
As you are now the owner of this document which should have come to you for free, please
consider making a donation of £1 or more for the upkeep of the (Radar) website which holds
this document. I give my time for free, but it costs me money to bring this document to you.
You can donate here https://blunham.com/Misc/Texas

Many thanks.

Please do not upload this copyright pdf document to any other website. Breach of copyright
may result in a criminal conviction.

This Acrobat document was generated by me, Colin Hinson, from a document held by me. I
requested permission to publish this from Texas Instruments (twice) but received no reply. It
is presented here (for free) and this pdf version of the document is my copyright in much the
same way as a photograph would be. If you believe the document to be under other
copyright, please contact me.

The document should have been downloaded from my website https://blunham.com/, or any
mirror site named on that site. If you downloaded it from elsewhere, please let me know
(particularly if you were charged for it). You can contact me via my Genuki email page:
https://www.genuki.org.uk/big/eng/YKS/various?recipient=colin

You may not copy the file for onward transmission of the data nor attempt to make
monetary gain by the use of these files. If you want someone else to have a copy of the file,
point them at the website. (https://blunham.com/Misc/Texas). Please do not point them at
the file itself as it may move or the site may be updated.

It should be noted that most of the pages are identifiable as having been processed by me.

I put a lot of time into producing these files which is why you are met with this page when you
open the file.

If you find missing pages, pages in the wrong order, anything else wrong with the file or
simply want to make a comment, please drop me a line (see above).

It is my hope that you find the file of use to you.

Colin Hinson
In the village of Blunham, Bedfordshire.

TEXAS INSTRUMENTS

9900
TMS 9900 Family
Software Development Handbook

First Edition

PREFACE

This handbook has three principal aims:

1) To introduce the concept of microcomputer software

2) To provide a survey of the systems software and
development tools available for the TMS 9900 family of
microcomputers

3) To act as a guide to the steps involved in developing
software for a microcomputer-based product.

This book introduces a systematic approach to software design from the
start. Previously, much microprocessor-based development was done in a
haphazard, experimental manner, with users learning how to do it as
they went along. This approach was inevitable as the tools provided by
microprocessor manufacturers were not very sophisticated. In addition,
few people (even within the manufacturers) had much experience in
regard to microprocessors or microprocessor applications.

Recently, this situation has changed. With rapidly falling hardware
costs and rising labour costs, software has become the major
investment in developing a microprocessor-based product. It is no
longer appropriate to adopt a "trial and error" approach -- this is
both expensive and time-consuming.

It is therefore important that the software designer has a set of
tools which make a job easier and more controllable. Texas Instruments
is committed to providing these tools. A complete range of systems
software and development tools is now available for the TMS 9900 range
of microcomputer, comparable with those provided for minicomputers and
mainframes.

Some of these tools (compilers, assemblers, link-editors, etc.) are
very similar to those already existing for larger computers. Texas
Instruments was in a good position to develop these due to its wide
experience in minicomputers (from which the 9900 microprocessor was
originally developed). The 9900 shares the same basic instruction set
as the 990 range of minicomputers, for which extensive software
exists, including compilers for most of the major high-level
languages. Other tools, such as the AMPL emulator, which provides
real-time in circuit testing, had to be designed from scratch.

This handbook is a guide to the tools currently available and to the
methods of using them to best effect (something which is not always
known to a user unless he has a background in software). Part of the
book's purpose is to highlight the design choices; for example,
providing information that would help the user in choosing the
appropriate language or development system for a particular
application. The design techniques introduced are intended to bring
out design choices in the application itself.

Much can be learned from recent thinking in software design which, in
historical terms, has just emerged from the Dark Ages (the science of
software is little more than twenty years old) and is being
established for the first time on a systematic basis. However, the
techniques now increasingly being adopted for mainframe software
design need some adapting to the special environment of the
microcomputer. This book is directed to achieving a professional
approach to software design for microcomputers, by combining
state-of-the-art techniques with experience gained from designing and
building microcomputer systems for real applicatons.

ii

HOW TO USE THIS BOOK

The first chapter (Introduction) is directed at those who do not have
experience with sofware or microprocessors. It describes the elements
of a computer, what software is and how it fits into a
microcomputer-based system, and what is special about microcomuters as
opposed to minicomputers or mainframes.

The second chapter (Software Concepts) explores microcomputer software
in more detail, presenting a range of ideas which are important in
software design. It describes aspects particular to microcomputer
software -- for example, ROM/RAM partitioning and the relationship
between development and target systems. Chapter IV, "Data", and
Chapter V, "Algorithms", introduce basic concepts of software design.
These ideas, and the notations introduced to describe them, are used
extensively in the rest of the book. These sections are worth reading
even by those familiar with the rest of the material in this chapter.
They form the basis of the systematic approach to software design
adopted by this book.

Chapter III, Software Development, examines the various steps involved
in developing a microcomputer-based system, from problem definition to
implementation, with software particularly in mind. Once again, a
systematic approach to software development is adopted as far as is
possible. Along the way, the software and hardware tools used in
software development and testing (editors, compilers, emulators, etc.)
are described.

The remaining chapters describe each of the three programming
languages in which it is possible to implement a software design for
the TMS 9900: Pascal, POWER BASIC, and Assembly Language. These
chapters are not intended to be complete tutorial manuals (these are
available elsewhere) but they should give the reader a good feel for
the capabilities of each language, and the applications for which it
is best suited. Each chapter contains a Reference Section, which sets
out in abbreviated form all the important constructs and features of
the language. This will be a useful reference guide once the basic
ideas of the language have been mastered. In addition, the Assembly
Language chapter includes a large "Algorithms and Techniques" section,
which describes ideas and techniques for implementing commonly used
programming concepts in Assembly Language.

BIBLIOGRAPHY

Texas Instruments Publications:

97049-118-NI 9900 Family Systems Design and Data Book

943441-9701 Model 990 Computer/TMS 9900 Microprocessor Assembly
Language Programmer's Guide

MP351 The Microprocessor Pascal System User's Manaul

946290-9701 TI Pascal User's Manual

MP305 TI Pascal Microprocessor Executive Library Reference
Manual

MP318 Configurable POWER BASIC Reference Manual

MP308 TM990 POWER BASIC Reference Manual

1602030-001 TM990/302 Software Development Board User's Guide

Model 990 Computer DX10 Operating System Release 3 Reference Manuals
Volumes:

946250-9700 II Production Operation

946250-9703 III Application Programming Guide

946250-9704 IV Development Operation

MP003 TMS 9901 Programmable Systems Interface

MP334 TM 990/201 and /206 Memory Expansion Board

Non-Texas Instruments Publications:

Osborne, A. An Introduction to Microcomputers, Vol. I and II,
Osborne and Associates

Suppl, C and Kidd, D. Microcomputer Dictionary and Guide:
Matrix Publishers

Wirth, N. Algorithms + Data Structures = Programs: Prentice Hall

Jackson, M. Principles of Program Design: Academic Press

Dijkstra, E., Dahl, 0. and Hoare, C. Structured Programming:
Academic Press

TABLE OF CONTENTS

CHAPTER I - INTRODUCTION

1.1 WHAT IS A MICROCOMPUTER 1-1
1.2 BLACK BOXES AND DIGITAL ELECTRONICS 1-2
1.3 ELEMENTS OF A MICROCOMPUTER 1-6
1.4 MOST MICROCOMPUTERS ARE DEDICATED 1-10
1.5 SO WHAT? 1-13

CHAPTER II - SOFTWARE CONCEPTS

2.1 OVERVIEW 2-1
2.2 ROM AND RAM SEMICONDUCTOR MEMORY 0 . . . 2-1

2.2.1 ROM Type 2-1
2.2.2 RAM Types 2-2
2.2.3 ROM/RAM Summary 2-3

2.3 DEVELOPMENT SYSTEMS 2-4
2.4 DESIGNING A MICROCOMPUTER SYSTEM 2-5

2.4.1 Hardware Design 2-5
2.4.2 Software Design 2-6

2.5 DATA 2-7
2.5.1 Data Types 2-7
2.5.2 Data Structures 2-9

2.6 ALGORITHMS 2-13
2.7 PROGRAMMING 2-20

2.7.1 Assembly Language 2-20
2.7.2 High-Level Language 2-21
2.7.3 Interpreter 2-23
2.7.4 High-Level vs Low-Level 2-24

2.8 MODULAR PROGRAMMING 2-25
2.9 PROCEDURES 2-28
2.10 REAL-TIME SOFTWARE 2-31

2.10.1 Software Organization 2-33
2.10.1.1 Polling 2-33
2.10 1.2 Interrupts 2-35
2.10.1.3 Executives 2-36

CHAPTER III. SOFTWARE DEVELOPMENT

3.1 OVERVIEW 3-1
3.2 PROBLEM DEFINITION 3-2
3.3 SYSTEM DESIGN 3-3
3.4 ESTIMATING SYSTEM LOAD 3-4
3.5 SOFTWARE DESIGN 3-6
3.6 TOP-DOWN 3-7
3.7 PROGRAMMING 3-10
3.8 TRANSLATION 3-12

3.8.1 Files 3-12
3.8.2 Text Files 3-13

3.9 SOFTWARE TOOLS 3-14
3.9.1 Text Editor 3-14
3.9.2 Assembler 3-15
3.9.3 Compiler 3-16
3.9.4 Absolute and Relocatable Code 3-16
3.9.5 Linker 3-18
3.9.6 Loader 3-19

3.10 BASIC PROGRAM DEVELOPMENT 3-19
3.11 BACKUP 3-19
3.12 TESTING 3-21
3.13 SIMULATOR 3-21
3.14 INTEGRATION 3-22
3.15 EMULATOR 3-22
3.16 PRODUCTION 3-23
3.17 DEVELOPMENT SYSTEMS 3-24

3.17.1 TM990/4 3-24
3.17.2 TM990/10 3-24
3.17.3 AMPL 3-25
3.17.4 TM990 Boards 3-25

CHAPTER IV. PASCAL

4.1 INTRODUCTION 4-1
4.2 TEXAS INSTRUMENTS PASCAL OVERVIEW 4-2
4.3 MICROPROCESSOR PASCAL OVERVIEW 4-3

4.3.1 Microprocessor Pascal Editor „ 4-4
4.3.2 Microprocessor Pascal Compiler and Code

Generator 4-4
4.3.3 Micprocessor Pascal Debugger 4-6

4.4 PASCAL STRUCTURE 4-7
4.4.1 Features 4-7
4.4.2 Stack and Heap 4-8
4.4.3 Systems and Programs 4-8
4.4.4 Processes and Procedures 4-9
4.4.5 Declarations and Statements 4-9
4.4.6 Block Structure 4-11

4.5 PASCAL LANGUAGE 4-13
4.5.1 Basic Rules 4-13
4.5.2 Systems 4-15
4.5.3 Data Declaratons 4-18
4.5.4 Type Declarations 4-18
4.5.5 Simple Types 4-19

4.5.5.1 Integer and Longint 4-19
4.5.5.2 Boolean 4-19
4.5.5.3 CHAR 4-20
4.5.5.4 Enumeration 4-20
4.5.5.5 Subrange 4-21
4.5.5.6 REAL 4-21

4.5.6 Structured Types 4-22
4.5.6.1 Array Type 4-22

4.5.6.2 Record Type
4.5.6.3 Set Type
4.5.6.4 File Type
4.5.6.5 Pointer Type
4.5.6.6 Packed Type

4-22
4-23
4-24
4-25
4-25

4.5.7 Type Compatability and Transfer 4-26
4.5.8 Variables 4-27

4.5.8.1 Indexed Variables 4-27
4.5;8.2 Record Variables 4-28
4.5.8.3 Pointer Variable 4-29

4.5.9 Expressions 4-29
4.5.9.1 Operands 4-29
4.5.9.2 Operators 4-29
4.5.9.3 Function Calls 4-31

4.5.10 Simple Statements 4-31
4.5.10.1 Simple Statements 4-31
4.5.10.2 Procedure Statement 4-32
4.5.10.3 START Statement 4-32
4.5.10.4 ESCAPE Statement 4-32
4.5.10.5 GOTO Statement 4-33
4.5.10.6 ASSERT Statement 4-34

4.5.11 Structured Statements 4-34
4.5.11.1 Compound Statement 4-34
4.5.11.2 IF Statement 4-35
4.5.11.3 CASE Statement 4-36
4.5.11.4 FOR Statement 4-37
4.5.11.5 WHILE Statement 4-38

4.5.12 File Manipulation 4-41
4.5.13 Standard Routines 4-41
4.5.14 Dynamic Storage Allocation 4-41
4.5.15 CRU I/O 4-41

4.6 CONCURRENCY 4-41
4.6.1 Processes 4-41
4.6.2 Process Record 4-42
4.6.3 Semaphores 4-42
4.6.4 Process Synchronization 4-43
4.6.5 Interprocess Communication 4-44

4.6.5.1 Shared Variables 4-44
4.6.5.2 Message Buffer 4-44
4.6.5.3 Interprocess Files 4-45

4.7 INTERRUPT HANDLING 4-47
4.8 REFERENCE SECTION 4-49

4.8.1 System Commands 4-49
4.8.2 Debug Commands 4-49
4.8.3 Utility Commands 4-51
4.8.4 EDIT Commands 4-51
4.8.5 STANDARD Routines 4-53
4.8.6 CRU Operations 4-54
4.8.7 Standard Procedures 4-54
4.8.8 Microprocessor Executive Routines 4-57

4.8.8.1 Processor Management (Scheduling)
Routines 4-58

4.8.8.2 Semaphore Routines 4-58
4.8.8.3 Semaphore Attributes 4-59

4.8.8.4 Interrupt Routines 4-59
4.8.8.5 Process Management 4-60
4.8.8.6 Memory Management 4-60
4.8.8.7 Micprocessor Executive Error and

Exception Codes 4-60
4.8.9 ASCII Character Set 4-63
4.8.10 HEX-DECIMAL Table 4-64
4.8.11 BACKUS-NAUR Form SYNTAX Definitions 4-64
4.8.12 COMPILER Options 4-65
4.8.13 CONCURRENT Characteristics 4-66
4.8.14 System Declaration 4-66

CHAPTER V. POWER BASIC

5.1 INTRODUCTION 5-1
5.2 POWER BASIC 5-2

5.2.1 Evaluation POWER BASIC 5-3
5.2.2 Development POWER BASIC 5-4
5.2.3 Configurable Power Basic 5-4

5.3 BASIC LANGUAGE OVERVIEW 5-7
5.4 POWER BASIC OPERATION 5-8

5.4.1 Operating Modes 5-8
5.4.2 Editing Source Statements 5-8
5.4.3 Automatic Line Numbering 5-9
5.4.4 System Initialization 5-9

5.5 VARIABLES 5-10
5.5.1 Variable Names 5-10
5.5.2 Variable Declarations 5-11
5.5.3 Numeric Representation 5-11

5.5.3.1 Integer Variables 5-11
5.5.3.2 Floating Point Variables 5-11

5.5.4 Character String Variables 5-12
5.5.5 Array Variables 5-12

5.6 POWER BASIC 5-13
5.6.1 Control Statements 5-13

5.6.1.1 GOTO Statement 5-13
5.6.1.2 IF THEN Statement 5-14
5.6.1.3 ELSE Statement 5-17
5.6.1.4 FOR NEXT Statement 5-18

5.6.2 Subroutines 5-20
5.6.3 ON Statement 5-24
5.6.4 ERROR Statement 5-24
5.6.5 CRU Operations 5-25

5.6.5.1 BASE Statement 5-25
5.6.5.2 CRB Function 5-25
5.6.5.3 CRF Function 5-26

5.6.6 MEM Function 5-26
5.6.7 Interrupts 5-26

5.6.7.1 IMASK Statement 5-28
5.6.7.2 TRAP Statement 5-28
5.6.7.3 IRTN Statement 5-28

5.7 POWER BASIC STORAGE ALLOCATION 5-29

5.7.1 Variable Storage 5-29
5.7.1.1 Integer Format 5-29
5.7.1.2 Floating Point Format 5-30
5.7.1.3 Character String Format 5-31
5.7.1.4 Array Storage 5-32

5.7.2 System Memory Map 5-34
5.8 REFERENCE SECTION 5-36

5.8.1 Character Set 5-36
5.8.2 Hexadecimal Constants 5-37
5.8.3 Variable Names 5-37
5.8.4 String Variables 5-37
5.8.5 POWER BASIC Commands 5-38
5.8.6 Edit Commands 5-39
5.8.7 POWER BASIC Statements 5-39
5.8.8 Operators 5-42

5.8.8.1 Arithmetic Operators 5-42
5.8.8.2 Relational Operators 5-43
5.8.8.3 Boolean Operators 5-43
5.8.8.4 Logical Operators . . . 5-43
5.8.8.5 Operator Precedence 5-44

5.8.9 Arithmetic Functions 5-44
5.8.10 CRU Operations 5-44
5.8.11 Memory Functions 5-45
5.8.12 Miscellaneous Functions 5-45
5.8.13 String Operations 5-46
5.8.14 String Functions 5-47
5.8.15 INPUT Options 5-48
5.8.16 PRINT Options 5-49
5.8.17 Floating Point XOP Package 5-50
5.8.18 Variable Storage 5-51
5.8.19 ASCII Charactrer Set 5-52
5.8.20 Hex-Decimal Table 5-53
5.8.21 Error Codes 5-54

CHAPTER VI. ASSEMBLY LANGUAGE

6.1 INTRODUCTION 6-1
6.2 INSTRUCTION FORMAT 6-3
6.3 INSTRUCTION FORMAT RESTRICTIONS 6-4
6.4 MEMORY ORGANIZATION 6-4

6.4.1 Byte 6-5
6.4.2 Word 6-5
6.4.3 Registers 6-6
6.4.4 Workspace Regisers 6-7
6.4.5 Register Functions 6-8
6.4.6 Context Switch 6-8
6.4.7 Addressing Modes 6-11

6.4.7.1 Workspace Register Addressing . 6-11
6.4.7.2 Workspace Register Indirect

Addressing 6-12
6.4.7.3 Symbolic Memory Addressing 6-12
6.4.7.4 Indexed Memory Addressing 6-12

6.4.7.5 Workspace Register Indirect
Autoincrement Addressing 6-13

6.4.8 Specialized Addressing Modes 6-14
6.4.8.1 Immediate Addressing 6-14
6.4.8.2 CRU Bit Addressing 6-14
6.4.8.3 Program Counter Relative

Addressing 6-15
6.5 SUBROUTINES 6-15
6.6 PARAMETER PASSING 6-17
6.7 STRUCTURING 6-21

6.7.1 Selection 6-21
6.7.1.1 Condition Codes 6-23
6.7.1.2 Jump Instructions 6-24

6.7.2 Iteration 6-27
6.7.3 Sequence 6-29

6.8 COMMUNICATIONS REGISTER UNIT 6-32
6.8.1 Single-bit CRU Instructions 6-33
6.8.2 Multiple-bit CRU Instructions 6-34

6.9 INTERRUPTS 6-37
6.9.1 Interrupt Structure 6-38
6.9.2 Interrupt Transfer Vector 6-39
6.9.3 Interrupt Sequence 6-40

6.10 EXTENDED OPERATION INSTRUCTIONS 6-43
6.10.1 Defining Extended Operation Instructions . • 6-43
6.10.2 Extended Operation Instructions Trap

Vectors 6-44
6.10.3 Extended Operation Instruction Execution . ▪ 6-45

6.11 ALGORITHMS AND TECHNIQUES 6-48
6.11.1 Invoking the 9900 Family of Assemblers . . • 6-48

6.11.1.1 LBLA 6-48
6.11.1.2 Symbolic 6-49
6.11.1.3 TXMIRA 6-50
6.11.1.4 SDSMAC 6-50

6.11.2 Number Representation 6-52
6.11.2.1 Number Systems 6-52
6.11.2.2 Representation of Negative

Numbers 6-53
6.11.2.3 Representation of Fractions. . . • 6-54
6.11.2.4 Representation of Floating Point

Numbers 6-55
6.11.2.5 Binary Coded Decimal 6-56

6.11.3 Position Independent Code 6-57
6.11.4 ROM/RAM Systems 6-58
6.11.5 Macro Processing 6-60

6.11.5.1 Macro Definitions 6-61
6.11.5.2 Macro Call 6-62

6.11.6 Nested Subroutines 6-64
6.11.7 Stacks 6-65
6.11.8 Automatic Workspace Allocation 6-66
6.11.9 Recursion 6-68
6.11.10 Re-entrancy 6-69
6.11.11 Jump Table 6-70

6.12 REFERENCE SECTION 6-71
6.12.1 Instruction Formats 6-71

6.12.2 Status Registers 6-72
6.12.3 Interrupts 6-72
6.12.4 CRU 6-72
6.12.5 Register Restrictions 6-73
6.12.6 Assembly Language Instructions 6-73
6.12.7 Pseudo-Instructions 6-76
6.12.8 Assembler Directives 6-76
6.12.9 Object Record Format and Code 6-80
6.12.10 TMS 9900 Instruction Execution Times. • ▪ 6-81
6.12.11 TMS 9900 Pin Assignments 6-84
6.12.12 ASCII Character Set 6-85
6.12.13 Hex-Decimal Table 6-86

Figure
Figure
Figure
Figure
Figure
Figure

1-1
1-2
1-3
1-4
1-6
1-7

LIST OF ILLUSTRATIONS

Electrical Device
AND Gate
Translation Process
Computer and Program
Computer System
Dedicated Microcomputers

1-3
1-4
1-4
1-7
1-10
1-11

Figure 2-1 Semiconductor Memory Characteristics 2-3
Figure 2-2 Sequence 2-14
Figure 2-3 Selection 2-15
Figure 2-4 Selection; Special Case 2-16
Figure 2-5 CASE Construct 2-17
Figure 2-6 CASE With OTHERWISE 2-18
Figure 2-7 Iteration 2-19
Figure 2-8 Modular System 2-25
Figure 2-9 Array Construct 2-26
Figure 2-10 Record Variant 2-28
Figure 2-11 Real-Time Software 2-32
Figure 2-12 Polling System 2-34
Figure 2-13 Semaphore Signaling 2-37
Figure 3-1 Development Stages 3-1
Figure 3-2 Microprocessor Design 3-3
Figure 3-3 Seven Segment Display (4 Digits) 3-4
Figure 3-4 Initial Design 3-8
Figure 3-5 READ INPUT 3-9
Figure 3-6 I/O 3-12
Figure 3-7 Text Editor 3-15
Figure 3-8 Assembler 3-15
Figure 3-9 Emulator 3-23
Figure 4-1 Interpretive VS Compile Run-Time

Characteristics 4-5
Figure 4-2 Program Structure Diagram 4-10
Figure 4-3 Declaration Hierarchy 4-17
Figure 4-4 Sequential Program 4-17
Figure 4-5 REPEAT UNTIL Construct 4-39
Figure 4-6 Pascal Program 4-40
Figure 6-1 Assembly Language and Computer 6-1
Figure 6-2 Selection Construct 6-22

Figure 6-3 JUMP Instruction 6-24
Figure 6-4 Two-Way Selection 6-26
Figure 6-5 Iteration 6-27
Figure 6-6 Iteration Again 6-28
Figure 6-7 Sequence 6-29
Figure 6-8 Complex Structure 6-30
Figure 6-9 State Prior to a Level 8 Interrupt 6-41
Figure 6-10 State After a Level 8 Interrupt 6-42
Figure 6-11 Issuing An Extended Operation Instruction . • 6-46
Figure 6-12 Extended Operation Instruction Execution. . • 6-47

LIST OF TABLES

Table 6-1. Interrupt Mask Table 6-38
Table 6-2. Interrupt Transfer 6-39
Table 6-3. XOP Trap Vector Table 6-44

CHAPTER I

INTRODUCTION

1.1 WHAT IS A MICROCOMPUTER?

A microcomputer is a complete computer system implemented on a few
square inches of printed circuit board. A microcomputer is built with
a handful of standard integrated circuits. For small scale
applications, it is possible to implement a complete computer system
on a single chip of silicon (an integrated circuit). In larger
applications, the heart of the system is a component called the
microprocessor.

