Do not upload this copyright pdf document to any other website. Breaching copyright may
result in a criminal conviction and large payment for Royalties.

This Acrobat document was generated by me, Colin Hinson, from a document held by me,
believed to be out of copyright. It is presented here (for free) and this pdf version of the
document is my copyright in much the same way as a photograph would be. If you believe the
document to be under other copyright, please contact me.

The document should have been downloaded via my website https://blunham.com/Radar, or

any mirror site named on that site. If you downloaded it from elsewhere, please let me know
(particularly if you were charged for it). You can contact me via my Genuki email page:
https://www.genuki.org.uk/big/eng/YKS/various?recipient=colin

You may not copy the file for onward transmission of the data nor attempt to make
monetary gain by the use of these files. If you want someone else to have a copy of the file,
point them at the website (https://blunham.com/Radar). Please do not point them at the

file itself as it may move or the site may be updated.

It should be noted that most of the pages are identifiable as having been processed by me.

| put a lot of time into producing these files which is why you are met with this page when you
open the file.

In order to generate this file, | need to scan the pages, split the double pages and remove any
edge marks such as punch holes, clean up the pages, set the relevant pages to be all the same
size and alignment. | then run Omnipage (OCR) to generate the searchable text and then
generate the pdf file.

Hopefully after that, | end up with a presentable file. If you find missing pages, pages in the
wrong order, anything else wrong with the file or simply want to make a comment, please
drop me a line (see above).

If you find the file(s) of use to you, you might like to make a donation for the upkeep of the
website — see https://blunham.com/Radar for a link to do so.

Colin Hinson
In the village of Blunham, Bedfordshire, UK.

TEXAS INSTRUMENTS

'~ HOMECOMPUTER
' GAME WRITERS PACK 1
CASSETTE SOFTWARE

display major ideas covered in the accompanying book. Enables any user to progressively
understand and make full use of this computer.

@ TEXAS INSTRUMENTS
HOME COMPUTER

Game Writers'

Pack1

PK McBride

Contents

[B

-2 B -)

10
11
12

Take it from the top 5
In the driving seat 9
The value of truth (part 1)
Target practice 20
Two player games 27
The dense pack theory of programming 33
Changing directions 34
The value of truth (part2) -
The edges of the world 41
An element of chance 48
Obstacles and random dangers 53
Mazes 58
Movement and meetings in mazes 66
Colour changing 74
Time and place 77

Appendix A Program LISTS
Appendix B Sprites and TI EXTENDED BASIC

INtroduction

This Pack is the first of two that demonstrate the techniques
and ideas needed for writing a wide variety of games in

TI BASIC. Here we are dealing mainly with guessing games,
on-screen action and maze-based adventure games. In

Pack 2 you will discover how to tackle games of strategy that
allow the computer to fight back.

The programs on the cassette are of two types. MAZE,
RACETRACK and TARGET are working diagrams that
demonstrate techniques in the simplest possible ways. These
can be taken over by you and converted into fully fledged
games if you wish. The other three programs, BAT,
DRAGON and DUEL are given as examples of the types of
games that can be written in TI BASIC using the ideas of this
book.

TI BASIC was designed for simplicity, not speed, and you
will find that screen action will always be rather slow
compared to arcade games. If, when you have worked
through the book, you find that you want to develop further
with action games, then you will find it well worthwhile to
get an EXTENDED BASIC cartridge. This will allow you to
use SPRITES, which give a much faster and smoother
movement. EXTENDED BASIC also has many other facilities
for the advanced programmer. A brief outline of some of
these is given in Appendix B at the end of this book.

The book assumes that you have a reasonable grasp of
BASIC programming up to the level covered by the two
Starter Packs — that is, just about all of the TI BASIC
commands, statements and functions except for those used
in file-handling. It also assumes that you possess no
peripherals apart from the cassette leads. Use of the Joysticks
is covered in the book, but all of the programs are designed
to be useable even without them.

1
lake tfromthe top

So you are getting tired of playing other people’s games and
want to write your own! Why not. Games programming is
great fun, and an excellent way of getting to grips with the
mysteries of the computer. It can also have the useful
spin-off of entertaining the other members of your family —
the ones who have complained about the amount of time
you spend locked up with the machine.

A good game need not be difficult to write. Some of the
best use very simple ideas but have a top dressing of
graphics and sound effects to turn them into amusing and
original games. You will often find that the special effects
take longer to write than the main program, but they are
fiddly, rather than difficult, and the only real limitation is the
scope of your own imagination.

There are essentially two ways of starting to write a game.
You can begin with an effect that a BASIC routine produces
and work this up into a game. The games arising from the
CALL COLOR sub-routine that are given in the ‘Colour
changing’ chapter are examples of these, and you will find
many others eleswhere in the book.

The second approach is sometimes called ‘“Top-down’
programming. Here you decide what the game is going to be
about first, and then you find some way of turning it into a
program. When you are working this way you should expect
to spend a long time first with pencil and paper before you
ever come to the computer. If you can write down exactly -
and it must be exactly — what the program is supposed to do,
using clear and simple English, then you should be able to
write it in BASIC. You should also plan your screen layouts
on squared paper, and work out the hex strings you need for
your graphics characters before you reach the keyboard. It
really makes life easier in the long run.

Don’t miss out the flowchart stage. It’s the best way to see
how the program is supposed to work. You can start by

sketching in the broadest outlines.

[TEST IT |

{ SAVE IT]

Y

LET THE FAMILY
PLAY

GTOP (for a breatherD

Figure 1

3

IMPROVE IT |

You can then start to expand the more complicated parts of
the flowchart. What does it mean “Write your program’?

WRITE YOUR
PROGRAM

+from START

‘Figure 2

PLAN and
FLOWCHART

SORT OUT SCREEN
LAYOUT and
GRAPHICS

¥

WORK OUT BASIC

ROUTINES

ROUTINES

WORK? TEST ANY
et NEW ROUTINES
yles *
I
TYPE IN YOUR I
PROGRAM
| — _l_ _
to -TEST

You may then find that you still have boxes where the
contents are far from simple. How exactly do you ‘Type in

your program’?

TYPE IN
YOUR PROGRAM

TYPE IN MAIN

ROUTINES
|
A
[TEST |
[CorrecT |
0K? No
> Yes

>

\ 4
ADD TRIMMING
(scores/special effects)

[TEST |

|

Figure 3

It doesn’t finish there either, though the figures do! Clearly
there is a lot more to ‘Correct’ than the one word, but you
probably know your own de-bugging routines well enough
not to have to bother writing them out.
Let these be your rules for flowcharting:
~ Always keep the overall structure of the program clearly in
view.
Develop the details until you can see exactly what lines of
BASIC you will need.

2
INthe driving seat

You should already know how to produce the effect of
movement by running HCHAR or VCHAR lines through a
loop, so we can start from there.

10 CALL CLEAR

20 FOR C=1 TO 32

30 CALL HCHAR(10,C,42)
40 CALL SOUND(50,500,1)
50 CALL HCHAR(10,C,32)
60 NEXT C

70 GOTO 20

This simply runs an asterisk across the screen and makes an
irritating noise. Now let’s try and control that movement.
We want to be able to change the Row number while the
asterisk is moving. The only way to get information into the
computer while it is running, without holding things up, is
to use the CALL KEY routine. (Or the CALL JOYST routine,
which in practice comes to much the same.)

We can add to our program so that the asterisk will move
up arow whenever the E key (up arrow) is touched, and
down when the X key is pressed. But first, our Row number
must be a variable — so that it can be varied.

Add these lines:

15 R=10 (Row number at start)
55 GosuB 100

and change

30 CALL HCHAR(R,C,42)
40 CALL HCHAR(R,C,32)

At line 100 we can then write the routine to collect
information from the keyboard.

100 CALL KEY(3,K,S)

110 IF K=88 THEN 140 (CHR$(88)is X)
120 IF K=69 THEN 160 (CHR$(69)is E)
130 RETURN

140 R=R+1
150 RETURN
160 R=R-1
170 RETURN

Type it in and see how the program works now. You will
notice that the program crashes if you try to fly off the top
or bottom of the screen, but that is something that we can
leave till later. Right now we will add some more controls —
how about an accelerator and brake?

The speed of the program is largely controlled by the
CALL SOUND line. If we make the time variable, we can
change the speed of movement.

6 T=50
40 CALL SOUND(T,500,1)

The A and B keys are here used as Accelerator and Brake,
but you could use any other keys which you find more
convenient. We need to add to our CALL KEY subroutine.

124 IF K=65 THEN 180 (65=A)
126 1F K=66 THEN 200 (66 =B)
180 T=T-5 (speed up)

190 RETURN
200 T=T+5 (slow down)
210 RETURN

All typed in and running properly? Good. Now here’s a
way to get exactly the same effect, but with far less typing.

The value of truth (part 1)

Truth has a straight number value as far as the 99 is
concerned. A statement that is true is worth —1. A false
statement is worth 0. You can see this if you type in (no
line numbers needed):

10

X=99
PRINT (X=99)

The 99 looks at the equation in the brackets and checks to
see if it is true. It is, and so the 99 prints —1. Now type in:

PRINT (X=199)

This time 0 is printed.

We can adapt this to check the value of K from the CALL
KEY line. Knock out line 110 and replace it with this:

110 R=R—(K=88)

Notice here that you have got a double negative. Take
away minus one (——1) is the same as ‘add one’.
A similar line goes in for the E key.

120 R=R+(K=69)

Here you want 1 to be taken avx;ay when E is pressed, so
you add minus one. + —1is the same as —1.

Try it and see what happens. Watch those pluses and
minuses carefully. Remember you have to stand on your
head when you are valuing truth.

Everything OK? You are no longer using lines 140 to 170 so

these can be knocked out as well.
We can take this one stage further, and save even more

typing. You can include as many ‘value of truth’ functions as
you like in one line. This means that lines 110 and 120 can be

run into one:
110 R=R—(K88)+(K=69)
If neither key has been pressed both the brackets give 0

values and R remains the same. If one is pressed, you get the
appropriate movement up or down. If both keys are pressed

you get upward movement! Whenever the 99 find two or
more keys down at a CALL KEY line it tends to pick out the
one with the lowest character code. “Tends to’ — there are
exceptions, and they don’t follow any obvious rule. When
you are using CALL KEY lines it is always worth checking
out which keys have priority over others.

11

If you wanted to use ‘value of truth’ lines on the speed
controls, where you are adding or taking away 5 each time,
and not just 1, then you are going to need rather more
complicated lines. We will return to them later. Meanwhile
you might like to improve that first program by adding a nice
graphic character to replace the asterisk.

5 CALL CHAR(128,“00003098FEFF1830")

produces a little plane. Don’t forget to change the code in
line 30.

Sketchpad
You will have noticed in the earlier program the line:
CALL HCHAR(R,C,32)

which printed a space over where the asterisk had been, so
that you got a flickering movement. If you miss this out, you
can develop a program to draw on the screen. This produces
thick black lines:

10 CALL CLEAR

20 CALL CHAR(128,“FFFFFFFFFFFFFFFF”) (solid
zg E:g } (start point) block)
50 CALL HCHAR(R,C,128)

60 CALL KEY(3,K,S)

70 R=R—(K=88)+(K=69)

80 C=C—(K=68)+(K=83)

90 GOTO 50

Run this and try some computerised doodling. You might
produce something like figure 4. (It can be done!)

