
Do not upload this copyright pdf document to any other website. Breaching copyright may
result in a criminal conviction and large payment for Royalties.

This Acrobat document was generated by me, Colin Hinson, from a document held by me,
believed to be out of copyright. It is presented here (for free) and this pdf version of the
document is my copyright in much the same way as a photograph would be. If you believe the
document to be under other copyright, please contact me.

The document should have been downloaded via my website https://blunham.com/Radar, or
any mirror site named on that site. If you downloaded it from elsewhere, please let me know
(particularly if you were charged for it). You can contact me via my Genuki email page:
https://www.genuki.org.uk/big/eng/YKS/various?recipient=colin

You may not copy the file for onward transmission of the data nor attempt to make
monetary gain by the use of these files. If you want someone else to have a copy of the file,
point them at the website (https://blunham.com/Radar). Please do not point them at the
file itself as it may move or the site may be updated.

It should be noted that most of the pages are identifiable as having been processed by me.

I put a lot of time into producing these files which is why you are met with this page when you
open the file.

In order to generate this file, I need to scan the pages, split the double pages and remove any
edge marks such as punch holes, clean up the pages, set the relevant pages to be all the same
size and alignment. I then run Omnipage (OCR) to generate the searchable text and then
generate the pdf file.

Hopefully after that, I end up with a presentable file. If you find missing pages, pages in the
wrong order, anything else wrong with the file or simply want to make a comment, please
drop me a line (see above).

If you find the file(s) of use to you, you might like to make a donation for the upkeep of the
website – see https://blunham.com/Radar for a link to do so.

Colin Hinson
In the village of Blunham, Bedfordshire, UK.

COLLINS
MICROSOFTWARE

TEXAS INSTRUMENTS
HOME COMPUTER

GAME WRITERS' PACK 1
.111 CASSETTE SOFTWARE

WITH MANUAL

An integrated pack containing a series of programs on cassette that develop and graphically
display major ideas covered in the accompanying book. Enables any user to progressively

understand and make full use of this computer.

Contents

1 Take it from the top 5
2 In the driving seat 9

The value of truth (part 1)
3 Target practice 20
4 Two player games 27

The dense pack theory of programming 33
5 Changing directions 34

The value of truth (part 2)
6 The edges of the world 41
7 An element of chance 48
8 Obstacles and random dangers 53
9 Mazes 58

10 Movement and meetings in mazes 66
11 Colour changing 74
12 Time and place 77

Appendix A Program LISTS
Appendix B Sprites and TI EXTENDED BASIC

3

e TEXAS INSTRUMENTS
HOME COMPUTER

Game Writers"
Pack 1
PK Mc Bride

COLLINS

•

MICROSOFTWARE

Introduction

This Pack is the first of two that demonstrate the techniques
and ideas needed for writing a wide variety of games in
TI BASIC. Here we are dealing mainly with guessing games,
on-screen action and maze-based'adventure games. In
Pack 2 you will discover how to tackle games of strategy that
allow the computer to fight back.

The programs on the cassette are of two types. MAZE,
RACETRACK and TARGET are working diagrams that
demonstrate techniques in the simplest possible ways. These
can be taken over by you and converted into fully fledged
games if you wish. The other three programs, BAT,
DRAGON and DUEL are given as examples of the types of
games that can be written in TI BASIC using the ideas of this
book.

TI BASIC was designed for simplicity, not speed, and you
will find that screen action will always be rather slow
compared to arcade games. If, when you have worked
through the book, you find that you want to develop further
with action games, then you will find it well worthwhile to
get an EXTENDED BASIC cartridge. This will allow you to
use SPRITES, which give a much faster and smoother
movement. EXTENDED BASIC also has many other facilities
for the advanced programmer. A brief outline of some of
these is given in Appendix B at the end of this book.

The book assumes that you have a reasonable grasp of
BASIC programming up to the level covered by the two
Starter Packs — that is, just about all of the TI BASIC
commands, statements and functions except for those used
in file-handling. It also assumes that you possess no
peripherals apart from the cassette leads. Use of the Joysticks
is covered in the book, but all of the programs are designed
to be useable even without them.

1
Take it from the top

So you are getting tired of playing other people's games and
want to write your own! Why not. Games programming is
great fun, and an excellent way of getting to grips with the
mysteries of the computer. It can also have the useful
spin-off of entertaining the other members of your family —
the ones who have complained about the amount of time
you spend locked up with the machine.

A good game need not be difficult to write. Some of the
best use very simple ideas but have a top dressing of
graphics and sound effects to turn them into amusing and
original games. You will often find that the special effects
take longer to write than the main program, but they are
fiddly, rather than difficult, and the only real limitation is the
scope of your own imagination.

There are essentially two ways of starting to write a game.
You can begin with an effect that a BASIC routine produces
and work this up into a game. The games arising from the
CALL COLOR sub-routine that are given in the 'Colour
changing' chapter are examples of these, and you will find
many others eleswhere in the book.

The second approach is sometimes called 'Top-down'
programming. Here you decide what the game is going to be
about first, and then you find some way of turning it into a
program. When you are working this way you should expect
to spend a long time first with pencil and paper before you
ever come to the computer. If you can write down exactly —
and it must be exactly — what the program is supposed to do,
using clear and simple English, then you should be able to
write it in BASIC. You should also plan your screen layouts
on squared paper, and work out the hex strings you need for
your graphics characters before you reach the keyboard. It
really makes life easier in the long run.

4 5

Don't miss out the flowchart stage. It's the best way to see
how the program is supposed to work. You can start by
sketching in the broadest outlines.

C START

WRITE YOUR
PROGRAM

t
(STOP (for a breather))

t
LET THE FAMILY

PLAY

Figure 1

You can then start to expand the more complicated parts of
the flowchart. What does it mean 'Write your program'?

WRITE YOUR
PROGRAM

f rom START

PLAN and
FLOWCHART

SORT OUT SCREEN
LAYOUT and

GRAPHICS

TEST ANY
NEW ROUTINES

WORK OUT BASIC
ROUTINES

TYPE IN YOUR
PROGRAM

_J

to TEST

Figure 2

You may then find that you still have boxes where the
contents are far from simple. How exactly do you 'Type in
your program'?

6 7

TYPE IN
YOUR PROGRAM

ADD TRIMMING
(scores/special effects)

TYPE IN MAIN
ROUTINES

Figure 3

It doesn't finish there either, though the figures do! Clearly
there is a lot more to 'Correct' than the one word, but you
probably know your own de-bugging routines well enough
not to have to bother writing them out.

Let these be your rules for flowcharting:
Always keep the overall structure of the program clearly in

view.
Develop the details until you can see exactly what lines of

BASIC you will need.

2
In the driving seat

You should already know how to produce the effect of
movement by running HCHAR or VCHAR lines through a
loop, so we can start from there.

10 CALL CLEAR
20 FOR C=1 TO 32
30 CALL HCHAR(10,C,42)
40 CALL SOUND(50,500,1)
50 CALL HCHAR(10,C,32)
60 NEXT C
70 G0T0 20

This simply runs an asterisk across the screen and makes an
irritating noise. Now let's try and control that movement.
We want to be able to change the Row number while the
asterisk is moving. The only way to get information into the
computer while it is running, without holding things up, is
to use the CALL KEY routine. (Or the CALL JOYST routine,
which in practice comes to much the same.)

We can add to our program so that the asterisk will move
up a row whenever the E key (up arrow) is touched, and
down when the X key is pressed. But first, our Row number
must be a variable — so that it can be varied.

Add these lines:

15 R=10 (Row number at start)
55 GOSUB 100

and change

30 CALL HCHAR(R,C,42)
40 CALL HCHAR(R,C,32)

At line 100 we can then write the routine to collect
information from the keyboard.

8 9

100 CALL KEY(3,K,S)
110 I F K=88 THEN 140 (CHR$(88) is X)
120 I F K=69 THEN 160 (CHR$(69) is E)
130 RETURN
140 R=R+1
150 RETURN
160 R=R-1
170 RETURN

Type it in and see how the program works now. You will
notice that the program crashes if you try to fly off the top
or bottom of the screen, but that is something that we can
leave till later. Right now we will add some more controls —
how about an accelerator and brake?

The speed of the program is largely controlled by the
CALL SOUND line. If we make the time variable, we can
change the speed of movement.

6 T=50
40 CALL SOUND(T,500,1)

The A and B keys are here used as Accelerator and Brake,
but you could use any other keys which you find more
convenient. We need to add to our CALL KEY subroutine.

124 IF K=65 THEN 180 (65=A)
126 I F K=66 THEN 200 (66 =B)
180 T=T-5 (speed up)
190 RETURN
200 T=T+5 (slow down)
210 RETURN

All typed in and running properly? Good. Now here's a
way to get exactly the same effect, but with far less typing.

The value of truth (part 1)

Truth has a straight number value as far as the 99 is
concerned. A statement that is true is worth —1. A false
statement is worth 0. You can see this if you type in (no
line numbers needed):

X=99
PRINT (X=99)

The 99 looks at the equation in the brackets and checks to
see if it is true. It is, and so the 99 prints —1. Now type in:

PRINT (X=199)

This time 0 is printed.

We can adapt this to check the value of K from the CALL
KEY line. Knock out line 110 and replace it with this:

110 R=R—(K=88)

Notice here that you have got a double negative. Take
away minus one (— —1) is the same as 'add one'.

A similar line goes in for the E key.

120 R=R+(K=69)

Here you want 1 to be taken away when E is pressed, so
you add minus one. + —1 is the same as —1.

Try it and see what happens. Watch those pluses and
minuses carefully. Remember you have to stand on your
head when you are valuing truth.

Everything OK? You are no longer using lines 140 to 170 so
these can be knocked out as well.

We can take this one stage further, and save even more
typing. You can include as many 'value of truth' functions as
you like in one line. This means that lines 110 and 120 can be
run into one:

110 R=R—(K88)+(K=69)

If neither key has been pressed both the brackets give 0
values and R remains the same. If one is pressed, you get the
appropriate movement up or down. If both keys are pressed
you get upward movement! Whenever the 99 find two or
more keys down at a CALL KEY line it tends to pick out the
one with the lowest character code. 'Tends to' — there are
exceptions, and they don't follow any obvious rule. When
you are using CALL KEY lines it is always worth checking
out which keys have priority over others.

10 11

If you wanted to use 'value of truth' lines on the speed
controls, where you are adding or taking away 5 each time,
and not just 1, then you are going to need rather more
complicated lines. We will return to them later. Meanwhile
you might like to improve that first program by adding a nice
graphic character to replace the asterisk.

5 CALL CHAR(128,"00003098FEFF1830")

produces a little plane. Don't forget to change the code in
line 30.

Sketchpad

You will have noticed in the earlier program the line:

CALL HCHAR(R,C,32)

which printed a space over where the asterisk had been, so
that you got a flickering movement. If you miss this out, you
can develop a program to draw on the screen. This produces
thick black lines:

10 CALL CLEAR
20 CALL CHAR(128,"FFFFFFFFFFFFFFFF")
30 R=5
40 C=5 } (start point)

50 CALL HCHAR(R,C,128)
60 CALL KEY(3,K,S)
70 R=R—(K=88)+(K=69)
80 C=C—(K=68)+(K=83) .
90 GOTO 50

Run this and try some computerised doodling. You might
produce something like figure 4. (It can be done!)

Figure 4

There's room for improvement, isn't there? The first thing
to put right is the crashing when you wander off the screen.
We will add a routine to fix that. Change 80 and add these
lines:

80 R=R—(R=0)+(R=25)
90 C=C—(C=0)+(C=33)

100 GOTO 50

Lines 80 and 90 keep the Row and Column numbers within
the limits of the screen. Whenever a number threatens to
take the HCHAR position off the edge, then 1 is added or
taken away to readjust it. We will come back to this again in
the section 'The edges of the world'.

The second improvement is to give yourself some means
of wiping out mistakes, and of moving from one part of the
screen to another, without leaving a trail. We can do all of
this with the same alteration, where we allow either a block
or a space to be printed. The simplest way to do this is to
make the printed character code into a variable. (G for
Graphic). Line 50 now reads:

CALL HCHARCR,C,G)

Set the initial value of G somewhere earlier in the program.

35 G=128

(solid
block)

12 13

+
~

~
~
~

14 15

We now make one of the keys into a switch, and look out for
it after the CALL KEY line:

65 IF K=65 THEN 110 (65 ='A', use another key
if you prefer)

This takes us to a routine to switch from block to space, or
from space to block, for when you want to switch back.

110 I F G=128 THEN 140 (it is a block?)
120 G=128 (G must be 32 — the space)
130 GOTO 50 (and back to the print line)
140 G=32
150 GOTO 50

Type in the improvements and see how it works now. You
should be able to draw a new range of doodles.

Figure 5

All very interesting, you might be saying, but what has
this to do with games programs? The answer is 'several
things'. Firstly it should help you to develop your ideas
about steering and key-based controls. Secondly, you could
use this sort of program as part of a larger one, where its
purpose is to let you draw up a new game board each time
you set up the game. Thirdly, it leads directly to 'Catch the
Grimble', which we will come to in a little while.

Figure 6

Meanwhile, here is the basis of a ski-run game which uses
simple key controls. The game relies on the fact that the 99
starts printing from the bottom, and keeps scrolling upwards
all the time. It prints the edges of a long and winding road,
and also prints a 'skier' on that track. The player's job is to
keep the skier inside the markers as they wind back and
forth across the screen. This simply uses brackets for the
edges of the track, and a plus sign for the skier. You may
prefer to create some nice graphics instead and add them in
at the beginning.

10 E=10 (Left-hand Edge column)
20 P=15 (Player's starting column)
30 PRINT TAB(E);"(";TAB(P);"+";TAB(E+10);")"

Note that the right hand Edge is always 10 spaces to the
right.

40 X=RND
50 E=E—(X>.5)+(X<.5)

If the random number (X) is more than .5, then E will be
increased by 1 and the track will move to the right. A small
random number brings the track to the left.

60 E=E+(E>20)—(E<1) (keeps the track on
70 CALL KEY(3,K,S) screen)
80 P=P—(K=68)+(K=83)
90 IF P<=E THEN 120

100 IF P>=E+10 THEN 120
110
120

GOTO 30
PRINT "CRASH"

2

When you have got the program typed in and working, you
might like to replace that simple 'CRASH' with a full routine.
Some suitable sound effects and graphics and a few witty
comments.

Let us look a little more closely at lines 90 and 100. You will
see that there is a double check in each line. '<=' means 'is
less than or equal to'. In this particular program, the equals
sign alone would really have been enough, but there will be
other times when you might just miss a 'collision' of this
sort, and the double check makes sure that you don't. It
takes very little space or time to include, and it might prevent
some frustration. Make sure that the equals sign always
comes second, or it may not work properly.

Those two lines could be combined into one if you prefer.
You may remember from Starter Pack 2 that you can create
AND/OR effects.

90 IF (P<=E)+(P>=E+10)<>0 THEN 120

This single line does the job of the other two. If either of the
equations in the brackets is true, then the total value of the
two statements will be —1.

Game variations
1 The squeeze. Instead of having the right-hand side

printed a fixed 10 spaces away, you could reduce the
track width steadily. Start with a reasonable width:

5 W=10

Alter the print line so that the last part reads:

...TAB(E+ W);")"

and narrow the track before you return to the print line:

105 W=W—.1

This will reduce the track to nothing in one hundred
lines, just over 4 screens full.

Speed-up. Here you build a delay into the program, but
make the length of the delay variable.

6 T=50
106 FOR D=1 TO T (delay time)
107 NEXT T
108 T=T-1

This has probably made rather a mess of your line
numbering, so RESEQUENCE it to tidy it up again, SAVE it,
and let the family play!

Joysticks!
If you have got them, you are probably itching to use them.
If you haven't, go on to chapter three.

There is no doubt that the Wired Remote Controllers (to
give them their proper name) make it much simpler to
control movements on screen. You can actually feel the way
you are trying to move your piece. They plug into the
nine-pin socket on the left-hand side of the machine, and
don't worry about plugging them in when you've got a
program already loaded into the memory. The socket is
protected so that your program is not disturbed.

MAKE SURE THE ALPHA LOCK IS UP whenever you are
using joysticks. If you leave it pressed down the 99 will not
pick up the forward movements properly.