A microprocessor is a general purpose integrated circuit that can be
programmed to perform a particular function. A microcomputer-based
product can be constructed from a microprocessor, a selection of
inputs and outputs and program memory. The inputs and outputs can be
anything that is, or that can be converted to, digital electrical
signals. The hardware design for a microcomputer product simply
consists of interfacing inputs and outputs to the microprocessor -
which is usually very straightforward. Its operation is specified by
the program: a list of instructions to the microprocessor which is
stored in the system's memory. In contrast with the hardware (the
physical components of the system), the program which controls the
system's operation is referred to as software.

There are several advantages to using a microcomputer instead of more
conventional techniques. First, because a microcomputer uses
standard, highly integrated components, it is inexpensive. The
component count is much reduced compared with a conventional logic
implementation (such as TTL); and the design cost is several orders of
magnitude less than the development of a custom integrated circuit.
In fact, the design is significantly quicker and less expensive than
any form of hardware design because software is much easier to
manipulate. In addition, software has the advantage of flexibility.
If the software is well designed, changes can be incorporated, even
late in the development process, with little disruption.

The microcomputer provides computer power small enough and inexpensive
enough to be incorporated in almost any electrical device. This has
two results:

1) Many existing devices can be built more inexpensively
using a microcomputer

2) There are exciting new possibilities, due to the immense
power of the microprocessor.

Unlike traditional computers, the inputs and outputs of a
microcomputer are not restricted to standard peripherals such as card
readers and line printers; devices which, fundamentally, can only
handle paperwork.

The microcomputer allows computing power to be located where it is
needed, rather than being locked away in a distant 'computer room'.
It is small enough and inexpensive enough to permit its use in a
dedicated application, where it does one thing all its life; and it is
even economic to allow it to remain idle for a large proportion of its
time, to ensure that it is there when required. The microcomputer
makes it possible for users to determine what computers shall do.
Previously, the economics of a computer dictated how it could be
employed. For example, a large mainframe had to be kept running all
the time simply to justify its expense. The microprocessor has gone a
long way in taming computer power, and making it obedient to the needs
of the user.

The major effort of microcomputer design goes into software. Software
is in a number of ways easier to deal with than hardware. However, it
must be treated with respect. Designing the software for a complex
application is not trivial, especially as the availability of the
microprocessor leads to more ambitious projects. This book shows what
is involved in developing microcomputer software. As it is a new
technique, new methods must be used: those developed for hardware
design are not appropriate. Even techniques used in the design of
software for 'mainframe' or 'mini' computers need adaptation, because
of the special features and the different areas of application of
microcomputers.

This introductory chapter explains what a microcomputer is, and how
software and computer programs fit into the picture. The second
chapter explores some of the concepts essential to the software
designer. The third chapter examines the actual process of software
development, and the steps that are involved in carrying through a
design from problem definition to implementation.

1.2 BLACK BOXES AND DIGITAL ELECTRONICS

A mechanical or electrical device can be considered, very simply, as a
black box with inputs and outputs:

HOUTPUTS INPUTS

FIGURE 1-1. ELECTRICAL DEVICE

The black box processes these inputs and produces outputs in a
well-defined fashion. For example, a typewriter takes key presses as
input and produces printed characters corresponding to the key inputs
as outputs. This is a particularly simple example: the processing may
be time-dependent, and may also depend on previous inputs and
outputs. All problems that are solvable by machinery can be analyzed
in this manner. The black box, with its inputs and outputs, may be
called a system.

How can such a black box be built? The traditional, non-computer
method would be to design a dedicated piece of hardware: a mechanical
device. Methods of implementation have varied. Early workers used
wires, pulleys, cogs and a great deal of mechanical ingenuity.

More recently, electronics has made things much easier. Perhaps the
most signi!icant advance in black-box implementation was the invention
of digital electronics, based on the binary digit, or bit.

A bit can be considered as a switch. It has two possible states: on
or off, 1 or 0, high or low. Bits can easily be represented in
electronic circuits, and they can be used to store information.
Circuit elements can be designed that combine bits in various useful
ways. One such element is the AND gate as depicted in the following
figure.

INPUTS

•OUTPUT

FIGURE 1-2. AND GATE

The possible states of A, B and C are conventionally represented as
"0" and "1". For given con,litions of the inputs A and B, the output C
is completely determined. For an AND gate, C is 1 only when both A
and B are 1.

By combining logic elements such as the AND gate, complex black boxes
can be designed to perform a variety of functions. Solving a real
world problem, of course, depends on translating real inputs (such as
mechanical movements, temperature readings, etc.) into bits, and
translating bits back into the real world.

This process of translation can be represented (adding to the black
box diagram) as:

OUTPUTS DATA INFORMATION DATA
INPUTS __-___—•

FIGURE 1-3. TRANSLATION PROCESS

'Information' is used here in a very wide sense. It may involve
physical interaction - for example, turning on a motor.

'Data' is a term used for information divorced from its meaning - that
is, information translated into a pattern of bits for processing by a
digital circuit. The digital circuit does not know or care what the
data represents; it simply processes bits according to the logic built
into it.

Digital electronics is powerful because it is only concerned with
bits. The bits can represent anything, and the same techniques can be
used for a wide range of different applications. However, this can
cause problems, because bits (data) are entirely abstract entities.

The designer must be very sure that he knows exactly what his data
represents. Translating information into data (i.e., bits) in a well
thought-out manner is probably the most important step in designing a
digital system.

In the last 20 years, advances in technology have made it possible to
place several thousand basic logic elements on a single chip of
silicon. However, with the technological advance has come the problem
of organization. Organizing all these logic elements to perform the
desired action is a very difficult, time consuming, and expensive
task, requiring a highly skilled designer (or team of designers). In
addition, because an AND gate is a piece of hardware - a physical
device - it is quite awkward to manipulate. Once a design has been
put together, it is extremely difficult to change in any significant
way without starting again from scratch.

This is where the computer comes in.

1.3 ELEMENTS OF A MICROCOMPUTER

Like other digital devices, computers work with bits. In fact, they
usually work with groups of bits. The TMS 9900 family of
microprocessors uses a basic unit of 16 bits, called a word. The
possible operations that can be performed on words are strictly
limited and well defined, which is what makes the computer possible.

Of the total range of operations, the most useful are selected to form
the computer's instruction set. Each instruction performs one
operation. For example, there is an operation to perform a logical
AND on two words of data:

first word 0 1 0 1 1 0 1 1 1 0 0 1 0 1 1 0
second word 0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1

result 0 1 0 1 0 0 0 1 1 0 0 0 0 1 0 0

Corresponding bits in each word are ANDed together to produce the
corresponding bit in the resultant word. Here, a word is treated as
containing 16 unconnected bits. The instructions which operate on
words in this way are called logical instructions.

Using the binary number system, a 16-bit word can also
number. There is a group of arithmetic instructions which
as numbers, and perform the usual arithmetic operations on
example, add:

first word 0 1 0 1 1 0 1 1 1 0 0 1 0 1 1 0
second word 0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1

result 1 0 1 1 0 0 0 1 0 1 0 0 0 0 1 1

represent a
treat words
them. For

(The binary number system is described in Section 6.11.2 The
TMS 9900 instruction set also includes operations on bytes (1 byte = 8
bits) of data.

In addition there are instructions to read inputs and write outputs,
and to move data around within the computer.

The operation of the computer can be specified by a list of these
basic instructions. The list of instructions is called a program, and
is stored in the computer's memory. A computer, then, looks like the
following figure:

 OUTPUTS

PROGRAM

Pi PROCESSOR INPUT S

FIGURE 1-4. COMPUTER AND PROGRAM

The stored program controls the operation of the computer. The
processor fetches the program instructions one at a time in sequence,
and executes them. The sequential flow of the program can be altered
by conditional instructions, which cause a jump to another part of the
program, if the condition is met. One example of a condition is
whether a particular data word is greater than zero. This makes very
powerful programs possible.

The program completely determines the operation of the system. If the
initial conditions and all of the inputs are known, the action of the
computer will be entirely predictable.

Thus a computer is a black box - but a black box with a difference.
Program memory is designed to be alterable. Simply by changing the
program, the operation of the system can be altered. All the
mechanical parts of the system (the hardware) are the same, but it is,
in effect, a different black box. Computers are characterized by this
new element (software) which determines their operation. Computer
hardware can be regarded as a pool of resources, which is organized by
the software. By placing the burden of organization on software, many
of the problems of designing a digital system are solved.

Looking at a computer in more detail:

1
MEMORY

PROGR AM DATA

L _ - _ _1

- - _

INPUTS

 CONTROL

OUTPUTS

A

V

ARITHMETIC
AND LOGIC

UNIT
(ALU)

L
PROCESSOR (CPU)J

COMPUTER SYSTEM

FIGURE 1-5. COMPUTER SYSTEM

The Arithmetic and Logic Unit (ALU) performs the operations requested
by the program (addition, subtraction, logical ANDing, etc.). The
Control Section supervises the reading and writing of program, data,
and I/O, and ensures that everything happens in the proper sequence.
These two elements are traditionally grouped together to form the
Central Processing Unit (CPU), or Processor. When this is implemented
on a single silicon chip it is called a Microprocessor, or MPU. The
complete system is a Microcomputer. The Texas Instruments TMS 9940 is
a complete microcomputer on a single chip.

Besides inputs and outputs, a computer will probably need a place in

which to store data (i.e., a scratchpad or filing system). Therefore
a computer will generally have data memory as well as program memory.
Unlike program memory, data memory must be capable of being changed by
the program.

The inputs and outputs, more than anything else, determine what a
computer system looks like to the user. When the usual peripherals
(card reader, VDU console, line printer, magnetic tapes, etc.) are
connected, it looks like everyone's idea of a computer. But interface
it to motors, lights, switches, gauges and it could be anything from a
washing machine to a car dashboard. A microcomputer is small and
inexpensive enough to be hidden in almost any piece of electrical
equipment, and the user need not even know that it is there.

MAGNETIC
DISC LINE

PRINTER

CARD
READER E3

MAIN 1

.

MEMORY

MAGNETIC
TAPE

CONSOLE

VDU's

1.4 MOST MICROCOMPUTERS ARE DEDICATED

Until a few years ago, the only computers in common use were general
purpose machines. A general purpose digital computer consists of a
central processing unit (CPU), main memory and a number of peripherals
- devices which enable data to be input to and output from the
computer. A typical configuration might look something like this:

FIGURE 1-6. TYPICAL COMPUTER

One of the most important peripherals is the backing store. This is a
memory device that is slower than the main memory, but has a large
capacity. Its principal function is to load programs and data into
the computer's main memory. A general purpose computer has a large
repertoire of programs in its backing store, any one of which can be
loaded and executed. Some of these programs are systems programs,
which control the operation of thr2 computer and provide commonly
required tasks (these will normally be provided by the computer
manufacturer), while others are applications programs developed by the
user.

The most important systems program is that which runs the entire
computer, and controls the loading and executing of other programs
under commands from the user. This program is variously called the
executive, monitor or operating system and is loaded into main memory

PROGRAM
MEMORY

DATA
MEMORY

M P U

C7 /-,/-//7
///7////

L.E.D.
DISPLAY

MINIATURE
PRINTER

OUTPUTS

when the computer is switched on, remaining in control the whole time
the system is running. Other systems programs provide software tools
for developing applications programs. They can be called in as
required by the operating system.

A general purpose computer is, therefore, a chameleon-like machine
which can perform almost any function depending on the program which
is loaded into it. However, the range of things it can do is limited
by the peripherals which are connected to the computer. Standard
peripheral devices include keyboard and visual display unit (VDU),
teletype, line printer, punched card or paper tape readers and
punches, and magnetic disc or magnetic tape devices. These last two
are forms of backing store; the others are means of communicating with
the user.

The input and output devices of a general
designed to handle only alphanumeric characters
numbers). This INPUT LIMITATION, as well as
expense of such computers, has limited their use
ACCOUNTING, payroll MANAGEMENT, and scientific

purpose computer are
(i.e., letters and

the physical size and
to such things as

calculations. Although
they have tremendous automatic processing power, a lot of human effort
is required to translate input into machine readable form, and to
interpret machine generated output. A general purpose computer
requires spoon feeding: special purpose input must be converted into
digestible punched cards. Computers have a bad name in many quarters
because of the drastic changes which must be made to traditional
patterns of work in order to to adapt them to the (until now)
inflexible computer.

There is no reason why a microcomputer should not be constructed as a
general purpose computer: the Texas Instruments TM 990/4 is exactly
that. But the microcomputer has opened up a new possibility: the
dedicated system. A dedicated microcomputer might look like this:

PRESSURE/7
SENSOR

INPUTS

FIGURE 1-7. DEDICATED MICROCOMPUTER

1 11

This system could serve as a weighing scale. A program would be
written to read the pressure sensor and the price (entered on the
keypad), multiply the weight by the price, display the result, and
print a ticket. With extra software, the system could become a
complete cash register. The complete microcomputer and associated
circuitry could be fitted into one corner of the case.

A dedicated microcomputer can only execute one program, which starts
running when the system is switched on and only stops when it is
switched off. Most real-time programs are endless loops. In the
example pictured above, the program would spend most of its time in a
loop repeatedly checking whether or not there was any input from the
pressure sensor or the keypad. If there was, that portion of the
program written to deal with that input would execute.

A dedicated microcomputer will probably have no backing store and no
executive. The program will be stored permanently in memory.

1 rl

1.5 SO WHAT?

The dedicated microcomputer has accomplished two things:

1) It has revolutionized the design of both small and
large-scale electrical devices, from toys to cars

2) It has changed the role of the large general purpose
computer, or 'mainframe'.

With the arrival of the minicomputer several years ago, the death of
the mainframe has been predicted; that death sentence has been
premature. It now seems there will always be a need in some
applications for a large centralized database of information, and
massive processing power. But microprocessors have changed the way
information is input to, and output from, mainframes.

Microcomputers have been used to build 'intelligent' peripherals for
mainframes (disc controllers, for example) which can handle some of
the local 'housekeeping' functions required by the peripheral and take
the load off the central processor.

One significant development in this regard has been the intelligent
terminal, a visual display unit containing a microcomputer. The
intelligent terminal provides local processing power for small tasks,
can be linked to the mainframe for reference to central files and for
handling a large amount of processing.

With the development of 'personal' computers, the microcomputer system
is likely to be carried a stage further. A storekeeper, for example,
might use a microcomputer to handle his daily transactions, and then
transmit his accounts over a dial-up link to the central office
computer. The British Post Office's Postal system is an example of
how such a scheme could be implemented on a large scale. This is a
public computer network which can be accessed by anyone with the right
equipment (which can be as small as a TV set and a keyboard) via the
telephone network. It provides information and services, and can even
be used to transmit software to a user's computer.

The microcomputer allows the distribution of computing power to the
place in which it is needed - the office, the factory floor, even the
home. Local processors can be linked to larger computers, using the
telephone network if permanent connection is not required. Special
purpose microcomputers can be constructed to collect information where
it is generated and in the form that it exists. These microcomputers
can automatically translate information into data suitable for a
mainframe automatically, without the tedious manual process of data
preparation.

Microcomputer applications range from simple real-time control
functions (such as a weighing scale) to sophisticated computer
networks. (A 'real-time' application is one in which the computer is
in direct control of a process, event, or phenomenon such as
monitoring electronic ignition timing and fuel mixing, and modifying
it during its actual occurence. The TMS 9900 family is particularly
suited to cover a wide range of these applications. It has features
that are useful for real--time control, such as the Communications
Register Unit (CRU), which is a bit-oriented method of input and
output. The CRU allows the 9900 to input and output data either in
single bits or in groups of any size from 1-16 bits. It was developed
from Texas Instruments' experience with the 960 and 980 series of
minicomputers, in process control applications. In addition, the 9900
has a powerful minicomputer architecture, including multiply and
divide instructions and multiple addressing modes. The 9900 family
shares the same basic instruction set as the 990 range of
minicomputers, including the powerful DS990/10, which operates in a
multi-user environment with up to 1 Megabyte of memory. The 990/10 is
currently being used in a wide range of commercial and industrial
minicomputer applications. One advanced feature of 990 and 9900
architecture is the workspace register concept, lending itself
naturally to the implementation of modern programming techniques such
as high level languages. The architecture of the 9900 is described in
detail in the Assembler chapter. Texas Instruments supplies extensive
software support for the whole range of 990 and 9900 products.

The microcomputer has a dual personality: it is both electronic
component and computer. This is why it provides such a rich field for
applications. The technology and the opportunity exist for a wide
range of products; the only real limit is the imagination of the
designer.

CHAPTER II

SOFTWARE CONCEPTS

2.1 OVERVIEW

This chapter covers a wide range of topics with which the software
designer should be familiar. Each section is relatively
self-contained, although later sections tend to draw on ideas
introduced in earlier ones. The chapter does not present any kind of
sequential argument, but rather sketches out a broad spectrum of ideas
and concepts. It is intended to provide the reader with the
background, or context, from which further exploration can be
undertaken.

2.2 ROM AND RAM - SEMICONDUCTOR MEMORY

Computer memory can be thought of as a collection of pigeon holes or
locations in which values (i.e., numbers or patterns of bits) can be
stored. These locations can be referred to by their consecutively
numbered addresses.

Semiconductor memory systems are typically organized in bytes.

The TMS 9900 family can operate on both bytes and words (16 bits) of
data. A word is stored in two consecutive memory locations, starting
at an even address.

A general purpose computer requires a program memory that can be
written to as well as read, since different programs must be loaded
into it from the backing store. However, once the program is loaded,
the portion of program memory in which the program is stored will not
normally be changed until the operating system loads in the next
Program. (The program can change data memory, but not the program
code.)

A dedicated system only executes one program. Normally it will not
need an operating system, and the program need never be changed.
Therefore a special type of program memory, called Read Only Memory
(ROM) is used for dedicated microcomputer systems. A ROM memory chip
is programmed (i.e., loaded with a program) once, outside the system
in which it will be used, and retains its contents permanently (even
when the power is switched off). This last feature is important
because there will probably be no backing store from which to load the
program when the device is switched on.

2.2.1 ROM Types

There are several different types of ROM, each with its own
characteristics.

Mask ROM has the program inserted as part of the manufacturing
process. A mask must be made to etch the pattern of binary digits
which form the program on the surface of the silicon chip. Generating
this mask is an expensive process, because it must be done with great
precision. However, once the mask has been made, programmed ROMs can
be manufactured very inexpensively. Where large quantities
(thousands) of identical ROMs are required, this method is by far the
least expensive.

Programmable ROM (PROM) is manufactured with fusible metal links in
each memory cell. These links can be selectively fused by applying
high voltage pulses to the PROM chip after manufacture using a device
known as a PROM Programmer. Blank PROMs are supplied by Texas
Instruments and can be programmed by the user (usually an equipment
manufacturer) to put in his system. Once the pattern of 0's and l's
has been 'burned in' in this way the PROM cannot be erased. PROMs are
more expensive per chip than mask ROMs, but work out cheaper overall
for small to medium quantities (hundreds), because of the cost of
manufacturing a mask.