Figure 4

There’s room for improvement, isn’t there? The first thing
to put right is the crashing when you wander off the screen.
We will add a routine to fix that. Change 80 and add these
lines:

80 R=R—(R=0)+(R=25)
90 C=C—(C=0)+(C=33)
100 GOTO 50

Lines 80 and 90 keep the Row and Column numbers within
the limits of the screen. Whenever a number threatens to
take the HCHAR position off the edge, then 1 is added or
taken away to readjust it. We will come back to this again in
the section ‘The edges of the world'.

The second improvement is to give yourself some means
of wiping out mistakes, and of moving from one part of the
screen to another, without leaving a trail. We can do all of
this with the same alteration, where we allow either a block
or a space to be printed. The simplest way to do this is to
make the printed character code into a variable. (G for
Graphic). Line 50 now reads:

CALL HCHAR(R,C,G)
Set the initial value of G somewhere earlier in the program.
35 G=128

12

13

60 E=E+(E>20)—(E<T) (keeps the track on
70 CALL KEY(3,K,S) screen)

80 P=P—(K=68)+(K=83)

90 IF P<=E THEN 120

100 IF P>=E+10 THEN 120

110 GOTO 30

120 PRINT “CRASH”

When you have got the program typed in and working, you
might like to replace that simple ‘"CRASH’ with a full routine.
Some suitable sound effects and graphics and a few witty
comments.

Let us look a little more closely at lines 90 and 100. You will
see that there is a double check in each line. ‘<="means ‘is
less than or equal to’. In this particular program, the equals
sign alone would really have been enough, but there will be
other times when you might just miss a ‘collision” of this
sort, and the double check makes sure that you don't. It
takes very little space or time to include, and it might prevent
some frustration. Make sure that the equals sign always
comes second, or it may not work properly.

Those two lines could be combined into one if you prefer.
You may remember from Starter Pack 2 that you can create
AND/OR effects.

90 IF (P<=E)+(P>=E+10)<>0 THEN 120

This single line does the job of the other two. If either of the
equations in the brackets is true, then the total value of the
two statements will be —1.

Game variations

1 The squeeze. Instead of having the right-hand side
printed a fixed 10 spaces away, you could reduce the
track width steadily. Start with a reasonable width:

5 W=10
Alter the print line so that the last part reads:
... TAB(E+ W);“)”

and narrow the track before you return to the print line:
105 W=W-.1

This will reduce the track to nothing in one hundred
lines, just over 4 screens full.

2 Speed-up. Here you build a delay into the program, but
make the length of the delay variable.

6 T=50
106 FOR D=1 TO T (delay time)
107 NEXT T
108 T=T-1

This has probably made rather a mess of your line
numbering, so RESEQUENCE it to tidy it up again, SAVE it,
and let the family play!

Joysticks! -

If you have got them, you are probably itching to use them.
If you haven’t, go on to chapter three.

There is no doubt that the Wired Remote Controllers (to
give them their proper name) make it much simpler to
control movements on screen. You can actually feel the way
you are trying to move your piece. They plug into the
nine-pin socket on the left-hand side of the machine, and
don’t worry about plugging them in when you've got a
program already loaded into the memory. The socket is
protected so that your program is not disturbed.

MAKE SURE THE ALPHA LOCK IS UP whenever you are
using joysticks. If you leave it pressed down the 99 will not
pick up the forward movements properly.

The joysticks are linked into the program with a CALL
JOYST line. This should state which joystick you are using,
and give the variables where you want the movements to be
stored. It is normal to use X for left-right movement, and Y
for up and down. A line to read Joystick 1 would look like
this:

CALL JOYST(1,X,Y)

16

17

The numbers in the X and Y stores will always be either 0,4
or —4. There are 8 possible positions for the joystick, and the
X, Y values of each are shown here.

Figure7

(0,4)
(-4,4) T {4.4)

A
(—4,0)¢—< O >—»(4,0)

\v4
a8 | @-a
©.24)

Let’s build up a program to use the joysticks. This will move
an asterisk around the screen. The asterisk’s co-ordinates are
stored in R and C, and these are adjusted by adding X and Y.

10
20
30
40
50
60
70
80

CALL CLEAR
R=12)
c=16 (start in the centre)

CALL HCHAR(R,C,42)

CALL JOYST(1,X,Y)

R=R+Y (vertical adjustment)
C=C+X (horizontal)

GOTO 40

Type this in and run. Don'’t forget to check the ALPHA

LOCK.

Not quite right is it? The asterisk is jumping 4 spaces at a
time, and its working upside down. It is upside down
because the Row numbers get bigger going down the screen,
but the Joysticks numbers increase upwards. Change lines 60
and 70 to these:

60 R=R-Y/4
70 C=C+X/4

Now try it. See how close you can get to the edge of the
screen without getting a‘BAD VALUE IN 40’ report.

You might like to convert Sketchpad and Ski-run programs
to work off joysticks.

There are, of course, two joysticks and you can, of course,
use them both at the same time - or rather, you and another
player can use them both at the same time. We will come
back to them in the “Two-player games’ chapter.

18

19

3
laget practice

Shooting type games written in BASIC will never be as fast
as machine code games, but speed is not the only thing that
makes for a good game. Sound, interesting graphics and an
element of chance all help to make a game more fun to play.

The program TARGET is a simple example of a shooting
game, and this could be dramatically improved by the
addition of some imaginative special effects and a good
scoring system. There is nothing to stop you using TARGET
as the basis of a game of your own. The flowchart for the
program is shown in figure 8, and you will find it listed in
Appendix A.

Shooting games don’t have to be done this way, and it is
worthwhile to look at the different routines that can be used.

Moving targets

A simple FOR. . .NEXT. . . loop moves the ‘plane’ across
the screen:

350 FOR TC=1 TO 32 (Target Column)

360 CALL HCHAR(5,TC,128) (128 = ‘plane’

“es graphic)

650 CALL HCHAR(5,TC,32) (rubbing-out space)
670 NEXT TC

680 GOTO 350

Notice how the graphic is printed at the start of the loop, but
not rubbed out until very nearly at the end. This keeps the
‘flicker’ time down to the absolute minimum. In between
these are fitted the various gun-moving, and hit-checking
routines.

Y

[GRAPHICS]

INITIAL VALUES
for VARIABLE

A 4

\ 4

| PRINT “PLANE” |

PRINT &
MOVE GUN

>
»
A

No FIRE?

\ 4 Yes

BULLET and HIT
CHECK ROUTINES

HIT? Yes
\ 4
> No
[RUB-OUT PLANE | [CRASH!]

P
«

Figure 8

On this version, the plane always flies across at row 5. This
could be made variable. It could be made to fly lower on each

20

21

pass across the screen. This would give the player less time
to respond. To do this you would replace the ‘5’ in the CALL
HCHAR lines with ‘R’, give an initial value to R, and add to it
at the end of the loop.

345 R=5
675 R=R+1

Try adding these to the TARGET program and see what you
think.

It actually makes it even harder than you think to hit the
plane now. This is because the bullet skips 3 spaces at a time,
so that it can pass the plane, but the hitisn’t recorded. You
can correct this by making line 675 read:

675 R=R+3

The crash routine will also need adjustment. It all goes to
show that when you start fiddling with a program you
always finish up with more work than you bargained for!

High speed bullets

In the present program you have a gun which can be
shuffled across the bottom of the screen, and bullets which
visibly fly up at the target. These could be replaced by a gun
which could be steered anywhere about the screen. Then,
when you have got the gun directly over the plane’s
position, pressing the Fire button will send an incredibly
high-speed bullet zooming at the target. So fast, indeed, that
it is invisible! Doesn’t that make the program easier? The
much simpler flowchart for this is shown in figure 9.

The “Check for Hit line looks like this:

IF (TR=GR)*(TC=GC)=1 THEN... (goto crash
routine)

If it is true that both the row and the column co-ordinates of
the target (TR, TC) and the gun (GR,GC) are the same, then
youhave -1 * —1=1.

[GRAPHICS

INITIAL VALUE
for VARIABLES

y

[PRINT TARGET |

I

[CALL key]

PRINT & MOVE
GUN

»
L

No

RUB OUT
TARGET

I

[CcrRAsH!

Figure 9

You might like to work out the BASIC program to produce
that type of shooting game. A check program is given at the
end of the chapter. Please remember that there is no single
correct way of writing a program. If yours works, then that is
all that really matters. Use the check program for reference
only.

22

23

Checking for hits

Comparing co-ordinates is one way to check for hits, and
works perfectly well, especially where you have only one
target occupying only one space. If you had a larger target,
or several, then the co-ordinate check lines would get rather
complicated. Here is another way of checking. This uses the
GCHAR subprogram. GCHAR is short for GET
CHARACTER, and it will tell you what character is at a
particular part of the screen. Try this:

10 CALL GCHAR(10,10,2)
20 PRINT 2

Run it and it should print 32, the code for space. If it prints
anything else then you must have had other material already
printed on the screen. CALL CLEAR and run it again.

Now add this:

5 CALL HCHAR(10,10,42) (or any other code
number you like)

This time it will print 42.

When you are using GCHAR check lines, you have to be
careful to check the square before your bullet or gun is
printed there, otherwise, you will simply find the code for
that, and not for your target. In the TARGET program you
will find these lines:

540 CALL GCHAR(BR,BC,Z) (Bullet Row and
Column)

560 CALL HCHAR(BR,BC,129) (129 = bullet)
570 CALL HCHAR(BR,BC,32) (rub out immediately

for flickering effect)
580 IF Z=128 THEN 710 (128 = plane)

By waiting until the bullet has been printed and rubbed out
before going off to the ‘Crash’ routine, you make sure that
the target has been rubbed out as well.

Crumph!
Q * A
T
* T z
G X *
cCP
Y *
D * M
E H
R T
W
S Q

Figure 10

You can use the GCHAR check to find one particular
character, or a range of characters. Look at the program
below. This starts by printing random capital letters (line 50
works out the code number.) It then drops an asterisk down
the screen. You, the player, have to steer the asterisk around
the ‘obstacles’. Notice the way that the check line picks up
any character with a code over 64.

10 CALL CLEAR
20 RANDOMIZE (don’t forget this)
30 FOR N=1 TO 24 (every row)
40 X=INT(RND*32)+1 (random TAB position)
50 A=INT(RND*26)+65 (random letter)
60 PRINT TAB(X);CHR$(A)
70 NEXT N
80 C=15 (starting Column)
90 FOR R=1 TO 24 (everyrow again, from the
top)
100 CALL GCHAR(R,C,Z)
110 IF Z>64 THEN 180 (hit something)
120 CALL HCHAR(R,C,42)
130 CALL KEY(3,K,S)

24

25

140 C=C—(K=68)+(K=83) (left-right steering)
150 NEXT R

160 PRINT “MADE IT” (you musthave done to
170 GOTO 30 have got here)

180 PRINT “CRASHED”

190 GOTO 30

Here’s that check program for the ‘high-speed bullet’ game.

