Please do not upload this copyright pdf document to any other website. Breach of copyright may result in a criminal conviction.

This Acrobat document was generated by me, Colin Hinson, from a document held by me. I requested permission to publish this from Texas Instruments (twice) but received no reply. It is presented here (for free) and this pdf version of the document is my copyright in much the same way as a photograph would be. If you believe the document to be under other copyright, please contact me.

The document should have been downloaded from my website https://blunham.com/Radar, or any mirror site named on that site. If you downloaded it from elsewhere, please let me know (particularly if you were charged for it). You can contact me via my Genuki email page: https://www.genuki.org.uk/big/eng/YKS/various?recipient=colin

You may not copy the file for onward transmission of the data nor attempt to make monetary gain by the use of these files. If you want someone else to have a copy of the file, point them at the website. (https://blunham.com/Radar). Please do not point them at the file itself as it may move or the site may be updated.

It should be noted that most of the pages are identifiable as having been processed by me.

I put a lot of time into producing these files which is why you are met with this page when you open the file.

In order to generate this file, I need to scan the pages, split the double pages and remove any edge marks such as punch holes, clean up the pages, set the relevant pages to be all the same size and alignment. I then run Omnipage (OCR) to generate the searchable text and then generate the pdf file.

Hopefully after all that, I end up with a presentable file. If you find missing pages, pages in the wrong order, anything else wrong with the file or simply want to make a comment, please drop me a line (see above).

It is my hope that you find the file of use to you personally - I know that I would have liked to have found some of these files years ago - they would have saved me a lot of time !

Colin Hinson
In the village of Blunham, Bedfordshire.

```
TI g 9/4 HOME COMPUTER
SERVICINGMANUAL
```

COMPILED AND EDITED
BY
ION STANFORD

```
TI g 9/L HOMECOMPUTER
    SERVI CINGMANUAL
```

COMPILEO AND EOITED
8 Y
JON STANFORD

TABLE OF CONTENTS

PAGE $\frac{n}{n}$

Introduction 01
System Block Diagram 02
Architectural Features 03
TMS 9918 VDP 04
TMC 0430 Graphics ROM 05
TIM 9919 Sound Generator 06
System Power Up 07
Debug Check List 08
Cassette Interface 09
General Description 10
Oscillator Circuit 13
CPU 15
Memory Selection Logic 34
Memory MEp 36
ROM and RAM Hemory 37
16 To 8 Bit Interfacing Circuit 39
Eraphic Reac Only Memory (GROM) 48
TMS 9901 Programade System interface 54
Video Dispiay Processor 64
Sound Generation Controller 73
Keyboard \& Remote Pandheld Control Unit Interfacing 78
Cassette Interfacing Circuitry 79
I/O Eus 81
Power Supply Soard 84
Trouble Shooting Guide 80
I/0 Port Connector 104
GROM Port Connector 105
Cassette I/0 Port 106
RAM Trap 107

01

System Slock Diagram 02

Clock Circuitry14
03 TMS 9900 Archetecture 20
TMS 9900 Pin Assignments And Functions 21
Memory Read Cycle Timing 25
Memory Write Cycle Timing 26
Memory Read Cycle Timing With One Wait State 27
Memory Write Cycle Timing With One Wait State 28
Direct Memory Access Tining 29
CRU Interface Timing 30
Memory Selection Logic 35
ROM And RAM Memory 38
16 To 8 Bit Multiplexing Circuit 41
Control Signal Generation 42
CPU Ready Generation 43
WE Generation 44
External CPU Write Timing 45
External CPU Read Timing 46
GROM Read Timing 47
GROM Seiection And Ready Logic 52
Ready Timing 53
TMS 9901 Pin Assignments And Functions 57
TMS 9901 I/O Interiace Section Elock Diagram 60
TMS 9901 Interupt Handling Logic 61
TMS 9901 Programable System Interiace 62
TMS 9901 Interval Timer Section 63
VOP Selection Logic 69
Video Display Frocessor (VDP) 70
TMS 0918 VDP Elock Diagram 71
TMS 9919 Sound Procassor Selection Logic 77
LS 138 110
LS 194 111
LS 244 112
LS 245 113
TIM 9904 Four - Phase Clock Generator Oriver 114
TIM 9904 Four - Phase Clock Generator Oriver 115
LS 373 116
4116 Dynamic RAM 117
MF 4732 ROMS 119
6810 RAM 120
Pin Outs For TMS 9900, U608-511, And U514-616 121
Mainframe Board Lay-Out 122
FIGURE DESCRIPTION PAGE
43 System Block Diagram 123
44
4546
9900, ROM, RAM, And MUXing Circuit 124
GROM And Audio Circuit 125
RAM And Video Circuit 126
9901, Keyboard, Cassette, Joystick Circuit 127
1/0 Buffers And I/O Port 128
Power Supply 129
SCHEMATIC PACKAGE: 99/4A
50 System 3lock Diagram 130
9900, ROM, RAN, And MUXing Circuic 131
GROM And Audio Circuit 132
RAM: And Videc Circuit 133
g901, Keyboard, Cassette, Joystick Circuit 134
I/C Euffers And I/O Por: 135

LIST OF TABLES

01
02
03
04
05
06
07
08
09
10
11
12
13

Summary of 9900 Microprocessor Instructions 31
GROM I/O Operations 49
GROM Merory Map 51
9901 Interupt Mapping 58
9901 1/0 Mappling 58
Peripheral Addresses on CRU Bus 59
Color Vector Relationships 65
Screen Display Parameters ... 55
VDP Registers ... 72
Attenuation Control ... 73
Noise Feedback Controi ... 74
Noise Generation Frequency Control 74
Register Adcress Field .. 75

The TI $99 / 4$ Home Computer was initially presented at the Consumer Electronics Show in June 1979 by Texas Instruments. The TI $99 / 4$ is a TMS 9900-based microprosessor system. presently, the $99 / \angle A$ mainframe is being manufactured by the Consumer Products Division of Texas Instruments, Inc. in Lubbock, Texas.

The TI $90 / 4 \mathrm{~A}$ has many key features. Some of these feature include 16 -color graphics, music and sound over four octaves. The TI 99/4A also makes use of an expanded TI Basic. This feature plus the capability for up to 72 K bytes of memory (16K RAM internal, 20 K ROM, and up to 30 K ROM interfaced via the Commend Module peripherals) make the TI g9/4A Home Computer a very powerful tool. These key features and the general operation of the TI 99/4A will be presented in the following pages.

SYSTEM 3LOCK DIAERYM:

The TI 99/4A Home Computer effectively combines each of the incivijue? features of the unit into a conplete and complex system. The basic biocks of the system include the CPU, sound generation, video display, $1 / O$ contrei, plus timing and control logic. These features a in interfaced to procuce the complete microprocessor system. The system block diagram of the i it g/AA is shown in Figure i, p. 2.

99/4 SYSTEM BLOCK DIAGRAM

HOME COMPUTER

KEY ARCHITECTURAL FEATURES

- 9900 CPU
- VIDEO PROCESSOR WITH 10.74 MHz CRYSTAL OSCILLATOR FOR NTSC COMPOSITE VIDEO gENERATION AND CONTROL OF GRAPHICS RAM
- 3 GRAPHICS ROMS ONBOARD KITH GK BYTES EACH, EXPANSION PORT FOR SOFTWARE MOOULES WITH UP TO FIVE $6 K \times 8$ GROMS AND 8K ROM OR RAM
- 48 KEY KEYBOARD
- TV INTERFACE VIA VIDEO MODULATOR
- PERIPHERAL CONNECTORS WITH CRU AND 8 BIT MEMORY INTERFACE
- 1200 baud home cassett interface
- REFRESH THE TV SCREEN at 60 hz WITHOUT IntERLACE FOR COMPOSITE NTSC VIDEO OUTPUT
- 24 LINES OF 32 CHARACTERS WITH 8×8 DOT RESOLUTION
- 32 MOVABLE CHARACTERS WITH MAGNIFICATION
- 24 LINES OF 40 CHARACTERS WITH $\sigma \times 8$ DOT RESOLUTION
- 48 LINES OF 64 INDEPENDENT SPOTS
- EXTERNAL VIDEO INPUT WITH SYNC
- PROVIDE 8 COLORS WITH 2 LUMINOUS LEVELS EACH
- PROVIDE 8 SETS OF COLOR SELECT REGISTERS TO PROVIDE SEPARATE COLOR FOR ONES AND ZEROS

3 ADORESS 4-I5K BYTES OF RAM FOR CPU OR DISPLAY
O SIHGLE 5 VOLT PONER SJPPLY

- 10.74 MHz OMSCARD CRYSTAL OSCI!LATOR
- GROM CLOCK
- 90 PIN PLASTIC PACKAGE

HOME COMPUTER

TMC 0430 GRAPHICS ROM KEY FEATURES

- 6144 BYTES MASK PROGRAMMAELE ROM
- 16 BIT ADDRESS REGISTER WITH INCREMENTER
- CHIP SELECT FROM 3 MOST SIGNIFICANT ADORESS BITS
- instruction decode for four operations
- read byte and increment
- WRITE HIGH ADDRESS BYTE AND TRANSFER HIGH TO. LOW
- READ LOW ADDRESS BYTE
- SPARE TO WRITE RAM OR PROM
- LOW COST P CHANNEL MOS
- qus CYCLE TIME
- +5, -5 POWER SUPPLIES WITH TTL INTERFACE
- 447.5 KHz CLOCK INPUT
- 16 PIN PACKAGE
f 3 VOICES WITH 4 OCTAVE MUSCIAL RESOLUTION
- 15 bit programmable noise shift register
- 100 MW AUDIO DRIVE WITH 3003 CONTROL IN $20 B$ STEPS
- 8 BIT CPU INTERFACE
- 5V POWER SUPPLY
- $I^{2} L$ technology
- 16 PIN PACKAge

POWER IS TURNED ON:

- 9900 CPU RESETS AND ADDRESSES LOW EPROM LOCATIONS
- 9900 INITIALIZES
- 9900 SETS UP WORKSPACE REGISTERS IN 6810 RAM
- 9900 begins reading from groms
- 9900 ENTERS TIME DELAY LOOP TO ALLOW STABILIZATION - $\frac{1}{4}$ SEC
- 9919 SOUND CHIP IS TURNED OFF
- 9918 VDP IS INITIALIZED
- 4116 RAM is CLEARED - REQUIRES APproximately 1 SEC
- front panel display is written into vop
- 9919 SOUND CHIP EMITS BEEP
- 9900 CPU ENTERS KEYBOARD SCAN ROUTINE

SYSTEM IS NOW READY FOR USER INPUT

1 - CHECK IF FRONT PANEL IS UP "TI LOGO"
2 - CHECK ± 5, +12 VOLT LEVELS THROUGHOUT BOARDS
3 - CHECK IF READY PIN 64 OF 9900 IS LOCKED UP
4 - CHECK THE FOUR 12 VOLT CLOCKS FROM 74362 to 9900
5 - CHECK
GROM SELECT PIN 100430
GROM READY PIN 150430
GROM CLOCK PIN 130430
6 - CHECK PIN 38 OF 9918 FOR 3.579520 MHz CLOCK

7 - CHECK VDP (9918) READ PIN 159918 WRITE PIN 149918.

8 - CHECK OGTA OUT OF 4116 RAM PIN 14
9 - CHECK COMPOSITE VIDEO FROM DIN CONNECTOR

1. Operates with byte/manchester encoding format.
2. Utilizes redundancy to gain increased reliability.
3. Uses wave shaping on input and output to increase reliability.
4. Has two motor control circuits which allow computer to control decks.
5. Has capability of reading from one deck and writing to another, under computer control.
6. The interface is software intensive and relies on 9901 internal timer for it's timing.
problem area of cassette interface.
7. Reliable recovery of data is dependant on recorder used during save.
8. Reliability is directly proportional to frequency response of cassミtte deck.
9. Reliability can be observé by looking for the "eye" or "jitter" phenomenon with an oscilloscope.
A. Present reliability is dependant on amount of jitter. If jitter is less than 00 ms cassette should work.
10. Cassette is also adversely affected by speed changes.
A. Motor control curcuit can under special circumstances cause this.

The following paragraphs provide a description of the 99/4A system hardware, the VDP chip (TMS 9918), the sound chip (TMS 9919), the GROM (TMC 0430), the associated timing diagrams, the cassette interface circuitry and power supply.

99/4 SYSTEM HARDWARE

The $99 / 4$ has been built around the TMS 9900 microprocessor. Fig. 1 shows a block diagram of the system. In this description the logic of the $99 / 4 \mathrm{~A}$ is grouped into the following functional sections.

- Clock generator/driver
- Microprocessor unit
- Memory selection logic
- System ROM \& RAM
- 16 to 8 bit interfacing eircuit
- Timing and control logic
- GROM memory
- TMS 9901 programable system interface
- TMS 9918 video display processor
- TMS 9919 sound generator
- Keypoard, remote handheld unit
- Cassette interfacing circuit
- I/0 port
- Power supply
- European power supply.
- Audio board

The purpose and composition of these functional sections is to provide an overview of the 99/4A system with a detailed description in the succeeding paragraphs.