Erasable Programmable ROM (EPROM) is supplied blank and programmed in
the same way as PROM. But the high voltage pulses do not break
fusible links: instead they selectively establish static charges in
the memory cells, which turn on or off switching devices (transistors)
that represent the 0's and l's. An EPROM is a very useful device. It
can be programmed permanently, like a fusible link PROM; by exposing
it to ultraviolet light for a period of about 20 minutes, it becomes
erased and can be programmed with something different. EPROMs are
slightly more expensive than PROMs, but their special features make
them valuable for many applications, particularly in development.

Most microcomputer systems require some memory that can be written to
as well as read, for storage of intermediate results. This is
achieved by using RAM (Random Access Memory) instead of ROM. RAM is
actually a misleading term, since ROM can also be accessed randomly.
(Read/Write Memory would be more descriptive, but 'RAM' is the
traditional term.) In a general purpose computer, the main memory is
implemented entirely with RAM. A microcomputer system is more likely
to have a partitioned memory - some ROM and some RAM. One of the most
important decisions to make when designing a microcomputer system is
how much ROM and RAM to build in. The fact that memory is partitioned
also has consequences for the design of software.

2.2.2 RAM Types

Semiconductor RAM is volatile; the contents disappear when the power
is switched off. There are, in fact, two types of RAM:

• Static RAM retains its contents for as long as the power
is switched on.

• Dynamic RAM must be refreshed, that is, read or written
to every few milliseconds, or its contents decay.

Dynamic RAM requires some external circuitry to implement
this refresh, and is therefore more difficult to design
into a microcomputer. However, it is less expensive and
smaller than static RAM. Static RAM is normally used for
systems that require a relatively small amount of RAM;
dynamic RAM for larger systems where the cost of refresh
circuitry can be justified by the savings on memory
chips.

2.2.3 ROM/RAM Summary

Both ROM and RAM are supplied by Texas Instruments as standard
integrated circuits, and are therefore very suitable for microcomputer
products.

The characteristics of semiconductor memory are summed up in Table 2-1
below.

TABLE 2-1. SEMICONDUCTOR MEMORY CHARACTERISTICS

Mask PROM EPROM Static Dynamic
ROM RAM RAM

Readable?

Writeable?

User programmable?
(outside system)

Eraseable?
(outside system)

Retain contents
without power?
(non-volatile)

Require refresh?

Y Y Y

n n n

n y y

n n y

Y Y Y

n n n

n n

n

2.3 DEVELOPMENT SYSTEMS

In traditional forms of computing, software is usually developed on
the machine on which it is to run. Such computers are general purpose
machines capable of running many different programs, including the
'software tools' used in program development.

With microcomputers, this is not usually possible. Normally, a
dedicated system cannot be used to develop the software that is to run
on it. Most microcomputer systems are designed to run only one
program, and probably will not have the peripheral devices (keyboard,
printer, etc.), much less the software tools, required for program
development.

For this reason, a general purpose computer system called a
development system is used to develop software for a microcomputer.
The dedicated microcomputer in which the software will finally run is
called the target system. The development system is often a
minicomputer, such as the Texas Instruments 990/4 or 990/10. The
990/4 and 990/10 have the same instruction set as the TMS 9900 family
of microprocessors, which makes software development a lot easier.
(The 990/4 uses a TMS 9900 as its central processor). However, it is
possible to develop software for a microcomputer on a large mainframe
computer, such as an IBM 370. Texas Instruments provides software
development tools for 990 minicomputers, and also cross-support
software that can be used on other general purpose computers.

A microcomputer development system is likely to have one or two
special purpose peripherals, such as a PROM Programmer. The AMPL
package (Advanced Microprocessor Prototyping Laboratory) provided by
Texas Instruments for the 990/4 and 990/10 minicomputers also allows
target system emulation. The target hardware is connected by a cable
to the development system. The emulator runs a program contained in
the development system's memory, on the actual hardware of the target
system. All the resources of the development system are available to
monitor and to change the program if necessary. AMPL provides
sophisticated testing aids for both hardware and software.

Using the peripheral devices and the software tools provided with the
AMPL development system, it is possible to write a microcomputer
program, translate it into machine understandable form (i.e., binary
digits), test it under simulation on the development system, try it
out in the target system hardware, and finally write it permanently
into the memory of the target microcomputer system.

2.4 DESIGNING A MICROCOMPUTER SYSTEM

Developing a microcomputer application involves two steps:

1) Specifying the hardware of the system

2) Writing the software to drive it.

2.4.1 Hardware Design

The hardware of a system can be regarded as resources, to be
manipulated by the software. The hardware needs to be fixed at a
relatively early stage of a project, because it typically requires a
much longer production lead time than software. If necessary,
software can be changed in a matter of weeks or even (if the program
is in PROM) days before production begins.

To fully exploit this software flexibility, some thought must be given
to the initial hardware design. The detailed algorithms that will be
used need not be considered at this stage, except for the resources
they will require.

In particular, all the inputs and outputs (the I/O) need to be
identified early and designed into the hardware. Discovery, at a late
stage in development, that a vital input or output signal is missing
can be both frustrating and expensive.

It is a good idea to design as much as possible of the system logic in
software rather than hardware. Changes in the way the system operates
(perhaps in response to altered market requirements) can then be made
much more easily.

Trade-offs can often be made between hardware and software. Where an
operation can be carried out either way, it is usually an advantage to
do it in software (as the computer is already there) and save the cost
of the extra hardware elements, provided the processor will not be
overloaded. A rough estimation of the system load (e.g., seconds of
processing time per second of real-time) needs to be made early in the
effort.

With this approach, hardware design becomes simply a matter of
interfacing signals to the computer.

Use of a ready-built microcomputer board (or boards) simplifies the
process of hardware design. Texas Instruments supplies a range of
microcomputer modules (the TM990 series) which are ready built
microcomputers with a range of inputs and outputs, and memory
configurations, to suit many requirements. Expansion boards are
available to extend both memory and I/O, and to provide such
additional functions as analog to digital and digital to analog
conversion.

E

2.4.2 Software Design

Once the system hardware has been fixed, software design can continue
in parallel with the building of hardware to the agreed system
specification. Designing the software involves, first, considering
the data structures that the program will use; second, developing the
algorithms that will manipulate the data. The data represents all
information about the application resident in the computer. If the
data is inadequate or badly structured, it will be difficult to write
a good program. An algorithm is a specification of what the system is
to do in unambiguous terms -- that is, a detailed description of how
the microcomputer will carry out the task. It is very desirable to
separate the design of data structures and algorithms from the details
of implementation, because these initial stages involve fundamentally
understanding the problem. It is not wise to bring in details of
implementation (programming languages, etc.) until the task to be
performed is well understood. Novice software designers tend to rush
into programming too early.

Studies have proved that time spent at the beginning of a project in
thoroughly understanding the task to be performed, and developing the
best possible design (not just one that works), is repaid many times
over in time saved at the development, debugging and testing stages;
even eliminating errors in the final product, which can be very
expensive to correct.

Implementation of a design involves, finally, translating it into a
form that the computer can understand -- a pattern of binary digits
representing a program. However, the language of machines is not
designed for humans to understand, and programming in binary is not
really a practical proposition.

Programming languages were developed to make the implementation
process easier. Texas Instruments has developed for the user
superstructures of the Pascal and BASIC languages that are supported
by the TMS 9900 family of microprocessors. The TMS 9900 can also run
on assembly language to fit the user's needs. Of course, the
appropriate implementation of language depends on the task to be
performed. Chapters IV through VI provide descriptions of these
language alternatives.

2.5 DATA

Data, which is just a collection of bits, can be used to represent any
kind of information. Often it will be some form of numeric
information, but this need not be the case. On input and output, each
bit will probably signal the state of an I/O line; high or low, 0 or
1.

It is worth spending a good deal of time deciding how the information
will be represented inside the computer, because this is the basis of
every microcomputer application. The data must extract the essential
elements of the task, to be manipulated by the program algorithm (see
paragraph 2.6).

2.5.1 Data Types

The first step in determining how data is to be represented in the
computer is to identify on the different kinds of information that
need to be stored, and to define a data type for each. The different
values that each data type can take should be enumerated. If a system
needs to work with the days of the week, for example, a type called
"day" can be defined as follows:

type day = (Monday, Tuesday, Wednesday, Thursday,
Friday)

At this stage it is neither necessary or desirable to worry about how
this data type will be implemented. Data items of type "day" must be
capable of taking five different values representing the days of the
week. These items could be stored as the values 0-4, 1-5 or as
arbitrary patterns of bits. That decision can be made later. At this
point it is important simply to understand the problem.

Declarations such as the one above simply specify a data type
providing a rule for translating information into data. Such
decalarations do not reserve storage within the computer. Storage is
provided by actually declaring data items or variables as in the
following example:

var startday, endday : day

This statement declares two variables, or storage locations, of type
"day", named "startday" and "endday". Whatever implementation is
later decided on for "day", that amount of storage and that
interpretation will be assigned to "startday" and "endday".

The advantage of declaring data types at the start can easily be
seen. The definition is localized in one place, and can be changed
with minimal disruption (for example by adding Saturday and Sunday).
If design choices are clarified and isolated as above, flexibility can
be carried right through to the final program. The alternative method
of implementation is to postpone thinking about data types until the
actual variables are required, declaring, for example:

var startday : (Monday, Tuesday, Wednesday, Thursday,
Friday)

each time a new variable is required. This is not recommended,
because changing the definition could involve searching through the
whole of the software for each variable declaration.

The notations used as examples in this section are not intended for
direct implementation on a computer. Rather, they are part of
design language allowing systematic thought about data structures,
without worrying about the implementation details (syntax,
punctuation, etc.) required by a particular programming language. The
underlined words are keywords in the language that define its basic
constructs.

This design language can be compared to the logic diagrams used by
circuit designers. As yet there is no standard for software design
languages. The notations used in this and the following sections
incorporate most of the features generally agreed to be useful in
software design. There is no reason why a designer should not adapt
these notations to suit his own needs. The main requirement is that
the language chosen must be readily understandable to other designers
as well as to the author should he reexamine his design plans at a
later date. The notations used here follow the good practices
advocated by leading practitioners of the art of software (there is a
list of references at the end of the chapter).

Where the values of a data type follow an obvious sequence, only the
start and end need be enumerated:

type weeknumber = (1..52)

Designing good data types is not an easy matter, and there is no
standard way to go about it. This is perhaps the biggest challenge of
software design. It involves abstracting the elements of the real
world that are relevant to the particular problem. One approach is to
try a number of alternatives before deciding upon a solution.

In a microcomputer, data is closely related to input and output.
Decisions made about I/O will strongly affect the choice of data and
vice versa. It is also impossible to design good data structures
without some conception of how algorithms and programs work (see the
next section). However, data design logically precedes algorithm and
program design. Data must exist before you can perform operations on
it. For some programmers, data occurs only as a byproduct of
programming: it is never considered separately. This leads to bad
software.

Microcomputer design is usually an iterative process. Each aspect of
the design (I/O, data, algorithms) must be considered separately, with
the implications for the rest of the design. This is the only way to
approach such a multidimensional problem. Several passes may be
necessary before the pieces of the jigsaw fit together and the design

finally crystallizes. All this needs to be done before the design
gets beyond the paper stage.

A systematic approach means considering each aspect in turn, so that
nothing gets omitted. Data is one of the most important pieces of the
design puzzle. In the early stages of a design, it may be useful to
consider several alternative ways of organizing the data. This
approach is more likely to yield an optimum design than picking one
method and staying with it. It is a good design exercise to vary one
element of the design and consider the implications. With a field as
new as microprocessors, it is often possible to find fresh ways of
doing things.

2.5.2 Data Structures

Data types of the kind described above can be structured in various
useful ways. Various data structures include the record, the field,
the array, and the list. These data structures are defined below.

One of these structures is the record, which enables like
grouped together. A record is simply a collection
dissimilar) data types. Consider an application that
number of gas pumps at a self-service filling station.
contain various information about a pump as follows:

type pump record = record
status : (off, filling, completed)
grade : (regular, premium, unleaded)
gallons : (0..30)
end

data to be
of (probably
controls a
A record can

var pumpl, pump2 : pump record

The type declaration defines the structure of the
statement declares two record variables, pumpl
type. End closes the record definition. n
pump record into one word.

The record in this example contains three fields, each of which has a
unique name. The status field for the first pump can be referred to
unambiguously as "pumpl.status". All of the information about this
pump can be referred to collectively as "pumpl". This is a very
useful shorthand when dealing with large and complex collections of
data.

The fields in a record can be of any type, including structured
types. This provides the possibility of building very powerful data
structures. Types of fields in a record can be predefined, e.g.:

type status values = (off, filling, completed)

type pump record = record
status : status va ues

record; the var
and pump2, of tHT
is used to make

The algorithm for this application involves continually checking the
status field of each pump record in turn. When a status of
"completed" is read, the program calculates the cost of the gas
delivered based on the grade and gallons fields of both the record and
a table of prices, and displays the calculated cost at the cash desk.
When the account is paid, the status of the pump is reset to "off" and
the cycle can begin again.

Another structured data type is the array. An array is an ordered
list of elements of the same type that can be referred to by the name
of the array and an index. The index specifies the array member's
position in the list of elements comprising the array.

type buffer = array [1..80] of character

var bufl : buffer

or, equivalently

var bufl : array [1..80] of character

"Character" is a previously defined type. The number of elements in
the array (80 in this case) is specified by listing the possible
values of the index, in square brackets.

The fourth element of the array (i.e., the fourth character in the
buffer) can thus be referred to as "bufl[4]"; this element is of type
"character".

Note that 1..80 in the array declaration has the same form as the
right hand side of a type declaration. In fact, a type name can be
used in place of an explicit list of values. The index values need
not be numeric. Thus, an array containing the daily receipts of a
store can be declared:

var daily_takings [day] of money

the receipts for Tuesday can then be referenced by

daily_takings [tuesday]

Arrays can be employed for any list of identical items. The elements
can be any data type, including records and other arrays.

Arrays are useful principally because they can be referenced using a
variable as the index. For example:

bufl [pointer]

where "pointer" is declared,

Var pointer : 1..80

These declarations can be combined into a third:

type buf size = 1..80

var bufl : array [buf_size] of character

var pointer : buf_size

The above declarations make changes to the buffer size much easier and
also aids in documentation. With an appropriate choice of names,
designs such as this can be self-documenting.

With an index variable, the same portion of the program can be used to
operate on different array elements, according to the value of the
index. This is relevant to the gas station example (above). As it
stands, a separate piece of program needs to be written for each
pump. Instead of declaring pumpl, pump2 as separate variables,
declare an array of pump records:

type no_of_pumps = 1..10

var pump : array [no_of_pumps] of pump_record

var pump_no : no_of_pumps

The same program can then be used for any pump, first setting pump_no
to the required value, then referring in the program to:

pump[pump_no].grade

For the grade field of the pump specified by pump_no. Notice how the
notation workst

pump is an array
pump[pump_no] is an element of the array, and is a record
pump[pump_no].grade is a field of the record, and is of

type: (regular, premium, unleaded)

Any array can be indexed by adding "[index]"; any record can have a
field specified by adding ".field". By nesting definitions in this
way, these data structures provide the necessary tools for managing
the complex data found in the real world. Once learned, the notation
is a very powerful tool for managing the complex data found in the
real world.

It is not necessary to grasp the whole of a large data structure at
once. Beyond a certain point, it is mentally impossible. Using a
technique such as this, if each level of the structure is correct and
well understood, the user can be confident that the whole is correct.
This is the principle on which most modern software design techniques
are based, and it applies to algorithms and programs as well as data.

Returning to the gas station example, one problem appears in the
original design. In order to save the cost information, a customer
cannot use a pump until its previous customer has paid his bill.
Several solutions, however, are possible. An array of pump records
for each pump, one record per customer. A decision will then have to
be made as to how many customers will queue at each pump. In another
solution, the cost information can be stored in a separate data
structure (or printed out) as soon as it becomes available, and the
pump cleared.

A third possibility is to structure the data not by pumps, but by
customers -- one record per customer. A customer record might look
something like this:

type customer record = record
pump_number : no_of_pumps
status : (off, filling, completed)
grade : (regular, premium, unleaded)
gallons : (0..30)
end

Each time a customer arrives, a new record is created. An array of
customer records can then be declared. These records can be assigned
to customers as they arrive. However, customers leaving will create
"holes" in the array which will have to be filled. This problem can
be solved (e.g., by a "tidying up" algorithm). Such a solution,
however, is rather messy. In the array structure in this application
there seems to be no obvious meaning for the index. This is one
indication that an array is not the right structure to use in this
application.

A structure, called the list, is more appropriate to the situation
spelled out above. Liag, and other useful data structures such as
trees, are described in more detail in the references given at the end
of this chapter. Records and arrays must have their size (the amount
of storage allocated to them) defined when the program is written.
These allocations cannot be changed while the program is running.
Lists, on the other hand, allow data elements (usually records) to be
dynamically assigned from a pool, or heap, of storage space while the
program is executing Elements can be deleted from anywhere within
the list when no longer required and the storage returned to the
heap.

The different solutions illustrate a point made earlier: that data can
be structured in many ways, and it is worth exploring the
alternatives. Data design determines the 'objects' with which the
system will work and affects both algorithms and I/O. The best way to
arrive at an optimum solution is to be aware of the choices that can
be made.

2.6 ALGORITHMS

An algorithm is a list of instructions: a statement of 'how to do'
something. More precisely, it is the specification of a finite number
of steps required to achieve a desired end. A function can be
performed by a computer if and only if that function can be stated as
an algorithm. A sample algorithm for making tea might include:

fill kettle;
put kettle on;
put tea in teapot;
while kettle is not boiling

twiddle thumbs;
fill teapot;
for number of cups required

pour cup

Some of the operations described can themselves be analyzed into al-
gorithms. For example, 'pour cup':

if milk is required
aen

pour milk;
pour tea

else
pour tea

The words underlined are not part of the basic operations; these
keywords form Control structures that determine which part of the
algorithm is to be executed, depending on some condition. If the same
sequence of operations had to be carried out every time, computers
would not be very useful. But a computer is capable of making a
simple decision -- provided all the possible outcomes are enumerated
in the program, and the computer is told exactly where to look to test
whether the condition is satisfied.

The operation of an algorithm can be varied, depending on the state of
some input or the result of a previous operation. By combining
control structures such as the ones shown here, extremely powerful
algorithms can be developed to control, for example, the operation of
a complex scientific instrument or an industrial process.

There are various control structures that can be devised. However, it
can be proved that any sequential algorithm (and any computer program)
can be written using only three basic constructs -- sequence,
selection and iteration -- all of which are included in the above
example.

The sequence is the basis for all algorithms and all computer
programs. It is so fundamental that there is no keyword associated
with it. A sequence is simply a list of operations carried out one

after the other:

fill kettle;
put kettle on;
put tea in teapot

A sequence can be represented diagrammatically as follows:

Inomilme•mimn•

P
R
E
P
A
R
E

FILL
KETTLE

PUT KETTLE
ON

PUT TEA
IN TEA POT

FIGURE 2-1. SEQUENCE

Which simply means: fill kettle, then put kettle on, then put tea in
teapot. It is often useful to give a sequence a name, because it can
then be treated as a single operation and included in a 'higher-level'
algorithm. In the diagram, the long vertical box represents the
sequence as a whole; the other boxes are the elements of which it is
composed. The elements of the sequence are carried out in order, from
top to bottom. The connecting lines show that these elements belong
to that sequence (the lines do not indicate logic flow, as in a
flowchart). The elements of a sequence might be simple operations, or
they can themselves be any of the three basic constructs (sequence,
selection or iteration).

The selection is a decision construct. Depending on a condition, one
of two or more alternative operations is selected and performed. For
example,

if weather is fine
then walk
else take car

diagrammatically, this is represented as:

FIGURE 2-2. SELECTION

The circle represents the selection; that is, a single element which
can be either of two things. The boxes are the components of the
selection. For each execution of the selection, one and only one of
the components is executed. Once again, the connecting lines express
that the components are members of the selection (they are subordinate
to it).

There is a selection in the example algorithm:

if milk is required

then begin

pour milk;

pour tea

POUR
MILK

MILK
REQ'D?

POUR
TEA

4/

end

else

POUR
TEA

pour tea

FIGURE 2-3. SELECTION WITH SEQUENCE

Here, the first alternative is a sequence of operations. The control
words begin and end have been added to the verbal description to make
quite clear that the sequence is regarded as one operation, as far as
the selection construct is concerned. The words begin end are
used to bracket statements in the same way that parentheses are used
to bracket numerical expressions:

5 x (2 + 7) = 45

Note that only one of the alternatives is executed. When it is
completed, the algorithm continues with the next operation after the
if construct (if there is one).

A special case occurs when there
executed when the condition is satisfied.
nothing is done. This can be regarded
the components is the null action, "do
usually left out of the diagram.
written:

is

as

In the
nothing".

only one
If it
a selection

example,

is

This

alternative,

'pour

not satisfied,
in which
component
cup'

to be

one of
is

can be

P ----,N
POUR if milk is required 0 W

/,
(LK\

then pour milk;

U
R

MILK

C

pour tea U
P

POUR
TEA

FIGURE 2-4. SELECTION:SPECIAL CASE

Here, 'pour cup' is a sequence consisting of an if construct (with
only one alternative) and a simple operation. 'Pour tea' is always
executed; 'pour milk' is executed only if milk is required.

This illustrates an important point about algorithms and programs.
There are often several alternative ways of writing an algorithm to
perform a particular function. It is worthwhile spending a little
time determining which is the best solution. It is not sufficient
that an algorithm works (in some circumstances): it must be clearly
understood, and correct in all circumstances. The best algorithms are
those that clearly reflect the structure of the problem.

Just as a good data structure extracts the essential elements of the
information being represented, so a good algorithm extracts the
essential elements of the process being performed and uses these
elements as the basis of its structure.