10 CALL CLEAR

20 CALL CHAR(128,“00003098FEFF1830") (plane)
30 TR=5 (Target Row)

40 GR=15 (Gun Row)

50 GC=15 (Gun Column)

60 FOR TC=1 TO 32

70 CALL HCHAR(TR,TC,128) (print target)

80 CALL KEY(3,K,S)

90 IF S=0 THEN 150 (moving?)

100 CALL HCHAR(GR,GC,32) (Rub out old gun
110 GR=GR—(K=88)+(K=69) graphic)

120 GC=GC—(K=68)+(K=83)

130 IF K<>70 THEN 150 (firing?)

140 IF(TR=GR)*(TG=GC)=1 THEN 190

150 CALL HCHAR(GR,GC,43) (prints a cross for the

gun)
160 CALL HCHAR(TR,TC,32) (rub out old plane
170 NEXT TC graphic)

180 GOTO 60 (and fly across again)

190 FOR v=1 TO 30

200 CALL sounp(¢100,200,v,210,V,—8,V) }(Bang!)
210 NEXT V

4
WO playergames

Catch the Grimble

This is a steering game for two players. One player controls
the Grimble, the other lays out Grimble cages. If the Grimble
runs into a cage, or if the Grimble-catcher is able to drop a
cage on it, then the game is over. In the version given below,
there is no way in which the Grimble can stay free forever,
but a simple counter keeps track of how long it stays on the
loose.

The game produces screens something like figure 11.

Grimbie
,_starts
¥T here
X
Grimble-catcher]
starts _| t_q H
here P4t =
A =
i 0 3 0
Figure 11

As there are two players, you will have to use the split-
keyboard technique, or joysticks if you have them. The
routines for the left and right sides can be combined into
one, and we will return to that later, as it is probably easier at
first to write in separate routines.

26

27

Here is the Grimble flowchart.

GRIMBLE CHARACTER
DEFINITION

GRIMBLE (GR,GC)
and CATCHER (CR,CC)
start points

| START COUNTER |

»
>

[GCHAR CHECK]

[END MESSAGE |
PRINT GRIMBLE
4 and CAGE sTop

Y

CATCHER'S MOVE
(check for edges!)

GRIMBLE'S MOVE
(edges!)

[ADD TO COUNTER |

| PR

Figure 12

The split keyboard

The code numbers you get with CALLKEY(1. . .) and CALL
KEY(2. . .) lines are quite different from the ASCII codes
given by the standard keyboard check. The obvious choice
for controls are the group of ‘arrow’ keys on the left hand
side and the matching group on the right. Here they are with
their codes.

Figure 13

You would expect that the lines controlling up/down
movement would look something like this:

R=R—(K=0)+(K=5)

Unfortunately, for reasons known best to itself, the 99 does
not accept (K=0) as ever being true in this situation. There is
always a solution though, and here is one.

CALL KEY(1,K,S)
ee. K=K+1
.«« R=R—(K=1)+(K=6)

You will have to add one to the column checks as well:
C=C—(K=4)+(K=3)

See if you can put ‘Catch the Grimble’ together, working
from the flowchart. There is a check program at the end of
the chapter if you need it. By the way, proper Grimbles look
like this:

Figure 14

28

29

5
Changng drections

You might want a gun that can be pointed in different
directions, or a target that spins when it is hit. You might
want to manoeuvre a spaceship through the endless shoals
of space. They all use much the same technique.

The first thing you need is a set of graphics that show the
same object pointing different ways. The ones in figure 18
are from the RACETRACK program.

D=1 D=2 D=3) D=4

]
CHR$(130) CHR3 (131 CHR$(132) CHR$(133)
Figure 18

These are defined early in the program into character codes
130,131,132,133. This means that the graphic for any
direction will be found at code 129+D.

When the car crashes into a wall, it is spun using a set of
lines like this:

FOR D=1 TO 4
CALL CHAR(CR,CC,129+D) (Car Row, Car Column)
NEXT D

Controls

These have to be rather different from the simple steering
controls that we used earlier, as the ‘car’ is always moving
torward — whichever way it is pointing. What is needed is an

34

accelerator, a brake and some means of turning clockwise
(right) and anti-clockwise (left).

As always, there are several possible solutions. Joysticks
provide very simple controls for the player, and we will
return to these later. If you are using Keys, then you might
simply use the number keys 1 to 4 to fix direction, and letters
A and B for speed controls. The routine would then look
something like this:

CALL KEY(3,K,S)

IF K>52 THEN (goto speed changing routine)
D=K—48

GOTO...

The line D=K—48 brings the code of the number down to
its value. Code ‘1" is 49. 49—-48=1.

This is not the method that you will find on RACETRACK.
It may be simple to write the program this way, but the
controls could prove confusing. There only two keys are
used for steering. S (left, or anti-clockwise) and D (right). A
quarter turn to the right is the same as D=D+1. A quarter
turn anti-clockwise is D=D-1.

(‘s')('o

\ i / D=D—1 D=D+1

Figure 19

The routine then looks like this:
D=D—(K=68)+(K=83)

CALL HCHAR(CR,CC,129+D)

35

You need to slip a check line in there to stop D wandering
out of range:

D=D—(D=0)+(D=5)

Soif D=0itis increased to D=1, and D =5 is taken back to
4. This is a little crude. We will return to a better check in a
moment.

Speed

How fast the car moves depends on the time value in the
CALL SOUND line. This is variable, and in RACETRACK it
is stored in M (speed of Movement). The keys E and X serve
as accelerator and brake, and they could be made to alter the
speed by a routine like this:

200 CALL KEY(3,K,S)
210 IF K=69 THEN 250
220 IF K=88 THEN 270

. (direction changing lines)

250 M=M-10 (accelerator, reduces delay time)
260 GOTO... (CALL HCHAR lines)

270 M=M+10 (brake)

280 GOTO...
However, if you look at the RACETRACK listing in
Appendix A, you will find no such routine. Instead, you will
find a variation on the ‘value of truth’ type of line. While this
is somewhat harder to grasp, once you have got the hang of
it, you will find that you save typing time, and get a slight
increase in the speed of the program.

Time for a quick Detour.

The value of truth (part 2)

You know that a true equation is worth —1, but you can
increase, or reduce, the amount of change produced by a
true equation by multiplying it. Try this:

10 X=99
20 PRINT 10*(X=99)

Figure 20

Run it, and you will get —10. Alter line 20 so that X =
something else and you will get 0. Put that back to X=99,
and change the multiplier in line 20 to .5, and you will get
—.5 as the result. The number you get at the end can be
made positive by the use of a minus sign, and a set of
brackets:

20 PRINT —(10*(X=99)) (don’t forget double

brackets at the end)

In RACETRACK this technique is used to produce a single
line which alters the speed if either E or X is pressed.

«as M=M—(10*%(K=88))+(10*(K=69))

A similar line prevents the CALL SOUND time from
reaching 0, which would cause a program crash.

eee M=M—(10%(M=0))
Change that direction check line to:
«es D=D—(4*(D=0))+(4x(D=5))

and you will have smooth movement whichever way you
steer.

Keep on moving

It is an important part of this sort of program that the car
keeps moving, but you clearly cannot do this through a
FOR. . .NEXT. . . loop, as you don’t know where the car is
supposed to be next. That is up to whoever is steering it. The
change in the car’s co-ordinates depends entirely on its
direction at the time. You can see these changes in this table:

Direction Movement

D=1 CC=CC+1 (to the right)
D=2 CR=CR+1 (downwards)
D=3 CC=CC-1 (left)

D=4 CR=CR-1 (upwards)

36

-

37

By far the neatest way to change the car’s variables is to use

[‘value of truth’ lines.

CC=CC+(D=3)—(D=1) (remember truth turns
CR=CR+(D=4)—(D=2) everything upside down)

The alternative is a routine like this:
... ON D GOsSuB 1000,1020,1030,1040

1000 CC=CCH+1
1010 RETURN
1020 CR=CR+1
1030 RETURN
- etc.

ON. . .GOSUB works perfectly well here, where D must
always be either 1,2,3 or 4, and the variable changes are very
easy to see in those subroutines.

Turn and fire

If you want to develop a game like DUEL, where the tanks
can fire in any direction, then the bullets’ movement must be
directed in the same way as the tank. Remember though,
that you would normally want the bullets to travel faster
than the tanks (or spaceships, guns, fire-breathing dragons
or whatever). You can manage this in either of two ways.
The bullet’s movement could be run through a loop:

FORT=1 T0 6 (or however many spaces)-
BR=BR+(D=3)—(D=1) (Bullet Row)
BC=BC+(D=4)—(D=2) (Bullet Column)

CALL HCHAR(BR,BC,134) (where 134 is the bullet)
CALL HCHAR(BR,BC,32)

NEXT T

You will need to fit a check line in there to spot any ‘hits’.
This gives a continuous movement and allows the victim no
chance of escape.

The alternative is to use a variation of the ‘value of truth’
lines, as with the speed controls earlier.

BR BR+(6%(D=3))—(6*(D=1))
BC BC+(6%(D=4))—(6*(D=2))

This makes the bullet bound across the screen. You could
splice this kind of bullet movement in with the main
program, as with TARGET, so that your opponent has time
to move. The bullet would then remain in motion until it hits
its target or the edge of the screen. If you make the program
jump over the direction changing routines when the bullet is
in flight, then it will fly straight. Allow the program to run
through the direction changer and you have a steerable
bullet — a guided missile, no less!

Directional movement

What works for four directions works just as well for eight,
but it’s more than twice as much bother.

N

5 &— —> 1

p=D—1) / l \ D=D+1

3
Figure 21

You will need eight graphics of course, and it will be more
difficult to keep the same shape, as the new graphics will all
be diagonal. It will be best to have a very simple shape with a
clearly marked front end — a sharp point, or a long gun.

The turning routine can be exactly the same, except that
you will need to change the upper limit in the check line
from 4 to 8.

38

39

The main extra work comes in the movement lines. It will
be much easier if you an ON D GOSUB. . . line, and have a
set of eight subroutines. Four of these will simply change
one variable each. The other four will have to each change
two variables to allow for diagonal movement. This one
moves up and right.

1100 CR=CR-1
1110 CC=CC+1
1120 RETURN

It is possible to make the changes through ‘value of truth’
lines, but they get terribly complicated. However, it is an
interesting exercise if you feel up to the challenge.

Joysticks

If you have got joysticks you should use them for this sort of
game. The program is simpler to write, and the controls are
easier to use. The routine looks like this:

CALL JOYST(1,X,Y)
M=M—2.5%*Y (speed)
D=D+X/4 (direction)

The point you must remember when using CALL JOYST is
that the X and Y numbers will be either —4,0 or 4. The X
number must be divided by 4 to give one step at a time
direction control. The Y value will also need adjusting to give
the acceleration or braking that you want. Here it is
multiplied by 2.5, so that speed is changed in steps of 10.
Because the joysticks allow diagonal pressures it is possible
to get both X and Y results at the same time, so that you can
turn and brake in one movement.

6
The edges ol theworld

The question is, ‘Does your 99 think the world is flat, round,
or rubber-edged?’ — Why not keep it guessing? You must do
something when the spaceship/tank/car/duck reaches the
edge of the screen, but it doesn’t have to be the same thing
every time. Here are your three main alternatives.

The flat earth

In this type of edge routine, you declare the player out
whenever his piece goes over the edge of the screen.