The joysticks are linked into the program with a CALL
JOYST line. This should state which joystick you are using,
and give the variables where you want the movements to be
stored. It is normal to use X for left—right movement, and Y
for up and down. A line to read Joystick 1 would look like
this:

CALL JOYST(1,X,Y)

16 17

The numbers in the X and Y stores will always be either 0,4
or -4. There are 8 possible positions for the joystick, and the
X, Y values of each are shown here.

(0,4►
(-4,4) (4,4►

X\ /X

(-4,0)1—Q () D-0'14,0)

0
(-4,-4) 1, (4,-4)

(0,-4)

Not quite right is it? The asterisk is jumping 4 spaces at a
time, and its working upside down. It is upside down
because the Row numbers get bigger going down the screen,
but the Joysticks numbers increase upwards. Change lines 60
and 70 to these:

60 R=R-Y/4
70 C=C+X/4

Now try it. See how close you can get to the edge of the
screen without getting a 'BAD VALUE IN 40' report.

You might like to convert Sketchpad and Ski-run programs
to work off joysticks.

There are, of course, two joysticks and you can, of course,
use them both at the same time - or rather, you and another
player can use them both at the same time. We will come
back to them in the 'Two-player games' chapter.

Figure 7

Let's build up a program to use the joysticks. This will move
an asterisk around the screen. The asterisk's co-ordinates are
stored in R and C, and these are adjusted by adding X and Y.

10 CALL CLEAR
20 R=12

(start in the centre) 30 C=16
40 CALL HCHAR(R,C,42)
50 CALL JOYST(1,X,Y)
60 R=R+Y (vertical adjustment)
70 C=C+X (horizontal)
80 GOTO 40

Type this in and run. Don't forget to check the ALPHA
LOCK.

18 19

3
Target practice

GRAPHICS

INITIAL VALUES
for VARIABLE

Shooting type games written in BASIC will never be as fast
as machine code games, but speed is not the only thing that
makes for a good game. Sound, interesting graphics and an
element of chance all help to make a game more fun to play.

The program TARGET is a simple example of a shooting
game, and this could be dramatically improved by the
addition of some imaginative special effects and a good
scoring system. There is nothing to stop you using TARGET
as the basis of a game of your own. The flowchart for the
program is shown in figure 8, and you will find it listed in
Appendix A.

Shooting games don't have to be done this way, and it is
worthwhile to look at the different routines that can be used.

Moving targets

A simple FOR. . .NEXT. . . loop moves the 'plane' across
the screen:

350 FOR TC=1 TO 32 (Target Column)
360 CALL HCHAR(5,TC,128) (128='plane'
... graphic)
650 CALL HCHAR(5,TC,32) (rubbing-out space)

670 NEXT TC
680 GOTO 350

Notice how the graphic is printed at the start of the loop, but
not rubbed out until very nearly at the end. This keeps the
'flicker' time down to the absolute minimum. In between
these are fitted the various gun-moving, and hit-checking
routines.

Figure 8

On this version, the plane always flies across at row 5. This
could be made variable. It could be made to fly lower on each

20 21

GRAPHICS

INITIAL VALUE
for VARIABLES

PRINT TARGET

CALL KEY

RUB OUT
TARGET

PRINT & MOVE
GUN

Yes

•
CRASH!

pass across the screen. This would give the player less time
to respond. To do this you would replace the '5' in the CALL
HCHAR lines with 'R', give an initial value to R, and add to it
at the end of the loop.

345 R=5
675 R=R+1

Try adding these to the TARGET program and see what you
think.

It actually makes it even harder than you think to hit the
plane now. This is because the bullet skips 3 spaces at a time,
so that it can pass the plane, but the hit isn't recorded. You
can correct this by making line 675 read:

675 R=R+3

The crash routine will also need adjustment. It all goes to
show that when you start fiddling with a program you
always finish up with more work than you bargained for!

High speed bullets
In the present program you have a gun which can be
shuffled across the bottom of the screen, and bullets which
visibly fly up at the target. These could be replaced by a gun
which could be steered anywhere about the screen. Then,
when you have got the gun directly over the plane's
position, pressing the Fire button will send an incredibly
high-speed bullet zooming at the target. So fast, indeed, that
it is invisible! Doesn't that make the program easier? The
much simpler flowchart for this is shown in figure 9.
The 'Check for Hit line looks like this:

IF (TR=GR)*(TC=GC)=1 THEN... (gotocrash
routine)

If it is true that both the row and the column co-ordinates of
the target (TR,TC) and the gun (GR,GC) are the same, then
you have —1 * —1=1.

Figure 9

You might like to work out the BASIC program to produce
that type of shooting game. A check program is given at the
end of the chapter. Please remember that there is no single
correct way of writing a program. If yours works, then that is
all that really matters. Use the check program for reference
only.

22 23

Crumph!

~ a * A
W * R

B *
*T

G X *
C P *

Y *
D * M

E H
R T

w

s

z

J

Checking for hits
Comparing co-ordinates is one way to check for hits, and
works perfectly well, especially where you have only one
target occupying only one space. If you had a larger target,
or several, then the co-ordinate check lines would get rather
complicated. Here is another way of checking. This uses the
GCHAR subprogram. GCHAR is short for GET
CHARACTER, and it will tell you what character is at a
particular part of the screen. Try this:

10 CALL GCHAR(10,10,Z)
20 PRINT Z

Run it and it should print 32, the code for space. If it prints
anything else then you must have had other material already
printed on the screen. CALL CLEAR and run it again.

Now add this:

5 CALL HCHAR(10,10,42) (or any other code
number you like)

This time it will print 42.
When you are using GCHAR check lines, you have to be

careful to check the square before your bullet or gun is
printed there, otherwise, you will simply find the code for
that, and not for your target. In the TARGET program you
will find these lines:

540 CALL GCHAR(BR,BC,Z) (Bullet Row and
Column)

560 CALL HCHAR(BR,BC,129) (129 = bullet)
570 CALL HCHAR(BR,BC,32) (rub out immediately

for flickering effect)
580 IF Z=128 THEN 710 (128 = plane)

By waiting until the bullet has been printed and rubbed out
before going off to the 'Crash' routine, you make sure that
the target has been rubbed out as well.

Figure 10

You can use the GCHAR check to find one particular
character, or a range of characters. Look at the program
below. This starts by printing random capital letters (line 50
works out the code number.) It then drops an asterisk down
the screen. You, the player, have to steer the asterisk around
the 'obstacles'. Notice the way that the check line picks up
any character with a code over 64.

10 CALL CLEAR
20 RANDOMIZE (don't forget this)
30 FOR N=1 TO 24 (every row)
40 X=I NT (RN D*32) +1 (random TAB position)
50 A=INT(RND*26)+65 (random letter)
60 PRINT TAB(X);CHR$(A)
70 NEXT N
80 C=15 (starting Column)
90 FOR R=1 TO 24 (every row again, from the

top)
100 CALL GCHAR(R,C,Z)
110 IF Z>64 THEN 180 (hit something)
120 CALL HCHAR(R,C,42)
130 CALL KEY(3,K,S)

24 25

140 C=C—(K=68)+(K=83)
150 NEXT R
160 PRINT "MADE IT"
170 GOTO 30
180 PRINT "CRASHED"
190 GOTO 30

(left-right steering)

(you must have done to
have got here)

4
Two player ga mes

Here's that check program for the 'high-speed bullet' game.

10 CALL CLEAR
20 CALL CHAR(128,"00003098FEFF1830") (plane)
30 TR=5 (Target Row)
40 GR=15 (Gun Row)
50 GC=15 (Gun Column)
60 FOR TC=1 TO 32
70 CALL HCHAR(TR,TC,128) (print target)
80 CALL KEY(3,K,S)
90 IF S=0 THEN 150 (moving?)

100 CALL HCHAR(GR,GC,32) (Rub out old gun
110 G R=G R— (K=88)+(K=69) graphic)
120 GC=GC—(K=68)+(K=83)
130 IF Ko70 THEN 150 (firing?)
140 IF(TR=GR)*(TG=GC)=1 THEN 190
150 CALL HCHAR(GR,GC,43)

Catch the Grimble
This is a steering game for two players. One player controls
the Grimble, the other lays out Grimble cages. If the Grimble
runs into a cage, or if the Grimble-catcher is able to drop a
cage on it, then the game is over. In the version given below,
there is no way in which the Grimble can stay free forever,
but a simple counter keeps track of how long it stays on the
loose.

The game produces screens something like figure 11.

1111111111111111MIMMIIIIIIIIIM

1111M111111111: :i1111INIZZI
~ E~~aICiii:1~~~~
~~41111111i111M11111111
■eliiiii■nIEl111111111M1
1111q11111211113111M11111111111

1111111111111MIMININMIZI
1111111n::ammen:1IIIIIBB
31111111111■111111ZZNIIMMI

(prints a cross for the
gun)

160 CALL HCHAR(TR,TC,32) (rub out old plane
170 NEXT TC graphic)
180 GOTO 60 (and fly across again)
190 FOR V=1 TO 30
200 CALL SOUND(100,200,V,210,V,-8,V) (Bang!)
210 NEXT V

Grimble
starts
here

Grimble-catcher
starts
here

Figure 11

As there are two players, you will have to use the split-
keyboard technique, or joysticks if you have them. The
routines for the left and right sides can be combined into
one, and we will return to that later, as it is probably easier at
first to write in separate routines.

26 27

Here is the Grimble flowchart.

T
GRIMBLE (GR,GC)

and CATCHER (CR,CC)
start points

t
START COUNTER

GRIMBLE

GCHAR CHECK

4 t

PRINT GRIMBLE
and CAGE

t
CATCHER'S MOVE

(check for edges!)

t
GRIMBLE'S MOVE

(edges!)

ADD TO COUNTER

Figure 13

You would expect that the lines controlling up/down
movement would look something like this:

R=R—(K=0)+(K=5)

Unfortunately, for reasons known best to itself, the 99 does
not accept (K=0) as ever being true in this situation. There is
always a solution though, and here is one.

... CALL KEY(1,K,S)

... K=K+1

... R=R—(K=1)+(K=6)

You will have to add one to the column checks as well:

... C=C—(K=4)+(K=3)
See if you can put 'Catch the Grimble' together, working

from the flowchart. There is a check program at the end of
the chapter if you need it. By the way, proper Grimbles look
like this:

Figure 14

E

5 5

J D s K

3
4— —10.

2 2 3

X

0

M

0

Figure 12

The split keyboard
The code numbers you get with CALL KEY(1.. .) and CALL
KEY(2...) lines are quite different from the ASCII codes
given by the standard keyboard check. The obvious choice
for controls are the group of 'arrow' keys on the left hand
side and the matching group on the right. Here they are with
their codes.

CHARACTER
DEFINITION

28 29

30 31

And this is a Grimble cage, unless you care to design a better
one.

Figure 15

Game variations
1 Supper. It is little known fact, but Grimbles are very

partial to your late night snack of cocoa and biscuits. Print
a mug of cocoa on the screen, and scatter a few biscuits
around. The object of the game now is to see how much
of your supper the Grimble can scoff before it gets
caught.

"FCFFFDFFFCFC78" gives this:

and

"3C429185A189423C" makes a Garibaldi:

Figure 16

2 Home. Draw a Grimble-hole somewhere along the
bottom of the screen. Make its position random to give
the Grimble a fair chance. It is now possible for the
Grimble to win. You will need to include another check
line to pick up when the Grimble reaches its hole, and an
alternative ending to suit the occasion.

Grimble holes are quite large, and have specially
shaped doors so that they can walk in without bending
their feelers.

31111111111111111111111111111111111B11111
11»
Mill11■1111111111111■n1«
11111111111311111311111111111111111M

111111111311111111111BMIZIMIMIZI
11111111111111111»111111M1111»

11111ZIOBBIZZIMINIMIIIIM

111111111111311111111111113111«1111111B
111111111331111311111111111111111•111111
111111111111•111111011»111111•111111111
511111113111111311111111111111111111111111

Figure 17

3 Compute-a-Grimble. You can get the 99 to look after the
Grimble for you, but that requires quite a different
approach. See 'Movement and Meetings in Mazes'
below.

'Catch the Grimble' check program:

10 CALL CLEAR
20 CALL CHAR(128,"FF818181818181FF") (cage)
30 CALL *CHAR (129,"44287C547CBA82C6") (grimble)
40 GR=1
50 GC=32
60 CR=15
70 C C=3 (Catcher start)
80 T=0 (trip counter)
90 CALL GCHAR(GR,GC,Z) (cage check)

100 IF Z=128 THEN 280 (caught)
110 CALL HCHAR(GR,GC,129)
120 CALL HCHAR(CR,CC,128)
130 CALL KEY (1,K,S) (catcher's movement)
140 K=K+1
150 CR=CR—(K=1)+(K=6)
160 CC=CC—(K=4)+(K=3)
170 CR=CR—(CR<=1)+(CR>=24) (edge checker)
180 CC=CC—(CC<=1)+(CC>=32)
190 CALL HCHAR(GR,GC,32) (rub out old Grimble)
200 CALL KEY(2,K,S) (Grimble's movement)
210 K=K+1
220 GR=GR—(K=1)+(K=6)
230 GC=GC—(K=4)+(K=3)
240 GR=GR—(GR<=1)+(GR>=24) (edge check again)
250 GC=GC—(GC<=1)+(GC>=32)
260 T=T+1 (trip counter)
270 GOTO 90
280 PRINT "YOU HAVE CAUGHT THE GRIMBLE"
290 PRINT "HE WAS FREE FOR";T;"TRIPS."

If you are using joysticks, the program is basically the same.
Remove lines 130 to 160 and replace with these:

130 CALL JOYST(1,X,Y)
140 C R=C R—Y /4 (remember the joystick works the
150 C C=C C+X / 4 opposite way to the Row numbers)

The dense pack theory of programming
If you look at the listing of DUEL you will find that one single
routine is made to serve both tanks. In theory this is
supposed to cut down on your typing time, and to produce a
more compact and elegant program. In practice the program
is indeed more compact, but the typing time is no less. The
lines are quite complex, and mistakes are all too easy to
make.

What happens here is that you use array variables rather
than simple ones. R(1) stores the Row number for tank 1;
R(2) for tank 2. Likewise C(1) and C(2) replace TANK1COL
and TANK2COL (or whatever you would have called them).

When you come to arrange the lines for movement
controls, you use a loop.

FOR P=1 TO 2
CALL KEY(P,K,S)

so that the first time it works as CALL KEY(1..., and next
time round it checks the other side of the keyboard. (The
CALL JOYST routine is handled exactly the same.)

The change of variables then looks like this:

R(P)=R(P)—(K=1)+(K=6)
C(P)=C(P)—(K=4)+(K=3)

and the check lines finish up with rather a lot of brackets!

R(P)=R(P)—(R(P)<=1)+(R(P)>=24)
C(P)=C(P)—(C(P)<=1)+(C(P)>=32)

Try converting the Grimble program to use arrays in this
way. It may seem like a lot of work for very little reward, but
there will be other times in your games writing where array
use will save a lot of time, so practice now.

(grimble start)

Remove lines 200 to 230 and replace them in the same way.

32 33

D=1 D=2 D=3 D=4

CHR$(131) CHR$(13o)

Figure 18

CHR$(132) CHP$(133)

D=1

(Car Row, Car Column)
FOR D=1 TO 4
CALL CHAR(CR,CC,129+D)
NEXT D

Controls
These have to be rather different from the simple steering
controls that we used earlier, as the 'car' is always moving
forward — whichever way it is pointing, What is needed is an

The routine then looks like this:

D=D—(K=68)+(K=83)

CALL HCHAR(CR,CC,129+D)

5
Changing directions

You might want a gun that can be pointed in different
directions, or a target that spins when it is hit. You might
want to manoeuvre a spaceship through the endless shoals
of space. They all use much the same technique.

The first thing you need is a set of graphics that show the
same object pointing different ways. The ones in figure 18
are from the RACETRACK program.

accelerator, a brake and some means of turning clockwise
(right) and anti-clockwise (left).

As always, there are several possible solutions. Joysticks
provide very simple controls for the player, and we will
return to these later. If you are using Keys, then you might
simply use the number keys 1 to 4 to fix direction, and letters
A and B for speed controls. The routine would then look
something like this:

CALL KEY(3,K,S)
IF K>52 THEN (goto speed changing routine)
D=K-48
GOTO.`. .

