
Please do not upload this copyright pdf document to any other website. Breach of copyright
may result in a criminal conviction.

This Acrobat document was generated by me, Colin Hinson, from a document held by me. I
requested permission to publish this from Texas Instruments (twice) but received no reply. It
is presented here (for free) and this pdf version of the document is my copyright in much the
same way as a photograph would be. If you believe the document to be under other
copyright, please contact me.

The document should have been downloaded from my website https://blunham.com/Radar,
or any mirror site named on that site. If you downloaded it from elsewhere, please let me
know (particularly if you were charged for it). You can contact me via my Genuki email page:
https://www.genuki.org.uk/big/eng/YKS/various?recipient=colin

You may not copy the file for onward transmission of the data nor attempt to make
monetary gain by the use of these files. If you want someone else to have a copy of the file,
point them at the website. (https://blunham.com/Radar). Please do not point them at the
file itself as it may move or the site may be updated.

It should be noted that most of the pages are identifiable as having been processed by me.

I put a lot of time into producing these files which is why you are met with this page when you
open the file.

In order to generate this file, I need to scan the pages, split the double pages and remove any
edge marks such as punch holes, clean up the pages, set the relevant pages to be all the same
size and alignment. I then run Omnipage (OCR) to generate the searchable text and then
generate the pdf file.

Hopefully after all that, I end up with a presentable file. If you find missing pages, pages in the
wrong order, anything else wrong with the file or simply want to make a comment, please
drop me a line (see above).

It is my hope that you find the file of use to you personally – I know that I would have liked to
have found some of these files years ago – they would have saved me a lot of time !

Colin Hinson
In the village of Blunham, Bedfordshire.

Texas Instruments
TI-99/4 Home Computer

Extended
BASIC

FOR THE TI-99/4 HOME COMPUTER

A powerful, high-level programming language that
expands the capability of your TI-99/4 Home Computer.
racludes these features:

re than 40 new or expanded commands,
tements, functions, and subprograms.

Itiple-statement lines ►or speed and efficiency.
Trite (moving graphics) capability.

Subprogram capability that lets you store commonly
used subprograms on diskette for use as needed.

The ability to load and run one program from another.

Comprehensive program control of errors, warnings,
and breakpoints.

ect screen control of input and output.

upport for loading and running TMS9900 Assembly
Language programs if the optional Memory Expansion
unit (sold separately) is attached to the computer.

CONTENTS: TI Extended BASIC module
(36K bytes of preprogrammed memory)
Owner's reference manual

IMPORTANT NOTICE REGARDING
PROGRAMS AND BOOK MATERIALS
The following should be read and understood before purchasing and/or using
TI Extended BASIC.

Texas Instruments does not warrant that the programs contained in the TI
Extended BASIC module and accompanying book materials will meet the
specific requirements of the consumer, or that the programs and book
materials will be free from error. The consumer assumes complete
responsibility for any decision made or actions taken based on information
obtained using these programs and book materials. Any statements made
concerning the utility of TI's programs and book materials are not to be
construed as express or implied warranties.

TEXAS INSTRUMENTS MAKES NO WARRANTY, EITHER EXPRESSED OR
IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE,
REGARDING THESE PROGRAMS OR BOOK MATERIALS OR ANY PROGRAMS
DERIVED THEREFROM AND MAKES SUCH MATERIALS AVAILABLE SOLELY

ON AN "AS IS" BASIS.

IN NO EVENT SHALL TEXAS INSTRUMENTS BE LIABLE TO ANYONE FOR
SPECIAL, COLLATERAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES IN
CONNECTION WITH OR ARISING OUT OF THE PURCHASE OR USE OF THESE
PROGRAMS OR BOOK MATERIALS, AND THE SOLE AND EXCLUSIVE
LIABILITY OF TEXAS INSTRUMENTS, REGARDLESS OF THE FORM OF
ACTION, SHALL NOT EXCEED THE PURCHASE PRICE OF THIS MODULE.
MOREOVER, TEXAS INSTRUMENTS SHALL NOT BE LIABLE FOR ANY CLAIM
OF ANY KIND WHATSOEVER AGAINST THE USER OF THESE PROGRAMS OR
BOOK MATERIALS BY ANY OTHER PARTY.

Some states do not allow the exclusion or limitation of implied warranties or
consequential damages, so the above limitations or exclusions may not apply
to you.

TI Extended BASIC
FOR THE TI-99/4 HOME COMPUTER

A powerful, high-level programming language that
expands the capability of your TI-99/4 Home
Computer. Includes these features:
■ More than 40 new or expanded commands,

statements, functions, and subprograms.
■ Multiple-statement lines for speed and

efficiency.
■ Sprite (moving graphics) capability.
Er Subprogram capability that lets you store

commonly used subprograms on diskette for
use as needed.

■ The ability to load and run one program from
another.

■ Comprehensive program control of errors,
warnings, and breakpoints.

■ Direct screen control of input and output.

■ Support for loading and running TMS9900
Assembly Language programs if the optional
Memory Expansion unit (sold separately) is
attached to the computer.

Copyright © 1981 Texas Instruments Incorporated

Program and data base contents
copyright © 1981 Texas Instruments Incorporated

See important warranty information at back of book

This book was developed and written by:

Robert E. Whitsitt, II
and other staff members of the Texas Instruments Learning Center
and the Texas Instruments Personal Computer Division.

With contributions by:
Tom M. Ferrio
Stanley R. Hume
Jacquelyn F. Quiram

Artwork and layout were coordinated and executed by:

Schenck Design Associates, Inc.

ISBN #0-89512-045-3
Library of Congress Catalog #80-54899

Copyright © 1981 by Texas Instruments Incorporated

2 TI Extended BASIC

Table of Contents

Page
Chapter 1— INTRODUCTION 7

Features 8
Changes from TI BASIC 10
How to Use this Manual 10
How to Use the Computer 11
Operating in TI Extended BASIC 11
Special Key Functions 12

Chapter 2 — OVERVIEW OF TI EXTENDED BASIC 15
Commands 16
Assignments and Input 17
Output 18
Functions, Subroutines, and Subprograms 19

Built-in Functions 20
User-Defined Functions 21
Subroutines 21
Built-in Subprograms 21
User-Written Subprograms 23

Sound, Speech, and Color 24
Sprites 25
Debugging 26
Error Handling 26
Program Entry Example 27

Chapter 3 — TI EXTENDED BASIC CONVENTIONS 37
Running a Program on Powerup 38
Files 38
Line Numbers 38
Lines 38
Special Symbols 38
Spaces 39
Numeric Constants 39
String Constants 39
Variables 39
Numeric Expressions 41
String Expressions 41
Relational Expressions 41
Logical Expressions 42

TI Extended BASIC 3

TABLE OF CONTENTS

Chapter 4 — REFERENCE SECTION

45
ABS 46
ACCEPT 47
ASC 50
ATN 51
BREAK 52
BYE 54
CALL 55
CHAR 56
CHARPAT 59
CHARSET 60
CHR$ 60
CLEAR 61
CLOSE 62
COINC 64
COLOR 66
CONTINUE 68
COS 69
DATA 70
DEF 72
DELETE 74
DELSPRITE 75
DIM 76
DISPLAY 77
DISPLAY...USING 79
DISTANCE 80
END 81
EOF 82
ERR 83
EXP 85
FOR-TO-STEP 86
GCHAR 88
GOSUB 89
GOTO 91
HCHAR 92
IF-THEN-ELSE 94
IMAGE 97
INIT 101
INPUT 102
INPUT (with files) 104
INT 107
JOYST 108
KEY 109
LEN 110

4 TI Extended BASIC

TABLE OF CONTENTS

LET 111
LINK 112
LINPUT 113
LIST.......................... 114
LOAD 115
LOCATE 116
LOG 117
MAGNIFY 118
MAX 121
MERGE 122
MIN 124
MOTION 125
NEW 126
NEXT 127
NUMBER 128
OLD 129
ON BREAK 130
ON ERROR 131
ON GOSUB 133
ON GOTO 135
ON WARNING 137
OPEN 138
OPTION BASE 141
PATTERN 142
PEEK 143
PI 144
POS 145
POSITION 146
PRINT 147
PRINT USING 150
RANDOMIZE 151
READ 152
REC 153
REM 154
RESEQUENCE 155
RESTORE 156
RETURN (with GOSUB) 157
RETURN (with ON ERROR) 158
RND 159
RPT$ 160
RUN 161
SAVE 163
SAY 164
SCREEN 165

TI Extended BASIC 5

TABLE OF CONTENTS

SEGS 166
SGN 167
SIN 168
SIZE 169
SOUND 170
SPGET 172
SPRITE 173
SQR 178
STOP 178
STR$ 179
SUB 180
SUBEND 184
SUBEXIT 184
TAB 185
TAN 186
TRACE 186
UNBREAK 187
UNTRACE 187
VAL 188
VCHAR 188
VERSION 190

APPENDICES
Appendix A — List of Illustrative Programs 192
Appendix B — List of Commands, Statements, and Functions 194
Appendix C — ASCII Codes 196
Appendix D — Musical Tone Frequencies 197
Appendix E — Character Sets 198
Appendix F — Pattern-Identifier Conversion Table 198
Appendix G — Color Codes 199
Appendix H — Color Combinations 200
Appendix I — Split Console Keyboard 201
Appendix J — Character Codes for Split Keyboard 201
Appendix K — Mathematical Functions 202
Appendix L — List of Speech Words 203
Appendix M — Adding Suffixes to Speech Words 206
Appendix N — Error Messages 212

6 TI Extended BASIC

CHAPTER

1
Introduction

TI Extended BASIC 7

INTRODUCTION

FEATURES
Texas Instruments Extended BASIC is a powerful computer programming
language for use with the Texas Instruments TI-99/4 Home Computer. It has
the features expected from a high level language plus additional features not
available in many other languages, including those designed for use with
large, expensive computers.

TI Extended BASIC goes beyond Texas Instruments BASIC to enhance the
capability and flexibility of your computer system by adding these features:

■ Input and Output — The ACCEPT statement allows the input of data from
anywhere on the screen. You may clear the screen, accept only certain
characters, and limit the number of characters entered using this
statement. The DISPLAY statement has been enhanced to allow putting
data anywhere on the screen, and DISPLAY ... USING, PRINT ... USING,
and IMAGE have been added for ease in formatting data on the display
screen and peripheral devices.

■ Subprograms — Subprograms with local variables (affecting only values
within the subprogram) can be written in TI Extended BASIC. Commonly
used subprograms may be stored on a diskette and added to programs as
needed. Statements included are SUB, SUBEND, and SUBEXIT. The
MERGE command has been added and the SAVE command modified to
allow the merging of programs from diskettes.

■ Sprites — Sprites are specially defined graphics with the ability to move
smoothly on the screen. To provide the sprite capability, the following
subprograms have been included in TI Extended BASIC: COINC,
DELSPRITE, DISTANCE, LOCATE, MAGNIFY, MOTION, PATTERN,
POSITION, and SPRITE. COLOR and CHAR have been redesigned so they
also can affect sprites.

■ Functions — MAX, returning the larger of two numbers; MIN, returning
the smaller of two numbers; and PI, returning the value of 7T, have been
included in TI Extended BASIC.

■ Arrays — Arrays may have up to seven dimensions instead of three.

■ String Handling — The RPT$ function allows the repetition of a string.

■ Error Handling — With TI Extended BASIC, you can choose what action
is taken if there is a minor error (which in TI BASIC causes a warning
message), a major error (which in TI BASIC causes an error message and
stops the program), or a breakpoint (which in TI BASIC causes the
program to halt). The new statements allowing this control are ON
WARNING, ON ERROR, and ON BREAK. RETURN has been modified for
use with error handling. The CALL ERR statement can be used to
determine the nature of an error that occurs in a program.

8 TI Extended BASIC

CHAPTER

1

IN RUN as a Statement — RUN can be used as a statement as well as a
command. RUN has also been modified to allow you to specify which
program to run. As a result, one program can load and run another
program from a diskette. You can, therefore, write programs of almost
unlimited size by breaking them into pieces and letting each segment run
the next.

• Power-up Program Execution — When TI Extended BASIC is first chosen,
it searches for a program named LOAD on the diskette in disk drive 1. If
that program exists, it is placed in memory and run.

■ Multiple Statement Lines — TI Extended BASIC allows more than one
statement to be on a line. This feature speeds program execution, saves
memory, and allows logical units (for example FOR-NEXT loops) to be on a
single line.

■ SAVE and LIST Protection — You may protect your programs from being
saved or listed, preventing unauthorized copies of and changes in your
programs. This, in conjunction with the copy protection feature of the
Disk Manager Module, can completely secure a TI Extended BASIC
program.

IN IF-THEN-ELSE — The IF-THEN-ELSE statement now allows statements as
the consequences of the comparison. This expansion permits statements
such as "IF X<4 THEN GOSUB 240 ELSE X = X + 1".

a Multiple Assignments — TI Extended BASIC allows you to assign a value
to more than one variable in a LET statement, saving statements and
permitting more efficient programming.

■ Comments — In addition to the REM statement, comments can be added
to the ends of lines in TI Extended BASIC, allowing detailed internal
documentation of programs.

• Assembly Language Support — With the optional Memory Expansion unit
(available separately), TMS9900 assembly language subprograms may be
loaded and run. The subprograms INIT, LOAD, LINK, and PEEK are used
to access assembly language subprograms. There are no facilities for
writing assembly language programs on the TI-99/4 Home Computer.

• Information — The SIZE command has been added to tell you how much
memory remains unused in your computer. The VERSION subprogram
returns a value which indicates the version of BASIC that is in use. The
CHARPAT subprogram returns a character string indicating the pattern
which defines a character.

■ Memory Expansion — TI Extended BASIC allows the use of an optional
Memory Expansion peripheral which permits much larger programs to be
written.

TI Extended BASIC 9

INTRODUCTION

CHANGES FROM TI BASIC
The enhancements described above have made some slight changes
necessary in other areas of TI BASIC. Because of these, some programs
written in TI-99/4 BASIC may not run in TI Extended BASIC.

■ The maximum program size is now 864 bytes smaller than in TI BASIC. If
you have the Memory Expansion peripheral, much larger programs may
be written.

• The characters in character sets 15 and 16 are no longer available. That
memory area is used by TI Extended BASIC to keep track of sprites.

• Most programs written in TI BASIC will also run in TI Extended BASIC
without difficulty. Under certain circumstances, however, such as using a
TI Extended BASIC keyword as a variable in a TI BASIC program,
programs written in TI BASIC may not run in TI Extended BASIC.
However, you can always load TI BASIC programs into TI Extended
BASIC. Programs using the enhancements of TI Extended BASIC will not
run correctly in TI BASIC.

HOW TO USE THIS MANUAL
This manual assumes that you are already experienced in programming with
TI BASIC. Statements, commands, and functions that are the same as in TI
BASIC are only discussed briefly here. For a complete discussion, see the
User's Reference Guide that came with your TI-99/4 Home Computer.

The additional features of TI Extended BASIC are explained in detail and
illustrated with examples and programs. To get the maximum use from TI
Extended BASIC, read this manual carefully, entering and running the
sample programs to see how they work. Even features that are unchanged
from TI BASIC should be reviewed. You may find that you have been
neglecting a useful statement or discover a new way to use statements in
different combinations.

The remainder of this chapter reviews the basics of operating with TI
Extended BASIC. The second chapter discusses the features of TI Extended
BASIC and includes a detailed example of entering a program. The third
chapter discusses the conventions of operation with TI Extended BASIC. The
fourth chapter is a reference section which discusses, in alphabetical order,
all TI Extended BASIC commands, statements, and functions.

The 14 appendices contain much useful information, including ASCII
character codes, error codes, color codes, keyboard codes, and instructions
on how to add suffixes to speech words.

10 TI Extended BASIC

CHAPTER

1

HOW TO USE THE COMPUTER

Before using the computer with TI Extended BASIC, you must insert the
Solid State SoftwareTM Command Module into the computer. If the computer
is off, slowly slide the module into the slot on the console until it is in place.

Then turn the computer on. (If you have peripherals, turn them on before
turning on the computer.) The master title screen appears. If the computer is
already on, return to the master title screen. Then slide the module into the
slot.

Press any key to make the master selection list appear. The title of the
module, TI EXTENDED BASIC, is third on the list. Type 3 to select TI
Extended BASIC.

OPERATING IN TI EXTENDED BASIC

There are three main operating modes in TI Extended BASIC: Command
Mode, Edit Mode, and Run Mode.

Command Mode is the mode entered when you choose TI Extended BASIC
on the master selection list. In the Command Mode you may enter TI
Extended BASIC commands, statements that may be used as commands,
and program lines.

Edit Mode is used to edit existing lines of a TI Extended BASIC program. To
enter Edit Mode, type a line number and press either SHIFT E (UP) or SHIFT X
(DOWN). (TI BASIC also allows EDIT followed by a line number, which TI
Extended BASIC does not allow.) The line specified is then displayed on the
screen. You may change it by typing a new line, by typing over part of the
old line, or by using the editing keys discussed below. You are also in the
Edit Mode when you press SHIFT R (REDO) to repeat a program line or
command.

In Run Mode, a TI Extended BASIC program is executed. You can stop a
running program only by pressing SHIFT C (CLEAR), which causes a
breakpoint, or with SHIFT 0 (QUIT). Note: SHIFT 0 (QUIT) also erases the
entire program, returns you to the master title screen, and may delete
information from some of your files. The use of BYE is recommended in place
of SHIFT Q (QUIT) to leave TI Extended BASIC.

TI Extended BASIC 11

INTRODUCTION

2 3
~
4

wo
5 6

a
7 8 9

a VV R U C

SPACE A ❑ C H

SHIFT
Z X C V B N nn ENTER

SPECIAL KEY FUNCTIONS

The following are the keys that have a special function when pressed at the
same time as the SHIFT key: E, D, S, X, R, T, G, F, C, Q. Each of these keys is
discussed below.

SHIFT E (UP) is used in the Edit Mode. If you are not in the Edit Mode, you
may enter it by typing a line number and then pressing SHIFT E (UP). The
line specified is then displayed on the screen and may be edited. If you are
already in the Edit Mode, pressing SHIFT E (UP) enters the present line as you
have changed it and displays the next lower numbered line in the program.
Pressing SHIFT E (UP) when you are at the lowest numbered line in the
program returns you to the Command Mode. If you are entering a line in the
Command Mode, SHIFT E (UP) has the same effect as ENTER.

SHIFT D (RIGHT) moves the cursor one space to the right. The cursor does not
erase or change the characters as it passes over them. At the end of a line on
the screen, the cursor wraps around to the next screen line. When the cursor
is at the end of an input line, it does not move.

SHIFT S (LEFT) moves the cursor one space to the left. The cursor does not
erase or change characters as it passes over them. If the cursor is at the
beginning of a line, the cursor does not move. If the cursor is at the left
margin but not at the beginning of an input line, the cursor goes to the right
margin of the screen line above it.

12 TI Extended BASIC

CHAPTER

1

SHIFT X (DOWN) is used in the Edit Mode. If you are not in the Edit Mode, you
may enter it by typing a line number and then pressing SHIFT X (DOWN). The
line specified by the line number is then displayed on the screen and may be
edited. If you are in the Edit Mode, pressing SHIFT X (DOWN) enters the
present line as you have changed it and displays the next higher numbered
line in the program. Pressing SHIFT X (DOWN) when you are at the highest
numbered line in the program returns you to the Command Mode. If you are
entering a line in the Command Mode, SHIFT X (DOWN) has the same effect
as ENTER.

SHIFT R (REDO) causes the characters on the line previously input to
reappear on the screen. Thus if you wish to enter a line similar to the most
recently entered line, press SHIFT R (REDO). If you enter a line and make a
mistake, you can recall the line using SHIFT R (REDO) and correct it using the
Edit Mode features. This key lets you avoid retyping a long line.

SHIFT T (ERASE) erases all characters on the current line, but leaves the
cursor on that line. If you are in the Command Mode, the cursor returns to
the left margin of the screen and you may enter a new line, including the line
number. However, if you are editing a line or the computer is providing the
line numbers (through the use of NUM), the line number is not erased.

SHIFT G (INSERT) instructs the computer to accept inserted characters. Each
subsequent key that you type is inserted at the cursor position and the
character at the cursor position and all characters to the right of the cursor
are shifted one position to the right. Insertion continues with each character
typed until ENTER or one of the other special function keys is pressed.
Characters at the end of a long input line may be lost.

SHIFT F (DELETE) deletes the character that the cursor is on and shifts all
characters to the right of the cursor one position to the left.

SHIFT C (CLEAR) performs different functions depending on the mode that
you are in. If you are in the Edit Mode, any changes that were made to the
line are ignored, including SHIFT T (ERASE), and the computer returns to
Command Mode. If you are in Run Mode, the program is stopped with a
breakpoint. If you are in Command Mode, the characters that you have typed
on the current line are deleted. When using SHIFT C (CLEAR) to stop a
program, hold the keys down until TI Extended BASIC recognizes the
breakpoint.

TI Extended BASIC 13

INTRODUCTION

SHIFT Q (QUIT) returns the computer to the master title screen. When you
press SHIFT 0 (QUIT), all data and program material are erased from the
computer's memory. If you are using a disk system, some of your data files
may be lost. Leave TI Extended BASIC by entering BYE instead of using
SHIFT 0 (QUIT).

ENTER indicates that you have finished typing the information on the current
line and are ready for the computer to process it.

14 TI Extended BASIC

CHAPTER

2
Overview of
TI Extended BASIC

This chapter briefly describes the TI Extended BASIC commands,
statements, and functions and suggests ways in which you can use them.
The first eight sections are Commands; Assignments and Input; Output;
Functions, Subroutines, and Subprograms; Sound, Speech, and Color;
Sprites; Debugging; and Error Handling. The final section is an example of
the entry of a program, showing the entry process and the use of some of the
TI Extended BASIC elements.

TI Extended BASIC 15

OVERVIEW OF TI EXTENDED BASIC

COMMANDS
Commands tell the computer to perform a task immediately (that is, as soon
as you press ENTER), while statements are executed when a program is run.
In TI Extended BASIC many commands can be used as statements, and
most statements can be used as commands. A list of all the commands,
statements, and functions is given in Appendix B, indicating the commands
that can be used as statements and the statements that can be used as
commands.

NEW

To remove a program from TI Extended BASIC to prepare the computer to
accept a new program, use the NEW command. Programs are also removed
from memory by the OLD command and the RUN command when used with
a file name.

NUMBER and RESEQUENCE

When you are entering a program, the computer assigns line numbers for
you if you enter the NUMBER command. If you wish to resequence the line
numbers of a program after it is written, use the RESEQUENCE command.

LIST

To review the program that you have entered, use the LIST command. The
program can be listed on the screen or to a peripheral device.

RUN

The RUN command instructs the computer to perform, or "execute," a
program. The RUN command may be followed by a line number to have it
start program execution at a specific line, or by a device and filename to load
and execute a program from a diskette.

TRACE, UNTRACE, BREAK, UNBREAK, and CONTINUE

All of these commands are related to "debugging" a program, which is
finding a problem that causes an error condition or an incorrect result. These
commands are discussed further in the "Debugging and Error Handling"
section of this chapter.

SAVE, OLD, MERGE, and DELETE

When you are finished working on a program, you may want to store it on a
cassette or diskette for later use. The SAVE command, followed by the name
of the storage device and a program name, performs this task for you. Then,
when you wish to reuse, list, edit, or change a program, you can load it into
memory with the OLD command. If a program has been saved using the
merge option, you can combine it with a program already in memory with
the MERGE command. When you have no further use for a program that has
been saved on diskette, you can remove it with the DELETE command.

16 TI Extended BASIC

CHAPTER

2
SIZE
The SIZE command lets you determine how much memory space is left, so
you can decide whether to continue to add program lines or end the program
and have a second program run from the first program with RUN used as a
statement.

BYE
When you have finished using TI Extended BASIC, use the BYE command to
return to the master title screen.

Several of the commands (RUN, BREAK, UNBREAK, TRACE, UNTRACE,
and DELETE) can also be used as statements in programs.

ASSIGNMENTS AND INPUT
This section discusses statements in TI Extended BASIC that assign values
to variables and enter data into programs.

LET and READ

If you know what values are to be assigned to variables, use LET or READ
statements. LET is used when you are assigning a fairly small number of
values or are calculating values to be assigned, and READ is used, in
conjunction with DATA and RESTORE, when you are assigning numerous
values.

INPUT and LINPUT

When you want the user of the program to assign values, it is customary to
give a prompt that asks for the necessary information. INPUT allows you to
give a prompt and accept input. INPUT only allows the entry of values at the
bottom of the screen and cannot check to see that the data entered is the
type of information the program expects. The final limitation on INPUT is
that commas and quotation marks affect what is entered. With LINPUT,
there is no editing of what is input, so commas and quotation marks can be
input. Both INPUT and LINPUT may be used to input data from files on
cassettes and diskettes.

ACCEPT

ACCEPT allows input from most screen positions. Using ACCEPT eliminates
the necessity of entering data at the bottom of the screen and the "scrolling"
of the INPUT statement. However, ACCEPT doesn't allow a prompt as the
INPUT statement does. Therefore, a PRINT or DISPLAY statement must be
included in the program to tell the user the type of entry that is required.
ACCEPT can check the input to see that it is numeric, alphabetical, or
specific characters. ACCEPT is for screen and keyboard use only.

TI Extended BASIC 17

OVERVIEW OF TI EXTENDED BASIC

CALL KEY and CALL JOYST
If pressing a single key is all that the program user is required to do, then
CALL KEY can be used. For example, if a Y for "yes" or N for "no" is the
required response, use the CALL KEY statement to accept the entry. CALL
KEY does not display a character on the screen. It scans the keyboard or a
portion of the keyboard to see if a key has been pressed. The major limitation
of CALL KEY is that only a single keystroke is accepted. The data is not
recorded as a character, but rather as the ASCII code for the character or as
some other code. (See Appendices C and J for a list of the codes used.) If you
wish to show the key that was pressed, you must use DISPLAY, PRINT,
CALL VCHAR, or CALL HCHAR. The input from a Wired Remote Controller
can be used with CALL JOYST. As with CALL KEY, the data is not
displayed, and no scrolling takes place.

CALL CHARPAT, CALL COINC, CALL DISTANCE, CALL ERR, FOR-TO-
STEP, CALL GCHAR, CALL POSITION, NEXT, CALL SPGET, and CALL
VERSION

Each of these statements assigns one or more values to a variable. CALL
CHARPAT assigns a value that specifies the pattern of a character. CALL
COINC assigns a value to tell if sprites or a sprite and a point on the screen
are at or near the same location on the screen. CALL DISTANCE indicates
the distance between two sprites or a sprite and a point on the screen. CALL
ERR specifies the error that occurred and where it occurred. CALL GCHAR
reads what character is at a given screen location. CALL POSITION reads
where a sprite is on the screen. CALL SPGET assigns the coded value of a
speech phrase to a variable to be used with CALL SAY. CALL VERSION
indicates the version of BASIC in use.

FOR-TO-STEP and NEXT deserve special comment. The FOR-TO-STEP
statement sets the value of a variable so that it can be used to control the
number of times a loop is executed. Each time NEXT is encountered, the
value of the variable is changed. After the loop has been completed, the
variable has a value that is the first value outside the range specified in the
FOR-TO-STEP statement.

OUTPUT

This section discusses the TI Extended BASIC statements which are used to
output data during program execution. Usually, output consists of displaying
information on the screen, printing data on a printer, or saving data on an
external device. However, output can also involve changing the color of the
screen, changing the colors of characters, making noises, speaking, or
sending data to peripheral devices.

18 TI Extended BASIC

CHAPTER

2
PRINT, DISPLAY, PRINT...USING, DISPLAY...USING, and IMAGE

The two most frequently used output statements are PRINT and DISPLAY.
The print separators (comma, semicolon, and colon) and the TAB function
are used to control the placement of information as it is output. PRINT
displays items at the bottom of the screen and scrolls them upward, one line
at a time. With DISPLAY, you can display data almost anywhere on the
screen without scrolling. DISPLAY can also clear the screen, erase characters
on a line, and cause a beep.

PRINT...USING and DISPLAY...USING are like PRINT and DISPLAY except
that the format of the printed or displayed characters is determined by the
USING clause, possibly in conjunction with an IMAGE statement. The USING
clause allows exact control of the format. PRINT and PRINT...USING,
possibly in conjunction with IMAGE, are the only output statements that can
be used to send data to an external device.

CALL HCHAR, CALL VCHAR, and CALL SPRITE

CALL HCHAR and CALL VCHAR place a character at any screen position
and optionally repeat it horizontally or vertically. CALL SPRITE displays
"sprites" on the screen. Sprites are graphics that can be moved smoothly in
any direction and changed in pattern, size, and color. CALL SPRITE and the
other statements related to sprites are discussed later in this chapter.

CALL SCREEN and CALL COLOR

In addition to displaying characters and data on the screen, you can change
the color of the screen and the colors of the characters. CALL SCREEN sets
the screen color. CALL COLOR specifies the foreground and background
colors of characters or the color of sprites.

CALL SOUND and CALL SAY

CALL SOUND outputs sounds. A wide range of sounds is available. In
addition, CALL SAY (possibly used with CALL SPGET) makes the computer
speak if you have a Solid State SpeechTM Synthesizer attached to your
computer.

FUNCTIONS, SUBROUTINES, AND SUBPROGRAMS
TI Extended BASIC provides extensive functions and subprograms for
handling numbers and characters. In addition, you may construct your own
functions and write your own subprograms and subroutines.

Functions are TI Extended BASIC language elements that return a value,
usually based on parameters given to the function. Many functions are
mathematical in nature; others control or affect the result or output produced
by the statements in which they occur. The TI Extended BASIC functions are
ABS, ASC, ATN, CHR$, COS, EOF, EXP, INT, LEN, LOG, MAX, MIN, PI,
POS, REC, RND, RPT$, SEGS, SGN, SIN, SQR, STR$, TAB, TAN, and VAL.

TI Extended BASIC 19

OVERVIEW OF TI EXTENDED BASIC

You can also define your own functions using DEF. Functions are used
within TI Extended BASIC statements.

Built-in Functions
The following briefly discusses each built-in function.

Function Value Returned and Comments
ABS Absolute value of a numeric expression.

ASC The numeric ASCII code of the first character of a string
expression.

ATN Trigonometric arctangent of a numeric expression given in
radians.

CHR$ Character that corresponds to an ASCII code.

COS Trigonometric cosine of a numeric expression given in radians.

EOF End-of-file condition of a file.

EXP Exponential value (ex) of a numeric expression.
INT Integer value of a numeric expression.

LEN Number of characters in a string expression.

LOG Natural logarithm of a numeric expression.

MAX Larger of two numeric expressions.

MIN Smaller of two numeric expressions.

PI 7t with a value of 3.141592654.

POS Position of the first occurrence of one string expression within
another.

REC Current record position in a file.

RND Random number from 0 to 1.

RPT$ String expression equal to a number of copies of a string
expression concatenated together.

SEGS Substring of a string expression, starting at a specified point in
that string and ending after a certain number of characters.

SGN Sign of a numeric expression.

SIN Trigonometric sine of a numeric expression given in radians.

SQR Square root of a numeric expression.

STR$ String equivalent of a numeric expression.

TAB Position for the next item in the print-list of PRINT,
PRINT...USING, DISPLAY, or DISPLAY...USING.

TAN Trigonometric tangent of a numeric expression given in
radians.

VAL Numeric value of a string expression which represents a
number.

20 TI Extended BASIC

CHAPTER

2
User-Defined Functions

DEF is used to define your own functions. Functions up to one line in length
may be defined, with up to one argument. Longer functions may be
constructed by having new definitions refer to previously defined functions.
However, long functions might be more efficiently handled with subroutines
or subprograms.

Subroutines

GOSUB and ON...GOSUB are used to call subroutines. A subroutine is a
series of statements designed to perform a task and is normally used in a
program when it performs a task several times. By using GOSUB or
ON...GOSUB, you do not have to type the same lines of code several times.
The subroutine can use the values of any variable in the program and
change those values.

Built-in Subprograms

Built-in subprograms are TI Extended BASIC elements that perform special
functions. They always are accessed with the CALL statement. The built-in
subprograms are CHAR, CHARPAT, CHARSET, CLEAR, COINC, COLOR,
DELSPRITE, DISTANCE, ERR, GCHAR, HCHAR, INIT, JOYST, KEY, LINK,
LOAD, LOCATE, MAGNIFY, MOTION, PATTERN, PEEK, POSITION, SAY,
SCREEN, SOUND, SPGET, SPRITE, VCHAR, and VERSION.

Built-in subprograms perform many different tasks. Some of the
subprograms affect the display and determine what key has been pressed on
the keyboard.

Built-in
Subprogram Action and Comments
CLEAR Clears the screen.

COLOR Specifies the colors of characters in character sets or the
color of sprites.

GCHAR Returns the ASCII code of the character at a screen position.

HCHAR Displays a character on the screen and optionally repeats it
horizontally.

JOYST Returns values indicating the position of the Wired Remote
Controllers (optional).

KEY Returns a code indicating the key that has been pressed.

SCREEN Specifies the color of the screen.

VCHAR Displays a character on the screen and optionally repeats it
vertically.

TI Extended BASIC 21

OVERVIEW OF TI EXTENDED BASIC

Built-in subprograms can also define and control sprites.

Built-in
Subprogram Action and Comments
CHAR Specifies the pattern for a character used for a sprite or a

graphic.

Determines if two sprites or a sprite and a point on the
screen are at or near the same location on the screen.

COLOR Specifies the color of a sprite or a character set.
DELSPRITE Deletes sprites.

DISTANCE Determines the distance between two sprites or a sprite and
a location.

LOCATE Specifies the position of a sprite.

MAGNIFY Changes the size of sprites.

MOTION Specifies the motion of a sprite.
PATTERN Specifies the character that defines a sprite.
POSITION Determines the position of a sprite.
SPRITE Defines sprites, specifying the character that defines them,

their color, their position, and their motion.

A third category of built-in TI Extended BASIC subprograms involves sound
and speech.

Built-in
Subprogram
SAY

SOUND

SPGET

Action and Comments
Causes the computer to speak words when used in
conjunction with the Solid State SpeechTM Synthesizer.
Generates sounds.

Retrieves the codes that make speech.

Four built-in subprograms are only used with machine language
subprograms obtained from Texas Instruments or another source written in
TMS9900 machine language on another computer. Machine language
subprograms cannot be written on the TI-99/4 Home Computer. Detailed
instructions on the use of INIT, LINK, LOAD, and PEEK are provided with
machine language subprograms.

22 TI Extended BASIC

COINC

CHAPTER

2
Finally there a

Built-in
Subprogram
CHARPAT

CHARSET

ERR

VERSION

re some miscellaneous built-in subprograms.

Action and Comments
Returns a value that identifies the pattern of a character.

Resets characters 32 through 95 to their original pre-defined
patterns and colors.

Returns values which give information about an error that
has occurred.

Specifies the version of BASIC that is being used.

User-Written Subprograms
You may write your own subprograms. They are a series of statements
designed to perform a task. They may be used in a program when you
expect to perform the task several times or to perform the same task in
several different programs. Using the MERGE option when you save a
subprogram allows it to be included in other programs.

When a subprogram is in a program, it must follow the main program. The
structure of a program must be as follows:

Start of Main Program

Subprogram Calls

End of Main Program

Start of First Subprogram

The program will stop here
without a STOP or END
statement.
Subprograms are optional.

End of First Subprogram Nothing may appear between
subprograms except remarks and
the END statement.

Start of Second Subprogram

End of Second Subprogram Only remarks and END may
appear after the subprograms.

End of Program

TI Extended BASIC 23

OVERVIEW OF TI EXTENDED BASIC

Subprograms are called by the use of CALL followed by the subprogram's
name and an optional list of parameters and values. The first line of a
subprogram is SUB, followed by the name of the subprogram and optionally
followed by a list of parameters.

The subprograms you write are not part of the main program. They cannot
use the values of variables in the main program, so any values that are
needed must be supplied by the parameter list in the CALL statement.
Variable names may be duplicates of those in the main program or other
subprograms without affecting the values of the variables in the main
program or other subprograms. Subprograms may call other subprograms,
but must not call themselves, either directly or indirectly.