IF (R<1)+(R>24)=—1 THEN...
IF (C<1)+(C>32)=—1 THEN...

Either line will send the program off to an end routine with
some suitably silly comment like “You have fallen off the
edge of the world and the monsters have eaten you up.’

It’s not the friendliest way to deal with screen edges, but it
keeps people on their toes.

FlatEarth (1)

Figure 22

40

41

Rubber edges (1)

Figure 26

Diagonal bounces

These create difficulties all of their own. When you have only
horizontal and vertical movement, the moving object will
simply reverse direction on contact with the edge. However,
when the movement is diagonal, the change of direction will
be 90°. This would be no great bother, except that sometimes
it will be 90° to the left, and sometimes 90° to the right. It all
depends on the original direction, and the edge which has
been hit.

You can see diagonal bounce routines at work in the BAT
program. The ‘bat’ can only move diagonally, in the four
ways shown below.

Figure 27

Here’s what happens when he reaches the edges.

N
L
e -

NSNS

Figure 28

As you can see the direction change is not simple. The
program must check the original direction, and the edge
where the action is taking place. There are several possible
solutions. The simplest, but longest is like this:

IF (D=1)*(R=1)=1 THEN... (Direction 1 at top
cee edge?)

D=4 (change to 4)

GOTO... (back to main program)

You need 8 sets of lines like that.

Another method is used in BAT for the edge bounces.
There the edges are coded. They may all look the same, but
each edge uses a different graphics block with codes from
133 to 136.

A GCHAR line checks every square before the bat moves on
to it. If the square has a code between 133 and 136, the
program goes to the edge routine. (Lines 930 and on).

44

45

Edge number 1
Code 133
Code . Code
136 134
Edge number 4 Edge number 2
Code 135
Edge number 3
Figure 29

940 E=1-132 (Z is the code got by GCHAR)
950 D = D + 1 —(2%(D=E))
960 D=D+(4*(D>4))

If you compare figures 28 and 29 you will see that when the
direction (D) is the same as the edge number (E), then the
change of direction is —1. If they are different the change is
+1. It makes for simpler programming though to treat the
—1 change as +3. It comes to the same thing in the end, and
needs only a single check in line 960 to keep D in range.

Look what happens when the bat is flying up and left and
hits the top. The original direction was 1, and the edge code
is 1. Line 950 adds 1 and then adds a further 2 because the
D and E variables are the same. The new direction code is 4.
Contact with the left side changes this to 3. When the bat hits
the bottom, coming from direction 3, his new direction code
is 6, which is brought back to 2 by line 960.

The ‘bat-knocker’ works rather differently. It is assumed to
have sides but no ends, so that the bat will continue in the
same vertical direction, but with left and right swapped over.
1becomes 2, 4 becomes 3, and vice versa. The change to D is
therefore only ever 1 more or less, and it follows a simple
rule. It is managed through this line:

D = D —(D=1)—-(D=3)+(D=2)+(D=4)

1is added if the original direction was 1 or 3, and taken
away where it was 2 or 4. A double check line then keeps D
within the 1 to 4 limits.
This type of routine can be combined with a straightforward

reverse bounce routine to cope with 8-directional movement.

When the missile hits the edge the program must work out
whether a simple reverse or a diagonal bounce is needed. If
you code your directions like this:

Figure 30

then you can pick up the diagonal bounces by the fact that
the direction code is an even number. This line filters out
even numbers:

IF D/2 = INT(D/2) THEN...

An odd number will end in .5, and this would be chopped
off by the INTEGER function, and the numbers would
therefore not be equal. Define your edge blocks into
character codes 132,134,136 and 138, and you can get your
edge code by taking 130 off the number produced by the
CALL GCHAR line.

Sketch out your screen before you start and draw on it all
the possible bounces. Make up a table of those bounces,
divided into the simple reverse, and the diagonal types, and
you should be able to see the numbers that you will have to
use to change directions.

46

47

7
AN eement of chance

When a game gets predictable, it gets boring. If you know
what’s going to happen next, there’s not much point in
playing on. This is where you need to introduce an element
of chance. (There is, of course, always the chance that your
program won’t work as you expect, but let’s hope not!)

Random factors in shooting games

There is nothing to stop you from moving your target at
random. If the target is a plane, you would expect it to fly
smoothly, but it could vary its height as it flew. Hold the
target row in a variable, and vary it with a line like this:

TR=TR +1+(2*(RND>.5))

If the random number in that line is less than .5 then 1 is
added to TR and the plane dips. With a higher random
number a further 2 is taken away (remembering that a true
equation is worth —1). The result is that 1 is taken from TR
and the plane flies higher. You will need a check line to keep
the plane on the screen.

If the target is a duck, wild animal or alien spacecraft, then
it might reasonably move by random jumps across the
screen. This routine produces jumps of between 0 and 3
columns:

J = INT(RND*4)
TC=TC +'J

The target might fire back, or drop bombs, as happens in the
standard Space Invaders game. You will then need to work
in for the target the same kind of routines that you have for
the gun. Is it firing or isn’t it? This can be controlled by a line
like this:

TF = (RND>.5)

The Target Fire variable is therefore either —1 or 0. Another
line will send the program to a bomb routine if appropriate:

IF TF THEN ...

Note that IF TF. . . means the same as IF TF =—1, indeed
it means IF TF is anything other than 0.

Bomb routines are the same as bullet routines, though
going in the opposite direction! You will find that the
program runs slower when you are asking the computer to
handle a target, a gun, a bomb and a bullet all at the same
time. This is inevitable in TI BASIC, but you can improve the
speed of programs by working in EXTENDED BASIC, where
SPRITES give you smoother movement at about twice the
speed. (See Appendix B)

A hit doesn’t have to be fatal. You might only damage the
target — or it might only damage you. The amount of damage
can be random.

TD=0 (Target Damage at start)
TD = TD +(RND*10) (how much damage this
time?)
IF TD>20 THEN... (off to ‘shot down in flames’
routine)

In this example the target would receive, on average, 5
points of damage, so you would expect to have to hit it at
least 4 times to knock it out completely. The figures should
be adjusted to suit how you want the game to run.

Guessing games

Playing a guessing game with the computer should be like
playing with another person. You should not be able to
predict the answer; you will want to know when you are
right and sometimes you will expect to be given some clues
as to how you are doing, when you get things wrong.

48

49

In Starter Pack 2 you will find a ‘Hunt the Thimble’ game.
The object of that game was for the player to guess a pair of
co-ordinates selected by the computer. ‘Colder-warmer’
clues are given to help the player find the hidden spot. To
find out whether a guess is better or worse than the previous
one, the 99 calculates the total difference between the
thimble’s co-ordinates and the guess. This was done by
finding the absolute difference between the guessed and real
row co-ordinates, and between the guessed and real column
co-ordinates. The total of the two is the overall difference. Y
and X are the 99’s numbers, R and C are the player’s.

D1 = ABS(Y—R) (vertical difference)
D2 = ABS(X-C) (horizontal difference)
D = D1 + D2

Because the ABS function knocks off the minus sign (if there
is one), this routine always picks up the total difference,
wherever the guess might be. You can see the effect of some
guesses in figure 31.

* (8,15
THIMBLE 4
(12,10 pe—>x
+5 [D=4+5=9]
+8

(20,5) #e—>¥
-5 [p=8+5=13]

Figure 31

An alternative way to work out differences like this is to use
Pythagorus’ rule. There, if you ever wondered what the
ancient Greeks could offer the modern computist, now you
know!

‘The square on the hypotenuse is equal to the sum of the
squares on the two other sides.’

The distance between (Y, X) and (R,C) can be worked out
like this:

A = Y-R
B = X—C
D =A"2 + B2 (A2means A?

This can be packed into one line if you prefer:
D = ((Y=R)"2)+((X—-C)"2)

(R,C)
(5,15)
Figure 32
Q
A=5
(X,Y)
(10,10) B=5

‘Pick a straw’

A simpler type of guessing game — indeed, probably the
simplest type —is the ‘Pick a Straw’ played by the gambling
Goblins in DRAGON. In that one, whichever straw you
choose, you have a 50/50 chance of being wrong. The
flowchart for the routine is given in figure 33.

If you look at the program list for DRAGON you will find
the gambling routine at lines 2000 onwards. This could be
rewritten as a new gambling game using ‘Heads or Tails’
instead of Left or Right Straws. You would need some good
graphics and a nice clear print out of the player’s and the 99’s
cash balances. Why not start out with £1 million each and
play a double or quits game, with no limit on the stakes.

For more complicated gambling games, have a look at the
cards and dice games in Games Pack 2.

50

51

From main_’_ PICK THE
game LONG STRAW

Yes
RIGHT LONGEST |

No
[LEFT LONGEST | Yes

Good guess?

p [you wIN
[You LosE | Y
" Back to main game7
Figure 33
52

8
Obstades
and randomdanders

In Ski-run and Crumph games given earlier the player could
see the obstacles that had been put in his path. These
obstacles do not need to be visible. They are hidden in the
next program, ‘Minefield’, by colouring them transparent.

10

20
30
40
50
60
70
80
90
100
110
120
130
140
150

160
170
180

190

CALL CHAR(128 ,“FFFFFFFFFFFFFFFF")

) (a block)
CALL COLOR(13,1,1) (but ‘see-through’)
CALL CLEAR
FOR N=1 TO 50
X= INT(RND*24)+1
Y= INT(RND*32)+1
CALL HCHAR(X,Y,128)
NEXT N
R=1 ,
c=1 (player’s start)
CALL HCHAR(R,C,42)
CALL KEY(3,K,S)
R=R—(K=88)+(K=69)
C=C—(K=68)+(K=83)
CALL GCHAR(R,C,2) (check the square before

moving)
IF Z=128 THEN 180 (trod on one)
GOTO 110
CALL COLOR(13,2,1) (so you can see where
they are)

CALL SOUND(1000,-3,1)

(this scatters 50 mines)

You will need to add a ‘home safe’ point, and write in a
check line for it, and the end of the program needs tidying.
Hold the screen with a CALL KEY and then offer the player
another go. If you find that the minefield is too dangerous

53

for your taste, then reduce the number of mines by altering
line 40.

The game could be made friendlier by equipping your
player with a ‘mine-detector’. This can be managed in two
different ways.

The first way is to print ‘warning squares’ (also invisible)
around each of the mines.

%
x

Figure 34

Here the mine is at 8, 9. The warning square routine looks
like this:

FOR N= 1 TO 50

X= INT(RND*22)+1 (gives numbers from 1 to 22)
Y= INT(RND*30)+1 (between 1 and 30)

FOR T=0 TO 2

CALL HCHAR(X+T,Y,129,3) (129 = warning
NEXT T square)

CALL HCHAR(X+1,Y+1,128) (the mine)

NEXT N

You will see that this first prints the warning square blocks,
and then adds the actual mine on top. The X and Y random
limits had to be changed slightly to make sure that the
warning areas stayed on the screen.

A further routine now needs to be added so that if code

129 is picked up by the GCHAR line, a warning beep sounds.

. The second sort of ‘mine detector’ uses a looped GCHAR
line to check all the squares around each move:

FOR N = =1 T0 1

FOR T = —1 T0 1

CALL GCHAR(R+N,C+T,Z)

IF Z = 129 THEN... (warning sound)
NEXT T

NEXT N

CALL GCHAR(R,C,Z)

IF Z = 128 THEN... (boom!)