The line D=K-48 brings the code of the number down to
its value. Code '1' is 49.49-48 = 1.

This is not the method that you will find on RACETRACK.
It may be simple to write the program this way, but the
controls could prove confusing. There only two keys are
used for steering. S (left, or anti-clockwise) and D (right). A
quarter turn to the right is the same as D=D+1. A quarter
turn anti-clockwise is D=D-1.

These are defined early in the program into character codes
130,131,132,133. This means that the graphic for any
direction will be found at code 129+D.

When the car crashes into a wall, it is spun using a set of
lines like this:

(3)D

=D+1

D=D-1 j~

D=4 11 D=2

SIV
D=3

Figure 19

)t
D=D+1

S D

34 35

You need to slip a check line in there to stop D wandering
out of range:

D=D—(D=0)+(D=5)

So if D = 0 it is increased to D = 1, and D = 5 is taken back to
4. This is a little crude. We will return to a better check in a
moment.

Speed
How fast the car moves depends on the time value in the
CALL SOUND line. This is variable, and in RACETRACK it
is stored in M (speed of Movement). The keys E and X serve
as accelerator and brake, and they could be made to alter the
speed by a routine like this:

200 CALL KEY(3,K,S)
210 IF K=69 THEN 250
220 IF K=88 THEN 270
... (direction changing lines)
250 M=M-10 (accelerator, reduces delay time)
260 GOTO... (CALL HCHAR lines)
270 M=M+10 (brake)
280 GOTO...

However, if you look at the RACETRACK listing in
Appendix A, you will find no such routine. Instead, you will
find a variation on the 'value of truth' type of line. While this
is somewhat harder to grasp, once you have got the hang of
it, you will find that you save typing time, and get a slight
increase in the speed of the program.

Time for a quick Detour.

Run it, and you will get —10. Alter line 20 so that X =
something else and you will get O. Put that back to X=99,
and change the multiplier in line 20 to .5, and you will get
—.5 as the result. The number you get at the end can be
made positive by the use of a minus sign, and a set of
brackets:

20 PRINT —(10*(X=99)) (don't forget double
brackets at the end)

In RACETRACK this technique is used to produce a single
line which alters the speed if either E or X is pressed.

... M=M—(10*(K=88))+(10*(K=69))

A similar line prevents the CALL SOUND time from
reaching 0, which would cause a program crash.

... M=M—(10*(M=0))

Change that direction check line to:

... D=D—(4*(D=0))+(4*(D=5))

and you will have smooth movement whichever way you
steer.

Keep on moving
It is an important part of this sort of program that the car
keeps moving, but you clearly cannot do this through a
FOR. . .NEXT. . . loop, as you don't know where the car is
supposed to be next. That is up to whoever is steering it. The
change in the car's co-ordinates depends entirely on its
direction at the time. You can see these changes in this table:

Direction Movement

D= 1 CC=CC+1 (to the right)

D = 2 CR=CR+1 (downwards)

D= 3 CC=CC-1 (left)

D = 4 CR=CR-1 (upwards)

The value of truth (part 2)
You know that a true equation is worth —1, but you can
increase, or reduce, the amount of change produced by a
true equation by multiplying it. Try this:

10 X=99
20 PRINT 10*(X=99) Figure 20

36 37

BR = BR+(6*(D=3))—(6*(D=1))
BC = BC+(6*(D=4))—(6*(D=2))

This makes the bullet bound across the screen. You could
splice this kind of bullet movement in with the main
program, as with TARGET, so that your opponent has time
to move. The bullet would then remain in motion until it hits
its target or the edge of the screen. If you make the program
jump over the direction changing routines when the bullet is
in flight, then it will fly straight. Allow the program to run
through the direction changer and you have a steerable
bullet — a guided missile, no less!

Directional movement
What works for four directions works just as well for eight,
but it's more than twice as much bother.

5 F-- —♦ 1

6

D=D+1

7

D=D—(1 1

Figure 21

You will need eight graphics of course, and it will be more
difficult to keep the same shape, as the new graphics will all
be diagonal. It will be best to have a very simple shape with a
clearly marked front end — a sharp point, or a long gun.

The turning routine can be exactly the same, except that
you will need to change the upper limit in the check line
from 4to8.

By far the neatest way to change the car's variables is to use
'value of truth' lines.

CC=CC+(D=3)—(D=1) (remember truth turns
C R=C R+ (D=4)—(D=2) everything upside down)

The alternative is a routine like this:

... ON D GOSUB 1000,1020,1030,1040

1000 CC=CC+1
1010 RETURN
1020 CR=CR+1
1030 RETURN
... etc.

ON. ..GOSUB works perfectly well here, where D must
always be either 1,2,3 or 4, and the variable changes are very
easy to see in those subroutines.

Turn and fire
If you want to develop a game like DUEL, where the tanks
can fire in any direction, then the bullets' movement must be
directed in the same way as the tank. Remember though,
that you would normally want the bullets to travel faster
than the tanks (or spaceships, guns, fire-breathing dragons
or whatever). You can manage this in either of two ways.
The bullet's movement could be run through a loop:

FOR T=1 TO 6 (or however many spaces)--
B R=B R+ (D=3) — (D=1) (Bullet Row)
B C=B C+ (D=4) — (D=2) (Bullet Column)
CALL HCHAR(BR,BC,134) (where 134 is the bullet)
CALL HCHAR(BR,BC,32)
NEXT T

You will need to fit a check line in there to spot any 'hits'.
This gives a continuous movement and allows the victim no
chance of escape.

The alternative is to use a variation of the 'value of truth'
lines, as with the speed controls earlier.

38 39

Flat Earth (1)

AAGH! HERE BE DRAGONS!

The main extra work comes in the movement lines. It will
be much easier if you an ON D GOSUB... line, and have a
set of eight subroutines. Four of these will simply change
one variable each. The other four will have to each change
two variables to allow for diagonal movement. This one
moves up and right.

1100 CR=CR-1
1110 CC=CC+1
1120 RETURN

It is possible to make the changes through 'value of truth'
lines, but they get terribly complicated. However, it is an
interesting exercise if you feel up to the challenge.

Joysticks

If you have got joysticks you should use them for this sort of
game. The program is simpler to write, and the controls are
easier to use. The routine looks like this:

CALL JOYST(1,X,Y)
M=M-2.5*Y (speed)
D=D+X/4 (direction)

The point you must remember when using CALL JOYST is
that the X and Y numbers will be either —4,0 or 4. The X
number must be divided by 4 to give one step at a time
direction control. The Y value will also need adjusting to give
the acceleration or braking that you want. Here it is
multiplied by 2.5, so that speed is changed in steps of 10.
Because the joysticks allow diagonal pressures it is possible
to get both X and Y results at the same time, so that you can
turn and brake in one movement.

G
The edges of the world

The question is, 'Does your 99 think the world is flat, round,
or rubber-edged?' — Why not keep it guessing? You must do
something when the spaceship/tank/car/duck reaches the
edge of the screen, but it doesn't have to be the same thing
every time. Here are your three main alternatives.

The flat earth
In this type of edge routine, you declare the player out
whenever his piece goes over the edge of the screen.

IF (R<1)+(R>24)=-1 THEN...
IF (C<1)+(C>32)=-1 THEN...

Either line will send the program off to an end routine with
some suitably silly comment like 'You have fallen off the
edge of the world and the monsters have eaten you up.'

It's not the friendliest way to deal with screen edges, but it
keeps people on their toes.

Figure 22

40 41

You have already been using another version of the flat
earth approach, where there is a brick wall all around. Here
the check lines prevent the variables from going beyond their
limits.

R=R—(R<1)+(R>24)
C=C—(C<1)+(C>32)

You can, of course, use an actual 'brick wall' — well almost.
Use HCHAR and VCHAR lines to draw a solid edge around
your playing area, and use a GCHAR line to check the
players' movements.

Flat Earth (2)

Figure 23

Wrap-around screens

These are for modern computers that know that the world is
round. When a piece wanders off the edge, it reappears on
the opposite side, as if it had shot round the back. You can
do this with separate sets of lines for each edge:

... IF R>24 THEN...

... R=1
... GOTO... (back to main program)

Or you can use two involved 'truth' lines:

R=R—(24*(R=0))+(24*(R=25))
C=C—(32*(C=0))+(32*(C=33))

This keeps the pieces in continual movement, and is
especially useful if you are working out some kind of

spaceship docking program. The ship could be steadily
matched in speed and position with the 'space station',
getting closer at each pass across the screen.

The wrap-around screen

Figure 24

Rubber edges
Here the piece is bounced off the edge by altering its
Direction control variable. Pick it up as it reaches an edge:

IF (R=1)+(R=24)=-1 THEN...
IF (C=1)+(C=32)= 1 THEN...

and change direction .. .

D=D+2
D=D+(4*(D>4))

This is for the 4 direction movement of course, and those
D changing lines work for any directions, as you can see in
this table.

Original New
D D+2 D>4? D-4 Direction Direction
1 3 no Right Left
2 4 no Down Up
3 5 yes 1 Left Right
4 6 yes 2 Up Down

Figure 25

42 43

Rubber edges (1)

Figure 26

Diagonal bounces

These create difficulties all of their own. When you have only
horizontal and vertical movement, the moving object will
simply reverse direction on contact with the edge. However,
when the movement is diagonal, the change of direction will
be 90°. This would be no great bother, except that sometimes
it will be 90° to the left, and sometimes 90° to the right. It all
depends on the original direction, and the edge which has
been hit.
You can see diagonal bounce routines at work in the BAT
program. The 'bat' can only move diagonally, in the four
ways shown below.

1 N

i/P \de
4 1 2 3

z 4

\ 3

2

3

4

1R

2

3 2 1 4

\ \h/

Here's what happens when he reaches the edges.

+1

+1

Figure 28

As you can see the direction change is not simple. The
program must check the original direction, and the edge
where the action is taking place. There are several possible
solutions. The simplest, but longest is like this:

IF (D=1)*(R=1)=1 THEN... (Direction 1 at top
... edge?)
D=4 (change to 4)
GOTO... (back to main program)

You need 8 sets of lines like that.
Another method is used in BAT for the edge bounces.

There the edges are coded. They may all look the same, but
each edge uses a different graphics block with codes from
133 to 136.

A GCHAR line checks every square before the bat moves on
to it. If the square has a code between 133 and 136, the
program goes to the edge routine. (Lines 930 and on).

4 3

Figure 27

+1

+1

44 45

Code
136

Edge number 4

Edge number 3

Edge number 1

Figure 29

940 E=Z-132 (Z is the code got by GCHAR)
950 D = D + 1 —(2*(D=E))
960 D=D+(4*(D>4))

If you compare figures 28 and 29 you will see that when the
direction (D) is the same as the edge number (E), then the
change of direction is —1. If they are different the change is
+1. It makes for simpler programming though to treat the
—1 change as +3. It comes to the same thing in the end, and
needs only a single check in line 960 to keep D in range.

Look what happens when the bat is flying up and left and
hits the top. The original direction was 1, and the edge code
is 1. Line 950 adds 1 and then adds a further 2 because the
D and E variables are the same. The new direction code is 4.
Contact with the left side changes this to 3. When the bat hits
the bottom, coming from direction 3, his new direction code
is 6, which is brought back to 2 by line 960.

The 'bat-knocker' works rather differently. It is assumed to
have sides but no ends, so that the bat will continue in the
same vertical direction, but with left and right swapped over.
1 becomes 2, 4 becomes 3, and vice versa. The change to D is
therefore only ever 1 more or less, and it follows a simple
rule. It is managed through this line:

D = D —(D=1)—(D=3)+(D=2)+(D=4)

1 is added if the original direction was 1 or 3, and taken
away where it was 2 or 4. A double check line then keeps D
within the 1 to 4 limits.
This type of routine can be combined with a straightforward
reverse bounce routine to cope with 8-directional movement.
When the missile hits the edge the program must work out
whether a simple reverse or a diagonal bounce is needed. If
you code your directions like this:

Figure 30

then you can pick up the diagonal bounces by the fact that
the direction code is an even number. This line filters out
even numbers:

IF D/2 = INT(D/2) THEN...

An odd number will end in .5, and this would be chopped
off by the INTEGER function, and the numbers would
therefore not be equal. Define your edge blocks into
character codes 132,134,136 and 138, and you can get your
edge code by taking 130 off the number produced by the
CALL GCHAR line.

Sketch out your screen before you start and draw on it all
the possible bounces. Make up a table of those bounces,
divided into the simple reverse, and the diagonal types, and
you should be able to see the numbers that you will have to
use to change directions.

Code
134

Edge number 2

46 47

7
An element of chance

When a game gets predictable, it gets boring. If you know
what's going to happen next, there's not much point in
playing on. This is where you need to introduce an element
of chance. (There is, of course, always the chance that your
program won't work as you expect, but let's hope not!)

Random factors in shooting games
There is nothing to stop you from moving your target at
random. If the target is a plane, you would expect it to fly
smoothly, but it could vary its height as it flew. Hold the
target row in a variable, and vary it with a line like this:

TR=TR +1+(2*(RND>.5))

If the random number in that line is less than .5 then 1 is
added to TR and the plane dips. With a higher random
number a further 2 is taken away (remembering that a true
equation is worth —1). The result is that 1 is taken from TR
and the plane flies higher. You will need a check line to keep
the plane on the screen.

If the target is a duck, wild animal or alien spacecraft, then
it might reasonably move by random jumps across the
screen. This routine produces jumps of between 0 and 3
columns:

J = INT(RND*4)
TC=TC + J

The target might fire back, or drop bombs, as happens in the
standard Space Invaders game. You will then need to work
in for the target the same kind of routines that you have for
the gun. Is it firing or isn't it? This can be controlled by a line
like this:

TF = (RND>.5)

The Target Fire variable is therefore either —1 or O. Another
line will send the program to a bomb routine if appropriate:

IF TF THEN ...

Note that IF TF... means the same as IF TF = —1, indeed
it means IF TF is anything other than O.

Bomb routines are the same as bullet routines, though
going in the opposite direction! You will find that the
program runs slower when you are asking the computer to
handle a target, a gun, a bomb and a bullet all at the same
time. This is inevitable in TI BASIC, but you can improve the
speed of programs by working in EXTENDED BASIC, where
SPRITES give you smoother movement at about twice the
speed. (See Appendix B)

A hit doesn't have to be fatal. You might only damage the
target — or it might only damage you. The amount of damage
can be random.

T D=O (Target Damage at start)

TD = TD +(RND*10) (how much damage this
time?)

IF TD>20 THEN... (off to 'shot down in flames'
routine)

In this example the target would receive, on average, 5
points of damage, so you would expect to have to hit it at
least 4 times to knock it out completely. The figures should
be adjusted to suit how you want the game to run.

Guessing games
Playing a guessing game with the computer should be like
playing with another person. You should not be able to
predict the answer; you will want to know when you are
right and sometimes you will expect to be given some clues
as to how you are doing, when you get things wrong.

48 49

* (8,15)
THIMBLE
(12,10) *4-›*

+5
+8

(20,5) *4--►*
—5 CD=8+5=13]

—4

CD=4+5=9]

In Starter Pack 2 you will find a 'Hunt the Thimble' game.
The object of that game was for the player to guess a pair of
co-ordinates selected by the computer. 'Colder-warmer'
clues are given to help the player find the hidden spot. To
find out whether a guess is better or worse than the previous
one, the 99 calculates the total difference between the
thimble's co-ordinates and the guess. This was done by
finding the absolute difference between the guessed and real
row co-ordinates, and between the guessed and real column
co-ordinates. The total of the two is the overall difference. Y
and X are the 99's numbers, R and C are the player's.

D1 = ABS(Y—R)
D2 = ABS(X—C)
D = D1 + D2

(vertical difference)
(horizontal difference)

Because the ABS function knocks off the minus sign (if there
is one), this routine always picks up the total difference,
wherever the guess might be. You can see the effect of some
guesses in figure 31.

Figure 31

An alternative way to work out differences like this is to use
Pythagorus' rule. There, if you ever wondered what the
ancient Greeks could offer the modern computist, now you
know!

'The square on the hypotenuse is equal to the sum of the
squares on the two other sides.'