SUBEND must be the last statement in a subprogram. When that statement
is executed, control returns to the statement following the statement that
called the subprogram. Control may also be returned by the SUBEXIT
statement.

SOUND, SPEECH, AND COLOR
You may highlight important sections of your programs's output through the
use of sounds, speech, and colors. This "human engineering" makes the
program easier and more interesting to use.

CALL SOUND

SOUND outputs sounds. Tones may be output in lengths of from .001 to 4.25
seconds at volumes from 0 (loudest) to 30 (softest). The frequency range is
from 110 (A below low C) to 44,733 (above the range of human hearing). In
addition, 8 noises are available. Up to three tones and one noise may be
produced at the same time. Appendix D lists the frequencies that are used to
produce the musical notes.

CALL SAY and CALL SPGET

SAY produces speech when a Texas Instruments Solid State SpeechTM
Synthesizer (sold separately) is attached to the console. You can choose
among 373 letters, numbers, words, and phrases (listed in Appendix L). In
addition, you can construct new words from old by combining words. For
example, SOME + THING produces "something" and THERE + FOUR
produces "therefore."

SPGET is used to retrieve the speech codes that produce speech. These
patterns can then be used to produce more natural speech and can be used
to change words. Because making new words is a complex process, it is not
discussed in this manual. However, suffixes can be added rather simply.
Appendix M tells how to add the suffixes ING, S, and ED to any word, so that
words such as ANSWERING, ANSWERS, ANSWERED, INSTRUCTING,
INSTRUCTS, and INSTRUCTED are included in the computer's vocabulary.

24 TI Extended BASIC

CHAPTER

2
CALL COLOR and CALL SCREEN

COLOR changes the colors of character sets and determines sprite colors.
SCREEN specifies the color of the screen as one of the sixteen colors
available on the TI-99/4 Home Computer.

SPRITES
Sprites are graphics that can be displayed and moved on the screen. One
advantage that sprites have over other characters is that they can be at any
of 49,152 positions of 192 rows and 256 columns rather than one of the 768
positions of 24 rows and 32 columns used by statements such as CALL
VCHAR and CALL HCHAR. Because of this greater resolution, sprites can
move more smoothly than characters. Also, once set in motion, sprites can
continue to move without further program control.

CALL SPRITE

CALL SPRITE defines sprites. This subprogram specifies the character
pattern that sprites use, their color, their position, and, optionally, their
motion.

CALL CHAR and CALL MAGNIFY

Although you may use any of the predefined characters, numbers 32
through 95, as a sprite, CALL CHAR is generally used to define a new
pattern for a sprite. Up to four 8 by 8 dot characters may be used to form a
sprite. The MAGNIFY subprogram controls the resolution and size of sprites.

CALL COLOR, CALL LOCATE, CALL PATTERN, and CALL MOTION

Once a sprite is set up, it can be altered by various subprograms. COLOR
changes the color of a sprite. LOCATE moves the sprite to a new position.
PATTERN changes the character that defines a sprite. MOTION alters the
motion of a sprite.

CALL COINC, CALL DISTANCE, and CALL POSITION

Three subprograms provide information about sprites while a program is
running. COINC returns a value that indicates if sprites or a sprite and a
point on the screen are at or near the same place on the screen. DISTANCE
returns a value that specifies the distance between two sprites or a sprite and
a point on the screen. POSITION returns values that indicate the position of a
sprite.

CALL DELSPRITE

CALL DELSPRITE allows you to delete sprites. If you prefer, you may "hide"
sprites by locating them off the bottom of the screen.

TI Extended BASIC 25

OVERVIEW OF TI EXTENDED BASIC

DEBUGGING
Debugging a program is finding logical or typing errors in a program.
BREAK, CONTINUE, TRACE, ON BREAK, UNBREAK, UNTRACE, and
SHIFT C (CLEAR) are most often used in debugging.

BREAK, ON BREAK, CONTINUE, and UNBREAK

BREAK causes the computer to stop program execution so that you can print
the values of variables or change their values. BREAK also resets characters
to their standard colors (black on transparent), restores the standard screen
color (cyan), restores the standard characters (32-95) to their standard
representation, and deletes sprites.

ON BREAK tells the computer what to do if a break occurs. You can use this
statement to tell the computer to ignore breakpoints that you have entered in
the program. CONTINUE causes the computer to continue program
execution after a breakpoint. UNBREAK cancels any breakpoints set with
BREAK. Note: If you have put ON BREAK CONTINUE, the computer will not
stop when you press SHIFT C (CLEAR).

TRACE and UNTRACE

TRACE causes the computer to display each line number before the
statement(s) on that line is (are) executed. Using this statement allows you to
follow the sequence of operation of a program. UNTRACE cancels the
operation of TRACE.

ERROR HANDLING

You may include statements in a program to handle errors that occur while
the program is running.

CALL ERR, ON ERROR, ON WARNING, and RETURN

CALL ERR returns information indicating where an error has occured and
what the error is. Appendix N lists the error codes that are returned. ON
ERROR specifies what the computer does if an error occurs. ON WARNING
specifies what the computer does if a condition arises that would normally
cause a warning message to be issued. RETURN is used with ON ERROR in
addition to its use with GOSUB. It repeats execution of the statement that
caused the error, returns to the statement following the one that caused the
error, or transfers control to some other part of the program that avoids the
error that has occurred.

26 TI Extended BASIC

CHAPTER

2
PROGRAM ENTRY EXAMPLE
Now that you've had a brief overview of the features of TI Extended BASIC,
you may enjoy reviewing or even entering and experimenting with a
demonstration program. This section demonstrates a number of the useful
features of TI Extended BASIC. By following the suggestions in this section,
you can learn some useful shortcuts in the entry process.

This program allows you to play a game called Codebreaker. In playing it,
you determine the length of a code (1 to 8 digits). Then you decide the range
of digits that may be included in the code (up to ten). The computer selects
the digits in the code without repeating digits. You then guess what the
digits are and their sequence. After each guess, the computer tells you how
many digits you guessed correctly and how many are in the correct place. (If
you repeat a digit in your guess, it is counted as right each time it appears.)
Using this information, you guess again. You win when you guess all the
digits correctly and place them in the proper sequence.

For example, suppose you've chosen to play the game using four digits with
each digit being any one of nine numbers (0, 1, 2, 3, 4, 5, 6, 7, or 8). The
code the computer chooses might be 0743, which you are trying to break.
Here is a possible sequence of guesses.

GUESS RIGHT PLACE
EXPLANATION OF THE
COMPUTER'S RESPONSE

0000 4 1 0 is right four times, once in the right place.
1234 2 0 3 and 4 are right, but not in the right place.
5678 1 0 7 is right, but not in the right place.
2348 2 1 3 and 4 are right, and 4 is in the right place.
0347 4 2 All right, 0 and 4 in the right place.
3047 4 1 All right, 4 in the right place.
0734 4 2 All right, 0 and 7 in the right place.
0743 4 4 All right, all in the right place. You win.

To begin entering the example, turn on any peripheral devices you have
connected to the computer. Insert the TI Extended BASIC Command Module
and turn on the computer. Press any key to go to the master selection list.
Press 3 to select TI Extended BASIC.

In the following, the characters you type and the keys you press are
UNDERLINED.

TI Extended BASIC 27

>160 ACCEPT AT(19,24)VALIDATE

(DIGIT):CODES

>

OVERVIEW OF TI EXTENDED BASIC

CODEBREAKER Program Entry

COMMENTS

Automatically numbers the program
lines.
Title and language.
Reserves room for the codes and
guesses.
Makes the codes random.
Clears the screen, beeps, and puts
the title CODEBREAKER on the 11th
row starting in the 9th column.

REDO repeats whatever was done
before ENTER was last pressed. Using
the edit keys [SHIFT G (INSERT),
SHIFT F (DELETE), and the arrows],
change line 130 to: 140 DISPLAY
AT(19,1)BEEP:" NUMBER OF
CODES? (1-8)".

Beeps and displays NUMBER OF
CODES? (1-8) on the 19th row
starting at the first column.

Press SHIFT R (REDO) again. Now
change line 140 to: 150 DISPLAY
AT(21,6)BEEP:"DIGITS EACH
CODE?".
Beeps and displays DIGITS EACH
CODE? on the 21st row starting at
the 6th column.

Accepts into CODES an entry on the
19th line, 24th column, allowing
only digits to be entered.

Change line 160 to: 170 ACCEPT
AT(21,24) VALIDATE(DIGIT):
DIGITS.
Accepts into DIGITS an entry on the
21st line, 24th column, allowing only
digits to be entered.

DISPLAY

* READY *
>NUM ENTER

>100 REM CODEBREAKER XBASIC ENTER
>110 DIM CODE$(8),GUESS$(8) ENTER

>120 RANDOMIZE ENTER

>130 DISPLAY AT(11,9)BEEP ERA

SE ALL:"CODEBREAKER" ENTER

>140 SHIFT R

140 DISPLAY AT(19,1)BEEP:"NU

MBER OF CODES? (1-8)" ENTER

> SHIFT R

150 DISPLAY AT(21,6)BEEP:"DI

GITS EACH CODE?" ENTER

ENTER

SHIFT R

170 ACCEPT AT(21,24)VALIDATE

(DIGIT):DIGITS ENTER

28 TI Extended BASIC

CHAPTER

2
Displays the program as it is
currently entered.

>LIST
100 REM CODEBREAKER XBASIC
110 DIM CODE$(8),GUESS$(8)
120 RANDOMIZE
130 DISPLAY AT(11,9)BEEP ERA
SE ALL:"CODEBREAKER"
140 DISPLAY AT(19,1)BEEP:"NU
MBER OF CODES? (1-8)"
150 DISPLAY AT(21,6)BEEP:"DI
GITS EACH CODE?"
160 ACCEPT AT(19,24)VALIDATE
(DIGIT): CODES
170 ACCEPT AT(21,24)VALIDATE
(DIGIT):DIGITS

Runs the program. >RUN
Screen clears, then this appears:

CODEBREAKER

NUMBER OF CODES? (1-8) •

DIGITS EACH CODE?

Enter anything except a digit. The computer beeps and does not accept it.
Enter 4. The cursor moves down to the second prompt. Enter 10. The
program ends and you can continue entry.

Numbers lines starting with 180.
Checks to see that there will be
enough digits for the number of
codes. If CODES is less than or equal
to DIGITS, control passes to the next
line. If CODES is greater than
DIGITS, the message NO MORE
CODES THAN DIGITS is displayed
on the last line of the screen, and
control is transferred to line 160
again.

* READY *
>NUM 180
>180 IF CODES>DIGITS THEN DIS

PLAY AT(24,2)BEEP:"NO MORE C

ODES THAN DIGITS"::GOTO 160 ENTER

TI Extended BASIC 29

OVERVIEW OF TI EXTENDED BASIC

Starts the loop to choose the codes.
The words after the exclamation
point are a comment.
Chooses codes at random.

Starts the loop to prevent duplicate
codes.
Checks for duplicates. Chooses a new
code if there is a duplicate.
Finishes duplicate check loop.
Finishes code choice loop.
Sets a variable to keep track of
where information is displayed on
the screen.
Clears the screen and displays a
column heading on the top line.
REDO line 260 so it reads: 270
DISPLAY AT(24,3):"ENTER 'X' FOR
SOLUTION".
Displays an instruction at the bottom
of the screen.
Numbers lines starting at 280.
Accepts the guess at the proper row.
Checks for giving up or resetting.

Begins loop to break up the guess to
check it for accuracy.
Separates guess into individual
digits.
Completes loop to separate guess.

Sets RIGHT and PLACE to zero.
Begins outside loop to check the
guess against the code.
Begins inside loop to check guess.
If a guess doesn't match a code, goes
to the next line. If a guess matches a
code, adds one to the number
correct. Then if the guess is in the
correct place, adds one to the
number in the correct place.

>190 FOR A=1 TO CODES !CHOOSE

CODES ENTER

>200 CODE$(A)=STR$(INT(RND*DI
GITS)) ENTER

>210 FOR B=0 TO A-1 !CHECK FO
R DUPLICATES ENTER

>220 IF CODE$(A)=CODE$(B) THE
N 200 ENTER

>230 NEXT B ENTER

>240 NEXT A ENTER

>250 ROW=2 ENTER

>260 DISPLAY AT(1,1)ERASE ALL
:"GUESS RIGHT PLACE" ENTER

>270 SHIFTR

270 DISPLAY AT(24,3):"ENTER

'X' FOR SOLUTION" ENTER
>NUM 280 ENTER

>280 ACCEPT AT(ROW,1):C$ ENTER
>290 IF C$="X" THEN 470 !GIVE
UP OR RESET ENTER

>300 FOR D=1 TO CODES !BREAK
UP GUESS ENTER

>310 GUESS$(D)=SEG$(C$,D,1) ENTER

>320 NEXT D ENTER

>330 RIGHT, PLACE=0 ENTER
>340 FOR E=1 TO CODES !CHECK
GUESS FOR CORRECTNESS ENTER

>350 FOR F=1 TO CODES ENTER

>360 IF CODE$(E)=GUESS$(F) TH

EN RIGHT=RIGHT+1::IF E=F THE

N PLACE=PLACE+1 ENTER

30 TI Extended BASIC

CHAPTER

2
Completes inside loop.
Completes outside loop.
Displays the number of digits that
are correct.
REDO line 390 to be: 400 DISPLAY
AT (ROW,22):PLACE.
Displays the number of digits that
are in the correct place.
Numbers lines starting at 410.
Checks to see if the code has been
solved. If it has, goes to the next line.
If it has not, adds one to the row.
Then if the row is more than 22,
goes to line 470 and gives the
solution. Otherwise, returns to line
280 to accept another guess.
Displays the win message with the
number of guesses at the 23rd row
starting at the first column.
REDO line 420 to be: 430 DISPLAY
AT(24,1) BEEP:"PLAY AGAIN? (Y/N)
Y".
Displays the prompt PLAY AGAIN?
(Y/N) Y at the 24th row starting at
the first column.
Numbers lines starting at 440.
Accepts an entry into X$ on the 24th
row, 19th column. Does not remove
any character that is already there
(in this case, a Y from the DISPLAY
statement in line 430), accepts only
one character, beeps, and accepts
only Y or N. Pressing ENTER at this
point when the program is running
confirms the Y that was displayed by
line 430.
If Y is entered, returns to line 190
and chooses a new code for another
game.
Stops the program.

>370 NEXT F ENTER
>380 NEXT E ENTER

>390 DISPLAY AT(ROW,14):RIGHT ENTER

>400 SHIFT R

400 DISPLAY AT(ROW,22):PLACE ENTER

>NUM 410 ENTER

>410 IF PLACE<>CODES THEN ROW

=ROW+1::IF ROW>22 THEN 470 E

LSE 280 ENTER

>420 DISPLAY AT(23,1)BEEP:"YO

U WIN WITH";ROW-1;"GUESSES." ENTER

>430 SHIFT R

430 DISPLAY AT(24,1)BEEP:"PL

AY AGAIN? (Y/N) Y" ENTER

>NUM 440 ENTER

>440 ACCEPT AT(24,19)SIZE(-1)

BEEP VALIDATE("YN"):X$ ENTER

>450 IF X$="Y" THEN 190 ENTER

>460 STOP ENTER

TI Extended BASIC 31

OVERVIEW OF TI EXTENDED BASIC

>

Displays the message THE CODE IS
at the 23rd row, 1st column.

Begins a loop to display the digits.
Displays the digits.

Finishes the loop.
Leave the number mode.
Press DOWN ARROW as if to edit
line 430 so you can use SHIFT R
(REDO).

Press REDO. Line 510 is a duplicate
of line 430, so change the line
number to 510.
Displays the prompt PLAY AGAIN?
(Y/N) Y at the 24th row starting at
the 1st column.
Press DOWN ARROW as if to edit
line 440 so you can use SHIFT R

(REDO).

>470 DISPLAY AT(23,1)BEEP:"TH
E CODE IS" !LOSE, GIVE UP, 0
R RESET ENTER

>480 FOR G=1 TO CODES ENTER
>490 DISPLAY AT(23,12+G) :CODE

$(G) ENTER

>500 NEXT G ENTER
>510 ENTER

>430 DOWN ARROW
430 DISPLAY AT(24,1)BEEP:"PL

AY AGAIN? (Y/N) Y" ENTER

SHIFT R

510 DISPLAY AT(24,1)BEEP:"PL

AY AGAIN? (Y/N) Y" ENTER

>440 DOWN ARROW
440 ACCEPT AT(24,19)SIZE(-1)

BEEP VALIDATE("YN") :X$ ENTER

Press REDO. Line 520 is a duplicate > SHIFT R
of line 440, so change the line
number to 520.
Accepts an entry into X$ on the 24th >520 ACCEPT AT(24,19)SIZE(-1)
row, 19th column. Does not remove BEEP VALIDATE("YN"):X$ ENTER
any character that is already
displayed (in this case a Y from the
DISPLAY statement in line 510),
accepts only one character, beeps,
and accepts only Y or N. Pressing
ENTER at this point when the
program is running confirms the Y
that was displayed by line 510.
If Y is entered, returns to line 130, >530 IF X$="Y" THEN 130 ENTER
allows changing the number of digits
in a code and the number of
acceptable digits, and starts a new
game.

32 TI Extended BASIC

CHAPTER

2
Before running a program, you should proofread it. Here is a list of the entire
program for you to check against your program list.

100 REM CODEBREAKER XBASIC

110 DIM CODE$(8),GUESS$(8)

120 RANDOMIZE

130 DISPLAY AT(11,9)BEEP ERA

SE ALL:"CODEBREAKER"

140 DISPLAY AT(19,1)BEEP:"NU

MBER OF CODES? (1-8)"

150 DISPLAY AT(21,6)BEEP:"DI

GITS EACH CODE?"

160 ACCEPT AT(19,24)VALIDATE

(DIGIT):CODES

170 ACCEPT AT(21,24)VALIDATE

(DIGIT):DIGITS

180 IF CODES>DIGITS THEN DIS

PLAY AT(24,2)BEEP:"NO MORE C

ODES THAN DIGITS"::GOTO 160

190 FOR A=1 TO CODES !CHOOSE

CODES

200 CODE$(A)=STR$(INT(RND*DI

GITS))

210 FOR B=0 TO A-1 !NO DUPLI

CATES

220 IF CODE$(A)=CODE$(B) THE

N 200

230 NEXT B

240 NEXT A

250 ROW=2

260 DISPLAY AT(1,1)ERASE ALL

:"GUESS RIGHT PLACE"

270 DISPLAY AT(24,3):"ENTER

'X' FOR SOLUTION"

280 ACCEPT AT(ROW,1):C$

290 IF C$="X" THEN 470 !GIVE

UP OR RESET

300 FOR D=1 TO CODES !BREAK

UP GUESS

TI Extended BASIC 33

OVERVIEW OF TI EXTENDED BASIC

310 GUESS$(D)=SEG$(C$,D,1)
320 NEXT D
330 RIGHT,PLACE=0
340 FOR E=1 TO CODES !CHECK
GUESS
350 FOR F=1 TO CODES
360 IF CODE$(E)=GUESS$(F) TH
EN RIGHT=RIGHT+1::IF E=F THE
N PLACE=PLACE+1
370 NEXT F
380 NEXT E
390 DISPLAY AT(ROW,14):RIGHT
400 DISPLAY AT(ROW,22):PLACE
410 IF PLACE<>CODES THEN ROW
=ROW+1::IF ROW>22 THEN 470 E
LSE 280
420 DISPLAY AT(23,1)BEEP:"YO
U WIN WITH";ROW-1;"GUESSES."
430 DISPLAY AT(24,1)BEEP:"PL
AY AGAIN? (Y/N) Y-
440 ACCEPT AT(24,19)SIZE(-1)
BEEP VALIDATE("YN"):X$
450 IF X$="Y" THEN 190
460 STOP
470 DISPLAY AT(23,1)BEEP:"TH
E CODE IS" !LOSE, GIVE UP, 0
R RESET
480 FOR G=1 TO CODES
490 DISPLAY AT(23,12+G):CODE
$(G)
500 NEXT G
510 DISPLAY AT(24,1)BEEP:"PL
AY AGAIN? (Y/N) Y"
520 ACCEPT AT(24,19)SIZE(-1)
BEEP VALIDATE("YN"):X$
530 IF X$="Y" THEN 130

34 TI Extended BASIC

CHAPTER

2
Now run the program by typing RUN and pressing ENTER. Choose 4 codes
with 10 digits (0, 1, 2, 3, 4, 5, 6, 7, 8, and 9) possible in each code. Guessing
the code in six tries is excellent. Finding it in eight is very good.

If you wish to use the program again, save it on diskette or cassette. To save
it on cassette, make sure the cassette player is connected. Then enter SAVE
CS1 and follow the instructions that appear on the screen.

To save the program on diskette, enter SAVE DSK1.filename with whatever
filename you wish to use to save it, such as CODEBREAK.

After saving the program, or if you do not wish to save the program, enter
NEW. The program is removed and you may enter another program.

If you have saved the program, you can easily reload it into the computer's
memory for reuse or further editing. Reload the program from a cassette by
entering OLD CS1 and then following the instructions that appear on the
screen. Reload the program from diskette by entering OLD DSK1 filename
using whatever filename you used to save it.

When you have finished using TI Extended BASIC, enter BYE to return to
the master title screen.

TI Extended BASIC 35

36 TI Extended BASIC

CHAPTER

3
TI Extended BASIC
Conventions

This chapter discusses the format that TI Extended BASIC programs must
take and the ways in which TI Extended BASIC functions.

TI Extended BASIC 37

TI EXTENDED BASIC CONVENTIONS

RUNNING A PROGRAM ON POWERUP
If a program named LOAD is on the diskette in disk drive 1 when TI
Extended BASIC is chosen, that program is loaded and run. The effect is the
same as if you had entered RUN "DSK1.LOAD". If the program does not
exist, there is a momentary delay while TI Extended BASIC looks for it.

FILES

Files are groups of data put on external devices. The most common files are
on cassettes or diskettes, but data sent through external devices such as the
RS232 Interface and the optional thermal printer are also considered to be
files by TI Extended BASIC.

LINE NUMBERS

Line numbers are required in TI Extended BASIC programs. Line numbers
specify the order in which lines are executed and are used to identify what
lines to execute next when using IF-THEN-ELSE, GOTO, GOSUB, ON
ERROR, ON...GOTO, and ON...GOSUB. Line numbers may also be used by
BREAK, LIST, NUM, RESTORE, RETURN, and RUN. Line numbers may be
any integer from 1 through 32767.

The computer automatically generates line numbers if you issue the NUM
command. When not followed by a line number, it provides line numbers
starting at 100, incrementing each subsequent line by 10. You may
resequence line numbers with the RES command.

LINES

Lines may be up to 140 characters long, including the line number and
spaces. If you have reached the end of a line, additional characters you enter
replace the 140th character. It is possible to make a line longer than 140
characters in the Edit Mode by the use of SHIFT G (INSERT).

SPECIAL SYMBOLS

Special symbols separate statements and remarks on the same line. A line of
TI Extended BASIC consists of a line number, one or more TI Extended
BASIC statements, and an optional remark. For example:

100 FOR A= 1 TO 100::PRINT A;SQR(A)::NEXT A !PRINT SQUARE ROOTS

The statement separator symbol, a double colon (::), is used to separate
statements on the same line. The tail remark symbol, an exclamation point
(!), is used to separate an explanatory remark from the rest of the line.
Remarks are not executed when the program is run.

38 TI Extended BASIC

CHAPTER

3
SPACES
Spaces are required in TI Extended BASIC between the elements that make
up statements to enable the computer to distinguish variable names from TI
Extended BASIC elements. However, spaces are not required before or after
relational symbols or before or after the tail remark symbol or the statement
separator symbol. You may insert extra spaces when inputting commands
and statements, but they are deleted by TI Extended BASIC. When listing
programs, TI Extended BASIC may add spaces around the tail remark
symbol and statement separator symbol.

NUMERIC CONSTANTS
Numeric constants may be entered with any number of digits. However, they
are rounded to 13 or 14 digits by the computer due to the internal storage
method used by the computer, and are normally displayed as a maximum of
10 digits. For extremely large or small numbers, it is usually more
convenient to use scientific notation to enter numbers. The computer
normally uses scientific notation when printing very large or small numbers.

In scientific notation, a number is given as a mantissa (a number with one
place to the left of the decimal point) times 10 raised to an integer power. 15
is expressed in scientific notation as 1.5 x 101. 150 is expressed as 1.5 x 102;
- 1,500 is expressed as - 1.5 x 103; 156,789,000,000,000 is expressed as
1.56789 x 1014; and 0.156789 is expressed as 1.56789 x 10 -1. In TI Extended
BASIC, The " x 10" is represented by "E". Thus 1.5 x 103 becomes 1.5E3.

Numeric constants are defined in the range - 9.9999999999999E 127 to
- 1E-128, 0, and 1E-128 to 9.9999999999999E127. If the exponent of a
calculated number is greater than 99, then " is normally printed or
displayed as the power. The entire exponent is kept internally and can be
displayed with a USING clause in a PRINT or DISPLAY statement.

STRING CONSTANTS
String constants in TI Extended BASIC can be up to one input line long. If
the string is enclosed in quotation marks, quotation marks in the string are
represented by double quotation marks.

VARIABLES
Variables in TI Extended BASIC may consist of one to 15 characters. The
first character of a variable must be a letter of the alphabet, the at symbol
(@), or an underline (_). Subsequent characters may be those symbols plus
any of the digits. The last character of a string variable must always be a
dollar sign ($). Variables are either scalar or arrays with up to seven
dimensions.

TI Extended BASIC 39

TI EXTENDED BASIC CONVENTIONS

Certain words are reserved for use by TI Extended BASIC. They are the
commands, statements, functions, and operators that make up the language.
These words may not be used as a variable name, but they may make up
part of a variable name. The following is a complete list of the words reserved
for TI Extended BASIC.

ABS EOF NUMBER SEQUENTIAL
ACCEPT ERASE NUMERIC SGN
ALL ERROR OLD SIN
AND EXP ON SIZE
APPEND FIXED OPEN SQR
ASC FOR OPTION STEP
AT GO OR STOP
ATN GOSUB OUTPUT STR$
BASE GOTO PERMANENT SUB
BEEP IF PI SUBEND
BREAK IMAGE POS SUBEXIT
BYE INPUT PRINT TAB
CALL INT RANDOMIZE TAN
CHR$ INTERNAL READ THEN
CLOSE LEN REC TO
CON LET RELATIVE TRACE
CONTINUE LINPUT REM UALPHA
COS LIST RES UNBREAK
DATA LOG RESEQUENCE UNTRACE
DEF MAX RESTORE UPDATE
DELETE MERGE RETURN USING
DIGIT MIN RND VAL
DIM NEW RPT$ VALIDATE
DISPLAY NEXT RUN VARIABLE
ELSE NOT SAVE WARNING
END NUM SEG$ XOR

The following are examples of valid variable names:

Numeric: X, A9, ALPHA, BASE PAY, V(3), T(X,Y,Z,Q.A,R,P6),
TABLE(Q37,M/4)
String: S$, YZ2$, NAMES, Q5$(X,7,L/2), ADDRESS$(4)

40 TI Extended BASIC

CHAPTER

3
NUMERIC EXPRESSIONS
Numeric expressions are constructed from numeric constants, numeric
variables, and functions using the arithmetic operators for addition (+),
subtraction (-), multiplication (*), division (/), and exponentiation (A).

The minus sign (-) can be used either to indicate subtraction or as a unary
minus. As a unary minus, it reverses the sign of what follows it. For
example, - 3 A 2 is equal to - 9 as it is taken to mean - (3 A 2).

The normal hierarchy for evaluating a numeric expression is exponentiation,
followed by multiplication and division, and then by addition and
subtraction. However, any part of a numeric expression that is enclosed in
parentheses is evaluated first. The following shows the effect of parentheses
on determining the value of an expression:

Final
Expression Intermediate Results Value
4+2A2/2-6 4+4/2-6 4+2-6 0
(4+2)A2/2-6 6A2/2-6 36/2-6 12
4+2A2/(2-6) 4+4/(-4) 4- 1 3

STRING EXPRESSIONS
String expressions are constructed from string variables, string constants,
and function references using the operation for concatenation (&) to combine
strings. If a constructed string exceeds a length of 255 characters, the extra
characters on the right are truncated and a warning message is issued. The
following is an example of concatenation:

100 A$="HI"&" THERE!"

AS = "HI"&" THERE!" sets A$ equal to "HI THERE!".

RELATIONAL EXPRESSIONS
Relational expressions are most often used in the IF-THEN-ELSE statement,
but may be used anywhere that numeric expressions are allowed. A
relational expression has a value of - 1 if it is true and a value of 0 if it is
false. Relational operations are performed, from left to right, after all
arithmetic operations are completed and before string concatenation (the
ampersand operator). The relational expressions are:

Equal to (_) Not equal to (< >)
Less than (<) Less than or equal to (< _)
Greater than (>) Greater than or equal to (> _)

TI Extended BASIC 41

TI EXTENDED BASIC CONVENTIONS

The following examples illustrate the use of relational expressions:

IF X <Y THEN 200 ELSE GOSUB
420 next executes line 200 if X is
less than Y. If X is greater than or
equal to Y, then the statement
GOSUB 420 is executed.

>100 IF X<Y THEN 200 ELSE GO

SUB 420

IF L(C) = 12 THEN C =S + 1 ELSE >100 IF L(C)=12 THEN C=S+1 E
COUNT= COUNT + 1::GOTO 140 sets LSE COUNT=COUNT+1: :GOTO 140
C equal to S plus 1 if L(C) equals 12.
If L(C) is not equal to 12, then
COUNT is set equal to COUNT plus 1
and line 140 is executed next.

A = 2 < 5 sets A equal to - 1 as it is >100 A=2<5
true that 2 is less than 5.

PRINT "THIS" = "THAT" prints 0 as >100 PRINT "THIS"="THAT"
it is not true that "THIS" is equal to
"THAT".

A = B = 7 sets A equal to - 1 if B is >100 A=B=7
equal to 7, and to 0 if B is not equal
to 7. There is no effect on B. Note
that this is not the same as the usual
arithmetical meaning of A = B = 7.

LOGICAL EXPRESSIONS

Logical expressions are used with relational expressions. The logical
operators are AND, OR, NOT, and XOR. If true, logical expressions are given
a value of - 1. If false, they are given a value of 0. The order of precedence
for logical expressions, from highest to lowest, is NOT, XOR, AND, and OR.

A logical expression using AND is true if both its left and right clauses are
true.

A logical expression using OR is true if either its left clause is true, its right
clause is true, or both its left and right clauses are true.

A logical expression using NOT is true if the clause following it is not true.

A logical expression using XOR (exclusive or) is true if either its left or its
right clause is true, but not both its left and right clauses are true.

42 TI Extended BASIC

CHAPTER

3
The following examples illustrate the use of logical expressions:

IF 3 <4 AND 5 <6 THEN L = 7 sets L >100 IF 3<4 AND 5<6 THEN L=7
equal to 7 since 3 is less than 4 and
5 is less than 6.
IF 3< 4 AND 5> 6 THEN L = 7 does >100 IF 3<4 AND 5>6 THEN L=7
not set L equal to 7 because 3 is less
than 4, but 5 is not greater than 6.

IF 3<4 OR 5>6 THEN L=7 sets L >100 IF 3<4 OR 5>6 THEN L=7
equal to 7 because 3 is less than 4.

IF 3< 4 XOR 5> 6 THEN L= 7 sets L >100 IF 3<4 XOR 5>6 THEN L=7
equal to 7 because 3 is less than 4
and 5 is not greater than 6.

IF 3< 4 XOR 5< 6 THEN L= 7 does >100 IF 3<4 XOR 5<6 THEN L=7
not set L equal to 7 because 3 is less
than 4 and 5 is less than 6.

IF NOT 3 = 4 THEN L = 7 sets L equal >100 IF NOT 3=4 THEN L=7
to 7 because 3 is not equal to 4.

IF NOT 3 = 4 AND (NOT 6 = 5 XOR >100 IF NOT 3=4 AND (NOT 6=5
2 = 2) THEN 200 does not pass XOR 2=2) THEN 200
control to line 200 because while it is
true that 3 is not equal to 4, it is true
that both 6 is not equal to 5 and 2 is
equal to 2, so the clause in
parentheses is not true.
IF (A OR B) AND (C XOR D) THEN >100 IF (A OR B) AND (C XOR
200 passes control to line 200 if D) THEN 200
either A or B or both A and B are
true (equal to - 1), and C or D, but
not both C and D are true (equal to
- 1).

The logical operators can also be used directly on numbers. They convert the
numbers to binary notation, perform the designated operation on a bit level,
and then convert the result back to decimal representation. A more detailed
discussion of the use of logical operators with numbers can be found in a
mathematics or engineering text dealing with logic.

The numbers must be from - 32,768 to 32,767, represented in binary
notation as from 1000000000000000 to 0111111111111111, with negative
numbers given in 2's complement form signified by a 1 in the most
significant bit. In binary notation, each place is an additional power of 2
rather than an additional power of 10 as in decimal notation. The following
shows numbers in both decimal and binary notation.

TI Extended BASIC 43

TI EXTENDED BASIC CONVENTIONS

DECIMAL
PLACE

BINARY
PLACE

- 100 10 1 - 16384 8192 4096 2048 1024 512 256 128 64 32 16 8 4 2
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
0 2 5 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

- 0 1 3 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1

The above is the equivalent to

110 = 00000000000000012 = 12 2510 = 0000000000110012 = 110012
610 = 00000000000001102 = 1102 -1310 = 11111111111100112

AND places a 1 in the corresponding binary position if there is a 1 in both
the number preceeding and following it. Otherwise it places a zero.

OR places a 1 in the corresponding binary position if there is a 1 in either the
number preceeding it or following it or both. Otherwise it places a zero.

XOR places a 1 in the corresponding binary position if there is a 1 in either
the number preceeding it or following it but not both. Otherwise it places a
zero.

NOT places a 1 in the corresponding binary position if there is a zero in the
number following it. Otherwise it places a zero.

The following illustrate the result of the logical operators when used on
numbers.

DECIMAL BINARY DECIMAL BINARY
A: 1 0000000000000001 A 1 0000000000000001
B: 2 0000000000000010 B. 3 0000000000000011
A AND B. 0 0000000000000000 A AND B: 1 0000000000000001
A: 6 0000000000000110 A. 47 0000000000101111
B. 5 0000000000000101 B. 62 0000000000111110
A AND B: 4 0000000000000100 A AND B: 46 0000000000101110

DECIMAL BINARY DECIMAL BINARY
A: 1 0000000000000001 A: 1 0000000000000001
B. 2 0000000000000010 B. 3 0000000000000011
A OR B. 3 0000000000000011 A OR B: 3 0000000000000011
A 6 0000000000000110 A: 47 0000000000101111
B 5 0000000000000101 B: 62 0000000000111110
AORB: 7 0000000000000111 A OR B. 63 0000000000111111

DECIMAL BINARY DECIMAL BINARY
A: 1 0000000000000001 A. 1 0000000000000001
B. 2 0000000000000010 B. 3 0000000000000011
A XOR B• 3 0000000000000011 A XOR B: 2 0000000000000010
A: 6 0000000000000110 A: 47 0000000000101111
B: 5 0000000000000101 B• 62 0000000000111110
A XOR B: 3 0000000000000011 A XOR B: 17 0000000000010001

DECIMAL BINARY DECIMAL BINARY
A: 1 0000000000000001 A: 2 0000000000000010
NOT A: -2 1111111111111110 NOT A: -3 1111111111111101
A. 6 0000000000000110 A: 47 0000000000101111
NOT A: -7 1111111111111001 NOT A: -48 1111111111010000

44 TI Extended BASIC

CHAPTER

4
Reference Section

This chapter is an alphabetical list of all of the TI Extended BASIC
commands, statements, and functions, with a detailed explanation of how
each works. Examples and sample programs are included wherever
necessary for clarity.

In the format of the elements, key words are CAPITALIZED. Variables are in
italics. Optional portions are enclosed in [brackets]. Items that may be
repeated are indicated by elipses (...). Alternative forms are presented one
above the other.

