
Please do not upload this copyright pdf document to any other website. Breach of copyright
may result in a criminal conviction.

This Acrobat document was generated by me, Colin Hinson, from a document held by me. I
requested permission to publish this from Texas Instruments (twice) but received no reply. It
is presented here (for free) and this pdf version of the document is my copyright in much the
same way as a photograph would be. If you believe the document to be under other
copyright, please contact me.

The document should have been downloaded from my website https://blunham.com/Radar,
or any mirror site named on that site. If you downloaded it from elsewhere, please let me
know (particularly if you were charged for it). You can contact me via my Genuki email page:
https://www.genuki.org.uk/big/eng/YKS/various?recipient=colin

You may not copy the file for onward transmission of the data nor attempt to make
monetary gain by the use of these files. If you want someone else to have a copy of the file,
point them at the website. (https://blunham.com/Radar). Please do not point them at the
file itself as it may move or the site may be updated.

It should be noted that most of the pages are identifiable as having been processed by me.

I put a lot of time into producing these files which is why you are met with this page when you
open the file.

In order to generate this file, I need to scan the pages, split the double pages and remove any
edge marks such as punch holes, clean up the pages, set the relevant pages to be all the same
size and alignment. I then run Omnipage (OCR) to generate the searchable text and then
generate the pdf file.

Hopefully after all that, I end up with a presentable file. If you find missing pages, pages in the
wrong order, anything else wrong with the file or simply want to make a comment, please
drop me a line (see above).

It is my hope that you find the file of use to you personally – I know that I would have liked to
have found some of these files years ago – they would have saved me a lot of time !

Colin Hinson
In the village of Blunham, Bedfordshire.

1 1 1 1 1 1 1 1 ► 1 ► 1 ►► / 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1

3

11 1 1 1 1/ 1// 1 1

FUNCTIONAL SPECIFICATION

FOR THE

99/4 DISK PERIPHERAL

1 1. 1 3 1. 1

11111
1'1

Copyright 1980
Texas Instruments 1
All rights reserved.

The information and/or drawings 1

set forth in this document and 111:1111111111111;11
all rights in and to inventions 1 3
disclosed herein and patents 111;11 " " '1 " ' " " " " "
which might be granted thereon 1111;1111 1

materials. methods. techniques. 331111131313331133iá
disclosing or employing the 1;;11111;1111111;11111111

or apparatus described herein 1331.x11111311111;1111.11
are the exclusive property of 111131111311111113 1 1 1 31
Texas Instruments. .131x31.3 11x111111

11 1 ;11x1
No disclosure of information or 31x1.13113333111;11.111'x1
drawings shall be made to any 3 1 31 1/ 1 1 ..1...11 1

other person or organization ;1x111131111" '" " 11111'
without the prior consent of 111133.11133" 3
Texas Instruments. 3111;1113111 1

31111;11x1311"""1
111111111111 33111.

 111111111111111111'
Consumer Group 1133

1 1 1/ 1 I 1 1 1 1 1 1. 1 i 1 1 Mail Station 5890
2301 N. University 11311113311
Lubbock. Texas 79414 ' 3 1 1 1 1 11 1 3 3 1 1 1 1 1.11 1 1

131'331111111;311'xI
31'1113313..x 1

TEXAS INSTRUMENTS
INCORPORATED

1111
I'""'1111;1;;;

 1 1 1 1 1 .

Date: March 28. 1983 1,1.'11x1;33'
Version 3.0 11111;

111111

TI-99/4 DISK PERIPHERAL TABLE of CONTENTS

TABLE of CONTENTS

Paragraph Title

SECTION 1 INTRODUCTION

SECTION 2 APPLICABLE DOCUMENTS

SECTION 3 SUPPORTED FILE MANAGEMENT OPTIONS

SECTION 4 INTERFACE TO BASIC

4. 1
4.1.1
4. 1.2
4. 1.3
4. 1.4
4. 1.5
4.1.6
4.1.7
4.2
4.3
4. 4
4. 5
4. b
4. 7
4.8
4. 9

OPEN Statement
File-name Specification
File-organization Option
Open-mode Option
Record-type Option
File-type Option
File-life Option
Examples

CLOSE Statement
PRINT Statement
INPUT Statement
RESTORE Statement
DELETE Statement
OLD Command
SAVE Command
EOF Function

SECTION 5 CATALOG FILE ACCESS FROM BASIC

TI PROPRIETARY Functional Specificatio-

TI-99/4 DISK PERIPHERAL TABLE of CONTENTS

SECTION 6 FILE PROTECTION

SECTION 7 FILES SUBPROGRAM

SECTION 8 I/O ERROR CODES

TI PROPRIETARY Functional Specification

TI-99/4 DISK PERIPHERAL INTRODUCTION

SECTION 1

INTRODUCTION

The information contained in this document, is intended to
give a complete functional specification of the 99/4 Disk
Peripheral as seen from a BASIC user standpoint.

This specification will not describe the utility package
which is build into the disk controller, nor will it describe the
GPL interface routines for direct disk access. These special
topics are discussed in a separate document, the GPL Interface
Specification for th; 99/4 Disk Pprjoheral.

TI PROPRIETARY 1-1 Functional Specificati

TI-99/4 DISK PERIPHERAL APPLICABLE DOCUMENTS

SECTION 2

APPLICABLE DOCUMENTS

File Management Specification for the TI-99/4 Home Computer
(Version 2. 5, 25 February 1983)

Home Computer BASIC Language Specification
(Revision 4. 1, 12 April 1979)

Home Computer Disk Peripheral Hardware Specification

Software Specification for the 99/4 Disk Peripheral
(Version 2.0, Revised 28 March 1983)

OPL Interface Specification for the 99/4 Disk Peripheral
(Version 2.0, Revised 28 March 1983)

i

TI PRCB'RIETARY 2-1 Functional Specification

TI-99/4 DISK PERIPHERAL SUPPORTED FILE MANAGEMENT OPTIONS

SECTION 3

SUPPORTED FILE MANAGEMENT OPTIONS

The disk peripheral supports most of the options decribed in
the Fil! Manaoement Ipecification for the TI-99/4 Home Computer.
The supported options include:

Sequential and relative record (random access) files

Fixed and variable length records

INTERNAL and DISPLAY file types

OUTPUT, INPUT, UPDATE, and APPEND access modes

Program LOAD and SAVE functions

The I/O routines supported by the disk peripheral are:

OPEN — Open an existing file for access. This routine must
indicate the name of the file that is to be opened, and
the drive identification or the diskette name (assigned
at diskette initialization).