1 The clock generator/driver provides 4 non-overlapping clock signals for the TMS 9900 microprocessor and also internal latch which is used in the reset circuitry.

- The microprocessor unit with the TMS 9900 handles all the processing as required by the on board software as well as the off board software (DSR's and command modules), interrupts, and power-up initialization.
- The memory address/decode logic provides enabling signals to the various RAM's, ROM's, GROM's and interface circuit.
- System RAM consists of 250 bytes static RAM úsed as a scratch pad memory for all system operations. The system ROM consists of 8 K bytes of the following system programs.
- The GPL interpreter.
- Floating point routines.
- String conversation routines.
- Cassette interiacing and I/O programs.
- Basic programs.
- The 16 to 8 bit interfacing circuit enable the $99 / 4$ to access 8 bit devices by multiplexing and demultiplexing the 16 bit data bus of the TMS 9900 .
- Timing and control logic provides the timing and enable signals for the 16 to 8 bit interfacing circuit. It also handies the READY and WE signal for memory operations.
- The TMS 9901 I/O controller is the interface used by the kayboard scanning circuit and the cassette interfacing circuit. It also handies interrupts and has an on-chip timer.
- GROM memory consists of 18 K bytes of graphics program. (Graphics is the intermediate language used in the 99/4) It contains the following system routines:

GROM 0 : - Monitor routines

- First part of the equation calculator.
- The cassette device subroutine contain ROM.

GROM 1 : - The editor

- The prescan routine for basic.
- The first part of the basic executing program.

GROM 2 : - The file management programs.

- The second part of the BASIC executing program.
- The second part of the equation calculator.

Grom memory is expendable up to a limit of 48 K through the grom I/O port.

The GROM port enables the user to run preprogrammed sofware in up to 5 GROM's in a software module. This module may also contain in ROM processing for generating the composite video signal. A part of the lok byte user RAM contains the character code table which is downloaded in the RAM during the power-up sequence.

- The TMS 9919 sound generator is a one chip device capable of generating 3 tones and noise programable by the user.
- The keyboard interface is using the TMS 9901 I/O chip. The keyboard scanning is using the multiplexing technique.
- The I/O port provides the capability to the $99 / 4$ to access the ROM in the various peripherals containing the device service routines (OSR's) and is takes care of the data exchange.
- The audio board houses an audio amplifier to drive the 8 ohm loadspeaker in the European version of the 99/4. Volume control is by a slide pot.

The TMS 9900 microprocessor, as used in the TIO9/4, uses four non overlapping clock signals generated by a 7415362 clock generator/driver. These four clock signels Q1, Q2, Q3, and Q4 have a 12 volt swing.
For system synchronization purposes the inverted clock signals (Q1, Q2, 03 and Q4) are available at TL level.
pilt.
A timing diagram for the clock signals is given in figure 35 , As can be seen from the internal schematics of the 74LS362 figure 35 , there is also a D type latch available. This latch, clocked by Q3, is in the reset circuitry.

HARDWARE DESCRIPTION (ses figure 2, pi\%.)
POWER CONNECTIONS
Power connection points are pin 10 for ground, pin 13 for the +12 volt, and pin 20 for the +5 volt supply.
L603, L604, C604, C605 and C607 are used for decoupling of noise generated by the 74LS362.

POWER UP
Pin 17, conected to the 5 volt power supply by serie resistor R504 enables the clock outputs.

RESONATOR PART

A third overtone, 48 MHz crystal, connected between pin 18 and 19 determines the clock frequency. The tank circuit with L602 and L603 connected between PINS 1 and 2 selects the third overtone. Some units may use a RMHZ crystal with tank components to select the primary frequency.

CLOCK SIGNALS
Pin 8, 9,11 and 12 are the four 12 volt clock outputs for the TMS 9900. The four series resistors R601, R602 and R603 minimize over and undershoot.
The inverted clock signals on pin 5, 7, 14 and 15 are used internally in the $99 / 4$ for timing purposes.

RESET

Reset is accomplished during power-up and when a solid state software command module is inserted.
C606 will be slowly charged by resistor R605 after applying power to the console. Thus for a short period the D inout of pin 5 of the 74LS352 is low. The 74 LS362 clocks this zero binary value to the reset out of pin 4. This signal resets the TMS 9900 until a binary 1 value is sensed on pin 5. When the system is switched off, R506 discharges C506, thus enabling a new reset. When a solid state software command module is inserted, the reset line is connected to -5 volt. $C 606$ is then partly discharged by C506, thus dropping the voltage at pin 5 for a short time to the binary low level, generating a reset. When the solid state software comand module is removed, resistor R514 will descharge C505 to enable a new reset.

```
clock cirguirny
```


Fig. 2

The $99 / 4$ Home Computer uses the Texas Instruments TMS 9900 microprocessor. It provides the system with a 15 bit address and 16 bit data bus for communication with external memory. It also has input and output pins for serial in and output, interrupt handing and memory control (see figures 3 and 4 , ff $2 u-2.3$)

MEMORY INTERFACING
The TMS 9900 interfaces with memory by means of a 16 bit data bus (DO-D15), the 15 bit address bus (AO-A14) and the following control signals.

MEMEN MEMORY ENABLE. When active (low), MEMEN indicates that the address bus contains a memory address.

WE WRITE ENABLE. When active (low), WE indicate that memory write data is available from the TMS 9900 to be written into memory.

DBIN DATA BUS IN. . When active (high), DBIN indicates that the TMS 9900 has diabled its output buffers to allow memory to place read data on the data bus during MEMEN.

READY READY. When active (high), READY indicates that memory will be ready to read or write during the next clock cycle. When not ready is indicated during a memory operation, the TMS 9900 suspends further operating (e.g. enters a wait state) until READY becomes active again, after which the memory read/write cycle is completed. This signal enables the use of slow memory devices with the TMS 9900 .

WAIT WAIT. When active (high), WAIT indicates that the TMS 9900 has entered a wait state because of a not-ready condition from memory.

Timing diagrams for read and write cycles, with and without wait stミtes, are given in figures 5-5, pp. as-ab.

OIRECT MEMORY ACCESS

Performing memory access without interference of the TMS 9900 is called direct memory access (DMA). For this purpose the following control lines are available.

HOLD HOLD. When active (low), HOLD indicates to the processor that an external controller disires to use address, data and memory control signals. The TMS 9900 enters the hold state following a hold signal when it has completed its present memory cycle. The processor then places the address and data buses in the high-impedance state along with MEMERI, WE and DBIN and responds with a holdackowledge signal (HOLDA). When HOLD is removed, the processor returns to normal operation.

HOLDA HOLD ACKNOWLEDGE．When active（high），HOLDA indicates that the processor is in the hold state and that the outputs（MEMEN，WE and DBIN）are in the high inpedance state thus making is possible for an external device to use the buses and access memory．

The timing diagram for direct memory access is given if figure $9, p$ ．$亠 丷 ⿻ 甲 一$.
IN AND OUTPUT（I／O）
The TMS 9900 has two possibilities for communicating with external devices：
A．Addressing the device as memory．
B．Using the communication resister unit（CRU）．
The CRU makes it possible to communicate with external devices with fewer lines．Only A3 through Al4，CRUIN，CRUOUT and CRUCLK are used．The CRU I／O bus makes it also possible to address bits instead of bytes or words．

OUTPUT
Output with the CRU interface is performed as follow．The processor addresses the bit to be set．This address is decoded and enables a lateh to the data present on the CRUOUT line on CRUCLK．

INPUT
Input is performed only with the address bus and CRUIN．Again the processor addresses the bit to be read．
The system hardware decodes the bit address on A3 through A14 and enables the acdressed bit co put its value on the CRUIN line．The bit is then fetched by the Tits 9900 ．
timing diagram
A timing diagram of CRU operations is given in figure $10, \mathrm{f} .30$ ．
The TI 99／4 home computer uses both ways of I／O to communicete with internal and external devices．

InTERRUPT HANDLING
Interrupt processing logic on the TMS 9900 uses the following inputs．
INTREQ INTERRUPT REQUEST．When active（low）INTREQ indicates that an external interrupt is requested．If INTREQ is active，the processor loads the data on the interrupt－code input lines iCO through IC3 into the internal interrupt－code storage resister． This code is compared to the interrupt mask bits of the enabled interrupt level，the TMS 9900 interrupt sequences is initiated． If the comparison fails，the processor ignores the request． INTREQ should remain active and the processor will continue to sample ICO through IC3 until the program enables a sufficiently low priority to accept the requested interrupt．

ICO INTERRUPT CODES．ICO is the mest significant bit of the interrupt IC1 code，which is sampled when INTREQ is active．When ICO IC2 through IC3 are LLLH，the highest external priority interrupt IC3 and when H HHH the lowest priority interrupt is being requested．

In this system，ICO，IC＇s，and IC2 are tied to VSS，and IC3 is tied to VCC， thus if INTREQ is active，it is always considered the hignest priority．

TIMING SIGNAL
The TMS 9900 has an additional timing signal IAQ which becomes high during any memory cycle when the TMS 9900 is acquiring an instruction. This signal can be used for timing purposes.

SUPPLY. VOLTAGES
The TMS 9900 requires 3 voltages with respect to ground.

```
VBB - 5 volt supply voltage
VCC + 5 volt supply voltage
VDD +12 volt supply voltage
VSS system ground
```


CLOCK INPUTS

Four clock signals Q1, Q2, Q3 and Q4 have to be provided on the four clock input pins for internal timing of the TMS 9900. Note that these inputs require a 12 volt swing.

SYSTEM START UP
The following signals can be used for system start up.
RESET RESET. When active (low), RESET resets the processor. When RESET is released the TMS 9900 starts execution of its programs with the first memory address fetched from memory locetion 0002.

LOAD LOAD. When active (low), the processor starts execution of its programs on the address in memory location FFFE.

During a reset or load the microprocessor also fetches the workspace pointer. Tinis is the starting address of a memory field of 16 words in RAM memory which is used as a register field. During reset the workspace pointer is fetched from adress 0000 , during load from address FFFC.

A drawing of the connections to the TMS 9900 as used in the 99/4 is given in figure $-1, \rho .2 /$.
The following list describes the connections in more detail.
POWER CONNECTIONS
+5 volt. The +5 volt power supply is connected to PIN 2 and 59 of the TMS 9900. L600, C600 and C611 are acting as a filter to reduce system noise on PIN 2 and C603 is used for the same purpose on PIN 59.
$\div 12$ volt. The +12 volt power supply is connected to PIN 27 L601 and Col2 are acting as a filter to reduce noise.

- 5 volt. The -5 volt power supply is connected to PIN 1 with C602 for decoupling.

CLOCK INPUTS
Clock inputs Q1, Q2, Q3 and Q4 are input on pins 8, 9, 25 and 28 respectively.

ADORESS BUS
The $99 / 4$ uses the address bus internally without further buffering, except for Al4, which is used on the GROMS (see I/O bus description).

DATA BUS
Internal ROM and RAM uses the data bus without buffering. . To connect the data bus to internal 8 bit devices and for in and output, a special 16 to 8 bit interfacing circuit is used.

CRU BUS
CRUOUT, CRUIN and CRUCLK are used internally without buffering.
INTERRUPT HANDLING
Interrupt vector pins 33 through 36 are praset to code LLLH, the highest external priority interrupt. So the $99 / 4$ knows only one interrupt level. The INTREQ line is connected to the TMS 9901, winch handles the interrupts.

RESET
The system resets during power up or when a solid state sctiware commend nodule is inserted. This is done by connecting RESET pin 6 to pin 6 of the system clock generator (U601).

LOAD
The load function or pin 4 is connected to the $1 / 0$ Port via resistor R523.

WRITE ENABLE
The WE function or pin 61 is used by fast system RAM without buffering and is modified by timing and control for other devices.
IAQ/HOLDA
The instruction aquisition signal on pin 7 and the hold acknowledge signal on pin 5 are combined on OR-gate $U 605$ to generate a combined signal.

MEMORY ENABLE (MEMEN)
This signal is buffered by OR-gate U605 for further use in and outside the $99 / 4$. R607 is used as a pull up resistor to t5 volt to assure that memory is disabled during power up.

DBIN
The DBIN signal on pin 29 is buffered twice by inverting gates U602 for use within the $99 / 4$ system.

READY/HOLD
READY and HOLD on pins 62 and 64 are combined to form one signal.

A study of 9900 's internal structure is useful when trying to understand the operation of the IC. The architecture of the 9900 microprocessor is shown in the diagram of Fig. $\bar{\Sigma}, p . \approx 0$. This shows the internal features within the CPU. These features include:

* The ALU
* 3 Multiplexer Busses
* Control Logic and Control ROM
* Internal Registers: Memory address register, shift register, status register, source data register, shift counter, workspace register, instruction register, and auxillary register T1 and T2.

The ALU (Arithmetic Logic Unit) is a 16-bit, parallel logic network used in the execution of the 9900's instructions. The unit performs arithmetic functions, log, and comparisons. The multiplexer busses are used in the transfer of flow of data in the CPU. Tine control circuitry provides the signals necessary for correct gating.