It is possible to have a selection with more than two alternatives.
This is represented in the design language by the case construct:

PUT ON
COAT

GO FOR
WALK

GO FOR
WALK

STAY
INSIDE

case weather of

sunny: go for walk;

raining: begin

put coat on;

go for walk

end;

snowing: stay inside

end

FIGURE 2-5. CASE CONSTRUCT

The case labels sunny, raining, snowing specify the possible values of
the case expression weather (weather will have been declared as type
(sunny, raining, snowing)), and the actions to be performed for each.

The case labels can specify a list or a range of values. There can be
any number of case alternatives. Case constructs can have an
otherwise clause that specifies an action to be carried out if the
case expression has a value not expressed in any of the case labels:

case number of

0..3,8 : add number to total;
4,6,7 : subtract number from total;
5,9 : divide total by 2;
otherwise write (-number out of range-)

end

Diagramatically, this is represented as:

ADD NUMBE R
TO TOTAL

SUBTRACT
NUMBER
F ROM TOTAL

1- DIVIDE TOTAL
BY 2

WRITE(NUMBER

OUT OF RANGE)

NUMBE

FIGURE 2-6. CASE WITH OTHERWISE

The iteration, or loop, is a powerful construct that allows an
operation to be repeated either a specified number of times, or while
some condition remains true. Usually a sequence of operations is
repeated. Both forms of iteration are shown in the example:

for number of cups required
pour cup

'Pour cup' is executed the required number of times.

While kettle is not boiling
twiddle thumbs

This may not look like a repeated operation; but an algorithm is
written on the assumption that only one thing can be lone at a time.
This is certainly true in a computer. While the executor of this
algorithm is twiddling his thumbs, he cannot check whether the kettle
is boiling. Therefore, after twiddling his thumbs for a while, he
must return and test whether the kettle is boiling. If it hasn't
boiled yet (i.e., condition is true), he can carry out some more thumb
twiddling, otherwise he must continue with the next operation. The
period set for thumb twiddling had better not be too long, otherwise
the kettle will boil dry. This kind of consideration is often
important in writing a real-time microcomputer program; and wait loops
such as this are often required.

In the diagram, an iteration can be represented by a lozenge-shaped
box:

/WHILE
KETTLE IS
NOT BOILIN

TWIDDLE]
THUMBS

FOR MILK
P
0

POUR
MILK

NUMBER OF
CUPS REQD

REQD

U
R

C POUR
U TEA
P

FIGURE 2-7. ITERATION

As most computer programs carry out some operation repeatedly
(otherwise there would be little point getting a computer to do it),
the iteration is a useful construct.

Although many programming languages provide additional control
structures, it is wise to stick to the three described. Programs
written using only these three constructs have been shown to be easily
understood, easily amended, and above all likely to be correct. This
discipline is known as structured programming, and is one of the most
important techniques available to the software designer.

The three constructs presented here are basic mental structures,
representing very closely the way the mind analyzes a problem.
Consequently they are very easy and natural to "think in", once the
notation has become familiar.

Other notations, such as flowcharts, have often been used for
designing computer programs. Flowcharts may be useful at the lowest
levels of implementation, when coding in Assembly Language for
instance (see the next section). However, they are designed to

represent the way machines operate rather than the structure of an
application. Trying to understand a problem using flowcharts involves
bending the mind to work in the way machines do. This may be
necessary at some point, but is not advisable in the earlier design
stages.

Flowcharts concentrate on the details of process implementation, and
have no way of representing hierarchical structure. Breaking a
problem down into hierarchical levels (i.e., high-level algorithms
that contain lower-level algorithms and so on) is the only way to
understand it clearly, because the spread of information, from overall
structure to fine detail, is so great. The notation used in this
chapter may be unfamiliar to the user brought up on flowcharts, or
used to programming in languages such as FORTRAN. It is worth making
the effort to understand this notation, however, because of its
value.

The diagrammatic notation used in this book was developed by Eric
Richards, from an original notation designed by Michael Jackson (see
References at the end of this section).

2.7 PROGRAMMING LANGUAGES

2.7.1 Assembly Language

The earliest computers were programmed directly in machine code; that
is, binary digits. Each instruction in a computer is represented by a
unique pattern of bits within a word of program code. For example, in
the TMS 9900,

1010XXXXXXXXXXXX means "add"

The X's carry other information and can be 0's or 1's. Some
instructions require two or three words, because they contain data,
addresses of memory locations, etc.

Programming in machine code is extremely tedious and very prone to
errors. Therefore Assembly Language was invented. Using Assembly
Language, a program can be written with meaningful mnemonics (e.g.,
MPY for multiply) instead of binary code for instructions, and symbols
instead of numeric addresses for memory locations:

C @WORD1,@WORD2 COMPARE WORD1 WITH WORD2
JEQ SAME JUMP IF RESULT = 0 TO LABEL "SAME"

SAME TB 7 TEST INPUT BIT 7

WORD1 BSS 2 RESERVE STORAGE (BLOCK STARTING
WORD2 BSS 2 WITH SYMBOL) FOR WORD1 AND WORD2

2 BYTES = 1 WORD EACH

Translation from Assembly Language to machine code, which must be done
before the program can be executed, is a tedious but fairly
straightforward process; the sort of thing computers do well. The
translation is handled automatically by a computer program called an
Assembler. This is one of the software tools that will be provided
with a microprocessor development system.

One of the advantages of using an Assembler is that programs can
easily be changed. For example, an extra instruction can be inserted
in an Assembly Language program and the program simply reassembled.
Inserting an extra instruction in a machine code program would involve
going through the whole program changing jump addresses, because the
position of all the code after the insertion would have changed.

2.7.2 High-Level Languages

Assembly Language, though a great improvement on machine code, still
requires a problem to be translated to a large extent into terms
before it can be programmed. Each Assembly Language instruction
corresponds to one machine instruction, and the programmer must turn a
selection construct, for example, into the low-level tests and
conditional jumps that are the only things the computer understands.
In addition, the programmer must manage all the resources of the
computer, such as data storage.

High level languages (HLL) were introduced in an attempt to enable the
computer to handle all these 'housekeeping' functions automatically,
and to free the programmer to concentrate on the problem. One of the
first high-level languages was FORTRAN, which stands for FORmula
TRANslation. It allows programs to be written in a stylized language
that combines elements of mathematics and English:

I = 5*J + 7
IF (I.EQ.27) THEN GOTO 100

I and J are variables which represent memory locations. But the
programmer does not have to worry about where in memory they are; this
is handled automatically by the compiler, which is a computer program
that translates high-level language programs into machine code.

The input to a compiler or assembler is called source code; the output
is object code. It is important to note that execution of a compiler
or assembler is completely separate from execution of the resulting
program. A compiler or assembler is a utility program- used during
software development, that translates a program written in a
programming language into a machine executable form. In developing a
microcomputer application, the compiler/assembler will run on the
development system and the compiled or assembled program will be
designed to execute on the target system.

In the FORTRAN example, the program will take the value stored in the
memory location represented by J, multiply it by 5, add 7 and place
t'ne result in the memory location represented by I. If J contained 3,
22 would be assigned to I. The program then tests the value of I, and
if it is 27 jumps to the place in the program that has the label 100.

It is much easier to write programs in FORTRAN than in assembly
language. However, in some respects FORTRAN is still closer to the
way a machine operates than to the way human beings think. The GOTO
statement, for example, is obviously derived from the Assembly
Language JMP; it is a machine construct and not a logical one.

Implementation of selections, for example, can be ambiguous, requiring
GOTO statements and labels:

IF (I.EQ.5) THEN GOTO 50

GOTO 100
50 .

•

100 .

Not only is this confusing, but the order is inverted: the then action
comes second. FORTRAN was designed before much research—Had been
carried out into algorithms.

More recently, high-level languages have been designed with the
intention of getting as close to the problem as possible. Many of
these are based on ALGOL (ALGOrithmic Language), which was designed in
the 1960s to be a natural language for writing algorithms.

One of the best modern high-level languages is acknowledged to be
PASCAL. PASCAL has a coherence which some committee-designed
languages lack. It implements most of the generally accepted good
programming practices. Besides the basic algorithm constructs, PASCAL
also has powerful data structures. Software designs can be turned
into PASCAL programs with very little effort. A PASCAL program looks
very similar to the design language introduced in Section 5:

TYPE NUMBER RANGE = -128..127;

VAR MAX : NUMBER RANGE;
A : ARRAY [1..10] OF NUMBER RANGE;
I : INTEGER;

MAX := A[1];
FOR I := 2 TO 10 DO

IF A[I] > MAX raEN MAX := A[I];

(:= is the assignment operator, read "becomes equal to")

2.7.3 Interpreters

Languages such as FORTRAN are compiled languages; that is, the source
program is turned into machine code in a separate step (perhaps on a
different machine) before it is executed.

With an interpreted language, such as BASIC, there is no separate
compilation step. The program is not stored in machine code but in
intermediate code which can be regarded as condensed source code with
all unnecessary symbols removed. (During development the symbols are
also stored so that the program can be printed out in source form and
easily changed.) At execution time, the interpreter, which resides
with the program in the target system, looks at each line of
intermediate code, determines what it means and carries out the
necessary action. The intermediate code is not executed directly; the
interpreter contains machine code to carry out every operation that
can be specified in the intermediate code, and it is this which is
executed.

Intermediate code is much more compact than machine code; however, the
overhead of the interpreter, must always be there also. Beyond a
certain size, an interpreted program will take less memory than an
equivalent compiled program. However, an interpreted program will run
a lot slower, due to the extra work that must be done at execution
time in actually interpreting the intermediate code.

BASIC is an extremely simple language in which it is easy to write
programs. Development is also very easy and very quick because
programs do not have to be compiled. They can be executed as soon as
they are entered. The BASIC interpreter checks each line for syntax
errors as it is entered, so mistakes are easy to correct.

Texas Instruments' POWER BASIC (see Chapter V) is designed to run on
the TM990 range of microcomputer boards. A BASIC program can be
developed and executed using, at minimum, one TM 990 board and a
teletype terminal. No development system is required. BASIC provides
a very powerful and inexpensive microcomputer system which is ideal
for low-volume applications and experimental work.

TI's Microprocessor PASCAL (see Chapter IV) provides the user with the
choice of executing either compiled or interpreted code on his target
system. A Microprocessor PASCAL source program can be compiled to
either interpretive code or 9900 machine code. The two versions will
execute identically, apart from considerations of speed and code
size. This feature allows the user to trade-off execution speed
against memory, and to select which is more important for his
particular application. Even if he selects machine code for the final
version, interpretive code has a number of advantages when debugging
the system.

2.7.4 High-Level vs Low-Level

Faced with the choice of which language is best, there is no easy
answer. The solution depends on the application.

Low-level (Assembly) language allows the programmer direct access to
all the features of the machine and thus the opportunity to write
compact and efficient programs. To capitalize on this requires skill
and time. The opportunity equally exists to make mistakes and to
write inefficient programs.

High-level languages can shorten development time by a factor of 5 or
more, and produce more reliable code. With a high-level language it
is much more difficult to make expensive mistakes. High-level
programs are more understandable (if properly written, they can be
self-documenting), so that a project is less likely to be dependent on
one programmer. Changes are easier to make in the late stages of a
project. The cost is some code inefficiency because a compiler cannot
optimize as much as a good assembly programmer. However, this becomes
less true as the size of the program increases. Inefficiencies (and
errors) may be introduced in a large assembly language program simply
because of the intellectual difficulty of managing such a large amount
of detail (especially when it is worked on by more than one
programmer). Compilers do not suffer from this problem.

Restrictions on code size, particularly for high volume products, may
dictate the use of assembly language in order to produce the most
compact code possible. Unless this is the case, it makes sense to use
a high-level language. Assembly language projects of more than a few
K (= thousand) bytes should be considered very carefully because
complexity increases very rapidly with size. (Some studies have
estimated that complexity is proportional to the square of the size of
the program).

For many projects, a compromise solution may be attractive. For
example, the control aspects, where clarity of the design is
important, can be programmed in high-level language, with assembly
language routines for critical low- level areas such as input and
output.

An alternative (or complementary) solution is to hand-optimize

compiler-produced code, once the program has been completely checked
out; or even to rewrite it in assembly language after proving the
design in (say) PASCAL. Both approaches have been used very
successfully by Texas Instruments in internal projects.

2.8 MODULAR PROGRAMMING

With a project of any size, it is usually helpful to split the overall
problem up into smaller tasks or modules which can be tackled
separately.

When adopting this approach, two things must be considered:

1) The detailed nature of each module

2) How the modules will fit together to form
a complete system.

To simplify the task of module interfacing, modules that are as
self-contained as possible should be selected. In other words, the
module boundaries should be drawn so that each module needs to
communicate as little as possible with the other modules in the
system. The ways in which each module interfaces with the rest of the
system must be clearly defined.

The algorithmic notation described in Section V is a natural medium
for designing such modular systems. A high-level algorithm can be
written that describes the operation of the system. For example:

INITIALIZE

TASK A L
0
0
P

(REPEA
FOREVE

TASK B

TASK C

FIGURE 2-8. MODULAR SYSTEM

The terminal leaves of this diagram (INITIALIZE, TASK A, TASK B and
TASK C), are natural candidates to be treated as modules and developed
separately. The diagram defines how they fit together in terms of
program structure. Their interaction with the data, however, still
needs to be defined. Once the way they interact has been clearly
specified, they can even be written by different programmers
(INITIALIZE probably has to be written in consultation).

Each module can in turn be split into successively smaller modules,
until the complete problem has been broken down into manageable
segments. At every level in the structure, the modules can be
regarded as 'black boxes' that perform specified functions and combine
in clearly defined ways. The programmer can focus on a particular
level in the structure, knowing that he can concentrate on the other
levels at other times. If the ways in which modules can be combined
to form larger modules are restricted to the three constructs
described in Section V, the programmer can be sure that modules will
not have 'side effects' or contain jumps to other modules that will
upset the structure.

This hierarchical approach makes a complex problem intellectually
manageable, and has been shown to lead to better, more correct, and
more maintainable software.

The same approach can be applied to data using the structures
described in Section IV. The data structures parallel program
constructs; in fact, the diagrammatic notation, (described earlier)
can also be used for data. The sequence construct can be used to
represent records, and the iteration construct for arrays. Thus, the
array 'pump' of 'pump records' in subsection 2.5.2 can be drawn:

P

M
P

R
E
C
U
R
D

••••••••••••

U
M

 NO_OF)
KPUMPS

STATUS

GRADE

GALLONS

FIGURE 2-9. ARRAY CONSTRUCT

This means that data, too, can be treated in a modular fashion.

The selection construct can be regarded as representing the
record variant, a record structure in which part of the record can
have alternative forms. For example, a personnel record for a college
might need to contain different information depending upon whether it
represented a student, faculty member or a member of the
administrative staff:

n A

--i4
T
U
D
E
N
T

TENURE

RANK

F
A
C
U
L
T
Y

POSITION

LENGTH OF
SERVICE

A
D
M
I
N

NAME

AGE

COLLEGE

STATUS

STUDENT

..<\

2

P
E
R
S
0
N
N
E
L

R
E
C
0
R
D

STATUS GRADUATE
STATUS

YEAR

FIGURE 2-10. RECORD VARIANT

In the design language, this can be written:

type personnel_record = record
name : name recoiTi---
age : 0..1n;
college : (cas, tech, music,
status : (student, faculty,
case status of

student :

faculty :

admin

end
end

jour);
admin);

(graduate status : (graduate,
undergraduate);

year : 1..7);
(tenure : boolean;
rank : (inst, asst, assoc, prof));

(position : (asstdean, dean,
chairman, other);

length_of_service : 1..50)

According to the value of status (called the tag field), only one of
the variants will be used to determine the structure of the record in
any particular case.

2.9 PROCEDURES

A procedure (sometimes known as a subroutine) is a separate subprogram
(a separate algorithm, or list of statements) that is declared within
a program. A name is assigned to a procedure to enable the user to
reference it.

Declaring a procedure is similar to defining a new statement or
operation in the programming language. Once a procedure has been
declared it can be referenced or called from the main program simply
by writing its name. For example, if the programmer has written a
procedure called CALCULATE MEAN, to find the mean of a series of
numbers, he can simply write

CALCULATE MEAN

in the main program wherever this operation needs to be performed.
(Some languages require a keyword, such as CALL, to precede the
procedure name.)

In a case like this, the operation will probably have to be performed
on several different sets of numbers which are stored as different
variables. This can be accomplished by passing variable names as
parameters to the procedure in order to specify the data objects on
which it operates.

CALCULATE MEAN (ARRAY_OF_NUMBERS)

Later the same procedure might be called by:

CALCULATE MEAN (DIFFERENT_ARRAY_OF_NUMBERS)

When a procedure is declared, the number and type of parameters are
specifiel in the procedure header. The variable names written here
are used in the statements in the procedure body. They are the
formal parameters. When the procedure is executed (called), the
formal parameters will be replaced by the actual parameters specified
in the procedure call.

Procedure declaration:
PROCEDURE SEQ (A : INTEGER; B : REAL; C : ARRAY [1..80]

OF CHAR)
BEGIN

(* PROCEDURE BODY *)
A := 5;
B := 6.2;
C[A] := 'P';

END;

Procedure call:
SEQ (X, Y, Z);

The number and type of the actual parameters must exactly match the
formal parameters. Thus, X must be declared as INTEGER, Y as REAL and
Z as an ARRAY[1..80] OF CHAR.

A function is a procedure that returns a single value of a particular
type. The type is specified in the function header:

FUNCTION NUMBER (A : BOOLEAN; B : CHAR) : INTEGER;
BEGIN

END;

and the function can be written as part of an expression:

P := 5 * NUMBER (TRUE, 'X')

Besides variables, values or expressions can usually be passed as
parameters, provided they are the right type.

Procedures can declare local variables which are only used within the
procedure. Usually, the procedure also has access to the variables of
the program in which it is declared. (This depends on the programming
language, being used; in some languages, Pascal for example, procedures
can be declared within procedures.)

Procedures form a natural method of writing modular programs,
particularly if they can be nested (declared within other procedures)
to any depth as in Pascal. In implementation, procedures save code.
An instruction sequence that can be used in several places in the
program only occurs once in the object code. When a procedure call is
executed, the processor transfers execution to the procedure, saving
the address of the the calling instruction in the main program. Once
the called procedure has finished, the action returns to the
instruction following the calling instruction, and action resumes.

Quite apart from code saving, procedures are a useful way of
structuring a program, and may be used even when the procedure is
called only once. In a block structured language such as PASCAL,
variables declared within a procedure are completely local to that
procedure, and cannot interfere with the operation of a procedure that
is separately declared. (Procedures still have access to the
variables of the program or procedure that contains them, so this has
to be carefully controlled.) A procedure can even declare local
variables with the same name as variables declared elsewhere in the
program, and these variables will not interfere with each other. This
means that, in a large application, program modules can be written by
different programmers without risking incompatibility.

2.10 REAL-TIME SOFTWARE

Applications software for a general purpose computer usually has a
beginning, a middle and an end. This software has a specific
processing task to perform, and when this is complete, returns the
resources of the computer to the operating system so that they can be
allocated to another task.

Real-time software, on the other hand, usually has only a beginning
and a middle. On power-up, the software will probably perform some
kind of initialization procedure (such as clearing the data memory,
setting all outputs to the required values, and perhaps sending a
signal to the operator) and will then go into some form of endless
loop, in which it monitors the inputs to the system and performs the
required functions. Using the notation introduced earlier in this
chapter, this can be represented as:

INITIALIZE

-(
DO

 FOREVE M
0
t•I

T

L
0
P

FIGURE 2-11. REAL-TIME SOFTWARE

There is no point in the software relinquishing control, because the
system would then be 'dead' and unable to respond to any inputs.
Real-time software only stops when the system is switched off. In
fact, the software behaves rather like the operating system of a
general purpose computer, sharing out resources to the different tasks
to be handled, and remaining in control at all times. Computer
operating systems can be regarded as a specialized application of real
time software -- an application which has been extensively studied.
Many of the techniques developed for writing operating systems can be
successfully applied to other real-time situations.

The fundamental problem in designing software for a real-time system
is that a sequential list of instructions (a program) must usually
carry out a number of different parallel functions. A microprocessor
can only do one thing at a time. How can it simultaneously handle all
the inputs and outputs it has to deal with?

The answer, of course, is that the microprocessor performs its
functions at a speed that makes it appear to be handling all functions
in parallel. The system acts rather like a juggler keeping several
balls in the air at once. It returns to give each one a push within a
specified time, or a ball will fall to the ground. In a well designed
system there should be no danger of this. The software is designed to
service every requirement long before it becomes critical.

2.10.1 Software Organization

The challenge of writing real-time software is to organize all the
loosely related tasks into a coherent whole that can be expressed as a
sequential program. In most real-time systems, the processor must
respond to a number of inputs which are asynchronous; that is,
completely at random. The processor cannot tell, for example, exactly
when an operator is going to press a button, or a sensor is going to
register an input. In a typical real-time dedicated system, there
will be a number of tasks, or processes, to be performed, each of
which can be described by a sequential algorithm. The tasks may be
completely unconnected, or they may be interrelated in a variety of
ways. Some tasks will need to be performed at regular intervals
(checking input lines, for example), others only infrequently, when a
particular condition occurs.

For example, a system controlling an industrial process may need to
monitor several different chemical reactions, and take corrective
action if certain parameters are exceeded. The monitor function for
each reaction can be described as a logically separate task.

There will also be a task associated with communicating with the
operator and allowing him to display the status of each reaction,
change parameters, etc. This task will need to pass information to
and from the other tasks.