The distance between (Y,X) and (R,C) can be worked out
like this:

A = Y—R
B = X—C
D = A"2 + B7\2 (A^2 means Az)

This can be packed into one line if you prefer:

D = ((Y—R)""2)+((X—C) 2̂)

Figure 32

(X,Y)
(10,10)

(R,C)
(5,15)

A=5

B=5

'Pick a straw'
A simpler type of guessing game — indeed, probably the
simplest type — is the 'Pick a Straw' played by the gambling
Goblins in DRAGON. In that one, whichever straw you
choose, you have a 50/50 chance of being wrong. The
flowchart for the routine is given in figure 33.

If you look at the program list for DRAGON you will find
the gambling routine at lines 2000 onwards. This could be
rewritten as a new gambling game using 'Heads or Tails'
instead of Left or Right Straws. You would need some good
graphics and a nice clear print out of the player's and the 99's
cash balances. Why not start out with £1 million each and
play a double or quits game, with no limit on the stakes.

For more complicated gambling games, have a look at the
cards and dice games in Games Pack 2.

50 51

From main
game

No
n Yes

Yes
RIGHT LONGEST

YOU LOSE

Back to main game

Figure 33

LEFT LONGEST

y No
YOU WIN

PICK THE
LONG STRAW 8

Obstacles
and random dangers
In Ski-run and Crumph games given earlier the player could
see the obstacles that had been put in his path. These
obstacles do not need to be visible. They are hidden in the
next program, 'Minefield', by colouring them transparent.

10 CALL CHAR(128,"FFFFFFFFFFFFFFFF")
(a block)

20 CALL COLOR(13,1,1) (but 'see-through')
30 CALL CLEAR
40 FOR N=1 TO 50
50 X= INT(RND*24)+1 (this scatters 50 mines)
60 Y= INT(RND*32)+1
70 CALL HCHAR(X,Y,128)
80 NEXT N
90 R=1

100 C=1
(player's start)

110 CALL HCHAR(R,C,42)
120 CALL KEY(3,K,S)
130 R=R—(K=88)+(K=69)
140 C=C—(K=68)+(K=83)
150 CALL GCHAR(R,C,Z) (check the square before

moving)
160 IF Z=128 THEN 180 (trod on one)
170 GOTO 110
180 CALL COLOR (13,2,1) (so you can see where

they are)
190 CALL SOUND(1000,-3,1)

You will need to add a 'home safe' point, and write in a
check line for it, and the end of the program needs tidying.
Hold the screen with a CALL KEY and then offer the player
another go. If you find that the minefield is too dangerous

52 53

for your taste, then reduce the number of mines by altering
line 40.

The game could be made friendlier by equipping your
player with a 'mine-detector'. This can be managed in two
different ways.

The first way is to print 'warning squares' (also invisible)
around each of the mines.

Z111111111113111111B
1111©©EMIZIE
III©:M11111111
1111©©©ZZMI
BlIZZBILIM

Figure 34

Here the mine is at 8, 9. The warning square routine looks
like this:

FOR N= 1 TO 50
X= INT(RND*22)+1 (gives numbers from 1 to 22)
Y= INT(RND*30)+1 (between 1 and 30)
FOR T=0 TO 2
CALL HCHAR(X+T,Y,129,3) (129 = warning
NEXT T square)
CALL HCHAR(X+1,Y+1,128) (the mine)
NEXT N

You will see that this first prints the warning square blocks,
and then adds the actual mine on top. The X and Y random
limits had to be changed slightly to make sure that the
warning areas stayed on the screen.

A further routine now needs to be added so that if code
129 is picked up by the GCHAR line, a warning beep sounds.

The second sort of 'mine detector' uses a looped GCHAR
line to check all the squares around each move:

FOR N = —1 TO 1
FOR T = —1 TO 1
CALL GCHAR(R+N,C+T,Z)
IF Z = 129 THEN... (warning sound)
NEXT T
NEXT N
CALL GCHAR(R,C,Z)
IF Z = 128 THEN... (boom!)

Notice how the FOR. . .NEXT. . . loops check either side
and up and down from the move square. That particular
square needs to be rechecked later to see if it is a mine, as the
looped check only gives warnings.

These Minefield programs use the screen itself to map the
game. If the screen has to be cleared, or is altered by INPUT
or PRINT lines, then the map is ruined, or lost altogether.
This makes no difference here, as you would want to have a
new layout each time you played. However, if you wanted to
give your player several tries at each layout, you would run
into difficulties. One solution is to store the map in an array.
You will remember from Starter Pack 2 that an array is a set
of stores, all with the same name, but with different
reference numbers (or subscripts). These numbers can start
from 0 or from 1. Throughout this book it is assumed that
you will write OPTION BASE 1 in your programs, and that
the arrays will therefore start from 1.

The line DIM M(24,32) sets up a bank of stores that is 24
rows deep and 32 columns wide — the same size as the
screen. When the stores are first opened they all have a value
of 0. This can then be altered (at random) to code in your
mines.

X= INT(RND*24)+1
Y= INT(RND*32)+1
M(X,Y) = 1

You do not need to transfer the map to the screen to check
for hits. It is sufficient to check the array.

IF M(R,C)=1 THEN...

54 55

Set up a 24 x 32 array and write a loop to scatter 50 or so
'mines' through it. You can then get it printed out like this:

FOR R=1 TO 24
FOR C =1 TO 32
N=M (R, C) (find the number at each point)
CALL HCHAR(R,C,48+N)
NEXT C
NEXT R

There is a catch to using simple number arrays like M(24,32)
as game maps, and it is that they consume an enormous
amount of memory. Each store within a number array takes
8 bytes — this is so that very large, or very small numbers
could be stored there if wanted. This means that M(24,32)
takes a total of 6144 bytes. Actually it takes 6154, as a further
10 bytes are needed to organise the array. A string array, on
the other hand, is much more economical in its use of
memory. Each string store takes up only 2 bytes, so
M$(24,32) takes a total of 1546 (24 x 32 x 2 + 10).

A string array is used in the DRAGON program, both to
map out the path (see below 'Mazes') and also to scatter the
goblins, gold and dragons through the maze. The routine
which does this goes from line 530 down. If you wanted to
have a look at the array before you play the game — purely for
research purposes, and not so that you can cheat — then add:

655 GOSUB 7000
7000 FOR R = 1 TO 21
7010 FOR C = 1 TO 21 (the array (P$) is 21 x 21)
7020 IF P$(R,C)="' THEN 7050 (string arrays
7030 PRINT P$ (R, C) ; are empty at
7040 GOTO 7060 the start)
7050 PRINT " "; (a space to fill any gaps)
7060 NEXT C
7070 PRINT (moves print position to next line)
7080 NEXT R
7090 INPUT A (a wait-a-bit line)
7100 RETURN

You should see something not unlike figure 35. '1' indicates
path, '2' is a crock of gold, '3' a dragon and '4' a goblin.

11111111111
2111

1
1
1
111

1
411

1 1
111132141

111 1
12 111 1

1 411 1
111131111

114211
1 111111
1 1111111

2111311
1 1111111
1 1 1113111 1

1 1 1 1 1 1 1
111 114 111

1 1 1 1
1 1 1 111
1 4 1 1 1 1
111111111111111

Figure 35

All this should have whetted our appetite for mazes, which
is just as well, because here they come.

56 57

Mazes

There are two types of maze. The first has a fixed path and is
usually a field on which a shooting or chasing game is
played. 'Munchman' is a classic example of this sort of game.
A maze of this type is really a complicated obstacle course,
and is designed in the same way.

The second type of game has a disguised path, and the
object of the game is to find the way out. The game can be
made more interesting by including a number of incidents
for the player to meet and deal with on the way. DRAGON is
an example of this type. You will notice that not only is the
path hidden, it is also different every time you play. The
dragons and goblins are also randomly positioned as
mentioned in the last chapter.

Random paths
A random path is one produced by a series of random
moves, up, down, left or right. This routine shows a simple
random move routine:

10 CALL CLEAR
20 R=12

(start in the middle) 30 C=16
40 CALL HCHAR(R,C,42)
50 X= INT (RND*4)+1 (1,2,3 or 4 at random)
60 ON X GOTO 70,90,110,130
70 R=R+1
80 GOTO
90 R=R-1

100 GOTO
110 C=C+1
120 GOTO

130 C=C-1
140 GOTO 40

Type this in and watch the asterisk wander about the screen.
As there is an equal chance of it moving in any direction you
will find it tends to produce a wadge in the middle of the
screen, like figure 36.

*** *** ******** **** ******
* ***~ * **

Figure 36

You need a better a method of sorting out those random
numbers if you want to produce a path that actually goes
somewhere. The MAZE program uses a routine like this:

40 620 X= RND
630 I F X>.85 THEN... (left routine)

40 640 I F X>.5 THEN... (right routine)
650 I F X>.35 THEN... (up a row)

40 660 down a row starts here

58 59

RND. STEP-
check for edges!

Mark on ARRAY

No

Line 620 fixes the random number for this trip round the
step-making loop. The next three lines filter out the higher
values of X and send them off to the left, right and up
routines. Any number less than .35 produces a downward
move. There is an even chance that the random number will
lead to a vertical or a horizontal move, but there is then a bias
built in to make the right and down moves more likely than
the left and up ones. Run the MAZE program and you can
watch the whole routine at work.

MAZE is programmed to find a path from 1,1 to 10,10 on
its first run through. When it has reached the end, you can
enter your own start and end co-ordinates.

The random limits in lines 630 and 650 are then altered to
produce a suitable bias to the path.

Line 630 is actually written as

630 IF X>X2 THEN...

X2 has an initial value of .85. It will be changed to .65 or .75 if
the positions of your start and end points mean that the path
must head left, or remain on the same column. The program
works best when the end point is on an edge. It can very
easily overshoot a central 'end-point' and wander off across
to the opposite side!

The hidden path
You can create a concealed path by printing transparent
paving slabs on the screen, in the same way that the
'Minefield' program used transparent mines. A more flexible
method is to use an array.

We can now put together the things covered so far to make
the first part of an array-based maze program. Here's the
flowchart.

Set up ARRAY

FIX START POINTS

Yes
Figure 37

And the program looks like this:

10 OPTION BASE 1
20 DIM M$(10,10)
30 R=1
40 C=1
50 X= RND
60 IF X>.85 THEN 150
70 IF X>.5 THEN 130
80 IF X>.35 THEN 110
90 R=R+1+(R=10)
100 GOT0,160
110 R=R-1—(R=1)
120 GOTO 160
130 C=C+1+(C=10)
140 GOTO 160
150 C=C-1—(C=1)
160 M$ (R, C) = "1" (any character could be used)
170 IF (R=10)*(C=10) THEN 190
180 GOTO 50
190 ... (next part of program)

In the program above the path is made up of 'l's, but it could
equally well be a defined graphic block. If you add:

5 CALL CHAR(128,"FFFFFFFFFFFFFFFF")

60 61

START MAIN PATH

GOSUB PATH-MAKER

START FALSE TRAIL

GOSUB PATH-MAKER

EDGE? END LOOP

20 STEPS?

and alter line 160 to:

160 M$(R,C) = CHR$(128)

Then the print routine will produce a path of blocks.
It is probably worthwhile at this stage to add a routine to

print up your maze, just so that you can see it works. We can
adapt it for game purposes later. The one given below is
basically the same as the one suggested at the end of the last
chapter, but here we are using HCHAR lines to print on the
screen.

190 CALL CLEAR
200 FOR R=1 TO 10
210 FOR C = 1 TO 10
220 IF M$(R,C) ="' THEN 250
230 N = AS C (M$ (R, C)) (finds code of character in
240 CALL HCHAR(R,C,N) array)
250 NEXT C
260 NEXT R
270 INPUT A (to hold the screen)

This prints the path as it really is, but we could disguise its
appearance by scattering 'imitation paving stones' about the
screen. They would look like the real ones that make up the
path, but they would not be present in the array.

The trick blocks can be laid by slipping these three lines in
after 240:

242 GOTO 250 (so the routine is jumped after a
proper move)

244 IF RND>.5 THEN 250
246 CALL HCHAR(R,C,128) (assuming 128 is your

path code.)

Now alter line 220 so that the program jumps to 244 when
it reaches an empty store in the array.

Try the program out, at first without those extra random
'paving slabs' and then again with the random routine
included. Alter the random limit in line 244 and see what
difference it makes to the appearance of the path.

Another way to confuse the player is to have the 99 draw

some misleading paths as well as the main one through the
array. Ideally these extra paths should go from nowhere to
nowhere, but cross the main path at some point. This is what
happens in DRAGON.

Four trails are started from fixed points within the array,
and each wanders off for a maximum of 20 steps before
coming to a sudden stop. The effect can be quite confusing.
As the path-making routine is used several times, it has been
made into a sub-routine. The flowchart for the 'paths' section
of the program is shown in figure 38.

Figure 38

62 63

Columns

7 8 9 10

3

4 OLD NEW
o.

6

Rows

Figure 39

The main path routine starts at line 200 in the program.

200 DIM P$(21,21)
210 R=2
220 C=2
230 GOSUB 4000
240 IF (R=20)*(C=20) THEN 260
250 GOTO 230

You will notice that the array here is 21 squares each way.
The path within is kept between 2 and 20. This leaves a 'wall'
around the outside to stop the player escaping.

False trails
The routine for these starts at 260:

260
270
280
290

FOR T=1 TO 4
R=T*3 l (so the start points are
C=16—R J diagonally across the map)
FOR N=1 TO 20

scattered

300
310
320

GOSUB 4000
IF (R=20)+(C=20)
GOTO 340

THEN 330
Maximum 20
steps

330 N=20
340 NEXT N
350 NEXT T

That check line at 310 stops a path when it reaches the
bottom, or the right hand side. Without it, there would be a
danger of the false trail leading to the exit, and that would
not do.

The full listing of DRAGON is given in Appendix A. You
may like to look at that path-making subroutine. It is not
quite what you would expect. The path is built two steps at a
time. This stretches the paths out, and produces a better
maze, but is more complicated than a single step routine.

The main problem is that when you mark off the path in
the array, you need to mark the squares that have been
jumped over, as well as the ones that are 'landed on'.
Figure 39 shows this.

Each move now needs a set of lines like this:

4040 R=R+2+(2*(R>19))
4050 PER-1,C) ="1"
4060 GOTO 4150

4150 P$(R,C)J'1"
4160 RETURN

You will see that the check in line 4040 is also more
complicated.

64 65

10
Movement and meetings
in mazes
When you have a maze handled by an array, it is not
necessary to actually show the movement through it on
screen, or indeed to show the maze at all. Many adventure
games of the 'Dungeons and Dragons' sort simply tell you
what you can see. It's up to you, the player, to work out
where you are. These mazes are designed, usually in three
dimensions, as a series of rooms linked by passages and
stairways, with plenty of dead ends and sudden drops. At
the simplest level the screen display is a set of print lines.
These will tell you things like 'There is a passage on the
right, and one on the left. In front of you is a door. It is
closed. Do you want to (1) turn left, (2) turn right, (3) open
the door?' This is followed by an INPUT A line.

Movement through the 'dungeon' in this kind of game is
then controlled by the player's inputs:

ON A GOSUB...

The subroutines will alter the player's co-ordinates to suit
the movement, and will deal with any meetings.

The appearance of this sort of game can be improved by
including routines to give a 'view'. (Figure 40)

YOUR MOVE - PRESS THE NUMBER

LEFT (1) RIGHT (2)
FORWARD (3) TURN BACK (4)

Figure 40

Two-dimensional mazes could also be treated this way, or
mapped on to the screen as in the DRAGON program. There
the 'hero' clears a path behind him as he works his way
through. This makes it much easier to retrace his steps if he
comes to a dead end. You don't have to do this. Your maze
games might only show the piece on screen when it meets
something. You might not even give your player that much.
You could leave him groping blindly in the dark, trying to
work out where he is by remembering each move. This cuts
out a few bothersome screen routines, but is not particularly
friendly of you. However, some people like their games
hard. You could print up on screen where some, or all of the
incidents are. They might be there from the beginning, or
appear when the player has earned the extra information.
(See Colour Changing)

Controlling movement
If you are displaying movement on the screen, then you will
not want to have that movement controlled by INPUTTING
left, right, up down instructions. The INPUTS will ruin the
screen layout, unless you use the special Input Anywhere
routines that were covered in Starter Pack 2. It is far better to
use a simple CALL KEY line linked to the 'arrow' keys
(ESDX), in the same way as in the shooting and steering
programs. This must then be followed by a routine to check
the square ahead to see if movement is possible, and if there
is something at that square. Here's a flowchart for this part of
a maze program. You might like to compare it with the lines
from 840 onwards in the DRAGON list.