The control logic and control ROM provide the necessary signals for the correct sequencing or operation of the CPU's instructions. This is accomplished with the aid of the input control signals and master timing. Anong the internal registers there are three which are key architectural features of the CPU. These registers are the workspece pointer, the program counter, and the status register. the workspace pointer contains the location of the first word in the workspace. The program counter contains the address for the next word which is to be used in the execution of an instruction. The status register determines if the conditions necessary for an instruction execution have been met. This is done by the setting of flags.

In the operation of the 9900 , sixty-nine instruction words can be used. I list of the 9900 's instruction set can be found in iable 1, f. 31 . These instructions are used to perform arithmetic operations, logic, comparisons; and manipulation operations on data. They are also used for the loading and storing of data within the CPU's internal registers. Data transfer betiveen the external memory system and external devices is also mace possible with the instructions via the CRU. Instructions are also used as control functions within the CPU.

The external memory used with the TMS 9900 in the T199/4 and TI99/4A consists of two TMS 4732's and two MCM 6810p's. The TMS 4732's are $4 \mathrm{~K} X 8$ bit ROMS and are addressed via lines A3-A14 of the address bus. However, one of the 4732's uses the Dl-D7 lines on the data bus while the other uses data lines 08-015, thus combining the two 4732's into a $4 \mathrm{~K} \times 16$ bit ROM. The MCB 6810P's are 128 $X 8$ bit static RAM and are used as a scratch pad by the CPU. In a manner similar to the 4732's the two 6810's are combined to form a 128×16 bit RAy. One slight difference from the 4732 's is that the 6810's are addressed by address lines A8-A14.

The 9900 uses three control signals during operation of the external memory read and write to control the use of the address and data busses. These signals are DBN, -MEMEN, and -WE. During memory read, DBIN and -MEMEN are active, while -WE is not. The active signals allow an output onto the address buss indicating the disired memory lacation to be read. OBIN and -MEMEN are deactivate the deta bus output.

FIGURE 1 - ARCMITEETURE

Fig. 3

Product Data Book	TMIS 9900
	ARCHITECTURE

2.3 TMS OSDO PIN DESCRIPTICN

Taple 2 defines the This $\xi s \infty 0$ pin assugrments and deseribes the function of tach Din.

TABLE 2
THE 9900 PIM ASSIGNMENTS ANO FUNETICNS

Fig. 4

SIGNATURE	Pin	vo	OESCRIPTION
			BUS CONTROL
C8IN	29	OuT	 all other cases exesot when MOLOA is scive.
MEMEN	ω	Cut	
WE	81	OUT	to be witten mie memory.
cruc:	60	eut	CRU doex. When acrive (highl, CRUCLK incieats tha: externat insertacr logie anould samele the
Catin	31	${ }^{\mathbf{N}}$	
Equcut	50	OLT	 goes merive throhl.
			INTERRLPT COFTR
InTAEO	22	in	 the reavety intrmer.
$16513.458)$	35	in	
169	35	IN	
162	3	IN	
103 (LSa)	33	in	MEMORY CONTROL ${ }^{\text {a }}$
N060	5	IN	dence) omars to utilize the acdess anc eara tuset to transier casz :o ar from memon The rentoved, ine proestior reurns to normal eopeation.
HOLEA	5	Cut	 Axgmomoreance stale.
REAOY	62	in	Reacy. Whan seive (ingn), READY, incicates that memory whil resor :e rese er wrie turirc the
WATT		ent	areeracy emotion trom memerr.

Fig. 4 (centinued)

Protuct Data Aook	TMS 99O()
	MRCIITIECTURE

 fowowing tie eurrent instructon berne executed This adcress is rarerencec by ine oracesjor io teten the max: instruction from memory and is then automaticaily incremented The status resister (ST) cantarns-ine g-esen: sta:e zi
 word in the currently astive se: of worksoase registers.
 wo:kssace resister may nold ata of ajerasses anc function as eoerand regisiars, accumulatera, aceress razisters, o:

Drivers are deactivated to prevent the input data from conflicting with output data. Memory write makes use of -MEMEN also -WE both active, and DBIN deactivated. Under these conditinns the 9900 ouputs on the address and data busses and holds these outputs for the duration required by RAM.

CRU ALLOCATION
Of the available $4 K$ of CRU bits, the first $1 K$ (addresses 0000-07FE) are used internally in the Home Computer. The second lK (adresses 0800-0FFE) are reserved for futura use. The last 2 K (addresses 1000-1FFE) are reserved for the peripherals to be plugged in the I/0 port. A block of 128 CRU bits is assigned to each peripheral as listed below..

CRU ASSIGMMENTS

CRU
ADDRESSES. A3 A4 A5 A6 A7 USE

OCO0-OFFE	0	X	X	X	X	INTERNAL USE
1000-10FE	1	0	0	0	0	RESERVED
1100-11FE	1	0	0	0	1	OISK CONTROLLER
$1200-12 F E$	1	0	0	1	0	RESERVED
$1300-13 F E$	1	0	0	1	1	RSS 232 (I)
$1400-14 F E$	1	0	1	0	0	RESERVED
$1500-15 F E$	1	0	1	0	1	RS 232 (11)
$1600-16 F E$	1	0	1	1	0	RESERVED
$1700-17 F E$	1	0	1	1	1	RESERVED
$1800-18 F E$	1	1	0	0	0	THERMAL PRINTER
$1900-1 F F E$	1	1	X	X	X	FUTURE EXPANSION

INTERRUPT HANDLING

The interrupt available on the $1 / 0$ port is one of the maskable interrupts of the TMS 9901 Programable Systems Interface.

9900 INTERRUPTS

INTERRUPT LEVEL	VECTOR LOC. (MEMORY ADDR. IN HEX)	$\begin{aligned} & \text { CPU } \\ & \text { PIN } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { DEVICE } \\ & \text { ASSIGMMENT } \end{aligned}$
(High	0000	RESET	RESET
est 0	FFFC	LOAD	LOAD
$\begin{aligned} & \text { Prior- } \\ & \text { ity) } \end{aligned}$	0004	INTI	EXT DEV (9901)

Lower priority CPU interruot are not used. The additional interrupts availeble are implemented on 9901.

METONy wnire cyces timidG.


```
D)ineGermenony acecss Timing
```



```
CRU In/TERFACE TININNG.
```


TABLE 1. SUMMARY OF 9900 MICROPROCESSOR INSTRUCTIONS

Mnemonic	Instruction Code Descriotion
A	Add Words
$A B$	Add Bytes
ABS	Absolute Value
AI	Add Immediate
ANDI	AND Immediate
B	Branch
BL	Branch and Link
BLWP	Branch and Load Workspace Pointer
C	Compare words
CB	Compare Bytes
CI	Compare Immediate
CKOF	Clock Oif (control instruction)
CXCN	Clock on (control instruction)
CLR	CLEAR
COC	Compare Ones Corresponding
C2C	Compare Zeroes Corresponding
DEC	Decrement
DECT	Decrement By Two
OIV	Divide
IOLE	Idle (control instruction)
INC	Increment
INCT	Increment sy Two
INV	Invert

Mnemonic Instruction code Description
JEQ Jump If Equal to
JGT Jump If Greater Than
JH Jump If Greater Than (Logic)
JHE Jump If Greater Than Or Equal To (Logic)
Jl Jump If Less Than
JLE Jump If Less Then Or Equal To (Legic)
JLT Jump If Less Than
JMP
INC
Unconditioned Jump
Jump If No Carry
JNE Jump If Not Equal
JNO Jump If No Overfiow
JOC Jump On Carry
Jop Jump On Odd Parity
LDCR Load CRU
LI Load Immediate
LIMI Load Interrupt Mask Immediate
LREX Restart (control instruction)
LWPI Load Workspace Pointer Immediate
MOV Move (word)
MOVB Move Byte
MPY Multiply
NEG Negative
ORI OR Immediate
RSET Reset (control instruction)
Mnemonic Instruction Code Description
RTWP Return with Workspace Pointer

Subtract Words
SB Subtract Bytes

Set Bit To Logic Zero
SETO Set To One
SLA Shift Left Arithmetic
SOC Set One Corresponding
SOCB Set Ones Corresponding
SRA Shift Right Arithmetic
SRC Shift Right Circular
SRL Shift Right Logical
STCR Store CRJ
STST Store Status
STWP Store Workspace Pointer
SWPB Swap Bytes
SZC Set To Zeroes Corresponding
SZCB Set To Zeroes Corresponding Bytes
TB Test Bit
x. Execute
XOP Extended Operation
XOR
Exclusive OR

The memory selection logic decodes the more significant address lines for selecting fast ROM and RAM memory. Also the output of the decoder is used for a second decoder, which selects internal devices such as VDP, sound etc...

HARDWARE DESCRIPTION

The schematics of the memory selection logic with a memory map is given in figure iis $\rho \cdot 3 \Xi$.
When MEMEN is active, U504 (74LS138) decodes the three most significant address lines AO through A3, dividing the address space in the following 8 blocks of 8 bytes.

BLOCK 0
Memory Block 0 ($>0000-\mathrm{PlFF}$) is used to select the system read only memory (ROM).

BLOCK 1
Memory Block 1 (>2000->3FFF) is reserved for memory expansion.
BLOCK 2
Memory Block 2 (> 4000->5FFF) is used to select read only memory in external devices, such as RS232 interface. The ROM in these devicas contains the device service routine (MBE).

BLOCK 3
Memory block 3 (>6000->7FFF) is used for the optional read only memory in solid state software cominand modules (ROMG).

BLOCK 4
Memory block 4 (: $8000-29 F F F$) is used divided in several parts. Memory locations >8000 to $>83 F F$ are used for the fast system read-and-write memory. This further decoding of the address space is done in or-gates U507. This part of the circuitry also generate the RAMBLK signed, which is used to select the TMS 9901 programmable system interface. Furthermore the MB4 signal is used to select a second 74LS138 which divides memory block' 4 in more parts.

BLOCK 5, 6 AND 7
These blocks are used along with Block 1 for menory expansion.
START SIGNAL
By combining the CSRAM and ROMEN signals, together with MEMEN in NAND-gate U60 and OR-gate U605 the START signal is developed. This signal is used in the al6 to 8 bit interfacing circuit.

MEMORY SELECTION LOGIC

$\overline{M B E}$	$4000-5 F F F$
$\overline{R O M G}$	$6000-7 F F F$
$\overline{M B 4}$	$8000-9 F F F$

SIGNAL

ROMEN

4

ADDRESSED MEMORY LOCATICN
0000 - 1FFF

8000 - $9 F F F$
4000-5FFF
6000-7FFF

\author{

}

USE
SYSTEM ROM SELECT
ext. device rom select
SOFTWARE MOOULE ROM SELEC:
MEMORY BLOCK 4

Fig. 11

MEMORY ALLOCATION

The memory address space is broken into 8 blocks of 8 K bytes of memory. The third block (addresses 4000 - 5FFF) is predecoded and made available at the $1 / 0$ port for the peripherals. The second sixth, seventh and eighth blocks (addresses 2000-3FFF and A000 - FFFF) are available for further expansion. For the speech module, (addresses 9000 97FF), a predecoded line is available at the I/O port.

SYSTEM MEMORY MAP

HEX ADORESS

0-1FFF	Console ROM Sp
2000-3FFF	Future Expansion (internal/console)
4000-5FFF	Peripheral expansion (predecoded to I/O Connector)
6000-7FFF	Game cartridge ROM/RAM (predecoded to GROM Connector)
8000-9FFF	Microprocessor Rait, VDP, GROM, SOUND and SPEECH select.
A000- BFFF	Future Expansion
COOO- DFFF	Future Expansion
5000 - FFFF	Future Expansion

MEMORY MAPPED DEVICES

Addresses	AO	A1	A2	A3	A4	A5	A14	A15	USE
8000	1	0	0	0	0	0	0	0	Internal RAM (8300-83FF)
8400	1	0	0	0	0	1	0	0	Sound
8800	1	0	0	0	1	0	0	0	VOP Read Data
8802	1	0	0	0	1	0	1	0	VDP Read Status
8100	1	0	0	0	1	1	0	0	VDP Write Data
$8 \mathrm{CO2}$	1	0	0	0	1	1	1	0	VOP Write Address
9000	1	0	0	1	0	0	0	0	Speech Read
9400	1	0	0	1	0	1	0	0	Speech Write
9800	1	0	0	1	1	0	0	0	GROM Read Data
9802	1	0	0	1	1	0	1	0	GROM Read Address
9000	1	0	0	1	1	1	0	0	GROM Write Data
$9 C 02$	1	0	0	1	1	1	1	0	GROM Write Address

GENERAL DESCRIPTION

The $99 / 4 A$ Home Computer uses 8 K bytes of read only memory for execution of fast system routines.
It has also 256 bytes of random access memory which is used as a scratchpad memory.

READ ONLY MEMORY
The $99 / 4 \mathrm{~A}$ uses the TMS 4732 as a read-only memory. This device contains 32 K bits of read-only memory. It is housed in a 24 pin dual in line package and uses a single 5 volt supply voltage. 12 address lines are used to select 4 K bytes of 8 bits.
The device uses two chip select inputs, which both have to be active (low) to select the device.