Two techniques have traditionally been used to convert a complex
situation like this into a single sequential algorithm: polling and
interrupts. A third alternative is to use an executive. An executive
handles the details of software organization automatically, and allows
the programmer to concentrate on writing the, separate tasks and
defining how they are related.

2.10.1.1 Polling. In a polled system, the tasks to be performed are
simply written one after the other in the program. A polled program
consists of an endless loop. As the program executes, it passes
through check points corresponding to these tasks. At each check
point, the program decides whether or not to perform the corresponding
task. Once the list of tasks has been exhausted, the program begins
execution again. The system deals with a asynchronous input simply by
placing a check on that input somewhere within the loop, and checking
(or polling) the input when it reaches that point. A polled system
therefore does not respond to an asynchronous input immediately. The
worst case response time corresponds to the maximum time taken to
complete the polling loop.

Complex polling structures can be constructed in which some inputs are
polled more frequently than others. However, this requires
considerable thought, because the program structure required to do
this is not naturally derived from the problem. In general, polling
is a good technique for simple systems where immediate response to
asynchronous inputs is not required. A complex polled system is

INITIALIZE

difficult to construct and not very flexible.

A simple polled system might look like this:

FIGURE 2-12. POLLING SYSTEM

The polling system displayed above carries out three separate tasks
depending on the state of three inputs. Each task is completely
transparent to the others (apart from the processing time it takes
up).

Depending on how the system is constructed, the interval between polls
of a particular input may be fixed or variable. In the previous
example, the time taken for a single pass of the polling loop depends
on what actions are performed. The worst case response time of the
system is the maximum possible time between polls, plus the time
needed to carry out the action. In evaluating a system design, it
must be verified that the response time will be adequate for each
action.

2.10.1.2 Interrupts. Some signals may require attention so urgently
that they cannot wait to be polled. In this case a signal can be
connected in hardware so that it interrupts the processor. The
processor will suspend whatever it is doing and attend to the new
signal. When the 9900 receives an interrupt it performs a
context switch and executes an interrupt service routine written to
deal with that particular interrupt. The context switch completely
saves whatever the microprocessor was doing so that it can be resumed
when the interrupt service routine is complete. (Reference the
description of context switches in Section VI.)

The 9900 provides 16 levels of priority interrupts, so that very
complex interrupt structures can be constructed. A higher priority
interrupt can preempt a lower priority interrupt. While an interrupt
service routine is executing, all interrupts of equal or lower
priority are masked out (ignored). When calculating the response time
for an interrupt, the possible masking effect of equal and higher
priority interrupts must be considered. It is wise to keep interrupt
service routines as short as possible (particularly high priority
ones) because they prevent the system from doing anything else.

An interrupt routine is not part of the main program structure: it is
a separate entity with its own structure which can temporarily
'borrow' system resources at any time during the execution of the main
program. If there are portions of program which must not be
preempted, interrupts can be temporarily disabled by setting the
interrupt mask to zero. Interrupts are discussed in more detail in
Section VI.

Many systems employ both polling and interrupts. Polling is an
effective technique for small systems and for systems in which there
are no tight timing constraints. Interrupts can introduce complexity
into a system. With a complex interrupt structure it may be difficult
to determine the exact behavior of a system; and hang-ups can be
created. The classic 'deadlock' situation occurs when an interrupt
routine waits for an event that can only be triggered by a lower
priority routine. (The routine of lower priority cannot execute until
routine has finished.) No way out of this situation exists;

obviously, software must be designed to avoid such deadlocks.

One common use for interrupts is to provide a time reference for
polling. Consider a program in which a particular input or group of
inputs require interrogation every 20 ms. Arranging the required
checks may prove difficult in a complex system with a number of
program paths. In order to satisfy the above polling requirements, an
interrupt can be set to occur every 20 ms. For an input requiring
polling every 100 ms, interrogation takes place every fifth
interrupt. The 9940 has an internal timer which can be used to
generate the interrupts; otherwise interrupts can be provided by the
9901 Programmable Systems Interface, or by using external hardware to
divide the system clock.

When estimating system load, the average frequency of each interrupt
must be calculated to determine the amount of time the processor will
spend servicing interrupts. The minimum time between interrupts is
also important, because if interrupts occur too close together, some
may be lost.

2.10.1.3 Executives. To simplify the organization of real-time
software, an executive can be used. Like high-level language and
structured design, use of an executive is one more technique that
brings software design closer to the problem. In particular, it
allows a complex real-time system to be written as if it consisted of
a number of separate, smaller processes executing simultaneously and
in parallel. This simplifies software design, because it is closer to
the reality of most real-time situations.

A system's processes can be regarded as competing for system
resources; particularly for processor time. One of the most important
parts of an executive is the scheduler, which allocates processor time
among the various processes. There are various ways of doing this.
One of the simplest is time slicing: each process in turn is allocated
a fixed period, or slice, of processor time. The allocation is
repeated cyclically.

Other scheduling techniques involve some notion of priority. A high
priority process will be allowed to run in preference of a process
with a lower priority.

A process will often need to communicate and synchronize its execution
with other processes in the system. This can be done using the
semaphore, which is basically a signalling mechanism between
processes. A process may signal a semaphore to indicate that a
particular event has occurred (for example, that a character has been
received from an input device and placed in a buffer). Another
process may be waiting for that signal (in our example, to take the
character out of the buffer and print it). When the signal is
received, the second process can be executed. Conceptually, both
processes can be regarded as executing simultaneously.

A process waiting for a signal from a particular semaphore is said to

be suspended on that semaphore. More than one process can be
suspended on a single semaphore. In addition, signals can be queued
at a semaphore (for example, several characters can be placed in the
buffer before any are processed). This gives the system a certain
amount of elasticity.

Mechanisms such as semaphores support the scheduling of ready
processes. At any one time, the highest priority process that is not
suspended on a semaphore will be running. When this process cannot
run any further (i.e., it becomes suspended on a semaphore and is
waiting for an event), or terminates, the next highest priority
process that is ready.

The executive maintains lists of processes ready but of lower priority
than the currently executing process, and of processes waiting on
semaphores. When a semaphore is signalled or the running process
becomes suspended, the executive updates these lists and takes
appropriate action.

Interrupts can be incorporated in such a system by treating them as
signals to semaphores. The interrupt service routine is a process
suspended on a semaphore, which is signalled directly by the
interrupt. If the interrupt service routine is of a higher priority
than the process currently executing (which will usually be the case),
the interrupt routine will execute.

An executive makes it possible to design a system as if it were made
up of a number of simultaneous, parallel processes, executing
independently but communicating via semaphores:

CHARACTER
INPUT
INTERRUPT

CHARACTER
RECEIVED
SEMAPHORE

(2)=TASK(PROCESS)

1 =SEMAPHORE

CHARACTER
IN BUFFER
SEMAPHOkE

FIGURE 2-13. SEMAPHORE SIGNALING

Like all programs, the execution is in fact sequential. But the
executive handles the work of adapting a sequential processor to a
parallel world. It makes the design of real-time software much

simpler, and thereby makes possible more complex applications. For a
complex real-time system, an executive is virtually a necessity.

Texas Instruments supplies a range of executives, tailored to
different areas of application, for developing real-time software.
These are designed to work with Pascal or assembly language, and can
be adapted for use with other languages. The executive is normally
supplied as a basic core or kernel,a library of routines implementing
specific features. As a result, only those features of the executive
which are actually used need be incorporated in the final system. In
addition to semaphores, some executives provide more powerful
synchronization mechanisms such as interprocess files.

CHAPTER III

SOFTWARE DEVELOPMENT

3.1 OVERVIEW

The end result of software development is a program -- a pattern of
bits residing in memory that instructs the processor what to do. To
achieve this, several stages must be undertaken:

1) Definition of the problem

2) Design of the system - hardware and software, and how
they will fit together

3) Design of the software (hardware development can be
carried out in parallel

4) Programming the design (i.e., turning it into source
program code)

5) Translating the source into binary machine code

6) Testing the software

7) Integrating the hardware and software

8) Evaluating the final system.

Each of these is an iterative process. Problems encountered at any
stage may alter decisions taken at a previous stage, so that the true
picture is probably more like this:

STUDY DEVELOPMENT EVALUATION
I) SPECIFICATION ,' r
2) SYSTEM DESIGN 0 ‘ it

.>, Pi (1 ;- f:
41 /

/ %

/ %

3)SOFTWARE DESIGN ti9 f ' P` I ei 4 : , 1 4) PROGRAMMING
4:

1 1
5)TRANSLATION

0
1

1 6) TESTING ,
7 .L

7)HW SW INTEGRATION y 1, /
8)EVALUATION .1,,,•

TIME

FIGURE 3-1. DEVELOPMENT STAGES

3.2 PROBLEM DEFINITION

The first step in development is to define the problem that is to be
solved.

The way in which a problem is stated is often highly dependent on the
implementation techniques believed to be available, that is, on the
way similar problems have been solved in the past. Microprocesscirs
have opened up a new range of possibilities. Therefore, when defining
a problem, it is worth considering whether it can be restated to take
advantage of the microprocessor's capabilities.

A microprocessor is both a programmable logic device and a computer.
Where it is being used to replace conventional logic, its abilities as
a computer may also be used to advantage, and vice versa. For
example, a microprocessor might replace digital logic in controlling a
scientific instrument. In this application, it can also be used to
perform calculations on the results obtained by the instrument,
something not easily achieved by digital logic. New forms of operator
interface might also be considered; a keyboard and visual display
screen, for example, rather than the traditional knobs and switches.
The instrument might be given some degree of programmabilty to allow
the user to set up a series of operations to be performed unattended.
There are a whole range of new possibilities introduced simply by
using a microprocessor.

A full problem definition for a microcomputer based product involves:

1) Defining the environment that is the devices and
signals with which the product must operate, the
operator controls and displays, and any special
interfaces

2) Defining how the product reacts to this environment
that is the actions it is required to take, the inputs
it is required to respond to and the outputs it is
required to produce.

This amounts to defining a black box (see Chapter 1, Section 1.2).

Once the black box has been defined, attention can be given to how to
implement it. This is the field of system design. The system
designer must decide how to integrate hardware and software, whether
any special interfaces are required, if any additional hardware is
needed (for analog to digital conversion, for instance), and so on.

Problem definition cannot be isolated from system design, particularly
in such a new field. The way in which a problem is stated determines
how the system will be designed, and vice versa. To extract the
maximum Potential from the technology, it is wise not to start with a
rigid problem definition, and to be open to ideas that may come up in
the system design stage.

INPUTS

3.3 SYSTEM DESIGN

Microprocessor system design differs from conventional digital design
in that a microprocessor system is centralized. Hardware design
consists simply of connecting all the inputs and outputs to the
microprocessor, and ensuring that it has enough memory:

PROGRAM
MEMORY

DATA
MEMORY

M P U
/61:112-PUTS

FIGURE 3-2. MICROPROCESSOR DESIGN

Determining the exact input and output requirements means a
consideration of the software algorithms to be used (although they
need not be.programmed yet). Several iterations may be needed before
a 'best fit' solution is achieved.

It is important to define the precise I/O configuration early in a
project. From this base, both hardware and software designers can
work. If the configuration is left at all vague, it is almost certain
that the hardware and software will not, work together or will work
incorrectly.

Once the system configuration is established, hardware and software
development can be carried out in parallel.

Some time can usefully be spent at the study phase of a project in
sorting out the design issues. It is not necessary to make decisions
at the outset, but rather to identify the choices to be made. The
right solution can then be determined by investigation. Identifying
(and documenting) various design choices at the beginning (as opposed
to simply taking what seems to be the right choice at the time)
facilitates backtracking when necessary. Therefore, it is worth
keeping a record of the design process. Notes, and formal documents
such- as specifications, can be collected together to form a project
notebook.

For example, an analog input (a voltage, for example) may be
required. Decisions to be made include:

1) How much precision (i.e., how many bits) is required

2) How often a reading must be taken

3) What type of analog/digital converter can be used

4) Whether the input should be binary or coded decimal.

Decisions must be made on how much of the available information is
required. For example, if a temperature is to be input, is the actual
value required (to what precision?) or is a threshold indication
enough?

Hardware/software trade-offs are important. When writing a number to
a seven segment display, should the conversion from binary to decimal
digits, and then from digits to the signals used to drive the display
segments be handled by microprocessor software or by external
hardware?

/7 /7 /7 1-7
/r7

FIGURE 3-3. SEVEN SEGMENT DISPLAY
(4 DIGITS)

If processor resources are available, it makes sense to perform the
conversion in software and save the cost of extra hardware. However,
this depends on the processor having enough spare time to handle it.

3.4 ESTIMATING SYSTEM LOAD

One of the characteristics of a microcomputer system is that it can do
only one thing at a time. If it is required to handle several things
in parallel (as a real time system usually is) it must do so by
handling each one in turn and at. sufficient speed so that the effect
on each is the same. An important part of specification is defining
"sufficient speed". (?'or example: an analog input might need to be
sampled every 5 ms, this being the minimum period in which it could
change significantly in a particular application). An important part
of system design is to determine that the processor can meet these
specifications. Given a number of real-time tasks to be performed can
the processor satisfy all of them simultaneously?

A useful measure of this is system load, which can be defined as:

Processor Time

Real-Time

For a given task, the load on the system is the processor time taken
to perform the task, divided by how often the task must be performed
(the "sufficient speed" specification). If the processor spends 2 ms
carrying out a particular task, and the task must be performed every
10 ms, this represents a .2 or 20 per cent system load.

The total system load can be obtained by calculating the system load
for each task that must he performed, and adding them together.
System load is not a foolproof test of a design's practicality; but it
does give the designer an indication of the magnitude of the task, and
quickly shows up impossible specifications. Estimating the load for a
given task involves a consideration of the software algorithm that
will be used to perform it. This need not be very detailed at this
stage. A rough calculation often shows that use of system resources
is dominated by a very small number of tasks.

An estimation of 0.1 per cent could be out by a factor of 5 without
making too much difference; a task calculated at 25 percent however
needs careful evaluation. Usually, it is only necessary to look at a
very small portion of program, which can be coded experimentally if
necessary.

If the total system load comes out at more than 50 percent, the design
should be reconsidered. There are two reasons for leaving a wide
margin:

1) To allow for errors in the estimation, and for
modifications to the software

2) Most systems have a degree of randomness: the average
rate at which things happen may be predictable, but it
may sometimes be exceeded by quite a large amount. It
is wise to leave some power in reserve to deal with
bursts of activity.

Besides the raw estimates of system load, timing constraints need to
be considered. The straightforward estimate assumes that processing
time is spread evenly over real-time. If the system needs to do a
great deal within a period of 1 ms, and then nothing for 50 ms, this
obviously must be taken into account. In this case, the load during
the 1 ms period should be evaluated separately.

If the system load does come to more than 50 per cent, there are
several alternatives:

1) Unload some of the work from software to external
hardware

2) Reduce the specification of the system

3) Consider using a more powerful processor, or adding a
second processor.

If the system load comes out very low (less than 1 per cent, for
example) it is not necessarily a bad, provided design and cost
criteria are met. However, if there are tasks being performed by
external hardware that could equally be done in software, this is
worth considering. Microprocessors have become inexpensive enough to
make it economically feasible to have them lying idle most of the
time. On the other hand, having to redesign because design parameters

have been pushed too far can be expensive.

Once the load has been calculated and the design fixed, the design
engineer needs to beware of 'creeping enhancements'. Microprocessor
systems follow a revised form of Parkinson's Law: designs expand to
fill 150 percent of the resources available. To avoid this, the
designer needs to evaluate carefully the effect of suggeste'd
enhancements, and consider them in relation to his loading estimates -
which can be checked experimentally once the design is built.

3.5 SOFTWARE DESIGN

Software design consists of turning the specifications of what the
processor is to do into precise software algorithms and data
structures, using the system configuration established during system
design.

The basis of software is data, since this represents the information
that will be manipulated by the algorithms. A system uses two types
of data: input and output data, which is the system's means of
communication with the outside world, and stored data, which is held
in memory and represents those things of which the system must keep a
record.

The first task of the software designer should be to determine:

• What data is required

• How it should be organized (structured).

The data should be structured to reflect as closely as possible the
information it represents. This involves:

• Identifying those aspects of the information which are
fundamental and not superficial

• using these as the basis for structuring

• wherever possible using structures instead of single
unrelated data items. This makes the software more
coherent and more manageable.

If this is done, then both data and program will be clearer, and
easier to change if the requirements are modified.

'Data' (Chapter II, Section 2.5) considers data structuring in detail,
and gives some examples.

Once the data structure has been established, the algorithms that will
operate on the data can be constructed. Algorithms are described in
detail in Chapter II, Section 2.6.

3.6 TOP-DOWN DESIGN

A completed software design consists of a complex multi-dimensional
mass of information, ranging from overall structure to details of
implementation. When constructing such an edifice from scratch, what
is the best way to approach it?

At the start, two 'ends' of the problem are known:

1) What the system is supposed to do, and

2) The basic operations (i.e., instructions) the processor
is capable of performing.

This leads to two approaches to software design:

1) Starting from the problem and working down towards the
details of implementation. This involves splitting the
problem into smaller segments, considering each in turn
and further subdividing until the basic processor
operations are reached

2) Starting from the basic operations, putting them
together into larger units that will perform more
complex operations, and so working up towards a
solution of the complete problem.

INITIALIZE

(
DO

FOREVER
READ
INPUT

TAKE
APPROPRIATE
ACTION

The second method is the traditional way of designing software.
It has been called the "bottom-up' approach. For example, if it
became clear that a system required a keyboard input routine and
a display routine, these would be written, together with other
routines, and used as building blocks to construct larger modules
which would then be put together to make the complete system.

However, it has been found by experience that the first method,
'top-down' design, produces software that is better, clearer and
easier to maintain. The problem with bottom-up design is that
usually not enough thought is given to the way in which the
blocks will fit together before constructing them. Therefore the
designer ends up with blocks that are not exactly the right size
or shape, and he either has to reconstruct the blocks, or (to
pursue the analogy) use a lot of mortar and build a system that
is not very robust, and is difficult to change without toppling
the whole structure.

Actually, the situation is not quite as clear cut as this. Pure
bottom-up design is not possible, because the designer must have
given the problem some 'top-down' thought or he would have no
idea what building blocks to construct. But traditionally this
was not expressed (largely because there was no language or
notation to express it in), and what is not expressed cannot be
clearly thought about. The only language available to write down
a design was program code. There was, therefore, a strong
temptation to start programming very early, before the larger
design issues were properly worked out.

Design languages and notations like those introduced in Chapter
II, Sections 2.4 and 2.5 solved this problem. It is these
notations which make top-down design possible, by allowing the
designer to have a concrete grasp of his design at all levels,
and to postpone consideration of details until important design
issues have been worked out.

A design might be conceived initially like this:

C
0

M
A
N
D

L
0
0
P

FIGURE 3-4. INITIAL DESIGN

READ
CHARACTER

PLACE
CHARACTER
IN BUFFER

AD
E CHARACTER
A

PLACE
C CHARACTER
0I IN BUFFER

M
N
D N

U
T
T
0
B
U
F
F
E

WHILE
CHARACTER
NOT CR'

FIGURE 3-5. READ INPUT

This could be a device which, after initialization, would wait
for an operator command, perform the appropriate action, and then
return to wait for the next command. The device is specified in
very general terms, but its basic operation is already clear.

The operator interface might be a teletype keyboard, on which the
user would type a command telling the system what to do. Suppose
a command consists of a line entered on a teletype keyboard,
terminated by a carriage return (CR). The device prompts the
operator for a command by outputting '?' to the teletype. READ
INPUT could then be expanded like this:

The terminal boxes of this diagram can be further expanded when
the design reaches that level of detail.

Because of the single entry and exit properties of the constructs
used, the designer can be confident that however he expands the
design of, for example, the box labelled 'TAKE APPROPRIATE
ACTION', it will not affect any of the other boxes in the
diagram, or the structure of the diagram. (This cannot be said
of flowcharts, which is why it is difficult to use flowcharts
without descending to the detailed level.)

It is this property of structured notation which makes it
possible to hold off consideration of details and to design in a
hierarchical fashion, from the top downwards.

In a practical system, top-down design must often be tempered
with bottom-uo considerations. It is impossible to start
designing at the top without some idea of what is possible at the
bottom. For example, it may be necessary to code and try out an
I/O routine or a critical. piece of code, in order to check the
feasibility of the design. With a complex problem, it may be
necessary to attack the intractable mass in the middle from both
ends. However, the most important progression in design is from
problem towards implementation. The reason for stressing it here
(and elsewhere) is that, traditionally, software has not been
designed this way - which is as logical as starting to build a
house before the plans have been drawn.

3.7 PROGRAMMING

Programming involves turning a software design into source
program code, following the syntax rules of a particular
programming language. The amount of work involved depends on the
programming language selected for implementation.

Pascal was designed as a problem-oriented language incorporating
modern design techniques. Turning a software design into Pascal
should involve little more than formalizing it and writing it to
conform to the syntax rules. The constructs used in design can
be implemented directly in Pascal. The routine work of
translating the design into machine instructions is handled by
the compiler.

BASIC, like Pascal, is a high-level language that handles much of
the routine work (data allocation, for example) of translating
the design into machine terms automatically. However, BASIC is
designee as a simple language and is not quite as powerful as
Pascal. It does not provide all the design constructs in a
directly usable form.

BASIC does have other advantages. Being simple, it is easy to
learn. As an interpreted language, it has special
characteristics which are explained in Chapter V. Because it is
designed to run on the TM990 range of microcomputer modules, a
design can be developed very quickly and cheaply using standard
hardware and a very low cost development system. BASIC is ideal
for experimental and low volume designs.