CLOSE --Close a file for access. The PAO can be released
and the disk peripheral software deallocates some
buffer—area in VDP memory. Since the number of files
that can be -open simultaneously is limited, it is
advised that each file is closed as soon as it is no
longer needed.

READ — Read a logical record from the opened file.

WRITE — Write a logical record to the opened file.

RESTORE/REWIND — Relocate the file read/write pointer to a
given location in the file. For sequential files this
can only be the beginning of the file, whereas for
relative record files, the file read/write pointer can
be relocated to any logical record in the file by
giving the record number.

LOAD — Load a program file into VDP memory. The disk
peripheral will check for the correct file type before

TI PROPRIETARY 3-1 Functional Specification

TI-99/4 DISK PERIPHERAL SUPPORTED FILE MANAGEMENT OPTIONS

the program is loaded (see section 4.7).

SAVE — Save a program in VDP memory onto the named disk
file. The disk peripheral does not check for legal
BASIC memory images. so this routines like the LOAD
routine, can be used for transferring binary memory
data to and from disk files. Note that the disk file
is marked as a program file however, so that files
created with a SAVE command can only be read with a
LOAD command.

DELETE — Delete the indicated file from the given disk.
whereby the drive can be specified either by the drive
name or the disk name. DELETE frees up the space
occupied by the file for future use.

SCRATCH RECORD — This function is not supported by the disk
peripheral.

STATUS — Indicate current status of a file. This includes
the logical and physical EDF flags and the protection
flag.

TI PROPRIETARY 3-2 Functional Specification

TI-99/4 DISK PERIPHERAL INTERFACE TO BASIC

SECTION 4

INTERFACE TO BASIC

This section will, provide a general overview of'how the disk
peripheral presents itself to the BASIC user., For BASIC-related
details the reader is referred to the Home C,Bmouter BASIC
(.anouaoe Soecification.

4. 1 QPE?(Statement

The BASIC OPEN statement allows the user to access files
stored on accessory devices. such as the disk peripheral. It
provides the link between a file-name and a BASIC file-number.
Once the file has been OFENed, the user can access it through the
PRINT and INPUT statements. depending upon the mode for which the
file has been OPENed.

The general form of the OPEN statement is:

OPEN *file-number: "file-name"t. optiont, optiont.... 777

in which "option" can be any of the OPEN options available to the
user. The user can select the following options:

File-organization - SEQUENTIAL or RELATIVE
Open-mode - INPUT. OUTPUT. APPEND or UPDATE
Record-type - FIXED or VARIABLE
File-type - INTERNAL or DISPLAY
File-life - PERMANENT

4. 1. 1 File-name Specification.

In order to indicate which disk drive and which file on that
disk drive the user wants to access, he has to specify a file-
name in the OPEN statement. For the disk peripheral this file-
name can be either of two forms:

DSKz. file-id

or

DSK. volname. file-i d

TI PROPRIETARY 4-1 Functional Specificatio-

TI-99/4 DISK PERIPHERAL INTERFACE TO BASIC

in which x is a drive identification number (1-3), "volname" is a
volume name identification and "file-id" is an individual file
identification. Both "volname" and "file-id" can be strings of
up to ten characters long. Legal characters for these strings
are all the ASCII characters. except the "." character and the
ASCII space character.

The first form of the file-name specification shows the
direct drive identification option. The user can specify either
DSK1, DSK2 or DSK3 as drive-numbers. Only the specified drive is
searched for the given file-id.

The second form of the file-name specification is the
symbolic form. The disk drive is not explicitly assigned. but is
symbolically assigned through the volume name ("volname"). All
drives are searched in sequence for the given volume name, i.e.
DSK1 first, then DSK2. then DSK3. The first drive with the given
volume name on its disk will be used for the file-id search. It
is allowed to use two or more disks with the same volume name in
the system. however, if the specified file-id doesn't exist on
the first drive with the given volume name, the other disk
drivels) with the same volume name will not be searched.

Whichever form is used. the given file-id has to be unique
for the indicated disk drive, i.e. if a new file is created. the
file-id used must differ from all other file-ids on that disk
drive. or the existing file will be replaced by the new one,
unless it is protected.

The file-id indicated in the OPEN statement has to
correspond to a data file. If the file indicated was created by
a SAVE command, an OPEN for that file will give an error, unless
the file is opened for OUTPUT mode, in which case the program
file will be replaced by the new data file.

4.1.2 File-organjzation Ootion.

The two file-organizations the user can specify are:

1. SEGUENTIAL - access the file in sequential order,
comparable to tape-access. The file may be accessed in
any of the four I/O modes. Record-type may be
specified as FIXED or VARIABLE. File-type may be
specified as INTERNAL or DISPLAY.

2. RELATIVE - access the file in random order. The open-
mode can be any of the available four modes, the
record-type must be FIXED (which is also the default
value for this file-organization), and the file-type

TI PROPRIETARY 4-2 Functional Specification

TI-99/4 DISK PERIPHERAL INTERFACE TO BASIC

may be either INTERNAL or DISPLAY. Due to BASIC
limitations. the combination RELATIVE and APPEND is not
supported. This combination is trapped out as an
error.

The default file—organization is SEQUENTIAL.

Both the SEQUENTIAL and the RELATIVE specification can
optionally be followed by an initial record allocation
specification. This specification indicates the number of
records to be allocated initially. In case the record length has
been specified as VARIABLE, the allocation will be made for
maximum length records.

The number of records initially allocated has to be less
than 32767. in order to stay within the record addressing range
of the file management system.

The actual number of Allocatable Units (AUs) allocated can
be computed by the using the following rules:

1. VARIABLE length records have an overhead of 1 byte per
record plus one byte per AU.

2. Logical records never cross AU boundaries, i.e. an
integer number of logical records bas to fit in an AU.

A direct result of these rules is that the maximum length of
VARIABLE length records is limited to 254 (two less than the AU
size).

Initial allocation of a file is done to avoid scattering of
data—blocks over a diskette. NOTE: Initial allocation does NOT
change the End of File markers. i.e. if 100 records have been
initially allocated, the file will still have its EOF set at
record 0 !!

The initial allocation is only used if a file is opened for
OUTPUT mode or if a non—existing file is opened for UPDATE or
APPEND mode. It is ignored if a file is opened for any other
case.