READ-AND-WRITE MEMORY
The 99/4A uses the MCM 5810 as random access memory. The MCM 6810 is housed in a 24 pin dual in line package and uses a single 5 volt supply voltage. 7 address lines are used to select 128 fields of 8 bits. 6 pins are available for device selection, of which two have to be low and four have to be high to select the RAM.
Another pin (R / W) is provided to distinguish between writing and reading of data.

HARDWARE DESCRIPTION
Hardware connections to ROM and RAM memory are given in figure $12, \mathrm{p} .33$.
RAM MEMORY
Two RAMS (U608 \& U609) are connected in parallel to generate a 16 bit data bus, as is required by the TMS 9900 . The devices are selected by the RAMCS signal, generated by the memory selection logic. Distinction between reading and writing is made by connecting the WE signal of the TMS 9900 to the R/W PIN 16. Address lines A8 through Al4 are used to select the proper memory locations.

ROM MEMORY
Both ROMS are connected in paralel to generate the required 16 bit data bus.
The ROMS are selected by the ROMEN signal, generated by the memory selection logic. This signal is applied on pin 20.
Address lines $A 3$ through Al4 are used to select the proper memory locations.

The 16 to 8 bit interfacing circuit is used to interface 8 bit devices such as Video Display Processor (VDP). The sound chip, graphics-read-only memory (GROM) and external 8 bit peripherals to the 16 bit data bus of the TMS 9900. It does so by successively placing the least significant and most significant byte of a word on the 8 bit system data bus during a write operation. During a read operation adjecent bytes are placed in the least significant and most significant byte of the 16 bit word. To enable 8 bit devices to destinguish between the bytes, an additional address line Als is generated. The interfacing circuit also performs the synchronization between devices connected to the 8 bit system databus and the the TMS 9900 by generating adequate timing of the WE and READY signals.

HARDWARE DESCRIPTION

The hardware description is divided in the following parts:
A. Description of the 16 to 8 bit multiplexing circuit.
B. Generation of the control signals for the multiplexing circuit.
C. READY/HOLD generation.
D. WE gernation.
A. 10 TO 8 BIT MULTIPLEXING CIRCUIT

An overview of the hardware used to interface the 16 to 8 bit data uses is given in figure $13, \mathrm{p} .41$.
During a write operation the data on the 16 bit bus is gated to the 8 bit system bus by enabling $U 616$ and $U 614$ in succession. During a read operation the least significant byte on the 8 bit data bus is stored in the 8 bit latch U615. Then the most significant byte is gated to the 16 bit data bus by enabling bidirectional buffer U614 and the total word is fetched by the TMS 9900. The OIOG and DBIN on U614, OINE and A15 on U615 and the DOG on U616 are used for enabling IC's and for determining the direction of the data flow.
If no interfacing occurs, the 16 bit data bus is kept floating to allow the TMS 9900 to access ROM or RAM memory.
B. CONTROL SIGNAL GENERATION

Control signal for the multiplexing circuit are generated by the circuit in figure si, p. 42.
U613 is a 4 bit shift register of which the outputs are used for timing purposes.
When the START signal is hign, pin 2 of 4604 is low. This pin, connected to pin 1 of U613, sets all the outputs of the shift register to a binary zero. Since the START signal is also connected to pin 10 , the shift register is disabled. Control signal generation is started when START becomes low, pin 10 which becomes also low selects the right shift mode of shift register U6i3.
Shift operation is then started as soon as pin 9 of $U 613$ becomes high,
depending on the system ready status. When the shift operation has begun shift output QC on pin 13 inverted in $U 602$ and fed back to the right shift input on pin 2. On every rising flank of Q1 (pin 11) the contents of the shift registers are shifted one position, giving timing signals on the outputs $Q a, Q b$ and Qc (see figures , $7-18, P p .45-46$).
These outputs are used for generating the control signals in NAND-gates U603 and U606. Both DBIN and DSIN are used for selecting the direction of the data flow.
CSVOPR disables U614 if a read from the video display processor occurs, this because the VDP data bus is directly connected to Di-D7 of the TMS 9900.

C. READY GENERATION

The READY generation circuit as shown in fig. D.e 40 has two operation modes. In the normal mode the system ready signal is input on pin 12 of U607. The pull-up resistor R508 assures that under normal circumstances the READY signal is true.
Slow devices can add wait states by connecting pin 12 of $u 607$ to ground. The READY signal is sampled on Q2 and available on pin 9 of U607.

there are now two possibilities:

ROM OR RAM IS SELECTED
In this case shift register U613 is not enabled and the READY signal is gated directly via U503 and U602 to the READY/HOLD input of the TMS 9900 . Note that in this case PIN 12 of U603 has to be high.

EXTERNAL READY TIMING

If other devices than ROM or RAM are selected, the 16 to 8 bit interfacing circuit will be used. This means that the TMS g900 has to be put in a WAIT state until two bytes of data are written or read by the interfacing circuit. This is accomplished by decoding the Qa and Qe outputs of the shift register in NAND-gates U612 and U503 to provide a low READY signal until both bytes are processed by the interfacing circuit.
If during this operation a device generates a not READY, the shift register will stop its operation until ready becomes high again. Timing diagrams for the READY signal can be seen in figures 7-3, pp 27-28.

WE generation -

The WE circuit as given in fig ic, 047 generates the $\overline{W E}$ signals when writing data to an external device. In that case WE of the system has to be low every time a byte of information is transferred.
To accomplish this, outputs Qb, on PIN 14 and Qc on pin 13 of U613 are used to set and preset flip flop U607on pin 2 and 4 . In this way two periods of 2 clock cycles long for which $W E$ is low are generated on pin 3 of U606. Q4 is used to clock U607 to assure that $\overline{W E}$ is going low on the rising edge of Q4, which is in agreement with TMS 9900 timing. WE is only gated to external devices when a memory write is accomplished by combining the WE of the TMS 9900 after inverting in U502 with the WE of the interfacing circuit. The total signal is then available of pin 3 of U606.

Fig. 13

CONTROL SIGNAL GËMERATION.

Fig. 14

```
CDU READY GENERATIOM.
```


Fig. 15

EXTERNAL CPU-WRITE TIMING

The TMC 04.3; GROM is a P-channel read only memory containing 6144 8-bit bytes.
The circuit has an on chip autoincrementing address counter which selects one of the 6144 memory bytes.

FUNCTIONAL DESCRIPTION

CPU INTERFACE
The GROM interfaces to the CPU through the parallel data bus and the memory control lines as shown in fig. $5-3.23 .3$. The CPU interface consists of 8 data $1 / 0$ lines ($00-07$), chip enable (CE), READY, and 2 mode control lines (MO, M1). The GROM also requires a nominal 500 kHz clock input (OSC).

GROM PAGING

The GROM has a 16-bit address register of which the lower l3-bits are used to address the 6144-byte ROM matrix. The most significant 3-bit field is used to select on of eight GROM pages. Each GROM has fixed 3-bit page number which is determined during manufacture. The GROM compares this number with the address register page select field. If a match occurs, then the GROM is the "selected page" or "current page". The GROM data bus is placed into the output mode during a read data operation only if the GROM is the current page. The other GROM functions are not affected by the page select field. The page select field permits up to eight GROMs to be used in parallel. Each GROM is tied to same chip enable, memory control, and data lines as the other GROMs. Since the page select field does not affect the data register or address register operations, all parallel GROMs ere synchronized following initialization. However, since only one GROM is the current page, only one GROM outputs data on the data bus during a read data operation. If no GROM is selected (the address register page field does not match the page number of any GROM), then no GROM is placed into slaced into the output mode during a read data operation. During a read address operation. During a read address operation, all GROMs output the address byte. Since all GROMs are synchronized following initialization no data bus conflict occurs.

adoress register autincrementation

The address counter is autoincremented following a read data, write ciata, or a pair of consecutive write address opetations. When the current address is 8191, the next autoincrement cycle will result in a zero address value. The page select field is not affected by the auto increment.

When the value of the address register lower 13-bit field is greater than 6143, the GROM will continue to fetch data from the 6144 byte array. This condition should be avoided in order to prevent invalid data fetches and transfers.

INITIALIZATION
During the power up sequence, the microprocessor should execute a
"dummy" read data operation. This will guarantee that a newly powered up GROM will not respond to the first write address operation as if it were the second write address operation.
The microprocessor should then initialize the GROM address registers with two consecutive write-address operations.

READY
The GROM ready line is normaly low and is high only when the GROM has an active CE and has read in the contents of the data bus during a write operation or has placed data on the bus during a ready operation. The READY line control is independent of the page select. Typical READY line timing is shown in figure 312 p. 53.

ACCESS DELAY
The GROM requires that a second I/O operation not occur before it has completed the first operation. Consequently, CE must remain high at least 2.5 GROM clock cycles following the trailing edge of the last I/O operation. For a nominal 500 kHz OSC input, the minimal required delay between the rising edge of $C E$ and the next falling edge is 5 microseconds.

I/O OPERATIONS

When CE becomes active (low), the mode lines determine which one of four GROM I/O operations is to occur as shown in table.

TABLE 2 GREM ILC OFERATKNIS
MODE

MO MI I/O OPERATION

0 WRITE DATA - The write data operation in included for use in future read/write versions of the GROM. The write data operation does not result in a data transfer to the TMC 0430 GROM. The address register is then autoincremented. The addressed ROM byte is fetched and placed into the GROM data register.

0-1 READ DATA - The read data operation transfers the data byte in the data register to the CPU if the GROM is the current page. The address register is then autoincremented. The addressed ROM byte is fetched and placed into the GROM data register.

1 . 0 WRITE ADDRESS - The write address operation transfers the data byte on the GROM data I/O bus to the least significant byte (LSB) of the GROM address register. The old address register (LSB) is transferred to the address register most significant byte (MSB). Two consecutive write addressoperations cause the addressed ROM byte to be fetched and placed into the GROM data register; the address register is then autoincremented. A

A write address operation immediately following a read data, read address, or write data operation does not result in a data fetch and address autoincrementation.

11 READ ADDRESS - The read address operation transfers the MSB of the address register to the CPU if the GROM is the current page. The address register LSB is automatically transferred to the MSB.

It should be noted that the MO line controls whether the data or address register is to be affected and the M1 line controls whether the operation is an input or output cycle.

HARDWARE DESCRIPTION

The $99 / 4$ has three internal GROMS (TMC 0430) and the possibility to add 5 more external GROMs via the GROM port. All GROMs are connected in parallel as can be seen in figure Sa^{2}, p.132.

GROM CLOCX
The clock signals for the GROMs are derived from the TMS 9918 video display processor. The clock cycle time is 2.24 usec. A 1 K ohm pull-up resistor is used to ensure proper functioning of the p-channel device with TTL logic.

dATA BUS INTERFACING

All GROMs are connected in parallel to the 8 bit data bus.
MODE CONTROL
The type of operation performed by the GROM is determined by connections DBIN to Ml and address line Al4 to MO. Thus a read operation is performed when DBIN is high and a write operation when DBIN is low. Address line Al4 distinguishes between data and address operations.

GROM SELECT

GROM selection is performed by the circuit in fig. 23,050 . when MEMEN is low, U504 decodes address lines AO, A1 and A2. Decoder output Y4 is used to select a second 3 to 8 decoder U505. This device is enabled when Al5 and $o n \in$ or both signals DBIN and A5 are low. Decoding of address lines A3, A4 and A5 are then used to select the GROMs by "ANDing" outputs Y6 and $Y 7$ by mean of the NAND U506 and inverter U508.

GROM READY

The GROM ready signal is connected to the READY/HOLD via U508 and U505. U508 inverts the GROM READY signal. This signal is then combined in NAND-GATE U506 with the GROM select signal to get the appropriate signal for the system READY/HOLD line.

MEMORY MAP
Table 3 shows the memory map for the successive GROM instructions.

```
TABLE 3
```


GROM MEMORY MAP

ADDRESS TYPE OF INSTRUCTION

9800
READ GROM DATA
9802 - READ GROM ADDRESS
9 COO
WRITE GROM DATA
$9 \mathrm{CO2}$ WRITE GROM ADDRESS

As can be seen address Al4 distinguisnes between an address and data instruction. Distinction between read and write instructions is made by DBIN and the different addresses. This is done because when writing data or address information, the 9900 up executes a dummy read which would otherwise influence the address counter in the GROM.

Gron leléctiont os READY LoGic.

FIGURE 21 READY TIMING

* $\overline{C E}$ to READY time $\simeq 6$ usec

Fig. 21

The TMS 9901 is a programable system interface (PSI), which can be used for input, output and interrupt priority handling. It also features an on chip programmable interval timer. The TMS 9901 is used for keyboard, remote handheld control unit, cassette recorder interfacing and VDP interrupt handling in the 99/4 system.

The TMS 9901 PSI interfaces to the CPU through the Communication Register Unit (CRU) and the interrupt control lines. The TMS 9901 occupies 32 bits of CRU input and output space. The five least significant bits of the address bus are connected to the PSI to address one of the 32 CRU bits of the TMS 9901. The most significant bits of the address bus are decoded on CRU cycles to select the PSI by taking its chip enable (CE) line active (low).