Appendix A contains a list of the illustrative programs. The Index gives the
pages on which each TI Extended BASIC element is used in an illustrative
program.

TI Extended BASIC 45

ABS

Format

ABS(numeric-expression)

Description

The ABS function gives the absolute value of numeric-expression. If
numeric-expression is positive, ABS gives the value of numeric expression. If
numeric-expression is negative, ABS gives its negative (a positive number). If
numeric-expression is zero, ABS returns zero. The result of ABS is always a
non-negative number.

Examples

PRINT ABS(42.3) prints 42.3. >100 PRINT ABS(42.3)

VV=ABS(-6.124) sets VV equal to >100 VV=ABS(-6.124)
6.124.

46 TI Extended BASIC

ACCEPT CHAPTER

4
Format

ACCEPT [[AT(row,column)] [VALIDATE (datatype ,...)] [BEEP]
[ERASE ALL] [SIZE(numeric-expression)] :] variable

Description

The ACCEPT statement suspends program execution until data is entered
from the keyboard. Many options are available with ACCEPT, making it far
more versatile than INPUT. It may accept data at any screen position, make
an audible tone (beep) when ready to accept the data, erase all characters on
the screen before accepting data, limit data accepted to a certain number of
characters, and limit the type of characters accepted.

Options

The following options may appear in any order following ACCEPT.

AT(row,column) places the beginning of the input field at the specified row
and column. Rows are numbered 1 through 24. Columns are numbered 1
through 28 with column 1 corresponding to what is called column 3 in the
VCHAR, HCHAR, and GCHAR subprograms.

VALIDATE (data-type) allows only certain characters to be entered. Data-
type specifies which characters are acceptable. If more than one data-type is
specified, a character from any of the data-types given is acceptable. The
following are the data-types.

UALPHA permits all uppercase alphabetic characters.
DIGIT permits 0 through 9.
NUMERIC permits 0 through 9, ` . , " + ", ` — ", and "E".
String-expression permits the characters contained in string-
expression.

BEEP sounds a short tone to signal that the computer is ready to accept
input.

ERASE ALL fills the entire screen with the blank character before accepting
input.

SIZE(numeric-expression) allows up to the absolute value of numeric-
expression characters to be input. If numeric-expression is positive, the field
in which the data is entered is cleared before input is accepted. If numeric-
expression is negative, the input field is not blanked. This allows a default
value to be previously placed in the field and entered by just pressing ENTER.
If there is no SIZE clause, the line is blanked from the beginning position to
the end of the line.

If the ACCEPT statement is used without the AT clause, the last two
characters on the screen (at the lower right) are changed to "edge
characters" (ASCII code 31).

TI Extended BASIC 47

ACCEPT

Examples

ACCEPT AT(5,7):Y accepts data at
the fifth row, seventh column of the
screen into the variable Y.

ACCEPT VALIDATE("YN"):RS
accepts Y or N into the variable R$.

ACCEPT ERASE ALL:B accepts data
into the variable B after putting the
blank character into all screen
positions.

ACCEPT AT(R,C)SIZE(FIELDLEN)
BEEP VALIDATE(DIGIT,"AYN"):X$
accepts a digit or the letters A, Y, or
N into the variable XS. The length of
the input may be up to FIELDLEN
characters. The data is accepted at
row R, column C, and a beep is
sounded before data is accepted.

Program

The program at the right illustrates a
typical use of ACCEPT. It allows
entry of up to 20 names and
addresses, and then displays them
all.

>100 ACCEPT AT(5,7):Y

>100 ACCEPT VALIDATE("YN"):R$

>100 ACCEPT ERASE ALL:B

>100 ACCEPT AT(R,C)SIZE(FIELD
LEN)BEEP VALIDATE(DIGIT,"AYN
„):X$

>100 DIM NAME$(20),ADDR$(20)
>110 DISPLAY AT(5,1)ERASE ALL
:"NAME:"
>120 DISPLAY AT(7,1):"ADDRESS

>130 DISPLAY AT(23,1):"TYPE A
? TO END ENTRY."
>140 FOR S=1 TO 20
>150 ACCEPT AT(5,7)VALIDATE(U
ALPHA,"?")BEEP SIZE(13):NAME
$(S)
>160 IF NAME$(S)="?" THEN 200
>170 ACCEPT AT(7,10)SIZE(12):
ADDR$(S)

>180 DISPLAY AT(7,10):"

48 TI Extended BASIC

ACCEPT
CHAPTER

4
>190 NEXT S
>200 CALL CLEAR
>210 DISPLAY AT(1,1):"NAME","
ADDRESS"

>220 FOR T=1 TO S-1
>230 DISPLAY AT(T+2,1):NAME$(
T),ADDR$(T)
>240 NEXT T
>250 GOTO 250
(Press SHIFT C to stop the
program.)

TI Extended BASIC 49

ASC
Format

ASC (string-expression)

Description

The ASC function gives the ASCII character code which corresponds to the
first character of string-expression. A list of the ASCII codes is given in
Appendix C. The ASC function is the inverse of the CHR$ function.

Examples

PRINT ASC("A") prints 65. >100 PRINT ASC("A")

B = ASC(" 1") sets B equal to 49. >100 B=ASC("1")

DISPLAY ASC("HELLO") displays >100 DISPLAY ASC("HELLO")
72.

50 TI Extended BASIC

AT N CHAPTER

4
Format

ATN (numeric-expression)

Description

The ATN function returns the measure of the angle (in radians) whose
tangent is numeric-expression. If you want the equivalent angle in degrees,
multiply by 180/PI. The value given by the ATN function is always in the
range — PI/2 < ATN(X) < PI/2.

Examples

PRINT ATN(0) prints 0. >100 PRINT ATN(0)

Q = ATN(.44) sets Q equal to >100 Q=ATN(.44)
.4145068746.

TI Extended BASIC 51

BREAK

Format

BREAK [line-number-listj

Description

The BREAK command requires a line-number-list. It causes the program to
stop immediately before the lines in line-number-list are executed. After a
breakpoint is taken because the line is listed in line-number-list, the
breakpoint is removed and no more breakpoints occur at that line unless a
new BREAK command or statement is given.

The BREAK statement without line-number-list causes the program to stop
when it is encountered. The line at which the program stops is called a
breakpoint. Every time a BREAK statement without line-number-list is
encountered, the program stops even if an ON BREAK NEXT statement has
been executed.

You can also cause a breakpoint in a program by pressing SHIFT C (CLEAR)
while the program is running, unless breakpoints are being handled in some
other way because of the action of ON BREAK.

BREAK is useful in finding out why a program is not running exactly as you
expect it to. When the program has stopped you can print values of variables
to find out what is happening in the program. You may enter any command
or statement that can be used as a command. If you edit the program,
however, you cannot resume with CONTINUE.

A way to remove breakpoints set with BREAK followed by line numbers is
the UNBREAK command. Also, if a breakpoint is set at a program line and
that line is deleted, the breakpoint is removed. Breakpoints are also removed
when a program is saved with the SAVE command. See ON BREAK for a
way to handle breakpoints.

Whenever a breakpoint occurs, the standard character set is restored. Thus
any standard characters that had been redefined by CALL CHAR are restored
to the standard characters. A breakpoint also restores the standard colors,
deletes sprites, and resets sprite magnification to the default value of 1.

Options

The line-number-list is optional when BREAK is used as a statement, but is
required when BREAK is used as a command. When present, it causes the
program to stop immediately before the lines in line-number-list are
executed. After a breakpoint is taken because the line is listed in line-
number-list, the breakpoint is removed and no more breakpoints occur at
that line unless a new BREAK command or statement is given.

52 TI Extended BASIC

CHAPTER
BREAK 4
Examples

BREAK as a statement causes a
breakpoint when that statement is
executed.

BREAK 120,130 as a statement
causes breakpoints before execution
of the line numbers listed.

BREAK 200,300,1105 as a command
causes breakpoints before execution
of the line numbers listed.

>150 BREAK

>110 BREAK 120,130

>BREAK 200,300,1105

TI Extended BASIC 53

BYE

Format

BYE

Description

The BYE command ends TI Extended BASIC and returns the computer to
the master title screen. All open files are closed, all program lines are erased,
and the computer is reset. Always use the BYE command instead of SHIFT Q
(QUIT) to leave TI Extended BASIC. SHIFT Q (QUIT) does not close files, which
may result in data being lost from external devices.

54 TI Extended BASIC

CALL CHAPTER

4
Format

CALL subprogram-name [(parameter-list))

Description

The CALL statement transfers control to subprogram-name. The
subprogram may be either one built into TI Extended BASIC, such as
CLEAR, or one you have written. After the subprogram is executed, the next
statement after the CALL statement is executed. CALL may be either a
statement or a command for calling built-in TI Extended BASIC
subprograms, but must be a statement when calling subprograms that you
write.

Options

The parameter-list is defined according to the subprogram you are calling.
Some require no parameters at all, some require parameters, and some have
optional parameters. Each built-in subprogram is discussed under its own
entry in this manual. The subprograms you can write are discussed in the
section in Chapter II on subprograms and under SUB. The following are the
subprogram-names of the built-in TI Extended BASIC subprograms.

CHAR HCHAR PATTERN
CHARPAT INIT PEEK
CHARSET JOYST POSITION
CLEAR KEY SAY
COINC LINK SCREEN
COLOR LOAD SOUND
DELSPRITE LOCATE SPGET
DISTANCE MAGNIFY SPRITE
ERR MOTION VCHAR
GCHAR VERSION

Program

The program at the right illustrates
the use of CALL with a supplied
subprogram (CLEAR) in line 100 and
the use of a written subprogram
(TIMES) in line 120.

>100 CALL CLEAR
>110 x=4
>120 CALL TIMES(X)
>130 PRINT X
>140 STOP
>200 SUB TIMES(Z)
>210 Z=Z*PI
>220 SUBEND
>RUN
--screen clears

12.56637061

TI Extended BASIC 55

LEFT
BLOCKS

RIGHT
BLOCKS

CHAR subprogram

Format

CALL CHAR(character-code,pattern-identifier [,...])

Description

The CHAR subprogram allows you to define special graphics characters. You
can redefine the standard set of characters (ASCII codes 32-95) and the
undefined characters, ASCII codes 96-143. Note that fewer program defined
characters are available in TI Extended BASIC than in TI BASIC. where
ASCII codes 96-156 are allowed. The CHAR subprogram is the inverse of the
CHARPAT subprogram.

Character-code specifies the character which you wish to define and must be
a numeric expression with a value from 32 through 143. Pattern-identifier is
a 0 through 64 character string expression which specifies the pattern of the
character(s) you are defining. This string expression is a coded representation
of the dots which make up a character on the screen.

Each character is made up of 64 dots comprising an 8 by 8 grid as shown
below.

ROW 1

ROW 2

ROW 3

ROW 4

ROW 5

ROW 6

ROW 7

ROW 8

Each row is partitioned into two blocks of four dots each:

ANY ROW

i i 1

LEFT RIGHT
BLOCKS BLOCKS

Each character in the pattern-identifier describes the pattern in one block of
one row. The rows are described from left to right and from top to bottom.
Therefore the first two characters in the pattern-identifier describe the
pattern for row one of the grid, the next two the second row, and so on.

56 TI Extended BASIC

BLOCKS

CHAPTER
CHAR SUBPROGRAM 4
Characters are created by turning some dots "on" and leaving others "off."
The space character (ASCII code 32) is a character with all the dots turned
"off." Turning all the dots "on" produces a solid block. The color of the on
dots is the foreground color. The color of the off dots is the background color.

All the standard characters are set with the appropriate dots on. To create a
new character, you specify what dots to turn on and leave off. In the
computer a binary code, one number for each of the 64 dots, is used to
specify which dots are on and off in a particular block. A more human-
readable form of binary is hexadecimal. The following table shows all the
possible on/off conditions for the four dots in a given block, and the binary
and hexadecimal codes for each condition.

Binary Code Hexadecimal
(O = Off: 1 = On) Code

0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 A
1011 B
1100 C
1101 D
1110 E
1111 F

If the pattern-identifier is less than 16 characters, the computer assumes
that the remaining characters are zeros. If the pattern-identifier is 17 to 32
characters, two character-codes are defined, the first with the first through
sixteenth characters and the second with the remaining characters, with
zeros added as needed. If the pattern-identifier is 33 to 48 characters, three
character-codes are defined, the first with the first through sixteenth
characters, the second with the seventeenth through thirty-second
characters, and the third with the remaining characters, with zeros added as
needed. If the pattern-identifier is 49 to 64 characters, four character-codes
are defined, the first with the first through sixteenth characters, the second
with the seventeenth through thirty-second characters, the third with the
thirty-third through forty-eighth characters, and the fourth with the
remaining characters, with zeros added as needed. If the pattern-identifier is
longer than 64 characters or is long enough to define characters higher than
character code 143, the excess is ignored.

TI Extended BASIC C7

The program at the right uses this
and one other string to make a figure
"dance."

ROW 1
ROW 2
ROW 3
ROW 4
ROW 5
ROW 6
ROW 7
ROW 8

Programs

To describe the dot pattern pictured
below, you code this string for CALL
CHAR:

"1898FF3D3C3CE404"
LEFT RIGHT

BLOCKS BLOCKS

>100
>110
>120
>130

BLOCK >140
CODES >150

18 >160
98 >170

FF >180
3D >190
3C >200
3C >210
E4 >220
04 >RUN

-- screen clears
-- character moves
(Press SHIFT C to stop the
program.)

CALL CLEAR
A$="1898FF3D3C3CE404"
B$="1819FFBC3C3C2720"
CALL COLOR(9,7,12)
CALL VCHAR(12,16,96)
CALL CHAR(96,A$)
GOSUB 200
CALL CHAR(96,B$)
GOSUB 200
GOTO 150
FOR DELAY=1 TO 50
NEXT DELAY
RETURN

CHAR SUBPROGRAM

If a program stops for a breakpoint,
the predefined characters (ASCII
codes 32 through 95) are reset to
their standard pattern. Those with
codes 96 through 143 keep their
program defined pattern. When the
program ends normally or because of
an error, all predefined characters
are reset.

>100 CALL CLEAR
>110 CALL CHAR(96,"FFFFFFFFF
FFFFFFF")

>120 CALL CHAR(42,"OFOFOFOFO
FOFOFOF")

>130 CALL HCHAR(12,17,42)
>140 CALL VCHAR(14,17,96)
>150 FOR DELAY=1 TO 500
>160 NEXT DELAY
>RUN

58 TI Extended BASIC

CHARPAT subprogram CHAPTER

4
Format

CALL CHARPAT(character-code,string-variable [,...])

Description

The CHARPAT subprogram returns in string-variable the 16-character
pattern identifier that specifies the pattern of character-code. The CHARPAT
subprogram is the inverse of the CHAR subprogram. See the CHAR
subprogram for an explanation of the value returned in string-variable.

Example

CALL CHARPAT(33,C$) sets C$ >100 CALL CHARPAT(33,C$)
equal to "0010101010001000", the
pattern identifier for character 33,
the exclamation point.

TI Extended BASIC 59

CHARSET subprogram
Format

CALL CHARSET

Description

The CHARSET subprogram restores the standard character patterns and
standard colors for characters 32 through 95. Normally when a program is
run by another program using RUN as a statement, characters 32 through
95 are not reset to their standard patterns and colors. CHARSET is useful
when this feature is not desired.

Example

CALL CHARSET restores the >100 CALL CHARSET
standard characters and their colors.

CHR$
Format

CHR$ (numeric-expression)

Description

The CHR$ function returns the character corresponding to the ASCII
character code specified by numeric-expression. The CHR$ function is the
inverse of the ASC function. A list of the ASCII character codes for each
character in the standard character set is given in Appendix C.

Examples

PRINT CHR$(72) prints H. >100 PRINT CHR$(72)

X$=CHR$(33) sets XS equal to !. >100 X$=CHR$(33)

Program

For a complete list of all ASCII >100 CALL CLEAR
characters and their corresponding >110 FOR A=32 TO 95
ASCII values, run the program on >120 PRINT A; """"; CHR$ (A) ; """
the right. ";

>130 NEXT A

60 TI Extended BASIC

CLEAR subprogram CHAPTER

4
Format

CALL CLEAR

Description

The CLEAR subprogram is used to clear (erase) the entire screen. When the
CLEAR subprogram is called, the space character (ASCII code 32) is placed
in all positions on the screen.

Programs

When the program at the right is
run, the screen is cleared before the
PRINT statements are performed.

If the space character (ASCII code
32) has been redefined by the CALL
CHAR subprogram, the screen is
filled with the new character when
CALL CLEAR is performed.

>100 CALL CLEAR

>110 PRINT "HELLO THERE!"

>120 PRINT "HOW ARE YOU?"

>RUN

--screen clears

HELLO THERE!

HOW ARE YOU?

>100 CALL CHAR(32,"0103070F1F
3F7FFF")

>110 CALL CLEAR
>120 GOTO 120
>RUN
--screen is filled with A
(Press SHIFT C to stop the
program.)

TI Extended BASIC 61

CLOSE

Format

CLOSE #file-number [:DELETE]

Description

The CLOSE statement stops a program's use of the file referenced by #file-
number. After the CLOSE statement is performed, the file cannot be used by
the program unless you OPEN it again. The computer no longer associates
the #file-number with the closed file, so you can assign that number to
another file.

When no program is running, the following actions close all open files:
Editing the program
Entering the BYE command
Entering the RUN command
Entering the NEW command
Entering the OLD command
Entering the SAVE command
Entering the LIST command to a device

If you use SHIFT 0 (QUIT) to leave TI Extended BASIC, the computer does not
close any open files, and you may lose data on any files that are open. To
avoid this possibility, you should leave TI Extended BASIC with BYE instead
of SHIFT 0 (QUIT).

Options

You may delete a diskette file at the same time you close it by adding
":DELETE" to the statement. Other devices, such as cassette recorders, do
not allow DELETE. The manual for each device discusses the use of
DELETE.

62 TI Extended BASIC

CHAPTER
CLOSE 4
Examples

When the computer performs the
CLOSE statement for a cassette tape
recorder, you receive instructions for
operating the recorder.

>100 OPEN #24:"CS1",INTERNAL,
INPUT, FIXED

--program lines

The CLOSE statement for a diskette
requires no further action on your
part.

>200 CLOSE #24

>RUN

--opening instructions

--program runs

* PRESS CASSETTE STOP CS1
THEN PRESS ENTER

>100 OPEN #24:"DSK1.MYDATA",I
NTERNAL,INPUT,FIXED

--program lines

>200 CLOSE #24
>RUN
--program runs

TI Extended BASIC 63

COINC subprogram

Format
CALL COINC(#sprite-number,#sprite-number,tolerance,numeric-variable)
CALL COINC(#sprite-number,dot-row,dot-column,tolerance,numeric-

variable)
CALL COINC(ALL,numeric-variable)

Description

The COINC subprogram detects a coincidence between a sprite and another
sprite or a position on the screen. The value returned in numeric-variable is
- 1 if there is a coincidence and 0 if there is no coincidence.

If the keyword ALL is given, the coincidence of any two sprites is reported. If
two sprites are identified by #sprite-number, their coincidence is reported. If
#sprite-number and a location are identified, their coincidence is reported.

If the keyword ALL is given, sprites are coincident only if one or more of the
dots which make them up occupy the same position on the screen. If two
sprites or a sprite and a location are given, then tolerance must be specified,
and two sprites are coincident if their upper left hand corners are within the
value specified by tolerance. A sprite and a location are coincident if the
upper left hand corner of the sprite and the position specified by dot-row and
dot-column are within the value specified by tolerance. These coincidents are
reported even if there is no apparent overlap of the sprites or the sprite and
the position.

Dot-row and dot-column are numbered consecutively starting with 1 in the
upper left hand corner of the screen. Thus the dot-row can be from 1 to 192
and the dot-column can be from 1 to 256. (Actually the dot-row can go up to
256, but the positions from 193 through 256 are off the bottom of the
screen.) If any part of the sprite occupies the position given, then there is a
coincidence.

Whether or not a coincidence is detected depends on several variables. If the
sprites are moving very quickly, COINC may not be able to detect their
coincidence. Also, COINC checks for a coincidence only when it is called, so a
program may miss a coincidence that occurs when the program is executing
some other statement.

64 TI Extended BASIC

COINC SUBPROGRAM
CHAPTER

4
Program

The program at the right defines two
sprites that consist of a triangle.

Line 160 shows a coincidence
because the sprites are within 10
dots of each other.
Line 180 shows no coincidence
because the shaded areas of the
sprites are not coincident.

>100 CALL CLEAR
>110 S$="0103070F1F3F7FFF"
>120 CALL CHAR(96,S$)
>130 CALL CHAR(100,S$)
>140 CALL SPRITE(#1,96,7,8,8)
>150 CALL SPRITE(#2,100,5,1,1)
>160 CALL COINC(#1,#2,10,C)
>170 PRINT C

>180 CALL COINC(ALL,C)
>190 PRINT C
>RUN
-1
0

TI Extended BASIC 65

COLOR subprogram

Format

CALL COLOR(#sprite-number foreground-color [,...])
CALL COLOR(character-setforeground-color,background-color [,...])

Description

The COLOR subprogram allows you to specify either a foreground-color for
#sprite-number or a foreground-color and background-color for characters in
the character-set. In a given CALL COLOR, you may define sprite color(s) or
character set colors, but not both.

Each character has two colors. The color of the dots that make up the
character itself is called the foreground-color. The color that occupies the rest
of the character position on the screen is called the background-color. In
sprites, the background-color is always code 1, transparent, which allows
characters and the screen color to show through. To change the screen color,
see the SCREEN subprogram. Foreground-color and background-color must
have values from 1 through 16. The color codes are shown below:

Color Code Color

1 Transparent
2 Black
3 Medium Green
4 Light Green
5 Dark Blue
6 Light Blue
7 Dark Red
8 Cyan
9 Medium Red

10 Light Red
11 Dark Yellow
12 Light Yellow
13 Dark Green
14 Magenta
15 Gray
16 White

Until CALL COLOR is performed, the standard foreground-color is black
(code 2) and the standard background-color is transparent (code 1) for all
characters. Sprites have their color assigned when they are created. When a
breakpoint occurs, all characters are reset to the standard colors.

66 TI Extended BASIC

CHAPTER
COLOR subprogram 4
To use CALL COLOR you must also specify to which of the fifteen character
sets the character belongs. (Note that TI BASIC has sixteen character sets
while TI Extended BASIC has fifteen.) The list of ASCII character codes for
the standard characters is given in Appendix C. The character-set numbers
are given below:

Set Number Character Codes

0 30-31
1 32-39
2 40-47
3 48-55
4 56-63
5 64-71
6 72-79
7 80-87
8 88-95
9 96-103

10 104-111
11 112-119
12 120-127
13 128-135
14 136-143

Examples

CALL COLOR(3,5,8) sets the >100 CALL COLOR(3,5,8)
foreground-color of characters 48
through 55 to 5 (dark blue) and the
background-color to 8 (cyan).

CALL COLOR(#5,16) sets sprite >100 CALL COLOR (#5,16)
number 5 to have a foreground-color
of 16 (white). The background-color
is always 1 (transparent).

CALL COLOR(#7,INT(RND* 16+ 1))
sets sprite number 7 to have a
foreground-color chosen randomly
from the 16 colors available. The
background-color is 1 (transparent).

>100 CALL COLOR(#7,INT(RND*16
+1))

TI Extended BASIC fi7

CONTINUE

Format

CONTINUE
CON

Description

The CONTINUE command restarts a program which has been stopped by a
breakpoint. It may be entered whenever a program has stopped running
because of a breakpoint caused by the BREAK command or statement or
SHIFT C (CLEAR). However, you cannot use the CONTINUE command if you
have edited a program line. CONTINUE may be abbreviated as CON.

When a breakpoint occurs, the standard character set and standard colors
are restored. Sprites cease to exist. CONTINUE does not restore standard
characters that have been reset or any colors. Otherwise, the program
continues as if no breakpoint had occurred.

68 TI Extended BASIC

C O S CHAPTER

4
Format

COS (radian -expression)

Description

The cosine function gives the trigonometric cosine of radian-expression. If
the angle is in degrees, multiply the number of degrees by PI/ 180 to get the
equivalent angle in radians.

Program

The program on the right gives the >100 A=1.047197551196
cosine of several angles. >110 B=60

>120 C=45*PI/180
>130 PRINT COS(A);COS(B)
>140 PRINT COS(B*PI/180)
>150 PRINT COS(C)
>RUN
.5 -.9524129804
.5
.7071067812

TI Extended BASIC 69

DATA

Format

DATA data-list

Description

The DATA statement allows you to store data inside your program. The data,
which may be numeric or string constants, is listed in data-list separated by
commas. During program execution, the READ statement assigns the values
in data-list to the variables specified in variable-list in the READ statement.

DATA statements may be located anywhere in a program. However, the
order in which they appear is important. Data from several DATA statements
is read sequentially, beginning with the first item in the first DATA
statement. If a program has more than one DATA statement, the DATA
statements are read in the order in which they appear in the program, unless
otherwise specified by a RESTORE statement. Thus the order in which data
appears in the program normally determines the order in which data is read.
DATA statements cannot be part of multiple statement lines.

Data in data-list must correspond to the type of the variable to which it is
assigned in the READ statement. Thus if a numeric variable is specified in
the READ statement, a numeric constant must be in the corresponding
position in the DATA statement. Similarly, if a string variable is specified, a
string constant must be supplied. A number is a valid string, so you may
have a numeric constant in a DATA statement where a string is called for in
the READ statement. If a DATA statement contains adjacent commas, the
computer assumes you want to enter a null string (a string with no
characters).

When using string constants in a DATA statement, you may enclose the
string in quotes. However, if the string you include contains a comma,
leading spaces, or trailing spaces, you must enclose the string in quotes. If
the string is enclosed in quotes, quotes in the string are represented by
double quotes.

70 TI Extended BASIC

DATA
CHAPTER

4
Program

The program at the right reads and
prints several numeric and string
constants. Lines 100 through 130
read five sets of data and print their
values, two to a line.

>100 FOR A=1 TO 5
>110 READ B,C
>120 PRINT B;C
>130 NEXT A
>140 DATA 2,4,6,7,8
>150 DATA 1,2,3,4,5
>160 DATA """THIS HAS QUOTES"

Lines 190 through 220 read seven
data elements and print each on its
own line.

First two elements of line 140.
Second two elements of line 140.
Last element of line 140 and first of
line 150.
Second and third elements of line
150.
Fourth and fifth elements of line 150.
Line 160.
Line 170.
Line 180.
First element of line 230.
Second element of line 230.
Null string for two commas in line
230.
Last element of line 230.

>170 DATA " NO QUOTES, HERE"
>180 DATA NO QUOTES HERE EITH

ER
>190 FOR A=1 TO 7
>200 READ B$
>210 PRINT B$
>220 NEXT A
>230 DATA 1,NUMBER „ TI
>RUN

2 4
6 7
8 1

2 3

4 5
"THIS HAS QUOTES"

NO QUOTES, HERE
NO QUOTES HERE EITHER
1

NUMBER

TI

TI Extended BASIC 71

DEF
Format

DEF function-name [(parameter)] = expression

Description

The DEF statement allows you to define your own functions. Function-name
may be any variable name. If you specify a parameter following function-
name, the parameter must be enclosed in parentheses and may be any
scalar variable name. If expression is a string, function-name must be a
string variable name, i.e. the last character must be a dollar sign.

The DEF statement must occur at a lower numbered line than any reference
to the function it defines. However, a DEF statement may not appear in an
IF-THEN-ELSE statement. When the computer encounters a DEF statement
during program execution, it proceeds to the next statement without taking
any action. A function may be used in any string or numeric expression by
using function-name followed by an expression enclosed in parentheses if a
parameter was specified in the DEF statement.

When a reference to the function is encountered in an expression (by using
function-name in a statement), the function is evaluated using the current
values of the variables specified in the DEF statement and the value of
parameter if there is one. A DEF statement can refer to other defined
functions. However, the function you specify may not refer to itself either
directly (e.g. DEF B = B* 2) or indirectly (e.g. DEF F = G::DEF G = F).

Attempting to print the value of a function with PRINT used as a command
does not work if the Memory Expansion is connected to your computer.

Options

If you specify a parameter for a function, when a reference to the function is
encountered in an expression, its value is assigned to parameter. The value
of the function is then determined using the value of parameter and the
values of the other variables in the DEF statement. If parameter is given in
the DEF statement, an argument value must always be given when referring
to the function.

The parameter name used in the DEF statement affects only the DEF
statement in which it is used. This means that it is distinct from any other
variable with the same name which appears elsewhere in the program.

Parameter may not be used as an array. You can use an array element in a
function as long as the array does not have the same name as parameter. For
example you may use DEF F(A) =B(Z) but not DEF F(A) =A(Z).

72 TI Extended BASIC

DEF
CHAPTER

4
Examples

DEF PAY(OT) = 40 *RATE + 1.5* >100 DEF PAY (OT) =40*RATE+1 . 5*
RATE*OT defines PAY so that each RATE*OT
time it is encountered in a program
the pay is figured using the RATE of
pay times 40 plus 1.5 times the rate
of pay times the overtime hours.

DEF RND20 = INT(RND * 20 + 1)
defines RND20 so that each time it is
encountered in a program an integer
from 1 through 20 is given.

DEF FIRSTWORD$(NAME$) = SEGS
(NAME$,1,POS(NAME$," ",1)- 1)
defines FIRSTWORD$ to be the part
of NAME$ that preceeds a space.

>100 DEF RND20=INT(RND*20+1)

>100 DEF FIRSTWORD$(NAME$)=SE
G$(NAME$,1,POS(NAME$," ",1)-
1)

TI Extended BASIC 73

DELETE

Format

DELETE device-filename

Description

The DELETE command allows you to remove a program or data file from the
computer's filing system. Device filename is a string expression. If a string
constant is used, it must be enclosed in quotes. You may also delete data files
by using the keyword DELETE in the CLOSE statement.

Some devices (such as diskettes) allow deleting files; others (such as
cassettes) do not. Read the manual for the specific device for more
information.

Example

DELETE "DSK1.MYFILE" deletes >DELETE "DSK1.MYFILE"
the file named MYFILE from the
diskette in disk drive 1.

Program

The program on the right illustrates >100 INPUT "FILENAME: ":X$
a use of DELETE. >110 DELETE X$

74 TI Extended BASIC

DELSPRITE subprogram CHAPTER

4
Format
CALL DELSPRITE(#sprite-number (,...])
CALL DELSPRITE(ALL)

Description

The DELSPRITE subprogram removes sprites from further access by a
program. You may delete one or more sprites by specifying their numbers
preceded by a number sign (#) and separated by commas, or you may delete
all sprites by specifying ALL. After being deleted with DELSPRITE, a sprite
can be recreated with the SPRITE subprogram.

Examples

CALL DELSPRITE(#3) deletes sprite >100 CALL DELSPRITE(#3)

number 3.

CALL DELSPRITE(#4,#3*C) deletes >100 CALL DELSPRITE(#4,#3*C)
sprite number 4 and the sprite
whose number is found by
multiplying 3 by C.

CALL DELSPRITE(ALL) deletes all >100 CALL DELSPRITE(ALL)

sprites.

TI Extended BASIC 75

DIM
Format
DIM array-name(integerl [,integer2] ... [,integer7] [,...])

Description

The DIM statement reserves space in the computer's memory for numeric
and string arrays. You can dimension an array only once in a program. If you
dimension an array, the DIM statement must appear in the program at a
lower numbered line than any other reference to the array. If you dimension
more than one array in a single DIM statement, array-names are separated
by commas. Array-name may be any variable name. A DIM statement may
not appear in an IF-THEN-ELSE statement.

You may have up to seven-dimensional arrays in TI Extended BASIC. The
number of integers separated by commas following the array name
determines how many dimensions the array has. The values of the integers
determine the number of elements in each dimension.

Space is allocated for an array after you enter the RUN command but before
the first statement is executed. Each element in a string array is a null string
and each element in a numeric array is zero until it is replaced with another
value.

The values of the integers determine the maximum value of each subscript
for that array. If you are using an array not defined in a DIM statement, the
maximum value of each subscript is 10. The first element is zero unless an
OPTION BASE statement sets the minimum subscript value to 1. Thus an
array defined as DIM A(6) is a one dimensional array with seven elements
unless the zero subscript is eliminated by the OPTION BASE statement.

Examples

DIM X$(30) reserves space in the >100 DIM X$(30)
computer's memory for 31 members
of the array called XS.

DIM D(100),B(10,9) reserves space in >100 DIM D(100),B(10,9)
the computer's memory for 101
members of the array called D and
110 (11 times 10) members of the
array called B.

76 TI Extended BASIC

DISPLAY CHAPTER

4
Format

DISPLAY [[AT(row,column)] [BEEP] [ERASE ALL] [SIZE(numeric-
expression)] :] variable-list

Description

The DISPLAY statement displays information on the screen. Many options
are available with DISPLAY, making it far more versatile than PRINT. It may
display data at any screen position, make an audible tone (beep) when
displaying data, blank screen positions, and erase all characters on the
screen before displaying data.

Options

AT(row,column) places the beginning of the display field at the specified row
and column. Rows are numbered 1 through 24. Columns are numbered 1
through 28 with column 1 corresponding with what is called column 3 in the
VCHAR, HCHAR, and GCHAR subprograms. If the AT option is not present,
data is displayed at row 24, column 1, just as it is with the PRINT statement.

BEEP sounds a short tone when the data is displayed.

ERASE ALL fills the entire screen with the blank character before displaying
data.

SIZE(numeric-expression) puts numeric-expression blank characters on the
screen starting at row and column. If the SIZE option is not present, the rest
of the row at which data is to be displayed is blanked. If numeric-expression
is larger than the number of positions remaining in the row, only the rest of
the row is blanked.

Examples

DISPLAY AT(5,7):Y displays the
value of Y at the fifth row, seventh

column of the screen.

DISPLAY ERASE ALL:B puts the

blank character into all screen
positions before displaying the value

of B.

DISPLAY AT(R,C) SIZE(FIELDLEN)
BEEP:X$ displays the value of X$ at

row R, column C. First it beeps and
blanks FIELDLEN characters.

>100 DISPLAY AT(5,7):Y

>100 DISPLAY ERASE ALL:B

>100 DISPLAY AT(R,C) SIZE(FIE
LDLEN)BEEP:X$

TI Extended BASIC 77

DISPLAY

Program

The program at the right illustrates a
use of DISPLAY. It allows you to
position blocks at any screen position
to draw a figure or design.

>100 CALL CLEAR
>110 CALL COLOR(9,5,5)
>120 DISPLAY AT(23,1):"ENTER
ROW AND COLUMN."

>130 DISPLAY AT (24,1):"ROW:
COLUMN:"

>140 FOR COUNT=1 TO 2
>150 CALL KEY(0,ROW(COUNT),S)
>160 IF S<=0 THEN 150
>170 DISPLAY AT(24,5+COUNT)SI
ZE(1):STR$(ROW(COUNT)-48)
>180 NEXT COUNT
>190 FOR COUNT=1 TO 2
>200 CALL KEY(O,COLUMN(COUNT)
,5)
>210 IF S<=0 THEN 200
>220 DISPLAY AT(24,16+COUNT)S
IZE(1):STR$(COLUMN(COUNT)-48

>230 NEXT COUNT
>240 ROW1=10*(ROW(1)-48)+ROW(
2)-48
>250 COLUMN1=10*(COLUMN(1)-48
)+COLUMN(2)-48
>260 DISPLAY AT(ROW1,COLUMN1)
SIZE(1):CHR$(96)
>270 GOTO 130

(Press SHIFT C to stop the
program.)

78 TI Extended BASIC

DISPLAY USING CHAPTER

4
Format

DISPLAY [option-list:] USING string-expression [: variable-list]
DISPLAY [option-list:] USING line-number [: variable-list]

Description

The DISPLAY...USING statement is the same as DISPLAY with the addition
of the USING clause, which specifies the format of the data in variable-list. If
string-expression is present, it defines the format. If line-number is present,
it refers to the line number of an IMAGE statement. See IMAGE for an
explanation of how the format is defined.