4. 1. 3 Open—mode Option.

BASIC accepts four access modes:

1. INPUT — data in the file can only be read. The file
has to exist before it can be read.

TI PROPRIETARY 4-3 Functional Specificatir

TI-99/4 DISK PERIPHERAL INTERFACE TO BASIC

2. OUTPUT — data can only be written to the file. A new
file is created if the file doesn't already exist. If
a file of the same name already exists, the original
data in that file will be lost, unless the file is
protected.

3. APPEND — data can only be written at the end of the
file. If a file of the given name doesn't already
exist, this mode is equivalent to OUTPUT. Due to
limitations in the console, this mode can only be used
for VARIABLE length records.

4. UPDATE — data can both be written and read. If the
file does not exist, it is created. Otherwise data in
an existing file can be read and/or changed and new
data can be added or old data can be deleted. UPDATE
mode is generally used for files OPENed in RELATIVE
mode, although SEQUENTIAL access is permitted.
VARIABLE length record files can be OPENed in UPDATE
mode, however, once a new record is written, all the
original data behind this record will be lost. This
mechanism is mainly intended for use in intermediary
files, i.e. first the data is written out, then it is
read back without closing the data file.
Note that for UPDATE mode, it is never possible to
decrease the size of a file. A re—write will only
reset the End of File markers, without releasing the
datablocks.

The default OPEN mode is UPDATE, i.e. the file can be both
read and written.

4. 1.4 Record—tune Option.

The record—type option is used to specify the size of each
record in the file. This size can be either FIXED, i.e. all
records have the same length, or VARIABLE, with a given (maximum)
length optional. If the file—organization specified is RELATIVE,
the only legal record—type specification is FIXED► which is also
the default for relative record files.

Both the FIXED and the VARIABLE option can be followed by an
expression indicating the actual or the maximum record length
respectively. Since this given length is used to reserve buffer—
space in the BASIC interpreter, the user is advised to choose the
record length as precisely as possible. Larger record lengths
mean fewer variables can be used by BASIC.

TI PROPRIETARY 4-4 Functional Specification

TI-99/4 DISK PERIPHERAL INTERFACE Ti) BASIC

2. OUTPUT — data can only be written to the file. A new
file is created if the file doesn't already exist. If
a file of the same name already exists, the original
data in that file will be lost. unless the file is
protected.

3. APPEND — data can only be written at the end of the
file. If a file of the given name doesn't already
exist. this mode is equivalent to OUTPUT. Due to
limitations in the console, this ■ode can only be used
for VARIABLE length records.

4. UPDATE — data can both be written and read. If the
file does not exist, it is created. Otherwise data in
an existing file can be read and/or changed and new
data can be added or old data can be deleted. UPDATE
mode is generally used for files OPENed in RELATIVE
mode, although SEQUENTIAL access is permitted.
VARIABLE length record files can be OPENed in UPDATE
mode, however, once a new record is written, all the
original data behind this record will be lost. This
mechanism is mainly intended for use in intermediary
files, i.e. first the data is written out, then it is
read back without closing the data file.
Note that for UPDATE mode, it is never possible to
decrease the size of a file. A re—write will only
reset the End of File markers. without releasing the
datablocks.

The default OPEN mode is UPDATE. i.e. the file can be both
read and written.

4. 1. 4 Record—tu o e Option.

The record—type option is used to specify the size of each
record in the file. This size can be either FIXED, i. e. all
records have the same length, or VARIABLE, with a given (maximum)
length optional. If the file—organization specified is RELATIVE,
the only legal record—type specification is FIXED, which is also
the default for relative record files.

Both the FIXED and the VARIABLE option can be followed- by an
expression indicating the actual or the maximum record length
respectively. Since this given length is used to reserve buffer—
space in the BASIC interpreter, the user is advised to choose the
record length as precisely as possible. Larger record lengths
mean fewer variables can be used by BASIC.

TI PROPRIETARY 4-4 Functional Specification

TI-99/4 DISK PERIPHERAL INTERFACE TO BASIC

The disk peripheral defaults the recordlength for both th
FIXED and the VARIABLE option to 88 characters. The defau.
record-type for SEQUENTIAL files is VARIABLE; for RELATIVE files
it is FIXED.

If a file- is opened for any I/O mode- other than OUTPUT, and
the file already exists, the record length, if given, has to
match the previously stored length exactly. If no record length
is given, the disk DSR will automatically default to the stored
length.

The maximum record length for FIXED length records is 255.
The maximum record length for VARIABLE length records is 254.

4.1.5 File-tuoe Option.

The file-type option can be used to specify the format .of
the- data to be stored in the file. There are two formats
available:

1. DISPLAY - stare the data in a readable format, i.e.
like it would be printed on a- printer. If the data has
to be read back by the machine, this data format is not
recommended.

2. INTERNAL - store the data in- a. machine readable format.
Since most of the datafiles on the disk will be read by
the machine, this data format is recommended. It
relieves the user of the burden of storing separation
data- (like quotes and commas) in the file-in order to
make- it suitable for an INPUT command. It also avoids
the overhead of converting the internal machine-
representation for numbers and strings into a
representation that is readable for humans and vice
versa.

Again, if the file exists, and the I/O mode is not OUTPUT, the
given specification has to match the value stored at file
creation. BASIC will use DISPLAY as a default, which means that
if data is stored in INTERNAL_ format, the user always has to
indicate this in the OPEN command.

4.1.6 File-life (lotion.

BASIC only recognizes the PERMANENT option as a file-life
specification. Since this is also the- default. this
specification can be omitted completely.

TI PROPRIETARY 4-5 Functional Specificatio-

TI-99/4 DISK PERIPHERAL INTERFACE TO BASIC

4.1.7 Examples.

The following examples are meant to clarify the usage of the
OPEN statement. Please remember that whenever the given
attributes for a file don't match the attributes stored when the
file was created, an error will be given. However, SEQUENTIAL
files can be opened for RELATIVE access, and vice versa, if the
record—type specified was FIXED.

OPEN 8250: "DSK1. FILEA"

This statement will open a file called "FILEA" on disk drive
*1 for access as BASIC file number 250. The specific attributes
assigned to this file are:

File—organization — SEQUENTIAL
Open—mode — UPDATE
Record—type — VARIABLE
File—type — DISPLAY
File—life — PERMANENT

The record length depends upon the existence of the file. If the
file exists. the record length will be equal to the length used
when the file was created. If the file doesn't exist yet. the
record length will be 80 characters.