Interrupt inputs to the TMS 9901 PSI are sychronized with Q3, inverted, and then ANDed with the appropriate mask bit. Once every Q3 clock time, the prioritizer looks at the 15 interrupt input AND gates \& generates the interrupt control code. The interrupt control code and the interrupt request line constitute the interrupt interface to the CPU.

After reset all I/O ports are programmed as inputs. By writing to any I/O port, that port will be programed as an output port until another reset occurs, either software or hardwars. Data at the inputs pins are buffered on the TMS 9901. Data to the output ports is latched and then buffered on-chip by the PSI's MOS to TTL buffers.

The interval timer on the TMS 9901 is accessed by writing a one to select bit zero (control bit) which puts the PSI CRU interface in the clock mode. Once in the clock mode the 14 bits clock contents, can be read or written. Writing to the clock register will reinitialize the clock and cause it to start decrementing. When the clock counts to zero, it will cause and interrupt and reload to its initial value. Reading the clock contents permits the user to see the decrementer contents at the point in time just before entering the clock mode. The clock read register is not updated when the PSI is in the clock mode.

A block diagram of the TMS 9901 PSI is given in figure $55, p .62$.
CRU INTERFACE
The CPU communicates with the TMS 9901 PSI via the CRU. The TMS 9901 occupies 32 bits in CRU read space and 32 bits in CRU write space.
The CRU interface consist of 5 address select lines (SO-S4), chip enable (CE), and three CRU lines (CRUIN, CRUOUT, CRUCLK). The select lines (50-54) are connected to the five least significant bits of the address bus (A10-A14). Chip enable (CE) is generated by decoding the most significant bits of the address bus on CRU cycles: When CE goes active (low), the five selected lines point to the CRU bit being accessed. When CE is inactive (high), the PSI's CRU interface is disabied. In case of a write operation, the TMS 9901 strokes data off the CRUOUT line with CRUCLK. For read operation, the data is sent to the CPU on the CRUIN line.

A block diagram of the interrupt control section is show in fig.oy, o.sl The interrupt inputs (6 dedicated (INT1-INT6), and 9 programmable) are sampled on the falling edge of Q3 and latehed onto the chip for one Q3 time by the SYNC LATCH, each Q3 time. The output of the SYNC LATCH is inverted (interrupts are active low) and ANDed with its respective mask bit (mask=1, interrupt enabled). On the rising edge of Q3, the prioritizer and encoder senses the masked interrupts and produces a four-bit prioritized code and INTREQ are latched off chip with a SYNC LATCH on the falling edge of the next Q3, which ensures proper synchronization to the processor. The interrupt mask bits on the TMS 9901 PSI are individually set or reset under software control. Any unused interrupt line should have its associated mask disabled to avoid false interrupt: to do this, the control bit (CRU bit zero), is first set to a zero for interrupt mode operation. Writing to TMS 9901 CRU bits $1-15$ indicates the status of the respective interrupt inputs; thus, the disigner can employ the unused (disabled) interrupt input lines as data inputs (true data in).

InPuT/OUTPUT INTERFACE

A block diagram of the TMS 9901 I/O interface is shown in fig. 23.50. Up to 10 individually controlled $1 / 0$ ports are available (seven dedicated, PO-PS, and nine programmable) and as discussed above, the unused dedicated interrupt lines also can be used as input lines (true data in). Thus the TMS 9901 can be configured to have more than 16 inputs. RST1 (power-upreset) will program all $1 / 0$ ports to input mode. Writing data to a port will automatically switch that port to the the output mode. Once programmed as an output, a port will remain in that state until RSTI or RST2 (command bit) is executed. An output port can be read and indicates the present state of the pin. A pin programmed to the output mode cannot be used as an input pin: applying an input current to an output pin may cause damage to the TMS 9901. The TMS 9901 outputs are latched and buffered on chip, and inputs are buffered onto the chip. The output buffers are MOS-to-TTL buffers and can drive two standard TTL loads.

PROGRAHMABLE PORTS
A total of nine pins on the TMS 9901 are user programable as either $1 / 0$ ports or interrupts. These pins will assume all characteristics of the type pin they are programed to be. Any pin which is not being used for interrupt should have the appropriate interupt mask disabled (mask=0) to avoid erroneous interrupt to the CPU. To program one of the pins as an interrupt, its interrupts mask simply is enabled and the line may be used as if it were one of the dedicated interrupt lines. To program a pin as an I/O port, disable the interrupt mask and use that pin as if it were one of the dedicated I/0 ports.

Fig. Ja fisis a block diagram of the TMS 9901 interval timer section. The clock consist of a 14 bit counter that decrements at a rate of f(Q3)/64 (at 3 MHz this results in a maximum interval 349 milliseconds with a resolution of 21.3 microseconds). The clock can be used as either an interval timer or an event timer. To access the clock, select bit zero (control bit) must be set to a one. The clock is enabled to cause interrupts by writing a nonzero value to it and is then disabled from interrupting by writing zero to it or by a RSTI. The clock starts operating at no more than two Q3 times after it is loaded. When the clock decrementer is running, it will decrement down to zero and will also be reloaded from the clock register and decrementing will start again. (The zero state is counted as any other decrementer state). The decrementer always runs, but is will not issue interrupts until enabled; of course the contents of the not enabled clock read registers are meaningless.

POWER UP
During hardware reset, RSTI must be active (low) for a minimum of two clock cycles to force the TMS 9901 into a known state. RST1 will disable all interrupts, disable the clock, program all $1 / 0$ ports to the input mode, and force IC1-IC3 to all zero's with INTREQ held high. The system software must enable the appropriate interrupts, program the clock, and conifigure the I/O ports as required. After initianal powar-up the TMS 9901 is accessed only as needed to service the clock, enable (or disable) interrupts, or read (write) data to the $1 / 0$ ports. The $1 / 0$ ports can be conifigured by use of the RST2 software reset command bit.

HARDWARE DESCRIPTION

Connections to the TMS 9901 as used in the $99 / 4$ are given in figure $\alpha \hat{0}, 0.57$ The TMS 9901 is reset during power up by using the buffered reset signal of the TMS 9900. The TMS 9901 enabled by the RAMBLK signal (see memory selection part, figure
When enabled the 9901 communicates with the TMS 9900 through the CRUIN, CUROUT and CRUCLK lines. The CRU bits are selected by decoding Alo through A14.
Connections with the devices which interface to the TMS 9901 are discussed in other sections.

TMS 9901 JL, NL
 PROGRAMMABLE SYSTEMS INTERFACE

Feripheral

 and intertace CircuitsTable 4 deines ine TMIS geot pin essignments and desenoes the funct:on of each pin.
TABLEA
TAS 9901 PIN ASSIGNMENTS AND FUNCTIONS

Fig. 22

ADORESS	CRU BIT	9901	PIN	FUNCTION
0000	0	Control		Control
0002	1	INT1	17	Exterrial
004C	2	INT2	18	Video Display Processor Vertical Sync
0006	3	INT3	9	Clock Interrupt, Keyboard "ENTER" line, Joystick "FIRE"
0008	4	INT4	8	Keyboard "L" line, Joystick "LEFT"
000A	5	INT5	7	Keyboard "p" line, Joystick "RIGHT"
OOOC	6	INT6	6	Keyboard "O" line, Joystick "DOWN"
O00E	7	INT7 (P15)	34	Kayboard "SHIFT" line, Joystick "UP"
0010	8	INT8 (P14)	33	Kayboard space line
0012	9	INT9 (P13)	32	Keyboard "Q" line
0014	10	INT10 (P12)	31	Keyboard "i" line
0016	11	INT11 (P11)	30	Not Used
0018	12	INT12 (P!2)	29	Reserved
001A-1E	13-15	INT13-INT15	$\begin{array}{r} 28,27 \\ \& 23 \end{array}$	Not Used

table 5
9901 I/O MAPPING

ADORESS	CRU $81 T$	9901	PIN	Elinction
0020	16	Po	38	Reserved
0022	17	P1	37	Reserved
0024	18	P2	26	8IT2 (LSB) of Keyboard Select
0026	19	P3	22	8 ITI Of Keyboard Select
0028	20	P4	21	.BITO (MS3) of Keyboard Select
002A	21	P5	20	Not used
002C	22	P6	19	Cassette Control 1
002E	23	P 7 (INT15)	23	Cassette Control?
0030	24	P 8 (INT14)	27	Audio Gate
0032	25	P10 (INT12)	28	Mag Tape Out
0036	27	P11 (INT11)	30	Mag Tape Input
0038-003E	28-31	P12-P15	31-34	Not used

Fig. 23

TABLE F PERIPHERAL ADDRESSES
 ON 「Nは ふUS

TMS ggor interzupt hainalling logic.

Fig. ${ }^{11}$

$$
\begin{gathered}
\text { THS ggol } \\
\text { progzo-mable syoten interface. }
\end{gathered}
$$

Fic. 25

THS 9901 Interoal Timen section

Fig. 25

The TMS 9918 video display processor is capable of generating a complete NTSC color television video signal. The information to be displayed is stored in dynamic ram the TMS 9918 generating all the necessary interfacing signals.

The VOP will generate a solid color border and background on which a $32 \times$ 24 matrix of 8×8 picture element patterns is superimposed. In addition a high degree of mobility and resolution is provided in the form of the sprites, or dynamic patterns, which are further superimposed on the pattern display.

An option can be selected whereby the VDP can function as a 40×24 character alphanumeric. terminal by setting the text command bit to one.

ARCHITECTURE

Fig. $24, \hat{p}$. Ti shows the block diagram of the video display processor. Interface to the CPU is via an 8 bit bidirectional port controlled by two select and one address line. Interface to the refresh RAM is via an 8 bit data bus, an 8 bit address/data bus, and 3 control lines. The VDP provides clock and synchronization signals to the system via the GROM CLK, CPU, CLK, and CPU INT signal lines.

Interface to the target television is provided by a composite video output signal.

OSCILLATOR AND CLOCK GENERATION
The video display system designed to operate with a $10.738535 \mathrm{miz}+/-50$ PPM crystal input to generate the required internal clock signals. A fundamental frequency parallel mode crystal is used as the frequency reference for the internal clock oscillator, which is the master time base for ell system operation. This master clock is divided by two to generate the dot clock rate of 5.3 mHz . The master clock is divided by 3 to provide the CPU clock. The GROM clock is developed from the master clock divided by 24. Additional, the master clock and its compliment are divided by 3 in two stages to provided the 6 basic color phase frequencies which generates the color on the target color tv.

COLOR PHASE GENERATION
The $10.7+m \mathrm{~Hz}$ master clock and its complement are used to generate a 6 phase $3.57545 \mathrm{MHz}(+/-10 \mathrm{~Hz})$ clock to provide the video color signals and the color burst reference for use in developing the composite video output signal. Table 7 shows the six colors, the standard phase shifts, and the color approximations provided by the VDP. While the VDP signals are not exact equivalencies, the differences can easily $b \equiv$ adjusted by the color and tint control of the target color television. To insure compatibility with monochrome television receivers, an intensity level on the gray scale is assigned to each color signal.

TABLE $?$
Color vector relationships to the 3.079545 MHz color reference.

COLOR	STANDARD PHASE	VDP FIRST APPROXIMATION	GOAL*
Yellow	12. $+/-10$	00	10 +/-
Red	$76+/-10$	60	70 +/-
Magenta	$120+/-10$	120	120 +/-
Brue	$192+/-10$	180	190 +/-
Cyan	$256+/-10$	240	$250+/-$
Green	$300+1-10$	300	$300 \div /-$

* Electrical design will attempt to provide these color signals.

VIDEO SYNC AND CONTROL GENERATION
The vertical and horizontal control signals are generated by decoding the output of the horizontal counter increments the vertical counter. Table ε gives the relative count values of the screen display parameters. Within the active display area. the three least significant bits of the horizontal counter addresses the individual picture elements of each pattern displayed. Also, during the vertical active vertical counter addresses each individual line in the 8×8 patterns.
The VDP operates at 264 lines per frame and approximately 60 irames per second in a non-interlaced mode of operation.

TABLE E
SCREEN OISPLAY PARAMETERS

HORIZONTAL
Horizontal active display
DOT CLOCK CYCLES

Right border
255
Right blanking 15 Horizontal sync 26
Left blanking 2
Color burst 14
Left blanking 8
Left border 13
TOTAL ----
VERTICAL
-------- ----
Vertical active display 192
Bottom border 26
Bottom Blanking 3
Vertical sync 3
Top blanking 13
Top border 27
TOTAL 254

TELEVISION SCREEN DISPLAY
The VDP assembles three major elements into a composite for display on the target television: background, pattern matrix, and sprites. In normal operation the background is composed of the border of the active display area. The color of this region is specified by loading the specific code for the color desired into the screen background color register. All color of this region is specified by loading the specific code for the color desired into the screen background color register. All color information is described by four bit codes composed of three color select bits and an intensity bit giving a total range of 15 colors with one code reserved for the transparent state.