66 67

PRINT PIECE

CALL KEY

RUB-OUT PIECE WALL!

RESTORE
CO-ORDINATES

INCIDENT
ROUTINES

CHANGE
CO-ORDINATES

OUT!

Figure 41

Meetings
You will normally want to include incidents of some sort in
your maze, to make the game more interesting. 'Fight your
way through hoards of evil glorks to rescue the beautiful
princess and claim the sacred sword of Scaramonca' sounds
much more fun that 'Find your way out'.

The routines, or subroutines, that handle the incidents can
be as long as your imagination and the TI's memory will
allow. As a rough and ready guide, the DRAGON program
takes up about 8k of memory when it is running. There is

room then for a maze program witha larger (three-
dimensional) maze and more complicated incident routines,
or a wider variety of incidents. Take care that your program
does not take up more than 12.5k, or you will not be able to
save it properly. This 12.5k does not include the space taken
by arrays and other variables when the program is running.
The DRAGON program alone takes just over 6k, with the
extra 2k needed as workspace.

Fixed incidents
Bags of gold, traps, stationary dragons or sleeping monsters
— these are scattered through the array using a routine
similar to the one covered in 'Obstacles and random
dangers'. The only difference is that the routine has been
extended to scatter a random variety of incidents. Look at
line 530 to 650 in the DRAGON list.

Moving dangers
Your dragons and monsters do not have to stay still and wait
for the hero to find them. They could move through the
maze looking for him! To manage this you will need to
combine the techniques of movement used in the targets
programs with the path-drawing routines used in your
maze.

Start by indicating his presence with a variable. 1 for alive,
0 for dead.

M=1

Give him a start position early on in the program, making
sure that he is on the path:

... MR =INT(RND*18)+3
... MC =INT(RND*18)+3
... IF P$(MR,MC) ="' THEN ... (back and try

again)
.. P$(MR,MC) = "6" (where "6" is the monster

code)

68 69

simpler routine. The monster's position is compared with
the hero's, and then adjusted to bring it closer. The
routine would look something like this:

5000 P$(MR,MC) ="1"
5010 R1 = MR —(MR<R)+(MC>C) (R,Cthe
5020 Cl = MC —(MC<C)+(MC>C) hero's
5030 I F P$ (R 1, C 1) J" THEN 5060 co-ordinates)
5040 MR = R1
5050 MC = Cl
5060 P$(MR,MC) ="6"
5070 RETURN

Here's what this routine does in two typical situations.

Line
Case 1

Monster Hero
(5,5) (7,2)

Case 2
Monster Hero
(10,3) (8,8)

5010 R1 = MR+1 = 6 R1 = MR-1 = 9
5020 C1=MC-1=4 C1=MC+1=4
5030 P$(6,4) = "1" (path) P$(9,4) = "" (wall)
5040
5050

MR =6
MC = 4

these lines jumped

5060 P$(6,4) ="6" P$(10,3) ="6"

Result Gets closer No move

Introducing those two temporary stores, Rl and C1, means
that the original monster co-ordinates are left alone, and only
changed if a move is possible. You don't have to do it this
way, but the alternative is rather complicated 'value of truth'
lines.

Because this routine does not let the monsters walk
through walls, your hero has some chance of escape. If your
monsters are ghosts, then he could find life very dangerous.
You had better equip him with some means of defending
himself!

If the effect is still too terrifying for your players, then
introduce a random factor. Instead of a simple command to

At some point in the main game loop, you send the program
off on a subroutine. There the monster's old position is
turned back to open path, and a move is made at random (as
long as there is path in the direction he is supposed to go).

5000 P$(MR,MC) ="1"
5010 X = RND
5020 IF X>.75 THEN 5110
5030 IF X>.5 THEN 5090
5040 IF X>.25 THEN 5070
5050 MC =MC —1 — (P$(MR,MC-1)=")
5060 GOTO 5120
5070 MC = MC+1+(P$(MR,MC+1)~"')
5080 GOTO 5120
5090 MR=MR-1—(P$(MR-1,MC)="')
5100 GOTO 5120
5100 MR=MR+1+(P$(MR+1,MC)=")
5120 P$(MR,MC)="6"
5130 RETURN

Notice how the lines that make the moves also check that the
move is possible, and cancel any attempts to walk through
walls. In practice, this routine will quite often leave the
monster in the same position.

CALL HCHAR lines can be worked into the subroutine so
that the monster is displayed on the screen. When he moves,
the path behind him can be left clear, or blacked out again as
you wish.

Variations

1 Ghosts. As everybody knows, ghosts can walk through
walls. This particular talent is very useful to the games
programmer, as it means that the parts of the lines that
check the path ahead can be simply left out. Hurray, an
easy variation!

2 Hungry Horrors on the Hunt. You can make your
monster more threatening by having him head straight
for the hero. This has a useful side effect of producing a

70 71

monsters, except that now you use arrays rather than simple
variables, and each of the monster routines must be enclosed
in a loop.

Bring them all to life at the beginning:

FOR N=1 TO 4
M(N)=1
NEXT N

Give them all a position:

FOR N =1 TO 4
MR(N) = INT(RND*18)+3
MC(N) = INT(RND*18)+3
IF P$(MR(N),MC(N)) ="' THEN
P$(MR(N),MC(N))"6"
NEXT N

(back and
try again)

And so on for the other routines. Simply add (N) after each
of the monster variables. Here we are assuming that 4
monsters are enough for any hero, but you can have as many
as you like. You just change the numbers at the start of the
loop. The more you use, the slower the program will run,
but speed is not usually important in this sort of game.

make the monster move:

I F M=1 THEN.. . (off to move routine)

use a line like this:

IF (M=1)*(RND>.5) THEN...

Now the monster will stay where he is half the time.

Special note for cheats
Those limits that you use in random lines do not have to be
fixed. That last line could read:

IF (M=1)*(RND>RL) THEN...

RL, the Random Limit is given a value early on in the
program:

RL = .5 (or whatever limit you want)

You then write in a routine to ask 'WHO'S THERE?' and
include after it this type of routine:

IF N$<>"HONEST SID"THEN... (jump the next
RL = .8 line)

This resets the Random Limit only for 'Honest Sid', and only
you know the password. If you give yourself too much of an
edge people might start to wonder why you keep winning,
and they might decide to examine your program.

You are far too honest for that sort of thing, aren't you, so
let's get back to our monsters, but first ... 'Compute a
Grimble'.

You can now adapt your Grimble program so that the 99
moves the Grimble. Give the Grimble a target - his home,
and have his movements directed towards it. Make sure that
it checks the path ahead for Grimble cages. If one is there,
the Grimble should head off in another (random) direction.

Multiple monsters
These can be managed in exactly the same way as single

72 73

11
Colour- changinç

One of the 99's useful features is the way that it lets you
change the colour of characters that are already on the
screen. We can develop a number of games out of this
facility.

Have you ever come across those timed light switches?
You sometimes find them in the stairwells of blocks of flats.
You press the switch and the light stays on for a couple of
minutes. It then turns itself off automatically. We could fit a
'light switch' into a program like 'minefield' (see the chapter
on Obstacles). Each time you bump into one of the scattered
blocks, the screen will light up and show you where the
blocks are. You will have time to get a quick look at the field
before it all disappears again. The object of the game now is
to see how few times you bump into things on your way
across the screen. Here is the basis of this type of game:

10 RANDOMIZE
20 SC =0 (score)
30 CALL CHAR(128,"FFFFFFFFFFFFFFFF")

The obstacle block)
(made transparent)

(scatters 50 blocks)

160 IF S=0 THEN 150
170 R=R—(K=88)+(K=69)
180 R=R— (R=0) + (R=2 5) (check line)
190 C=C—(K=68)+(K=83)
200 C=C—(C=0)+(C=33)
210 CALL GCHAR(R,C,Z)
220 IF Z<>128 THEN 290 (jump if free space

ahead)
230 CALL COLOR (13, 2,1) (blocks coloured black)
240 CALL SOUND (1000,440,1) (this gives you 2
250 CALL SOUND (1000,880,1) seconds to look)
260 CALL SOUND(1,-1,1)
270 CALL COLOR(13,1,1) (blocks invisible again)
280 SC=SC +1
290 IF (R=24) * (C=32) THEN 310 (the end
300 GOTO 130 at last?)
310 PRINT "SCORE =";SC
320 INPUT "AGAIN ? ":A$
330 IF A$ ="Y" THEN 10
340 END

Type this in and try it. A score of less than 4 is pretty good.
You can adjust the difficulty of the game by changing the
numbers of blocks that are printed by the loop starting at line
60, and also by reducing the sound times in lines 240 and
250.

Variations
1 Have two types of obstacles. One type will be 'light

switches', the other type will be mines. Define the
characters differently, so that when the light goes on you
can spot the mines, and just hope that a light is the first
thing you bump into!

2 Have several types of obstacles — each with a different
point value. Again, it should be clear when the lights go
on just how much each is worth.

3 Back to the start. When the player bumps into a block and
the lights are turned on, reset his position and send him

40 CALL COLOR(13,1,1)
50 CALL CLEAR
60 FOR N=1 TO 50
70 R= INT(RND*24)+1
80 C = INT(RND*32)+1
90 CALL HCHAR(R,C,128)

100 NEXT N
110 R=1
120 C=1 (player's start point)

130 CALL HCHAR(R,C,42)
140 CALL SOUND(250,330,1)
150 CALL KEY(3,K,S)

74 75

back to the start. Leave the obstacles alone though, so
that the player can gradually learn his way through. This
game could get quite frustrating, especially when chance
has thrown a lot of blocks in the bottom right hand
corner.

4 More and more. Start with fewer blocks on the screen — 20
should be about right, and then add another set each time
the player bumps into a lightswitch. Now each collision
makes the game more difficult. Combine this with a Back
to the start game if you want to make life really hard.

12
Tme and place

1 Timed inputs
There will be times when you will want to allow your players
only a limited time in which to respond to a question, or
problem. The standard INPUT line will wait forever, so that
is no use. You can, however, build a timer into a CALL KEY
routine. If you write this in as a subroutine, it can be used
whenever you want it in your main program. This is the
basic form it will take:

1000 C=0 (Count)
1010 CALL KEY(3,K,S)
1020 C=C+1
1030 IF C>20 THEN 1070 (timed input loop)
1040 IF S = 0 THEN 1010
1050 PRINT K
1060 RETURN
1070 PRINT "TOO SLOW"
1080 RETURN

This particular routine can be worked up into a game to test
reaction times. Instead of writing a fixed limit in the Count
check line, you make it variable. Each time the player reacts
quickly enough, his limit is reduced. A 'Too slow' response
leads to an increased time limit. The object of the game is to
get the lowest possible time limit. In the program outlined
below the problem is to press a letter chosen at random by
the 99. The game could be expanded into a two-player
version, in which case the input loop would need to be
enclosed in a further loop, and two Count stores used.

76 77

GAME LOOP
20 GOES

CALL KEY

RANDOM LETTER X=
INT(RND*26)+65

SET COUNTER

ADD TO COUNTER

TOO SLOW

4

WELL DONE

FOR P=1 TO 2
CALL KEY(P,K,S)
C(P)=C(P)=1

Here's the flowchart. There is a check program at the end of
the chapter.

SET INITIAL
TIME LIMIT

FINAL TIME

~ STOP ~

Figure 42

2 Input anywhere
You clearly cannot use a normal INPUT line in games where
it is important that the screen is not disturbed. However, a
CALL KEY line will only take in one keystroke, and will not
print the character. If your player must enter a word or a
number of more than one digit, then you need a special
routine. The example below shows how you can do this:

10 T$=TEST"
20 A$=""
30 CALL CLEAR
40 C=5
50 CALL HCHAR(10,C,63) (prints a question
60 CALL KEY(3,K,S) mark at 10,5)
70 IF S=0 THEN 60
80 IF K=13 THEN 130 (13 is ENTER)
90 CALL HCHAR(10,C,K) (prints the letter)

100 A$=A$&CHR$(K)
110 C=C+1
120 GOTO 50
130 IF A$=T$ THEN 160
140 PRINT "WRONG"
150 STOP
160 PRINT "RIGHT"
170 STOP

The player's answer is printed across the screen, starting
from 10,5. That question mark in line 50 is so that he can see
where he is. The inclusion of a CALL SOUND line would
help to catch the player's attention. Notice how the letters
are gathered into the A$ store by line 100. Without this you
would not be able to check the total answer.

This could be made into a subroutine, with ENTER as the
signal to return to the main program, where A$ would be
checked against the required answer.

78 79

3 Yes or no?
Where you want your users to give a yes/no reply, or select
an option, then make sure that all unacceptable replies are
ignored:

INPUT "AGAIN ?(Y/N)":A$
IF AS ="Y" THEN...
IF AS ="N" THEN ...
GOTO

This would also ignore any replies written in small type. You
may remember from Starter Pack 1, that a CALL KEY(3.. .
line resets the keyboard so that the 99 sees all letters in large
capitals.

The check lines also ignore 'YES' and 'NO' replies. A slight
alteration will cover this:

IF SEG$(A$,1,1) —"Y" THEN...

Now it checks only the first letter of the A$ input. Used with
a CALL KEY line, this routine now accepts "Y", "Y","YES"
and "YES". The extra effort on your part will make life easier
for your users.

4 Numbers only
The normal INPUTs have built in checks to prevent people
typing letters into number stores. Your Input Anywhere
routine does not, yet. If you use it to collect a number reply,
and try and evaluate the number using VAL(A$) the
program will crash if your user has typed in a letter by
mistake. The following routine checks through the string,
character by character, and warns the user if any non-
number character is used.

1000 INPUT AS
1010 FOR V=1 TO LEN(AS)
1020 IF SEG$(A$,V,1)>"9" THEN 1060
1030 NEXT V
1040 PRINT VAL(A$)
1050 GOTO 1000
1060 PRINT "INVALID ANSWER"
1070 GOTO 1000

Type it in and see. The routine can be adapted into a
subroutine for regular use.

5 Print anywhere
You will have come across this if you have read Starter
Pack 2. It is included here for the benefit of those of you who
have not.

This routine will print anything anywhere you like on the
screen. You will find it, in several slightly different forms, in
many of the programs on the tape, normally at 6000. The
main program specifies the string to be printed (W$), and the
Row and Column start points (R1,C1), before it jumps to the
subroutine.

6000 FOR Q = 1 TO LEN(WS)
6010 CALL HCHAR(R1,C1+Q,ASC(SEG$(WS,Q,1)))
6020 NEXT Q
6030 RETURN

A CALL SOUND line can be included in the routine to give a
'teletype' effect.

80 81

Speed game check program

10 T= 25
20 FOR N = 1 TO 20
30 X = INT(RND*26)+65
40 PRINT CHR$(X)
50 C = 0
60 CALL KEY(3,K,S)
70 C = C+1
80 IF C>T THEN 130
90 IF K<>X THEN 60
100 PRINT "WELL DONE"
110 T = T-1
120 GOTO 150
130 PRINT "TOO SLOW"
140 T = T+1
150 NEXT N
160 PRINT "FINAL TIME ";T
170 STOP

You may find it useful to compare the lists with the programs
while they are running, as this can help to make some
techniques clearer. For a more detailed look at any particular
program, set BREAKPOINTS before you run. The use of
TRACE commands is not recommended here, as the
constant stream of line numbers will almost certainly destroy
the screen layout, and make it even more difficult to follow
the program.