OPEN *24: "DSK. MASTER. TABLES", INPUT. RELATIVE, INTERNAL

Open a file called "TABLES" on a disk called "MASTER". The
disk drives will be searched in sequence, and the first disk
found called "MASTER" will be searched for a file called
"TABLES". If that file exists, it will b* made accessable for
BASIC as fils number 24. If it doesn't exist, an error will be
indicated. The specific attributes assigned to this fils are:

File—organization — RELATIVE
Open—mode — INPUT
Record—type — FIXED
Fils—type — INTERNAL
File—life — PERMANENT

The record length is equal to the stored length for the file
"TABLES".

OPEN 81: "DSK3. TESTDATA" ,OUTPUT. FIXED 40, INTERNAL. RELAT I VE

Create a random access file called "TESTDATA" on drive *3.
If the file already exists, overwrite it with the new data (the
file—name has to be unique). The attributes created for this file
are:

TI PROPRIETARY 4-6 Functional Specification

TI-99/4 DISK PERIPHERAL INTERFACE TO BASIC

File—organization — RELATIVE
Open—mode — OUTPUT
Record—type — FIXED, 40 characters
File—type — INTERNAL
File—life — PERMANENT

OPEN *1: "DSK1. «, INTERNAL, FIXED 38, INPUT

This command will open the CATALOG file for SEQUENTIAL
input. For more information refer to section 5.

4.2 CLOSE Statement

The CLOSE statement closes the association between the BASIC
file—number and the file. After the CLOSE statement is
performed, BASIC can no longer access that specific file, unless
it is OPENed again.

The general form of the CLOSE statement is:

CLOSE *file—number[:DELETE]

The keyword DELETE is optional with the CLOSE statement. In case
DELETE is specified. the file is not only disconnected from t
file—number, but the disk space taken up by the file is release
and the file—id is erased from the disk's catalog. This means
that the file can no longer be accessed, nat even with an OPEN
statement (see DELETE statement).

A few examples of CLOSE statements are:

CLOSE *240 Close the file associated with *240.

CLOSE *240:DELETE Same as above, but also delete the file.

4.3 PRINT Statement

The PRINT statement can be used to write information out to
a file that has been previously OPENed. The PRINT statement can
only be used for files that have been OPENed for access in either
OUTPUT. UPDATE or APPEND mode. A PRINT to a VARIABLE record
length file will always set a new End of File mark, causing data
behind the current record to be lost.

TI PROPRIETARY 4-7 Functional Specificati

TI-99/4 DISK PERIPHERAL INTERFACE TO BASIC

The general form of the PRINT statement is:

PRINT *file—numberC,REC record—number][: print—list]

For a detailed description of the PRINT statement, the user
is referred to the 99/4 BASIC Language User's Reference Guide.

4.4 INPUT Statement

The INPUT statement can be used to read information from a
previously created and OPENed file. The INPUT statement can only
be used for files that have been OPENed for access in either
INPUT or UPDATE mode.

The general form of the INPUT statement is:

INPUT Mile—numberC,REC record—number]:variable—list

A more detailed description of the INPUT statement can be
found in the 99/4 BASIC Language User's Reference Guide.

4. 5 RESTQftE itatement

The RESTORE statement repositions an open file to its first
record, or at • specific record if the file is OPENed for
RELATIVE mode and the RESTORE contains a REC clause.

The general form of the RESTORE statement is:

RESTORE *file—numberC.REC record—number]

Generally RESTORE is used to reposition a file for a second
read of the same data. However, using the REC clause, the user
may position the current access pointer anywhere within or
without the file, if the file is OPENed for RELATIVE mode. In
this case a file may also be sequentially read, starting at a
random point within the file.

If the file is OPENed for OUTPUT or APPEND mode, the RESTORE
statement will not be performed and an error will be given.

TI PROPRIETARY 4-8 Functional Specification

TI-99/4 DISK PERIPHERAL INTERFACE TO BASIC

4.6 DELETE Statement

The DELETE statement may be used to remove files that are ne
longer needed from a disk. This will free up the space allocated
for the file.

The general form of the DELETE statement is:

DELETE "file—name"

The DELETE statement is a statement for which no previous
OPEN is required. Therefore it is possible to DELETE a file
which is still OPEN for access. If this happens, any future
reference to that file, including a CLOSE, will give an error
indication. An example of the described sequence may be:

100 OPEN 42: "DSK1. FILE". OUTPUT
110 PRINT #2: "HELLO"
120 DELETE "DSKI.FILE"
130 CLOSE *2

In this case line 130 will give an error, since the file
"DSKI.FILE" will no longer exist at that point in the program.

4. 7 OLD Command

The OLD command allows for retrieval of previously store
programs from a peripheral like a disk. The program must have
been stored with the SAVE command, since the disk softwarewill
not allow for the loading of data files with the OLD command.

The general form of the OLD command is:

OLD file—name

Since OLD is a system command that cannot be used in a
program, the file—name can be an unquoted string, i. e. the
command

OLD DSKI.PROQRAM

is perfectly legal.

TI PROPRIETARY 4-9 Functional Specificatio-

TI-99/4 DISK PERIPHERAL INTERFACE TO BASIC

4.8 $AVE Command

The SAVE command can be used to save the current program in
the 99/4 onto a disk file, which can then be reloaded with the
OLD command.

The general form of the SAVE command is:

SAVE file—name

Like OLD, SAVE is a'system command, allowing the user to
type the file—name without quotes.

SAVE will automatically create a new file, overwriting any
existing file of the same name, unless this file has been
protected.

4.9 EDF Function

The EOF function can be used to test for end of file during
I/O operations. Three file conditions are indicated by the EOF
routine:

0 Not EOF (End of File)
1 Logical EOF (End of File)
—1 Physical EOM (End of Medium)

Physical EOM can only be detected if the device is at its
physical end and the file is at its logical end.

The general form of the EOF function is:

EOF(file—number)

The EOF indication only has meaning in the case of
sequential access to files, since for random access the next
record to be read or written cannot be determined from the
current one. Therefore, the EOF subroutine will assume that the
next record to be read/written is the sequentially next record.

The logical EOF indicates that the next sequential
read/write operation will attempt to access a record outside the
current file. In general this indication will only be used for
read operations, since for write operations a logical EOF will be
indicated as soon as records are appended at the end of the
existing file.