PATTERN GENERATION
The second element of the screen display is the 32×24 matrix of patterns formed and is the active display area. Each pattern is composed of an 8×8 matrix of picture elements.
In a raster scanned television system each line of video information must be built and displayed. To accomplish this, a list of 768 8-bit names one for each pattern to be displayed - is assembled in the screen refresh memory. The 8-bit name contains both color and display information.

EXTERNAL VIDEO OPERATION
In this mode any VDP - generated signal, other than the background, will be display as generated. When no signal is generated, the external signel is gated through. In both modes, however, the external sync, blanking, and color burst signals are controlling the VDP and the target tv system. No internal synchronization is made to the color burst. Therefore, if a color VDP generated signal is desired, an externally generated 10.7 MHz (i.e., $3 x$ the color frequency) mist be provided to the XTLI input and its non-overlapping complement to the XTL2 input.

VDP RESET
The VDP is reset by applying a low signal to the RSET pin. This signal must last for at least 2 usec. Reset does the following: Synchronizes all clocks to its negative going edge (this includes Q1-Q4 control clocks, CPUCLK, GROMCLK and color bursi), sets horizontal and vertical counters to known state, clears the internal command registrs, gets the text color and border color to black, and clears all status flags.

POWER UP
VB8 must be applied to the 4116's either before or at the same time as the other supplies and removed last. Failure to observe this precaution will cause dissipation in excess of the absolute maximum ratngs due to internal forward bias conditions. This also applies to system use, where failure of the VBB supply must immediately shut down the other supplies. After power up, eight memory cycles must be performed to achieve proper device operation.

OSCILLATOR CIRCUITRY
An overview of the connections to the TMS 9918 VDP are given in fig. シ̊. : 3
Timing signals for the TMS 9918 are derived from an on-chip oscillator which uses on external 10.7 mHz crystal. This crystal (Y100) in series with $L 100$ is connected between pin 39 and 40 . Lloo is adjustable to set the frequency. C100 and Clol are the capacitors in the frequency determing network. R103 is added in parallel to Y100 and L100 to lower the impedance of the network, thus assuring a proper voltage swing at pin 39. Also a 5 volt voltage is fed to pin 39, R102 and Ll07 for decoupling. This voltage is used for proper start-up of the oscillator.

POWER CONNECTIONS
The TMS 9918 uses only one power supply voltage pin 12 (VSS) is connected to the system ground, PIN 33 (VCC) to the +5 volt power supply.
C102, C103, C104 and L101 are used to suppress noise on the 5 volt line.

GROM CLOCX

The 10.7 mHz oscillator frequency is internally divided by 24 . This gives a frequency of 445.8 kHz . This frequency is buffered and fed to pin 37 and used as the GRON clock.

CPU CIOCK

The 3.58 mitz CPU clock on PIN 38 is used by D4S 9919 sounc processor (on units which use the Sin75489).

RESET

The TMS 9918 is reset during power up or when a solid state scitware command module by using the reset signal of U601 pin 4. This signal is monitored by the 9918 on pin 34.

CHIP SELECTION LOGIC
The VOP is selected when CSW on pin 14 or CSR on pin 15 are low.
When CSW is low the micro processcr can write to the VOP, when CSR is low, data can be read from the VDP. The MODE signal on pin 13 is used in combination with CSW and CSM to select four basic modes of operation.

The selection logic which enables CSW or CSA is given in figure 27 ; 069 .
Selection pins Y2 (pin 13) and Y13 (pin 12) of U505 (74LS133) are used to distinguish between a write or read operation.
The write selection from pin 12 is combined with the WE signal in or-gate U507. Thus only a VDP write can occur when WE is low.
databus interfacing
Pins 17 through 24 (data lines $C 00$ through $C D 7$) are directly connected to 00 through 07 of the TMS 9900 .

Thus circumventing the 16 to 8 bit interfacing circuit.
DYNAMIC RAM INTERFACNG
Dynamic RAM memory is given in fig. $53,2.133$. The TMS 9918 uses pins 1 through 11 and 25 through 32 for interfacing the dynamic RAM.
Pins 3 through 10 are the address/data lines for the TMS 4116 (line 10 only for data). RAS on pin 1 and CAS or pin 2 are the row and address strobe lines for loading the address in the 4115's (and refresh operation), and are connected to the corresponding pins 4 and 14 of the RAM's. R/W on pin 11 of the TMS 9918 distinguishes between a read or write to the RAM. This signal is delayed by the four inverting buffers 0101 for timing purposes.in units manufactured not using the TMS 9918A.
During a read all 8 seperate output bits of the RAM's form an eight bit data bus which is connected to RDO through RD7 (pin 25 through 32) of the TMS 9918.

VIDEO OUTPUT
The composite NTSC video signal is available on PIN 36 of the TMS 9900. This signal if fed to the video amplifier in fig- $53,0,133$. This amplifier has two purposes:

1. To amplify the video signal.
2. To provide the desired output impedance of 75 ohms.

99/4
The first stage of the amplifier consisting of $Q 200$ is a common base ampliaiar which has enough banduideh to amplify the video signal. R.201 is used to adjust the gain of the video amplifier. The second stage with Q201 has no volłage amplification since this stage is used as an emitter foliower, but is used as an impedance transformer to provide the 75 ohm output inpedance. R208 and C205 is a filter which decouples the video noise from the +12 volt power line. L200 and C207 have the same purpose and the voltage from this filter can be used to supply power for an RF modulator.

99/4A
In the $99 / 4 A$, the first stage of the video amplifier (Q200) is a PNP transistor connected in the common collector configuration. Input to Q200 is through a filter which is designed to roll off signal frequencies above the GMHz video bandwidth. Diodes R200 \& CR201 clamp the DC level after C201. Q201 is an emitty-follower and is use as an impedence transformer to achieve the required 75 ohm video output.

VDP SÉLfGIIOM LOGir.

Fig. 28

Figure 2.1 - tms 9918 vol alock diagtiam

0

0	0	0	0	0	0
$M 3$	$E V$				

1

$4 T 16 K$	$B L A N K$	$1 E$	$M 1$.	$M 2$	0

2

3

4

0	0	0	0	0	QATTERNGENEFATOR SASEACORESS

5

1	1	1	1	1
0	SPRITEATIRISUTE TABLESASEADORESS			
	1	1	1	1

6

0	0	0	0	0	SPAITEPATTEAK GENERATOREASE ADORESS

7

TAOLE
VDP REGISTERS

The TMS 9919 Sound Generation Controller (SGC) is an $I^{2} L$ component designed to provide low cost tone/noise generation capability in microprocessor systems. The SGC is a data bus based I/O peripherat.

KEY FEATURES

* 3 programmable tone generators
* Programmable white noise generator
* Programmable attenuation
* 8 ohm speaker drive capability
* External audio input
* 16 PIN package
* $1^{2} L$ technology

DEVICE ARCHITECTURE
The device consists of three programable tone generators, a programable noise generator, a clock scaler, and an audio sumer output buffer. The SGC has a parallel 8 bit interface through which the microprocessor transfers the deta which controls the audio output.
tone generators
Each tone generator consist of a frequency synthesis saction and an attenuation section. The frequency synthesis section reguires 10 bits of information (F0-F9) to define half the period of the desired frequency (n). This informetion is loaded into a 10 stage tone counter, which is decremented at a $N / 16$ rate where N is the input clock irequency. When the tone counter decrements to zero, a borrow signal is produeed. this borrow signal toggles the frequency flip-iflop and also reloads the tone counter. Thus, the period of the desired frequency is twice the velue of the period register.
The frequency can be calculated by the following:

$$
f=\frac{N}{32 n}
$$

The output of the frequency flip-flop will feed into a four state attenuator. The attenuator values, along with their bit position in the data word, are shown in table Multiple attenuation control bits may be true simultaniously. Thus, the maximum attenuation is 28 db .

TABLE $10:$ ATTENUATION CONTROL

BIT POSITION				
AO	A1	A2	A3	
\cdots	0	0	1	WEIGHT
0	0	1	0	2
0	0	1	$d B$	
0	1	0	0	4
1	0	0	0	8
1	1	1	1	$d B$
			16	$d 3$
			OFF	

NOISE GENERATOR
The noise generator consists of a noise source and an attenuator.
The noise source is a 15 stage shift register with an exclusive $O R$ feedback network.
The feedback network will have provisions to protect the shift register from geing locked in the zero state.

The feedback network will have two feedback tap configurations as determined by the FB control bit.

TABLE 11 : NOISE FEEDBACK CONTROL

FB	CONFIGURATION
-	"Periodic" noise
0	"White" noise

Whenever the FB bit is changed, the shift register is cleared. The shift register wil shift at one of four rates as determined by the two NF bits. The fixed shift rates are derived from the input clock.

TABLE i:	NOISE GENERATOR FREQUENCY CONTROL
SITS	
NFO NFI	SHIFT RATE
0	0

The output of the noise source is feed to an attenuator similar to the tone generator attenuator.

AUDIO SUMMER/OUTPUT EUFFER
The summer is a conventional $1^{2} \mathrm{~L}$ operational amplifier summing circuit. It will sum the three tone generator outputs, noise generator output, and an external audio source. The output buffer will generate up to 100 milliamperes into a 8 ohm load, if all sources are operating at maximum levels. It is assumed that the speaker will be AC coupled to the chip.

CPU/SGC IITTERFACE
The microprocessor interfaces with the SGC by means of the 8 data lines and 3 control lines (WE, CE and READY). Each tone generator recuires 10 bits of information to select the frequency and 4 bits of information to select the attenuation. A frequency update requires a double byte transier, while an attenuator update requires a single byte transfer.

CONTROL REGISTERS
The SGC has eight internal registers which are used to control the three tone generators and the noise source. During all data transfers to the SGC,
the first byte contains a three bit field which determines the destination control register. The register address codes are shown in Tableß.

TABLE ; $\dot{3}$: REGISTER ADDRESS FIELD

RO	R1	R2	DESTINATION CONTROL RESISTOR
0	-	-	Tone 1 frequency
0	0	1	Tone 1 attenuation
0	1	0	Tone 2 frequency
0	1	1	Tone 2 attenuation
1	0	0	Tone 3 frequency
1	0	1	Tone 3 attentuation
1	1	0	Noise control
1	1	1	Noise attenuation

DATA FORMATS

The formats required to transfer data are shown below.
UPDATE EREQUENCY (2 BYTE TRANSFER)

UPDATE ATTEMUATOR (SINGLE BYTE RRANSFER)

1	RED ADDR RO!R1!R2	DATA AO!A1!A2!A3
BIT	0	8IT 7

HARDWARE DESCRIPTION

POWER COMNECTIONS
The TMS 9919 uses a single 5 volt power supply on PIV 15, L5C0 and C501 used to decouple the power line.

CLOCK
The TMS 9919 use a 3.58 mHz clock signal on. PIN 14, derived from tine TMS 9918 video display processor. The SN94624 uses the 447.5 Khz Grom Clock.

DATA BUS
The TMS 9919 uses an eight bit parallel data bus connected directly to the 99/4 data bus.

SOUND PROCESSOR SELECTION LOGIC
The logic which selects the sound processor is given in figure 30.p 77.
READY
The ready line of the TMS 9919 is directly connected to the system ready line. This wired-OR convention is possible because NAND gate U505 is open collector.

WE
The $\overline{W E}$ signal distinguishes between a write to or a read from the $T M S$ 9919.

EXTERNAL SOUNO
External sound is fed to PiN 9 of the TMS 9919. The $99 / 4$ system uses two sound signals on PIN 9.

1. External sound from the cassette interface connector
2. Sound from the speech unit

R510 is used to reduce the speech signal to an appropriate level.

SOUND OUTPUT

Sound is available on PIN 7. C502 and R511 are used to reduce the bandwidth. C503, C504 and L501 are used for the same purpose.

```
InS 9919 SOUND PNOCESSOR SNLCTION LOGiC:
```


Keyboard and remote control are scanned under software control. The keyboard is scanned by 6 select lines. The 9 detect lines are monitored by the TMS 9901 programable system interface (see figure 47, ;.127).

Two other select liries are used for selecting the remote hanoheld control unit, the five detect lines of these units are shared with those of the keyboard.

HARDWARE DESCRIPTION

The keyboard and remote handheld unit interfaces to the microprocessor via the TMS 9901 programable system interface. Pin P2, P3 and P4 of the 9901 are programmed as outputs and used as input for U302 (74LS156), a dual 2 to 4 decoder. This IC is wired as a three to eight line decoder. Outputs are used to scan the kevboard and joystick port.

Two outputs of 4302 (pin 4 and 5) are used to select the remote handheld control units. Pull up resistors 2322 and $R 329$ are used to supply enough current when the outputs are in the logic nigh state (45 volt). CR 301 in combination with R321 and CR302 with 2320 are used to get a good defined logic zero state, since R320 and R321 wich are connected to the -5 volt supply generates a -.5 volt drop over CR301 and CR302.

