 29)$.

STEP 1: Be sure that the disk drive or cassette recorder is attached to the computer and turned on. (See the owner's manuals or the Users Reference Guide for product details.)

STEP 2: Press any key to pass the title screen. Then press 1 to select TI BASIC. To load the program from diskette, insert the diskette into Disk Drive 1, type

OLD DSKI, ROOTLOCUS
and press ENTER.
To load the program from a cassette tape, insert the tape into the recorder. Next, refer to the "Loading Cassettes" section in this manual for instructions on determining the program's position on the cassette tape. When you have inserted the cassette tape and properly positioned the tape counter, type

OLD CS1
and press ENTER. The computer then displays directions for loading the program. Refer to "Loading Cassettes" if you have difficulty in loading the program from the cassette.

STEP 3: When the cursor reappears, type RUN, and press ENTER. The ROOT LOCUS title screen appears. Press ENTER to continue.

STEP 4: Now enter the open-loop poles, separating each pole with a single space. If you do not separate the poles properly, the program asks you to reenter the poles. Complex poles are entered in the form: $A+J B$, where $A$ and $B$ are numeric values. When the plus sign is typed, the program automatically displays a $\pm$ sign to account for the conjugate complex pole. Press ENTER after typing all poles. Then follow the same procedure to enter the open-loop zeros. The number of poles entered must be greater than the number of zeros entered. If not, the program asks you to reenter the poles and zeros.

STEP 5: The program now calculates and displays the number of asymptotes, the asymptote intersection point, the asymptote angles, the departure angles from poles, and the arrival angles at zeros. To repeat the program, press $R$ and the program asks you for new values. When you finish your calculations press E to exit the program. The message **DONE** is displayed, and the program stops.

To help you understand how the program works, the following example is provided.

Find the root-locus parameters for the following function.

First, load and run the program as described in Steps 1 and 2 of the "User Instructions." Then enter the data in response to the prompts shown below.

| PROMPT | ENTER | COMMENT |
| :--- | :--- | :--- |
| ENTER N POLES: | $0-2 \pm J 3-4$ | Enter poles by <br> inspecting <br> denominator. |
| $?$ |  | Enter zeros by <br> ENTER M ZEROS: |
| $?$ | $-.5 \pm J$ | inspecting numerator. |

The program displays the following results:
THERE ARE 2 ASYMPTOTES
INTERSECTING AT $\sigma=-3.5$
AT THE ANGLES:
$90^{\circ}-90^{\circ}$
DEPARTURE ANGLES AT POLES:

| 0 | $180^{\circ}$ |
| :--- | ---: |
| $-2 \pm \mathrm{J} 3$ | $+147^{\circ}$ |
| -4 | $0^{\circ}$ |

ARRIVING ANGLES AT ZEROS:
$-.5 \pm \mathrm{J} \quad \mp 122^{\circ}$
PRESS (R)EDO, (E)XIT
Press E. The message **DONE** is displayed, and the program stops.

The Smith Chart Calculations program allows you to perform various transmission-line calculations equivalent to the graphical constructions on the Smith Chart. The program makes provisions for lines with attenuation and complex characteristic impedance. You enter the following information:
$Z 0=$ Complex characteristic impedance in ohms
$Z L$ or $Y L=$ Termination impedance, ohms or termination admittance in mhos
$A C=$ Attenuation constant in decibels/wavelength
$D W=$ Distance from termination in wavelengths
The program then calculates the following:
Input values:
ZI = Impedance in ohms
YI = Admittance in mhos
VSWR = Voltage standing wave ratio $P C R=$ Power reflection coefficient

Termination Values:

```
VSWR = Voltage standing wave ratio
 PCR = Power reflection coefficient
```

The following terms are used in many equations and are defined here for convenience.

```
AC = attenuation constant
DW = distance from termination
Zo}=characterisstic impedanc
Z = impedance*
z = normalized impedance*
Y = admittance*
P = reflection factor* (rectangular coordinates)
|P| P = reflection factor* (polar coordinates)
VSWR= voltage standing wave ratio
PCR = Power Reflection Coefficient
```

* Note that a subscript "L" indicates values at termination, and a subscript "i" indicates values at input.

Given $Z_{0}, Z_{L}$ or $Y_{L}, A C$, and $D W$, the following equations are used to calculate input and termination terms. A low-loss line is assumed.

## Termination Terms

If $Y_{L}$ is entered

$$
Z_{L}=\frac{1}{Y_{L}} \quad \text { and } \quad Z_{L}=\frac{Z_{L}}{Z_{0}}
$$

then the complex reflection factor is

$$
P_{L}=\frac{z_{L}-1}{z_{L}+1}
$$

and

$$
V S W R=\frac{1+\left|P_{\mathrm{L}}\right|}{1-\left|P_{\mathrm{L}}\right|} \quad, \quad P C R=\left|P_{\mathrm{L}}\right|^{2}
$$

## Input Terms

The input impedance, $Z_{i=} \operatorname{Re}\left(Z_{j}\right)+j I M\left(Z_{i}\right)$, at a distance $D W$ from termination is computed by the following sequence.

$$
\begin{aligned}
& \left|P_{t}\right|=\left|P_{L}\right|\left(10^{-0 \mid A C}\right)^{D W}, \quad \angle P_{1}=\angle P_{L}-4 \pi(D W) \\
& z_{1}=\frac{1+P_{1}}{1-P_{1}}, \quad Z_{1}=Z_{0} z_{1}
\end{aligned}
$$

Note that this sequence applies in the reverse direction (from $Z_{i}$ to $Z_{L}$ ) if $D W$ is entered as a negative quantity.