TI PROPRIETARY 4-10 Functional Specification

TI-99/4 DISK PERIPHERAL CATALOG FILE ACCESS FROM BASIC

SECTION 5

CATALOG FILE ACCESS FROM BASIC

The BASIC user can access a disk catalog like a read—only
disk file. This disk—file has no name and is of the INTERNAL,
FIXED length type. An example of a CATALOG file OPEN is:

OPEN *1: "DSK1. ", INPUT, INTERNAL. RELATIVE

Since BASIC will automatically default the record length to
the correct value, it is recommended that the user does not
specify this length. If, for whatever reason, the user does want
to specify this length, it has to be specified as 38. Every
other record length will result in an error.

The CATALOG file acts like it is protected, i.e. it will
only allow INPUT access. An attempt to open the CATALOG file #or
any other mode will result in an error.

The data in the CATALOG file is written in the standard
BASIC INTERNAL format. Every record in the file contains four
items: one string and three numerics. There are exactly 128
records in the CATALOG file, numbered from O to 127.

Record number 0 contains information about the volume on
which the CATALOG file is located. The string indicates the name
of the disk, containing up to 10 characters. The numerical items
indicate the following:

1. Record—type always 0 for this record.

2. Total number of AUs on the disk — for a standard 40—
track diskette this should be 358.

3. Total number of free AUs on the disk.

Record numbers 1 through 127 contain information about the
corresponding file in the CATALOG. Non—existing files will give
a null—string as first item. and Os for the remaining three
items. Existing files will indicate the file—name in the string
item, and the following in the numeric items:

TI PROPRIETARY 5-1 Functional Specification

TI-99/4 DISK PERIPHERAL CATALOG FILE ACCESS FROM BASIC

File—type — negative if file is protected.
1 DISPLAY/FIXED datafile
2 DISPLAY/VARIABLE datafile
3 INTERNAL/FIXED datafile
4 INTERNAL/VARIABLE datafile
5 Memory image file (e.g. BASIC program)

Number of AUs allocated by the file.

Number of bytes per record.

A type 5 file (memory image) will always indicate a zero in its
third item, since the number of bytes per record has no meaning.

TI PROPRIETARY 5-2 Functional Specificatio-

TI-99/4 DISK PERIPHERAL FILE PROTECTION

SECTION 6

FILE PROTECTION

A user may select to protect or unprotect any of the files
on a disk. This can be done with the Disk Manager Package.

•
The effect of a protected file is that the system

automatically disallows any type of (potentially) destructive
access to that specific file, i.e. the following actions are
disabled:

SAVE to • protected file.

OPEN a protected file for an access mode other than INPUT.

Note however that software file protection does not offer
any protection against complete disk re—initialization. The only
way to avoid file loss in that specific case is to "write
protect" the disk itself by placing a write protect tab over the
notch on the right side of the disk. This will disallow any
write operation to the disk, giving a hard error as soon as the
disk is being accessed for write operations. Notice that this
kind of write protection is only intercepted on the actual write
operations, i.e. the disk software will not disallow potentially
destructive access to the disk up to the moment that it actually
tries to modify part of the disk.

TI PROPRIETARY 6—1 Functional Specification

TI-99/4 DISK PERIPHERAL FILES SUBPROGRAM

SECTION 7

FILES SUBPROGRAM

The default number of files that can be open simultaneously
is 3. To modify this number, the FILES subprogram has been
provided. The syntax for this subprogram is:

CALL FILES(x)
NEW

where *It* is a number from I to 9, indicating the number of files
that can be opened simultaneously. Arithmetic expressions and
variable names are not allowed in the FILES subprogram.

The NEW command following the FILES call has to be
considered a part of the FILES call, since FILES will destroy
some pointers used by the BASIC interpreter. The user is urged
to issue a NEW command after each call to the FILES subprogram.

WARNING

The usage of the FILES subprogram in a BASIC
program is not allowed, and doing so will
cause unpredictable and usually highly
undesirable results. Likewise a call to
FILES without a NEW command immediately
following it may cause unpredictable results,
ranging from loss of program to loss of data
in diskettes. The only way to'avoid this is
to use the FILES subprogram only in the above
defined manner.

The FILES subprogram will check only for the above defined
syntax. Any characters following the call are ignored, i.e. the
call

CALL FILES(2)e2

is perfectly legal, and will be executed the same as

CALL FILES(2)

TI PROPRIETARY 7—I Functional Specificati-,

TI-99/4 DISK PERIPHERAL FILES SUBPROGRAM

The disk has a standard overhead buffer allocation of 534
bytes. Each potentially open file will add 518 bytes to this
buffer area allocated for the disk. If the current allocation
would leave the user with a buffer of less than 2K bytes, as may
occur in a 4K system. the FILES subprogram will return with an
INCORRECT STATEMENT error.

In case a syntax error is detected before the right
parenthesis (")"), an INCORRECT STATEMENT error will be
indicated.

TI PROPRIETARY 7-2 Functional Specification

TI-99/4 DISK PERIPHERAL I/O ERROR CODES

SECTION 8

I/O ERROR CODES

I/O errors detected by the disk peripheral software are
always indicated by BASIC in the following format:

* I/O ERROR xy (IN 111]

The
occurred.
the error
given:

0

digits "xy" indicate the type of error that has
The first digit (x) indicates the I/O routine in which
occurred. The following I/O routine codes can be

error in OPEN routine
1 error in CLOSE routine
2 error in READ routine
3 error in WRITE routine
4 error in RESTORE routine
5 error in LOAD routine (used during OLD)
b error in SAVE routine
7 error in DELETE routine
9 error in STATUS routine (used in EOF)

The second digit (y) indicates the type of I/O error that
has occurred. There are 8 different codes with the following
meaning:

0 BAD DEVICE NAME — the spécified device could not be
found.

1 DEVICE WRITE PROTECTED — unprotect the disk and try
again

2 BAD OPEN ATTRIBUTE — one or more OPEN options were
illegal or didn't match the file characteristics.

3 ILLEGAL OPERATION — should not be generated by BASIC
for the disk peripheral. Indicates usage of non—
existing I/O code.

4 OUT OF SPACE — a physical end of file was reached, i.e.
there was insufficient space on the disk to complete
the requested operation.