KEYBOARD SCANNING
The keyboard is divided in two parts. Each part consisting of 4 rows with 5 keys. The outputs of the right four rows (INT 3, 4, 5 and 6) and the left four rows (INT 7, 8, 9 and 10) are connected to the preprogramed inputs of the TMS 9901 with the same names. These inputs are scanned under software control to determine which key is pressed down. The keyboard uses pull-up resistors for putting all lines in the logic one state when no key is hit. The capacitors are used for reducing RF intrierence.

REMOTE HANSHELD CONTROL UNIT
The handheld units uses the same inputs to the TMS 9901 as the righthand keyboard side.

99/4 KEYBOARD DESIEN

The $99 / 4 \mathrm{~A}$ keyboard circuit is significantly changed from the design used in the $99 / 4$, although the principle of operation is the sana. Sevミn outputs are used on U302, and one additional interupt line (PS), in order to scan the additional keys used on the $99 / 4$ keyboard.

The cassette interfacing circuit enables the $99 / 4$ to store and read data from a normal cassette recorder. The interfacing circuitry consists of 3 distinct parts: the control circuity, the write circuitry and read circuitry.

CASSETTE CONTROL CIRCUITRY
This part consists. of two solid state switches which are used for remote controlling of up to two cassette recorders.

WRITE CIRCUITRY
The write circuitry supplies the signal with digital data to the cassette recorder. It uses a TMS 9901 output gate and a second order filter to supply a signal of the desired shape and amplitude.
If two cassette recorders are used, then both will use the same write signal, but only one recorder is selected at a time by the control circuitry.

DATA FORMAT
The $99 / 4$ uses a biphase coding technique to generate the serial data stream.
A standard time interval (bit cel) is used in the encoding software, in the following way:
A. A binary one is represented by 2 bit cells both bit cells of opposite polarity.
B. A binary zero if represented by 2 bit cells, both bit cells of the same polarity.
C. After a binary bit is written, the next bit will start with an opposite polarity refered to the last bit cell.

AUDIO GATE

A special feature is incorporated which consists of a solid state switching circuit. This circuit can switch the audio signal of the cassette recorder to the sound processor.

Since the two control circuits are identical only a description of one cassette control circuitry is given (see figure 54, 0.134).
Pin 19 (P6) of the TMS 9901 programmable system interface is used to enable or disable Q402.
When enabled, the LED in opto couplor U401 turns on. R415 is used to reduce the current through the LED. Outputs 4 and 5 of the opto coupler are used to put trensistor QCO1 in the conductive state, thus enabling the motor drive of the cassette recorder.

WRITE CIRCUITRY

The write signal is generated on PIN 28 of 407 the TMS 9901. The differentiating filter consisting of R492, C408, C407, R400, R401 and C400 shapes the sigisit.

READ CIRCUITRY
First part of the read circuitry consists of an operational amplifier which performs amplification and pulse shaping of the read signal.
R408 and R410 determine the gain of the amplifier. C402, C409 and C411 are for pulse shaping purposes. $R 406$ is the resistive load for the cassette recorder.

GROUNDING
Since the definition for ground and signal on the output jack of the cassette recorder depends on the type used, $R 409$ is applied to allow operation with both types of recorders.

HYSTERESIS CIRCUIT
The hysteresis circuit consists of a second amplifier with positive feedback, the feedback network consisting of R412 and R411.
C410 is used to make the circuit less succeptible to undesired signals. CR402 is used to limit the negative output swing, thus avoiding damage to the TMS 9901 . R4i3 is used to limit the current through diode CR $\div 02$.

The 99/4 I/O bus provides maximum flexibility for operation with external devices. It provides peripherals with memory and CRU I/O buses.
The memory bus (with 8 bit data bus) is used for instruction fetch from control ROM in the peripherals and for data transfar to/from memory mapped peripherals.
The CRU bus is used for peripherals enable/disable and for device control and data transfer to/from CRU mapped pheripherals.

The TMS 9900 accesses each peripheral to obtain instructions from the device service routine (DSR) read only memory. Since each peripheral contains its own OSR, the $99 / 4$ does not have to be designed to anticipate future peripheral requirements.
The dual I/O bus capability, along with interrupt hendling and external OSR's provide flexibility of low cost.

MEMORY ALLOCATION
The third memory block (addresses 4000 - 5FFF) of the $99 / 4$ is predecoded and made available at the i/O port for the peripherals.
Addresses 0000 - FFFF are available for future expansion. For the speech module (addresses $9000-97 F F$), a predecoded line is available at the i/0 bus.

CRU ALLOCATION
Of the available CK of CRU bits, the first $1 K$ (addresses 0000-07FE) are used internally in the Home Computer. The second ik (addresses 0800OFFE) are reserved for future use. The last 2k (addresses 1000-17FE) are reserved for the peripherals to be plugged in the I/O port. A block of 128 CRU bits is assigned to each paripheral as listed below.

CRU AOCRESS	PERIPHERAL
1000	Oisk
1100	Reserved
1200	Home Security
1300	RS-232
1400	Modem
1500	Reserved
1600	Digital Cassette
1700	Student Typing
1800	Thermal Printer
1900	Not Assigned Yet
$1 A 00$	Not Assigned Yet
1800	Not Assigned Yet
1000	Not Assigned Yet
1000	Not Assignd Yet
1800	Not Assigned Yet
1700	Not Assigned Yet

The interrupt available on the $1 / O$ port is one of the maskable interrupt of the TMS 9901 programable systems interface.

BUFFERING

All I/O signals must be able to drive two LS-type LOADS (with exception of the data bus).
In addition, peripherals generating CRUIN, READY/HOLD, LOAD and EXT INT schall buffer these signals before putting them on the $1 / 0$ bus.

I/O READ
A CPU read cycle for the external device consists of two 8-bit read cycles (Fs/E, $\dot{H}+\dot{F}$
The two bytes read are assembled as a 16 bit word before they are presented to the 9900 .

MEMEN goes low true at the beginning of clock cycle 1 . At the same time DBIN goes high true. WE stays high false during the entire.cycle. At the same time that MEMEN goes true, the address bus goes active. In order for the noise and the glitches (associated with crostalk and simultaneous switching) to go away we allow a minimum of 100 ns for the address lines to settle. MBE (see menory selection logic) goes true during the leading edge of $Q 2$ of clock cycla 1 . Data read from the peripherals will be valid 750 ns after the start of clock cycle 1. The CPU will look at the full 16 bit data bus during the leading adge of $Q 1$, of clock cycle 2. Under worse-case conditions, data must be valid 100 ns before that time.

I/O WRITE
Fig ${ }^{\prime}$ - y shows a 16 bit $1 / 0$ write cycle. As described earlier it is composed of two 8-bit writes. A write cycle wil always be preceded by a ALU cycle. HEMEN and DBIN go true at the start of the cycie. A settling time of 100 ns (min) is allowed for the address lines t settle down. WE goes true (low) on the leading edge of Q2, during the wait states, and stays true for 650 ns (typ). Both during a read or a write the odd byte is accessed first, followed by an even byte. Ais/CRU out changes its state 990 ns (typ) after the cycle is initiated. The second 8-bit write cycle is identical to the first 8-bit write. MBE stays true (low) during the entire (1.8 usec) cycle.

SPEECH INTERFACE
The I/0 part has 4 lines dedicated for use by the speech moduie : $+5,-5$, speech block enable (SBE) and audio in. SBE is decoded by the $99 / 4$ for addresses 9000 and 9400 (write and read). For the write cycle, SBE goes active after the address and deta lines are valid.

GROM INTERFACE ON I/O PORT
All signals are provided to use GROM's in external devices. Decode for grom select must be performed in the external device.

CRU interface timing is shown in fig $10, \mu=$. The CRUOUT cycle is composed of 2 clock cycles. The CRU bit address when placed on the address bus AO through A14 is allowed to settle for 100 ns (min). CRUCLK is a 80 ms low true signal. which occurs on the trailing adge of Q1, of clock cycle 2. CRUOUT data is valid at the start of clock cycle 1 , and is latched by the CRUCLK in the repective peripheral.
CRUIN also consists of 2 clock cycles of 650 ns (typ). Again we allow 100 ns for the address bus to settle down. The CPU samples the CRUIN line on the leading edge of Q1 of clock cycle 2. Data must be valid 40 ns (min) before that.

HARDWARE DESCRIPTION

An overview of the hardware used to buffer the IN and output signals on the I/O bus is given in figure $=,-, f i \because=$ and $51, p / 31$.

ADDRESS BUS BUFFERING
U503, U509 and U510 are used to buffer address lines A0 throgh A14. U510 is only used AO, A1, A2 and A15/CRUOUT. This last signal has a series resistor R512 to reduce transients on the line.

WE is buffered by 1510 on the output (FIN 10). A series resistor R505 is used to reduce transients.

CRUCLK

The CRUCLK signal from the $99 / 4$ is inverted in U002 anj then buffered by U510. Again à series resistor R507 is used to reduce transients. The buffered signal is also used on the grow port.

Q3
Q3 is buffered by $\mathbf{U 5 1 0 , ~ R 5 0 6 ~ u s e d ~ t o ~ r e d u c e ~ t r a n s i e n t s . ~}$
MBE
MBE is buffered by U510.
OBIN
OSIN is buffered by the two inverters U50S.
DATA BUS
Since data bus is buffered by u bl6 in the interfacing circuit, no additional buffering is necessary. However to meet loading requirements a special pull-up/pull down circuitry is added. When OBIN is 10%, Q500 is in the on state.

R515 is used to reduce the base current in Q500, C506 is added to improve the switching speed. When in the on state, resistor pack 2500 is connected to ground, thus generating a pull-down. when DBIN is low, Q500 is disabled. CR501, R513, R514, CR502 and R515 compose a circuit which gives a volitage of $5 \ldots$ volt on point A. Thus a pull-up exists when DBIN is low.

OUTPUT BUS PIN CONNECTIDNS
An overview of the $1 / 0$ bus pin connections is given or o.

The US power supply consists of an exter: regulator board inside the Home Computer Connection between the console and wa connector.
The regulator board supplies the $99 / 4 \mathrm{tl}$ and -5 volt. The +12 and -5 volt supplit regulator, the +5 volt supply uses a swi-

SWITCHING REGULATOR
The switching regulator used is a ua in fig. $\because, .-\therefore 9$. In essence the ua 723 is it is connected in such a way that it be From the block diagram it can be seen th compensated voltage reference, an limiting eircuit.

HARDWARE DESCRIPTION
+12 VOLT SUPPLY
The +12 volt regulator circuit shares volt regulator. Thi consisting of $\mathrm{L1}, \mathrm{~L} 2, \mathrm{Cl}, \mathrm{C} 2, \mathrm{C} 3$ and C 4 . interference on the mains.
D1, D2, 03 and 04 campose the bridge rec C9 and C17 are used to reduce the ripple The DC voltage is fed to the three regulates the input voltage down to +1 voltage swing due to fast changing load
-5 VOLT SUPPLY
The -5 volt supply uses a separate together with C5 and Co compose a RF fil by $05, \mathrm{C8}$ reduces the ripple on the outp U 2 is a 5 volt fixed regulator. $C 7$ on t due to fast changing load conditions.
+5 VOLT SUPPLY
REFERENCE VOLTAGE
The reference voltage for the regula R1, D7 and zener diode D3 compose a 7 compensate for temperature variations. The 7 volt reference is divided by R11, through R19 are supplied with jumper w that the voltage on the non inverting ir Since this comparator has an open co pull-up. R14 connected between the (pin 2) sets the voltage gain to 1. feedback. Since in this configuration t gain amplifier, the voltage on the ir
that of the divider. This voltage is used as reference for the switching regulator U3. C16 is used to ensure a slow starting up of the t5 volt regulator, thus the starting condition that the -5 volt is applied first to the circuitry inside the $99 / 4$ is met. C16 also determines the frequency at which the +5 V regualitor switches.

SWITCHING REGULATOR

Switching regulator U3 (US 723 C) uses the following circuitry:
REFERENCE VOLTAGE
The reference voltage on pin 2 of $U 4$ is connected to the non inverting input of U3 (pin 5).

FEEDBACK VOLTAGE
The +5 volt is directly connected to the inverting input of U3 (PIN 4).
PONER COMNECTION
Power is connected to pin 12 of U3 via R3. C13 is used to reduce voltage swings on the power line. Since the power comes from the +12 volt supply, the switching regulator only works when this voltage is present. Ground connection is to pin 7.

FREQUENCY COMPENSATION
Frequency compensation is performed by C11 on pin 13.
regulating circuit
The output of UZ on pin 11 is used to switch the current through 14 after amplification by 01 and 02. R5 reduces the input current of Q1. R4 and R6 are used to ensure that both $Q I$ and $Q 2$ are in the non concucting state when not enabled by U3.
The flyback circuitry consists of L4 and D9. The output voltage ripple is reduced by C14 and C15.

CURRENT LIMITING

Current limiting is done by using the voltage drop over R9/R10 and comparing this with the voltage on the cathode of the diode the divider circuit consisting of R.7, R8 and 010.
010 is used for temperature compensation:.

This guide will take you ov the problem, not neccessarily to the problem. You still need your basic troubleshooting skills. This guide is aimed at the new technician but still can be referenced when in doubt.