Examples

DISPLAY AT(10,4):USING "##.##":N >100 DISPLAY AT(10,4) :USING
displays the value of N at the tenth "##.##":N

row and fourth column, with the
format "##,##••,

DISPLAY USING "##.##":N displays >100 DISPLAY USING "##.##":N
the value of N at the 24th row and
first column, with the format

TI Extended BASIC 79

DISTANCE subprogram
Format

CALL DISTANCE(#sprite-number,#sprite-number,numeric-variable)
CALL DISTANCE(#sprite-number,dot-row,dot-column,numeric-variable)

Description

The DISTANCE subprogram returns the square of the distance between two
sprites or between a sprite and a location. The position of each sprite is
considered to be its upper left hand corner. Dot-row and dot-column are from
1 to 256. The squared distance is returned in numeric-variable.

The number returned is computed as follows: The difference between the
dot-rows of the sprites (or the sprite and the location) is found and squared.
Then the difference between the dot-columns of the sprites (or the sprite and
the location) is found and squared. Then the two squares are added. If the
sum is larger than 32767, then 32767 is returned. The distance between the
sprites (or the sprite and the location) is the square root of the value
returned.

Examples

CALL DISTANCE(#3,#4,DIST) sets
DIST equal to the square of the
distance between the upper left hand
corners of sprite #3 and sprite #4.

CALL DISTANCE(#4,18,89,D) sets D
equal to the square of the distance
between the upper left hand corner
of sprite #4 and position 18, 89.

>100 CALL DISTANCE(#3,#4,DIST)

>100 CALL DISTANCE(#4,18,89,D)

80 TI Extended BASIC

END CHAPTER

4
Format

END

Description

The END statement ends your program and may be used interchangeably
with the STOP statement. Although the END statement may appear
anywhere, it is normally placed as the last line in a program and thus ends
the program both physically and logically. The STOP statement is usually
used in other places that you want your program to halt. In TI Extended
BASIC you are not required to use the END statement. The program
automatically stops after it executes the highest numbered line.

TI Extended BASIC 81

EOF

Format

EOF(flle-number)

Description

The EOF function is used to test whether there is another record to be read
from a file. The value of file-number indicates the file to be tested and must
correspond to the number of an open file. The EOF function cannot be used
with cassettes.

The EOF function always assumes that the next record is going to be read
sequentially, even if you are using a RELATIVE file.

The value that the EOF function provides depends on where you are in the
file. If you are not at the last record of the file, the function returns a value of
0. If you are at the last record of the file, the function returns a value of 1. If
the diskette or other storage medium is full, you are at the end of the file,
and there is no more room for any data, the function returns a value of - 1.

For more information, see the Disk Memory System manual.

Examples

PRINT EOF(3) prints a value >100 PRINT EOF(3)
according to whether you are at the
end of the file that was opened as #3.

IF EOF(27)<>0 THEN 1150 transfers >100 IF EOF(27)<> 0 THEN 1150
control to line 1150 if you are at the
end of the file that was opened as
#27.

IF EOF(27) THEN 1150 transfers >100 IF EOF(27) THEN 1150
control to line 1150 if you are at the
end of the file that was opened as
#27.

82 TI Extended BASIC

ERR subprogram CHAPTER

4
Format

CALL ERR(error-code,error-type [,error-severity,Iine-number])

Description

The ERR subprogram returns the error-code and error-type of the most
recent uncleared error. An error is cleared when it has been accessed by the
ERR subprogram, another error has occured, or the program has ended.

Error-codes are two or three digit numbers. The meanings of each of the
codes is in Appendix N.

If error-type is a negative number, then the error was in the execution of the
program. If the error-code is 130 (I/O ERROR), the error-type is a positive
number and the number is the number of the file that caused the error.

If no error has occured, CALL ERR returns all values as zeros.

CALL ERR is used in conjunction with ON ERROR.

Options

You may optionally obtain the error-severity and line-number on which the
error occured. The error-severity is always 9. The line-number is the number
of the line being executed when the error occurred. It is not always the line
that is the source of the problem since an error may occur because of values
generated or actions taken elsewhere in a program.

Examples

CALL ERR(A,B) sets A equal to the >100 CALL ERR(A,B)
error-code and B equal to the error-
type of the most recent error.

CALL ERR(W,X,Y,Z) sets W equal to >100 CALL ERR(W,X,Y,Z)

the error-code, X equal to the error-
type, Y equal to the error-severity,
and Z equal to the line-number of
the most recent error.

TI Extended BASIC 83

ERR SUBPROGRAM

Program

The program on the right illustrates
the use of CALL ERR. An error is
caused in line 110 by calling for an
illegal screen color. Because of line
100, control is transfered to line 130.
Line 140 prints the values obtained.
The 79 indicates that a bad value
was provided.
The - 1 indicates that the error was
in a statement. The 9 is the error-
severity. The 110 indicates that the
error occured in line 110.

>100 ON ERROR 130
>110 CALL SCREEN (18)
>120 STOP
>130 CALL ERR(W,X,Y,Z)
>140 PRINT W;X;Y;Z
>RUN
> 79 -1 9 110

84 TI Extended BASIC

EXP CHAPTER

4
Format

EXP (numeric-expression)

Description

The EXP function returns the exponential value (ex) of numeric-expression.
The value of e is 2.718281828459.

Examples

Y = EXP(7) assigns to Y the value of e
raised to the seventh power which is
1096.633158429.

L = EXP(4.394960467) assigns to L
the value of e raised to the
4.394960467 power which is
81.04142688868.

>100 Y=EXP(7)

>100 L=EXP(4.394960467)

TI Extended BASIC 85

FOR TO [STEP]

Format

FOR control-variable = initial-value TO limit [STEP increment]

Description

The FOR-TO-STEP statement repeats execution of the statements between
FOR-TO-STEP and NEXT until the control-variable is outside the range of
initial-value to limit. The FOR-TO-STEP statement is useful when repeating
the same steps in a loop. The FOR-TO-STEP statement cannot be used in an
IF-THEN-ELSE statement.

Control-variable may be any unsubscripted numeric variable. It acts as a
counter for the loop. Initial-value and limit are numeric expressions. The
loop starts with control-variable given a value of initial-value. The second
time through the loop, the value of control-variable is changed by one or
optionally by increment, which may be a positive or negative number. This
continues until the value of control-variable is outside the range initial-value
to limit. Then the statement after NEXT is executed. The value of control-
variable is not changed when the computer leaves the loop.

The value of control-variable can be changed within the loop, but this must
be done carefully to avoid unexpected results. Loops may be "nested," that
is one loop may be contained wholly within another. You may leave a loop
using GOTO, GOSUB, IF-THEN-ELSE, or the like, and then return. However,
you may not enter a FOR-NEXT loop at any point except at its start.

If initial-value exceeds limit at the beginning of the FOR-NEXT loop, none of
the statements in the loop are executed. Instead execution continues with the
first statement after the NEXT statement.

Examples

FOR A = 1 TO 5 STEP 2 executes the
statements between this FOR and
NEXT A three times, with A having
values of 1, 3, and 5. After the loop is
finished, A has a value of 7.

>100 FOR A=1 TO 5 STEP 2

FOR J = 7 TO - 5 STEP - .5 executes >100 FOR J=7 TO -5 STEP -.5
the statements between this FOR
and NEXT J 25 times, with J having
values of 7, 6.5, 6, ... , - 4, - 4.5, and
- 5. After the loop is finished, J has
a value of - 5.5.

86 TI Extended BASI(

CHAPTER
FOR TO [STEP] 4
Program

The program at the right illustrates a
use of the FOR-TO-STEP statement.
There are three FOR-NEXT loops,
with control-variables of CHAR,
ROW, and COLUMN.

>100 CALL CLEAR
>110 D=0
>120 FOR CHAR=33 TO 63 STEP 3

0
>130 FOR ROW=1+D TO 21+D STEP

4
>140 FOR COLUMN=I+D TO 29+D S
TEP 4

>150 CALL VCHAR(ROW,COLUMN,CH
AR)

>160 NEXT COLUMN
>170 NEXT ROW
>180 D=2
>190 NEXT CHAR
>200 GOTO 200

(Press SHIFT C to stop the
program.)

TI Extended BASIC 87

GCHAR subprogram

Format

CALL GCHAR(row.column,numeric-variable)

Description

The GCHAR subprogram reads a character from anywhere on the display
screen. The computer returns in numeric-variable the ASCII code for the
character in the position described by row and column.

Row and column are numeric expressions. A value of 1 for row indicates the
top of the screen. A value of 1 for the column indicates the left side of the
screen. The screen can be thought of as a grid as shown below.

COLUMNS
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

1 i 3 i 5 i 7 i 9 i 11 i 13 ♦ 15 i 17 i 19 i 21 i 23 i 25 i 27 i 29 i 31 i

1
2 ~

3
4~

5
6~

7
8-~

9
R 10~

11
O 12-.-
W 13
S 14 ~

15

17
18-.-

19
20-.•

21
22~

23

Examples

CALL GCHAR(12,16,X) assigns to X
the ASCII code of the character that
is in row 12, column 16.

CALL GCHAR(R,C,K) puts into K the
ASCII code of the character that is in
row R, column C.

>100 CALL GCHAR(12,16,X)

>100 CALL GCHAR(R,C,K)

88 TI Extended BASIC

GOSUB CHAPTER

4
Format

GOSUB line-number
GO SUB line-number

Description

The GOSUB statement allows transfer to a subroutine. When executed,
control is transferred to line-number and that statement and any following
(which may include any statements, including GOTO statements and other
GOSUB statements) are executed. When a RETURN statement is
encountered, control is returned to the next statement following the GOSUB
statement. Subroutines are most useful when the same action is to be
performed in different parts of a program. See also ON...GOSUB. Subroutines
in TI Extended BASIC may call themselves.

Example

GOSUB 200 transfers control to >100 GOSUB 200
statement 200. That statement and
the ones up to RETURN are
executed, and then control returns to
the statement after the calling
statement.

TI Extended BASIC 89

GOSUB

Program

The program on the right illustrates
a use of GOSUB. The subroutine at
line 260 figures the factorial of the
value of NUMB. The whole program
figures the solution to the equation

NUMB - X!
Y! * (X - Y)!

where the exclamation point means
factorial. This formula is used to
figure certain probabilities. For
instance, if you enter X as 52 and Y
as 5, you'll find the number of
possible five card poker hands.

>100 CALL CLEAR
>110 INPUT "ENTER X AND Y: ":
X,Y
>120 IF X<Y THEN 110
>130 IF X>69 OR Y>69 THEN 110
>140 NUMB=X
>150 GOSUB 260
>160 NUMERATOR=NUMB
>170 NUMB=Y
>180 GOSUB 260
>190 DENOMINATOR=NUMB
>200 NUMB=X-Y
>210 GOSUB 260
>220 DENOMINATOR=DENOMINATOR*
NUMB
>230 NUMB=NUMERATOR/DENOMINAT
OR

>240 PRINT "NUMBER IS";NUMB
>250 STOP
>260 REM FIGURE FACTORIAL
>270 IF NUMB<0 THEN PRINT "NE
GATIVE" :: GOTO 110

>280 IF NUMB<2 THEN NUMB=1 ::
GOTO 330

>290 MULT=NUMB-1
>300 NUMB=NUMB*MULT
>310 MULT=MULT-1
>320 IF MULT>1 THEN 300
>330 RETURN

90 TI Extended BASIC

GOTO CHAPTER

4
Format

GOTO line-number
GO TO line-number

Description

The GOTO statement allows you to transfer control unconditionally to
another line within a program. When a GOTO statement is executed, control
is passed to the first statement on the line specified by line-number.

The GOTO statement should not be used to transfer control into
subprograms.

Program

The program at the right shows the
use of GOTO in line 160. Anytime
that line is reached the program
executes line 130 next and proceeds
from that new point.

>100 REM ADD 1 THROUGH 100
>110 ANSWER=O
>120 NUMB=1
>130 ANSWER=ANSWER+NUMB
>140 NUMB=NUMB+1
>150 IF NUMB>100 THEN 170
>160 GOTO 130
>170 PRINT "THE ANSWER IS";AN

SWER
>RUN
THE ANSWER IS 5050

TI Extended BASIC 91

HCHAR subprogram
Format

CALL HCHAR(row,column,character-code [,repetition])

Description

The HCHAR subprogram displays a character anywhere on the display
screen and optionally repeats it horizontally. The character with the ASCII
value of character-code is placed in the position described by row and
column and is repeated horizontally repetition times.

A value of 1 for row indicates the top of the screen. A value of 24 is the
bottom of the screen. A value of 1 for column indicates the left side of the
screen. A value of 32 is the right side of the screen. The screen can be
thought of as a grid as shown below.

COLUMNS

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
1 i 3 i 5 I. 7 i 9 i 11 i 13 i 15 ! 17 i 19 i 21 i 23 i 25 i 27 i 29 i 31 i

1
2-

3
4--,-

5
6-

7
8-..-

9

S 14-.-
15

16-.-
17

18--.-
19

20-.-
21

22-.-
23

24-•

92 TI Extended BASIC

HCHAR SUBPROGRAM CHAPTER

4
Examples

CALL HCHAR(12,16,33) places >100 CALL HCHAR(12,16,33)
character 33 (an exclamation point)
in row 12, column 16.

CALL HCHAR(1,1,ASC("!"),768) >100 CALL HCHAR(1,1,ASC("! "),
places an exclamation point in row 768)
1, column 1, and repeats it 768
times, which fills the screen.

CALL HCHAR(R,C,K,T) places the >100 CALL HCHAR(R,C,K,T)
character with an ASCII code
specified by the value of K in row R,
column C and repeats it T times.

TI Extended BASIC 93

IF THEN [ELSE]

Format

IF relational-expression THEN line-numberl [ELSE line-number2]
IF relational-expression THEN statement1 [ELSE statement2]
IF numeric-expression THEN line-numberl [ELSE line-number2]
IF numeric-expression THEN statement1 [ELSE statement2]

Description

The IF-THEN-ELSE statement allows you to transfer control to line-numberl
or to perform statementI if relational-expression is true or if numeric-
expression is not equal to zero. Otherwise control passes to the next
statement, or optionally to line-number2 or statement2.

Statementl and statement2 may each be several statements long, separated
by the statement separator symbol. They are only executed if the clause
immediately before them is executed. The IF-THEN-ELSE statement cannot
contain DATA, DEF, DIM, FOR, NEXT, OPTION BASE, SUB, or SUBEND.

Examples

IF X >5 THEN GOSUB 300 ELSE
X = X + 5 operates as follows: If X is
greater than 5, then GOSUB 300 is
executed. When the subroutine is
ended, control returns to the line
following this line. If X is 5 or less, X
is set equal to X + 5 and control
passes to the next line.

IF Q THEN C = C + 1::GOTO
500::ELSE L = L/C::GOTO 300
operates as follows: If Q is not zero,
then C is set equal to C + 1 and
control is transferred to line 500. If Q
is zero, then L is set equal to L/C and
control is transferred to line 300.

IF A >3 THEN 300 ELSE A = 0::
GOTO 10 operates as follows: If A is
greater than 3, then control is
transferred to line 300. Otherwise, A
is reset to zero and control is
transferred to line 10.

>100 IF X>5 THEN GOSUB 300 EL
SE X=X+S

>100 IF Q THEN C=C+1::GOTO 50
0::ELSE L=L/C::GOTO 300

>100 IF A>3 THEN 300 ELSE A=0
::GOTO 10

94 TI Extended BASIC

CHAPTER
IF THEN [ELSE] 4
IF A$ = "Y" THEN COUNT =
COUNT+ 1::DISPLAY AT(24,1):
"HERE WE GO AGAIN!"::GOTO 300
operates as follows: If A$ is not equal
to "Y", then control passes to the
next line. If A$ is equal to "Y", then
COUNT is incremented by 1, a
message is displayed, and control is
transferred to line 300.

IF HOURS < = 40 THEN
PAY = HOURS * WAGE ELSE
PAY = HOURS *WAGE + .5 * WAG-
E * (HOURS-40) :: OT = 1 operates as
follows: If HOURS is less than or
equal to 40, then PAY is set equal to
HOURS*WAGE and control passes to
the next line. If HOURS is greater
than 40 then PAY is set equal to
HOURS *WAGE + .5 *WAGE * (HO-
URS-40), OT is set equal to 1, and
control passes to the next line.

IF A= 1 THEN IF B= 2 THEN C= 3
ELSE D = 4 ELSE E = 5 operates as
follows: If A is not equal to 1, then E
is set equal to 5 and control passes to
the next line. If A is equal to 1 and B
is not equal to 2, then D is set equal
to 4 and control passes to the next
line. If A is equal to 1 and B is equal
to 2, then C is set equal to 3 and
control passes to the next line.

>100 IF A$="Y" THEN COUNT=COU
NT+1::DISPLAY AT(24,1):"HERE

WE GO AGAIN!"::GOTO 300

>100 IF HOURS<=40 THEN PAY=HO

URS*WAGE ELSE PAY=HOURS*WAGE

+.5*WAGE*(HOURS-40) :: OT=1

>100 IF A=1 THEN IF B=2 THEN
C=3 ELSE D=4 ELSE E=5

TI Extended BASIC 95

IF THEN [ELSE]

Program
The program on the right illustrates
a use of IF-THEN-ELSE. It accepts up
to 1000 numbers and then prints
them in order from smallest to
largest.

>100 CALL CLEAR
>110 DIM VALUE(1OOO)
>120 PRINT "ENTER VALUES TO B
E SORTED.":"ENTER '9999' TO
END ENTRY."
>130 FOR COUNT=1 TO 1000
>140 INPUT VALUE(COUNT)
>150 IF VALUE(COUNT)=9999 THE
N 170

>160 NEXT COUNT
>170 COUNT=COUNT-1
>180 PRINT "SORTING."
>190 FOR SORT1=1 TO COUNT-1
>200 FOR SORT2=SORT1+1 TO COU
NT

>210 IF VALUE(SORT1)>VALUE(SO
RT2)THEN TEMP=VALUE(SORT1)::
VALUE(SORT1)=VALUE(SORT2)::
VALUE(SORT2)=TEMP

>220 NEXT SORT2
>230 NEXT SORT1
>240 FOR SORTED=1 TO COUNT
>250 PRINT VALUE(SORTED)
>260 NEXT SORTED

96 TI Extended BASIC

IMAGE CHAPTER

4
Format

IMAGE format-string

Description
The IMAGE statement specifies the format in which numbers are printed or
displayed when the USING clause is present in PRINT or DISPLAY. No action
is taken when the IMAGE statement is encountered during program
execution. The IMAGE statement must be the only statement on a line. The
following description of format-string also applies to the use of an explicit
image after the USING clause in PRINT...USING and DISPLAY...USING.

Format-string must contain 254 or fewer characters and may be made up of
any characters. They are treated as follows:

Pound signs (#) are replaced by the print-list values given in PRINT...USING
or DISPLAY...USING. One pound sign must be allowed for each digit of the
value and one for the negative sign if it is present, or for each character that
is to be printed. If there is not enough room to print the number or
characters in the space allowed, each pound sign is replaced with an asterisk
(*). If more numbers are after the decimal place than are allowed by the
number of pound signs after the decimal place in the IMAGE statement, the
number is rounded to fit. If there are fewer non-numeric characters than are
allowed for in the print string, the value printed will have blanks for the
extra characters.

To indicate that a number is to be given in scientific notation, circumflexes
(A) must be given for the E and power numbers. There must be four or five
circumflexes, and 10 or fewer characters (minus sign, pound signs, and
decimal point) when using the E format.

The decimal point separates the whole and fractional portions of numbers,
and is printed where it appears in the IMAGE statement.

All other letters, numbers, and characters are printed exactly as they appear
in the IMAGE statement.

Format-string may be enclosed in quotation marks. If it is not enclosed in
quotation marks, leading and trailing spaces are ignored. However, when
used directly in PRINT...USING or DISPLAY...USING, it must be enclosed in
quotaton marks.

Each IMAGE statement may have space for many images, separated by any
character except a decimal point. If more values are given in the
PRINT...USING or DISPLAY...USING statement than there are images, then
the images are reused, starting at the beginning of the statement.

If you wish, you may put format-string directly in the PRINT...USING or
DISPLAY...USING statement immediately following USING. However, if a

TI Extended BASIC 97

IMAGE

format-string is used often, it is more efficient to refer to an IMAGE
statement.

Examples

IMAGE $####.### allows printing of >100 IMAGE $####.###
any number from - 999.999 to >u0 PRINT USING 100: A
9999.999. The following show how
some sample values will be printed
or displayed.

Value Appearance

- 999.999 $ - 999.999
-34.5 $ - 34.500
0 $ 0.000
12.4565 $ 12.457
6312.9991 $ 6312.999
99999999 $ ********

IMAGE THE ANSWERS ARE ###
AND ##,## allows printing of two
numbers. The first may be from - 99
to 999 and the second may be from
- 9.99 to 99.99. The following show
how some sample values will be
printed or displayed.

Values Appearance

-99 - 9.99 THE ANSWERS
ARE -99 AND
- 9.99

- 7 - 3.459 THE ANSWERS
ARE -7 AND
- 3.46

0 0 THE ANSWERS
ARE 0 AND .00

14.8 12.75 THE ANSWERS
ARE 15 AND 12.75

795 852 THE ANSWERS
ARE 795 AND

- 984 64.7 THE ANSWERS
ARE * * * AND
64.70

>200 IMAGE THE ANSWERS ARE #
AND ##.##
>210 PRINT USING 200:A,B

98 TI Extended BASIC

CHAPTER
IMAGE 4
IMAGE DEAR ####, allows printing
a four-character string. The following
show how some sample values will
be printed or displayed.

Values Appearance

>300 IMAGE DEAR ####,
>310 PRINT USING 300:X$

JOHN DEAR JOHN,
TOM DEAR TOM ,
RALPH DEAR'***,

Programs

The program on the right illustrates
a use of IMAGE. It reads and prints
seven numbers and their total. Lines
110 and 120 set up the images. They
are the same except for the dollar
sign in line 110. To keep the blank
space where the dollar sign was, the
format-string in line 120 is enclosed
in quotation marks.

Line 180 prints the values using the
IMAGE statements.

Line 210 shows that the format can
be put directly in the PRINT...USING
statement.

The amounts are printed with the
decimal points lined up.

>100 CALL CLEAR
>110 IMAGE $####.##
>120 IMAGE " ####.##"
>130 DATA 233.45,-147.95,8.4,
37.263,-51.299,85.2,464
>140 TOTAL=O
>150 FOR A=1 TO 7
>160 READ AMOUNT
>170 TOTAL=TOTAL+AMOUNT

>180 IF A=1 THEN PRINT USING
110:AMOUNT ELSE PRINT USING
120:AMOUNT
>190 NEXT A
>200 PRINT "
>210 PRINT USING "$####.##":T

OTAL

>RUN

$ 233.45
-147.95

8.40
37.26

-51.30
85.20
464.00

$ 629.06

TI Extended BASIC 99

IMAGE

The program at the right shows the >100 IMAGE ###.##,###.#
effect of using more values in the >110 PRINT USING 100:50.34,50
PRINT...USING statement than there .34,37.26,37.26
are images in the IMAGE statement. >RUN

50.34, 50.3
37.26, 37.3

100 TI Extended BASIC

INIT subprogram CHAPTER

4
Format

CALL INIT

Description

The INIT subprogram is used, along with LINK, LOAD, and PEEK, to access
assembly language subprograms. The INIT subprogram checks to see that
the Memory Expansion is connected, prepares the computer to run assembly
language programs, and loads a set of supporting routines into the Memory
Expansion.

The INIT subprogram must be called before LOAD and LINK are called. INIT
removes any previously loaded subprograms from the Memory Expansion.
The effects of INIT last until the Memory Expansion is turned off and does
not need to be called from each program that is using the subprogram
involved.

If the Memory Expansion is not attached, a syntax error is given.

TI Extended BASIC 101

INPUT
Format

INPUT [input prompt:] variable-list

(For information on using the INPUT statement with a file, see INPUT with
files.)

Description

This form of the INPUT statement is used when entering data from the
keyboard. The INPUT statement suspends program execution until data is
entered from the keyboard. The optional input-prompt may display on the
screen what data is expected.

Variable-list contains the variables (scalar or array elements; numeric or
string) which are assigned values when the INPUT statement is executed.
The variables are separated by commas. If a value in variable-list is input, it
may later be used as a subscript in the same INPUT statement.

When inputting string values, they may optionally be enclosed in quotation
marks. However, if you wish to have leading or trailing blanks or commas,
the entire string must be enclosed in quotation marks. If more than one
value is to be input, separate the values to be input by commas.

Options

The optional input-prompt is a string expression. It must be followed by a
colon. It is displayed on the screen when the INPUT statement is executed. If
there is no input prompt, a question mark and space are displayed to
indicate that input is expected. If there is an input prompt, it takes the place
of the question mark and space.

Examples

INPUT X allows the input of a >100 INPUT X
number.

INPUT X$,Y allows the input of a >100 INPUT X$,Y
string and a number.

INPUT "ENTER TWO NUMBERS: >100 INPUT "ENTER TWO NUMBERS
":A,B prints the prompt ENTER ":A,B
TWO NUMBERS and then allows the
entry of two numbers.

INPUT A(J),J first evaluates the >100 INPUT A(J),J
subscript of A and then accepts data
into that subscript of A. Then a value
is accepted into J.

102 TI Extended BASIC

CHAPTER
INPUT 4

Lines 170 through 250 construct a
letter based on the input.

>100 INPUT J,A(J)

>100 CALL CLEAR

>110 INPUT "ENTER YOUR FIRST
NAME: ":FNAME$

>120 INPUT "ENTER YOUR LAST N

AME: ":LNAME$

>130 INPUT "ENTER A THREE DIG

IT NUMBER: ":DOLLARS
>140 INPUT "ENTER A TWO DIGIT

NUMBER: ":CENTS
>150 IMAGE OF $###.## AND THA
T IF YOU

>160 CALL CLEAR

>170 PRINT "DEAR ";FNAME$;","

>180 PRINT " THIS IS TO R
EMIND YOU"

>190 PRINT "THAT YOU OWE US T
HE AMOUNT"

>200 PRINT USING 150:DOLLARS+
CENTS/100

>210 PRINT "DO NOT PAY US, YO
U WILL SOON"

>220 PRINT "RECEIVE A LETTER
FROM OUR"

>230 PRINT "ATTORNEY, ADDRESS
ED TO"

>240 PRINT FNAME$; " ";LNAME$;

>250 PRINT TAB (15) ; "SINCERELY
,": : : TAB (15);"I. DUN YOU":

>260 GOTO 260
(Press SHIFT C to stop the
program.)

INPUT J,A(J) first accepts data into J
and then accepts data into the Jth
element of the array A.

Program

The program on the right illustrates
a use of INPUT from the keyboard.
Lines 110 through 140 allow the
person using the program to enter
data, as requested with the input-
prompts.

TI Extended BASIC 103

INPUT (with files)

Format

INPUT #file-number [,REC record-number] :variable-list

(For information on using the INPUT statement to enter data from the
keyboard, see INPUT.)

Description

The INPUT statement, when used with files, allows you to read data from
files. The INPUT statement can only be used with files opened in INPUT or
UPDATE mode. DISPLAY files may not have over 160 characters in each
record.

File-number and variable-list must be included in the INPUT statement.
Record-number may optionally be included when reading random access
(RELATIVE) files from diskettes.

All statements which refer to files do so with a file-number from 0 through
255. File-number is assigned to a particular file by the OPEN statement. File
number 0 is dedicated to the keyboard and screen of the computer. It cannot
be used for other files and is always open. File-number is entered as a
number sign (#) followed by a numeric expression that, when rounded to the
nearest integer, is a number from 0 to 255, and is the number of a file that is
open.

Variable-list is the list of variables into which you want the data from the file
to be placed. It consists of string or numeric variables separated by commas
with an optional trailing comma.

Options

You can optionally specify the number of the record that you want to read as
record-number. It can only be specified for diskette files which have been
opened as RELATIVE. The first record of a file is number 0.

104 TI Extended BASIC

INPUT (with files)
CHAPTER

4
Examples

INPUT #1:X$ puts into X$ the next >100 INPUT #1:X$
value available in the file that was
opened as #1.

INPUT #23:X,A,LL$ puts into X, A, >100 INPUT #23 : X, A, LL$
and LL$ the next three values from
the file that was opened as #23.

INPUT #11,REC 44:TAX puts into >100 INPUT #11,REC 44:TAX
TAX the first value of record number
44 of the file that was opened as #11.

INPUT #3:A,B,C, puts into A, B, and >100 INPUT #3 : A, B, C,
C the next three values from the file
that was opened as #3. The comma
after C creates a pending input
condition. When the next INPUT or
LINPUT statement using this file is
performed, one of the following
actions occurs: If the next INPUT or
LINPUT statement has no REC
clause, the computer uses the data
beginning where the previous INPUT
statement stopped. If the next INPUT
or LINPUT statement includes a REC
clause, the computer terminates the
pending input condition and reads
the specified record.

TI Extended BASIC 105

INPUT (with files)

Program

The program at the right illustrates a
use of the INPUT statement. It opens
a file on the cassette recorder and
writes 5 records on the file. It then
goes back and reads the records and
displays them on the screen.

>100 OPEN #1:"CS1",SEQUENTIAL
,INTERNAL,OUTPUT,FIXED 64
>110 FOR A=1 TO 5
>120 PRINT #1:"THIS IS RECORD
',A

>130 NEXT A
>140 CLOSE #1
>150 CALL CLEAR
>160 OPEN #1:"CS1",SEQUENTIAL
,INTERNAL,INPUT,FIXED 64
>170 FOR B=1 TO 5
>180 INPUT #1:A$,C
>190 DISPLAY AT(B,1):A$;C
>200 NEXT B
>210 CLOSE #1
>RUN
* REWIND CASSETTE TAPE CS1
THEN PRESS ENTER
* PRESS CASSETTE RECORD CS1
THEN PRESS ENTER
* PRESS CASSETTE STOP CS1
THEN PRESS ENTER
* REWIND CASSETTE TAPE CS1
THEN PRESS ENTER
* PRESS CASSETTE PLAY CS1
THEN PRESS ENTER
THIS IS RECORD 1
THIS IS RECORD 2
THIS IS RECORD 3
THIS IS RECORD 4
THIS IS RECORD 5
* PRESS CASSETTE STOP CS1

THEN PRESS ENTER

See the Disk Memory System manual for instrucions on using diskettes.

106 TI Extended BASIC

INT CHAPTER

4
Format

INT (numeric-expression)

Description

The INT function returns the greatest integer less than or equal to numeric-
expression.

Examples

PRINT INT(3.4) prints 3. >100 PRINT INT(3.4)

X = INT(3.9) sets X equal to 3. >100 X=INT(3.90)

P = INT(3.9999999999) sets P equal >100 P=INT(3.9999999999)
to 3.

DISPLAY AT(3,7):INT(4.0) displays 4
at the third row, seventh column.

N= INT(- 3.9) sets N equal to - 4.

K = INT(- 3.0000001) sets K equal to
-4.

>100 DISPLAY AT(3,7):INT(4.0)

>100 N=INT(-3.9)

>100 K=INT(-3.0000001)

TI Extended BASIC 107

JOYST subprogram

Format

CALL JOYST(key-unit,x-return,y-return)

Description

The JOYST subprogram returns data into x-return and y-re turn based on the
position of the joystick in the Wired Remote Controller (available
separately) labeled key-unit. Key-unit is a numeric expression with a value of
1 through 4. The values 1 and 2 are joysticks 1 and 2. Values 3 and 4 are`
reserved for possible future use.

The values returned in x-return and y-return depend on the position of the
joystick. The values returned are shown below. The first value in the
parentheses is placed in x-return. The second value is placed in y-return.

(0,4)

(0, - 4)

Example

CALL JOYST(1,X,Y) returns values
in X and Y according to the position
of joystick number 1.

Program

The program on the right illustrates
a use of the JOYST subprogram. It
creates a sprite and then moves it
around according to the input from a
joystick.

>100 CALL JOYST(1,X,Y)

>100 CALL CLEAR
>110 CALL SPRITE(#1,33,5,96,1
28)

>120 CALL JOYST(1,X,Y)
>130 CALL MOTION(#1,-Y,X)
>140 GOTO 120

(Press SHIFT C to stop the
program.)

108 TI Extended BASIC

KEY subprogram CHAPTER

4
Format

CALL KEY(key-unit,return-variable,status-variable)

Description
The KEY subprogram assigns the code of the key pressed to return-variable.
The value assigned depends on the key-unit specified. If key-unit is 0, input
is taken from the entire keyboard, and the value placed in return-variable is
the ASCII code of the key pressed. If no key is pressed, return-variable is set
equal to - 1. See Appendix C for a list of the ASCII codes.

If key-unit is 1, input is taken from the left side of the keyboard. If key-unit is
2, input is taken from the right side of the keyboard. The possible values
placed in return-variable are given in Appendix J. Values of 3, 4, and 5 are
reserved for possible future uses.

Status-variable indicates whether a key has been pressed. A value of 1
means a new key was pressed since the last CALL KEY was executed. A
value of - 1 means the same key was pressed as in the previous CALL KEY.
A value of 0 means no key was pressed.

Example

CALL KEY(0,K,S) returns in K the
ASCII code of any key pressed on the
keyboard, and in S a value indicating
whether any key was pressed.

Program

The program on the right illustrates
a use of the KEY subprogram. It
creates a sprite and then moves it
around according to the input from
the left side of the keyboard.
Note that line 130 returns to line 120
if no key has been pressed.

>100 CALL KEY(0,K,S)

>100 CALL CLEAR
>110 CALL SPRITE(#1,33,5,96,1
28)

>120 CALL KEY(1,K,S)
>130 IF S=0 THEN 120
>140 IF K=5 THEN Y=-4
>150 IF K=0 THEN Y=4
>160 IF K=2 THEN X=-4
>170 IF K=3 THEN X=4
>180 IF K=1 THEN X,Y=0
>190 IF K>5 THEN X,Y=0
>200 CALL MOTION(#1,Y,X)
>210 GOTO 120

(Press SHIFT C to stop the
program.)

TI Extended BASIC 109

LEN

Format
LEN (string-expression)

Description

The LEN function returns the number of characters in string-expression. A
space counts as a character.

Examples

PRINT LEN("ABCDE") prints 5. >100 PRINT LEN("ABCDE")

X = LEN("THIS IS A SENTENCE.") >100 X=LEN("THIS IS A SENTENC
sets X equal to 19. E.")

DISPLAY LEN("") displays 0. >100 DISPLAY LEN("")

DISPLAY LEN(" ") displays 1. >100 DISPLAY LEN(" ")

110 TI Extended BASIC

LET CHAPTER

4
Format
[LET] numeric-variable [,numeric-variable, ...] = numeric-expression
[LET] string-variable [,string-variable, ...] =string-expression

Description

The LET statement assigns the value of an expression to the specified
variable(s). The computer evaluates the expression on the right and puts its
value into the variable(s) on the left. If more than one variable is on the left,
they are separated with commas. The LET is optional, and is omitted in the
examples in this manual. All subscripts in the variable(s) on the left are
evaluated before any assignments are made.

You may use relational and logical operators in numeric-expression. If the
relation or logical value is true, numeric-variable is assigned a value of - 1. If
the relation or logical value is false, numeric-variable is assigned a value of
0.

Examples

T =4 puts the value 4 into T.

X,Y,Z= 12.4 puts the value 12.4 into
X, Y, and Z.

A= 3< 5 puts - 1 into A since it is
true that 3 is less than 5.

B = 12< 7 puts 0 into B since it is not
true that 12 is less than 7.

I,A(I) = 3 puts 3 into A(I) with
whatever value I had before, and
then puts 3 into I.

L$,D$,B$ = "B" puts "B" into LS,
D$, and B$.

>100 T=4

>100 X,Y,Z=12.4

>100 A=3<5

>100 B=12<7

>100 I,A(I)=3

>100 L$,D$,B$="B"

TI Extended BASIC 111

LINK subprogram

Format

CALL LINK(subprogram-name [,argument-list])

Description

The LINK subprogram is used, along with INIT, LOAD, and PEEK, to access
assembly language subprograms. The LINK subprogram passes control and,
optionally, a list of parameters from a TI Extended BASIC program to an
assembly language subprogram.