Notice how the FOR. . .NEXT. . . loops check either side
and up and down from the move square. That particular
square needs to be rechecked later to see if it is a mine, as the
looped check only gives warnings.

These Minefield programs use the screen itself to map the
game. If the screen has to be cleared, or is altered by INPUT
or PRINT lines, then the map is ruined, or lost altogether.
This makes no difference here, as you would want to have a

new layout each time you played. However, if you wanted to

give your player several tries at each layout, you would run
into difficulties. One solution is to store the map in an array.
You will remember from Starter Pack 2 that an array is a set
of stores, all with the same name, but with different
reference numbers (or subscripts). These numbers can start
from 0 or from 1. Throughout this book it is assumed that
you will write OPTION BASE 1 in your programs, and that
the arrays will therefore start from 1.

The line DIM M(24,32) sets up a bank of stores that is 24
rows deep and 32 columns wide — the same size as the

screen. When the stores are first opened they all have a value

of 0. This can then be altered (at random) to code in your
mines.

X= INT(RND*24)+1
Y= INT(RND*32)+1
M(X,Y) =1

You do not need to transfer the map to the screen to check
for hits. It is sufficient to check the array.

IF M(R,C)=1 THEN...

54

55

Set up a 24 X 32 array and write a loop to scatter 50 or so
‘mines’ through it. You can then get it printed out like this:

FOR R=1 TO 24

FOR C =1 TO 32

N=M(R,C) (find the number at each point)
CALL HCHAR(R,C,48+N)

NEXT C

NEXT R

There is a catch to using simple number arrays like M(24,32)
as game maps, and it is that they consume an enormous
amount of memory. Each store within a number array takes
8 bytes — this is so that very large, or very small numbers
could be stored there if wanted. This means that M(24,32)
takes a total of 6144 bytes. Actually it takes 6154, as a further
10 bytes are needed to organise the array. A string array, on
the other hand, is much more economical in its use of
memory. Each string store takes up only 2 bytes, so
M$(24,32) takes a total of 1546 (24 X 32 X 2 + 10).

A string array is used in the DRAGON program, both to
map out the path (see below ‘Mazes’) and also to scatter the
goblins, gold and dragons through the maze. The routine
which does this goes from line 530 down. If you wanted to
have a look at the array before you play the game — purely for
research purposes, and not so that you can cheat — then add:

655 GOsuB 7000
7000 FOR R = 1 TO 21
7010 FOR C = 1 TO 21 (the array (P$) is 21 x 21)
7020 IF P$(R,C)="" THEN 7050 (stringarrays
7030 PRINT P$(R,C); are empty at
7040 GOTO 7060 the start)
7050 PRINT “”; (a space to fill any gaps)
7060 NEXT C :
7070 PRINT (moves print position to next line)
7080 NEXT R
7090 INPUT A (a wait-a-bit line)
7100 RETURN

You should see something not unlike figure 35. ‘1" indicates
path, ‘2’ is a crock of gold, ‘3’ a dragon and ‘4’ a goblin.

11111111111
2111 1 1
1 111132141
1 111 1
1 12 111 1
111 1T 411 1
1 111131111
411 114211
1 111111
1 1111111
2111311
1 1111111
1 1 1113111 1
11 1 T 1 1 1
111 114 111
1 T 1 1
1 1 T 111
T 4 1 1 1 1
1111111111111 11
Figure 35

All this should have whetted our appetite for mazes, which
is just as well, because here they come.

56

57

9
Nazes

There are two types of maze. The first has a fixed path and is
usually a field on which a shooting or chasing game is
played. ‘Munchman’ is a classic example of this sort of game.
A maze of this type is really a complicated obstacle course,
and is designed in the same way.

The second type of game has a disguised path, and the
object of the game is to find the way out. The game can be
made more interesting by including a number of incidents
for the player to meet and deal with on the way. DRAGON is
an example of this type. You will notice that not only is the
path hidden, it is also different every time you play. The
dragons and goblins are also randomly positioned as
mentioned in the last chapter.

Random paths

A random path is one produced by a series of random
moves, up, down, left or right. This routine shows a simple
random move routine:

10 CALL CLEAR

gg E::IIE (start in the middle)

40 CALL HCHAR(R,C,42)

50 X= INT(RND*4)+1 (1,2,3 or 4 at random)
60 ON X GOTO 70,90,110,130

70 R=R+1

80 GOTO 40

90 R=R-1
100 GOTO 40
110 C=C+1
120 GOTO 40

130 C=C-1
140 GOTO 40

Type this in and watch the asterisk wander about the screen.

As there is an equal chance of it moving in any direction you
will find it tends to produce a wadge in the middle of the
screen, like figure 36.

o
o5
o

Figure 36

You need a better a method of sorting out those random
numbers if you want to produce a path that actually goes
somewhere. The MAZE program uses a routine like this:

620 X= RND

630 IF X>.85 THEN... (left routine)
640 IF X>.5 THEN... (right routine)
650 IF X>.35 THEN... (up arow)
660 down a row starts here

58

Line 620 fixes the random number for this trip round the
step-making loop. The next three lines filter out the higher
values of X and send them off to the left, right and up
routines. Any number less than .35 produces a downward
move. There is an even chance that the random number will
lead to a vertical or a horizontal move, but there is then a bias
built in to make the right and down moves more likely than
the left and up ones. Run the MAZE program and you can
watch the whole routine at work.

MAZE is programmed to find a path from 1,1 to 10,10 on
its first run through. When it has reached the end, you can
enter your own start and end co-ordinates.

The random limits in lines 630 and 650 are then altered to
produce a suitable bias to the path.

Line 630 is actually written as

630 IF X>X2 THEN...

X2 has an initial value of .85. It will be changed to .65 or .75 if
the positions of your start and end points mean that the path
must head left, or remain on the same column. The program
works best when the end point is on an edge. It can very
easily overshoot a central ‘end-point’ and wander off across
to the opposite side!

The hidden path

You can create a concealed path by printing transparent
paving slabs on the screen, in the same way that the
‘Minefield’ program used transparent mines. A more flexible
method is to use an array.
We can now put together the things covered so far to make
the first part of an array-based maze program. Here’s the
flowchart.

| Set up ARRAY |

[FIX START POINTS|
v

<&
d

RND. STEP-
check for edges!

{ Mark on ARRAY |

Reached
end?

Yes

Figure 37

And the program looks like this:

10 OPTION BASE 1

20 DIM M$(10,10

30 R=1

40 c=1

50 X= RND

60 IF X>.85 THEN 150

70 IF X>.5 THEN 130

80 IF X>.35 THEN 110

90 R=R+1+(R=10)

100 GOTO,160

110 R=R—1—(R=1)

120 GOTO 160

130 C=C+1+(C=10)

140 GOTO 160

150 C=C-1-(C=1)

160 M$(R,C) = “1” (any character could be used)
170 IF (R=10)*(C=10) THEN 190
180 GOTO 50

190 ... (next part of program)

In the program above the path is made up of ‘1’s, but it could
equally well be a defined graphic block. If you add:

S5 CALL CHAR(128,“FFFFFFFFFFFFFFFF")

60

61

and alter line 160 to:
160 M$(R,C) = CHR$(128)

Then the print routine will produce a path of blocks.

It is probably worthwhile at this stage to add a routine to
print up your maze, just so that you can see it works. We can
adapt it for game purposes later. The one given below is
basically the same as the one suggested at the end of the last
chapter, but here we are using HCHAR lines to print on the
screen.

190 CALL CLEAR

200 FOR R=1 TO 10

210 FOR € = 1 T0 10

220 IF M$(R,C) =" THEN 250

230 N = ASC(M$(R,C)) (finds code of character in
240 CALL HCHAR(R,C,N) array)

250 NEXT C

260 NEXT R

270 INPUT A (to hold the screen)

This prints the path as it really is, but we could disguise its
appearance by scattering ‘imitation paving stones” about the
screen. They would look like the real ones that make up the
path, but they would not be present in the array.

The trick blocks can be laid by slipping these three lines in
after 240:

242 GOTO 250 (so the routine is jumped after a
proper move)
244 IF RND>.5 THEN 250
246 CALL HCHAR(R,C,128) (assuming 128 is your
path code.)

Now alter line 220 so that the program jumps to 244 when
it reaches an empty store in the array.

Try the program out, at first without those extra random
‘paving slabs’ and then again with the random routine
included. Alter the random limit in line 244 and see what
difference it makes to the appearance of the path.

Another way to confuse the player is to have the 99 draw

some misleading paths as well as the main one through the
array. Ideally these extra paths should go from nowhere to
nowhere, but cross the main path at some point. This is what
happens in DRAGON.

Four trails are started from fixed points within the array,
and each wanders off for a maximum of 20 steps before
coming to a sudden stop. The effect can be quite confusing.
As the path-making routine is used several times, it has been
made into a sub-routine. The flowchart for the ‘paths’ section
of the program is shown in figure 38.

[START MAIN PATH]

«

|GOSUB PATH-MAKER]

[START FALSE TRAIL]

d
w

|GOSUB PATH-MAKER

Yes
| __END LOOP A

No
> Yes
Yes

Figure 38

62

63

The main path routine starts at line 200 in the program.

200 DIM P$(21,21)

210 R=2

220 C=2

230 GOsuB 4000

240 IF (R=20)*(C=20) THEN 260
250 GOTO 230

You will notice that the array here is 21 squares each way.
The path within is kept between 2 and 20. This leaves a ‘wall’
around the outside to stop the player escaping.

False trails
The routine for these starts at 260:

260 FOR T=1 TO 4

270 R=T*3 } (so the start points are scattered
280 C=16—R diagonally across the map)

290 FOR N=1 TO 20

300 GosuB 4000

310 IF (R=20)+(C=20) THEN 330 I‘fax‘m“mzo
320 GOTO 340 steps

330 N=20

340 NEXT N

350 NEXT T

That check line at 310 stops a path when it reaches the
bottom, or the right hand side. Without it, there would be a
danger of the false trail leading to the exit, and that would
not do.

The full listing of DRAGON is given in Appendix A. You
may like to look at that path-making subroutine. It is not
quite what you would expect. The path is built two steps at a
time. This stretches the paths out, and produces a better
maze, but is more complicated than a single step routine.

The main problem is that when you mark off the path in
the array, you need to mark the squares that have been
jumped over, as well as the ones that are ‘landed on’.
Figure 39 shows this.

Columns

7 8 9 10

Rows| 4 oLD NEW

Figure 39

Each move now needs a set of lines like this:

4040 R=R+2+(2*(R>19))
4050 P$(R—1,C) =*17
4060 GOTO 4150

4150 P$(R,C)="1"
4160 RETURN

You will see that the check in line 4040 is' also more
complicated.

65

10

NVoverment and meetings

N 1Mazes

When you have a maze handled by an array, it is not
necessary to actually show the movement through it on
screen, or indeed to show the maze at all. Many adventure
games of the ‘Dungeons and Dragons’ sort simply tell you
what you can see. It's up to you, the player, to work out
where you are. These mazes are designed, usually in three
dimensions, as a series of rooms linked by passages and
stairways, with plenty of dead ends and sudden drops. At
the simplest level the screen display is a set of print lines.
These will tell you things like ‘There is a passage on the
right, and one on the left. In front of you is a door. Itis
closed. Do you want to (1) turn left, (2) turn right, (3) open
the door?’ This is followed by an INPUT A line.