Assembly Language is the most powerful, the most time consuming
and the most difficult alternative. It gives the programmer
complete control over all the resources of the microcomputer, but
to exploit this control requires skill and discipline. Program
development also takes much longer than in a high level
language. Assembly language should be used where code size and
efficiency is crucial (for example, for a large volume product).
It can also be used to code critical areas of a program written
in a high level language (I/O routines, for example). In
general, assembly language can be used very effectively in small
areas; large programs quickly become unwieldy.

Selecting which language to use depends very much on the
application, the development facilities available, the
development timescale, and the skills of the programmers. The
remaining chapters of this book describe each language in more
detail. They are not intended to be a complete description, but
rather to give a feel for each language, so that the designer can
select which one best meets his needs.

Programming, or coding, is a relatively mechanical process which
involves expressing a software design in a precise, unambiguous
form that conforms to strict syntax rules. The real creative
work of development is done at the system design and software
design stages. When choosing which implementation language and
what type of development system to use, the designer is choosing
how much of the programming process will be handled automatically
by software development tools (compilers, linkers, etc.) and how
much will be done by a human programmer.

INPUT
FILE

"""'APP' PROGRAM

3.8 TRANSLATION

Having written a program on paper, it must be physically entered
into the development system in a machine readable form. This
will be done by typing the source program in at a keyboard. The
source program, which is in a programming language, must then be
translated into machine executable form - that is, a pattern of
binary O's and l's corresponding to the microprocessor's
instruction set.

The steps involved in this process, and the concepts behind it,
are covered in this section. Utility programs (software tools)
are used at various stages in the process to perform particular
steps: these are described, too.

3.8.1 Files

Much of the mechanics of program development consists of
manipulating files on a development system. A file is a
sequential list of information held on a backing storage device
(disc, magnetic tape, etc). A file can be read as input data by
a program running on the development system; the program can
write back a file of output data.

iOUTPUT
FILE

FROM BACKING TO BACKING
STORAGE STORAGE

FIGURE 3-6. I/O

Utility programs are Provided with a development system to
perform many of the tasks associated with program development -
for example, translating source code written in a high-level
language into machine code that can be understood by the
microprocessor. The source code is held on a file in backing
storage; the machine code is written to another file.

A utility program may have several input and several output
files, depending on the function it performs. An output file
need not go to backing storage: if it contains textual
information it might be sent directly to a printer. Similarly,
an input file might be taken from a card reader or even be typed
in at a keyboard - they both provide sequential information to

the program.

Utility programs are the principal tools of the software
engineer. Once a design has passed the paper stage, it will
consist of files held on the development system. Stored in this
way, the design is manipulated using various software tools
(utilities). To a hardware engineer, for instance, this medium
may be unfamiliar; however it has a number of advantages over
circuit diagrams, printed circuit boards and soldering irons. In
particular, it can be manipulated by computer programs, thus
partly automating the design process.

3.8.2 Text Files

In order to store textual information in a machine which
recognizes only binary digits, some form of code must be used -
that is, some rule for transforming textual information into
binary data. The code adopted for the 990 and 9900 series is
ASCII (American Standard Code for Information Interchange). The
ASCII code specifies a unique bit pattern (number) for each
member of the ASCII character set - letters, digits, punctuation
marks and control characters. 7 bits are sufficient to uniquely
identify an ASCII character. ASCII characters are usually stored
one per byte (8 bits), with the most significant bit often being
used for error detection (parity check).

Character ASCII code
Binary Hexadecimal*

A 01000001 41
T 01010100 54
1 00110001 31
5 00110101 35
? 00111111 3F

line feed 00001010 OA

This means that textual information can be held in memory, saved
as a text file on backup storage and manipulated by utility
programs.

It is the input and output devices (Visual Display Unit, printer,
etc.) that recognize '01000001' as 'A', and so on. They
translate key presses into ASCII coded data, and coded data back
into displayed and printed characters.

Program manipulation of textual data is normally limited to
moving it around in memory (to insert or delete text), searching
for particular sequences of characters, and similar operations.
Arithmetic operations on text do not make much sense.

* For the hexadecimal number system, see Section VI.

Numbers (decimal, hexadecimal or otherwise) can be represented in
text as a string of digits. However,
representing these digits in the computer is
direct relation to the binary representation
which the computer would use to perform any
possible to carry out arithmetic with coded
only by writing a series of subroutines to do

the bit pattern
a code and bears no
of that number -
calculation. It is
numeric data, but
it.

In many programs (particularly those which communicate with a
user) there is an application for converting coded digits into
binary numbers, and vice versa. In a large computer, this is
usually handled automatically by standard input and output
routines. The microprocessor user normally has to design his own
input and output, and write the routines himself.

Program development, as far as the user is concerned, consists
largely of manipulating text files on a development system - text
files which represent program code.

3.9 SOFTWARE TOOLS

3.9.1 Text Editor

A text editor is a program which allows the user to enter text at
a keyboard, and save it in a file on backup storage (cassette,
floppy or hard disc). The text will usually consist of source
code in assembly or high level language; however most editors
will allow any kind of textual information to be entered. An
editor also allows the user to modify text (hence its name) by
entering editor commands at the keyboard.

00

ASSEMBLER
OBJECT
CODE
FILE

LISTING
FILE

TEXT FILE OF
SOURCE CODE

CREATES TEXT FILE
ON BACKING STORAGE

*EDITOR

USER ENTERS
TEXT

MODIFIED TEXT
FILE WRTTEN TO
BACKING STORAGE

TEXT FILE READ
FROM BACKING)(1(USER ENTERS COMM AND
STORAGE " TO MODIFY TEXT

FIGURE 3-7. TEXT EDITOR

3.9.2 Assembler

An assembler converts assembly language source code into object
code, for execution by the microprocessor. The input to the
assembler will normally be a text file created by the editor.
The output will be a file of object code. The assembler also
generates a listing file, which is a text file containing details
of the assembly, and any error messages.

FIGURE 3-8. ASSEMBLER

3.9.3 Compiler

A compiler performs the same function as an assembler, but its
input will be source code written in a particular high level
language. Some compilers produce object code (machine code)
directly; others generate assembly language source, which must be
run through an assembler to generate object code. This is an
extra step. but it does give the user the option of hand
optimizing the compiler output before it is assembled.

The TI Pascal compiler generates object code; but hand
optimization is allowed for by providing a reverse assembler,
which converts the compiler output back into assembly language
source.

3.9.4 Absolute and Relocatable Code

Before a program can be executed, it must be located at a
particular place in memory. Addresses in a program refer to
particular memory locations, and the right data or program code
must be present at those locations for the program to work.

Some assemblers for the 9900 (the Line-By-Line Assembler for
example) produce only absolute code; that is, the position of the
code is specified at the time of assembly, and cannot
subsequently be changed.

However, other assemblers can produce relocatable code. Program
and data addresses are calculated relative to the program base
address - usually 0. Address fields are specified as
"relocatable" in the object code output. When the program is
loaded for execution, starting at, for example, address 100, the
loader program can add this value to all the fields tagged
"relocatable" so that the program will execute correctly.

0

100

[7.4A

15F

0

* Branch to
* address >4A

B @LABEL

LABEL MOV R1,R2

5F

>100 added to
relocatable
addresses

* Branch to
* address >14A

B @LABEL

LABEL MOV R1,R2

Program assembled at . Loaded in memory
relocatable origin 0 at address >100

Relocatable code allows the programmer to postpone deciding where
the program will be located until the time comes to load it.
This can be very useful when a system is being constructed from a
number of different program modules. Each module can be
assembled separately without needing to calculate exactly where
it will fit in memory - which would involve knowing the lengths
of all the other modules. More important still, one module can
be changed (perhaps increasing its length) without the need to
reassemble all the others in different positions to make room for
it.

A system consisting of more than one module will probably need to
be linked as well as loaded - see the following section for more
information on the linker.

3.9.5 Linker

A linker, or link editor, is a program which will combine
separately compiled or assembled object modules to form a
complete system.

With a system of any size, it is much easier to break the program
down into modules which can be written separately. Usually,
these modules will be chosen so that each performs a fairly
self-contained function and can be treated as a logical unit.

The interfaces between these modules - that is, the way that they
will fit together to form a complete system - must be carefully
considered when the system is being designed. Modules will often
need to use programs or data contained in other modules. These
can be defined as external references to symbolic names: they
will be indicated (tagged) as unresolved addresses in the object
code. Definitions to be used by other modules will also be
included in the object code. The linker connects together, or
resolves, these loose ends by linking references with their
corresponding definitions.

Modules to be linked will usually be relocatable. The linker
stacks them one after the other in memory, adjusting all the
addresses accordingly. Output from a linker can either be a
larger relocatable module, or absolute code, designed to be
executed at a particular position in memory.

Linkers and relocatable code make a great difference to software
development. It is possible to break a project down into
manageable modules. One module can be changed without
reassembling/recompiling the whole system. The linker
automatically takes care of changes in module size and in the
addresses of external variables. This can save a great deal of
time (and money) in developing software.

A linker also allows the use of libraries of standard routines.
It can provide, for example, mathematical capabilities or
run-time support for a particular programming language. A
library consists of a number of different modules, which can
either be written by the user or supplied by a manufacturer.
These modules are stored as relocatable object code. A user can
reference any of these modules in his program; when the time
comes to link, the linker will automatically select from the
library the modules required by the program, and link them into
the system.

With a linker, some modules can be written in high level language
and others in assembler, according to their characteristics.
This makes possible a very flexible approach to system design.

3.9.6 Loader

A loader is a software utility that loads an executable program
from some form of backup storage into read/write (RAM) memory,
for execution by the processor. It is therefore used on a
general purpose computer rather than a dedicated microcomputer
system, where the program is likely to be already in ROM memory
and does not need loading. However, during debugging it may be
necessary to load a program into RAM memory in a development
system for test execution.

Some loaders are relocating loaders - that is, they can take a
relocatable object program from backup storage and place it at
any specified position in memory, adjusting the addresses tagged
'relocatable' so that the program will execute correctly.

3.10 BASIC PROGRAM DEVELOPMENT

BASIC program development is a little different from any of the
other languages because a separate compilation/assembly step is
not required. A BASIC program is entered in source form using an
editor which is part of the BASIC system. The program is stored
in a condensed source form which is directly executable by the
interpreter. This makes BASIC program development particularly
simple. It is described in more detail in Chapter V.

3.11 BACKUP

Once programming has begun, the work of the software designer
will be held entirely on files in backing storage: While storage
media are inherently very reliable, errors do occasionally occur
(due, for example, to dust accidentally getting into a disc
drive) which can wipe out days or even weeks of work. It is
therefore necessary to have some form of backup for important
files - an extra copy, stored away from the computer. There are
many ways of doing this: for example, copying files at regular
intervals to magnetic tape or paper tape.

One method which works particularly well for floppy disc-based
systems, and can also be used for hard discs, is to duplicate the
complete disc (or discs) containing the files for a project. The
suggested way of doing this is to have 2 backup discs for each
disc in use. The 3 discs (labelled A, B, C for convenience) can
be used in a backup cycle:

A

?'
 CURRENT DISC

FIRST BACKUP DISC

SECOND BACKUP DISC

spi
C

At regular intervals - at least once a week, but depending on how
much updating has been done - the current disc is backed up.
This is done by copying the complete disc to the second backup
(C). The copy should be verified after it has been made.

COPY s
TB

CURRENT DISC

FIRST BACKUP

SECONDBACKUP

Once this has been done, the second backup (C) becomes the
current disc, the previous current disc (A) is relegated to
backup, and the first backup to second backup:

 C
CURRENT

FIRST BACKUP

SECOND BACKUP

9A

There are two reasons for using C as the new current disc instead
of continuing with A:

1) If the cycle is carried out regularly each disc will get
the same amount of use

2) If for any reason the copy did not work, this will
quickly become apparent when trying to use C.

If the current disc becomes corrupted at any time, the first backup
can be used to restore the situation at the time of the last backup
cycle.

The second backup provides an extra insurance policy against
catastrophes - for example if a disc drive fault corrupts both the
current disc and the first backup, or a power failure occurs during
the backup process.

The extra expense of triplicating discs (not much for floppies) and
the time spent backing up is more than paid for by the savings if a
fault does occur. 3.12 TESTING

Once a program has been written, it must be tested. However, a
microcomputer program is often designed to run on a system other than
the one on which it is developed. The program is often ready for
testing some time before the target system is built; and in any case
the target system May not provide the facilities needed to test a
program.

3.13 SIMULATOR

To overcome this problem, some means of simulating the target system
environment on the development system is required. Texas Instruments
provides a 9900 Simulator that executes on the 990/10 minicomputer,
or, as part of the Transportable Cross Support package, on other
machines. The simulation occurs entirely in software. In effect, the

simulator builds a software model of the target system on the
development system. Inputs and outputs are simulated in software.
The simulator records what would happen if the program was executed on
the hardware it is designed for. It allows the user to trace exactly
what goes on when the program is running - examining memory contents
for example, and following the program's flow of execution.

The simulator can be operated interactively, with the user sitting at
a terminal and directly controlling what happens, or by submittimg a
list of commands and letting it run (batch mode).

3.14 INTEGRATION

While a simulator provides powerful debugging facilities, and can be
used to check out completely the logic of a program, it does not prove
that the software will work correctly with the target system
hardware. The critical stage of hardware/software integration is best
handled using an emulator.

3.15 EMULATOR

An emulator allows the software to be tried out in the target system
hardware, while retaining the facilities of the development system to
monitor program execution and change the program if necessary.

This is achieved by connecting the development system to the target by
a special cable - in effect an umbilical cord. The microprocessor is
removed from the target system and the cable plugged-in in its place.

The cable includes a buffer module containing a microprocessor and RAM
memory. This emulator memory can be loaded from the development
system with the program under test. The program executes in the
buffer module exactly as it would in the target system (in real-time)
and is connected to the target system hardware for input and output.
But the development system can monitor program execution, trace the
program flow and stop execution if specified conditions (breakpoints)
occur.

DEVELOPMENT
SYSTEM

TARGET
SYSTEM

BUFFER
MODULE

EMULATION CON-
TROLL ED BY
USER

FIGURE 3-9. EMULATOR

Emulation is provided by the AMPL (Advanced Microprocessor Prototyping
Laboratory) module, which can be used with a 990/4 or 990/10
minicomputer. The emulator is controlled by a powerful high-level
language, in which sophisticated test procedures can be written.

Once the system is working in emulation, it can be programmed into
PROMs and the umbilical cord to the development system can be
removed. At this stage the device should undergo a thorough
evaluation, preferably by someone not involved in its development.

3.16 PRODUCTION

Once a working system has been obtained that satisfies the design
criteria, the hardware can be frozen and production of the device can
begin. (If the device is 1-off, of course, it is the end of the
road.) Hardware typically requires a much longer production lead time
than software (for printed circuit board layout, tooling, etc.) and
therefore needs to be frozen much earlier. Minor software changes and
enhancements can still be made, provided they do not affect the
hardware. This should not be carried too far: major changes to
software can take a long time and may require hardware changes, too.

It is wise not to freeze the software until it has been tested with
pre-production hardware. Minor problems introduced by the move from
prototype to production may be able to be fixed in software. This
will usually be much easier than modifying the hardware at this
stage.

3.17 DEVELOPMENT SYSTEMS

Texas Instruments provides a range of development systems, from the
simple to the sophisticated, for developing microcomputer software.
The choice to be made depends on the size of the company, finance
available, type of application, and the programming language
selected.

In this area, investment usually pays off. For example, the cost of a
TM 990/4 minicomputer with FS AMPL has to be weighed against the extra
time spent by an expensive engineer if he does not have access to
these facilities.

3.17.1 TM 990/4

The TM 990/4 is a minicomputer which uses the TMS 9900 microprocessor
as its central processing unit (CPU). With dual floppy discs as
backing storage, the 990/4 supports the Terminal Executive Development
System (TXDS). This is a software package which provides a range of
tools for the development of microcomputer software. These include:

TXEDIT - Text Editor

TXMIRA - Relocating Assembler

TXLINK - Linker

TXDBUG - Debug Monitor

TXPROM - PROM Programmer

TXPROM requires a Prom Programming Unit, a hardware module which plugs
into the 990/4 chassis.

3.17.2 TM 990/10

the TM 990/10 minicomputer is designed for the medium to large user,
who may be working on several projects at the same time. Under the
hard disc-based DX10 operating system. the 990/10 provides an
interactive multi-user environment with up to 1 Mbyte of main memory,
and all the resources of a powerful general purpose computer.
Software can be developed for a target system in assembly language or
Pascal. A software simulator is available for testing target
Programs.

The 990/10 can be configured with a range of peripheral hardware,
including several types of hard discs, floppy discs, magnetic tape and
line printers. Each user interacts with the system through flexible
menu-oriented command procedures, which prompt the user for required

Parameters. The system is designed to be easy to use: most procedures
supply default parameters, which are linked to other procedures. (For
example, the "Print File" command defaults to the file most recently
edited. The file name is displayed on the screen and can be accepted
or changed by the user.) The command procedures themselves are
written in a powerful interpretive language. The user can add new
procedures or change existing ones as required. The system supports a
Powerful screen-based editor.

In addition to being a development system, the 990/10 is a general
purpose computer that can be used for other applications. It supports
several high-level languages including COBOL, RPGII, BASIC. A 3780
emulator package is available to allow connection to IBM mainframes,

3.17.3 AMPL

AMPL (Advanced Microprocessor Prototyping Laboratory) is a hardware
and software package that can be added to a TM 990/4 or TM 990/10
minicomputer to provide complete emulation and trace facilities. AMPL
is a very useful tool in the critical stage of hardware - software
integration. It can also be used as a sophisticated software-driven
logic analyzer - an essential tool for tracing faults in a
microprocessor system.

3.17.4 TM 990 Boards

The TM990 range of microcomputer boards provides standard hardware
that can be configured to suit many applications. Using these boards,
hardware development is reduced to a minimum. A complete system can
be built from a chassis, power supply and one or more TM 990 boards.

Assembly language and BASIC software for a system such as this can be
developed using software utilities placed in ROM on the TM 990 boards,
without the need for a separate development system. This approach is
not recommended for projects of any size, because the facilities
available on a full development system are much more sophisticated and
can greatly improve programmer productivity. However, it is useful
for low volume and experimental work, where the expense of a
development system cannot be justified.

For assembly language programming, a system containing a TM 990/100 or
/101 board and a /302 Software Development Board provides a text
editor, symbolic assembler, loader and debugger. The /302 board
includes a dual audio cassette interface, which provides a simple,
low-cost form of backing storage. It also includes a PROM
programmer.

A simple BASIC development system can be implemented using a single
TM990/100 or 101 board (see Evaluation BASIC, Chapter V). More
facilities can be made available, however, by adding a memory
expansion board or /302 development board and using Development
BASIC. A /302 board, with the Development BASIC Software Enhancement

Package, provides a PROM programmer and audio cassettes, as well as
additional BASIC facilities.

CHAPTER IV

PASCAL

4.1 INTRODUCTION

Pascal was originated in the early 1970's by Professor Niklaus Wirth
of ETH University, Zurich, Switzerland. Like the majority of modern
programming languages, it is derived from ALGOL (ALGOrithmic
Language). Previous 'high-level' languages, such as FORTRAN, were
designed to take advantage of a particular computer's instruction set
(FORTRAN was designed around the IBM 360) and can more properly be
regarded as high-level assemblers. For example, standard FORTRAN
makes certain restrictions on the form of array subscripts, DO loop
expressions, and so on, because this makes the code particularly easy
to implement on the 360. However, these restrictions also made the
language difficult to remember (it has a lot of 'quirks'), and the
restrictions quickly lost their significance when the language was
implemented on later generations of computers with different
instruction sets.

ALGOL was the first serious attempt to design a language that was
independent of any particular machine's instruction set. The aim of
the ALGOL designers was to construct a language that would make it
easy to write clear, correct and maintainable programs. In this they
largely succeeded. However, while ALGOL became popular with academic
users, it was never very widely used in industry. This was partly
because the ALGOL designers were uncompromising in refusing to
consider implementation efficiency, and partly because ALGOL did not
gain strong backing from computer manufacturers.

But ALGOL was the inspiration for a completely new generation of
languages, of which Pascal is probably the most successful.

Pascal corrects most of the failings of ALGOL, while still retaining
its ease of use. It leaves out some of the little-used but expensive
(in code and time) features of ALGOL, and is designed with efficiency
of implementation in mind. Therefore it is possible to implement
Pascal efficiently on a small computer or a microcomputer. It is a
very practical language. '"ascal was developed principally by one man
so it has a coherence that some committee-designed languages lack.
Pascal is very regular (orthogonal): it has few 'quirks', and so is
easy to learn. The features of Pascal make it equally suited for
systems and applications work, so that there is no need to use two
different languages.

Not only does Pascal have powerful program structures, directly
implementing the constructs described in Section II, but it also has
extremely powerful data structures which are very necessary for
manipulating complex applications. In fact, the Pascal language is
very close to the design language described in Chapter II because they

both come from the same root. Turning a software design into Pascal
should involve little more than "tightening-up" the syntax and turning
English-language descriptions into precise Pascal statements.

With rapidly decreasing hardware costs and increasing labor costs,
software has become the major investment in developing a
computer-based product. This cost trend has led to the move from
low-level to high-level languages, necessitating standardization
within high-level languages. At least as important as the investment
made in existing software is the cost of retraining programmers to use
a new language; and to use it efficiently.