5 ATTEMPT TO READ PAST EOF

TI PROPRIETARY 8-1 Functional Specificativ-

TI-99/4 DISK PERIPHERAL I/O ERROR CODES

b DEVICE ERROR — a hard or soft device error was
detected. This may occur if the disk was not
initialized or was damaged, the system was powered down
during disk writes, the given unit didn't respond, etc.

7 FILE ERROR — the indicated file or volume doesn't
exist; the file type doesn't match access mode (program
file versus data file).

I t e t 1 e t l t t t e l t f t I 1 1 1 1 t 1 1

t it le t t 1 t t l t r 1 l l t t/ t 1 1 t 14
Il I I/ t 1 1 i 1 t 1 1 I t It 1

1 1 1 1 1 1 t i l l l l l l

1 1 1 l i/ 1 t 1 t t t 1 t t t

CPL INTERFACE SPECIFICATION

FOR THE

99/4 DISK PERIPHERAL

ttltttitttitletttittitlit
i t t t i

i t f, i t t t t 1 f t i l t

t't

Copyright 1980 i t t, t if t+/ „

Texas Instruments +ttte rtt+tttt
 till tttt ttIt

All rights reserved. Iittiittttttttttttt,ttttt

The information and/or drawings Itttttttttt+tttttt,tttttt

et forth in this document and itttiliiiiitttIiittttttit

all rights in and to inventions ttlltttt/ttiiiiiiiiiiiiii
disclosed herein and patents ittitttttt III t,tttrWeft

which might be granted thereon iilttiiiiiiitii;'tii
disclosing or employing the t 1 t it+ I t t + t t t t t t t t

materials. methods. ttt 111111. t h ilt l l i t l techniques. tilltltriletil 1 ,
or apparatus described herein t'th 't" llitttilt,. t, r t t l 1 e t t 1 t t t
are the exclusive property of itttiiitiittiiiiiiiiiiiti
Texas Instruments. Iitttitttttt.t+.tltttlttt

tit u tt t 1 t t t t t t t t t t t t f t l t
No disclosure of information or tl+ telrrtiftrtteitttftfil

drawings shall be made to any ttititttt3tttttlttttttttt

other person or organization " " " 'l'i't+ttttelttttlt 1 t t t 1 l t f r l l r l t t t
without the prior consent Of +tletlft+titrtt/ittttttet

Texas Instruments.
tittiliitiiiittittiitttl,
1 t 1 t t l 1 t t t t 1 r t t t t t t t l t t t t

lttttletlltettettttlttrtt 1 1/ t 1 t t t t t t/ 1 l, I t t t t I l
Consumer Croup
Mail Station 5990
2301 N. University
Lubbock, Texas 79414

l 1 t 1 t t t t l t t 1 1 i f
l 1 1 1 1 1 t i t l t t l t
1 t 1 1 1 1 1 1 1 1 i t t 1 1 i 1 1 1
/ t t I 1 l 1 t t l 1 ii

 t o l l , ,

TEXAS INSTRUMENTS
INCORPORATED

Ittit iti
uit t I f I

TI-99/4 DISK PERIPHERAL TABLE of CONTENTS

TABLE of CONTENTS

Paragraph Title

SECTION 1 INTRODUCTION

SECTION 2 APPLICABLE DOCUMENTS

SECTION 3 DISK DSR LEVEL CONCEPT

3. 1
3.1.1
3. 1. 2
3. 2
3. 2. 1
3. 2.2
3. 3
3. 3.1
3. 3. 2
3. 4

Level 1 Subroutines
Sector READ/WRITE - SUBPROGRAM 010
Disk Formatting - SUBPROGRAM 011

Level 2 Subroutines
Modify File Protection - SUBPROGRAM 012
File Rename Routine - SUBPROGRAM 013

Direct File Access Routines
Access Direct Input File - SUBPROGRAM 014
Access Direct Output File - SUBPROGRAM 015

Buffer Allocation Routine - SUBPROGRAM 016

TI PROPRIETARY GPL Interfa

TI-99/4 DISK PERIPHERAL LIST of TABLES

LIST of TABLES

Table Title Paragraph

3-1 Additional Information Block 3.3.1
3-2 Additional Information Block 3.3.2

TI PROPRIETARY OPL Interface

TI-99/4 DISK PERIPHERAL INTRODUCTION

SECTION 1

INTRODUCTION

The information contained in this document gives a 'complete
specification of the interface between the 99/4 Disk Peripheral
and the OPL interpreter.

NOTE

Throughout this document hexadecimal numbers
are indicated by either a preceding 0 or a
preceding >. Therefore the numbers 010 and
>10 are the same as 16 decimal.

The items in transfer blocks which are
enclosed in brackets {} are items that are
returned by the subprogram.

TI PROPRIETARY 1-1 GPL Interfa

7I-99/4 DISK PERIPHERAL APPLICABLE DOCUMENTS

SECTION 2

APPLICABLE DOCUMENTS

File Management Specification for the TI-99/4 Home Computer.
(Version 2.5, 25 February 19E3)

Home Computer BASIC Language Specification
(Revision 4. 1, i2 April 1979)

Home Computer Disk Peripheral Hardware Specification

Functional Specification for the 99/4 Disk Peripheral
(Version 3.0, 28 March 1983)

Software Specification for the 99/4 Disk Peripheral
(Version 2.0, Revised 28 March 1983)

1I-99/4 DISK PERIPHERAL DISK DSR LEVEL CONCEPT

SECTION 3

DISK DSR LEVEL CONCEPT

The disk DSR has been developed as a three level software
package. each level defining distinct options that can be used on
higher levels. This section will give a brief overview of the
levels used and of the features built—in to each level.

The three levels used are:

Level 1 — Definition of the basic disk functions like sector
read/writes head control. drive selection, and track
formatting.

Level 2 — Definition of the "file" concept. Each file is
addressable by its name and an offset of a 256—byte
block relative to the beginning of the file.

Level 3 — Extension of the file concept to the level given
in the file management specifications. * Introduction of
the logical fixed or variable length records. relative
record or sequential files.

The following sections will each describe a level and the
related subprogram calls to it.