Movement through the ‘dungeon’ in this kind of game is
then controlled by the player’s inputs:

ON A GOSUB...

The subroutines will alter the player’s co-ordinates to suit
the movement, and will deal with any meetings.

The appearance of this sort of game can be improved by
including routines to give a ‘view’. (Figure 40)

YOUR MOVE - PRESS THE NUMBER

LEFT (1) RIGHT (2)
FORWARD (3) TURN BACK (4).

Figure 40

Two-dimensional mazes could also be treated this way, or
mapped on to the screen as in the DRAGON program. There
the "hero’ clears a path behind him as he works his way
through. This makes it much easier to retrace his steps if he
comes to a dead end. You don’t have to do this. Your maze
games might only show the piece on screen when it meets
something. You might not even give your player that much.
You could leave him groping blindly in the dark, trying to
work out where he is by remembering each move. This cuts
out a few bothersome screen routines, but is not particularly
friendly of you. However, some people like their games
hard. You could print up on screen where some, or all of the
incidents are. They might be there from the beginning, or
appear when the player has earned the extra information.
(See Colour Changing)

Controlling movement

If you are displaying movement on the screen, then you will
not want to have that movement controlled by INPUTTING
left, right, up down instructions. The INPUTS will ruin the
screen layout, unless you use the special Input Anywhere
routines that were covered in Starter Pack 2. It is far better to
use a simple CALL KEY line linked to the ‘arrow’ keys
(ESDX), in the same way as in the shooting and steering
programs. This must then be followed by a routine to check
the square ahead to see if movement is possible, and if there
is something at that square. Here’s a flowchart for this part of
amaze program. You might like to compare it with the lines
from 840 onwards in the DRAGON list.

66

67

A 4

[PRINT PIECE |

Y A

[cALL KEY]

[RUB-OUT PIECE] WALL!

Y

CHANGE
4 CO-ORDINATES

STEP
POSSIBLE?

RESTORE | |
CO-ORDINATES

A

INCIDENT
‘ROUTINES

Figure 41

Meetings

You will normally want to include incidents of some sort in
your maze, to make the game more interesting. ‘Fight your
way through hoards of evil glorks to rescue the beautiful
princess and claim the sacred sword of Scaramonca’ sounds
much more fun that ‘Find your way out’.

The routines, or subroutines, that handle the incidents can
be as long as your imagination and the TI's memory will
allow. As a rough and ready guide, the DRAGON program
takes up about 8k of memory when it is running. There is

68

room then for a maze program with-a larger (three-
dimensional) maze and more complicated incident routines,
or a wider variety of incidents. Take care that your program
does not take up more than 12.5k, or you will not be able to
save it properly. This 12.5k does not include the space taken
by arrays and other variables when the program is running.
The DRAGON program alone takes just over 6k, with the
extra 2k needed as workspace.

Fixed incidents

Bags of gold, traps, stationary clragons or sleeping monsters
— these are scattered through the array using a routine
similar to the one covered in ‘Obstacles and random
dangers’. The only difference is that the routine has been
extended to scatter a random variety of incidents. Look at
line 530 to 650 in the DRAGON list.

Moving dangers

Your dragons and monsters do not have to stay still and wait
for the hero to find them. They could move through the
maze looking for him! To manage this you will need to
combine the techniques of movement used in the targets
programs with the path-drawing routines used in your
maze.

Start by indicating his presence with a variable. 1 for alive,
0 for dead.

M=1

Give him a start position early on in the program, making
sure that he is on the path:

«-- MR =INT(RND*18)+3
«ea MC =INT(RND*18)+3
«e. IF PS(MR,MC) =" THEN ... (back and try
again)
--- PS(MR,MC) = “6” (where “6” is the monster
code)

69

At some point in the main game loop, you send the program
off on a subroutine. There the monster’s old position is
turned back to open path, and a move is made at random (as
long as there is path in the direction he is supposed to go).

5000 P$(MR,MC) =1"

5010 X = RND

5020 IF X>.75 THEN 5110

5030 IF X>.5 THEN 5090

5040 IF X>.25 THEN 5070

5050 MC =MC —1 — (P$(MR, MC—1)="")
5060 GOTO 5120

5070 MC = MC+1+(P$(MR,MC+1)="")
5080 GOTO 5120

5090 MR=MR—1—(P$(MR—1,MC)="")
5100 GOTO 5120

5100 MR=MR+1+(P$(MR+1,MC)="")
5120 P$(MR, MC)="6"

5130 RETURN

Notice how the lines that make the moves also check that the
move is possible, and cancel any attempts to walk through
walls. In practice, this routine will quite often leave the
monster in the same position.

CALL HCHAR lines can be worked into the subroutine so
that the monster is displayed on the screen. When he moves,
the path behind him can be left clear, or blacked out again as
you wish.

Variations

1 Ghosts. As everybody knows, ghosts can walk through
walls. This particular talent is very useful to the games
programmer, as it means that the parts of the lines that
check the path ahead can be simply left out. Hurray, an
easy variation!

2 Hungry Horrors on the Hunt. You can make your

monster more threatening by having him head straight
for the hero. This has a useful side effect of producing a

simpler routine. The monster’s position is compared with
the hero’s, and then adjusted to bring it closer. The
routine would look something like this:

5000 P$(MR,MC) =1"

5010 R1 = MR —(MR<R)+(MC>C) (R,C the
5020 C1 = MC —(MC<C)+(MC>C) hero’s

5030 IF P$(R1,C1)=" THEN 5060 co-ordinates)
5040 MR = R1

5050 MC = C1

5060 P$(MR,MC) ="6"

5070 RETURN

Here’s what this routine does in two typical situations.

Case 1 Case 2
Line Monster Hero Monster Hero
(5,5) (7,2) (10,3) 8,8)

5010 Rl = MR+1 =6 Rl = MR-1=9
5020 Cl=MC-1=4 Cl = MC+1 = 4
5030 P$(6,4) = “1” (path) | P$(9,4) = “” (wall)

5040 MR =6 } these lines jumped

5050 MC =14
5060 P$(6,4) =“6" P$(10,3) ="“6"
Result Gets closer No move

Introducing those two temporary stores, R1 and C1, means
that the original monster co-ordinates are left alone, and only
changed if a move is possible. You don’t have to do it this
way, but the alternative is rather complicated ‘value of truth’
lines.

Because this routine does not let the monsters walk
through walls, your hero has some chance of escape. If your
monsters are ghosts, then he could find life very dangerous.
You had better equip him with some means of defending
himself!

If the effect is still too terrifying for your players, then
introduce a random factor. Instead of a simple command to

70

71

make the monster move:

IF M=1 THEN... (off to move routine)

use a line like this:
IF (M=1)*(RND>.5) THEN...

Now the monster will stay where he is half the time.

Special note for cheats

Those limits that you use in random lines do not have to be
fixed. That last line could read:

IF (M=1)*(RND>RL) THEN...

RL, the Random Limit is given a value early on in the
program:
RL = .5 (or whatever limit you want)

You then write in a routine to ask ‘WHO’S THERE? and
include after it this type of routine:

IF N$<>”HONEST SID”THEN... (jump the next
RL = .8 line)

This resets the Random Limit only for "Honest Sid’, and only
you know the password. If you give yourself too much of an
edge people might start to wonder why you keep winning,
and they might decide to examine your program.

You are far too honest for that sort of thing, aren’t you, so
let’s get back to our monsters, but first . . . ‘Compute a
Grimble’.

You can now adapt your Grimble program so that the 99
moves the Grimble. Give the Grimble a target — his home,
and have his movements directed towards it. Make sure that
it checks the path ahead for Grimble cages. If one is there,
the Grimble should head off in another (random) direction.

Multiple monsters

These can be managed in exactly the same way as single

monsters, except that now you use arrays rather than simple
variables, and each of the monster routines must be enclosed
in a loop.

Bring them all to life at the beginning:

FOR N=1 TO 4
M(N)=1
NEXT N

Give them all a position:

FOR N =1 TO 4

MR(N) INT(RND*18)+3

MC(N) = INT(RND*18)+3

IF P$(MR(N) ,MC(N)) =" THEN ... (back and
P$(MR(N) ,MC(N)) ="6" try again)
NEXT N

And so on for the other routines. Simply add (N) after each
of the monster variables. Here we are assuming that 4
monsters are enough for any hero, but you can have as many
as you like. You just change the numbers at the start of the
loop. The more you use, the slower the program will run,
but speed is not usually important in this sort of game.

72

73

1
Colour changing

One of the 99’s useful features is the way that it lets you
change the colour of characters that are already on the
screen. We can develop a number of games out of this
facility.

Have you ever come across those timed light switches?
You sometimes find them in the stairwells of blocks of flats.
You press the switch and the light stays on for a couple of
minutes. It then turns itself off automatically. We could fit a
‘light switch’ into a program like ‘minefield” (see the chapter
on Obstacles). Each time you bump into one of the scattered
blocks, the screen will light up and show you where the
blocks are. You will have time to get a quick look at the field
before it all disappears again. The object of the game now is
to see how few times you bump into things on your way
across the screen. Here is the basis of this type of game:

10 RANDOMIZE
20 sC =0 (score)
30 CALL CHAR(128,“FFFFFFFFFFFFFFFF")

The obstacle block)
40 CALL COLOR(13,1,1) (made transparent)
50 CALL CLEAR ‘
60 FOR N=1 TO 50
70 R= INT(RND*24)+1
80 C = INT(RND*32)+1
90 CALL HCHAR(R,C,128)
100 NEXT N
:: ;8 g;} (player’s start poi‘nt)
130 CALL HCHAR(R,C,42)
140 CALL SOUND(250,330,1)
150 CALL KEY(3,K,S)

(scatters 50 blocks)

160 IF S=0 THEN 150

170 R=R—(K=88)+4(K=69)

180 R=R—(R=0)+(R=25) (check line)

190 C=C—(K=68)+(K=83)

200 C=C—(C=0)+(C=33)

210 CALL GCHAR(R,C,Z)

220 IF Z<>128 THEN 290 (jump if free space
ahead)

230 CALL COLOR(13,2,T) (blocks coloured black)

240 CALL SOUND(1000,440,1) (this gives you 2

250 CALL SOUND(1000,880,1) seconds to look)

260 CALL SOUND(1,-1,1)

270 CALL COLOR(13,1,1) (blocks invisible again)

280 SC=SC +1- :

290 IF (R=24) * (C=32) THEN 310 (the end

300 GOTO 130 at last?)

310 PRINT “SCORE =";SC

320 INPUT “AGAIN ? ":A$

330 IF A$ ="Y” THEN 10

340 END

Type this in and try it. A score of less than 4 is pretty good.
You can adjust the difficulty of the game by changing the
numbers of blocks that are printed by the loop starting at line
60, and also by reducing the sound times in lines 240 and
250.

Variations

1 Have two types of obstacles. One type will be ‘light
switches’, the other type will be mines. Define the
characters differently, so that when the light goes on you
can spot the mines, and just hope that a light is the first
thing you bump into!