With this in mind, Texas Instruments has made a commitment to use
Pascal as a corporate standard for all software, whether for
mainframes or microcomputers. Pascal has become the primary language
for the Q90 and 9900 range of mini and microcomputers. The majority
of 9900 systems software is now being written in Pascal- Pascal also
provides the base for a range of modular software to supply many
commonly recurring needs.

Pascal provides a high-level standard that protects software (and the
programming skills, to implement that software) from future
obsolescence due to the introduction of new hardware. This form of
standardization has now become more important than that on a
particular low-level machine architecture.

Texas Instruments supports two implementations of Pascal: Texas
Instruments Pascal (TIP) and the Microprocessor Pascal System. The
languages are fundamentally the same, but provide slightly different
features to support their different areas of application. Because
microcomputer software is the main concern here, this chapter
concentrates mainly on Microprocessor Pascal system.

4.2 TEXAS INSTRUMENTS PASCAL OVERVIEW

TI Pascal was developed prior to the Microprocessor Pascal system and
was designed to compile and execute on larger machines (the Texas
Instruments DS 990/10 and the IBM 70). TIP provides 'large machine'
features such as dynamic arrays and extended precision reals. It also
includes some extra compiler options allowing, for example,
optimization probes to be inserted in the program to identify the most
frequently executed paths.

TIP generates a conventional serfuential program for execution under
the control of an operating system. TIP was extended to allow
execution in other environments (such as a target microcomputer
system) by the introduction of TIPMX (TI Pascal Microprocessor
Executive). TIPMX provides the run-time environment for a TI Pascal
program. and also supports concurrency (see below). In a TIPMX
system, concurrency is provided by procedure calls to the TIPMX
executive.

4.3 MICROPROCESSOR PASCAL OVERVIEW

Microprocessor Pascal was designed from the start to produce code for
a target microcomputer system, and to compile on the single-user
floppy disc based FS990/4 computer and the multi-user DS 990/10.

The Microprocessor Pascal system provides a complete development
environment for the design, coding, and debugging of Pascal systems
for microcomputers.

Four major components assist in software development:

• an interactive, syntax-checking editor for source
preparation and checking

• a compiler to compile source into interpretive code

• an interactive debugging interpreter

• a code generator to generate 9900 native object code

Two executives support the execution of the user's system on a target
computer. One supports the interpretive code produced by the
compiler; the other supports the object code produced by the code
generator. These executives are functionally identical, so that the
user has a choice of running either interpreted or compiled code on
his target system.

Because microcomputer systems are real time, concurrency is an
integral part of the Microprocessor Pascal System language (rather
than being implemented as procedure calls as in TIPMX). A concurrent
system consists of a number of independent processes executing in a
single environment. Each process is a separate sequential program,
and the processes are written as if they were executing
simultaneously. In fact, the processor can only - do one thing at a
time; the executive divides processing time between the processes so
that the effect is of simultaneous execution. Using this approach, a
programmer can identify the various tasks that a real-time system has
to perform, with their inputs and outputs, and write a separate
process for each: the executive will handle the rest. This can
greatly simplify a complex problem. Synchronization of processes is
accomplished by signalling devices called semaphores. More complex
communication between processes can be handled by interprocess files.
Further information on concurrency is presented later in the chapter
(subsection 4.5). Attention is now turned to Microprocessor Pascal
system major components.

4.3.1 Microprocessor Pascal system Editor

Microprocessor Pascal features an interactive, screen-based editor
that allows the user to create and modify Microprocessor Pascal system
source files. When editing, a page of text is displayed on a video
display unit (VDU screen). The text may be modified simply by
positioning the cursor and typing new information. Characters can be
inserted and deleted anywhere on the screen. The displayed page can
be positioned anywhere within the text file; page boundaries are not
fixed.

Alternatively, the user can press the command (CMD) key and enter a
range of edit commands, including find string, replace string, etc.

When creating a source file, the editor assists line by, line program
layout by automatically positioning the cursor for a new line. The
cursor can be moved forward or backward using the TAB keys. This
helps in indenting text to reflect the program structure. The tab
increment (number of columns for each indentation) can be set by the
user.

When the program has been entered, the user can perform a Pascal
syntax check without leaving the editor by entering tv'o ('PECK
command- The editor is not equipped to detect semantic errors (such
as undeclared identifiers), but will perform a complete syntax check
that will find such errors as misspelled or missing keywords,
incorrect punctuation, invalid constructs, etc.

When the editor finds an error, it outputs an appropriate error
message to the screen, displays the relevant area of text and
positions the cursor over the error so that the user can edit it
immediately. When this is done, the CHECK command can be reentered
and checking will resume from the earliest point at which the text was
changed. (THE checker only 'backs up' as much as is necessary; it
does not need to restart from the beginning of the file).

The syntax checker speeds up and simplifies the process of correcting
syntax errors. It eliminates exiting the editor, executing the
compiler printing the listing, and re-editing the source file for
each mistake. The entire process becomes a single interactive step.

The CHECK facility is entirely optional. The Micprocessor Pascal
system editor can be used for text files other than MPP source.

A full list of editor commands is presented later in this chapter
(subsection 4.6)-

4.3.2 Microprocessor Pascal Compiler and Code Generator

The Microprocessor Pascal compiler generates interpretive Pascal code
from a Microprocessor Pascal source file. This code can be executed
directly using the interpretive debugger or the Microprocessor

MICROPROCESSOR
MEMORY SIZE

(BYTES)

I8K
I6K
I4K
I2K
10K
8K
6K
4K
2K

COMPILED
CODE

INTERPRETIVE
CODE

Interpretive Executive, or it can be passed through the Microprocessor
Pascal system code generator to produce native 9900 object code that
will run under the Microprocessor Pascal executive.

Thus, Microprocessor Pascal gives the user a choice of executing
either interpretive or native code. Interpretive code and native code
for the same Microprocessor Pascal system source file will be
functionally identical, apart from considerations of speed and code
size.

Interpretive code executes slower than native code; but (beyond a
certain size, which accounts for the overhead of the interpreter) an
interpreted system is much smaller. Interpretive code takes up about
half the memory required by the equivalent native code. Therefore,
for a large application, interpretive code can represent a great
saving in memory.

200 400 600 800 1000 PASCAL APPLICATION
SIZE (STATEMENT)

FIGURE 4-1. INTERPRETIVE vs COMPILED RUN-TIME

CHARACTERISTICS

In selecting whether to use native or interpretive code, the user can
trade off speed against memory size. One example of such a trade-off
is the Microprocessor Pascal compiler itself. On the FS990/4 floppy
disc based system, the compiler executes interpretively so that it
will fit into the available memory space (it still runs at an
acceptable speed). On the DS990/10, where there are no memory
restrictions, it executes as native code to maximize the speed.

Various compiler options are available. These options include:

LIST - generate source listing
MAP - generate variable map
STATMAP - generate map of displacements for each

statement in the object module
DEBUG - insert statement numbers in code for

debugger
ASSERTS - generate code for ASSERTS statement
CKINDEX - insert run-time checks for array indices
CKPTR - insert run-time checks for NIL pointers
CKSET - insert run-time checks for set element

expressions
CKSUB - insert run-time checks for subrange

assignments in bounds

4.3.3 Micprocessor Pascal Debugger

The Micprocessor Pascal debugger is an interactive interpreter that
allows the user to control and monitor execution of a Micprocessor
Pascal. This greatly simplifies the task of finding errors in a
system (debugging).

The debugger is designed for use with a concurrent (multiple process)
system. The user can monitor the execution of a single process, or
examine and control process scheduling and communication. Debugging
usually proceeds with one aspect of a system at a time.

The user can set breakpoints at any Pascal statement by specifying the
routine and the statement number (printed on the source listing). The
system can be executed in single-step mode (one Pascal statement at a
time), or continuously until a breakpoint is reached. Three modes of
tracing, trace process scheduling, trace routine entry/exit and trace
statement flow, are possible.

The contents of a routine's stack frame (data area), heap, and common
areas, can be displayed and modified. The scheduling algorithm can be
overridden by holding (suspending) a particular process until an
explicit release command is given.

The user can also reconnect interprocess files (discussed later in
this section) using the Connect Input File and Connect Output File
commands. The new file that results can be sent to an external file
or to the terminal. The process concerned will then input or output

to the device specified. If it is a terminal, the system will prompt
for input, and send a message identifying the source for output.

Interrupts can be simulated using the SIMulate Interrupts command.

The system has three ways of dealing with CRU I/O (for a description
of the CRU, See Section VI). CRU statements can be directly executed,
ignored. or simulated by the user. The "CRU" command is used to
specify which option applies to a particular process. When simulated
I/O is specified, the CRU address and value are displayed for output
and the user is prompted for input. This feature can be useful when
debugging software for a target system, which is likely to have a
different CRU configuration from the development system.

The Micprocessor Pascal debugger is a very powerful high-level tool
for verifying the detailed execution of a piece of software. It is
designed to integrate closely with the other components of
Microprocessor Pascal and to form a complete system in which designs
can be smoothly carried through to implementation.

4.4 PASCAL STRUCTURE

4.4.1 Features

Pascal has structured statements which allow the user to produce a
readable, maintainable, and easily checked program algorithm with
mimimum effort. These structures, if used as intended, automatically
generate hierarchical, nested code resulting in an easier understand,
and (as has been proved) better, more correct software. Pascal's
structured statements include IF CASE, FOR, WHILE and REPEAT; they
are described in Paragraph 4.5.11.

Pascal provides extensive data structuring: RECORD and ARRAY data
structures can be combined and nested to any level The POINTER data
type allows powerful structures such as linked lists and trees. It
also permits dynamic storage allocation. Pascal's data structures are
described in Paragraph 4.5.3.

One of Pascal's most useful features is data typing. This allows data
to be grouped according to use, and can clarify the design of a
program so that, for example, it is easier to change at a late stage
in development. Compiler checks on type compatibility can greatly
reduce the risk of undetected errors in program code.

In addition to the standard data types, Pascal allows the user to
define his own data types, which can have values represented by
meaningful names as well as numbers. This can assist in program
documentation. The type concept was discussed in Section II. Its
Pascal implementation is described here in Paragraphs 4.5.4 to 4.5.7.

Pascal allows the user to define meaningful names for his identifiers
(there are no arbitrary length restrictions). By using these

identifiers and standard keywords (IF...THEN...ELSE), the programmer
creates a largely self-documenting program.

Pascal is a block structured language, which means that procedures
(and processes) can be nested to any depth. It is therefore a natural
language for writing modular software. Block structure and scope
rules are described in Paragraph 4.4.6.

The concurrency features of Micprocessor Pascal allow a new approach
to software design. particularly for microcomputers. A real-time
problem can now be divided into separate parallel processes, each of
which can be simply specified and coded. (A powerful extension of the
concept of modular software). Concurrency was designed into
Microprocessor Pascal from the start; all the development tools that
make up the Microprocessor Pascal system were designed to support it.
However, if the user wishes to develop a conventional sequential
program in Microprocessor Pascal, he can do so without incurring any
extra expense. The mechanisms involved in concurrency are described
in more detail. Additional information can be obtained in the
references stated at the end of this chapter.

4.4.2 Stack and Heap

Like the majority of modern high-level languages, Pascal has a stack
architecture. The stack is an area of data storage from which
sections (called stack frames) are allocated to a program or procedure
at the time it is invoked. When the program or procedure has finished
executing, its data storage area is returned to the stack for use by
other routines. The workspace register concept of the 9900 (see
Section VI) forms a natural basis for implementing stack frames.

Stack architecture means that data is completely separated from
program code, so that Pascal adapts naturally to the ROM/RAM
environment of a microcomputer. It also means that Pascal code is
automatically re-entrant. If a routine is simultaneously invoked from
different parts of a system (as can well happen in a concurrent
system) both invocations can use the same program code; it is only
necessary to create different stack frames.

In addition to the storage provided in the stack, Pascal is able to
allocate storage dynamically, under program control, from an area
called the heap. This is accomplished using the standard procedures
NEW and DISPOSE, and the pointer variable described in Paragraph
4-5.6.5.

4.4.3 Systems and Programs

The largest unit in Micprocessor Pascal is a SYSTEM. A system maK
contain a number of processes, apparently executing in parallel.
Level 1 (highest level) process is declared, in Microprocessor Pascal,
by the keyword PROGRAM. A conventional sequential program can be
regarded as a special case of a system with only one PROGRAM.

4.4.4 Processes and Procedures

Each PROGRAM can contain within it subordinate processes that are
declared by the keyword PROCESS. The keyword PROGRAM is used at the
highest level because processes at this level have special
properties. This also maintains compatibility with standard Pascal.

A system, program or process can contain within it procedures or
functions.

Processes and procedures look similar but, in practice, are quite
different A procedure is, logically, a part of the sequential
program that calls it, whereas a process is a separate sequential task
that executes in parallel with all the other processes in the system
including the one that calls, or STARTS it.

4.4.5 Declarations and Statements

There are two principal parts to any Pascal system, program, process,
or procedure: the Declarations, and the Statement Body.

Declarations define identifiers that can later be referred to by name
(instead of by repeating the declaration). These identifiers specify
the data that the program is to work with; the statements specify
exactly what is to be done with this data.

PROGRAM FACTORIAL;

VAR I,J.N : INTEGER; (*DECLARATIONS*)
(*DECLARE VARIABLES NAMED*)
(*I. J. N OF TYPE INTEGER*)

BEGIN (*COMPUTE FACTORIAL*) (*BODY*)
RESET(INPUT);
READ(N); (* READ IN A VALUE FOR N *)
I := 1; J := 1; (* SET I AND J TO 1 *)
WHILE I <> N DO

BEGIN (*USE I AND J TO COMPUTE *)
I := I + 1; (* FACTORIAL N *)
J := I *
END;

WRITELN(J) (* OUTPUT VALUE OF *)
END. (* FACTORIAL N *)

The declarations also specify any subordinate processes, procedures,
etc., and assign identifiers to them so that they can be referred to
in the statement body.

Pascal programs are free format; the program can be laid out in any
manner on the page. Statements for example, need not utart in a
particular column; nor are they restricted to one per line, though

J:= I*J

RESET (INPUT
READ(

=
J*

WRITELN (J)

C
0

P
U
T
E

F
M

T
C

R
L

 WHILE
(I<>N

this is usually good practice.

Pascal gives the programmer a free hand in formatting his program.
However, for readability, it is a good idea to lay out the program to
reflect its structure. This can be done by using indentation. In the
example above, the BEGIN...END compound statement depending on the
WHILE clause is indented to show that it is one level down in the
program hierarchy. In fact, the indentation reflects the appearance
of the structure diagram for the program (see Section II):

FIGURE 4-2. PROGRAM STRUCTURE
DIAGRAM

Formatted in this way. the program is much more readable and the
structure can be seen at a glance.

4.4.6 Block Structure

One of the most important features of Pascal is its block structure.
Some of the basic ideas of block structuring are discussed in Section
II.

A block is a self-contained area of program that contains both a
statement body and the declarations (type, variable, procedure, etc.)
Relating to it. A Pascal program consists of a hierarchy of blocks,
nested one within another. An Micprocessor Pascal system block, which
is a complete MPP system, contains a number of program blocks. which
in turn can contain process blocks, procedure and function blocks,
etc. The hierarchy is displayed below in the diagram in Paragraph
4.5.

The declarations made at the start of a block apply to that block and
to any blocks nested within it. This is called the scope of the
declaration. Scope can be formally defined as the range of system
text over which the declaration is valid. Identifiers cannot be
referenced outside their scope, i.e. outside the block in which they
are declared. For example, consider the following:

SYSTEM X;
<declarations> (*system declarations*)

PROGRAM A;
<declarations>

PROCEDURE P;
<declarations>
BEGIN

END;

(*program declarations*)

(*procedure declarations*)

(*Procedure body*)

PROCEDURE Q;
<declarations> (*procedure declarations*)
BEGIN

(*Procedure body*)

E▪ ND;

BEGIN
(*Program body*)

END;

PROGRAM B;
<declarations> (*program declarations*)

PROCEDURE R;
<declarations> (*procedure declarations*)
BEGIN
. (*Procedure body*)

END;

BEGIN
. (*Program body*)
•
END;

BEGIN
(*System bodv*)

END.

The declarations in PROGRAM A cannot be referenced in PROGRAM B or
PROCEDURE R, but can be referenced in both PROCEDURE P and PROCEDURE
Q. The declarations in PROCEDURE P cannot be referenced in PROCEDURE
Q or in PROGRAM A.

If a reference is made to a declaration (variable, type, procedure,
etc.) that is not in scope, the compiler will generate an error
message. Block structure and scope rules are thus powerful tools for
managing program structure. Procedure P, for example, can be written
without worrying whether it will interfere with procedure Q. A

variable can even be declared in P with the same name as a variable
declared in Q; they will be completely different variables because
they are in different areas of scope. If a variable is declared in P
with the same name as a variable declared in A, the compiler will
create a new variable with this name, and references to it in P will
always access this local definition. Where there is a possible
ambiguity, the compiler always chooses the most local declaration.

This does not mean that it is good practice to declare different
variables with the same name. But, should it happen (if, for example,
modules are written by different programmers) there is no cause for
worry. Note that in the example, both P and Q can access the
declarations made at the start of program A; the interaction with data
declared in higher-level modules needs to be clearly defined when
writing a system. This should be part of the module specification.

As well as assisting program structure, block structuring (combined
with Pascal's stack architecture) can save memory space. Data area is
not allocated to a procedure from the stack frame until it is actually
called. This means that if, say, procedure P is called followed by
procedure Q, the space taken up by the variables of procedure P is
returned to the stack when it has finished executing, and the same
memory area can be used for the variables of procedure Q. The system
only allocates data space to the routines currently executing.

A variable has an extent as well as a scope. Extent is the time
during system execution for which storage space is allocated to the
variable. Apart from dynamically allocated variables, this extent is
the duration of execution of the block in which the variable is
declared. In a concurrent system, a variable's extent continues as
long as any of the processes declared in the same block are
executing. The reason for this is that the variable is in scope in
such a process and might be referenced.

4.5 PASCAL LANGUAGE

4.5.1 Basic Rules

A Pascal system, program, or process is made up of symbols from a
finite vocabulary. The vocabulary consists of identifiers, numbers,
strings, operators and keywords. These in turn are composed of
sequences of characters from the underlying character set, which is

+ -

the letters A-Z, a-z
the digits 0-9

and the special characters:
/ " . : = $ < >) [{ #

Special symbols are used for operators and delimiters. These include:

- * / := = <> < <= >= >

Keyword symbols are reserved words with a fixed meaning; they may not
be used as identifiers. They are written as a sequence of letters and
interpreted as a single symbol.

ACCESS ELSE MOD REPEAT
AND END NIL SEMAPHORE*
ANYFILE* ESCAPE NOT SET
ARRAY FALSE OF START*
ASSERT FILE OR SYSTEM*
BEGIN FOR OTHERWISE TEXT
BOOLEAN FUNCTION OUTPUT THEN
CASE GOTO PACKED TO
CHAR IF PROCEDURE TRUE
COMMON IN PROCESS* TYPE
CONST INPUT PROGRAM UNTIL
DIV INTEGER RANDOM VAR
DO LABEL REAL WHILE
DOWNTO LONGINT RECORD WITH

* not in TIP

Identifiers are names denoting user defined or predefined entities.
An identifier consists of a letter or '$' Followed by any combination
of letters, digits, '$' Or (underscore). A lower-case letter is
treated as if it were the corresponding upper-case letter. For
example. the identifier Data Size is the same as the identifier
DATA SIZE. A maximum length is imposed by the restriction that
identifiers must not cross line boundaries so that they may not be
more than 72 characters long. All characters in an identifier are
significant. Process, routine and common names should be unique
within the first 6 characters.

Legal Identifiers:
X
$VAR
LONG IDENTIFIER
NUMBER _3
READ —

Illegal Identifiers:
ARRAY (Reserved word)
ROOTS (Cannot start with _)

7RDVAL (Cannot start with number)
MAX VALUE (Cannot contain blank)
TOTAL-SUM (Cannot contain -)

Some identifiers are standard, that is they are predefined with a
given meaning They can be redefined by the user, in which case the
standard meaning no longer applies. For example, if the standard
routine name READ is redefined, the standard routine READ cannot be

A comment is any sequence of characters beginning with { or (* and
ending with } or *) (except within a string). A remark is any
seauence of characters beginning with " and extending to the end of
the line (except within a string). Comments and remarks are ignored
by the compiler, and can be used to annotate program text.

4.5.2 Systems

In Microprocessor Pascal, a system is declared as follows (the full
syntax definition is given in the Microprocessor Pascal System User's
Manual.

SYSTEM <identifier>;

<system data declarations>;

<system routine declarations>;

<process body> .

The <system data declarations> declare global constants that are
common to the whole system. The <system routine declarations> declare
the programs and procedures that make up the system. The <process
body> consists of the statements that make up the 'main program' of
the system (the first process to be executed). In a concurrent
system. this 'main program' will probably contain (besides
initialization statements) a series of START statements to set up the
various concurrent processes of which the system is composed. For
example:

A program (Level 1 process) declaration is as follows:

PROGRAM <identifier> <program parameters>;

<program data declarations>;

<program routine declarations>;

<process body>.

The <program parameters> are optional. The <program data
declarations> declare data objects local to the program. The <program
routine declarations> can contain process, procedure or function
declarations.

A process declaration is:

PROCESS <identifier> <process parameters>;

<process data declarations>

<process routine declarations>

<process body>;

The <process routine declarations> can declare subordinate processes,
procedures, and functions.

Procedures are declared as follows:

PROCEDURE <identifier> <procedure parameters>;

<procedure data declarations>

<procedure and function declarations>

<compound statement›;

A procedure may declare subordinate procedures and functions, but not
processes. The compound statement (described in Section 4.12.1) is
simply a list of statements which describe the action of the
procedure. Syntactically, a <process body> is also a compound
statement.