Subprogram-name is the name of the subprogram to be called. It must have
been previously loaded into the Memory Expansion with the CALL LOAD
command or statement. Argument-list is a list of variables and expressions
as required by the specific assembly language subprogram being called.

1 12 TI Extended BASIC

LINPUT CHAPTER

4
Format
LINPUT [[#file-number] [,REC record-number] :] string-variable
LINPUT [input prompt:] string-variable

Description

The LINPUT statement allows the assignment of an entire line, file record, or
(if there is a pending input record) the remaining portion of a file record into
string-variable. No editing is performed on what is input, so commas,
leading and trailing blanks, semicolons, colons, and quotation marks are
placed in string-variable as they are given.

Options

A #file-number may be specified. If the file is in RELATIVE format, a specific
record may be specified with REC. The file must be a DISPLAY-type file. If no
file is specified, an input-prompt may be displayed prior to accepting input
from the keyboard.

Examples

LINPUT L$ assigns into L$ anything
typed before ENTER is pressed.

LINPUT "NAME: ":NMS displays
NAME: and assigns into NM$
anything typed before ENTER is
pressed.

LINPUT #1,REC M:L$(M) assigns
into LS(M) the value that was in
record M of the file that was opened
as #1.

Program

The program on the right illustrates
the use of LINPUT. It reads a
previously existing file and displays
only the lines that contain the word
"THE".

>100 LINPUT L$

>100 LINPUT "NAME: "NM$

>100 LINPUT #1,REC M:L$(M)

>100 OPEN #1:"DSK1.TEXT1",INP
UT, FIXED 80, DISPLAY

>110 IF EOF(1) THEN CLOSE #1

:: STOP
>120 LINPUT #1:A$

>130 I=POS(A$,"THE",1)
>140 IF I<>0 THEN PRINT A$

>150 GOTO 110

TI Extended BASIC 113

LIST

Format
LIST ["device-name":] [line-number]
LIST ["device-name":] [start-line-number] - [end-line-number]

Description

The LIST command allows you to display program lines. If LIST is entered
with no numbers following it, the entire program in memory is listed. If a
number follows LIST, the line with that number is listed. If a number
followed by a hyphen follows LIST, that line and all lines following it are
listed. If a number preceeded by a hyphen follows LIST, all lines preceeding
it and that line are listed. If two numbers separated by a hyphen follow LIST,
the indicated lines and all lines between them are listed.

By pressing and holding a key until TI Extended BASIC responds, you may
temporarily halt a listing so that you can look at it on the screen. Press any
key again to restart the listing. Similarly, pressing SHIFT C (CLEAR) stops the
listing.

Options

The listing normally is displayed on the screen. If you wish, you can instead
direct the list to some other device, such as the optional thermal printer or
RS232 interface, by specifying device-name.

Examples

LIST lists the entire program in >LIST
memory on the display screen.

LIST 100 lists line 100. >LIST 100

LIST 100- lists line 100 and all lines >LIST 100-
after it.

LIST -200 lists all lines up to and >LIST -200
including line 200.

LIST 100-200 lists all lines from 100 >LIST 100-200
through 200.

LIST "TP" lists the entire program >LIST "TP"
on the optional thermal printer.

LIST "TP": -200 lists all lines up to >LIST "TP": -200
and including line 200 on the
optional thermal printer.

114 TI Extended BASIC

LOAD subprogram CHAPTER

4
Format

CALL LOAD("access-name" [,address,bytel [, ...] file-field, ...))

Description

The LOAD subprogram is used, along with INIT, LINK, and PEEK, to access
assembly language subprograms. The LOAD subprogram loads an assembly
language object file or direct data into the Memory Expansion for later
execution using the LINK statement.

The LOAD subprogram can specify one or more files from which to load
object data or lists of direct load data, which consists of an address followed
by data bytes. The address and data bytes are separated by commas. Direct
load data must be separated by file field, which is a string expression
specifying a file from which to load assembly language object code. File-field
may be a null string when it is used merely to separate direct load data
fields. Use of the LOAD subprogram with incorrect values can cause the
computer to cease to function and require turning it off and back on.

Assembly language subprogram names (see LINK) are included in the file.

TI Extended BASIC 115

LOCATE subprogram

Format

CALL LOCATE(#sprite-number,dot-row,dot-column [,...1)

Description

The LOCATE subprogram is used to change the location of the given sprite(s)
to the given dot-row(s) and dot-column(s). Dot-row and dot-column are
numbered consecutively starting with 1 in the upper left hand corner of the
screen. Dot-row can be from 1 to 192 and dot-column can be from 1 to 256.
(Actually dot-row can go up to 256, but the locations from 193 through 256
are off the bottom of the screen.) The location of the sprite is the upper left
hand corner of the character(s) which define it.

Program

The program on the right illustrates >100 CALL CLEAR
the use of the LOCATE subprogram. >110 CALL SPRITE(#1,33,7,1,1,
Line 110 creates a sprite as a fairly 25,25)
quickly moving red exclamation >120 YLOC=INT(RND*150+1)
point. >130 XLOC=INT(RND*200+1)
Line 140 locates the sprite at a >140 CALL LOCATE(#1,YLOC,XLOC
location randomly chosen in lines)
120 and 130. >150 GOTO 120
Line 150 repeats the process. (Press SHIFT C to stop the

program.)

Also see the third example of the SPRITE subprogram.

116 TI Extended BASIC

LOG CHAPTER

4
Format

LOG (numeric-expression)

Description

The LOG function returns the natural logarithm of numeric-expression
where numeric-expression is greater than zero. The LOG function is the
inverse of the EXP function.

Examples

PRINT LOG(3.4) prints the natural
logarithm of 3.4 which is
1.223775431622.

X=LOG(EXP(7.2)) sets X equal to
the natural logarithm of e raised to
the 7.2 power, which is 7.2.

S = LOG(SQR(T)) sets S equal to the
natural logarithm of the square root
of the value of T.

Program

The program at the right returns the
logarithm of any positive number to
any base.

>100 PRINT LOG(3.4)

>100 X=LOG(EXP(7.2))

>100 S=LOG(SQR(T))

>100 CALL CLEAR
>110 INPUT "BASE: ":B
>120 IF B<=1 THEN 110
>130 INPUT "NUMBER: ":N
>140 IF N<=0 THEN 130
>150 LG=LOG(N)/LOG(B)
>160 PRINT "LOG BASE";B;"OF";
N;"IS";LG

>170 GOTO 110
(Press SHIFT C to stop the
program.)

TI Extended BASIC 117

0

1

EB

N.

MAGNIFY subprogram

Format

CALL MAGNIFY(magnificationfactor)

Description

The MAGNIFY subprogram allows you to specify the size of sprites and how
many characters make up each sprite. All sprites are affected by MAGNIFY.
Magn ftcationfactors may be 1, 2, 3, or 4. If no CALL MAGNIFY is in a
program, the default magnification factor is 1.

A magnification factor of 1 causes all sprites to be single size and
unmagnified. This means that each sprite is defined only by the character
specified when the sprite was created and takes up just one character
position on the screen.

A magnification factor of 2 causes all sprites to be single size and magnified.
This means that each sprite is defined only by the character specified when it
was created, but takes up four character positions on the screen. Each dot
position in the character specified expands to occupy four dot positions on
the screen. The expansion from a magnification factor of 1 is down and to
the right.

118 TI Extended BASIC

n

CHAPTER
MAGNIFY subprogram 4
A magnification factor of 3 causes all sprites to be double size and
unmagnified. This means that each sprite is defined by four character
positions that include the character specified. The first character is the one
specified when the sprite was created if its number is evenly divisible by
four, or the next smallest number that is evenly divisible by four. That
character is the upper left quarter of the sprite. The next character is the
lower left quarter of the sprite. The next character is the upper right quarter
of the sprite. The final character is the lower right quarter of the sprite. The
character specified when the sprite was created is one of the four that makes
up the sprite. The sprite occupies four character positions on the screen.

A magnification factor of 4 causes all sprites to be double size and
magnified. This means that each sprite is defined by four character positions
that include the character specified. The first character is the one specified
when the sprite was created if its number is evenly divisible by four, or the
next smallest number that is evenly divisible by four. That character is the
upper left quarter of the sprite. The next character is the lower left quarter of
the sprite. The next character is the upper right quarter of the sprite. The
final character is the lower right quarter of the sprite. The character specified
when the sprite was created is one of the four that makes up the sprite. The
sprite occupies sixteen character positions on the screen. The expansion
from a magnification factor of 3 is down and to the right.

! a

TI Extended BASIC 119

MAGNIFY subprogram

Program

The following program illustrates a use of the MAGNIFY subprogram. When
it is run, a little figure appears near the center of the screen. In a moment, it
gets to be twice as big, covering four character positions. In another moment,
it is replaced by the upper left corner of a larger figure, still covering four
character positions. Then the full figure appears, covering sixteen character
positions. Finally it is reduced in size to four character positions.

Line 110 defines character 96.

Line 120 sets up a sprite using
character 96. By default the
magnification factor is 1.
Line 140 changes the magnification
factor to 2.
Line 160 redefines character 96.
Because the definition is 64
characters long, it also defines
characters 97, 98, and 99.
Line 180 changes the magnification
factor to 4.
Line 200 changes the magnification
factor to 3.

>100 CALL CLEAR
>110 CALL CHAR(96,"1898FF3D3C

3CE404")
>120 CALL SPRITE(#1,96,5,92,1

24)

>130 GOSUB 230
>140 CALL MAGNIFY(2)
>150 GOSUB 230
>160 CALL CHAR(96,"0103C3417F

3F07070707077E7C40000080C0C0

80FCFEE2E3E0E0E06060606070")
>170 GOSUB 230
>180 CALL MAGNIFY(4)

>190 GOSUB 230
>200 CALL MAGNIFY(3)

>210 GOSUB 230

>220 STOP
>230 REM DELAY

>240 FOR DELAY=1 TO 500
>250 NEXT DELAY
>260 RETURN

120 TI Extended BASIC

MAX CHAPTER

4
Format
MAX(numeric-expressionl ,numeric-expression2)

Description

The MAX function returns the larger of numeric-expressionl and numeric-
expression2. If they are equal, then their value is returned.

Examples

PRINT MAX(3,8) prints 8. >100 PRINT MAX(3,8)

F=MAX(3E12,18OOOOO) sets F equal >100 F=MAX(3E12,1800000)
to 3E12.

G = MAX(- 12, -4) sets G equal to >100 G=MAX (-12 , -4)
-4.

L = MAX(A,B) sets L equal to 7 if A is >100 L=MAX (A, B)
7 and Bis-5.

TI Extended BASIC 121

MERGE

Format

MERGE ["] device-filename ["]

Description

The MERGE command merges lines in filename from the given device into
the program lines already in the computer's memory. If a line number in
filename duplicates a line number in the program already in memory, the
new line replaces the old line. Otherwise the lines are inserted in line number
order among the lines already in memory. The MERGE command does not
clear breakpoints. Also, MERGE can only be used with diskettes.

NOTE: Files can only be merged into memory if they were saved using the
MERGE option. See the SAVE command for more information.

Example

MERGE DSK1.SUB merges the
program SUB into the program
currently in memory.

Program

If the program on the right is saved
on DSK1 as BOUNCE with the merge
option, it can be merged with
programs such as the one shown on
the next page.

>MERGE DSK1.SUB

>100 CALL CLEAR
>110 RANDOMIZE

>140 DEF RND50=INT(RND*50-25)
>150 GOSUB 10000

>10000 FOR AA=1 TO 20

>10010 QQ=RND50
>10020 LL=RND50
>10030 CALL MOTION(#1,QQ,LL)

>10040 NEXT AA

>10050 RETURN

>SAVE "DSK1.BOUNCE",MERGE

122 TI Extended BASIC

CHAPTER
MERGE 4
On the right is a program you can
put into the computer's memory.

Now merge BOUNCE with the above
program.

The program that results from
merging BOUNCE with the above
program is shown on the right.

Note that line 150 is from the
program that was merged, not from
the program that was in memory.

>120 CALL CHAR(96,"18183CFFFF
3C1818")

>130 CALL SPRITE(#1,96,7,92,1
28)

>150 GOSUB 500
>160 STOP

>MERGE DSK1.BOUNCE

>LIST

>100 CALL CLEAR

>110 RANDOMIZE

>120 CALL CHAR(96,"18183CFFFF

3C1818")
>130 CALL SPRITE(#1,96,7,92,1

28)
>140 DEF RND50=INT(RND*50-25)
>150 GOSUB 10000
>160 STOP
>10000 FOR AA=1 TO 20

>10010 QQ=RND50
>10020 LL=RND50
>10030 CALL MOTION(#1,QQ,LL)

>10040 NEXT AA

>10050 RETURN

TI Extended BASIC 123

MIN

Format

MIN(numeric-expressionl ,numeric-expression2)

Description

The MIN function returns the smaller of numeric-expressionl and numeric-
expression2. If they are equal, then their value is returned.

Examples

PRINT MAX(3,8) prints 3. >100 PRINT MAX(3,8)

F=MIN(3E12,18OOOOO) sets F equal >100 F=MIN(3E12,1800000)
to 1800000.

G= MIN(- 12, - 4) sets G equal to >100 G=MIN(-12,-4)
- 12.

L=MIN(A,B) sets L equal to -5 if A >100 L=MIN(A,B)
is7andBis -5.

124 TI Extended BASIC

MOTION subprogram CHAPTER

4
Format

CALL MOTION(#sprite-number,row-velocity,column-velocity [,...])

Description

The MOTION subprogram is used to specify the row-velocity and column-
velocity of a sprite. If both the row- and column-velocities are zero, the sprite
is stationary. A positive row-velocity moves the sprite down and a negative
value moves it up. A positive column-velocity moves the sprite to the right
and a negative value moves it to the left. If both row-velocity and column-
velocity are nonzero, the sprite moves smoothly at an angle in a direction
determined by the actual values.

The row- and column-velocities may be from — 128 to 127. A value close to
zero is very slow. A value far from zero is very fast. When a sprite comes to
the edge of the screen, it disappears and reappears in the corresponding
position on the other side of the screen.

Program

The program at the right illustrates a
use of the MOTION subprogram.
Line 110 creates a sprite.

Lines 120 and 130 set values for the
motion of the sprite.

>100 CALL CLEAR

>110 CALL SPRITE(#1,33,5,92,1
24)

>120 FOR XVEL=-16 TO 16 STEP
2
>130 FOR YVEL=-16 TO 16 STEP

2

Line 140 displays the current values
of the motion of the sprite.

Line 150 sets the sprite in motion.

Lines 160 and 170 complete the
loops that set the values for the
motion of the sprite.

>140 DISPLAY AT (12,11):XVEL;
YVEL

>150 CALL MOTION(#1,YVEL,XVEL

>160 NEXT YVEL
>170 NEXT XVEL

TI Extended BASIC 125

NEW

Format

NEW

Description

The NEW command clears the memory and screen and prepares the
computer for a new program. All values are reset and all defined characters
become undefined. Any open files are closed. Characters 32 through 95 are
reset to their standard representations. The TRACE and BREAK commands
are canceled.

Be sure to save the program that you have been working on before you enter
NEW as it is unrecoverable by any means once NEW has been entered.

126 TI Extended BASIC

NEXT CHAPTER

4
Format

NEXT control-variable

See ON BREAK, ON WARNING, and RETURN (with ON ERROR) for the use
of NEXT clause with those statements.

Description

The NEXT statement is always paired with the FOR-TO-STEP statement for
construction of a loop. Control-variable must be the same as control-variable
in the FOR-TO-STEP statement. The NEXT statement may not appear in an
IF-THEN-ELSE statement.

The NEXT statement controls when the loop is repeated. Each time the
NEXT statement is executed, control-variable is changed by the value
following STEP in the FOR-TO-STEP statement, or by 1 if there is no STEP
clause. If the value of control-variable is between initial-value and limit, the
loop is executed again. If it is not, control passes to the statement after
NEXT. Thus the value of control-variable at the end of the loop is always the
first value outside the range of the FOR-TO-STEP statement. See FOR-TO-
STEP for more information.

Program

The program on the right illustrates
a use of the NEXT statement in lines
130 and 140.

>100 TOTAL=0
>110 FOR COUNT=10 TO 0 STEP -
2
>120 TOTAL=TOTAL+COUNT
>130 NEXT COUNT
>140 FOR DELAY=1 TO 100::NEXT
DELAY

>150 PRINT TOTAL,COUNT;DELAY
>RUN
30 -2 101

TI Extended BASIC 127

NUMBER

Format

NUMBER [initial-line] [,increment]
NUM [initial-line] [,increment]

Description

The NUMBER command generates sequenced line numbers, allowing entry
of program lines without typing the line numbers. If initial-line and
increment are not specified, the line numbers start at 100 and increase in
increments of 10. You may give the command at any time in the Command
Mode. If a line already exists, the current line is displayed. You may type
over it to replace it, alter it using the edit functions, or press ENTER to
confirm it. To leave the NUMBER mode, press ENTER when a line comes up
with no statements on it or press SHIFT C (CLEAR) when any line is
displayed. NUMBER may be abbreviated as NUM.

Options

You may specify an initial-line and/or increment.

Example

In the following, what you type is
UNDERLINED. Press ENTER after
each line.
NUM instructs the computer to >NUM

number starting at 100 with >100 x=4
increments of 10. >110 Z=10

>120

NUM 110 instructs the computer to >NUM 110

number starting at 110 with 110 Z=11
increments of 10. Change line 110 to >120 PRINT (Y+X)/Z
Z= 11.

>130

NUM 105,5 instructs the computer to >NUM 105,5
number starting at line 105 with >105 Y=7
increments of 5. 110 Z=11
Line 110 already exists.

>115

>LIST

100 x=4

105 Y=7

110 Z=11

120 PRINT (Y+X)/Z

128 TI Extended BASI(

OLD CHAPTER

4
Format

OLD ["] device-program-name ["]

Description

The OLD command loads program-name from device into memory. The
program must first have been put on device using the SAVE command. OLD
closes any open files and removes the program currently in memory before
loading program-name. To add program lines from another program to a
program in memory, see the MERGE command.

Device can be several different things. If it is CS1 or CS2, designating one of
the two possible cassette recorders, then no program-name is given. The
program loaded is the program that is on the cassette. Instructions on
operating the cassette recorder are displayed on the screen.

See the Disk Memory System Manual for instructions on using OLD with
diskettes.

Examples

OLD CS 1 loads a program from a
cassette recorder into the computer's
memory.

OLD" DSKI.MYPROG" loads the
program MYPROG into the
computer's memory from the
diskette in disk drive one.

OLD DSK.DISK3.UPDATE80 loads
the program UPDATE80 into the
computer's memory from the
diskette named DISK3.

>OLD CS1

>OLD "DSK1.MYPROG"

>OLD DSK.DISK3.UPDATE80

TI Extended BASIC 129

ON BREAK

Format
ON BREAK STOP
ON BREAK NEXT

Description

The ON BREAK statement determines the action taken if a breakpoint is
encountered during the execution of a program. The default action is STOP,
which causes program execution to halt and the standard breakpoint
message to be printed. The alternative is NEXT, which transfers control to
the next line without a breakpoint occurring.

You can use ON BREAK NEXT to have a program ignore breakpoints which
you have put in a program for debugging purposes. (NOTE: ON BREAK
NEXT does not have any effect on a BREAK statement which is not followed
by a program line number. The breakpoint will occur even if the statement
ON BREAK NEXT has been executed.) When ON BREAK NEXT is in effect,
the external break, SHIFT C (CLEAR), does not stop a program. In that case
only SHIFT 0 (QUIT) can stop the program. SHIFT 0 (QUIT) erases the program
and returns you to the main screen and may interfere with the proper
operation of some external devices such as disk drives.

Program

The program on the right illustrates >100 CALL CLEAR
the use of ON BREAK. Line 110 sets >110 BREAK 150
a breakpoint in line 150. Line 120 >120 ON BREAK NEXT
sets breakpoint handling to go to the >130 BREAK
next line. A breakpoint occurs in line >140 FOR A=1 TO 50
130 in spite of line 120. Enter >150 PRINT "SHIFT C IS DISABL
CONTINUE. No breakpoint occurs in ED. "
line 150 because of line 120. SHIFT C >160 NEXT A
(CLEAR) has no effect during the >170 ON BREAK STOP
execution of lines 140 through 160 >180 FOR A=1 TO 50
because of line 120. Line 170 >190 PRINT "NOW IT WORKS. "
restores the normal use of SHIFT C >200 NEXT A
(CLEAR).

130 TI Extended BASIC

ON ERROR CHAPTER

4
Format
ON ERROR STOP
ON ERROR line-number

Description

The ON ERROR statement determines the action taken if an error occurs
during the execution of a program. The default action is STOP, which causes
the standard error message to be printed and program execution to halt. The
alternative is to give a line-number which transfers control to that line in
case of an error.

Once an error has occurred and control has been transferred, error handling
reverts to the normal action, STOP. If you wish to have any new errors
handled differently, an ON ERROR statement must be executed again.

If a line-number is specified by ON ERROR, the line-number must be the
beginning of a subroutine similar to that called by GOSUB. It should end
with a RETURN statement. See RETURN (with ON ERROR) for more
information.

NOTE: A transfer of control following the execution of an ON ERROR
statement acts like the execution of a GOSUB statement. As with GOTO and
GOSUB, you must avoid transfers to and from subprograms. The most
common result of an illegal transfer into a subprogram is a syntax error on a
statement that appears to be correct.

TI Extended BASIC 131

ON ERROR

Program

The program at the right illustrates
the use of ON ERROR. Line 110
causes any error to pass control to
line 160.
An error occurs in line 130 and
control is passed to line 160.

Line 170 causes the next error to
pass control to line 230. Line 180
finds out about the error using CALL
ERR.
Line 190 transfers control to line 230
if the error isn't in the expected line.
Line 200 transfers control to line 230
if the error isn't the one expected.
Line 210 changes the value of X$ to
an acceptable value. Line 220
returns control to the line in which
the error occurred.
Line 240 reports the nature of the
unexpected error and the program
stops.

>100 CALL CLEAR

>110 ON ERROR 160
>120 X$="A"
>130 X=VAL(X$)

>140 PRINT X;"SQUARED IS";X*X

>150 STOP

>160 REM ERROR SUBROUTINE
>170 ON ERROR 230

>180 CALL ERR(CODE,TYPE,SEVER
,LINE)

>190 IF LINE<>130 THEN RETURN
230

>200 IF CODE<>74 THEN RETURN
230

>210 X$="5"
>220 RETURN
>230 REM UNKNOWN ERROR

>240 PRINT "ERROR";CODE;" IN
LINE";LINE
>RUN

5 SQUARED IS 25

132 TI Extended BASIC

ON GOSUB CHAPTER

4
Format
ON numeric-expression GOSUB line-number [,...]
ON numeric-expression GO SUB line-number [,...]

Description

The ON...GOSUB statement transfers control to the subroutine beginning at
line-number in the position corresponding to the value of numeric-
expression. Other than giving a choice, it acts the same as the GOSUB
statement, but it is more efficient in that it may require fewer lines of code
than using an IF-THEN-ELSE statement.

Numeric-expression must have a value from 1 through the number of line-
numbers.

Examples

ON X GOSUB 1000,2000,300
transfers control to 1000 if X is 1,
2000 if X is 2, and 300 if X is 3.

ON P — 4 GOSUB 200,250,300,
800,170 transfers control to 200 if
P — 4 is 1 (P is 5), 250 if P — 4 is 2,
300 if P — 4 is 3, 800 if P — 4 is 4, and
170 if P — 4 is 5.

>100 ON X GOSUB 1000,2000,300

>100 ON P-4 GOSUB 200,250,300
,800,170

TI Extended BASIC 133

ON GOSUB

Program

The program on the right illustrates
a use of ON...GOSUB. Line 220
determines where to go according to
the value of CHOICE.

>100 CALL CLEAR
>110 DISPLAY AT(11,1):"CHOOSE

ONE OF THE FOLLOWING:"

>120 DISPLAY AT(13,1):"1 ADD

TWO NUMBERS."

>130 DISPLAY AT(14,1):"2 MUL

TIPLY TWO NUMBERS."
>140 DISPLAY AT(15,1):"3 SUB

TRACT TWO NUMBERS."
>150 DISPLAY AT(20,1):"YOUR C
HOICE:"

>160 DISPLAY AT(22,2):"FIRST
NUMBER:"

>170 DISPLAY AT(23,1):"SECOND
NUMBER:"

>180 ACCEPT AT (20,14)VALIDAT

E (NUMERIC):CHOICE
>190 IF CHOICE<1 OR CHOICE>3
THEN 180

>200 ACCEPT AT (22,16)VALIDAT

E(NUMERIC):FIRST
>210 ACCEPT AT (23,16)VALIDAT
E(NUMERIC):SECOND

>220 ON CHOICE GOSUB 240,260,

280
>230 GOTO 180

>240 DISPLAY AT(3,1):FIRST;"P

LUS";SECOND;"EQUALS";FIRST+S
ECOND

>250 RETURN

>260 DISPLAY AT(3,1):FIRST;"T

IMES";SECOND;"EQUALS";FIRST*
SECOND
>270 RETURN

>280 DISPLAY AT(3,1):FIRST;"M
INUS";SECOND;"EQUALS";FIRST-
SECOND

>290 RETURN
(Press SHIFT C to stop the
program.)

134 TI Extended BASIC

ON GOTO CHAPTER

4
Format
ON numeric-expression GOTO line-number [,...]
ON numeric-expression GO TO line-number [,...]

Description

The ON...GOTO statement transfers control to the line-number in the
position corresponding to the value of numeric-expression. Other than giving
a choice, it acts the same as the GOTO statement, but it is more efficient in
that it may require fewer lines of code than using an IF-THEN-ELSE
statement.

Numeric-expression must have a value from 1 through the number of line-
numbers.

Examples

ON X GOTO 1000,2000,300
transfers control to 1000 if X is 1,
2000 if X is 2, and 300 if X is 3. The
equivalent statement using an IF-
THEN-ELSE statement is IF X = 1
THEN 1000 ELSE IF X = 2 THEN
2000 ELSE IF X = 3 THEN 300 ELSE
PRINT "ERROR!"::STOP.

>100 ON X GOTO 1000,2000,300

ON P-4 GOTO 200,250,300,800,170 >100 ON P-4 GOTO 200,250,300,
transfers control to 200 if P - 4 is 1 800,170
(P is 5), 250 if P - 4 is 2, 300 if P - 4
is3, 800ifP-4is4, and 170ifP-4
is 5.

TI Extended BASIC 135

ON GOTO

Program

The program on the right illustrates
a use of ON...GOTO. Line 220
determines where to go according to
the value of CHOICE.

>100 CALL CLEAR
>110 DISPLAY AT(11,1):"CHOOSE

ONE OF THE FOLLOWING:"
>120 DISPLAY AT(13,1):"1 ADD

TWO NUMBERS."
>130 DISPLAY AT(14,1):"2 MUL
TIPLY TWO NUMBERS."

>140 DISPLAY AT(15,1):"3 SUB
TRACT TWO NUMBERS."

>150 DISPLAY AT(20,1):"YOUR C
HOICE:"
>160 DISPLAY AT(22,2):"FIRST
NUMBER:"

>170 DISPLAY AT(23,1):"SECOND
NUMBER:"

>180 ACCEPT AT (20,14)VALIDAT
E (NUMERIC):CHOICE
>190 IF CHOICE<1 OR CHOICE>3
THEN 180
>200 ACCEPT AT (22,16)VALIDAT
E NUMERIC):FIRST
>210 ACCEPT AT (23,16)VALIDAT
E NUMERIC):SECOND
>220 ON CHOICE GOTO 230,250,2
70
>230 DISPLAY AT(3,1):FIRST;"P
LUS";SECOND;"EQUALS";FIRST+S
ECOND
>240 GOTO 180
>250 DISPLAY AT(3,1):FIRST;"T
IMES";SECOND;"EQUALS";FIRST*
SECOND
>260 GOTO 180
>270 DISPLAY AT(3,1):FIRST;"M
INUS";SECOND;"EQUALS";FIRST-
SECOND
>280 GOTO 180
(Press SHIFT C to stop the
program.)

136 TI Extended BASIC

ON WARNING CHAPTER

4
Format

ON WARNING PRINT
ON WARNING STOP
ON WARNING NEXT

Description

The ON WARNING statement determines the action taken if a warning
occurs during the execution of a program. The default action is PRINT,
which causes the standard warning message to be printed and the program
to continue execution. One alternative is STOP, which causes the standard
warning message to be printed and the program to halt execution. The other
alternative is NEXT which causes the program to continue execution without
printing any message.

Program

The program on the right illustrates
the use of ON WARNING. Line 110
sets warning handling to go to the
next line. Line 120 therefore prints
the result without any message.
Line 130 sets warning handling to
the default, printing the message and
then continuing execution. Line 140
therefore prints 140, then the
warning, and then continues.
Line 150 sets warning handling to
print the warning message and then
stop execution. Line 160 therefore
prints 160 and then the warning
message and then stops.

>100 CALL CLEAR

>110 ON WARNING NEXT

>120 PRINT 120,5/0

>130 ON WARNING PRINT

>140 PRINT 140,5/0

>150 ON WARNING STOP

>160 PRINT 160,5/0
>170 PRINT 170

>RUN
120 9.99999E+**
140

* WARNING

NUMERIC OVERFLOW IN 140

9.99999E+**
160
* WARNING

NUMERIC OVERFLOW IN 160

TI Extended BASIC 137

OPEN

Format

OPEN #file-number:device filename [file-organization] [file-type]
[,open-mode] [,record-type]

Description

The OPEN statement prepares a BASIC program to use data files stored on a
diskette or cassette by providing a link between file-number and a file. To set
up this link, the OPEN statement describes a file's characteristics. If the file
already exists, the description that is given in the program must match the
actual characteristics of the file. Files on cassettes are not checked, however,
so errors may occur if the characteristics do not match.

File-number must be included in the OPEN statement. Statements which
refer to files do so with a file-number from 0 through 255. File number 0 is
the keyboard and screen of the computer. It cannot be used for other files
and is always open. You may assign the other numbers as you wish, with
each file having a different number. File-number is entered as a number sign
(#) followed by a numeric expression that, when rounded to the nearest
integer, is a number from 0 to 255, and is not the number of a file that is
already open.

Device must also be included in the OPEN statement. If device is CS 1 or
CS2, designating one of the two cassette recorders, then no file-name is
given. Instructions on operating the cassette recorder are displayed on the
screen.

If device is DSK1, DSK2, or DSK3, designating one of the three disk drives,
then file-name is the name of a file on the diskette in the given drive. If
device is DSK.diskette-name, where diskette-name is the name of a diskette
in one of the drives, then file-name is the name of a file on the diskette
named diskette-name. The computer searches the drives, starting at DSK1,
until it finds the diskette with the given name. Then it looks for file-name on
that diskette.

The other information may be in any order, or may be omitted. If an item is
omitted, the computer assumes certain defaults, which are described below.

File-organization can be either sequential or random. Records in a sequential
file are read or written one after the other. Records in random files can be
read or written in any order. Random files may also be processed
sequentially. To indicate which structure the file has, enter either
SEQUENTIAL for sequential files or RELATIVE for random files. You may
optionally specify the initial number of records on a file by following the
word SEQUENTIAL or RELATIVE with a numeric expression. If you do not
specify the file-organization, the default is SEQUENTIAL.

138 TI Extended BASIC

CHAPTER
OPEN 4
File-type may be either DISPLAY or INTERNAL. Files can be written either
in human-readable form, called ASCII (DISPLAY), or in machine-readable
form, called binary (INTERNAL). Binary records may take up less space and
are processed more quickly by the computer. However, if the information is
going to be printed or displayed, ASCII format is usually a better choice.

To specify that you wish the file to be in ASCII format, enter DISPLAY. To
specify binary format, enter INTERNAL. If you do not specify a file-type, the
default is DISPLAY. Usually INTERNAL is the best choice when using files
on cassettes or diskettes, and DISPLAY is the best choice when using files on
the thermal printer or RS232 Interface.

Open-mode may be UPDATE, INPUT, OUTPUT, or APPEND. The computer
may be instructed that the file may be both read and written on, that it may
only be read, that it may only be written on, or that it may only be added to.
However, if the file is marked as protected, it cannot be written on and may
only be opened for input.

To be able both to read from and write to a file, specify UPDATE. To just
read from a file, specify INPUT. To just write to a file, specify OUTPUT. To
only add to a file, specify APPEND. Append mode can only be specified for
VARIABLE length records. If you do not specify an open-mode, the default is
UPDATE.

Note that if an unprotected file already exists on a diskette, specifying an
open-mode of OUTPUT to the same file name writes over the existing file
with the new data. You can prevent this by moving to the end of the file by
using the RESTORE statement with the proper record or opening the file in
the APPEND mode.

Record-type may be either VARIABLE or FIXED. Files may have records that
are all the same length or that vary in length. If all records are the same
length, any that are shorter are padded to make up the difference. Any that
are longer may be truncated to the proper length. You may specify records of
variable length by entering VARIABLE. You specify records of fixed length
by entering FIXED.

If you like, you may specify a maximum length of a record by following
VARIABLE or FIXED with a numeric expression. The maximum record is
dependent on the device used. If you do not specify a record length, the
default is 80 for diskettes, 64 for cassettes, 80 for the RS232 interface, and
32 for the thermal printer.

RELATIVE files must have FIXED length records. If you do not specify a
record-type for a RELATIVE file, the default is FIXED.

TI Extended BASIC 139

OPEN

SEQUENTIAL files may be either FIXED or VARIABLE. If you do not specify
a record-type for a SEQUENTIAL file, the default is VARIABLE. A fixed-
length file may be reopened for either SEQUENTIAL or RELATIVE access
independent of previous file-organization assignments.

Examples

OPEN #1:"CSI",FIXED,OUTPUT >100 OPEN #1: "CS1", FIXED, OUT
opens a file on cassette one. The file PUT
is SEQUENTIAL, kept in DISPLAY
format, in OUTPUT mode with
FIXED length records with a
maximum length of 64 bytes.

OPEN #23:"DSK.MYDISK.X", >300 OPEN #23: "DSK. MYDISK .X",
RELATIVE 100,INTERNAL,UPDATE, RELATIVE 100, INTERNAL, UPDATE
FIXED opens a file named "X". The , FIXED
file is on the diskette named MYDISK
in whichever drive that diskette it is
located. The file is RELATIVE, kept
in INTERNAL format with FIXED
length records with a maximum
Length of 80 bytes. The file is
opened in UPDATE mode and starts
with 100 records made available for
it.

OPEN #243:A$,INTERNAL, if A$
equals "DSK2.ABC", assumes a file
on the diskette in drive two with a
name of ABC. The file is
SEQUENTIAL, kept in INTERNAL
format, in UPDATE mode with
VARIABLE length records with a
maximum length of 80 bytes.

>100 OPEN #243:A$,INTERNAL

OPEN #17:"TP",OUTPUT prepares >100 OPEN #17: "TP",OUTPUT
the thermal printer for printing.

140 TI Extended BASIC

OPTION BASE CHAPTER

4
Format
OPTION BASE 0
OPTION BASE 1

Description

The OPTION BASE statement sets the lowest allowable subscript of arrays to
zero or one. The default is zero. If an OPTION BASE statement is used, it
must have a lower line number than any DIM statement or reference to any
array. There may only be one OPTION BASE statement in a program, and it
applies to all array subscripts. The OPTION BASE statement may not appear
in an IF-THEN-ELSE statement.

Example

OPTION BASE 1 sets the lowest >100 OPTION BASE 1
allowable subscript of all arrays to
one.

TI Extended BASIC 141

PATTERN subprogram
Format

CALL PATTERN(#sprite-number,character-value [,...1)

Description

The PATTERN subprogram allows you to change the character pattern of a
sprite without affecting any other characteristics of the sprite.

Sprite-number specifies the sprite you are using. Character-value may be
any integer from 32 to 143. See the CHAR subprogram for information on
defining the pattern for characters. See the MAGNIFY subprogram for more
information.