3.1 Level 1 Subroutines

The lowest routines in the disk DSR are called Level 1
Subroutines. These routines make the higher levels independent
of the physical disk medium, e.g. changing the disk software for
a double density disk would only involve changing the routines on
this level, as long as the physical sector size remains 256
b y tes

The following routines are available on this

Sector read/write

Format Disk

level:

TI PROPRIETARY 3-1 GPL Interfa

>g 3 s` Mw,1- , m w.Y' rto ncww.o. ~nS~. ~~. 'em \A m
?Jam. ~t~. ~~ %t.ks-py-or 'vD >O i avr,~ , wl~ iA o.. 1/4».tel
tem- -uz// e,o.d /14ti(Gz, -- > /o

-99/4 DISK PERIPHERAL DISK DSR LEVEL CONCEPT

,e following sections will contain a description of these
)utines and their call requirements. All parameters will be
..ansferred through the FAC block in CPU RAM. This block is
,cated in CPU RAM starting at relative Location 04A (currently
B34A) .

. 1. 1 $ec1or READ/WRITE - SLPPROORAM >10.

The transfer

004A

004C

004E

0050

block for this subprogram is:

------m-a ...~..._ Y..~-

(Sector Numbers 0048

: Unit a READ/WRITE

004D

004F

 VDP Buffer start address !
* *-----__-.......____r--_a__

Sector Number • 0051
e

The meaning of each entry is:

Sector Number - Number of the sector to be written or read.
Sectors are addressed as logical sectors (0 - 359 for a
standard single density mini-floppy) rather than as a
track and sector number, which would require a
knowledge of the -physical layout of the floppy disk.
The sector number has to be given in CPU RAM locations
050-051, and will be returned in CPU RAM locations 04A-
048.

Unit * - Indicates the disk drive on which the operation is
to be performed, This entry has to be either a 1, 2.
or 3.

READ/WRITE - Indicates the direction of data-flow.
0 . WR I TE

O 0 - READ

VDP Buffer start address - Indicates start of VDP buffer for
data-transfer. The number of bytes transferred - will
always be 256.

Error codes will be returned in CPU location 050.

TI-99/4 DISK PERIPHERAL DISK DSR LEVEL CONCEPT

3.1.2 Pisk Formatting,— SUBPROGRAM 011.

is: The transfer black for this subprogram

----e *
004A 1 t * of sectors/disk } t 0048

004C t DSR Ver t Un it *1 4 of r k s t 004D

004E t VDP Buffer start address t 004F

0050 1 Density t * of Sides 1 0051
*_..—.. mwmmemm...._ ___._---.e

The meaning of each entry is:

e of sectors/disk — I-s returned by the routine to provide
compatibility between the current controller version
and future (double density or SA200) versions.

DSR Version — This is the MSNibble.
O indicates the format requires nothing special and can
be done on any version of the DSR.
i indicates the format requires the 2nd version of the
DSR for 1 of 2 reasons. It may be because a double
sided format is requested or it may be because a * of
tracks other than 35 or 40 is requested.
2' indicates the format requires features that are not
available on the 1st or 2nd DSR. (Density and perhaps
double tracking if it is available on the next DSR.)

Unit * — Indicates the disk drive on which the operation is
to be performed. This entry has to be either a 1, 2,
or 3.
This is the LSNibble.

* of tracks — Indicates the number of tracks to be
formatted. In the current version this entry has to be
either 35 or 40!!! Upon return, this entry contains
the number of sectors/track.

VDP Buffer start address — Indicates start address of the
VDP buffer that cjapAbaired by the disk controller to
writs tracks. ot eN lC Co" w 1/TO ck o . t& 1 1A't !.
ire> , .A 1.„Än. t.tpli We ~.t 're J., ì z .T »o 0 kntsu Density —

*- of Sides — Indicates the number of sides to format.

TI PROPRIETARY 3-3 GPL Interfa

TI-99/4 DISK PERIPHERAL DISK DSR LEVEL CONCEPT

This routine will format the entire disk on the given unit
unless the disk in the unit has been hardware write protected.
It can use any VDP memory, starting at the location given in the
transfer block. The amount of memory used depends on the disk
format. For the current single density format, the buffer memory
used is a nominal 3125 bytes. This can vary with the disk motor
speed to a maximum of 3300 bytes. To be compatible with double
density versions of the disk controller, the minimum buffer size
must be 8K bytes.

Error codes are returned in CPU location 050.

3.2 Level 2 Subroutines

The Level 2 Subroutines are those routines that use the
concept "file" rather than "logical sector number". Notice that
the file concept on this level is limited to an abstract type of
file which has no properties such as "program file" or "data
file". A file on this level is merely a collection of data,
stored in logical blocks of 256 bytes each.

The logical blocks on this level are accessed by filename
and logical block offset. This offset starts with block 0 and
ends with block N-1 for a file with a length of N blocks.

3.2.1 Modifu File Protection — SUZPROORAM 012.

The transfer block for this subprogram is:

*----------------~._..__~a

004C f Unit * 1 Protect code 1 004D
...._..

004E t Pointer to file name t 004F
* «mme...1.______ mbamp_ .exosm___r..e

The protect bit for the indicated file will be set or reset
according to the information given in CPU location 04D:

0 — Reset the file protect bit. The file is no longer
protected against modification/deletion.

OFF — Set the file protect bit. Disallow SAVE and OPEN for
OUTPUT, APPEND, or UPDATE mode.

TI PROPRIETARY 3-4 OPL Interface

*-----_-_---- --- --a

Pointer to new name 1 004F
*--- ----------_--_---_.---~--••~

TI-9914 DISK PERIPHERAL DISK DSR LEVEL CONCEPT

3.2.2 File Rename Routjne — SUBPROGRAM 013.

The transfer block for this subprogram is:

— -----------------------
004C 1 Unit * 1 unused ! 004D

004E

0050 Z Pointer to old name 1 0051
*— ----- ----a

Both pointers, located at 04E and 050 in CPU RAM, point to
the VDP location of the.first character of a file—name. The
first pointer points to the new name, the second one to the
original filename. Each name is left adjusted in a 10—character
field, filled with spaces. Each name is located in VDP RAM and
has to be a legal filename. No checks are being made to ensure
legality of the name.

Since the rename has to be done on the same disk, only one
unit * entry is required. This unit * is located in CPU RAM
location 04E.

Error codes are returned in the standard error byte at CPU
location 050. The error codes returned are identical to the
standard file management error codes. i.e. only the upper thr
bits of the error byte are significant.

3.3 Direct File Access Routines

The direct file access routines can be used for accessing
disk files without paying attention to the type of disk file
(PROGRAM or DATA). The level of access is equivalent to the
Level 2 disk software which means that access is performed on
the basis of straight AUs. However. Level 3 information can be
passed at file open time.