Appendices
A

Proçram LISTS

TARGET
10 REM TARGET
20 REM MACBRIDE 1993
30 CALL SCREEN(_:)
40 CALL CLEAR
50 PRINT TA&10:' "TARGET"::
60 PRINT " THI_- SHOWS HOW A BUL
LET ":
70 PRINT " FIRING ROUTINE WORKS

80 PRINT " MOVE THE ""GUN"" USI
NG ":
90 PRINT " .>>S,.• TO GO LEFT"::
100 PRINT " >D(C TO GO RIGHT."

110 F'RINT " PRESS >.-F« TO FIRE

1220 . PRINT " THERE I:_ A PROGRAM
INDE}: ":
130 PRINT " AT THE END.":::
140 PRINT " PRESS ANY KEY TO BE
GIN "
150 CALL SOUNDü0,250. 11'
160 CALL KEY'.3.1:._:;
170 IF `-:=0 THEN 16.0
180 CALL CLEAF'
1.90 REM Brae hies
200 CALL CHAR. x:138,"00003098FEFF1
830..
210 REM 128 = thin? Plane
220 CALL CHAR(129,"1038383838002
344
230 REM 129 = bullet
240 CALL CHAR r:1_0,"20646C3:3F8000
600":.'
250 REM
260 CALL CHAR(131,"10101ä10_::=7C7
C7C':
270 REM 131 = sun
2:0 GC=15
290 REM Gun Column at. start

300 F=n
310 REM sun not t irin3

320 BF•=2ü
330 REM Bullet Ruw at start
340 PRINT " FRETS 1. 0<' TO OU
IT"
:350 FOP TC=1 TO 32
360 CALL HCHRF'5. TC. 12:=?
370 IF F=1 THEN 540
380 REM key check

390 CALL k..Eï(3,K,S)
400 REM nuit ? asc(a)=E:1

410 IF K=21 THEN 800
420 REM move sun ?

-c(•d.=68 asc(s)+83
430 IF (k:=68)+(K=83)=0 THEFT 4.20
440 CALL HCHAR(20,GC,32)
450 REM "value of truth"

ier ,un movement

460 GC=GC-(k.=68)+(K=83)
470 REM fire button pressed

- (fl=70
480 IF 1'070 THEN 650
490 REM fire !.

500 F=1
510 CALL SOUND"50,200,1.-8.1)
520 Ei =̀GC
530 REM check: for hit

540 CALL GCHAR'::DR,BC.2)
550 REM Print bullet

560 CALL HCHAR(E:R,BC. 129)
570 CALL HCHAR(ER.BC.32>
580 IF 7128 THEN 710
590 REM chan,e Bullet Row

600 BR=BR-3
610 IF BR3 THEN 650

620 REM reset bullet after
mis-

630 BR=20
640 F=0
650 CALL HCHAR(5.TC,32)
660 CALL HCHAP(20,GC, 131)
670 NEXT TC
680 MOTO 350
690 REM crash routine

700 CALL HCHAR(5,TC.32)
710 FOR N=5 TO 20
7210 :X=[:N-4 , .2+.

,.,,
730)

730 CALL HCHRR'",TC+X,130)
740 CALL :SOUND'50,-6,1)
750 CALL HCHAP'N9TC+X,32)
760 NEXT N
770 INPUT " ANOTHER GO CRRCK:_HOT

:r ,N:,":R'h
780 IF H$=" -r" THEN 140
790 IF R:E: .11:"N" THEN 770
S:üit CALL _:CREEN'.16::,
810 CALL CLEAR
320 PRINT " PROGRAM INDEh:"

330 PRINT IN:_TRUC:TION5

840 PRINT GRAPHIiCS DEFINITION
.190"::

850 PRINT "1ARIABLE:_ SET

MAIN LOOP

KEY CHECK:"

GUN MOVEMENT

BULLET ROUTINES

CRASHT
130 = tallies Plane

360 PRINT
50_680":
970 PRINT

591, F'RINT
.440"::

890 PRINT
.490":

900 PRINT "

82 83

'ACET?AC <
10 REM RACETRACK
15 REM MACBRIDE 1983
21: REM - It, eks or t..e,s
25 GOSH 455
30 CALL CHHR(128,"FFFFFFFFFFFFFF
FF
35 CALL GCREEN(11)
40 CALL CLEAR
45 FEFI the track
50 CALL HCHAR(1,3, 128,28)
55 CALL HCHRR(20:3:128:28)
60 CALL 'JCHAF'(2,3,128,19)
65 CALL VCHAF(2:30:128:19)
70 CALL HC HAF'(5,7, 128,20)
75 CALL HCHAF:(16,7,128,20)
80 CALL 'ICHAF'(6:7,128,10)
=5 CALL VC:HAR(6,26,128,10)
90 REM Print anywhere

r utine used
95 III.="GRAND F'RIX"
100 R=10
105 C=11
110 G❑:SF1B
115REM ~ ar .sraPhic s

120 CALL CHAR(130,"EE44FEFFFE44E
EO0")
125 CALL CHAR(133,"IOBRFEBR33BAF
EBR")
130 CALL CHAR(132,'0077227FFF7F22

135 CALL CHAR(131,"5D7F5D1C5D7F5
Dub")
140 REM car start Points
145 CR=12
1511 CC=15
155 REM sound duration con
trrls =Feed of movement
160 M=4011
16.5 REM initial direction

170 I0=1
175 CALL HCHAR(CR,CC,129+D)
180 CALL SOUND(M,-3,1)
135 REM joysticks ?

190 IF J=1 THEN 235
195 REM key controls

200 CALL KEY(3,K,S)
2105 REM sPeed chance

210 0=M-C10*(K=88))+(10+(K=69))
215 REM direction chance

220 D=Iw(K=83)-(K=68)
225 GOTO 255
230 REM joystick controls

35 CALL JOYST(1,X,Y)
240 M=M- (2. 5*Y)
245 D=D+(Xi4)
2501 F'EM M must not be 0

255 M=M-(10#(M=O))
260 REM keep D in ranse
245 IO=D-(4*(D=0))+(4#(D=5))
270 REM rub out car

275 CRLL HCHAR(CR,CC,32)
2-01 REM chance position

85 CC=C_+(D=3)-(D=1)
290 CR=C E+(D=4)-(D=2)
295 REM check for crash
300 CALL GCHAR(CR,CC,Z)
:305 IF 2=123 THEN 320
3:10 GOTO 175

315 REF'! Print 'CRASH" in
ris ht Place

320 WI-"CRASH"
325 R=CR
330 C=C:* (S*.CC::257)
335 G03:LJB 555
340 REM random noises

45 FOR N=1 TO 10
350 F'=RNL1.50+200
355 CALL :OONII 101í0.P,1
360 NE T N

5 INF•LIT "ANOTHER' GO ?CY/N)":91:
3701 IF R1. ="r THEN 30
375 IF HI::- "N" THEN 36.5
380 CALL CLEAR
385 PRINT " PROGRAM INDEX`:
•
3931 PRIFIT - TRACK:
...45"::
95 PRINT " GRAPHIC: DEFINITION
.115"::
40C1 PRINT " 'VARIABLES SET
.140".:
405 PRIFIT " CONTROLS: - KEY_.

195
410 F'RINT " - JOI'STICK

415 FEINT " CAF' MOVEMENT
70'

420 PRINT " CRASH"
.215"::

425 FR:I11T " JOYSTICK: OF KEYS?
..450"::
4:30 PRINT " PRINT ANYWHERE....
550"::

435 PRINT " SEE ""CHANGING DIREC
TION'S"" "
440 'STOF'
445 REMT sub-routines
450 REM joysticks or keys'
455 INPUT "DO YOU WANT TO USE JO
,TIC K::S (Y/N) ?":R$

4600 PRINT :...
465 .I=O
470 IF (A'£="Y")+(A$="y")THEN 485
475 IF (A$="N")+(A$="n")THEN 5005
48:0 GOTO 455
4:.5 J=1
490 PRINT "PLEASE CHECK THAT JOY
STICKS FIRE FLC01;13E3 IN..::
495 PRINT "ALPHA LOCK MUST BE OF
F (UP)."::
500 GOTO 530
505 PRINT " YUC' F: CONTROLS

510 PRINT " ._TEEF' LEFT S":

515
•
520
•
525

PRINT

PRI FIT

PRINT

530 PRINT
EGIN "
535 CALL KEY(3,K.S)
5400 IF 3=0 THEN 535
545 RETURN
5510 REF! print anywhere

555 FOR 0=1 TO LEN(31$)
560 CALL HCHRR(R,C+Q,ASC(SEG$(W$
:0:1)))
565 NEXT 0
570 EETURN

MAZE
1C REM MAZE
2C REM MHCBRI➢E 198?
3(. CALL CLEAR
40 FRUIT TAB(13)i'MASE :
5C PRINT " THIS PROGRAM 5H❑61:5 H
OI... R"::
6C P'R'INT " FATH-MAKING ROUTINE 61
OFT.::

RL11
"::

II F'T " AND HOW AN ARRAY CAN
BE "::
80 PRI11T " USED TO MAR' A MAZE.":

90 F'F'IFNT " PRESS ANY KEY' TO BEGI

100 CALL :=:OUND(500,250.11
110 CALL KEY(3,K,S)
1.220 IF =0 THEN 110
130 X1=.3
1401 ;32=.85
150 REM xl,x2 set limits for ra
adorn moves.
1600 _.R=1
1.0 REF! SR Start Row
1.301 Sí'=1
190 RET•I Start Column
2100 FR=10
2117 REM Finish F:olwl
220 FC=10
230 REM Finish Column
240 CALL CHAR(128."FFFFFFFFFFFFF
FFF")
250 CALL SCREEN(2)
260 CALL CLEAR
2270 FOR R=1 TO 10
220 FOR C=1 TO 10
290 CALL HCHAR(R.C+5,48)
:300 CALL HCHAR"F:.C+20,128)
310 NEXT C
320 NEXT R
.330 E

"
61$=" . THE ARRAY THE

MAZ
340 L=12
:350 GOSUB 6000
355 CALL SOLIND'.500,250,1.'
360 W'£=" PRESS ANY KEY TO GO ❑

370 L=24
30.0 60_:ÚB 6000
390 CALL KEY(3,K,S)
400 IF S=0 THEN 390
410 R=SR
420 C=SC
430 W$=" Variables. Row= : Col

435 L=16
440 GOS:L10 6000
445 1J$=" X(RND)="
4511 L=14
455 GOSUB 6000
460 11'£=" RND CHECK LINE I
N LI._ E "
46` L=18:
470 GO'S3B 6000
475 W'£=" PRESS ANY KEY TO :SEE
MOVE"
430 L=24
485 GUS:UB 6000
490 CALL SOUND(500,250.1)
495 CALL :SOUND(100,250,1)
=01 CALL KEY(3,K,S)
51C IF 7=0 THEN 500
521 REti new move
53C FOR N=1 TO 3
54C CALL HCHAR(R,C+5.32)
551: CALL HCHAR(R,C+20,32)
5E• 1 CALL COUND(10,200,1)
570 CALL HCHAR(R,C+5,49)
5801 CALL HCHAP(P,C+20.42'

STEER RIGHT

ACCELERATOR

11..:

E":

BRAKE

PRESS ANY' KEY. TO B

u !:ALL :OI O1D(131, _011, 1)
u1 NEXT N

61 0 REM Path makins routine I
sn rs the GOSUBS - they produ
ce the comments.
620 X=RND
630 IF '3)X2 THEN 020
640 IF :;>.5 THEN 770
650 IF 50X1 THEN 720
E60 REM down a row
670 R=R+1+(R=10)
6801 1,1$=" 1'<"&STRO (X1) &"

0 R=R+1+(R=10)"
690 C_O:SIJB 5800
77011 GOTO 370
7111 REMI
720 REM UP a row
730 R=R-1-(R=1)
740 618=" X>"&STR$(X1)&"& X(.5

730 R=R-1-(R=1)"
7501 GO:SIJB 5800
760 GOTO 870
770 REM richt
780 C=C+1+(C=10)
790 W$=" X7.5 & X<:"&STR$(X2)&"
780 C=C+1+(C=10)"

800 1 OSLIB 5800
810 GOTO 870
820 REFI left
830 C=C-1-(C=1)
840 W$=" X>"&STR$(X2)&"
0317 C=C-1-(C=1) "

850 GOS:LIB 5800
860 REFI
870 REM check for finish
800 IF (C=FC)o(R=FR.THEN 900
890 GOTO 495
900 618=" .! OUT AT LAST !!

905 L=22
910 GOTLIB 6000
915 CALL HCHAR(R,C+5, 4a)
920 CALL HCHAR''R,C+20.42)
925 CALL SOUND(1000,220.1,277,1.
392,1)
930 W$=" PRESS ANY KEY TO GO
ON "
940 L=24
950 GOSLIB 6000
960 CALL SOUND(1000,294,1,370,1
440.1)
970 CALL KEY(3,K,S)
980 IF S=11 THEN 970
990 REM
1000 CALL CLEAR
1010 PRINT " YOU CAN FIX THE STA
FT AND"::
1020 PRINT "END FOINTS YOURSELF
IF YOU"::
1030 PRINT 'eIJOULD LIKE TO.":::
1040 INPLIT "LIK:E TO RLIN IT AGAIN
?(Y.44)":98
1050 IF R$="'i" THEN 1100
1060 IF AS">"N" THEN 1040
1070 CALL CLEAR
1030 GOTO 1300
1090 REM user's input
11170 INPUT "FIX 'r'OLIR OWN EN➢S?(Y
41) ';A$

1110 IF A'£="Y"' THEN. 1140
1120 IF A$=" N" THEN 150
1130 GOTO 11000
1140 INPLIT "Start Row 7'::1 TO 10::'
":SR
1150 INPLIT "Start Column ?(1 TO
10) : SC.
1160 IFIPUT "Finish Row T(1 TO 10
":FR
1170 INPUT "Finish Column ?(1 TO
10)":FC

1180 REF'! adjusts limits for rnd
check lines

1190 ü1=.25-(.1*(FR>SR))+(.1+(FR
8Rí''

12001 >2=.75-,' l'(Fi 1.))+(: 1=FC
SC)-
1210 FOTO 240
1300 FRINT THI(2): PROLR'AFI INDE:i

IFITROI4ICTION

1:20 PRINT ' '•VARIABLE-_ SET
.1217 : :

1330 PRINT " PRINT :SCREEN

1340 PRINT " FLA=_HING ""0"" &""
0''5211"::
1350 PRIFIT " PATH-EIAKER
.61ü"::

1360 PRINT '` CHECI. FOR END
...870"::
1370 PRIFIT - RE-RIJN
..1000"::
1380 PRINT " PRINT :='LIB-ROUTINE:=

1390 STOF'
5000 L=231
50:10 GO:3:0B 6000
5020 R$=:STFI FF.." "
030 FOR N 1 TO LEN(F1)
50.40 CALL HCHAR'::16.17+N,ASC(SEG$

5850 NEXT N
5060 C£=:=:TR'S(C),&" "
5070 FOR N=1 TO LEN(C8)
5830 CALL HCHAR(.16,28+N,ASC(SEG$
(C$04,1)))
50:90 NEXT Fl
5900 XO="0"&STR$(X)
5910 FOR N=1 TO 4
5920 CALL HCHRR(14,17+11,RSC(SEG$
(3:$,11.1)))
5930 NEXT F1
5940 RETURN
6000 FOR 0=1 TO LEN(WS)
6010 CALL HCHAR(L.GHASC(SEG$(W$,
R,1)''
6020 NEXT o
6030 RETURN

DUEL
10 REM DIJEL
20 REM MACBRIDE 1983
30 CALL SCREEN(8)
40 CALL CLEAR
50 PRINT TAB(13>;"DIJEL":::
60 PRINT " THIS IS GIVEN AS RN E
XAMPLE"::
70 PRINT " OF A TWO-PLAYER AC'TI❑
N GAME"::
80 PRINT " 61P.ITTEN IN TI BASIC."

90. PRINT " IT HAS ROUTINES FOR B
0TH "::
100 PRINT JOYSTICK AND KEY CON
TROLS.'::
110 PRINT LIST THE GAME AFTER
YOU
120 PRINT HAVE FIFNI:SHED PLA'iIN
6 AND"::
130 PRINT " SEE HOW IT WORKS."::

140 CALL KEY(3,K,S)
150 INPUT " ARE YOU U:S:ING . JOY-STI
CKS ? (NA) ":9$
160 J=0
170 REM Joystick indicator

180 IF A$= "Y" THEN eon
190 IF A$< >"N" THEN 1531
200 PRINT
210 PRINT CONTROLS":
220 PRINT " LEFT R
IGHT"::
230 PRIFIT " >E': TO MOVE TANK

240 PRINT " >S< TO :STEER: LEFT
>JC0"::
25 PRINT " >D-. TO STEER RIGHT

260 PRINT " 'F'. TO FIRE BULLET

2" 6J170 :330
280 J=1
290 PRINT " THE ALPHA LOCK: MUST
BE OFF"::
300 PRINT " PUSH FORIJARD TO GO."