>100 CALL CLEAR
>110 CALL COLOR(12,16,16)
>120 FOR A=19 TO 24
>130 CALL HCHAR(A,1,120,32)
>140 NEXT A
>150 A$="01071821214141FFFF41
41212119070080E09884848282FF
FF8282848498E000"

>160 B$="01061820305C46818142
46242C1807008060183424624281
81623A000418E000"
>170 C$="01061820244642818146
5C3020180700806018040C3A6281
814262243418E000"
>180 CALL CHAR(96,A$)
>190 CALL CHAR(100,B$)
>200 CALL CHAR(104,C$)
>210 CALL SPRITE(#1,96,5,130,
1,0,8)

>220 CALL MAGNIFY(3)

>230 FOR A=96 TO 104 STEP 4
>240 CALL PATTERN(#1,A)
>250 FOR DELAY=1 TO 5:: NEXT
DELAY
>260 NEXT A
>270 GOTO 230
(Press SHIFT C to stop the
program.)

Program

The program on the right illustrates
the use of the PATTERN
subprogram. Lines 110 through 140
build a floor.

Lines 150 though 200 define
characters 96 through 107.

Line 210 creates a sprite in the
shape of a wheel and starts it moving
to the right.
Line 220 makes the sprite double
size.
Lines 230 through 270 make the
spokes of the wheel appear to move
as the character displayed is
changed.

Also see the third example of the
SPRITE subprogram.

142 TI Extended BASIC

PEEK subprogram CHAPTER

4
Format

CALL PEEK(address,numeric-variable-list)

Description

The PEEK subprogram is used, along with INIT, LINK, and LOAD, to access
assembly language subprograms. The PEEK subprogram returns values in
the variables in numeric-variable-list that correspond with the values in the
byte specified by address and the bytes following it. PEEK can be used
without assembly language subprograms, but the information obtained is of
little use.

Detailed instructions on the use of INIT, LINK, LOAD, and PEEK are included
with custom written programs that may be available on diskette or cassette.

Indiscriminate use of PEEK may cause the computer to "lock up" and
require it to be turned off and back on before further use.

Example

CALL PEEK(8192,X1,X2,X3,X4) >100 CALL PEEK (8192 , X1 , X2 , X3 ,
returns the values in locations 8192, X4)
8193, 8194, and 8195 in X l , X2, X3,
and X4, respectively.

TI Extended BASIC 143

PI

Format

PI

Description

The PI function returns the value of 77 as 3.14159265359.

Example
VOLUME = 4/3 * PI * 6 A 3 sets VOLUME >100 VOLUME=4/3*PI*6n3
equal to four thirds times pi times
six cubed, which is the volume of a
sphere with a radius of six.

144 TI Extended BASI(

POS CHAPTER

4
Format

POS(stringl ,string2, numeric-expression)

Description

The POS function returns the position of the first occurance of string2 in
string 1. The search begins at the position specified by numeric-expression. If
no match is found, the function returns a value of zero.

Examples

X = POS(' `PAN","A",1) sets X equal >100 X=POS("PAN",^A",1)
to 2 because A is the second letter in
PAN.

Y = POS("APAN", "A", 2) sets Y equal >100 Y=POS ("APAN", "A", 2)
to 3 because the A in the third
position in APAN is the first
occurance of A in the portion of
APAN that was searched.

Z = POS("PAN","A",3) sets Z equal >100 Z=POS("PAN","A",3)
to 0 because A was not in the part of
PAN that was searched.

R = POS("PABNAN", "AN",1) sets R >100 R=POS ("PABNAN", "AN", 1)
equal to 5 because the first
occurance of AN starts with the A in
the fifth position in PABNAN.

Program

The program at the right illustrates a >100 CALL CLEAR
use of POS. In it any input is >110 PRINT "ENTER A SENTENCE.
searched for spaces, and is then
printed with each word on a single >120 INPUT X$
line. >130 S=POS(X$," ",1)

>140 IF S=0 THEN PRINT X$::
PRINT :: GOTO 110
>150 Y$=SEG$(X$,1,S):: PRINT

Y$
>160 X$=SEG$(X$,S+1,LEN(X$))
>170 GOTO 130

(Press SHIFT C to stop the
program.)

TI Extended BASIC 145

POSITION subprogram

Format

CALL POSITION(#sprite-number,dot-row,dot-column [,...1)

Description

The POSITION subprogram returns the position of the specified sprite(s) in
the given dot-row(s) and dot-column(s) as numbers from 1 to 256. They are
the position of the upper left corner of the sprite. If the sprite is not defined,
dot-row and dot-column are set to zero.

The sprite continues to move after its position is returned, so that must be
allowed for. The distance moved depends on the sprite's speed.

Example

CALL POSITION(#1,Y,X) returns the >100 CALL POSITION(#1,Y,X)
position of the upper left hand corner
of sprite #1.

Also see the third example of the
SPRITE subprogram.

146 TI Extended BASIC

PRINT CHAPTER

4
Format

PRINT [#file-number [,REC record-number] :] [print-list]

Description

The PRINT statement allows you to transfer the values of the elements of the
optional print-list to the display screen or optionally to an external file or
device. Print-list consists of string constants, numeric constants, string
variables, numeric variables, numeric expressions, string expressions, and/or
the TAB function. Each element in print-list is separated from the others by
a semicolon, a comma, or a colon.

The semicolon, comma, and colon control spacing for the screen or a file
opened in DISPLAY format. A semicolon causes the next element to be
placed immediately adjacent to the previous element. A comma causes the
next element of print-list to be put in the next print field. Each print field is
14 characters long. The number of print fields depends on the record length
of the device being used. On the screen, the print fields are at positions 1 and
15. If the cursor is past the start of the last print field, the next item is
printed on the next line. A colon causes the next element to be put on the
next line or record. To print several blank lines, you may put several colons
after the PRINT statement. However, they must have spaces between them
so they are not confused with the statement separator symbol (::).

A separator may be placed following the last element of print-list, which
affects the placement of the next element of the next PRINT, PRINT...USING,
DISPLAY (without AT), or DISPLAY...USING (without AT) statement written
to the same device. It causes the next output statement to be considered to
be a continuation of the current one unless it is a PRINT statement with a
REC clause.

When printing a new line on the screen, everything (except sprites) is
scrolled up one line (so the top line is lost) and the new line is printed at the
bottom of the screen.

Options

The #file-number determines the file that is to be printed on. If it is omitted
or #0, the screen is used. Otherwise file-number must be the number of a file
that is already open. See OPEN.

The REC clause is used to specify the record on which you wish to print the
elements in print-list. REC may only be used with files that were opened as
RELATIVE files. See OPEN.

TI Extended BASIC 147

PRINT

In printing to INTERNAL format files, the comma and semicolon both place
the elements in print-list adjacent to each other. In DISPLAY format files, the
comma and semicolon act as described above, with the semicolon placing the
element adjacent to the previous element and the comma putting the
element in the next print field.

Examples

PRINT causes a blank line to appear >100 PRINT
on the display screen.

PRINT "THE ANSWER IS";ANSWER >100 PRINT "THE ANSWER IS";AN
causes the string constant THE SWER
ANSWER IS to be printed on the
display screen, followed immediately
by the value of ANSWER. If
ANSWER is positive, there will be a
blank for the positive sign after IS.

PRINT X:Y/2 causes the value of X to >100 PRINT X : Y/2

be printed on a line and the value of
Y/2 to be printed on the next line.

PRINT #12,REC 7:A causes the value >100 PRINT #12,REC 7:A
of A to be printed on the eighth
record of the file that was opened as
number 12. (Record number 0 is the
first record.)

PRINT #32:A,B,C, causes the values
of A, B, and C to be printed on the
next record of the file that was
opened as number 32. The final
comma creates a pending output
condition. The next PRINT statement
directed to file number 32 will print
on the same record as this PRINT
statement unless it specifies a record,
thereby closing the pending output
condition.

>100 PRINT #32:A,B,C,

148 TI Extended BASIC

PRINT CHAPTER

4
PRINT #1,REC 3:A,B followed by

PRINT #1:C,D causes A and B to be
printed in record 3 of the file that

was opened as number 1 and C and
D to be printed in record 4 of the
same file.

>100 PRINT #1,REC 3:A,B
>150 PRINT #1:C,D

Program

The program at the right prints out >100 CALL CLEAR
various values in various positions >110 PRINT 1;2;3;4;5;6;7;8;9
on the display screen. >120 PRINT 1,2,3,4,5,6

>130 PRINT 1:2:3
>140 PRINT

>150 PRINT 1;2;3;

>160 PRINT 4;5;6/4
>RUN

1 2 3 4 5 6 7 8 9
1 2

3 4
5 6
1

2

3

1 2 3 4 5 1.5

TI Extended BASIC 149

PRINT USING

Format
PRINT [#file-number [,REC record-number]]USING string-expression:print-list
PRINT [#file-number [,REC record-number]]USING line-number:print-list

Description

The PRINT...USING statement acts the same as PRINT with the addition of
the USING clause, which specifies the format to be used. String-expression
defines the format in the manner described in IMAGE. Line-number refers to
the line number of an IMAGE statement. See the IMAGE statement for more
information on the use of string-expression.

Examples

PRINT USING "###.##":32.5 prints >100 PRINT USING "###.##":32.
32.50. 5

PRINT USING "THE ANSWER IS >100 PRINT USING THE ANSWER
###.#":123.98 prints THE ANSWER IS ###.#":123.98
IS 124.0.

PRINT USING 185:37.4, -86.2 prints >100 PRINT USING 185:37.4,-86
the values of 37.4 and -86.2 using .2
the IMAGE statement in line 185.

150 TI Extended BASIC

RANDOMIZE CHAPTER

4
Format

RANDOMIZE [numeric-expression]

Description

The RANDOMIZE statement resets the random number generator to an
unpredictable sequence. If RANDOMIZE is followed by a numeric-expression,
the same sequence of random numbers is produced each time the statement
is executed with that value for the expression. Different values give different
sequences.

Program

The program at the right illustrates a >100 CALL CLEAR
use of the RANDOMIZE statement. It >110 INPUT "SEED: ":S
accepts a value for numeric- >120 RANDOMIZE S
expression and prints the first 10 >130 FOR A=1 TO 10: :PRINT A;R
values obtained using the RND ND: :NEXT A: :PRINT
function. >140 GOTO 110

(Press SHIFT C to stop the
program.)

TI Extended BASIC 151

READ
Format

READ variable-list

Description

The READ statement allows you to assign numeric and string constants from
a DATA statement to the variables in variable-list. Variable-list consists of
string and numeric variables, separated by commas.

Data is normally read starting at the first DATA statement in a program.
After data is read, the computer marks where it left off and continues at that
point when the next READ statement is executed. You may change the order
in which data is read by using the RESTORE statement.

See the DATA statement for examples.

152 TI Extended BASIC

REC CHAPTER

4
Format

REC(file-number)

Description

The REC function returns the number of the record that will next be
accessed with a PRINT, INPUT, or LINPUT statement in the file opened as
file-number. The records in a file are numbered starting with 0, so record
number 3, for instance, is the fourth record in a file.

Example

PRINT REC(4) prints the current >100 PRINT REC(4)
record position of the file that was
opened as number 4.

Program

The program at the right illustrates a >100 CALL CLEAR
use of the REC function. Line 110 >110 OPEN #1:"DSK1.RNDFILE",
opens a file. RELATIVE

Lines 120 through 140 write four >120 FOR A=0 TO 3
records on the the file. >130 PRINT #1:"THIS IS RECORD

',A
>140 NEXT A

Line 150 puts the file back at the >150 RESTORE #1

beginning.
Lines 160 through 200 print the file >160 FOR A=0 TO 3
position and read and print the >170 PRINT REC(1)
values at that position. >180 INPUT #1:A$,B

>190 PRINT A$;B
>200 NEXT A

Line 210 closes the file. >210 CLOSE #1
>RUN

0
THIS IS RECORD 0
1
THIS IS RECORD 1
2
THIS IS RECORD 2

3
THIS IS RECORD 3

TI Extended BASIC 153

REM
Format

REM character-string

Description

The REM statement allows you to enter remarks into your program. The
remarks may be anything that you wish, but are usually used to divide
sections of programs and to explain what the following section is meant to
do. No matter what follows REM, including the statement separator symbol
(::), remarks are not executed and have no effect on program execution. They
do, however, take up space in memory.

Example

REM BEGIN SUBROUTINE identifies >100 REM BEGIN SUBROUTINE
a section beginning a subroutine.

154 TI Extended BASIC

RESEQUENCE CHAPTER

4
Format

RESEQUENCE [initial-line] [,increment]
RES [initial-line] [,increment]

Description

The RESEQUENCE command changes the line numbers of the program in
memory. If no initial-line is given, the line numbering starts with 100. If no
increment is given, an increment of 10 is used. RESEQUENCE may be
abbreviated as RES.

In addition to renumbering lines, any line references in the statements
BREAK, DISPLAY...USING, GOSUB, GOTO, IF-THEN-ELSE, ON ERROR,
ON...GOSUB, ON...GOTO, PRINT...USING, RESTORE, RETURN, and RUN
are also changed so that they refer to the same lines of code as before
resequencing. If a line referred to in a statement does not exist, the line
number is replaced with 32767.

If, because of the initial-line and increment chosen, the program requires
lines larger than 32767, the resequencing process is halted and the program
is unchanged.

Examples

RES resequences the lines of the >RES
program in memory to start with
100 and number by 10's.

RES 1000 resequences the lines of >RES 1000
the program in memory to start with
1000 and number by 10's.

RES 1000,15 resequences the lines >RES 1000,15
of the program in memory to start
with 1000 and number by 15's.

RES .15 resequences the lines of the >RES ,15
program in memory to start with
100 and number by 15's.

TI Extended BASIC 155

RESTORE

Format
RESTORE [line-number]
RESTORE #file-number [,REC record-number]

Description

The RESTORE statement can be used either with DATA statements or with
files. When used with DATA statements, RESTORE sets the DATA statement
which will be used by the next READ statement. If no line-number is given,
the DATA statement with the lowest numbered line is used by the next
READ statement. If line-number is given, then the DATA statement with
that line number or (if it is not a DATA statement) the next DATA statement
following it is used.

When used with files, the RESTORE statement sets the record that is used
by the next PRINT, INPUT, or LINPUT statement referring to file-number. If
no REC clause is given, the next record is the first record in the file, record
number 0. If the REC clause is present, record-number specifies the next
record to be used.

If there is pending output because of a previous PRINT, DISPLAY,
PRINT...USING, or DISPLAY...USING, then that pending record is written on
the file before the RESTORE statement is executed. Pending input data is
removed by the RESTORE statement.

Examples

RESTORE sets the next DATA >100 RESTORE
statement to be used to the first
DATA statement in the program.

RESTORE 130 sets the next DATA
statement to be used to the DATA
statement at line 130 or, if line 130
is not a DATA statement, to the next
DATA statement after line 130.

RESTORE #1 sets the next record to
be used by the next PRINT, INPUT,
or LINPUT statement using file #1 to
be the first record in the file.

RESTORE #4,REC H5 sets the next
record to be used by the next PRINT,
INPUT, or LINPUT statement using
file #4 to be record H5.

>100 RESTORE 130

>100 RESTORE #1

>100 RESTORE #4,REC H5

156 TI Extended BASI(

RETURN (with GOSUB) CHAPTER

4
Format

RETURN

Description

See also RETURN (with ON ERROR).

RETURN used with GOSUB transfers control back to the statement after the
GOSUB or ON...GOSUB which was most recently executed.

Program

The program on the right illustrates >100 CALL CLEAR
a use of RETURN as used with >110 INPUT "AMOUNT DEPOSITED:
GOSUB. The program figures ":AMOUNT
interest on an amount of money put >120 INPUT "ANNUAL INTEREST R
in savings. ATE: ":RATE

>130 IF RATE<1 THEN RATE=RATE

*100

>140 PRINT "NUMBER OF TIMES C
OMPOUNDED"

>150 INPUT "ANNUALLY: ":COMP

>160 INPUT "STARTING YEAR: ":
Y

>170 INPUT "NUMBER OF YEARS:
:N

>180 CALL CLEAR
>190 FOR A=Y TO Y+N
>200 GOSUB 240

>210 PRINT A,INT(AMOUNT*100+.

5)/100
>220 NEXT A

>230 STOP
>240 FOR B=1 TO COMP

>250 AMOUNT=AMOUNT+AMOUNT*RAT
E/(COMP*100)
>260 NEXT B

>270 RETURN

TI Extended BASIC 157

RETURN (with ON ERROR)

Format
RETURN [line-number]
RETURN [NEXT]

Description

See also RETURN (with GOSUB).

RETURN is used with ON ERROR. After an ON ERROR statement has been
executed, an error causes transfer to the line specified in the ON ERROR
statement. That line, or one after it, should be a RETURN statement. If
RETURN is given without anything following it, control is returned to the
statement on which the error occurred and the program executes it again. If
RETURN is followed by line-number, control is transferred to the line
specified and execution starts with that line. If RETURN is followed by
NEXT, control is transferred to the statement following the one that caused
the error.

Program

The program on the right illustrates
the use of RETURN with ON ERROR.
Line 120 causes an error to transfer
control to line 170. Line 130 causes
an error. Line 140, the next line after
the one that causes the error, prints
140. Line 170 checks to see if the
error has occurred four times and
transfers control to 220 if it has. Line
180 increments the error counter by
one. Line 190 prints 190. Line 200
resets the error handling to transfer
to line 170. Line 210 returns to the
line that caused the error and
executes it again. Line 220, which is
executed only after the error has
occurred four times, prints 220 and
returns to the line following the line
that caused the error.

Also see the example of the ON
ERROR statement.

>100 CALL CLEAR
>110 A=1
>120 ON ERROR 170
>130 X=VAL("D")
>140 PRINT 140
>150 STOP
>160 REM ERROR HANDLING
>170 IF A>4 THEN 220
>180 A=A+1
>190 PRINT 190
>200 ON ERROR 170
>210 RETURN
>220 PRINT 220 :: RETURN NEXT
RUN
190
190
190
190
220
140

158 TI Extended BASIC

RND CHAPTER

4
Format

RND

Description

The RND function returns the next pseudo-random number in the current
sequence of pseudo-random numbers. The number returned is greater than
or equal to zero and less than one. The sequence of random numbers
returned is the same every time a program is run unless the RANDOMIZE
statement appears in the program.

Examples

COLOR16=INT(RND•16)+1 sets >100 COLOR16=INT(RND*16)+1

COLOR16 equal to some number
from 1 through 16.

VALUE= INT(RND• 16)+ 10 sets >100 VALUE=INT(RND*16)+10
VALUE equal to some number from
10 through 25.

LL(8)=INT(RND•(B-A+ 1))+A sets >100 LL (8) =INT (RND* (B-A+1))+A
LL(8) equal to some number from A
through B.

TI Extended BASIC 159

RPT$

Format

RPT$(string-expression, numeric-expression)

Description

The RPT$ function returns a string equal to numeric-expression repetitions
of string-expression. If RPT$ produces a string longer than 255 characters,
the excess characters are discarded and a warning is given.

Examples

M$ = RPT$(' `ABCD",4) sets M$ equal >100 M$=RPT$ ("ABCD", 4)
to "ABCDABCDABCDABCD".

CALL CHAR(96,RPT$("0000FFFF",
8)) defines characters 96 through 99
with the string "0000FFFF0000FFFF
0000FFFF0000FFFF0000FFFF0000
FFFF0000FFFF0000FFFF".

PRINT USING:RPT$("#",40):X$
prints the value of X$ using an
image that consists of 40 number
signs.

>100 CALL CHAR(96,RPT$("0000F
FFF",8))

>100 PRINT USING RPT$("#",40)
:X$

160 TI Extended BASIC

RUN CHAPTER

4
Format
RUN [" device.program-name"]
RUN [line-number]

Description

The RUN command, which can also be used as a statement, starts program
execution. The program to be run is first loaded into memory from device.
program-name if that option is specified. The program is then checked for
certain errors, such as FOR-NEXT loops that are missing the NEXT
statement, and errors in syntax in statements. The values of all numeric
variables are set to zero and the values of all string variables are set to null (a
string of zero characters). The program is then executed.

Options

If device.program-name is specified, the program to be run is loaded from
the specified device. The program and data currently in memory are lost.

If line-number is specified, the program in memory is run starting at line-
number.

Examples

RUN causes the computer to begin >RUN
execution of the program in memory.

RUN 200 causes the computer to >RUN 200

begin execution of the program in >100 RUN 200

memory starting at line 200.

RUN "DSK1.PRG3" causes the
computer to load and begin
execution of the program named
PRG3 from the diskette in disk
drive 1.

>RUN "DSK1.PRG3"

>320 RUN "DSKI.PRG3"

TI Extended BASIC 161

RUN

Program

The program at the right illustrates
the use of the RUN command used
as a statement. It creates a "menu"
and lets the person using the
program chose what other program
he wishes to run. The other
programs should RUN this program
rather than ending in the usual way,
so that the menu is given again after
they are finished.

>100 CALL CLEAR
>110 PRINT "1 PROGRAM 1."
>120 PRINT "2 PROGRAM 2."
>130 PRINT "3 PROGRAM 3."
>140 PRINT "4 END."
>150 PRINT
>160 INPUT "YOUR CHOICE: ":C
>170 IF C=1 THEN RUN "DSK1.PR
Gl"

>180 IF C=2 THEN RUN "DSK1.PR
G2"

>190 IF C=3 THEN RUN "DSK1.PR
G3"

>200 IF C=4 THEN STOP
>210 GOTO 100

162 TI Extended BASIC

SAVE CHAPTER

4
Format
SAVE device.program-name [,PROTECTED]
SAVE device.program-name [,MERGE]

Description

The SAVE command allows you to copy the program in memory to an
external device under the name program-name. By using the OLD
command, you can later recall the program into memory. The method of
saving onto a cassette recorder is given in the User's Reference Guide. The
method of saving onto a diskette is given in the Disk Memory System
manual. SAVE clears breakpoints that have been put into a program.

Options

Only the PROTECTED option is available with cassette recorders.

By using the keyword PROTECTED, you may optionally specify that a
program can only be run or brought into memory with OLD. The program
cannot be listed, edited, or saved. This is not the same as using the
protection available with the Disk Manager Module. NOTE: Be sure to keep
an unprotected copy of any program because the protection feature is not
reversable. If you also wish to protect the program from being copied, use the
protect feature of the Disk Manager module.

You may optionally specify that the program is to be available for merging
with another program by using the key word MERGE. Only programs saved
with the key word MERGE may be merged with another program.

Examples

SAVE DSK1.PRG1 saves the >SAVE DSK1.PRG1

program in memory on the diskette
in disk drive 1 under the name PRG1.

SAVE DSK 1.PRG 1,PROTECTED
saves the program in memory on the
diskette in disk drive 1 under the
name PRG 1. The program may be
loaded into memory and run, but it
may not be edited, listed, or resaved.

SAVE DSKI.PRG1,MERGE saves the
program in memory on the diskette
in disk drive 1 under the name
PRG 1. The program may later be
merged with a program in memory
by using the MERGE command.

>SAVE DSK1.PRG1,PROTECTED

>SAVE DSK1.PRG1,MERGE

TI Extended BASIC 163

SAY subprogram
Format

CALL SAY(word-string [,direct-string] [,...])

Description

The SAY subprogram causes the computer to speak word-string or the value
specified by direct-string when the Solid State SpeechTM Synthesizer (sold
separately) is connected. For a complete description of SAY, see the manual
that comes with the Speech Editor Command Module and Speech
Synthesizer (both sold separately).

The value of word-string is any string value listed in Appendix L. If it is
given as a literal value, it must be enclosed in quotation marks. The value of
direct-string is a value returned by SPGET. The value of direct-string may be
altered to add suffixes as described in Appendix M.

Word-strings and direct-strings must be alternated in the CALL SAY
subprogram. If you wish to have two direct-strings or word-strings spoken
consecutively, you may put in an extra comma to indicate the position of the
item omitted.

Examples

CALL SAY("HELLO, HOW ARE
YOU") causes the computer to say
"Hello, how are you."

CALL SAY(,AS„B$) causes the
computer to say the the words
indicated by AS and B$, which must
have been returned by SPGET.

Program

The program on the right illustrates
using CALL SAY with a word-string
and three direct-strings.

>100 CALL SAY("HELLO, HOW ARE
YOU")

CALL SAY(,A$„B$)

>100 CALL SPGET("HOW",X$)
>110 CALL SPGET("ARE",Y$)
>120 CALL SPGET("YOU",Z$)
>130 CALL SAY("HELLO",X$„Y$,
,Z$)

164 TI Extended BASIC

SCREEN subprogram CHAPTER

4
Format

CALL SCREEN(color-code)

Description

The SCREEN subprogram changes the color of the screen to the color
specified by color-code. All portions of the screen that do not have characters
on them, or have characters or portions of characters that are color 1
(transparent), are shown as the color specified by color-code. The standard
screen color for TI Extended BASIC is 8, cyan.

The color codes are:

Code Color Code Color

1 Transparent 9 Medium Red
2 Black 10 Light Red
3 Medium Green 11 Dark Yellow
4 Light Green 12 Light Yellow
5 Dark Blue 13 Dark Green
6 Light Blue 14 Magenta
7 Dark Red 15 Gray
8 Cyan 16 White

Examples

CALL SCREEN(8) changes the screen
to cyan, which is the standard screen
color.

CALL SCREEN(2) changes the screen
to black.

>100 CALL SCREEN(8)

>100 CALL SCREEN(2)

TI Extended BASIC 165

SEG$

Format

SEG$(string-expression,position, length)

Description

The SEGS function returns a substring of a string. The string returned starts
at position in string-expression and extends for length characters. If position
is beyond the end of string-expression, the null string ("") is returned. If
length extends beyond the end of string-expression, only the characters to
the end are returned.

Examples

X$ = SEGS("FIRSTNAME
LASTNAME",1,9) sets X$ equal to
"FIRSTNAME".

Y$ = SEGS("FIRSTNAME
LASTNAME",11,8) sets YS equal to
"LASTNAME".

Z$ = SEGS("FIRSTNAME
LASTNAME",10,1) sets Z$ equal to

PRINT SEG$(A$,B,C) prints the
substring of A$ starting at character
B and extending for C characters.

>100 X$=SEG$("FIRSTNAME LASTN
AME",1,9)

>100 Y$=SEG$("FIRSTNAME LASTN
AME",11,8)

>100 Z$=SEG$("FIRSTNAME LASTN
AME",10,1)

>100 PRINT SEG$(A$,B,C)

166 TI Extended BASIC

SGN CHAPTER

4
Format

SGN (numeric-expression)

Description

The SGN function returns 1 if numeric-expression is positive, 0 if it is zero,
and — 1 if it is negative.

Examples

IF SGN(X2)= 1 THEN 300 ELSE 400 >100 IF SGN(X2)=1 THEN 300 EL
transfers control to line 300 if X2 if SE 400
positive and to line 400 if X2 is zero
or negative.

ON SGN(X)+2 GOTO 200,300,400 >100 ON SGN(X)+2 GOTO 200,300
transfers control to line 200 if X is , 400
negative, line 300 if X is zero, and
line 400 if X is positive.

TI Extended BASIC 167

SIN

Format

SIN (radian-expression)

Description

The sine function gives the trigonometric sine of radian-expression. If the
angle is in degrees, multiply the number of degrees by PI/ 180 to get the
equivalent angle in radians.

Program

The program on the right gives the >100 A=.5235987755982
sine of several angles. >110 B=30

>120 C=45*PI/180
>130 PRINT SIN(A);SIN(B)
>140 PRINT SIN(B*PI/180)
>150 PRINT SIN(C)
>RUN
.5 -.9880316241
.5
.7071067812

168 TI Extended BASIC

SIZE CHAPTER

4
Format

SIZE

Description

The SIZE command displays the number of unused bytes of memory left in
the computer. If the Memory Expansion peripheral is attached, the number
of bytes available is given as the amount of stack free and the amount of
program space free. A byte is the memory space required for such things as
one character or digit, or one TI Extended BASIC keyword.

If the Memory Expansion is not attached, the space available is the amount
of space left after the space taken up by the program, screen, character
pattern definitions, sprite tables, color tables, string values, and the like is
subtracted.

If the Memory Expansion is attached, the space available in the stack is the
amount of space left after the space taken up by string values, information
about variables, and the like is subtracted. Program space is the amount of
space left after the space taken up by the program and the values of numeric
variables is subtracted.

Examples

SIZE gives the available memory. >SIZE
13928 BYTES FREE

SIZE gives the available memory. If >SIZE
the Memory Expansion peripheral is 13928 BYTES OF STACK FREE
attached, stack and program space 24511 BYTES OF PROGRAM
are given. SPACE FREE

TI Extended BASIC 169

SOUND subprogram
Format

CALL SOUND(duration frequency1,volume1 [, ... frequency4,volume4))

Description

The SOUND subprogram tells the computer to produce tones or noise. The
values given control three aspects of the sound: Duration; frequency; and
volume.

Value Range Description

Duration 1 to 4250 The length of the sound in
- 1 to - 4250 thousandths of a second.

Frequency (Tone) 110 to 44733 What sound is played.
(Noise) -1 to - 8

Volume 0 to 30 How loud the sound is.

Duration is from .001 to 4.250 seconds, although it may vary up to 1/60th of
a second. The computer continues performing program statements while a
sound is being played. When you call the SOUND subprogram, the computer
waits until the previous sound has been completed before performing the
new CALL SOUND. However, if a negative duration is specified, the previous
sound is stopped and the new one is begun immediately.

Frequency specifies the frequency of the note to be played with a value from
110 to 44733. (NOTE: This range goes higher than the range of human
hearing. People vary in their ability to hear high notes, but generally the
highest is approximately a value of 10000.) The actual frequency produced
by the computer may vary up to 10 percent. Appendix D lists the
frequencies of some common notes.

A value of - 1 to - 8 specifies one of eight different types of noise.

Frequency Description

- 1 Periodic Noise Type 1
- 2 Periodic Noise Type 2
- 3 Periodic Noise Type 3
- 4 Periodic Noise that varies with the frequency of the

third tone specified
- 5 White Noise Type 1
- 6 White Noise Type 2
- 7 White Noise Type 3
- 8 White Noise that varies with the frequency of the

third tone specified

A maximum of three tones and one noise can be played simultaneously.

Volume specifies the loudness of the note or noise. Zero is loudest and 30 is
softest.

170 TI Extended BASIC

SOUND subprogram
CHAPTER

4
Examples

CALL SOUND(1000,110,0) plays A
below low C loudly for one second.

CALL SOUND(500,110,0,131,0,196,
3) plays A below low C and low C
loudly, and G below C not as loudly,
all for half a second.

CALL SOUND(4250, - 8,0) plays loud
white noise for 4.250 seconds.

CALL SOUND(DUR,TONE,VOL)
plays the tone indicated by TONE for
a duration indicated by DUR, at a
volume indicated by VOL.

Program

The program on the right plays the
13 notes of the first octave that is
available on the computer.

>100 CALL SOUND(1000,110,0)

>100 CALL SOUND(500,110,0,131
,0,196,3)

>100 CALL SOUND(4250,-8,0)

>100 CALL SOUND(DUR,TONE,V
OL)

>100 X=2A(1/12)
>110 FOR A=1 TO 13
>120 CALL SOUND(100,110*X A A,0

>130 NEXT A

TI Extended BASIC 171

SPGET subprogram

Format

CALL SPGET(word-string,return-string)

Description

The SPGET subprogram returns in return-string the speech pattern that
corresponds to word-string. For a complete description of SPGET, see the
manual that comes with the Speech Editor Command Module and Solid
State SpeechTM Synthesizer (both sold separately).

The value of word-string is any string value listed in Appendix L. If it is
given as a literal value, it must be enclosed in quotation marks. The value of
return-string is used with SAY, and may be altered to add suffixes as
described in Appendix M.

Program

The program on the right illustrates
using CALL SPGET.

>100 CALL SPGET("HOW",X$)
>110 CALL SPGET("ARE",Y$)
>120 CALL SPGET("YOU",Z$)
>130 CALL SAY("HELLO",X$„Y$,
,Z$)

172 TI Extended BASIC

SPRITE subprogram CHAPTER

4
Format

CALL SPRITE(#sprite-number,character-value,sprite-color,dot-row,dot-
column, [,row-velocity,column-velocity] [,...])

Description

The SPRITE subprogram creates sprites. Sprites are graphics which have a
color and a location anywhere on the screen. They can be set in motion in
any direction at a variety of speeds, and continue their motion until it is
changed by the program or the program stops. They move more smoothly
than the usual character which jumps from one screen position to another.

Sprite-number is a numeric expression from 1 to 28. If the value is that of a
sprite that is already defined, the old sprite is deleted and replaced by the
new sprite. If the old sprite has a row- or column-velocity, and no new one is
specified, the new sprite retains the old velocities.

Sprites pass over fixed characters on the screen. When two or more sprites
are coincident, the sprite with the lowest sprite number covers the other
sprites. While five or more sprites are on the same screen row, the one(s)
with the highest sprite number(s) disappear.

Character-value may be any integer from 32 to 143. See the CHAR
subprogram for information on defining characters. The character-value can
be changed by the PATTERN subprogram. The sprite is defined as the
character given and, in the case of double-sized sprites, the next three
characters. See the MAGNIFY subprogram for more information.

Sprite-color may be any numeric expression from 1 to 16. It determines the
foreground color of the sprite. The background color of a sprite is always 1,
transparent. See the COLOR and SCREEN subprograms for more
information.

Dot-row and dot-column are numbered consecutively starting with 1 in the
upper left hand corner of the screen. Dot-row can be from 1 to 192 and dot-
column can be from 1 to 256. (Actually dot-row can go up to 256, but the
positions from 193 through 256 are off the bottom of the screen.) The
position of the sprite is the upper left hand corner of the character(s) which
define it.

Information about the position of a sprite can be found using the POSITION.
COINC, and DISTANCE subprograms. The location of a sprite can be
changed using the LOCATE subprogram. COLOR changes the color of a
sprite. Sprites can be deleted with the DELSPRITE subprogram.

When a breakpoint occurs or the program stops, sprites cease to exist. They
do not reappear with CONTINUE.

TI Extended BASIC 173

SPRITE subprogram

Options

Row-velocity and column-velocity may optionally be specified when the
sprite is created. If both row- and column-velocity are zero, the sprite is
stationary. A positive row-velocity moves the sprite down and a negative
value moves it up. A positive column-velocity moves the sprite to the right
and a negative value moves it to the left. If both row-velocity and column-
velocity are non-zero, the sprite moves at an angle in a direction determined
by the actual values.

Row- and column-velocity may be from - 128 to 127. A value close to zero is
very slow. A value far from zero is very fast. When a sprite comes to the edge
of the screen, it disappears and reappears in the corresponding position on
the other side of the screen. The velocity of a sprite may be changed using
the MOTION subprogram.

Programs

The following three programs show some possible uses of sprites. The third
one uses all the subprograms that can relate to sprites except for COLOR and
DISTANCE.

Line 140 creates a dark blue sprite in
the center of the screen and a dark
red sprite in the upper left corner of
the screen. Line 150 creates a white
sprite near the upper right corner of
the screen and starts it moving
slowly at a 45 degree angle down
and to the right. The sprite is an
exclamation point.

Line 160 creates a sprite at the
upper left corner of the screen and
starts it moving very fast at a 45
degree angle up and to the right.

>100 CALL CLEAR
>110 CALL CHAR(96,"FFFFFFFFFF
FFFFFF")

>120 CALL CHAR(98,"183C7EFFFF
7E3C18")
>130 CALL CHAR(100,"FOOFFOOFF
OOFFOOF")

>140 CALL SPRITE(#1,96,5,92,1
24,#2,100,7,1,1)
>150 CALL SPRITE(#28,33,16,12
,48,1,1)

>160 CALL SPRITE(#15,98,14,1,
1,127,-128)
>170 GOTO 170

(Press SHIFT C to stop the
program.)

174 TI Extended BASIC

SPRITE subprogram
CHAPTER

4
The program on the right makes a
rather spectacular use of sprites.
Line 110 defines character 96.
Line 150 defines the sprites, 28 in
all. The sprite-number is the current
value of A. The character-value is
96. The sprite-color is INT(A/3) + 3.
The starting dot-row and dot-column
are 92 and 124, the center of the
screen. The row- and column-
velocities are chosen randomly using
the value of A*INT(RND*4.5)
- 2.25 + A/2 * SGN(RND - .5). Line
170 causes the sequence to repeat.