2 Have several types of obstacles — each with a different
point value. Again, it should be clear when the lights go
on just how much each is worth.

3 Back to the start. When the player bumps into a block and
the lights are turned on, reset his position and send him

74

75

back to the start. Leave the obstacles alone though, so
that the player can gradually learn his way through. This
game could get quite frustrating, especially when chance
has thrown a lot of blocks in the bottom right hand
corner. _

More and more. Start with fewer blocks on the screen — 20
should be about right, and then add another set each time
the player bumps into a lightswitch. Now each collision
makes the game more difficult. Combine this with a Back
to the start game if you want to make life really hard.

12
Imeand place

1 Timed inputs

There will be times when you will want to allow your players
only a limited time in which to respond to a question, or
problem. The standard INPUT line will wait forever, so that
is no use. You can, however, build a timer into a CALL KEY
routine. If you write this in as a subroutine, it can be used
whenever you want it in your main program. This is the
basic form it will take:

1000 ¢=0 (Count)

1010 CALL KEY(3,K,S)

1020 C=C+1

1030 IF C>20 THEN 1070 (timed input loop)
1040 IF S = 0 THEN 1010

1050 PRINT K

1060 RETURN

1070 PRINT “TOO SLOW”

1080 RETURN

This particular routine can be worked up into a game to test
reaction times. Instead of writing a fixed limit in the Count
check line, you make it variable. Each time the player reacts
quickly enough, his limit is reduced. A “Too slow’ response
leads to an increased time limit. The object of the game is to
get the lowest possible time limit. In the program outlined
below the problem is to press a letter chosen at random by
the 99. The game could be expanded into a two-player
version, in which case the input loop would need to be
enclosed in a further loop, and two Count stores used.

76

77

FOR P=1 T0 2
CALL KEY(P,K,S)
C(P)=C(P)=1

Here’s the flowchart. There is a check program at the end of
the chapter.

SET INITIAL
TIME LIMIT

—_,_I

RANDOM LETTERX=
INT(RND*26)+65

| SET COUNTER |

—

GAME LOOP
50 GOES (CALLIKEY]

[ADD TO COUNTER |

[WELL DONE]
A 4

A

20
goes?

Yes
[FINAL TIME]

STOP

Figure 42

2 Input anywhere

You clearly cannot use a normal INPUT line in games where
itis important that the screen is not disturbed. However, a
CALL KEY line will only take in one keystroke, and will not
print the character. If your player must enter a word or a
number of more than one digit, then you need a special
routine. The example below shows how you can do this:

10 T$="TEST”

20 A$=""
30 CALL CLEAR
40 C=5

50 CALL HCHAR(10,C,63) (prints a question
60 CALL KEY(3,K,S) mark at 10,5)

70 IF S=0 THEN 60

80 IF K=13 THEN 130 (13is ENTER)

90 CALL HCHAR(10,C,K) (prints the letter)
100 A$=A$&CHRS$(K)

110 C=C+1

120 GOTO 50

130 IF A$=T$ THEN 160

140 PRINT “WRONG”

150 STOP
160 PRINT “RIGHT”
170 STOP

The player’s answer is printed across the screen, starting
from 10,5. That question mark in line 50 is so that he can see
where he is. The inclusion of a CALL SOUND line would
help to catch the player’s attention. Notice how the letters
are gathered into the A$ store by line 100. Without this you
would not be able to check the total answer.

This could be made into a subroutine, with ENTER as the
signal to return to the main program, where A$ would be
checked against the required answer.

78

79

3 Yesorno?

Where you want your users to give a yes/no reply, or select
an option, then make sure that all unacceptable replies are
ignored:

INPUT “AGAIN ?2(Y/N)":A$
IF A$ ="Y” THEN...

IF A$ ="N" THEN ...
GOTO

This would also ignore any replies written in small type. You
may remember from Starter Pack 1, thata CALL KEY(3. . .
line resets the keyboard so that the 99 sees all letters in large
capitals.

The check lines also ignore “YES’ and ‘NO’ replies. A slight
alteration will cover this:

IF SEG$(A$,1,1) ="Y” THEN...

Now it checks only the first letter of the A$ input. Used with
a CALL KEY line, this routine now accepts “Y”, “Y”,“YES”
and “YES”. The extra effort on your part will make life easier
for your users.

4 Numbers only

The normal INPUTs have built in checks to prevent people
typing letters into number stores. Your Input Anywhere
routine does not, yet. If you use it to collect a number reply,
and try and evaluate the number using VAL(A$) the
program will crash if your user has typed in a letter by
mistake. The following routine checks through the string,
character by character, and warns the user if any non-
number character is used.

80

1000 INPUT A$

1010 FOR V=1 TO LEN(AS$)

1020 IF SEG$(A$,V,1)>"9” THEN 1060
1030 NEXT V

1040 PRINT VAL(A$)

1050 GOTO 1000

1060 PRINT “INVALID ANSWER”

1070 GOTO 1000

Type itin and see. The routine can be adapted into a
subroutine for regular use.

5 Printanywhere

You will have come across this if you have read Starter
Pack 2. It is included here for the benefit of those of you who
have not.

This routine will print anything anywhere you like on the
screen. You will find it, in several slightly different forms, in
many of the programs on the tape, normally at 6000. The
main program specifies the string to be printed (W$), and the
Row and Column start points (R1,C1), before it jumps to the
subroutine. ' -

6000 FOR @ = 1 TO LEN(WS$)

6010 CALL HCHAR(R1,C1+Q,ASC(SEG$(W$,Q,1)))
6020 NEXT Q

6030 RETURN

A CALL SOUND line can be included in the routine to give a
‘teletype’ effect.

81

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170

Speed game check program

T= 25

FOR N = 1 70 20

X = INT(RND*26)+65
PRINT CHR$(X)

c=20
CALL KEY(3,K,S)
C = C+1

IF C>T THEN 130

IF K<>X THEN 60
PRINT “WELL DONE”

T = T-1

GOTO 150

PRINT “TOO SLOW’

T = T+1

NEXT N

PRINT “FINAL TIME ”;T
STOP

TARGET

10 REM TARGET

20 REM HMACERIDE 1333
30 CALL SCREEN(Z)

40 CALL CLEAR
S0 PRINT TAE(1
60 PRINT *

CET 12
70 PRINT
80 PRINT *

NG "2

90 PRINT
100 PRINT

110 FRINT

iz0

INDEX 3¢
120 PRINT
140 PRIMT "
GIN

CALL ZOUMD S0 250s 12

Appendces
A
Program LISTS

You may find it useful to compare the lists with the programs
while they are running, as this can help to make some
techniques clearer. For a more detailed look at any particular
program, set BREAKPOINTS before you run. The use of
TRACE commands is not recommended here, as the
constant stream of line numbers will almost certainly destroy
the screen layout, and make it even more difficult to follow
the program.

00 F=0 620 REM reszet bullet afier
310 REM aun not firina of=0 mizs

BR=20

F=g

650 IHLL HFHHFI‘.TF,‘“'

290 FOR TC=1 10 32

) CALL HCHAR (5 Tow 128
0 IF F=1 THEM S40
0 REM kev check

i "THRGET "
THIZ ZHOWE HDM A BUL

FIRING ROUTINE WORKS
330 CALL KEVOZ

MOYE THE ""GUN"" UZI 400 REM auit

70 &0 LEFT"::

T3 50 RIGHT."
ANOTHER S0 CRRCEIHOT

T 5T N
a INF Uy
%

3 »»F<4 TO FIRE

I A PROGRAM

E END. "
FREZE ANY FEI TU EE PROSRAM INDE:"

THETRUCTIONZ. covuvs

&0 CALL KEWv(2 2 g I THEMN &S0
0 IF Z=0 THEN 1&0 430 REM fire 11 34“ PPINT " GRAPHICET TEFINITION
CALL CLEAR

i REM

i FEM

I REM

290 FEM Gun

ararh
ERLL CHAR (12

189 = bullet a0
CALL CHARC1Z0s "Siedef32F 30 . 440"z

120 = tallipa rlans 70 CALL HCHARCER.BC
CALL CHARCIZ1. 710101 01023707

YARIAELES ZET

ZOUND S0 200 1y —2a 10

=bl MAIN LOOF.....vee
chack for hit

KEY CHEZEZ, ..ovvovae
540 CALL GUHAR (ERs BCy 22
S50 REM srint bullet

LN MOWEMENT.......
S&0 CALL HCOHAR (ERS B

230 PRINT ° EULLET ROUTIMEZ....
s 3

S80 IF Z=122 THEN 710

CRAZHI i ieannns .
530 REM chanse Bullet Rouw

600 BR=BR-2
Column at start €10 IF BR>3 THEN &S0

82

83

RACETRACK

RACETRALE

TCREEN 11D
ELERR.

Fararhlos

"EE44FEFFFE44E
"1 {ERFEBRZEEAF
HIT72ETFFFTFE
LL CHAR <121, "SIFFSICSDFFS

140 REM car start points

wan

=0
FEM

M must pot ke 0

M=M- 1

i hDTD 17s

o FEH Frint

SRILEY SN

AHOTHER
" THEMN
THEN

PREOGEAM TN

TRACK....... sieeann
GRAFHICE DEFINITIGH
VAR TAELE
CONTROLE

JOVETICK OR KEY
FREINT ANTWHERE....

" ZEE “""CHANGING DIREC

“FLERZE CHECK
ARE PLUGGED
NT "HLPHR LOCK

NU:T EE OF

© YOUR CONTROLS

510 FRINT =TEER LEFT. =

515 PRINT * ZTEER RIGHT.....I":

0 PRINT " ACCELERATOR.

B

SES PRINT

i PRINT & FEEZZ ANY KEY TO B

S50 REM erint an

555 FOR U'1 70 LE

* PATH-MAKING ROUTIME

T OAND HOW AN REREAY CAM

FRINT * UZED TO MAF A MEZE.":

90 FRINT AMY EEY TO EEGI

Sl

THEN 110

zet limits for ra

art Raw

Ztart Column

Finish Fow
0D FC=14

REM Finizh
240 CRLL CH

UM
FFFFFFFFFFFFF

FFF"3

FOR C=1 TO 10
CALL HCHA
! bHLL HLHHP.,

THE
TO 600
 Col
u
4
Et
Kt
4510
£t i
Et =MD CHECE LINE I
M
ANY EEY TO ZEE

UE &004

OUNTHES

84

na routine

OUT AT LAST

000,220 14277

ase hU\UB &loa

960 CALL

240: 1)

970 CALL KEY(3
@0 IF

30 REM
1004 CALL CLERK

1010

PRINT

RT AND"::
1n 2 PRINT "END POINTE YOURSELF

Ry
10“0

SOUNDB 10002942 1370

YO CAN FIR

PRINT 1dDuLn LIKE TO.

R
i IHPHT

INFHT

H
G070 1100
N INPUT ©:

"Finish

"Finizh Column

INPUT “LIKE TO RUM IT RGA
iAE

" THEN 1140
T THER 1040

THEN. 1140
© THEN 150
tart Row 701 TO

tart Column 7O

vl
= limits for

FR

- thay FrO

I
115

sis

ANY KEY TO 50

11y

THE TR

10
10

i1 10 10

Ta
rnd

FR

1%

"FROGRAM INDEX
INTRODUCTION......
YARIAELEE ZET...