310 PRINT " :STEER LEFT OR RIGHT"

F71J RINT " PRE':: ORANGE BAR: TO
'::

330 REM araFhics
left tank

340 CALL CHAR(128,'001F187EFF7E3
C")
350 CALL CHAF'':129, 38389.03038101
010")
360 CALL CHAR(1:30,"00F8107EFF7E3
C")
370 CALL CHAR(131,"101010:=8:38383
838")
380 REM bullet
390 CALL CHAR1132,"0000081C08000
000")
400 REM richt tank
410 CALL CHAR(136,"001F187EFF7E3
Cl"
420 CALL CHAR(137,"38383838351311
010")
430 CALL CHAR(138,"00F8187EFF7E3
C")
440 CALL CHAR(109,"10101(13838383
838")
450 REM bullet
460 CALL CHAR(140,"0000001008000

470
000">

REM edse
480 CALL CHAR(144,"FFFFFFFFFFFFF
FFF")
4913 REM wall block
500 CALL CHAR(145,"FFC3B59999B5C
3FF")
510 PRINT " PRESS ANY KEY TO B
EGIN":::
520 CALL KEY(3,K,S)
530 IF S=0 THEN 520
540 REM screen edses
550 CALL COLOR''15,5,9>
5601 CALL COL❑R(:13,16, 1>
570 CALL SCREEN(3)
580 CALL CLEAR
590 CALL HCHAR(1,3.144,29)
600 CALL HCHAF(20,3,144,29)
410 CALL VCHHR (2.3, 144.18)
620 CALL VCHAR(2,31.144.18)
630 REM"walls"
640 RANDOMIZE
650 FOR N=1 TO 25
660 BF TNT(RND`16)+3
670 BC=INT(RIII=2:3)+7
680 W=INT RNLI '.j+2
690 IF RNI1: THEN 730
700 IF BC+11:-28 THEN 660
710 CALL HCHAR(E:P,BC.145,W)
720 GOTO 7511
730 IF BR+1,F>12 THEN 660
740 CALL VCHAR(BR,BC. 145,W)
750 NEXT N
760 REM set tank positions a
nd directions
770 R(1) =19

1:3117 P'R'INT

84 85

520 F=3
530 R=22

1120 CALL CHRF'.KF Fa : 1::7 =.
11301 CALL HCHAR' 10,12,132)

220 0=,-/
20 GC_- UB, 4010r

540 CO"LIB 6000 11411 RETURN 235 REM res=hed eni"
_511 W$=" PRESS)G- : TO :START GA 1250 CALL OI IND r 1000, 500, 1)
ME" 1263 CALL OUNI1': 100(.'50, 1) 240 IF F 20 'C=2 1: THEN 260
0 R=24 1270 INPUT ANOTHER. GRME '(Y/N)" 2=0 GOTO 230

570 GOSUB 6000 R$ 255 REM tour felse trails
580 IF J=1 ,HEN 700 1280 IF A$="7' THEN 1.60
5 RESTORE 600 1290 IF AI N THEN 1270 260 FOR T=. TO 4
0 FOR N=1 TO 5 1300 CALL CREEN(8) 2'- 1 F-T

4Ì1I1 READW£.F 1310 CALL CLEAR'. 2:jìl 0=16-F
610 C=22 1320 PRINT TAE,'=);"F'RCGPAM SNDEX 291) FOR N=1 TC 20
n'211 GOSUB 6.0011 300 GC: UB: 401(.
625 NEXT N 1330 PRINT " GR'RFHII 310 IF , F=20,+ C=20JHEN 330
r,30 DATA " STEEPING".2 3íJ":: 20 1,CTC =40
641. DATA S` LEFT".6 1340 PRINT " INTF2>_11ILTICN ''1) N=20
651. DATA ,D< RIGHT".3 2101':: 340 NE.7 II
66(DATA ">E). UP", 10 1350 FFINT " 3CP:EEFI LA'rOLIT 350 NE':T T
671: DATA < DOWN",12 4011':: 35 FEN Armour Alter= t F,:
70(CALL KEY(3,K,S) 1360 FFINT ''GAME _TART_; HERE odds t:r dre+rn-slertna
711. IF K=71 THEN 750 =,1i"
721 GOSUB 1700 13711 PRINT " BHT MOVEMENT A=1
'31: GOTO 7010 800" __5 REM .,, Il._ne,
750 REI.(same starts here 1380 PRINT " EDGE ROUTINE
760 I1=INT':RND*4''+1 .930"::
770 REM direction IN 1390 PRINT " KNOCKER MOVEMENT

-. f1='.hT RNr_ 1 0 ..111 1_r
_:-1. FPIII' YOU HR E F1:'~GOLD CO

780 BR=INT (RND*8) +2 I11_"::
790 B:C= I FIT (PMD* 15) +5

1000":IN:
1400 PRT " PRINT ANYWHERE 390 F'RIII- H :,1 0FP _HIELD I'1

E:i10 REM Bat start Point ..6000":: ILL ':
810 CALL HCHRR(BR,BC, 127+I1) 1410 STOF 400 F'F:INT HE_: IF ',CU MEET R I1
315 REM knocker move? 6000 FOR C1=1 TO LEN(WS) F'RGO1I. -::

6010 CALL HCHAF:cF.C+Q,ASC(SEGS(W 410 INPUT "LI! E A a•IOF'D -- ONL1' 1
820 CALL KEY(3,K,S) 8,8,1))) 00 GOLD F'IEi=E= .
830 GOSUB 1000 6020 NEXT 0 415 F'F'I17T :.
85:5 REM rub-out bat 6030 RETURN 420 IF A'1=- ' THEN 440

430 13C7❑ 4602
840 CALL H3HAR(BR,BC,32) 4401 A=M-100
8:45 REI.(move bat 450 R=A•..3

460 IF M_100 THEN 520
250 £F=BR+rD<3`-(D)2) 47i: INPUT "HOW AI:011T H NIçE :7:HIE
260 £C=£C+(D=1`+(D=4)-(D=2)-(D=3 LI - ❑N0j 1001 CCIN0.(. Y.N)":R

86.5 REM (C'hat's ahead ?

870 CALL r,CHAR(BR,BC,Z)
872 REM sFa•-e - fly on

875 IF 2=32 THEN 800
37:3 REM cave-mouth end

880 IF 2=132 THEN 1250
885 REM bat-knocker?

890 IF 20137 THEN 930
900 L1=0-(D=1)-(1)=3)+(0=2)+(D=4)
910 D=2+(4*(0=5))-(4*(D=0))
915 BC=BC:+(D=1)+(D=4)-(D=3)-(D=2

GOTO 310
REM edge routine
E=Z-132
D=D+1-(2*(0=E))
11=D+ (4* (0). 4))
BR=BF ';BR=1)+(BR=20)
BC_=BC-(BC=3)+01C=22)
GOTO 810

10010 REIS knocker Print/move
1005 IF '::J=0)*(S=0)THEN 1140
1010 IF J=1 THEN 1060
10201 CALL VCHAR(KR,KC,32,2)
1030 REM key controlled
1040 KR=KR- (K=88) + (K=69)
1050 YC=KC-(K=68)+(K=83)
1055 GOTO 1100
10611 REM Joystick
1070 CALL JOYST:I,X,Y)
1075 IF (X=0)*('=0)THEN 1140
1080 CALL YCHAR(KR,KC,32.2)
1085 KR=KR-Y/4
1090 KC=KC+X/4
10195 REM check for edse

1100 KR=KR-(KR<2)+(KR>18)
1110 K)_=! :_-.r....4.) +rYr_>21•.

D'AGON
10 REM IIRAGOF7
20 REM ARCBRIDE 1983
25 CALL SCREEN'::_::"
20 CALL CLEAR:
40 PRIFIT TAO(12);"DPAOOII":::
50 PRIINT " THERE'S: GOUT TO BE F
OL IFID": o
60 PRIF7T " AND DRAGONS ANI(GOBLI
NS TO"::
70 PRINT " TACKLE R'_' `r CLI 410F'í:: ':0
UR 1,1ßY"::
80 PRINT " THROUGH THE DRAGON':-:
LAIR,":::
90 PRINT " POLI 1,10N'T KNOW WHERE
THEY"::

1011 FRUIT " ARE UNTIL YOU MEET
THEM.":::
110 FFINT " THE ARROW KEYS (E,S

120 PRINT " MILL MOVE YOUR MAN.

130 PRINT " PRESS ANY KEY TO BE
GIM"
140 CALL 0E''ß').6,2)
150 IF S=0 THEFT 140
160 F'F:INT :
165 PANDOPTI=E
1701 PRINT " I PM PREPARING A PA
TH FOR"::
180 FFINT " .YOU - IT WON'T TAKE
LONG.-::
125 REM rot. up arra'r

1 a i OPTION BASE 1
200 DIM FI. = 1.
2015 REM =ta~r~mein path

210 R=2

$
475 F•F'IIIT
4:,01 IF R$="'r THEN 5001
4911 GOTO 520
500 I9=F1-I90
510 A=A-:.3
520 F'R:INT " ONE MOMENT PLEASE"
525 REM 15 Incidents

510 FOR T=1 TO 15
549 P=INT(RND*18:)+2
550 C=INT(RND*18:)+2
560 IF F$(R,C)="" THEN 540
570 X=RND
580 IF)0.7 THEN 640
5911 IF ;X>.4 THEN 620
6.00 P$(R, C)="2"
6111 0010 650
620 PO(R,C.)="3"
630 13010 650
640 P0(P,C)="4"
650 NEXT T
..55 REREM3ravhics

black: block
660 CALL CHRR(128,"FFFFFFFFFFFFF
FFF''
65 REM the hero

670 CALL CHAR(129,"1818303C60705
008")
675 REM straws

680 CALL CHAR01.36,"3424203034242
C3C"''
690 CRLL CLEAR:
695 CALL i-OLOF:'14,3,8)
7101 CALL SCREEN(2)
05 GOSUB 3000

710 P$(2t2)="1"
21 PL::201._ 10=..ç..
725 CALL HCHAP(1,1,128,768)
7310 41'd:=" OUT "
741) C1=21

920
930
'340
.a50

9 ,0
'11
9::0
9•a15

780 6:01'=4
790 D(1)=1.
900 F:(2)=2
310 Cr2'.=30
320 002.-43
830 REM direction (D:
840 REM 1 ri3ht,2 down
0850 REM 3=leftm4=uP
360 REM GAME STARTS: HERE
370 FOR F=1 TO 2
380 CALL HCHAR'R(P).C(F), 119+3-P
+D(F9)
890 NEXT P
900 IF J=01 THEN 1110
910 REM .00rstick control

920 FOR P=1 TO 2
930 CALL IOc-T(P,X r)
940 IF 0 , ('P=O)THEN 1030
950 CRLL HCHAR(R(P".C(F9,32)
960 REM change direction

970 UP) I1(F')+X/4
'330 D(F)-D(P)-(4*(D(F)=0))+(4*(D
(F9=5))
990 IF ,;'<:4 THEN 1020
1000 REM move tank

1010 GOSUB 1420
1020 CALL HCHAF:(R.P),C(P),119+8^
P+D(P)
1030 IF F(F')THEN 11180
1040 REM fire?

1050 CALL F::E'r (:F'.K. S)
1060 IF 0=0 THEN 1080
1070 GOSUB 1370
1000 NEXT P
1090 GOTO 1280
1100 REM key controls

1110 FOR P=1 TO 2
1120 CALL FE`i (P,K:,S)
1130 IF S=0 THEN 1260
1140 REM fire?

1150 IF (K=12:)=CF(P)=0)THEN 1250
1160 CALL HCHAR(R(P),C(P),32)
1170 REM chance direction

1180 D(P)=D(P)-(K=3)+(K=2)
1190 D(P)=D(P)-(4*(D(P)=0))+(4*(
D(P)=5))
1200 IF 605 THEN 1230
1210 REM move tank
1220 GOSUB 1420
1230 CALL HCHAR(:R(P),C(P0,119+89
P+D(P))
1240 GOT0 1260
1250 GOSUB 1370
1260 NEXT P
1270 REM tank: firin?'

1280 FOR P=1 TO 2
1290 IF F(P:)=0 THEN 1310
1300 GOSUB 1520
1310 NEXT P
1320 GOTO 3601
1330 REM end ot main loop

1.340 REM sub-routines from
here down

1350 REM
1360 REM shell start Point

and direction
1370 F(P)=D(F)
1380 SR (P)=R (F)
1390 SC (Pi =C'.F?
1400 RETURN .
1410 REM tank mover

1420 R1=R(P)
14301 C1=C(P)
1440 R:1=R1-(0'[F') =2)

1450 C1=C1 :I1..F9=1)+:D.F::=.3)
1460 CALL 13CHAR(R1,CL,Z)
1470 IF 2:143 THEN 1500
1430 R(P)=R1
1490 C0P)=C1
1500 RETURN
1510 REM shell in flight

1520 FOR N 1 TO 6
1530 SR.P. ,R(F)-(F(P)=2)+(F(:F)=
4)
1540 SC(P)=SC(P)-(F(P>=1)+(F(P)=

1550 REM check ahead

1560 CALL GCHAR(SR(P),SC(P),Z>
1570 IF 'Z:14.:-3*P>*(Z<148-8*P)T
HEN 1690
1580 IF 2)143 THEN 1640
1590 CALL HCHAR(:SR(F),SC(P),124+
3¢P:)
1600 CRLL SOUND (10,-5,1)
1610 CALL SOUNII '::1,-1, 1)
1620 CALL H HAR(.SR(P),SC(P),32)
16301 GOTO 1650
1640 N=6
1650 NEXT FI
1660 F(P)=0
1670 RETURN
1680 REM hi t.. H=Player n'ho

her been Hit
16901 H=2, (P=2)
1700 F(P)=0
1710 FOR N=1 TO 5
1720 FOR T=1 TO 4
1730 CALL HCHAR'(:R(H),C(H).119+8*
H+T:)
17401 CALL :SOLINII':.50,-T, 1)
1750 NEXT T
1760 NEXT N
1770 REM end or carry on?