>100 CALL CLEAR

>110 CALL CHAR(96,"0008081C7F
1C0808")
>120 RANDOMIZE

>130 CALL SCREEN(2)

>140 FOR A=1 TO 28

>150 CALL SPRITE(#A,96,INT(A/

3)+3,92,124,A*INT(RND*4.5)-2
.25+A/2*SGN(RND-.5),A*INT(RN

D*4.5)-2.25+A/2*SGN(RND-.5))
>160 NEXT A

>170 GOTO 140
(Press SHIFT C to stop the

program.)

The following program uses all the subprograms that can relate to sprites
except for COLOR and DISTANCE. They are CHAR, COINC, DELSPRITE,
LOCATE, MAGNIFY, MOTION, PATTERN, POSITION, and SPRITE.

The program creates two double sized magnified sprites in the shape of a
person, walking along a floor. There is a barrier that one of them passes
through and the other jumps through. The one that jumps through goes a
little faster after each jump, so eventually it catches the other one. When it
does, they each become double size unmagnified sprites and continue
walking. When they meet the second time, the one that has been going faster
disappears and the other continues walking.

Lines 110, 120, 140, 150, 250, and
260 define the sprites.

Line 130 sets the meeting counter to
zero.

Lines 170 through 200 build the
floor.

>100 CALL CLEAR

>110 S1$="0103030103030303030

30303030303038000C08000COCOC

OCOCOCOCOCOCOCOEO"
>120 S2$="0103030103070F1B1B0

3030306000COE8000008000EOFOD

8CCCOC00060303038"

>130 COUNT=O
>140 CALL CHAR(96,S1$)
>150 CALL CHAR(100,S2$)

>160 CALL SCREEN(14)

>170 CALL COLOR(14,13,13)

>180 FOR A=19 TO 24
>190 CALL HCHAR(A,1,136,32)

>200 NEXT A

TI Extended BASIC 175

SPRITE subprogram

Lines 210 through 240 build the
barrier.

Line 270 sets the starting speed of
the sprite that will speed up.

Line 290 sets the sprites in motion.

Line 300 creates the illusion of
walking.

Line 320 checks to see if the sprites
have met.

Line 330 transfers control if the
sprites have met. Lines 340 and 350
check to see if the sprite has reached
the barrier and transfer control if it
has.

Line 360 loops back to continue the
walk. Lines 370 through 460 handle
the sprites running into each other.
Lines 380 and 390 stop them.

Line 400 checks to see if it is the first
meeting. Line 410 increments the
meeting counter. Line 420 finds their
position.

Line 430 makes them smaller.
Line 440 puts them on the floor and
moves the fast one slightly ahead.

Line 450 starts them moving again.

>210 CALL COLOR(13,15,15)
>220 CALL VCHAR(14,22,128,6)
>230 CALL VCHAR(14,23,128,6)
>240 CALL VCHAR(14,24,128,6)
>250 CALL SPRITE(#1,96,5,113
,129,#2,96,7,113,9)
>260 CALL MAGNIFY(4)
>270 XDIR=4
>280 PAT=2

>290 CALL MOTION(#1,0,XDIR,#2
,0,4)
>300 CALL PATTERN(#1,98+PAT,#
2,98-PAT)
>310 PAT=-PAT
>320 CALL COINC(ALL,CO)

>330 IF CO<>0 THEN 370
>340 CALL POSITION(#1,YPOS1,X
POS1)
>350 IF XPOS1>136 AND XPOS1<1
92 THEN 470

>360 GOTO 300
>370 REM COINCIDENCE
>380 CALL MOTION(#1,0,0,#2,0,

0
>390 CALL PATTERN(#1,96,#2,96

>400 IF COUNT>0 THEN 540
>410 COUNT=COUNT+1
>420 CALL POSITION(#1,YPOS1,X
POS1,#2,YPOS2,XPOS2)

>430 CALL MAGNIFY(3)
>440 CALL LOCATE(#1,YPOS1+16,
XPOS1+8,#2,YPOS2+16,XPOS2)

>450 CALL MOTION(#1,0,XDIR,#2
,0,4)
>460 GOTO 340

176 TI Extended BASIC

SPRITE subprogram
CHAPTER

4
Lines 470 through 530 handle the
fast sprite jumping through the
barrier. Line 480 stops it. Line 490
finds where it is.

Line 500 puts it at the new location
beyond the barrier.
Lines 510 and 520 start it moving
again, a little faster.

Lines 540 through 640 handle the
second meeting.

Line 560 starts the slow sprite
moving, while line 570 deletes the
fast sprite. Lines 580 through 630
make the slow sprite walk 20 steps.

>470 REM #1 HIT WALL
>480 CALL MOTION(#1,0,0)
>490 CALL POSITION(#1,YPOS1,X

POS1)

>500 CALL LOCATE(#1,YPOS1,193

>510 XDIR=XDIR+1
>520 CALL MOTION(#1,0,XDIR)
>530 GOTO 300
>540 REM SECOND COINCIDENCE
>550 FOR DELAY=1 TO 500 :: NE
XT DELAY

>560 CALL MOTION(#2,0,4)
>570 CALL DELSPRITE(#1)
>580 FOR STEP1=1 TO 20
>590 CALL PATTERN(#2,100)
>600 FOR DELAY=1 TO 20 :: NEX
T DELAY

>610 CALL PATTERN(#2,96)
>620 FOR DELAY=1 TO 20 :: NEX
T DELAY

>630 NEXT STEP1
>640 CALL CLEAR

TI Extended BASIC 177

SQR

Format

SQR (numeric-expression)

Description

The SQR function returns the positive square root of numeric-expression.
SQR(X) is equivalent to X A (1/2). Numeric-expression may not be a negative
number.

Examples

PRINT SQR(4) prints 2. >100 PRINT SQR(4)

X = SQR(2.57E5) sets X equal to the >100 X=SQR(2.57E5)
square root of 257,000 which is
506.9516742.

STOP
Format

STOP

Description

The STOP statement stops program execution. It can be used
interchangeably with the END statement except that it may not be placed
after subprograms.

Program

The program on the right illustrates >100 CALL CLEAR
the use of the STOP statement. The >110 TOT=0
program adds the numbers from 1 to >120 NUMB=1
100. >130 TOT=TOT+NUMB

>140 NUMB=NUMB+1

>150 IF NUMB>100 THEN PRINT T
OT::STOP

>160 GOTO 130

178 TI Extended BASIC

STR$ CHAPTER

4
Format

STR$ (numeric-expression)

Description

The STR$ function returns a string equivalent to numeric-expression. This
allows the functions, statements, and commands that act on strings to be
used on the character representation of numeric-expression. The STR$
function is the inverse of the VAL function.

Examples

NUM$ = STR$(78.6) sets NUMS equal >100 NUM$=STR$ (78.6)
to "78.6".

LL$ = STR$(3E 15) sets LL$ equal to >100 LL$=STR$ (3E15)
"3.E15".

I$=STR$(A*4) sets I$ equal to a >100 I$=STR$(A*4)
string equal to what ever value is
obtained when A is multiplied by 4.
For instance, if A is equal to - 8, I$
is set equal to " - 32".

TI Extended BASIC 179

SUB

Format

SUB subprogram-name [(parameter-list)]

Description

The SUB statement is the first statement in a subprogram. Subprograms are
used when you wish to separate a group of statements from the main
program. You may use subprograms to perform an operation several times in
a program or in several different programs or to use variables that are
specific to the subprogram. The SUB statement may not be in an IF-THEN-
ELSE statement.

Subprograms are called with CALL subprogram-name [(parameter-list)].
Subprograms are ended with SUBEND, and left when either a SUBEND or a
SUBEXIT statement is executed. Control is returned to the statement
following the statement that called the subprogram. You must never transfer
control out of a subprogram with any statement except SUBEND or
SUBEXIT. This includes passing control with ON ERROR.

When a subprogram is in a program, it must follow the main program. The
structure of a program must be as follows:

Start of Main Program

Subprogram Calls

End of Main Program The program will stop here without
a STOP or END statement.

Start of First Subprogram Subprograms are optional.

End of First Subprogram Nothing may appear between
subprograms except remarks and
the END statement.

Start of Second Subprogram

End of Second Subprogram Only remarks and END may appear
after the subprograms.

End of Program

180 TI Extended BASIC

SUB
CHAPTER

4
Options

All variables used in a subprogram other than those in parameter-list are
local to that subprogram, so you may use the same variable names that are
used in the main program or in other subprograms, and alter their values,
without having any effect on other variables. Likewise, the values of
variables in the main program or other subprograms have no effect on the
values of the variables in the subprogram. (However, DATA statements are
available to subprograms.)

Communicating values to and from the main program is done with the
optional parameter-list. The parameters need not have the same names as in
the calling statement, but they must be of the same data type (numeric or
string), and in the same order as the items in the CALL. If simple variables
passed to subprograms have their values changed in the subprogram, the
values of the variables in the main program are also changed. An array
element such as A(1) in the parameter list of the calling statement is also
changed in value in the main program when control is returned to the main
program.

A value that is given in the calling statement as an expression is passed as a
value only and changes in the value in the subprogram do not change values
in the main program. Entire arrays are passed by reference, so changes in
elements in the subprogram also change the values of the elements of the
array in the main program. Arrays are indicated by following the parameter
name with parentheses. If the array has more than one dimension, a comma
must be placed inside the parentheses for each additional dimension.

If you wish, you may pass values only for simple variables by enclosing them
in parentheses. Then the value can be used in the subprogram, but it is not
changed in the return to the main program. For example, CALL SPRG1((A))
passes the value of A to a subprogram that starts SUB SPRG 1(X), and allows
that value to be used in X, but does not change the value of A in the main
program if the subprogram changes the value of X.

If a subprogram is called more than once, any local variables used in the
subprogram retain those values from one call to the next.

TI Extended BASIC 181

SUB

Examples

SUB MENU marks the beginning of a
subprogram. No parameters are
passed or returned.

SUB MENU(COUNT,CHOICE) marks
the beginning of a subprogram. The
variables COUNT and CHOICE may
be used and/or have their values
changed in the subprogram and
returned to the variables in the same
position in the calling statement.

SUB PAYCHECK(DATE,Q,SSN,
PAYRATE.TABLE(,)) marks the
beginning of a subprogram. The
variables DATE, Q, SSN, PAYRATE,
and the array TABLE with two
dimensions may be used and/or have
their values changed in the
subprogram and returned to the
variables in the same position in the
calling statement.

>100 SUB MENU

>100 SUB MENU(COUNT,CHOICE)

>100 SUB PAYCHECK(DATE,Q,SSN,
PAYRATE,TABLE(,))

182 TI Extended BASIC

SUB
CHAPTER

4

Note that this R is not the same as
the R used in lines 100 and 110 in
the main program.

>100 CALL MENU(5,R)

>110 ON R GOTO 120,130,140,15
0,160

>120 RUN "DSK1.PAYABLES"

>130 RUN "DSK1.RECEIVE"

>140 RUN "DSK1.PAYROLL"
>150 RUN "DSKI.INVENTORY"

>160 RUN "DSK1.LEDGER"

>170 DATA ACCOUNTS PAYABLE,AC
COUNTS RECEIVABLE, PAYROLL, IN
VENTORY,GENERAL LEDGER

>10000 SUB MENU(COUNT,CHOICE)

>10010 CALL CLEAR
>10020 IF COUNT>22 THEN PRINT
"TOO MANY ITEMS" :: CHOICE=

0 :: SUBEXIT

>10030 RESTORE

>10040 FOR R=1 TO COUNT
>10050 READ TEMP$

>10060 TEMP$=SEG$(TEMP$,1,25)

>10070 DISPLAY AT(R,1):R;TEMP

$
>10080 NEXT R

>10090 DISPLAY AT(R+1,1):"YOU

R CHOICE: 1"

>10100 ACCEPT AT(R+1,14)BEEP
VALIDATE(DIGIT)SIZE(-2):CHOI

CE

>10110 IF CHOICE<1 OR CHOICE>

COUNT THEN 10100
>10120 SUBEND `

Program

The program on the right illustrates
the use of SUB. The subprogram
MENU had been previously saved
with the merge option. It prints a
menu and requests a choice. The
main program tells the subprogram
how many choices there are and
what the choices are. It then uses the
choice made in the subprogram to
determine what program to run.

Beginning of subprogram MENU.

TI Extended BASIC 183

SUBEND

Format

SUBEND

Description

The SUBEND statement marks the end of a subprogram. When SUBEND is
executed, control is passed to the statement following the statement that
called the subprogram. The SUBEND statement must always be the last
statement in a subprogram. The SUBEND statement may not be in an IF-
THEN-ELSE statement. The only statements that may immediately follow a
SUBEND statement are REM, END, or the SUB statement for the next
subprogram.

SUBEXIT

Format

SUBEXIT

Description

The SUBEXIT statement allows leaving a subprogram before the end of the
subprogram (indicated with SUBEND). When it is executed, control is passed
to the statement following the statement that called the subprogram. The
SUBEXIT statement need not be present in a subprogram.

184 TI Extended BASIC

TAB CHAPTER

4
Format

TAB (nume ric-expression)

Description

The TAB function specifies the starting position for the next print-item in a
PRINT, PRINT...USING, DISPLAY, or DISPLAY...USING statement. If
numeric-expression is greater than the length of a record for the device on
which the printing is being done (for example; 28 for the screen, 32 for the
thermal printer, the specified value for a file on a diskette or cassette), then it
is repeatedly reduced by the record length until it is between 1 and the
record length.

If the number of characters already printed on the current record is less than
or equal to numeric-expression, the next print item is printed beginning on
the position indicated by numeric-expression. If the number of characters
already printed on the current record is greater than the position indicated
by numeric-expression, the next print-item is printed on the next record
beginning in the position indicated by numeric-expression.

The TAB function is treated as a print-item, so it must have a print separator
(colon, semicolon, or comma) before and/or after it. The print separator
before TAB is evaluated before the TAB function. Normally semicolons are
used before and after TAB.

Examples

PRINT TAB(12);35 prints the
number 35 at the twelfth position.

PRINT 356;TAB(18);"NAME" prints
356 at the beginning of the line and
NAME at the eighteenth position of
the line.

PRINT "ABCDEFGHIJKLM";TAB(5);
"NOP" prints ABCDEFGHIJKLM at
the beginning of the line and NOP at
the fifth position of the next line.

DISPLAY AT(12,1): "NAME" ;TAB
(15);"ADDRESS" displays NAME at
the beginning of the twelfth line on
the screen and ADDRESS at the
fifteenth position on the twelfth line
of the screen.

>100 PRINT TAB(12);35

>100 PRINT 356;TAB(18);"NAME"

>100 PRINT "ABCDEFGHIJKLM";TA

B(5);"NOP

>100 DISPLAY AT(12,1):"NAME";

TAB(15);"ADDRESS"

TI Extended BASIC 185

TAN
Format

TAN (radian-expression)

Description

The tangent function gives the trigonometric tangent of radian-expression. If
the angle is in degrees, multiply the number of degrees by PI/180 to get the
equivalent angle in radians.

Program

The program on the right gives the >100 A=.7853981633973
tangent of several angles. >110 8=26.565051177

>120 C=45*PI/180
>130 PRINT TAN(A);TAN(B)
>140 PRINT TAN(B*PI/180)

>150 PRINT TAN(C)

>RUN

1. 7.17470553

.5
1

TRACE
Format

TRACE

Description

The TRACE command causes each line number to be displayed on the
screen before the statements on that line are executed. This enables you to
follow the course of a program as a debugging aid. The TRACE command
may be used as a statement. The effect of the TRACE command is canceled
when the NEW command or UNTRACE command or statement is performed.

Example

TRACE causes the computer to >TRACE
display a trace of the lines of a >100 TRACE
program on the screen.

186 TI Extended BASIC

UNBREAK CHAPTER

4
Format

UNBREAK [line-list]

Description

The UNBREAK command removes all breakpoints. It can optionally be set
for only those in line-list. UNBREAK can be used as a statement.

Examples

UNBREAK removes all breakpoints. >UNBREAK
>420 UNBREAK

UNBREAK 100,130 removes the >UNBREAK 100,130
breakpoints from lines 100 and 130. >320 UNBREAK 100,130

UNTRACE
Format

UNTRACE

Description

The UNTRACE command removes the effect of the TRACE command.
UNTRACE can be used as a statement.

Example

UNTRACE removes the effect of >UNTRACE
TRACE. >420 UNTRACE

TI Extended BASIC 187

VAL
Format

VAL (string-expression)

Description

The VAL function returns the number equivalent to string-expression. This
allows the functions, statements, and commands that act on numbers to be
used on string-expression. The VAL function is the inverse of the STR$
function.

Examples

NUM = VAL("78.6") sets NUM equal >100 NUM=VAL("78.6")
to 78.6.

LL= VAL("3E15") sets LL equal to >100 LL=VAL("3E15")
3.E15.

VCHAR
Format

CALL VCHAR(row,column,character-code [,repetition])

Description

The VCHAR subprogram places a character anywhere on the display screen
and optionally repeats it vertically. The character with the ASCII value of
character-code is placed in the position described by row and column and is
repeated vertically repetition times.

A value of 1 for row indicates the top of the screen. A value of 24 is the
bottom of the screen. A value of 1 for column indicates the left side of the
screen. A value of 32 is the right side of the screen. The screen can be
thought of as a grid as shown below.

188 TI Extended BASIC

VCHAR
CHAPTER

4
COLUMNS

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
11 31. 5 i 7 i 9 i 11 i 13 (15 1 17 i 19 i 21 i 23 i 25 i 27 l 29 i 31 i

R 9
1O-.-

0 11
12-.-

W 13
14-0-

S 15
16-.-

17
18-.-

19
20-.-

21
22-.-

23
24--

Examples

CALL VCHAR(12,16,33) places

character 33 (an exclamation point)

in row 12, column 16.

>100 CALL VCHAR(12,16,33)

CALL VCHAR(1,1,ASC("!"),768) >100 CALL VCHAR (1,1, ASC (" ! ") ,

places an exclamation point in row 768)
1, column 1, and repeats it 768

times, which fills the screen.

CALL VCHAR(R,C,K,T) places the

character with an ASCII code of K in

row R, column C and repeats it T

times.

>100 CALL VCHAR(R,C,K,T)

TI Extended BASIC 189

VERSION subprogram
Format

CALL VERSION(numeric-variable)

Description

The VERSION subprogram returns a value indicating the version of BASIC
that is being used. TI Extended BASIC returns a value of 100.

Example

CALL VERSION(V) sets V equal to >100 CALL VERSION(V)
100.

190 TI Extended BASIC

Appendices

The following appendices give useful information concerning TI Extended
BASIC.

Appendix A:

Appendix B:

Appendix C:

Appendix D:

Appendix E:

Appendix F:

Appendix G:

Appendix H:

Appendix I:

Appendix J:

Appendix K:

Appendix L:

Appendix M:

Appendix N:

List of Illustrative Programs

List of Commands, Statements, and Functions

ASCII Codes

Musical Tone Frequencies

Character Sets

Pattern-Identifier Conversion Table

Color Codes

High Resolution Color Combinations

Split Console Keyboard

Character Codes for Split Keyboard

Mathematical Functions

List of Speech Words

Adding Suffixes to Speech Words

Error Messages

TI Extended BASIC 191

List of
Illustrative Programs

ELEMENT
ILLUSTRATED LINES DESCRIPTION PAGE

44 Codebreaker Game 27
ACCEPT 16 Entry of 20 names 48
CALL 8 CLEAR and user written subroutine 55
CHAR 12 1. Moving figure 58

7 2. Resetting characters 58
CHR$ 4 List of ASCII codes 60
CLEAR 3 (Simple example) 61

3 (Simple example) 61
COINC 10 (Simple example) 65
COS 6 (Simple example) 69
DATA 14 (Simple example) 71
DELETE 2 (Simple example) 74
DISPLAY 18 Draw on screen 78
ERR 5 (Simple example) 84
FOR-TO-STEP 11 Design 87
GOSUB 24 Probability 90
GOTO 8 Add 1 through 100 91
IF-THEN-ELSE 17 Sequence numbers 96
IMAGE 12 (Simple example) 99

2 (Simple example) 100
INPUT 17 Writes letter 103
INPUT (with files) 12 (Simple example) 106
JOYST 5 Moves sprite 108
KEY 12 Moves sprite 109
LINPUT 6 (Simple example) 113
LOCATE 6 (Simple example) 116
LOG 8 Log to any base 117

192 TI Extended BASIC

APPENDIX
LIST OF ILLUSTRATIVE PROGRAMS A

ELEMENT
ILLUSTRATED LINES DESCRIPTION PAGE

MAGNIFY 17 (Simple example) 120
MERGE 13 Moves sprite 122
MOTION 8 Moves sprite 125
NEXT 6 (Simple example) 127
NUMBER 4 (Simple example) 128
ON BREAK 11 (Simple example) 130
ON ERROR 15 (Simple example) 132
ON...GOSUB 20 Choose with a menu 134
ON...GOTO 19 Choose with a menu 136
ON WARNING 8 (Simple example) 137
PATTERN 18 Rolling wheel 142
POS 8 Breakup sentence 145
PRINT 7 (Simple example) 149
RANDOMIZE 5 (Simple example) 151
REC 12 (Simple example) 153
RETURN (with GOSUB) 18 Figure interest 157
RETURN (with ON ERROR) 13 Handle error 158
RUN 12 Choose with a menu 162
SAY 4 (Simple example) 164
SIN 6 (Simple example) 168
SOUND 4 Play first 13 notes 171
SPGET 4 (Simple example) 172
SPRITE 8 (Simple example) 174

8 Creation of stars 175
55 Walking sprites 175

STOP 7 Add 1 through 100 178
SUB 21 Choose with a menu 183
TAN 6 (Simple example) 186

TI Extended BASIC 193

Commands, Statements,
and Functions
The following is a list of all TI Extended BASIC commands, statements, and
functions. Commands are listed first: if a command can also be used as a
statement, the letter "S" is listed to the right of the command. Commands
that can be abbreviated have the acceptable abbreviations underlined. Next
is a list of all TI Extended BASIC statements: those that can also be used as
commands have a "C" after them. Finally, there is a list of all TI Extended
BASIC functions.

TI Extended BASIC Commands
BREAK S MERGE SAVE
BYE NUMBER SIZE
CONTINUE OLD TRACE S
DELETE S RESEQUENCE UNBREAK S
LIST RUN S UNTRACE S

TI Extended BASIC Statements
ACCEPT C CALL HCHAR C OPTION BASE
CALL IF THEN ELSE CALL PATTERN C
CALL CHAR C IMAGE CALL PEEK C
CALL CHARPAT C CALL INIT C CALL POSITION C
CALL CHARSET C INPUT PRINT C
CALL CLEAR C INPUT REC PRINT USING C
CLOSE C CALL JOYST C RANDOMIZE C
CALL COINC C CALL KEY C READ C
CALL COLOR C [LET] C REM C
DATA CALL LINK C RESTORE C
DEF LINPUT RETURN
CALL DELSPRITE C CALL LOAD C CALL SAY C
DIM C CALL LOCATE C CALL SCREEN C
DISPLAY C CALL MAGNIFY C CALL SOUND C
DISPLAY USING C CALL MOTION C CALL SPGET C
CALL DISTANCE C NEXT C CALL SPRITE C
END ON BREAK STOP C
CALL ERR C ON ERROR SUB
FOR C ON GOSUB SUBEND
CALL GCHAR C ON GOTO SUBEXIT
GOSUB ON WARNING CALL VCHAR C
GOTO OPEN C CALL VERSION C

194 TI Extended BASIC

APPENDIX
COMMANDS, STATEMENTS, AND FUNCTIONS B

TI Extended BASIC Functions
ABS LEN SEG$
ASC LOG SGN
ATN MAX SIN
CHR$ MIN SQR
COS PI STR$
EOF POS TAB
EXP REC TAN
INT RND VAL

RPT$

TI Extended BASIC 195

APPENDIX

ASCII Codes
C

The following predefined characters may be printed or displayed on the screen.

ASCII ASCII
CODE CHARACTER CODE CHARACTER

30 (cursor) 63 ? (question mark)
31 (edge character) 64 @ (at sign)

32 (space) 65 A

33 ! (exclamation point) 66 B

34 " (quote) 67 C

35 # (number or pound sign) 68 D

36 $ (dollar) 69 E

37 % (percent) 70 F

38 & (ampersand) 71 G
39 ' (apostrophe) 72 H
40 ((open parenthesis) 73 I
41) (close parenthesis) 74 J
42 * (asterisk) 75 K
43 + (plus) 76 L
44 (comma) 77 M
45 (minus) 78 N

46 • (period) 79 0

47 / (slash) 80 P

48 0 81 Q

49 1 82 R

50 2 83 S

51 3 84 T

52 4 85 U

53 5 86 V

54 6 87 W

55 7 88 X

56 8 89 Y

57 9 90 Z
58 (colon) 91 [(open bracket)
59 (semicolon) 92 \ (reverse slash)
60 < (less than) 93] (close bracket)
61 (equals) 94 A (exponentiation)
62 > (greater than) 95 _ (underline)

The following key presses may also be detected by CALL KEY.

1 SHIFT A (AID) 3 SHIFT F (DEL)
4 SHIFT G (INS) 6 SHIFT R (REDO)
7 SHIFT T (ERASE) 8 SHIFT S (LEFT ARROW)
9 SHIFT D (RIGHT ARROW) 10 SHIFT X (DOWN ARROW)
11 SHIFT E (UP ARROW) 12 SHIFT V (CMD)
13 ENTER 14 SHIFT W (BEGIN)
15 SHIFT Z (BACK)

196 TI Extended BASIC

Musical Tone Frequencies
APPENDIX

D
The following table gives the frequencies (rounded to integers) of four octaves
of the tempered scale (one half step between notes). While this list does not
represent the entire range of tones that the computer can produce, it can be
helpful for programming music.

FREQUENCY NOTE FREQUENCY NOTE

110 A 440 A labove middle C)
117 A#,Bb 466 AP ,131'
123 B 494 B
131 C (low C) 523 C (high C)
139 C$, Db 554 CO , DI'
147 D 587 D
156 D# , Et' 622 D$, Eb
165 E 659 E
175 F 698 F
185 F#,GI' 740 F#,GI'
196 G 784 G
208 GP, Ab 831 GP

'
 AI'

220 A (below middle C) 880 A (above high C)

220 A (below middle C) 880 A (above high C)
233 A$, Bb 932 A$, Bb
247 B 988 B
262 C (middle C) 1047 C
277 C$(,Db 1109 C $,Db
294 D 1175 D
311 D$,Eb 1245 D$.Eb
330 E 1319 E
349 F 1397 F
370 F# , Gb 1480 FP , Gb
392 G 1568 G
415 G#, Al' t 1661 G$,A
440 A (above middle C) 1760 A

TI Extended BASIC 197

Blocks

Character Sets
APPENDIX

E
SET

0

ASCII CODES

30-31

SET ASCII CODES

1 32-39 8 88-95
2 40-47 9 96-103
3 48-55 10 104-111
4 56-63 11 112-119
5 64-71 12 120-127
6 72-79 13 128-135
7 80-87 14 136-143

Pattern-Identifier
Conversion Table

APPENDIX

F
BINARY CODE HEXADECIMAL
(0 =off; 1 =on) CODE

0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 A
1011 B
1100 C
1101 D
1110 E
1111 F

198 TI Extended BASIC

Color Codes
APPENDIX

G
COLOR CODE COLOR CODE

Transparent 1 Medium Red 9
Black 2 Light Red 10
Medium Green 3 Dark Yellow 11
Light Green 4 Light Yellow 12
Dark Blue 5 Dark Green 13
Light Blue 6 Magenta 14
Dark Red 7 Gray 15
Cyan 8 White 16

TI Extended BASIC 199

Color Combinations
APPENDIX

H
The following color combinations produce the sharpest, clearest character
resolution.

BEST
2, 8 Black on Cyan 2, 13 Black on Dark Green
2, 7 Black on Dark Red 2, 15 Black on Gray
2, 6 Black on Light Blue 2, 14 Black on Magenta
2, 3 Black on Medium Green 2, 9 Black on Medium Red
5, 8 Dark Blue on Cyan 5, 15 Dark Blue on Gray
5, 6 Dark Blue on Light Blue 5, 4 Dark Blue on Light Green
5, 14 Dark Blue on Magenta 5, 16 Dark Blue on White
13, 8 Dark Green on Cyan 13, 11 Dark Green on Dark Yellow
13, 15 Dark Green on Gray 13, 4 Dark Green on Light Green
13, 12 Dark Green on Light Yellow 13, 3 Dark Green on Medium Green
7, 15 Dark Red on Gray 7, 10 Dark Red on Light Red
7, 12 Dark Red on Light Yellow 14, 2 Magenta on Light Red
3, 12 Medium Green on Light Yellow 3, 15 Medium Green on White

SECOND BEST
2, 5 Black on Dark Blue 2, 11 Black on Dark Yellow
2, 4 Black on Light Green 2, 10 Black on Light Red
2, 12 Black on Light Yellow 13, 10 Dark Green on Light Red
13, 16 Dark Green on White 7, 16 Dark Red on White
6, 15 Light Blue on Gray 6, 4 Light Blue on Light Green
6, 16 Light Blue on White 4, 16 Light Green on White

THIRD BEST
2, 16 Black on White 5, 12 Dark Blue on Light Yellow
7, 9 Dark Red on Medium Red 4, 12 Light Green on Light Yellow
14, 15 Magenta on Gray 14, 16 Magenta on White
3, 11 Medium Green on Dark Yellow 3, 15 Medium Green on Gray
9, 15 Medium Red on Gray 9, 10 Medium Red on Light Red
9, 12 Medium Red on Light Yellow 9, 16 Medium Red on White
16, 7 White on Dark Red

FOURTH BEST
8, 2 Cyan on Black 8, 16 Cyan on White
7, 2 Dark Red on Black 7, 4 Dark Red on Light Green
15, 16 Gray on White 5, 2 Light Blue on Black
4, 2 Light Green on Black 10, 2 Light Red on Black
10, 16 Light Red on White 14, 12 Magenta on Light Yellow
9, 4 Medium Red on Light Green 16, 6 White on Light Blue

200 TI Extended BASIC

19 8 10 8 7 7 10 19 9 9
r.
3

C
2 8 0

%

5
$
4

&
7 9 1 6

Split Console Keyboard
APPENDIX

I
Key-unit 1 Key-unit 2

L---T

17

18 4 5 6 11 18 4 5 6 11

0 W E R T
>
Y U 0 P

1 2 3 12
r---1

17 1 2 3 12

13

SFACE A
I

D F G H
A
J K L

16 15 0 14 13 1 16 15 0 14

SHIFT
Z X 1 D 1 V

?

8 N nn ENTER

SPACE BAR

Character Codes
for Split Keyboard

APPENDIX

J
CODE KEYS * CODE KEYS *

0 X, M 10 5, 0

1 A, H 11 T, P

2 S. J 12 F, L

3 D, K 13 V, ENT

4 W,U 14 C,.

5 E,I 15 Z,N

6 R, 0 16 SHIFT, B

7 2, 7 17 SPACE, G

8 3,8 18 Q, X'
9 4,9 19 1,6

* Note that the first key listed is on the left side of the keyboard and the
second key listed is on the right side of the keyboard.

TI Extended BASIC 201

Mathematical Functions
APPENDIX

K
The following mathematical functions may be defined with DEF as shown.

Function
Secant
Cosecant
Cotangent
Inverse Sine
Inverse Cosine
Inverse Secant
Inverse Cosecant
Inverse Cotangent
Hyberbolic Sine
Hyberbolic Cosine
Hyperbolic Tangent
Hyperbolic Secant
Hyperbolic Cosecant
Hyperbolic Cotangent
Inverse Hyperbolic Sine
Inverse Hyperbolic Cosine
Inverse Hyperbolic Tangent
Inverse Hyperbolic Secant
Inverse Hyperbolic Cosecant
Inverse Hyperbolic Cotangent

TI Extended BASIC statement
DEF SEC(X)=1/COS(X)
DEF CSC(X)=1/SIN(X)
DEF COT(X)=1/TAN(X)
DEF ARCSIN(X)=ATN(X/SQR(1—X*X))
DEF ARCCOS (X) =—ATN (X/SQR (1—X*X)) +PI/2
DEF ARCSEC(X)=ATN(SQR(X*X-1))+(SGN(X)-1)*PI/2
DEF ARCCSC (X) =ATN (1/SQR(X*X-1))+(SGN(X)-1)*PI/2
DEF ARCCOT(X)=PI/2—ATN(X) or=P1/2+ATN(—X)
DEF SINH (X) = (EXP (X)—EXP (—X))/2
DEF COSH(X)= (EXP(X)+EXP (—X)) /2
DEF TANH (X) =-2*EXP (—X)/ (EXP(X)+EXP (—X))+1
DEF SECH=2/ (EXP(X) +EXP (—X))
DEF CSCH=2/(EXP(X)—EXP(—X))
DEF COTH (X) =2*EXP (—X)/ (EXP (X)—EXP (—X)) +1
DEF ARCSINH (X) =LOG (X+SQR(X*X+1))
DEF ARCCOSH(X) =LOG(X+SQR (X*X-1))
DEF ARCTANH(X) =LOG((1+X)/ (1—X))/2
DEF ARCSECH (X) =LOG((1+SQR(1—X*X))/X)
DEF ARCCSCH(X) =LOG ((SGN(X)*SQR(X*X+1)+1)/X)
DEF ARCCOTH (X) =LOG ((X+1)/ (X-1)) /2

202 TI Extended BASIC

List of Speech Words
APPENDIX

L
The following is a list of all the letters, numbers, words, and phrases that can
be accessed with CALL SAY and CALL SPGET. See Appendix M for
instructions on adding suffixes to anything in this list.

- (NEGATIVE) CENTER F
+ (POSITIVE) CHECK FIFTEEN
. (POINT) CHOICE FIFTY
0 CLEAR FIGURE
1 COLOR FIND
2 COME FINE
3 COMES FINISH
4 COMMA FINISHED
5 COMMAND FIRST
6 COMPLETE FIT
7 COMPLETED FIVE
8 COMPUTER FOR
9 CONNECTED FORTY

A (a) CONSOLE FOUR

Al (a) CORRECT FOURTEEN

ABOUT COURSE FOURTH

AFTER CYAN FROM

AGAIN D FRONT

ALL DATA G
AM DECIDE GAMES
AN DEVICE GET
AND DID GETTING
ANSWER DIFFERENT GIVE
ANY DISKETTE GIVES
ARE DO GO
AS DOES GOES
ASSUME DOING GOING
AT DONE GOOD
B DOUBLE GOOD WORK

BACK DOWN GOODBYE

BASE DRAW GOT
BE DRAWING GRAY

BETWEEN E GREEN

BLACK EACH GUESS

BLUE EIGHT H
BOTH EIGHTY HAD
BOTTOM ELEVEN HAND
BUT ELSE HANDHELD UNIT
BUY END HAS
BY ENDS HAVE
BYE ENTER HEAD
C ERROR HEAR

CAN EXACTLY HELLO

CASSETTE EYE HELP

TI Extended BASIC 203

LIST OF SPEECH WORDS

HERE MEMORY PRINTER
HIGHER MESSAGE PROBLEM
HIT MESSAGES PROBLEMS
HOME MIDDLE PROGRAM
HOW MIGHT PUT
HUNDRED MODULE PUTTING
HURRY MORE Q
I MOST R

I WIN MOVE RANDOMLY
IF MUST READ (read)
IN N READ1 (red)
INCH NAME READY TO START
INCHES NEAR RECORDER
INSTRUCTION NEED RED
INSTRUCTIONS NEGATIVE REFER
IS NEXT REMEMBER
IT NICE TRY RETURN
J NINE REWIND
JOYSTICK NINETY RIGHT
JUST NO ROUND
K NOT

S
KEY NOW SAID
KEYBOARD

NUMBER SAVE
KNOW 0 SAY
L OF SAYS
LARGE OFF SCREEN

LARGER OH SECOND
LARGEST ON SEE

LAST ONE SEES
LEARN ONLY SET
LEFT OR SEVEN

LESS ORDER SEVENTY
LET OTHER SHAPE
LIKE OUT SHAPES
LIKES OVER SHIFT
LINE P SHORT
LOAD PART SHORTER
LONG PARTNER SHOULD
LOOK PARTS SIDE
LOOKS PERIOD SIDES
LOWER PLAY SIX

M PLAYS SIXTY

MADE PLEASE SMALL

MAGENTA POINT SMALLER

MAKE POSITION SMALLEST

ME POSITIVE SO

MEAN PRESS SOME
PRINT SORRY

204 TI Extended BASIC

APPENDIX
LIST OF SPEECH WORDS L
SPACE TWENTY Z
SPACES TWO ZERO
SPELL TYPE
SQUARE U
START UHOH
STEP UNDER
STOP UNDERSTAND
SUM UNTIL
SUPPOSED Up
SUPPOSED TO UPPER
SURE USE
T V
TAKE VARY
TEEN VERY
TELL
TEN

W

TEXAS INSTRUMENTS
WAIT

THAN
WANT

THAT
WANTS

THAT IS INCORRECT
WAY

THAT IS RIGHT WE
THE (the)

WEIGH

THE1 (tha)
WEIGHT

THEIR
WELL

THEN
WERE

THERE
WHAT

THESE
WHAT WAS THAT

THEY
WHEN

THING
WHERE

THINGS
WHICH

THINK
WHITE

THIRD
WHO

THIRTEEN
WHY

THIRTY
WILL

THIS
WITH

THREE
WON

THREW
WORD

THROUGH
WORDS

TIME
WORK

TO
WORKING

TOGETHER
WRITE

TONE X
TOO Y
TOP YELLOW
TRY YES
TRY AGAIN YET
TURN YOU
TWELVE YOU WIN

YOUR

TI Extended BASIC 205

Adding Suffixes
to Speech Words
This appendix describes how to add ING, S, and ED to any word available in
the Solid State SpeechTM Synthesizer resident vocabulary.