Then the admittance, voltage standing wave ratio, and power reflection coefficient are

$$
Y_{1}=\frac{1}{Z_{1}}, \quad V S W R=\frac{1+\left|P_{1}\right|}{1-\left|P_{1}\right|}, P C R=\left|P_{1}\right|^{2}
$$

```
STEP 1: Be sure that the disk drive or cassette/recorder is attached to the computer and turned on. (See the owner's manuals or the Users Reference Guide for product details.)
STEP 2: Press any key to pass the title screen. Then press 1 to select TI BASIC. To load the program from diskette, insert the diskette into Disk Drive 1 , type

> OLD DSK1.SMITHCRT
and press ENTER.
To load the program from a cassette tape, insert the tape into the recorder. Next, refer to the "Loading Cassettes" section in this manual for instructions on determining the program's position on the cassette tape. When you have inserted the cassette tape and properly positioned the tape counter, type
```

OLD CSI
and press ENTER. The computer then displays directions for loading the program. Refer to "Loading Cassettes" if you have difficulty in loading the program from the cassette.

STEP 3: When the cursor reappears, type RUN, and press ENTER. The SMITH CHART CALCULATIONS title screen appears. Press ENTER to continue.

STEP 4: Now enter the value of $Z 0$ in ohms (enter as $A+J B$ if complex, where $A$ and $B$ are numeric values). Next, choose between entering the termination impedance or admittance. To enter impedance, type "ZL=" followed by its value in ohms. To enter admittance, type "YL=" followed by its value in mhos. To complete the required information, enter the value of the attenuation constant in decibels/wavelength and the distance from termination in wavelengths.

```
STEP 5: The computer automatically displays the values
 you entered, along with the results of the
 calculations. The input values--ZI, YI, VSWR,
 and PCR--and the termination values--VSWR and
 PCR--are displayed. You then have the option
 of changing your entries, repeating the
 program, or exiting the program. To change
 your input, simply press C. Type the variable
 and its new value (i.e., DW=2) and press
 ENTER. To change more than one input, type
 both changes and separate them with a
 semicolon. When you press ENTER, the program
 recalculates the results and displays them
 along with the values you entered. To repeat
 the program, press R, and the program asks you
 for new data entries. When you finish your
 calculations, press E to exit the program.
 The message **DONE** is displayed, and the
 program stops.
```

To help you understand how the program works, the following example is provided.

Given a transmission line with a characteristic impedance $\left(Z_{0}\right)$ of $50+j 0$ ohms, an attenuation constant of 0.4 dB , and a termination impedance of $10+j 40$ ohms, find the input impedance (Zi) and the input VSWR at 1 and 2 wavelengths (DW) from the termination.

First, load and run the program as described in Steps 1 and 2 of the "User Instructions." Now enter the required inputs in response to the prompts shown below.

PROMPT
ENTER
COMMENTS
CHARACTERISTIC IMPEDANCE?
50
$Z_{0}$ in ohms ZO=

| TERM LOAD (ZL= or YL=)? | $Z L=10+J 40$ | $Z_{L}$ in ohms |
| :--- | :--- | :--- |
| ATTENUATION CONSTANT | .4 | AC in dB/wavelength |
| IN DB/WAVELENGTH? AC $=$ |  | DW in wavelengths |

IN WAVELENGTH? DW=
The values you entered and the computed results are displayed as follows.

INPUT SUMMARY:
$Z 0=50$
$Z L=10+J 40$
$A C=.4$
$D W=1$
INPUT VALUES:
$Z I=13.6+339.1$
$Y I=.007+3.022$
$V S W R=6.02839$
$P C R=.511854$

TERMINATION VALUES:
$V S W R=8.27921$
$P C R=.615384$
PRESS (C)HANGE, (R)EDO, (E)XIT

```
Now press C to change the distance from termination to 2
wavelengths. Type DW = 2, and press ENTER. Your entry values
and answers are displayed as follows.
 INPUT SUMMARY:
Z0}=5
ZL}=10+34
AC = . }
DW = ?
ZI = 17 + J38
YI=.009 + J.021
VSWR = 4.75521
PCR = .425742
VSWR = 8.27921
PCR = .615384
PRESS (C)HANGE, (R)EDO, (E)XIT
Press E. The message **DONE** is displayed, and the program
stops.
```


[^0]:    Copyright (c) 1980, Texas Instruments Incorporated. Program and database contents copyright (C) 1980, Texas Instruments Incorporated.

[^1]:    The Root Locus Program performs the calculations required to describe a linear system using the root-locus method. You specify the open-loop poles and zeros of the system. The program then calculates the asymptote intersection point, asymptote angles, departure angles from poles, and arrival angles at zeros.