Since the input and output direct access subprograms can be
used together to copy files, the user has to be very careful with
the information returned by the input file subprogram, since some
of this information may be used by the output file subprogram.

3.3.1 Access Direct Inout File — SUBPROGRAM 0/4.

The transfer block for this subprogram is:

TI PROPRIETARY 3-5 GPL Interfa,--

TI-99/4 DISK PERIPHERAL DISK DSR LEVEL CONCEPT

* ---- N_ ~

004C Unit * I Access code I 004D

004E I Pointer to file name L 004F
* —4

0050 I Addt'1 Info I
* ----4

The meaning of each entry is:

Unit * — Indicates the disk drive on which the operation is
to be performed. This entry has to be either a 1. 2,
or 3.

Access code — An access code is used to indicate which
function is to be performed, since this subprogram
combines multiple functions. The following codes are
used:

O Transfer file parameters. This will transfer
Level 2 parameters to the additional
information area (six bytes). It also passes
the number of AUs allocated for the file.

N When N is not equal to 0, this indicates the
number of AUs to be read from the given file,
starting at the AU indicated in the additional
information block.
After the READ is complete, this entry contains
the actual number of AUs read. If all AUs have
been read, this entry will be O.

Pointer to"file name — Contains a pointer to the first
character of a 10—character filename. possibly padded
to the right with spaces. This filename is NOT checked
by the disk software.

Additional Info — Points to a 10—byte location in CPU RAM
containing additional information for direct disk
access:

TI PROPRIETARY 3-6 OPL Interface

TI-99/4 DISK PERIPiHIERAL DISK DSR LEVEL CONCEPT

Table 3-1 Additional Information Block

*

— —a►

X $ VDP Buffer Start Address

X+2 1 * of first AU 1
____NN_ mym._ _—mmäbp—_Ni_M—

X+4 1 Status Flags 1 * records/AU 1
.wmyRmmmmmmwm memm4m M...._.._emo.mo—.,..--y_..._

X+6 1 EOF offset 1 Log. Rec.. Size(

X+B t* of Level 3 records allocated 1
#---- ----fik

The VDP Buffer start address indicates where the information
read from the disk can be stored. The buffer has to be
able to store at least N * 256 bytes, in which N is the
access code.

The * of first AU entry indicates the AU number at which the
read should begin. If the access code : 0 (parameter
passing), the total number of AUs allocated for the
file will be returned.-

The remaining 6 bytes are explained in the Software
$oecification for the 99/4 Disk Peripheral. The user
should be very careful when changing these bytes, since
they directly affect Level 3 operation. If the
information in these 6 bytes is not modified
consistently, unpredictable results may occur.

Error codes are returned at location 050 in CPU RAM.

3.3.2 Access Direct Output File — SUBPROGRAM 015.

The transfer block for this subprogram is:

004C

004E

0050

— --___._.—__.. ---

004D

004F

1 Unit * 1 Access code 1
*
t Pointer to file name

1
4 0_.s.--

Addt'l Info 1
—emw..amme__mom.-----

TI PROPRIETARY 3-7 GPL Interfa--

TI-99/4 DISK PERIPHERAL DISK DSR LEVEL CONCEPT

The meaning of each entry is:

Unit * — Indicates the disk drive on which the operation is
to be performed. This entry has to be either a 1. 2,
or 3.

Access code — An access code is used to indicate which
function is to be performed, since this subprogram
combines multiple functions. The following codes are
used:

0 Create file and copy Level 3 parameters from
additional information area.

N When N is not equal to 0, indicates the number
of AUs to be written to the given file,
starting at the AU indicated in the additional
information block.

Pointer to file name — Contains a pointer to the first
character of a 10—character filename, possibly padded
to the right with spaces. This filename is NOT checked
by the disk software.

Additional Info — Points to a i0—byte location in CPU RAM
containing additional information for direct disk
access:

Table 3-2 Additional Information Block

a _-_M___ __N-...._......._..wwmw,..-*

VDP Buffer Start Address
e----

-ommeomme---- -------e

X+2 * of first AU
a------ ----- -------

-a

X+4 { Status Flags ! * records/AU J

X+6 ß EOF offset 1 Log. Rec. Sise:
a-- ------------*

X+8 IC of Level 3 records allocated
a --- -omme--- - ---- ----*

The VDP Buffer start address indicates where the information
read from the disk can be stored. The buffer has to be
able to store at least N * 256 bytes, in which N is the
access code.

The * of first AU entry indicates the AU number at which the
read should begin. If the access code = 0 (parameter

TI PROPRIETARY 3-8 GPL Interface

X , ,

y.e,a-u+a=..d.nx fs+ese

1I-99/4 DISK PERIPHERAL DISK DSR LEVEL CONCEPT

passing); the total number of AUs to be allocated for
the file has to be indicated.

The remaining 6 bytes are explained in the Software
Soecification for the 99/4 Disk Peripheral. The user
should be very careful when changing these bytes, since
they directly affect Level 3 operation. If the
information in these 6 bytes is not modified
consistently, unpredictable results may occur.

Error codes are returned at location 050 in CPU RAM.

3.4 Buffer Allocation Routine — SUBPROGRAM,

The argument for this subprogram is the numb r of file
buffers to be allocated. This argument is given in FAC+2 (CPU
location 04C).

The effect of this routine is that an attempt is made to
allocate enough VDP space for disk usage to facilitate the
simultaneous opening of the given number of files. This number
has to be between 1 and 16.

The disk software automatically relocates all buffer are;
that have been linked in the following manner:

Byte 1 — Validation code

Byte 2/3 — Top of memory before allocation of this buffer

Byte 4 — High byte of CRU address for given buffer area.
For programs this byte is 0.

The linkage to the first buffer area is made through the
current top of memory, given in CPU location 070 (currently
>8370).

The top of memory is also automatically updated after
successful completion of this subprogram.

A check is made that the current request leaves at least
0800 bytes of VDP space for screen and data storage. If this is

Ar
the case, or if the total number of buffers requested is 0 or

16, the request is ignored and an error code will be indicated
in CPU location 050 (currently >8350).

TI PROPRIETARY 3-9 GPL Interfac

TI-99/4 DISK PERIPHERAL DISK DSR LEVEL CONCEPT

Successful completion is indicated by a 0 byte in CPU
location 050. A nonzero byte in CPU location 050 indicates
unsuccessful completion.

TI PROPRIETARY 3-10 GPL Interface