The code for a word is first read using SPGET. The code consists of a
number of characters, one of which tells the speech unit the length of the
word. Then, by means of the subprograms listed here, additional codes can
be added to give the sound of a suffix.

Words often have trailing-off data that make the word sound more natural
but prevent the easy addition of suffixes. In order to add suffixes this trailing-
off data must be removed.

The following program allows you to input a word and, by trying different
truncation values, make the suffix sound like a natural part of the word. The
subprograms DEFING (lines 1000 through 1130), DEFS1 (lines 2000 through
2100), DEFS2 (lines 3000 through 3090), DEFS3 (lines 4000 through 4120),
DEFED1 (lines 5000 through 5070), DEFED2 (lines 6000 through 6110),
DEFED3 (lines 7000 through 7130), and MENU (lines 10000 through 10120)
should be input separately and saved with the MERGE option. (The
subprogram MENU is the same one used in the illustrative program with
SUB.) You may wish to use different line numbers. Each of these
subprograms (except MENU) defines a suffix.

DEFING defines the ING sound. DEFS1 defines the S sound as it occurs at
the end of "cats." DEFS2 defines the S sound as it occurs at the end of
"cads." DEFS3 defines the S sound as it occurs at the end of "wishes."
DEFED1 defines the ED sound as it occurs at the end of "passed." DEFED2
defines the ED sound as it occurs at the end of "caused." DEFED3 defines
the ED sound as it occurs at the end of "heated."

In running the program, enter a 0 for the truncation value in order to leave
the truncation sequence.

100 REM *******************

110 REM REQUIRES MERGE OF:
120 REM MENU (LINES 10000 THROUGH 10120)
130 REM DEFING (LINES 1000 THROUGH 1130)
140 REM DEFS1 (LINES 2000 THROUGH 2100)
150 REM DEFS2 (LINES 3000 THROUGH 3090)
160 REM DEFS3 (LINES 4000 THROUGH 4120)
170 REM DEFED1 (LINES 5000 THROUGH 5070)
180 REM DEFED2 (LINES 6000 THROUGH 6110)
190 REM DEFED3 (LINES 7000 THROUGH 7130)
200 REM *******************

210 CALL CLEAR
220 PRINT "THIS PROGRAM IS USED TO"

206 TI Extended BASIC

APPENDIX
ADDING SUFFIXES TO SPEECH WORDS M
230 PRINT "FIND THE PROPER TRUNCATION"
240 PRINT "VALUE FOR ADDING SUFFIXES"
250 PRINT "TO SPEECH WORDS.": :
260 FOR DELAY=1 TO 300::NEXT DELAY
270 PRINT "CHOOSE WHICH SUFFIX YOU"
280 PRINT "WISH TO ADD.": :
290 FOR DELAY=1 TO 200::NEXT DELAY
300 CALL MENU(8,CHOICE)
310 DATA 'ING','S' AS IN CATS,'S' AS IN CADS,'S' AS IN WISHES,
'ED' AS IN PASSED,'ED' AS IN CAUSED,'ED' AS IN HEATED,END
320 IF CHOICE=O OR CHOICE=8 THEN STOP
330 INPUT "WHAT IS THE WORD? ":WORD$
340 ON CHOICE GOTO 350,370,390,410,430,450,470
350 CALL DEFING(D$)
360 GOTO 480
370 CALL DEFS1(D$)!CATS
380 GOTO 480
390 CALL DEFS2(D$)!CADS
400 GOTO 480
410 CALL DEFS3(D$)!WISHES
420 GOTO 480
430 CALL DEFED1(D$)!PASSED
440 GOTO 480
450 CALL DEFED2(D$)!CAUSED
460 GOTO 480
470 CALL DEFED3(D$)!HEATED
480 REM TRY VALUES
490 CALL CLEAR
500 INPUT "TRUNCATE HOW MANY BYTES? ":L
510 IF L=0 THEN 300
520 CALL SPGET(WORD$,B$)
530 L=LEN(B$)-L-3
540 C$=SEG$(B$,1,2)&CHR$(L)&SEG$(B$,4,L)
550 CALL SAY(,C$&D$)
560 GOTO 500

TI Extended BASIC 207

ADDING SUFFIXES TO SPEECH WORDS

The data has been given in short DATA statements to make it as easy as
possible to input. It may be consolidated to make the program shorter.

1000 SUB DEFING(A$)
1010 DATA 96,0,52,174,30,65
1020 DATA 21,186,90,247,122,214
1030 DATA 179,95,77,13,202,50
1040 DATA 153,120,117,57,40,248
1050 DATA 133,173,209,25,39,85
1060 DATA 225,54,75,167,29,77
1070 DATA 105,91,44,157,118,180
1080 DATA 169,97,161,117,218,25
1090 DATA 119,184,227,222,249,238,1
1100 RESTORE 1010
1110 A$=""
1120 FOR I=1 TO 55::READ A::A$=A$&CHR$(A)::NEXT I
1130 SUBEND

2000 SUB DEFS1(A$)1CATS
2010 DATA 96,0,26
2020 DATA 14,56,130,204,0
2030 DATA 223,177,26,224,103
2040 DATA 85,3,252,106,106
2050 DATA 128,95,44,4,240
2060 DATA 35,11,2,126,16,121
2070 RESTORE 2010
2080 A$=""
2090 FOR I=1 TO 29::READ A::A$=A$&CHR$(A)::NEXT I
2100 SUBEND

3000 SUB DEFS2(A$)!CADS
3010 DATA 96,0,17
3020 DATA 161,253,158,217
3030 DATA 168,213,198,86,0
3040 DATA 223,153,75,128,0
3050 DATA 95,139,62
3060 RESTORE 3010
3070
3080 FOR I=1 TO 20::READ A::A$=A$&CHR$(A)::NEXT I
3090 SUBEND

208 TI Extended BASIC

APPENDIX
ADDING SUFFIXES TO SPEECH WORDS M
4000 SUB DEFS3(A$)!WISHES
4010 DATA 96,0,34

4020 DATA 173,233,33,84,12
4030 DATA 242,205,166,55,173

4040 DATA 93,222,68,197,188
4050 DATA 134,238,123,102
4060 DATA 163,86,27,59,1,124
4070 DATA 103,46,1,2,124,45

4080 DATA 138,129,7
4090 RESTORE 4010
4100 A$=""

4110 FOR I=1 TO 37::READ A::A$=A$&CHR$(A)::NEXT I

4120 SUBEND

5000 SUB DEFED1(A$)!PASSED
5010 DATA 96,0,10

5020 DATA 0,224,128,37

5030 DATA 204,37,240,0,0,0
5040 RESTORE 5010

5050 A$=--

5060 FOR I=1 TO 13::READ A::A$=A$&CHR$(A)::NEXT I

5070 SUBEND

6000 SUB DEFED2(A$)!CAUSED
6010 DATA 96,0,26

6020 DATA 172,163,214,59,35
6030 DATA 109,170,174,68,21

6040 DATA 22,201,220,250,24
6050 DATA 69,148,162,166,234

6060 DATA 75,84,97,145,204

6070 DATA 15

6080 RESTORE 6010

6090 A$=--
6100 FOR I=1 TO 29::READ A::A$=A$&CHR$(A)::NEXT I

6110 SUBEND

TI Extended BASIC 209

ADDING SUFFIXES TO SPEECH WORDS

7000 SUB DEFED3(A$)!HEATED
7010 DATA 96,0,36
7020 DATA 173,233,33,84,12
7030 DATA 242,205,166,183
7040 DATA 172,163,214,59,35
7050 DATA 109,170,174,68,21
7060 DATA 22,201,92,250,24
7070 DATA 69,148,162,38,235
7080 DATA 75,84,97,145,204
7090 DATA 178,127
7100 RESTORE 7010
7110 A$=-
7120 FOR I=1 TO 39::READ A::A$=A$&CHR$(A)::NEXT I
7130 SUBEND

10000 SUB MENU(COUNT,CHOICE)
10010 CALL CLEAR
10020 IF COUNT>22 THEN PRINT "TOO MANY ITEMS" :: CHOICE=O :: SUBEXIT
10030 RESTORE
10040 FOR I=1 TO COUNT
10050 READ TEMP$
10060 TEMP$=SEG$(TEMP$,1,25)
10070 DISPLAY AT(I,1):I;TEMP$
10080 NEXT I
10090 DISPLAY AT(I+1,1):"YOUR CHOICE: 1"
10100 ACCEPT AT(I+1,14)BEEP VALIDATE(DIGIT)SIZE(-2):CHOICE
10110 IF CHOICE<1 OR CHOICE>COUNT THEN 10100
10120 SUBEND

210 TI Extended BASIC

APPENDIX
ADDING SUFFIXES TO SPEECH WORDS M
You can use the subprograms in any program once you have determined the
number of bytes to truncate. The following program uses the subprogram
DEFING in lines 1000 through 1130 to have the computer say the word
DRAWING using DRAW plus the suffix ING. Note that it was found that
DRAW should be truncated by 41 characters to produce the most natural
sounding DRAWING. The subprogram DEFING in lines 1000 through 1130
is the program you saved with the merge option.

100 CALL DEFING(ING$)
110 CALL SPGET("DRAW",DRAW$)
120 L=LEN(DRAW$)-3-41! 3 BYTES OF SPEECH OVERHEAD, 41 BYTES TRUNCATED
130 DRAW$=SEG$(DRAW$,1,2)&CHR$(L)&SEG$(DRAW$,4,L)
140 CALL SAY("WE ARE",DRAW$&ING$,"A1 SCREEN")
150 GOTO 140
1000 SUB DEFING(A$)
1010 DATA 96,0,52,174,30,65
1020 DATA 21,186,90,247,122,214
1030 DATA 179,95,77,13,202,50
1040 DATA 153,120,117,57,40,248
1050 DATA 133,173,209,25,39,85
1060 DATA 225,54,75,167,29,77
1070 DATA 105,91,44,157,118,180
1080 DATA 169,97,161,117,218,25
1090 DATA 119,184,227,222,249,238,1
1100 RESTORE 1010
1110 A$=""
1120 FOR I=1 TO 55::READ A::A$=A$&CHR$(A)::NEXT I
1130 SUBEND
(Press SHIFT C to stop the program.)

TI Extended BASIC 211

Errors

The following lists all the error messages that TI Extended BASIC gives. The
first list is alphabetical by the message that is given, and the second list is
numeric by the number of the error that is returned by CALL ERR. If the
error occurs in the execution of a program, the error message is often
followed by IN line-number.

Sorted by Message

Message Descriptions of Possible Errors

74 BAD ARGUMENT
* Bad value given in ASC, ATN, COS, EXP, INT, LOG,

SIN, SOUND, SQR, TAN, or VAL.
* An array element specified in a SUB statement.
* Bad first parameter or too many parameters in LINK.

61 BAD LINE NUMBER
* Line number less than 1 or greater than 32767.
* Omitted line number.
* Line number outside the range 1 through 32767

produced by RES.
57 BAD SUBSCRIPT

* Use of too large or small subscript in an array.
* Incorrect subscript in DIM.

79 BAD VALUE
* Incorrect value given in AND, CHAR, CHR$, CLOSE,

EOF, FOR, GOSUB, GOTO, HCHAR, INPUT, MOTION,
NOT, OR, POS, PRINT, PRINT USING, REC, RESTORE,
RPTS, SEGS, SIZE, VCHAR, or XOR.

* Array subscript value greater than 32767.
* File number greater than 255 or less than zero.
* More than three tones and one noise generator specified

in SOUND.
* A value passed to a subprogram is not acceptable in the

subprogram. For example, a sprite velocity value less
than - 128 or a character value greater than 143.

* Value in ON...GOTO or ON...GOSUB greater than the
number of lines given.

* Incorrect position given after the AT clause in ACCEPT
or DISPLAY.

67 CAN'T CONTINUE
* Program has been edited after being stopped by a

breakpoint.
* Program was not stopped by a breakpoint.

69 COMMAND ILLEGAL IN PROGRAM
* BYE. CON, LIST, MERGE, NEW, NUM, OLD, RES, or

SAVE used in a program.

212 TI Extended BASIC

APPENDIX
ERRORS N
84 DATA ERROR

* READ or RESTORE with data not present or with a
string where a numeric value is expected.

* Line number after RESTORE is higher than the highest
line number in the program.

* Error in object file in LOAD.

109 FILE ERROR
* Wrong type of data read with a READ statement.
* Attempt to use CLOSE, EOF, INPUT, OPEN, PRINT,

PRINT USING, REC, or RESTORE with a file that does
not exist or does not have the proper attributes.

* Not enough memory to use a file.

44 FOR-NEXT NESTING
* The FOR and NEXT statements of loops do not align

properly.
* Missing NEXT statement.

130 I/O ERROR
* An error was detected in trying to execute CLOSE,

DELETE, LOAD, MERGE, OLD, OPEN, RUN, or SAVE.
* Not enough memory to list a program.

16 ILLEGAL AFTER SUBPROGRAM
* Anything but END, REM, or SUB after a SUBEND.

36 IMAGE ERROR
* An error was detected in the use of DISPLAY USING,

IMAGE, or PRINT USING.
* More than 10 (E-format) or 14 (numeric format)

significant digits in the format string.
* IMAGE string is longer than 254 characters.

28 IMPROPERLY USED NAME
* An illegal variable name was used in CALL, DEF, or

DIM.
* Using a TI Extended BASIC reserved word in LET.
* Using a subscripted variable or a string variable in a

FOR.
* Using an array with the wrong number of dimensions.
* Using a variable name differently than originally

assigned. A variable can be only an array, a numeric or
string variable, or a user defined function name.

* Dimensioning an array twice.
* Putting a user defined function name on the left of the

equals sign in an assignment statement.
* Using the same variable twice in the parameter list of a

SUB statemtent.

TI Extended BASIC 213

ERRORS

81 INCORRECT ARGUMENT LIST
* CALL and SUB mismatch of arguments.

83 INPUT ERROR
* An error was detected in an INPUT.

60 LINE NOT FOUND
* Incorrect line number found in BREAK, GOSUB, GOTO,

ON ERROR, RUN, or UNBREAK, or after THEN or
ELSE.

* Line to be edited not found.

62 LINE TOO LONG
* Line too long to be entered into a pr ogram.

39 MEMORY FULL
* Program too large to execute one of the following: DEF,

DELETE, DIM, GOSUB, LET, LOAD , ON...GOSUB,
OPEN, or SUB.

* Program too large to add a new line , insert a line,
replace a line, or evaluate an expre ssion.

49 MISSING SUBEND
* SUBEND missing in a subprogram.

47 MUST BE IN SUBPROGRAM
* SUBEND or SUBEXIT not in a subp rogram.

19 NAME TOO LONG
* More than 15 characters in variable or subprogram

name.

43 NEXT WITHOUT FOR
* FOR statement missing, NEXT before FOR, incorrect

FOR-NEXT nesting, or branching into a FOR-NEXT
loop.

78 NO PROGRAM PRESENT
* No program present when issuing a LIST,

RESEQUENCE, RESTORE, RUN, or SAVE command.
10 NUMERIC OVERFLOW

* A number too large or too small resulting from a * , + ,
- , / operation or in ACCEPT, ATN, COS, EXP, INPUT,
INT, LOG, SIN, SQR, TAN, or VAL.

* A number outside the range -32768 to 32767 in PEEK
or LOAD.

70 ONLY LEGAL IN A PROGRAM
* One of the following statements was used as a

command: DEF, GOSUB, GOTO, IF, IMAGE, INPUT, ON
BREAK, ON ERROR, ON...GOSUB, ON...GOTO, ON
WARNING, OPTION BASE, RETURN, SUB, SUBEND, or
SUBEXIT

214 TI Extended BASIC

APPEN DIX
ERRORS N
25 OPTION BASE ERROR

* OPTION BASE executed more than once, or with a
value other than 1 or zero.

97 PROTECTION VIOLATION
* Attempt to save, list, or edit a protected program.

48 RECURSIVE SUBPROGRAM CALL
* Subprogram calls itself, directly or indirectly.

51 RETURN WITHOUT GOSUB
* RETURN without a GOSUB or an error handled by the

previous execution of an ON ERROR statement.

56 SPEECH STRING TOO LONG
* Speech string returned by SPGET is longer than 255

characters.

40 STACK OVERFLOW
* Too many sets of parentheses.
* Not enough memory to evaluate an expression or assign

a value.

54 STRING TRUNCATED
* A string created by RPTS, concatenation ("&" operator),

or a user defined function is longer than 255 characters.
* The length of a string expression in the VALIDATE

clause is greater than 254 characters.

24 STRING-NUMBER MISMATCH
* A string was given where a number was expected or

vice versa in a TI Extended BASIC supplied function or
subprogram.

* Assigning a string value to a numeric value or vice
versa.

* Attempting to concatenate ("&" operator) a number.
* Using a string as a subscript.

135 SUBPROGRAM NOT FOUND
* A subprogram called does not exist or an assembly

language subprogram named in LINK has not been
loaded.

TI Extended BASIC 215

ERRORS

14 SYNTAX ERROR
* An error such as a missing or extra comma or

parenthesis, parameters in the wrong order, missing
parameters, missing keyword, misspelled keyword,
keyword in the wrong order, or the like was detected in
a TI Extended BASIC command, statement, function, or
subprogram.

* DATA or IMAGE not first and only statement on a line.
* Items after final ")".
* Missing "#" in SPRITE.
* Missing ENTER, tail comment symbol (!), or statement

separator symbol (::).
* Missing THEN after IF.
* Missing TO after FOR.
* Nothing after CALL, SUB, FOR, THEN, or ELSE.
* Two E's in a numeric constant.
* Wrong parameter list in a TI Extended BASIC supplied

subprogram.
* Going into or out of a subprogram with GOTO, GOSUB,

ON ERROR, etc.
* Calling INIT without the Memory Expansion peripheral

attached.
* Calling LINK or LOAD without first calling INIT.
* Using a constant where a variable is required.
* More than seven dimensions in an array.

17 UNMATCHED QUOTES
* Odd number of quotes in an input line.

20 UNRECOGNIZED CHARACTER
* An unrecognized character such as ? or % is not in a

quoted string.
* A bad field in an object file accessed by LOAD.

216 TI Extended BASIC

APPEN DIX
ERRORS N

Sorted by #

Message

10 NUMERIC OVERFLOW
14 SYNTAX ERROR
16 ILLEGAL AFTER SUBPROGRAM
17 UNMATCHED QUOTES
19 NAME TOO LONG
20 UNRECOGNIZED CHARACTER
24 STRING-NUMBER MISMATCH
25 OPTION BASE ERROR
28 IMPROPERLY USED NAME
36 IMAGE ERROR
39 MEMORY FULL
40 STACK OVERFLOW
43 NEXT WITHOUT FOR
44 FOR-NEXT NESTING
47 MUST BE IN SUBPROGRAM
48 RECURSIVE SUBPROGRAM CALL
49 MISSING SUBEND
51 RETURN WITHOUT GOSUB
54 STRING TRUNCATED
56 SPEECH STRING TOO LONG
57 BAD SUBSCRIPT
60 LINE NOT FOUND
61 BAD LINE NUMBER
62 LINE TOO LONG
67 CAN'T CONTINUE
69 COMMAND ILLEGAL IN PROGRAM
70 ONLY LEGAL IN A PROGRAM
74 BAD ARGUMENT
78 NO PROGRAM PRESENT
79 BAD VALUE
81 INCORRECT ARGUMENT LIST
83 INPUT ERROR
84 DATA ERROR
97 PROTECTION VIOLATION
109 FILE ERROR
130 I/O ERROR
135 SUBPROGRAM NOT FOUND

TI Extended BASIC 217

Index
The pages listed in italics show where the
illustrative program.

A
Absolute value function (ABS) 20, 46
ACCEPT statement 17, 47-49, 28, 30,

31, 32, 48, 134, 136, 183
Addition 41
ALL, ERASE clause 47, 77
Ampersand operator 41
AND logical operator 42, 175
APPEND clause 138
Arctangent function (ATN) 20, 51
Arithmetic expressions 41
Arithmetic hierarchy 41
Arithmetic operators 41
Arrays 76
ASCII character codes 195
ASCII function (ASC) 20, 50
Assignment statement (LET) 17, 111,

30, 55, 58, 65, 69, 78, 87, 90, 91, 96, 99,
113, 116, 117, 122, 127, 128, 132, 142,
145, 157, 158, 168, 171, 175, 176, 178,
183, 186

AT clause 44, 77

B
Backspace key 12
BASE, OPTION statement 141
BEEP clause 47, 77
Binary codes 43-44
Blank spaces 39
Branches. program . . See GOTO, GOSUB,

ON... GOTO, O N... GOS UB
BREAK command 16, 26, 52, 130
Break key 13
Breakpoints 16, 26, 52
Built-in functions 20
Built-in subprograms 21
BYE command 17, 54

C
CALL CHAR subprogram . . 22, 25, 56, 58,

65, 120, 122, 142, 174, 175
CALL CHARPAT subprogram .. 18, 23, 59
CALL CHARSET subprogram 23, 60
CALL CLEAR subprogram 21, 61, 49,

55, 58, 60, 61, 65, 78, 87, 90, 96, 99,
103, 106, 108, 109, 116, 117, 120, 122,
125, 130, 132, 134, 136, 137, 142, 145,
149, 151, 153, 157, 158, 162, 174, 175,
177, 178, 183

CALL COINC subprogram .. 18, 22. 25, 65,
176

CALL COLOR subprogram .. . 19, 21, 22,
25, 66, 58, 78, 142, 175, 176

language elements are used in an

CALL DELSPRITE subprogram 22,
25, 75, 177

CALL DISTANCE subprogram 18, 22,
25, 80

CALL ERR subprogram ... 18, 23, 26, 83,
84, 132

CALL GCHAR subprogram 18, 21, 88
CALL HCHAR subprogram 19, 21, 92,

58, 142, 175
CALL INIT subprogram 22, 101
CALL JOYST subprogram 18, 21, 108
CALL KEY subprogram ... 18, 21, 78, 109
CALL LINK subprogram 22, 112
CALL LOAD subprogram 22, 115
CALL LOCATE subprogram . . 18, 22, 25,

116, 176, 177
CALL MAGNIFY subprogram 22, 25,

118, 120, 142, 176
CALL MOTION subprogram . . 22, 25, 125,

176, 177, 108, 109, 122, 125, 176, 177
CALL PATTERN subprogram 22, 25,

142, 176, 177
CALL PEEK Subprogram 22, 143
CALL POSITION subprogram ... 22, 25,

146, 176, 177
CALL SAY subprogram ... 19, 22, 24, 164,

172
CALL SCREEN subprogram ... 19, 21, 25,

165, 84, 175
CALL SOUND subprogram 19, 22,

24, 172, 171
CALL SPGET subprogram 18, 22,

24, 164, 172
CALL SPRITE subprogram 19, 22, 25,

173, 65, 108, 109, 116, 120, 122, 125,
142, 174, 175, 176

CALL VCHAR subprogram ... 19, 21, 189,
58, 87, 176

CALL VERSION subprogram .. 18, 23, 190
CALL subprogram 55, 183
Character codes 67, 200
Character conversion function (CHRS) • •

20, 60, 78
Character definition subprogram

(CHAR) 22, 25, 56, 58, 65, 120,
122, 142, 174, 175

Character limit 38
Character pattern subprogram

(CHARPAT) 18, 23, 59
Character set subprogram

(CHARSET) 23, 60
Character sets 200

218 TI Extended BASIC

INDEX

Circumflex 41
Clear key 13
Clear screen subprogram (CLEAR) 21,

61, 49, 55, 58, 60, 61, 65, 78, 87, 90, 96,
99, 103, 106, 108, 109, 116, 117, 120,
122, 125, 130, 132, 134, 136, 137, 142,
145, 149, 151, 153, 157, 158, 162, 174,
175, 177, 178, 183

CLOSE statement 62, 106, 113, 153
Codebreaker program 27
Coincidence of sprites subprogram

(COINC) 18, 22, 25, 64, 65, 176
Colon 19, 147
Color codes 66, 165, 198
Color combinations 199
Color of characters subprogram

(COLOR) 19, 21, 22, 25, 66, 58, 78,
142, 175, 176

Color of screen subprogram
(SCREEN) 19, 21, 25, 165, 84, 175

Comma 19, 147
Command Mode 11
Commands 16
Commands used as statements 16
Comment, tail (!) 38
Computer transfer See ON...GOSUB,

ON...GOTO
Computer's limit 39
Concatenation 41
Constants 39
CONTINUE command 16, 26, 52, 68
Conversion table 57
Correcting errors 11
Cosine function (COS) 20, 69
D
DATA statement 70, 71, 99, 183
Debugging 26
DEFine statement 72, 122
DELETE clause 62
DELETE command 16, 74
Delete key 13
Delete sprite subprogram

(DELSPRITE) 22, 25, 75, 177
DIGIT clause 47
DIMension statement 76, 28, 48, 96
DISPLAY USING statement 19, 79, 97
DISPLAY clause 139, 113
DISPLAY statement ... 19, 77, 28, 29, 30,

31, 32, 48, 49, 78, 106, 125, 134, 136,
183

Distance of sprites subprogram
(DISTANCE) 18, 22, 25, 80

Division 41
Down arrow key 13, 32

E
Edit Mode . 11
ELSE clause 94
End of file function (EOF) 20, 82, 113
END statement 81
Enter key 13, 28-32
ERASE ALL clause 47, 77
Erase key 13
ERROR, ON statement ... 26, 83, 131, 84,

132, 158
Error handling 26, 211
Error subprogram 18, 23, 83, 84, 132
Error messages 211
Exponential function (EXP) 20, 85
Exponentiation 41
Expressions 41

F
Files 38
FIXED clause 139, 106, 113
FOR-TO-STEP statement 18, 86, 127,

30, 32, 48, 49, 58, 60, 71, 78, 87, 96, 99,
106, 120, 122, 125, 127, 130, 142, 151,
153, 157, 171, 175, 177, 183

Forwardspace key 12
Functions, built-in 19-20
Functions, user written 21, 201

G
Get character subprogram (GCHAR) . . 18,

21, 88
GOSUB statement 21, 89, 58, 90,

120, 122, 157
GOTO statement 91, 29, 49, 58, 61,

78, 87, 90, 91, 103, 108, 109, 113, 116,
117, 134, 142, 145, 151, 162, 174, 175,
176, 177, 178

Greater than 41

H
Hexadecimal 57
Hierarchy, arithmetic 41
Horizontal character subroutine

(HCHAR) 19, 21, 92, 58, 142, 175

I
IF-THEN-ELSE statement .. 94, 29, 30, 32,

48, 78, 90, 91, 96, 99, 109, 113, 117,
132, 134, 136, 145, 157, 158, 162, 176,
178

IMAGE statement 19, 97, 99, 100, 103
Initialization subprogram (INIT) . . 22, 101
Input 17
INPUT clause 139, 106, 113
INPUT statement (files) 104, 106, 153
INPUT statement (keyboard) 17, 102,

74, 90, 96, 103, 117, 145, 151, 157, 162

TI Extended BASIC 219

INDEX

Insert key 13
Integer function (INT) 20, 107
INTERNAL clause 139, 106

J
Joystick subprogram (JOYST) . 18, 21,

108

K
Keystroke subprogram (KEY) 18, 21,

78, 109
Keywords 40

L
Leaving TI Extended BASIC 54
Left arrow key 12
Length function (LEN) 20, 110
Less than 41
LET statement 17, 111, 30, 55, 58, 65,

69, 78, 87, 90, 91, 96, 99, 113, 116,
117, 122, 127, 128, 132, 142, 145, 157,
158, 168, 171, 175, 176, 178, 183, 186

Limits, computer 39
Line numbering, automatic (NUMBER)

38
Line numbers 38
Lines 38
Link subprogram (LINK) 22, 112
LINPUT statement 17, 113
LIST command 16, 114
Load subprogram (LOAD) 22, 115
Locate sprite subprogram (LOCATE) . . 18,

22, 25, 116, 176, 177
Logarithmic function (LOG) 20, 117
Logical operators 42
Loop 86

M
Magnify sprites subprogram

(MAGNIFY) 22, 25, 118, 120, 142,
176

Mantissa 39
Master selection list 11
Master title screen 11
Maximum function (MAX) 20, 121
MERGE clause 163
MERGE command 16, 122
Minimum function (MIN) 20, 124
Modes 11
Motion of sprites subprogram

(MOTION) 22, 25, 125, 108, 109,
122, 125, 176, 177

Multiple statement separator (::) 38
Multiplication 41
Musical tone frequencies 196

N
Name (variable) 39-40
NEW command 16, 126
NEXT statement . . 18, 86, 127, 30, 31, 32,

49, 58, 60, 71, 78, 87, 96, 99, 106, 120,
122, 125, 127, 130, 142, 151, 153, 157,
171, 175, 177, 183

Noise 170
Normal decimal form 39
NOT logical operator 42
Notational conventions 39
NUMBER command ... 13, 128, 28, 29, 31
Number representation 39
Number-string function (VAL) 188
Numbers 39
NUMERIC clause 47
Numeric constants 39
Numeric expressions 41
Numeric variables 41

0
OLD command 16, 129
ON...GOSUB statement 21, 133, 134
ON...GOTO statement 135, 136, 183
ON BREAK statement 26, 52, 130
ON ERROR statement 26, 83, 131,

84, 132, 158
ON WARNING statement 26, 137
OPEN statement 138, 106, 113, 153
Operators (Arithmetic, Relational,

String, Logical) 41-44
OPTION BASE statement 141
OR logical operator 42, 183
Order of operations 41
Output 18
OUTPUT clause 139
Overflow 39

P
Parameter 19, 72, 180
Parentheses 41
Pattern of sprites subprogram

(PATTERN) 22, 25, 142, 176, 177
Pattern-identifier conversion table 57,

197
Peek subprogram (PEEK) 22, 143
Pending inputs 105
Pending outputs 148
Pi, value of function (PI) 20, 144, 69,

168, 186
Position in a string function (POS) 20,

145
Position of sprites subprogram

(POSITION) 22, 25, 146, 176, 177
Powers 41

220 TI Extended BASIC

INDEX

PRINT statement .. 19, 147, 55, 60, 61, 65,
69, 71, 84, 90, 91, 96, 99, 103, 106,
113, 117, 127, 128, 130, 132, 137, 145,
149, 151, 153, 157, 158, 162, 168, 178,
183, 186

Print separators 19, 147
PRINT USING statement .. 19, 96, 150, 99,

100, 103
Program lines 38
PROTECTED clause 163
Pseudo-random numbers 151, 159

Quit key 14, 54
Quotation marks 39

R
Random number function (RND) . . 20, 159
Random numbers 151, 159
RANDOMIZE statement 151, 28, 122,

151, 175
READ statement .. 17, 70, 152, 71, 99, 183
REC clause 104, 147
Record position function (REC) 20, 153,

153
Redo key 13, 28, 30, 31, 32
Relational expressions 41
RELATIVE clause 138, 153
REMark statement . . 154, 28, 90, 91, 120,

132, 158, 176, 177
Remarks, tail (!) 38
Remote controls 108
Repeat string function (RPT$) 20, 160
Reserved words 40
Reset 54
RESEQUENCE command 16, 155
RESTORE statement ... 70, 156, 153, 183
RETURN statement .. 26, 157, 158, 58, 90,

120, 122, 132, 134, 136
Right arrow key 12
RUN command 16, 161, 162, 183
Run Mode 11
Running a TI Extended BASIC

program 38
S
SAVE command 16, 163
Say subprogram (SAY) 19, 22, 24,

164, 202
Scientific notation 39, 97
Screen color subprogram (SCREEN) . . 19,

21, 25, 165, 84, 175
Segment of a string function (SEGS) ... 20,

166
Semicolon 19, 147, 185
Separator Symbol (::) 38

SEQUENTIAL clause 138, 106
Sign of a number function (SGN) . 20, 167
Sine function (SIN) 20, 168
SIZE clause 47, 77
SIZE command 17, 169
Sound generation subprogram

(SOUND) 19, 22, 24,
170, 171

Spaces 39
Special function keys 12-14
Speech 202
Speech pattern getting subprogram

(SPGET) 18, 22, 24, 172, 202,
164, 172

Split console keyboard 200
Sprite definition subprogram

(SPRITE) 19, 22, 25, 173, 65, 108,
109, 116, 120, 122, 125, 142, 174, 175,
176

Sprites 22, 25
Square root function (SQR) 20, 178
Statement Separator Symbol (::) 38
Statements 16, 17-26
STOP statement 178, 31, 55, 84, 90,

113, 120, 122, 132, 157, 158, 162, 178
String constants 39
String expressions 41
String functions 39
String variables 40
String-number function (STR$) ... 20, 179
String-segment function (SEG$) . . 20, 166
Strings 39, 41
SUB statement 180, 55, 183
SUBEND statement 184, 55, 183
SUBEXIT statement 184, 183
Subprograms, user written 23-24, 55
Subprograms, built-in 8, 21, 55
Subroutines, user written 21
Subscript 76
Subtraction 41
Suffixes 205

T
Tabular function (TAB) 20, 185, 103
Tail comment symbol (!) 38
Tangent function (TAN) 20, 186
THEN clause 94
Tones 170
TRACE command 16, 26, 186
Trigonometric functions (ATN, COS,

SIN, TAN) 51, 69, 168, 186

TI Extended BASIC 221

INDEX

U
UALPHA clause 47
UNBREAK command 16, 26, 52, 187
UNTRACE command 16, 26, 187
Up arrow key 12
UPDATE clause 139
User-defined functions 21

V
VALIDATE clause 47
Value function (VAL) 20, 188
Variables 39
VARIABLE clause 139
Version of BASIC subprogram

(VERSION) 18, 23, 190
Vertical character subprogram

(VCHAR) 19, 21, 189, 58, 176

W
WARNING, ON statement 26, 137
Wired Remote Controllers 108

XOR logical operator 42

222 TI Extended BASIC

TI Extended BASIC 223

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199
	Page 200
	Page 201
	Page 202
	Page 203
	Page 204
	Page 205
	Page 206
	Page 207
	Page 208
	Page 209
	Page 210
	Page 211
	Page 212
	Page 213
	Page 214
	Page 215
	Page 216
	Page 217
	Page 218
	Page 219
	Page 220
	Page 221
	Page 222
	Page 223
	Page 224
	Page 225