1780 RESTORE 1690
1790 FOR R2=21 TO 23
1800 READ W$
1810 FOR 0=1 TO LEN(W$)
1820 CALL HCHRR(R2,0+3,ASC(SE6S(
W$,0,1):0
1830 NEXT Q
1840 NEXT R2
1850 DATA "PRESS)0< TO QUIT"."
>S< TO START AGAIN"," >CO TO C
RRRY ON"
1860 CALL K:EY(3,K,S)
1870 IF S=0 THEN 1860
1880 CALL HCHAR(21, 1,32596)
1890 IF K=8.1 THEN 1940
1900 IF K=33 THEN 550
1910 IF K:=67 THEN 900
1920 GOTO 1780
1930 REM end of game
1940 CALL CLEAR
1950 PRINT TAB(8);"PROGRAM INDEX

IIJTRODUCTIOFI

GR'RPHICS:

SCREEN LAY-OUT

19901 PRINT " VARIABLES STET
.760"::

20170 PRINT " START OF GAME LOOP
.360"::

2010 PF.'INT " CONTROLS -.JOYSTICK

2020 PRINT KE''iS
..1100'
2030 PRINT SUB-ROUTINES:"
2040 PRINT START SHELL
..1.3601"
2050 PRINT MOVE TANK
..1410"

2060 PRINT " FIRE AND HIT?...
..1510"
2070 PRINT SPINNING TANK
..1680'
20801 PRINT ENI1?
..1770"
2090 OTOF

BAT
10 REM BAT
20 REM MACE:RIDE 1983
30 REM graphics
40 FOR N=1 TO 10
50 READ G$
60 CALL CHAR''127+N,GS)
70 NEXT N
80 REM bats
90 DATA OF2F7F:OOEFEFEFCEO
100 DATA F0F4FE7C7F7F3F07
110 DATA 073F7F7F7CFEF4F0
120 DATA EOFCFEFE3E7F2FOF
1317 REM -eve mouth
140 DATA 3C7EFFFFFFFF7E:3C
150 REM edges
1617 DATA FFFFFFFFFFFFFFFF
1701 DATA FFFFFFFFFFFFFFFF
180 DATA FFFFFFFFFFFFFFFF
190 DATA FFFFFFFFFFFFFFFF
195 DATA FFOO13181313181FF
200 CALL 1REEN':61
205 CALL kE 3.f::,S)
210 CALL CLEAR
220 PRINT TAB(11);"BAT"
230 PRINT " TRY TO KNOCCK:. THE BA
T ";CHR$(129):o
240 PRINT " INTO THE CAVE "; CHR
$(1:32)::
250 PRINT " USINJO THE _SPECIALLY

260 PRINT " IDE_:IGNED BAT-KNOCKE
R ";CHR$(:137:)
265 PRINT TAB(24);CHRS'(1:37):::
2170 INPUT " ARE YOU USING JOYST
ICKS .? (Y.'N)":R$
2:80 J=11
290 CALL 6E`í (3.K.3)
300 IF A$="`r" THEN 3:30
310 IF A$="N" THEN 360
320 GOTO 270
330 J=1
340 PRINT " PLEASE CHECK THAT A
LFHR"::
350 PRINT " LOCK I:O OFF (UP)"::

360 PRINT " PRESS ANY KEY TO BE
GIN"::
370 CALL 6:E'í (3,K,S)
en IF :=0 THEN 370

330 CRLL CLEAR
4001 REM screen layout
410 KR=13
420 K0=5
430 REM Bat Knocker start

Feints
440 CALL HCHAR(1,3,133,20)
450 CALL H HAF :20,3,135,20)
460 CALL CHAP(. 3.136,18)
470 CRLL 1HAF(2.2 1;4,18)
4801 CALL H1 HHF (10, 12, 132)
485 CALL .1HAF'.KR,KC,138,2)
490 130`:LIB 1000
500 REM 1000 - Prints and
es bat. knocker
510 4i$="TRY MOVING THE BAT-KNOCK:
ER" D (:F') =4:)

1960 PRINT
.41)"::

1970 PRINT
3350' : :

19801 PRINT

86 87

750 R1=20 1425 I,1$="SCORE OVER" 2001 REM -..- 90blins +-•. 2760 PRINT INTRODUCTION
760 GO_:0E: E.000 1430 GOSUB 5990
770 610:= .. GOLD " 1435 I.18=CTRE. : TO KILL" 20014 CALL CHAP(144,"383A127E7378 2770 PRINT MAZE DRAWER
780 C1=2_ 14411 GOSUB 5990 286C")
7911 F'1=1 1445 i,1$=" FIGHT OR " 2006 CALL COLOP(:15, 13. 16> 2780 PRINT SWORD AND :_HIELD
795 GO.=LIE O000 1450 GOSUB 5990 21,11, CALL :COLINO ':500, 4410, 1:; .355"

IIÍI G0:_IIE 5910 1455 1,10.=.. RUN? .. 2020 CALL SOUND'500,220, 1) 2790 PF.'INT SCATTER INCIDENTS.
=art 610:="IIAPIA GE" 1460 GO:CLIE: 5990 2025 CALL HCHAP(:R,C+1,144'' 525

F'1=5 1465 6L$=":.F' OR R<" 2030 P1=9 2800 PRINT GRAPHICS:
e: í1r6 IRO.CIIE: 50011 1470 GOSUB .5990 2040 WI$="!!GOBLIN!!"
8í1e: CALL HCHAP :7,24,48) 1475 CALL IE'r'(3,1::.0) 2050 C1=22 2810 PRINT '_TART SCREEN
81 1 R=2 14:80 IF K:=82 THEN 1500 2060 GOSUB 6000 ...6'90"::
_;21 C=2 1485 IF K:=70 THEN 1730 2070 0$=" PRY ""-::CTR$(G) 2.8820 PRINT GAME START
8.31 REM ,laver start point 1490 GOTO 1475 2080 GO:CLIE 59901 .830"
841: CALL HCHAR(R,C+1,129) 1511[IF RFIIG..7 THEN 1600 2090 0$="OR GAMBLE?" 2830 PRINT MOVEMENT
351 CALL SOLIND(100,400,1) 15111 IF PNI' .5 THEN 1550 2107 GOSUB 5990
26. I: CALL KE7 (.3,K, 0) 1521: CALL ":O1INL (500, 523, 1. 2111 100=" FPE'S:E " 2840 PRINT INCIDENTS"
371: IF _.:=0 THEN 860 153(B$='•E:=.:CREED ..

2121 GOSLIE 5990 22850 PRINT MORE GOLD
FOF' N=22 TO 32 154, 6030 1680 21:31: 61$=":-FO OR)06" ..1250"

891: CALL '•iCHAR($t, N, 128, 12) 155(CALL -=:OUFJII(51, 0,220, 1) 2141 GOUT 5990 2860 PRINT DRAGON"
90(NEXT N 156(R$="E:=:CAF'EIL-- 2151: CALL F::EY(3,K,S) ..1350"
31C CALL HCHAF: -.R,C+1,32) 1571 E•$="

 hIIOL111IIEI1., 216-- IF k:=71 THEN 2220 2870 PRINT GOBLINS
915 REM no^e hero 15811 L1=D+2 22171 IF K=80 THEN 2190 ..2000"::

1590 GOTO 1650 218:0 GOTO 21511 2880 PRINT PATH—MAKER
921. IF k=E::_ THEN 1070 160 C CALL :?OUNII(500.-4,1) 2191: M=M —G ..4000"
+3(IF k.=69 THEN 1030 1611: A$="YOLI DPOFF'EI' 220: GOSUB 5910 2890 PRINT MESSAGE PRINTING
941: IF F'.=03 THEN 9v_I 1621: E:$:="YOLIF GOLD" 2211: RETURN ..5800"
951 C=C+1 1631: M=0 2221 0$=" PILCK: THE 2895 STOF
+6L IF F"$!F'•L' " THEN 1170 1641 REM diz.F16.7 2231 GOSLIB 5990 2900 FOP T=1 TO 21
971

__
C.C-1
GOTO 1100

1650
1660

6L$=19$
F1=18

224_
2251

I,J$="LONG STRAW"
GOSUB 5990

2910 FOR N=1 TO 21
2920 P$(T,N)="'

+9i C=C-1 1665 C1=23 2260 I.J0
$.. 2930 NEXT N

101:_ IF F$(R,C)::: " THEN 1170 1670 GOSUE 6000 227 _ GOSUB 59.90 2940 NEXT T
1011 C=C+1 16.00 1,c£=0'$ 2281: GOSUB 599i1 2950 NOTO 10
1021 GOTO 1100 16911 P1=19 2290 W$= ">L< OF: 3000 FOR S=1 TO 13
10:31 P=F-1 1700 GOSUB E.000 2300 GOSUB 5990 3010 CALL COLOR(S,2,8)
1041 IF F$ (:P, r:.: " THEN 1170 1710 GOSUB 5::00 2310 CALL COIUND(500,500, 1) 3020 NEXT S:
11151 F:=F+1 1720 GOTO 1.900 320 CALL K.E`i(3. K,S) 3030 RETURN
1061 GOTO 1100 1730 8$= .. :=:COPE" 2330 IF (K.=76)+ ,K=82)=0 THEN 4000 X=RND
1í7L F=F+1 1740 R1=18 0 4010 IF X).8 THEN 4130
1081 IF FE(:F'.C): "" THEN 1170 1751) GOSUB 6000 2340 IF RND:.5 THEN 2390 4020 IF 2).5 THEN 4100
1090 R:=F'-1 1760 Y=INT(RND-,80) 2350 310=" I " 4030 IF >:: 3 THEN 4070
1101 CALL HCHAP(R,C+1,129) 1770 FOR N=1 TO 'r' 2:060 GOSUB 5000 4040 R=R+2+(2+(R?19))
111(61$="!WALL!" 1775 N$=STR$(N) 2370 IF K=76 THEN 2490 4050 P$(R-1,C1,="1"
112(C1=23 1780 FOR T=1 TO LEN(N$) 2380 GOTO 2430 4060 GOTO 4150
1131 P1=9 1790 CALL HCHAR(:18.,27+T,RSC(SEG$ '" 2390 8$=" Ii 4070 R=R-2—(2+(R(3))
1141 CALL ::OLINII(500,200. 1) (N$,T,1)), 2400 GOSUB 6000 4080 P$(R+1,C)="1"
115(GOSUB 6000 1795 NEXT T 2410 IF K=82 THEN 2490 4090 GOTO 4150
11610 GOTO 840 1800 CALL TOUND(10.100+200N,1) 2420 REM wrong Suess 4100 C=C+2+(2^(C>19))
1170 'J=VAL'::F$(F', C) -, 1810 NEXT N 2430 W$=" YOU LOST " 4110 P$(R,C-1)="1"
1175 REM what'_ ahead? 1315 CALL SOUND(1000,1000,1) 2440 GOSUB 5990 4120 GOTO 4150
1=path. 2=oold.3=dragon 4=3 1820 IF Y'? THEN 1870 2450 CALL SOUND(1000,110,1) 4130 C=C-2—P—(21 C<3))

ohlins, 5=out.. 1825 FOR P,1=17 TO 19 2460 M=M—G*2 4140 P$(R,C+1)="1"
1180 ON V GOSUB 1200,1250,1350,2 1830 READ W$ 2470 GOSUB 5910 4150 P$(R,C)="1"
1000.2600 1835 GOSUB 6000 2480 RETURN 4160 RETURN
1190 GUM 840 1840 NEXT RI 2490 W$=" YOU WIIN " 5800 W$=STR$(D)
1200 RETURN 1042 DATA "HE'S DEAD"."YOU GET 2500 GOSUB 5990 5810 R1=7
1240 REM *0 "HIS GOLD " 2510 CALL SOUND(1000,550,1i 5815 C1=23

1845 CALL SOLIND5500,262,1,330,1, 2520 M=M+G-=2 5820 GOSUB 6000
1250 W$="MORE GOLII" 392,1) 2530 GOSUB 5910 5830 GOTO 5910
12260 R1=9 1850 CALL (_:OLIND(500.262,1,330,1, 2540 RETURN 5900 M=M+G
1270 CALL .'_:OUNII(500,750, 1) 292,1) 2600 IJ$="SUCCESS AT LAST!" 5910 W$=STR$(M)
1280 GOSUB 6000 155 GOSUB 5900 2601 REM out 0* 5920 R1=3
1290 6=10+INT(RND+10)+10 1857 P$(:P,C:i="1" 5925 C1=23
1300 W$=STR$(G)&" COINS" 1860 GOTO 1920 2605 .ALL HCHRR(R,C+1,129) 5930 CALL SOLIND(500,600,1)
1310 R1=11 1870 61$="HOUNDED! " 2610 C1=5 5940 GOTO 6000
13211 GOSUB 6000 1880 R1=12 2620 R1=22 5990 R1=R1+1
1330 GOSUB 5900 1882 I1=D+2 2630 GOSUB 60001 6000 FOR 0=1 TO LEN(W$)
1335 FT.(R,C:;="1" 1884 GOSUB 58:110 2640 CALL SOUN➢ (1000.262,1.330.1 6010 CALL HCHAR(RI,C1+Q,RSC(SEG$
1340 RETURN 18:90 6,í'_11B 6000 392.1) (W$,Q,1)))
1350 RESTORE 1350 1900 CALL :=:OLINII(1000,466, 1) 2650 I.J$="PRE'_:_(ANY KEY TO GO ON" 6020 NEXT Q
1355 REM ..a; dragon! t+ 1910 IF D-6 THEN 1930 2660 F1=24 6030 RETURN

1920 RETURN 670 GOSUB 6000
1360 k=25+INT(RND+30+R) 1930 I,1$=" YOU ARE DEAD. E:UT DON'T 26:80 CALL LEY(:3.1:.5)
1:370 G=10+IIJT(RND+10)+10 FEEL" 2690 IF S=0 THEN 2680
1380 C1=22 1935 C1=2 2700 INPUT "LIKE ANOTHER GAME T(
1390 F:1=9 1940 R1=22 Y, N) ":A$
1395 I,I$="! ! I1F:AGON! ! " 1950 GOSUB 6000 2710 IF A$="`("" THEN 2900
1397 CALL SOLIND(11000,500,1.-8,1) 1960 h1$="T00 BLIRIdED UP ABOUT IT. 2'20 IF A$<> "N" THEN 2700
1400 GO:CI_IE: 5990 30 CALL SCREEN(8)
1405 W$=" HE HAS " 1970 R1=23 2740 CALL CLEAR
1410 GOSUB 5990 1980 GOSUB 6000 2750 PRINT TAO-'3-: "PROGRAM INDEX
1415 W$=:=TR$(:G)&" COIN:_ " 1.990 GOTO 2E50
1420 GOSUB 5990 21000 G=10+INT(RND=;18)x=10

88 89

10 20 30 40 50 60 70 80

Figure 43

That line makes sprite #1 take on the shape of character
96, colours it white(16), sets it down at 20,20, and gives it a
velocity of 0 rows and 60 columns. This means it moves
across the screen to the right. When it reaches the edge it is
whipped round to the other side automatically. Compare
this with the number of lines needed to get the same effect
using only TI BASIC.

Sprites can be magnified. A normal (single character)
sprite can be blown up so that it occupies 4 spaces. (figure 44)

■■■■■■■■■■■■■■■■
■■■■■■!■■■■■■■■■
i■■■■■■■■1■■■■■■ i■!■■■■■■■■■i■■■
iiiiiiiiiiiiiiii iM■■!■■■■■i■■■
■■■■■■■■■■ii■■■■
■■■■■■■i■■ii■■■■
■■ii■■i■■■■■■■■■
■■!■■■■■i■iii■i■
i■i■■■i■■■■■■■■■
■■■i■■i■■■■i■■■■
■■■■■■■■■■■■■■■■
■■i■■i■■■■■■■■■■
■■■■■■■■■■■■■■■■

Figure 44 Magnified

10

20

30

40

50

60

70

Normal

•

B
Sprites
and TI EXTENDED BASIC

The EXTENDED BASIC module is not particularly cheap,
but it does offer a number of very valuable facilities to the
games programmer. Of these the most important for action
games are those routines which operate SPRITES.

Sprites are characters which can be placed on the screen
anywhere, and moved smoothly in any direction. The sprites
can change colour, size, shape, speed or position while they
are in use. Additional subprograms can be used to check for
collisions or to find the locations of sprites, or the distance
between two sprites. Sprites can move more than twice as
quickly as a character that is running through an HCHAR
loop, and they move just as quickly whether they are tiny
sprites taking up only one character space, or huge ones that
use sixteen spaces. If you have ever tried to move a multi-
character graphic across the screen, you will appreciate how
valuable this is.

The smoothness of movement of the sprites comes from
the use of a high-resolution screen. Instead of their positions
being set on a 32 by 24 character space grid, a fine grid 192
dot-rows by 256 dot-columns is used. The sprite is
automatically rubbed out as it moves, and its movement is
set by giving a row and column velocity. The effect is to
allow smooth movement in any direction, forwards,
backwards, up, down or at any angle. (figure 43)

This single line is all you need to start a sprite off.

CALL SPRITE(#1,96,16,20,20,0,60)

90 91

Larger sprites can be created by defining a block of four
character squares. These can be further enlarged so that they
occupy 16 squares. (Figure 45)

4-character SPRITE Super-Grimble)

that can cause program crashes in TI BASIC. Finally,
EXTENDED BASIC allows the use of multi-statement lines.

IF A$= B$ THEN PRINT "WELL DONE":
GOSUB 5000 : GOTO 350 ELSE PRINT"WRONG":
GOSUB 4000: GOTO 370

A line like this is possible — not very elegant, but possible.
Multi-statement lines can make life much easier than having
to jump to separate little routines.

Normai

Figure 45

Magnified

The SPRITE range of subprograms will not take your
games up to arcade speeds — only machine code
programming can achieve that — but they will allow you fast,
smooth action, and make programming easier.

TI EXTENDED BASIC has many other useful features that
make for more efficient programming. It is essential if you
wish to use the SPEECH SYNTHESISER — which makes the
99 talk! — or if you want to get into Assembly Language
programming.

The extra commands and statements of EXTENDED
BASIC include ACCEPT AT, which works as an 'Input
Anywhere' routine, and DISPLAY AT which allows for
printing anywhere. A set of subprograms (ON BREAK, ON
WARNING, ON ERROR) cope with these keyboard entries

92 93

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47