FRINT ZLREEMN......
FLAZHING ""a"
PATH-MAKER.
CHECE FOR END.....
FE-RUM 7...

FRINT SUB-ROUTINEE

16s1 +N R

40 CALL HEZHAR ¢

s TO LENCES
SD lﬂLL HCHAE <161 28+Ns

10 FOR
0 CALL HCHAR C14s 17+Hs RS
Mr1203

5230 H
5940 FETUPN
&000 FOR f=1 TO LEM
e01n DRLL HCHAR (LG A

CZEGE (hiEs

6030 HEXT @
030 RETURN

DUEL

10 REM DUEL

20 REM MACERIDE 1983
30 CALL SCREEM(3)

40 CALL CLEARF
50 PRINT TREY i “DUEL”
60 PRINT * THIZ IS GIYEM AS AN E
AAMPLE"::
70 PRINT *
N GAME"::
80 PRINT ™

OF A TWO-PLAYER ACTIO
WRITTEN IM TI EBAZIC.™

90 PRINT *
sk

IT HAZ ROUTIMEZ FOR B
100 PRINT " JOYETICK AND KEY COW
TROLE, "&:

110 PRINT * LIZT THE GAME AFTER
¥

120 PRINT *
G AND"::
130 PRINT

HAYE FINIZHED FLAYIN

ZEE HOW 1T LOR

140 CALL KE" 52
ARE *OU U

150 INPUT M3
CKS 7 OfoHy iR

160 J=0

170 REM Jovstick indicator

130 IF A%= THEN 281

130 IF A%< " THEW 150

200 PRINT

210 PRINT CONTROLE

220 PRINT * LEFT
IGHT":

230 PRINT * < TO MOYE TANE
STdnes
840 PRINT * ZTEER LEFT

P L

D 70 STEER RIGHT
*F< TO FIRE BULLET

290 PPINT N

THE ALFHA LOCE MUZT

BE OF!
300 PRINT " PUSH FORWARD TO 30.

olU PRINT " ZTEER LEFT OR RIGHT"

320 PRINT " PREZZ ORANGE EAR TO
ararhl
Teft tant
340 CALL CHAR
c™>
350 CALL CHARCLZ
010mr
360 CALL CHRR L
[
370 CALL CHAR 131"
838"
330 REM
320 CALL ©
000>
400 REM
410 CALL
G
420 CALL
Q10"
430 CALL CHAR(13&s "00F3187
c

“OBIFLETEFFTER

UOOF31E

TEFFFES

101t

440 CALL CHAR{139,"

bullet

460 CALL CHAR Y140y " 0000021C0S000
edae

430 CALL CHARC(144s "FFFFFFFFFFFFF
wall block

500 CALL CHAR (145, “FFCIBSY999B5C

S10 PRINT
EGIN"2::

Sen
530

FRESS ANY KEY TO B

REM

1
640 PHHDDNILE

85

NEXT F
IF J=0 THENW 1i100
D REM ievstick control

ax CHAR CF i
60 REM chanas direction

a0 IF 744 THEW Lo2o
1000 REM mous tank

1010

1020 TPy e T194EE
P+D(

1030 IF F <R THEN 1080

1040 REM fire?

1050
1060
1070 603
1080
1090
1100

1110
1120
1120
1140

1150
1160 £ (P>
1170 REM chanse direction

1180 DiP)=
1190 DPY=
D{Pr =521
1200 IF K THEN 1230
1210 REM move tank
220 GOSUB 1420
I‘QH CALL HCHAR (R
P+D
1240 BOTO 1260
1250 GOSUE 1270
1260 HEXT P
1270 REM tank firina 7

3 s P 0 119482

1“““ FOR P=1 70 &
I Fr=0 THEN 1210
UE 1520
NEXT P
1329 07O 260
1230 REM end of main loop

1240 REM zub-routines from
hers down
1250 RER

1360 REM zhell

art Foint

1400 RETHPN .
1410 REM tank mawer

1420 Ri=|
14z0 L1
1448 Ri=F1

1450
1480 L
1470
1420
1490
1560 RETURN
1510 REM zhell in fliaht

1560 CALL

1570 IF

2020 FRINT

LUSR FFINT "

hxt H=rlaver
teen Hit

1’4“ CALL SOURDSOs =Ty 12

TS50 NEXT T
1?60 HEXT M

{1770 REM end or carry

720 REZTORE 1620
1720 FOR R2=21 1O 23
1200 READ WE
1210 FOR =1 TO LENWE>

1820 CALL HCHAR (RZ:@+3) AL (ZESEC
WEs Qe 122

1830 NEXT 2
1840 MEXT RE

1850 DATA "PRESE »@< TO QLIT"."
[

»E< 7O STHPT AGATH"s "

ARRY ON

1860 CALL KEYI22 K32
1870 IF E=0 THEN 1860

1880 CALL HCHAR (215 1:32s 362

1340
30
200
3070 1720
1930 REM and of Jame
1240 CALL CLEAR

1950 FRINT TRE!

“E0 FFINT " INTRODUCTIOM......

"ARIABLE

2010 FRINT * COWTROLE -

Lol 9T

L1410

3

.« =

0o

b=

s e fue r-_r

o

]
FOR N=1 TO 1“
READ G

CALL CHARCL

1
&
4

Ho s CeHr o 119485

A F

» 3 "PROGRAM IMDEX

GRAPHICE....

SCREEN LAY-0UT....

ITART OF GAME LOOP aints

443 CALL HCOHA
450 CALL HCOHAR:S
450 CALL %CHA

ZUE-ROUTINES"
ZTART SHELL.....

MOVE TAMK.......

PPINT - FIRE AMNDN HIT?...

EZPINNING TRNK.....
ENDT e ienacnanran

BHT

RIHE 1933
Fhic

TN BE:

bats
OFEF7FIEFEFEF

A FFFFFFFFEFFFFFFF
A FEFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFE
153131812151FF
EN

& CH ILEHP
0 PPINT THB:I)

TO KNOCK THE ER
INTO THE CRYE “3CHR
UZING THE SPECIALLY

DEZIGNED BAT-KNOCKE

FLEAZE CHECK THAT A
LOCK I3 OFF (URX"::
ANY KEY TO BE

lavout

Bat Enocker ztart

H
3 FRINT TRE(2: -

‘PROGRAM INDEX
FRINT * GRAPHICE . ..oo0auns
0 INTRODUCTION, ...l
ICREEN LAYOUT.....
GAME ZTARTE HERE. .
EAT MOWEMENT.....

EDRE ROUTINE......
ENOCKER MOVEMENT. .
FRINT AMNYWHERE....

FET\FH

DRAGON

10
=

0 FRINT TREC1Z)§"
S0 FRINT * THERE
DHND

S0 FRINT * AND DRAGONEZ AMD SOELI
N TO"::

70 FRINT " TRCKLE RAZ vOU wWORE YO
UR WAY" s
21 PPINT " THROUGH THE DREGON"E

LAIR, "

LY PRINT Y WOl WONCT KNOW WHERE
THEY "5

100 PFIHT © ARE UNTIL ¥OW MEET

THEM. "3

THE ARROW KEYZ (Ee3Z
WILL MOYE YOUR MAN.

PPIHT “ FREZZ AMY KEY TO BE

IHLL }Ew‘ ia b
IF H
FFINT
FHHIOM
O PRINT ° 1 AM FREFARING A FA

Y00 - IT WOW-'T TREE

86

H"M HE DHT A NIIE z

OME MOMENT FLERZE™
1

o _,otl F'RIHT “ IWTRODUCTION......

C"“IJ F‘F‘INT Y MAZE DRRUER.......
165"
0 PRINT “ 3SWORD ANDD SHIELD..
S

RTTER INCIDENTI.

P

00 FRINT * GRAPHICS...eeseees

ETART ZCREEN......

1 GAME ETART........
0 5070 1475
0 IF RND:.7 MOVEMENT coveenrnn
IMCIDENTE"
#ORE GOLD. .

My MO Mye Toe o= Mo Moo=
o -

DRAGONYY...

i LHLL HIZHAR SRy D+l 320

GOBLINS. ...
S EEM move hera

2220 PRINT " PATH-MAKER........

.. 40007

2220 PRINT " MEIIRGE PRINTING..
..5800"

2293 ITOF

IF FEcRs O © THEMN 1170 2900 FOR T=1

| 2910 FOR N=1

0Ta 1100 &920 PECTN
-1

2930 NEXT N

©OTHEN 1170 2340 NEXT T
2950 G070 14
3000 FOR ==1 7O 13
3010 CRALL COLOR{Ss2s8)
© THEN 11710 3020 NEXT =

3030 RETURN

52y =0 THEM ¢ 4000 ¥=RND

4010 IF 2 THEN 4130
IF RND-.5 THEN 2230 4020 IF THEN 4100
3 [] 4030 IF THEN 4070
il 4040 R=R+2+ 9\19)‘
F K=7& THEN 2431 4050 P§iR-1
GOTU 2430 . 4060 GOTO 41
..... =" | I 4070 R=R-2- 2300
GBOSUE &000 4080 PE(R+1s "
IF E=92 THEN 2490 4090 6OTO 4150
ZOUNTDC10e 100+2 0%Ns 12 2420 REM wrona syess 4100 (L5
N 2430 W$=" v¥OU LO3T * 4110 PS(R:C— 1.-“1
REM SOUND 1000y 1000, 13 2440 GOSUB 5930 4120 6070 4150
1=raths .- 43 THEN 1870 2450 CALL SOUNDC1000s110y1) 4130 C=C-2-P-(2#1C<3))
oblings T 7013 2460 M=M-Gx2 41490 "1
1180 ON ¥ su.ur 1200+1250:1350,2 1830 READ W% 2470 GOSUB 5710 4150
nogs2gan 1835 GOIUE wO0E 2480 RETURN 4160 RETURN
5070 846 1240 NEST Rt 2490 W§=" YOU WIN * 5200 WE=STRE (DY
RETURN 2 DATA "HES DEAD": "7OU GET 2500 GOSUR 5970 5910 R1=7
REM w# anld #% 2510 CALL SOUNDC1000s5500 1k 5515 C1=23

LD
SOUKD C500. 262

X o 1032001 2520 MeM+Gsd 5820 GOSUR 5000
$="MORE GOLD o 2530 GOZUR 5310 5830 GOTO 5910
: SOUND£500: 2 2540 RETURN 5300 M=M+G

LWL SO0 7508 10

Se0l WE="sU

5910 WE=STRE (M»

Ze01 REM sut 5920 R1=3

5925 C1=23
2605 CALL HCHAR Ry C+14129 5330 CALL SOUNDCS00,800: 1
2610 Cl=5 9240 GOTO &0QU

5990 Ri=R1+1
6000 FOR @=1 TO LEN(US$)

aaa
UND C1000s 252

a 3301 6010 CALL HCHAR(R1:0C1+8»ASC (SEGS
WP Qa1
ANY KEY TO 50 ON” 6020 NEXT @

€030 RETURN

"LIKE HNDTHEF‘ GAME T ¢
THEN 23200
* THEM 2700

Y CLERR
FF‘INT TARE PROGRAM INDEX

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47