Page	\dot{C}	Start
Page	¢	VDP Check
Page	89	System Ready
Page	85	Grom Check
Page	里	Front Panel Incorrect and Keyboard
Page	97	Cassette
Page	90	Joysticks
Page	99	Multiplex
Page	101	Memory Selection Logic
Page	123	INTREQ

Check p62 9900
for correct
ready signal

Use RAM Trap	
to locate	Change Ram
Faulty Ram.	
Good?	

$\begin{array}{\|l} \text { Check Keyboard } \\ \text { p1,3,5,7,9,10, } \\ 12,14,16,18 \\ \text { for Signal } \end{array}$	$\begin{aligned} & \text { Check p7,9,10 } \\ & 11,12 \text { U302 } \\ & \text { for Signals } \end{aligned}$	$\left\|\begin{array}{l} \text { Cneck p21, } \\ 13,15 \text { U302 } \\ \text { for Signals } \end{array}\right\|$	\|Check p21, 22,	!Check p40, 1 !U300 for $\div 5$ lplo for Gnd \| p10 for Clock ! Check all ne-
$!$!	1		!cessary pins to insure
i	Check R30i-	Check p2, 8,	Check for	chip is func.
,	R309 and	114 U302 for	Broken Etch	address lines
!	Etchs to Key-1	Gnd pls for		CPU lines
				for software

$\frac{\text { lboard }}{\frac{1}{60 t o \mathrm{MM}}}$

$\left\|\begin{array}{l} \text { Check p5, } 6 \\ \text { U302 for Neg: } \\ \text { Pulse } \end{array}\right\|$	Insure Unit is Set up for Joystick Progran		$\left\|\begin{array}{l}\text { Check p21,22, } \\ 26 \text { U300 for } \\ \text { signal }\end{array}\right\|$	Check p40, I 11300 for +5 , ril6 for Gnci n 10 f/Clock, check al ne-cessary pins: to insure chip is functional address lines, CPU lines possibility for sof tware

! Memory selecttion Good
$!$

Check Etch

TOP
2 SBE
4 -EXT INT
6 A10
8 All
10 A3
$\times 12$ READY
14 A8
$\checkmark 16 \quad$ A14
$\checkmark 18$ Ag
20 A2
$\because 22$-CRU CLOCK
24 -03 SYSTEM CLOCK
25 -Wi
28 -MBE
30 Al
32 -MEMEN
34 07 =
-36 D6-
-38 D5
-40 01-
-42 D3-
$\because 44$ SOUND IN

BOTTOM
V'1 +5 V
$\times 3$ RESET
(5 A5
7 A4
9 DBIN *
11 Al2
$\times 13-$ LOAD
-15 A13
$\checkmark 17$ A7
$\checkmark 19$ Al5
21 GROUND
23
25
27 GROUND
29 A6
31 AD
33 CRU IN
35 D4
$\checkmark 37$ DO

- 39 D2
$\times 41$ HOLD / IAQ
$\times 43-5 \mathrm{~V}$

SBE - SPEECH BLOCK ENABLE
MBE - MEMORY,BLOCK ENABLE
EXT INT - EXTERNAL INTERUPT
MEMEN - MEMORY ENABLE
DBIN - DATA BUS IN
IAQ - INSTRUCTION AQU:SITION

```
1 - CASSETTE 1 MOTOR CONTROL
2 - CASSETTE 1 MOTOR CONTROL
3- mag out return (GROUND)
4 - CASSETTE AUDIO INPUT
5 - MAG OUT
6 - CA.SSETTE 2 MOTOR CONTROL
7 - CASSETTE 2 MOTOR CONTROL
8 - MAG IN
9 - NAG IN RETURN (GROUND)
```

JOYSTICK I/O

```
1-
2 - JOYSTICK B
3-UP
4 - PUSH BUTTON
5-LEFT
6-
7 - JOYSTICK A
8-DOWH
9- RIGHT
```

```
```

1 - +12 VOLTS

```
```

1 - +12 VOLTS
2 - GRDUMD
2 - GRDUMD
3 - AUNDIO OUT
3 - AUNDIO OUT
4 - COMPOSITE VIDEO OUT
4 - COMPOSITE VIDEO OUT
5*-GROUND

```
```

5*-GROUND

```
```


GROM PORT CONHECTOR

TEST FUNCTION	Switch Position	INDICATORS	COMMENTS.
$\begin{gathered} \text { 4116's } \\ 4102-U 109 \end{gathered}$	$5]$	Multiple Bit Errors	
$\begin{gathered} 6810 \text { 's } \\ \text { U608, U609 } \end{gathered}$	-		2nd 2 3rd Indicators should alternate SLOMLY. 5th Indicator shows MSB ERRCR. 6th Incicator shows LSE ERROR.
$\begin{aligned} & 2003 \\ & 2004 \\ & 2005 \end{aligned}$	-		

before each test make sure the unit under test is switched "off".

START UP PROCEDURE:

1. Turn Unit To Be Tested "Off"
2. Insert RAd Trap
3. Select Test mode On Ram Trap
4. Turn "On" Unit To Be Tested
5. Press LOAD Switch

Mainframe RAM-TRAP

COMPONENT LAYOUT:

PARTS LIST:

Er.

RAM Trap
 lachematic

Di•26•Res LED
R: - 560
R2 -100kn
R3-RE-1002
R9.R10-2.2K
Cl.C2•0.1以"

- 3T0 8 LINe decoder/ivultiplier
- 2 STATE OUPUT: 1) HIGH

2) LO N

- 3 enables, $\overline{\text { G2A }}$ \& $\overline{G 2 B}$ - Active loh, g1 - active high
- enables can be used as inverting or non-inverting input TO MULTIPLEX DATA

Fig. 31
－ 4 bit bi－directional shift register
－Parallal inputs and Ouzputs
－Four Operating thodes：
Synehronous Parallel Load Right Shift
Left Shift Do Notning
－Pcsitive Edze－Trigesed Clocking
－Dirace Ove：rising Clear

TYes	rypical	
	rypicis	fypical
	ciaxince	PCWE？
		0issipatien
	FRE	
－\＃¢	38 ：！n：	195－4
しらぼA	36 Ama	\％${ }^{5184}$
¢	105 umz	＋25．m．2

deseription

 moces oi sourazien．nandily：

$$
\begin{aligned}
& \text { Diralet (sceadsuev) load }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Inhibus seek (ec nsuning) }
\end{aligned}
$$

IMPUTS SUTPLTS														7 －angen
		E		S3	124		4．	62E1		－				－－＇oun reot＇remay teater
CLEMA	S；	se！		$1 口$ ET	2unt	$\dot{4}$	3	E	0	E_{6}	c_{3}	ct	co	
\pm	： 7	x	x	x	x	\％	K	\times	x	－	6	\llcorner	－	
－	18	\times	\llcorner	\checkmark	k	8	x	\times	x	Eac	6_{32}	Cct	Gat	
\pm	i \quad \％	\rightarrow	．	d	1	＊	3	\cdots	－	：	5	－	1	
－	16	ω	－	x	－	x	x	x	x	\cdots	$A_{\text {A }}$	Cэя	Cr．	
\cdots	：			\cdots	6	x	x	x			O－A	大⿹勹⿰习习	20．	
4	10	61	－	\cdots	x	x	x	x	\times	Can	Ex：	－¢\％	m	－－wn exacurn＊y
4	$1=$	-1	－	1－	x	x	x	x	x	－3n	${ }_{-1}$	E¢	\pm	
\cdots	16	1	x	－	x	\leqslant	X	\times		1 ©	－ 20	\pm	－0	

Fig． 32

- 'OCTAL (8) BUS DRIVER'
- 'NON-INVERTING'
- 'l-way comyunication'
- '3 STATE OUTPUT': 1) HIGH

2) LOW
3) HIGH IMPEDANCE

- \bar{G} is enable active - low

- InPut/OUTPUT/ENABLE

Fig. 33

Fig. 35

- OCTAL (8) BUS DRIVER'
- 'NON-INVERTING '
- '2-hay communication'
- '3-state output' 1) high

2) LOW
3) HIGH IMPEDANCE

- \bar{G} IS ENABLE, ACTIVE LON
- DIR IS DIRECTION CONTROL $A \rightarrow B \ldots B \rightarrow A$

INPUT

$$
X=\text { DCNT CARE EHAT STA }
$$

OUTPUT

- OCTAL (8) D-TYPE LATCHES
- 3 STATE OUPUT: 1) HIGH

2) LOW
3) high Impedance

- WHEN G (enable) is high, then Q (input) Will follow d (input)
- when g (enable) is low, then \dot{Q} (output) will latch d (input)

$d_{0}=$ data present at input hhen enazle hent low
$x=$ DON'T CARE
Fig. 37
- $16,384 \times 1$ ORGANIZATION
- 3 STATE OUTPUTS

AO - Ag - ADDRESS INPUTS
$\overline{C A S}$ - COLUMN ADDRESS STROBE
D - DATA INPUT
Q - DATA OUTPUT
RAS - ROH ADDRESS STROBE
F - write enable

- refresh must be performed every 2 Milliseconds
- $\overline{\text { RAS }}$ latches the row address (ho - as)
- $\overline{\text { CAS }}$ latches the column address (au - au)

| $A 0$ | $A 1$ | $A 2$ | $A 3$ | $A 4$ | $A 5$ | $A 6$ | $A 0$ | $A 1$ | $A 2$ | $A 5$ | $A 4$ | $A 5$ | $A 5$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 8192 | 4096 | 2048 | 1024 | 512 | 256 | 128 | 54 | 32 | 15 | 8 | 4 | 2 | 1 |

$\overline{C A S}$
$\overline{R A S}$

PIN NOMENCLATURE			
AOAS	gacrest ingues	$\overline{\text { w }}$	Write Enacie
[5	Columin odoresh stroet	V88	-5-V pomer sucoiv
0	Once incut	vee	-fv sower ucovy
0	Oats output	VOD	-12-V comor susory
213	Aow yocress strobe	$v_{s s}$	OV grouna

rad cycle giming

NAS

04096×8 BIT MEMORY SIZE
0 +5, GND ONLY

- 8 BIT TRI-STATE DATA OUTPUTS (Q1-08)

$$
\begin{aligned}
& Q 8=M S B \\
& Q 1=L S B
\end{aligned}
$$

012 ADDRESS LINES (Aü-All)

$$
\begin{aligned}
& A 11=M S B \\
& A 0=L S B
\end{aligned}
$$

- CHIP is ENABLED WHEN CSI AND CS2 ARE BOTH LOW
- only during the enable are the outputs enabled, all other cases the outputs are tri-stated.
$\begin{array}{llllllllllllllll}Q 8 & Q 7 & Q 5 & 05 & Q 4 & 03 & 02 & 01 & 08 & 07 & 06 & 05 & 04 & 05 & 22 & 01\end{array}$

0	1	2	3	4	5	6	7	8	9	10	11	12	15	14	15

- 128×8 STATIC RAY
- USED AS SCRATCH PAD (CPU RAM)
- Two devices are used to make a 128×15 memory area
$0+5$, GND ONLY

DU - D7 = DATA $1 / 0$
AO_- AS = ADDRESS LINES
R/A $=$ HIGH IS READ, LOW IS HRITE
TO BE ENABLED: CSO \& CS3 MUST BE HIGH
$\overline{C S 1}, \overline{C S 2}, \overline{C S 4}$, \& $\overline{C S 5}$ RUST BE LOH
Fig. 39

D denotes 16 bit dztz bus
d denotes e bit multiplixed datz bus

Fig. 40 .

99/4 SYSTEM BLOCK
DIAGRAM

Fig. $1 / 3$

The following should be read and understood before purchasing and/or using this literature.

TI does not warrant that the book materials will be free from error or will meet the specific requirements of the consumer. The consumer assumes complete responsibility for any decision made or actions taken based on information obtained using the book materials. Any statements made concerning the utility of the literature are not to be construed as express or implied warranties.

Texas Instruments reserves the right to change any of the technical data contained herein without notice.

TEXAS INSTRUMENTS MAKES NO WARRANTY, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, REGARDING THIS LITERATURE OR ANY INFORMATION DERIVED THEREFROM AND MAKES ALL SUCH MATERIALS AVAILABLE SOLELY ON AN "AS IS" BASIS.

IN NO EVENT SHALL TEXAS INSTRUMENTS BE LIABLE TO ANYONE FOR SPECIAL, COLLATERAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE PURCHASE OR USE OF THIS LITERATURE AND THE SOLE AND EXCLUSIVE LIABILITY OF TEXAS INSTRUMENTS, REGARDLESS OF THE FORM OF ACTION, SHALL NOT EXCEED THE PURCHASE PRICE OF THIS BOOK. MOREOVER, TEXAS INSTRUMENTS SHALL NOT BE LIABLE FOR ANY CLAIM OF ANY KIND WHATSOEVER BY ANY OTHER PARTY AGAINST THE USER OF THIS MATERIAL.

Some states do not allow the exclusion or limitation of implied warranties or consequential damages, so the above limitations or exclusions may not apply to you in those states.