Functions are the same as procedures, except that they return a single
value of a specified type. The type is defined in the function
header:

FUNCTION <identifier> <function parameters> : <type identifier›;

Types are discussed in the following sections.

Micprocessor Pascal regards a single sequential program as a system
with only one program. The SYSTEM declaration can be left out, and
the program declared as:

PROGRAM <identifier>;
<declarations>
<program body> .

(The syntax given here is not complete: a full syntax definition is
given in the Micprocessor Pascal System User's Manual, and is included
in the Reference Section of this chapter.)

The declarations hierarchy is represented in the following diagram:

SYSTEM

PROGRAMS PROCEDURES FUNCTIONS

\\\ ///7 / \
PROCESSES PROCEDURES FUNCTIONS PROCEDURES FUNCTIONS PROCEDURES FUNCTIONS

/\ /\

PROCESSES PROCEDURES FUNCTIONS
/I\ /\ /\

ETC

FIGURE 4-3. DECLARATIONS

HEIRARCHY

The hierarchy for a sequential program which does not allow concurrent
processes is represented as follows:

PROGRAM

\ / \
ETC / \

PROCEDURES FUNCTIONS

PROCEDURES FUNCTIONS PROCEDURES FUNCTIONS

ETC

FIGURE 4-4. SEQUENTIAL PROGRAM
NOT SUPPORTING CONCURRENCY

4.5.3 Data Declaration•

The data declarations section of a program consists of four separate
parts:

<constant declaration *tart>
<type declaration part>
<variable declaration part>
<common declaration part>

The <constant declaration part> allows an identifier to be used as a
synonym for a constant. For example:

CONST MAX = 100;
ASTERISK = '*';
ONE HALF = 0.5;

Constant declarations are described in detail in the Micprocessor
Pascal User's Manual.

Type and variable declarations are described below. The COMMON
declaration allows variables to be shared between modules; it is
described in the Microprocessor Pascal User's Manual.

4.5.4 Type Declarations

The type concept allows the user to group data according to its use.
Types are introduced in Section II.

A data type declaration defines the set of values a variable of the
type specified may assume and the set of operations that may be
performed on these values. Each variable is associated with one and
only one type. The simple types consist of the standard types
INTEGER, REAL, BOOLEAN and CHAR; plus the user-defined scalar or or
subrange types. Structured types are made up of component types
structured according to accepted methods. Structured types are
declared by specifying the types of the components and the method of
structuring. The structuring methods available consist of arrays,
records, sets, pointers, semaphores (not TIP) and files.

A type declaration introduces an identifier as the name of a new data
type. It can later be used to refer to that type; for example, to
define variables, or to define structured types in which that type is
included. The form of a type declaration is:

TYPE <type declaration list>

where <type declaration list> is one or more of the following:

<identifier> = <type definition›;

For example:

TYPE VECTOR = ARRAY [1..10] OF REAL;
DAYS = (MON,TUE,WED,THU,FRI,SAT,SUN);
DIGITS = '0'..'9';
COMPLEX = RECORD

RE,IM : REAL;
END;

The various forms of <type definition> are described in subsequent
sections.

The TYPE declaration does not declare any actual variables (storage
locations); this is accomplished in the variable (VAR) declaration
(described in section 4.8

4.5.5 Simple Types

4.5.5.1 Integer and Longint. A value of type INTEGER is a whole
number in the range -32768 to 32767 (signed 16-bit quantity). A value
of type LONGINT ranges from -2147483648 to 2147483647 (signed 32-bit
quantity).

The basic operators defined for INTEGER and LONGINT operands are:

unary plus or add
negate or subtract
multiply

DIV divide and truncate result
MOD modulus A MOD X = A - ((A DIV X) * X)

The operator/ (divide) can be applied to integers, but always
produces a REAL result. The relational operators =, <>, <, >, <=, >=
can be applied to integers and produce a BOOLEAN result. Standard
functions applying to INTEGER and LONGINT are described in the
Reference Section.

4.5.5.2 Boolean. A value of type BOOLEAN is one of the logical
values TRUE or FALSE. The following operators are defined for BOOLEAN
operands and yield BOOLEAN results:

NOT logical negation
AND logical conjunction
OR logical disjunction

TRUE and FALSE are predeclared keywords such that FALSE < TRUE. Thus
the relational operators can be used with BOOLEAN operands to provide
additional operations. For example:

equivalence
<> exclusive OR

4.5.5.3 CHAR. Values of type CHAR are ordered according to their
ASCII value. A character constant can be written either as a single
character between single quotes, or by specifying its hex value,
preceded by '['. For example,

'A'
'[OD'

4.5.5.4 Enumeration. INTEGER, LONGINT, BOOLEAN and CHAR are special
cases of the enumeration type. An enumeration type is any simple type
except REAL. The characteristics of an enumeration type are:

1) There is a distinct set of values which a variable of
that type can take.

2) These values have a unique linear order in which each
value (except the first and last) has a single
predecessor and a single successor.

The integers
-32768,-32767....-1,0.1,...32766.32767

Clearly follow these rules; so do the characters, which have a unique
order (A,B,C, etc) defined by their ASCII representation. However,
the user can also define his own enumeration types in a TYPE
declaration simply by specifying a type name and an ordered set of
values:

TYPE DAYS = (MON,TUE,WED,THU,FRI,SAT,SUN);

The values are represented by identifiers which must be unique and
which can be regarded as primitive values (such as '7' or '125'). It
is not necessary to translate them into numbers, or know how they are
represented within the computer, any more than it is necessary to work
out the internal-bit pattern used to represent '125'. 'MON', 'TUE',
etc- are values in their own right.

These user defined types are called scalar types. The relational
operators (>, <, etc.) are defined for all enumeration types. The
BOOLEAN expression MON < WED is TRUE because the values form an
ordered set in which MON precedes WED. However, the arithmetic
operators (+, -, etc.) are only defined for the standard types INTEGER
and LONGINT (and REAL); it is meaningless to write MON + WED. The
following standard functions apply to enumeration types:

SUCC(X) the successor of X

PRED(X) the predecessor of X

ORD(X) the integer ordinal value of X within the set
of values (not defined for INTEGER or LONGINT)

e.g., SUCC(WED) = THU, PRED(WED) = TUE, ORD(WED) = 3.

Scalar types are useful for counting purposes for example, to index
into an array or control the number of iterations of a FOR loop:

FOR DAY := MON TO FRI DO
TOTAL_TAKINGS := TOTAL_TAKINGS + TAKINGS[DAY];

The variable DAY is declared to be of type DAYS; the array TAKINGS is
declared to be indexed by type DAYS.

4.5.5.5 Subrange. A type can be defined as a subrange of any
previously defined enumeration type by specifying the smallest and
largest values in the subrange:

TYPE WEEKDAYS = MON..FRI;
ARRAY INDEX = 1..25;

This is a useful feature, because a compiler option can be used to
insert run-time checks to ensure variables do not exceed their
specified subrange. This can be a great help in debugging. Types can
also be used in declaring arrays, for example:

VAR TABLE : ARRAY [ARRAY_INDEX] OF INTEGER;
SICKDAYS : ARRAY [DAYS] OF BOOLEAN;

This performs the double function of specifying the size of the array.
and the type of the index variable. Constructs such as this make it
easy to change the size of an array at a late stage in development,
simply by altering one or two TYPE statements. (Arrays and variable
declarations are discussed in this Chapter.) Section 4.8.)

4.5.5.6 REAL. The type REAL can be used to represent real values
with from 6 to 7 decimal digits of precision. The range of absolute
values that can be represented is approximately 1.0E-78 through
1.0E75.

The following operators accept operands of type REAL and yield a REAL
result:

unary plus or add
negate or subtract
multiply
divide

The relational operators are defined for REAL operands and yield a
BOOLEAN result. The standard functions TRUNC, ROUND, LTRUNC, LROUND
will truncate or round a REAL value to give an INTEGER or LONGINT
result.

4.5.6 Structured Types.

Structured types can be constructed from other types which are called
components. The components can be structured to form an array,
record, set, file, pointer, or semaphore.

4.5.6.1 Array Type. An array type consists of a group of components
which are all of the same type. The form of an array type definition
is:

ARRAY [<index type list>] OF <component type>

The <component type> can be any type except FILE. This means that it
is possible to have arrays of arrays, records or any other structured
type. The <index type list> is a list of <index type>s separated by
commas. These can be either explicit subrange definitions (such as
1..5) or the name of a suitable enumeration type (such as DAYS). The
number of <index type>s in the Oellaration determines the number of
dimensions of the arra.% There is no limit to the number of
dimensions an arra., may have. Each <index type> definition determines
both the size of that dimension of the array, and the type of the
variable that will be used to index it. An <index type> can be any
enumeration type; the types of different dimensions need not be the
same. For example:

VAR HOLIDAYS : ARRAY [1..52, DAYS] OF BOOLEAN

An exactly equivalent definition is:

VAR HOLIDAYS : ARRAY [1..52] OF
ARRAY [DAYS] OF BOOLEAN

The assignment operator can be used between arrays of compatible
types. For example:

VAR A,B : ARRAY [1..20, 25..50, 1..2];
•

A := B;

This causes every element in array A to be assigned the value of the
corresponding element in array B.

consists of
called fields.
. A field of a
) Except file

a number of
Each field in a
record can be of
. The form of a

4.5.6-2 Record Type. A record type
components of possibly different types
record type is given a distinct name
any type (including array, record, etc.
record type definition is:

RECORD <field list> END

A <field list> is an arbitrary number of <record section>s separated

by semicolons. Each <record section> is of the form:

<field identifier list> : <type>

where <field identifier list> is a list of field identifiers separated
by commas. For example:

TYPE COMPLEX = RECORD
RE, IM : REAL
END;

DATE = RECORD
MONTH :

DAY
YEAR :
END;

(JAN,FEB,MAR,APR.MAY,JUN,JUL,
AUG,SEP,OCT,NOV,DEC);

1..31;
INTEGER

The assignment operator (:=' can be applied to records of exactly the
same type.

A field of a record is referenced by specifying the name of the record
variable and the field name separated by a period. For example:

VAR START, FINISH : DATE;
Cl, C2, C3 : COMPLEX;

START.DAY := 20;
FINISH.YEAR := 1978;

Cl.RE := 3.4;
C3.IM := 5.8;

and
START := FINISH;

which is equivalent to

START.MONTH := FINISH.MONTH;
START.DAY := FINISH.DAY;
START.YEAR := FINISH.YEAR;

Pascal also allows record variants which means that part of a record
can be interpreted in more than one way. This allows, for example, a
personnel record for a college to contain different information
(different fields) according to whether It described a student or a
member of staff. Record variants are described in detail in the
Microprocessor Pascal System User's Guide.

4.5.6.3 Set Type. Pascal allows a set type where the possible values
are subsets of the base type which can be any enumeration type. For
example, with the base type 1..5, possible values of a set variable
include:

[1,2,3]
[2,3,5]
[1,2,3,4,5]
] (the empty set)

A full range of operators is defined for sets (union, intersection,
inclusion. etc.) The set type is described in detail in the
Microprocessor Pascal System User's Guide.

4.5.6.4 File Type. A file type is a structure which consists of a
sequence of components (of unspecified length) which are all of the
same type. A file is usually associated with a mass storage medium,
such as tape or disc. However, this is not necessarily the case in
Microprocessor Pascal rile variables can be used as a means of
communicating between concurrent processes. One process can write
information to a logical file and another can read it. The
Microprocessor Pascal Executive or Microprocessor Interpretive
Executive perform the file management without involving any external
storage devices.

The form of a file type definition is:

FILE OF <component type>
or

RANDOM FILE OF <component type>
or

TEXT

The component type of a file can be any type except pointer or file.
The number of components, that is the length of the file, is not
specified and can grow to any size, depending on the storage medium
with which the file is associated.

The prefix RANDOM denotes a random file in which components are
accessible by their component number. This numbering is defined to be
the natural ordering of the sequence of components with the first
component being number zero.

A TEXT file is a sequential file of type CHAR which is divided into
lines by end-of-line markers. INPUT and OUTPUT are standard
predeclared TEXT files.

TYPE REC = RECORD
NAME : PACKED ARRAY [1..15] OF
ID NUM : INTEGER
END;

VAR F : FILE OF INTEGER;
EMPLOYEE : RANDOM FILE OF REC;
TEMP : TEXT;

Standard procedures and functions (READ, WRITE, etc.) are provided for
file manipulation.

4.5.6.5 Pointer Type. Variables may be referenced indirectly by
means of a pointer which can be thought of as the address of a
variable. The form of a pointer type definition is:

@<type identifier>

A pointer variable can only point to the type for which it is
declared. This goes a long way to 'taming' the potentially dangerous
pointer type, which (in languages such as PL1) is allowed to roam
freely throughout memory, and can cause chaos if the programmer makes
a small error in manipulating it. (In Pascal it, is always possible
to use the type transfer function; but the programmer is obliged to
tell the compiler that he is doing something risky.)

The <type identifier> need not be defined before the pointer type is
defined, provided it is declared later in the declaration section.
This is a forward type declaration, which is only permitted with
pointer types. All pointer types include the predefined value NIL,
which points to no element at all.

TYPE PTR = @LIST;
LIST = RECORD

VALUE : REAL;
LOC : 0..FF
END;

PTR is declared to "point to the type LIST".

The operators applying to pointer operands with compatible types are:

assignment
equal (TRUE if the operands point to the same address)

<> not equal

Pointers allow storage to be dynamically allocated from a storage area
called the heap through the use of star dard proced ure NEW. Pointers
can also be used to construct data structures such as linked lists and
binary trees. A linked list is easily created by defining a record
which contains one field that is a pointer to the next record.
Similarly, a binary tree of records can be constructed by defining a
'right link' and 'left link' pointer within the record.

4.5.6.6 Packed Types. The symbol PACKED may precede a record or
array type definition. If a structure is declared to be PACKED,
several unstructured components of the structure are stored in one
word if possible. Packing may economize the storage requirements of a
data structure but at the expense of efficiency of access of the
components.

One example of a packed array is a string defined to be:

PACKED ARRAY (<index type>] OF CHAR

Characters are stored one per byte.

Details of the packing algorithm are presented in the Microprocessor
Pascal User's Manual.

4.5.7 Type Compatibility and Transfer

Pascal has strict rules for compatibility between types. In general,
incompatible types cannot appear on opposite sides of an assignment
statement, or as operands of the same operator.

Two types are distinct if they are explicitly or implicitly
in different parts of the program. A type is explicitly
using a TYPE declaration. A type may be implicitly declared
declaration or in other places where a name is not associated
type (e.g., in specifying an array index type).

declared
declared
in a VAR
with the

Two types are

1) They

2) Both

3) Both

4) Both

5) Both

6) Both

compatible if one of the following is true:

identical types

subranges of the same enumeration type

string types with the same length

set types with compatible base types

file types with compatible element types.

are

are

are

are

are

are types pointer types which point to identical

Arrays or records are compatible only if they are declared to be of
the exact same type.

There is no implicit conversion of types except from INTEGER and
LONGINT to REAL and between INTEGER and LONGINT.

The strict compatibility rules of Pascal give the programmer a means
of checking that he is not using a variable in the wrong place (for
example, using the wrong variable to index an array; or specifying the
indices of a multi-dimensional array in the wrong way). It is
possible to completely ignore this facility by (for instance) not
declaring any new types and specifying all array indices as unnamed
subranges of integer. However, intelligent use of the TYPE concept
can greatly reduce the possibility of errors, and make a program more
readable and easier to change-

It is possible to override the compatibility check by using the type
transfer facility, which temporarily changes the type of a variable.
The form of a type transfer variable is:

<variable>::<type identifier>

e.g., PTR::INTEGER

The variable is temporarily treated as if it were the type specified
after the double colon. No conversion is performed; only the apparent
type of the variable is altered. Use of this facility transfers
responsibility from the compiler to the programmer, therefore he needs
to be sure he knows what he is doing.

It is also possible to override the type structure by using variants
in record structures without checking the tag fields (see the
Micprocessor Pascal User's Manual).

4.5.8 Variables

Variables are used to reference areas of storage within a module. A
variable declaration associates with an identifier a location which
can hold a value of a specified type. The form of a variable
declaration is:

VAR <variable declaration list>

where <variable declaration list> is one or more of the following:

<identifier list> : <type definition>;

Where <identifier list> is a list of identifiers separated by commas.
A <type definition> can be a standard type (INTEGER, REAL, etc.), the
Name of a type defined in a type declaration statement, or a new type
definition taking any of the forms allowed in a type declaration. In
the last case, the new type will not have any name associated with
it. For example:

VAR NYEARS : INTEGER;
AMOUNT,VALUE,RATE : REAL;
TEN YEARS : VECTOR;
PROFIT : ARRAY [1..10] OF BOOLEAN;

'Type VECTOR was defined in the example earlier in this chapter).

A variable can either be a simple identifier that references the
entire variable, or may be a qualified variable which is used to
reference part of a structured variable.

4.5.8.1 Indexed Variable. An indexed variable is used to reference
an element of an array. Its form is:

<variable> [<expression>,<expression>, ,<expression>]

e.g., VECTOR [5]

The expressions are used to subscript into each of the n declared
dimensions. If an array variable is declared to have n dimensions,
then the indexed variable may have from 1 to n subscript expressions.
For example, if an array is declared

A : ARRAY [1..10 1..20] OF INTEGER

then

A [5]

is a legal indexed variable; it is an

ARRAY [1..20] OF INTEGER

This array can itself be indexed, e.g.,

A [5] [6]

which is exactly equivalent to

A [5, 6]

The types of the subscript expression must correspond exactly with the
declared index types. There is a compiler option to check the value
of a subscript to make sure it is within the declared bounds.

4.5.8.2 Record Variable

A record variable is used to reference a field within a record. Its
form is:

<variable>.<field identifier>

where <field identifier> is one of the fields declared in the record
type definition.

PUMP_ONE.GRADE
Cl.RE
START.DAY

Any record can be qualified; any array can be subscripted. Since it
is possible to construct arrays of records and records containing
arrays, variables such as

ARR [5] . FIELD [4]

are possible. Thus:

ARR is an array
ARR [5] is a record
ARR 15] . FIELD is an array

ARR [5] . FIELD [4] is an element

Very powerful and complex data structures can be built in this way.

4.5.8.3 Pointer Variable

A pointer variable is used to reference the variable pointed to by
a pointer type. Its form is:

<variable>@

Where <variable> is a pointer type. The value of a pointer variable
is undefined until either a value is assigned to it or a NEW is
performed on it to allocate an area of dynamic storage. The constant
NIL can be assigned to any pointer variable in order to have it point
to nothing at all. A compiler option (CKPTR) is available to check if
a reference is made to a NIL pointer.

4.5.9 Expressions

Expressions combine the values of variables and constants using
operators to generate new values. Expressions consist of operands,
operators, and function calls.

4.5.9.1 Operands. Operands reference the values of constants or
variables. An operand may be one of the following:

<integer constant>
<real constant>
<string constant>
<character constant>
<constant identifier>
NIL
<set>
<variable>
<function call>

4.5.9.2 Operators. An operator specifies an operation that is to be
performed on one or two operands. An operator can only be applied to
two operands if their types are compatible. Some operators accept
mixed mode operands; if an INTEGER value is added to a REAL, the
INTEGER is first converted to REAL and then added to give a REAL
result.

Operators have a precedence specifying the order of their evaluation
in a complex expression.

The operators are:

Group 1 : Multiplying operators:

• multiplication; set intersection
real division

DIV integer division (divide and truncate)
MOD modulus A MOD X = A - ((A DIV X) * X)

Group 2 : Adding operators:

• addition; unary plus; set union
- subtraction; unary minus; set difference

Group 3 : Relational operators:

• equal
<> not equal
• less than; proper set inclusion
• greater than; proper set inclusion
<= less than or equal; set inclusion
>= greater than or equal; set inclusion
IN set membership

Logical operators:

Group 4: NOT Negation
Group 5: AND Conjunction
Group 6: OR Disjunction

The list of operators is in order of precedence with groups of higher
precedence listed first. In an expresssion, operators of highest
precedence are evaluated first; operators of equal precedence are
evaluated from left to right within the expression. Parentheses may
be used to alter the order of evaluation.

Examples:
Expression Value
2 + 3 * 5 17
15 DIV 4 * 4 12
NOT (5 + 5 >= 20) TRUE
6 + 6 DIV 3 8
3 < 5 OR 2>= 6 AND 1 > 2 TRUE

In a BOOLEAN expression of the form:

X AND Y

if X is false, Y is not evaluated and the value of the expression is
FALSE. Similarly, in a BOOLEAN expression of the form:

X OR Y

if X is TRUE, Y is not evaluated and the value of the expression is
TRUE. This is called short circuit evaluation.

4.5.9.3 Function Calls. A function is a subroutine that returns a
single value of a specific type. It is invoked by a function call:

<function identifier> <parameters>

If the function has parameters, these are of the form

(<actual parameter>, ,<actual parameter>)

where each actual parameter is a variable or expression. The actual
parameters must match the types of the formal parameters declared with
the function.

4.5.10 SIMPLE STATEMENTS

Simple statements used by Pascal are described below.

4.5.10.1 Assignment Statement. The assignment statement specifies an
expression that is to be evaluated and assigned to a variable. Its
general form is:

<variable> := <expression>

e.g., x := 5

The symbol ':=' can be read 'becomes equal to'. The type of
<expression> must be compatible with the type of <variable>, except
that an INTEGER expression is automatically converted to LONGINT or
REAL, and a LONGINT expression is automatically converted to INTEGER
or REAL. Direct assignments can be made to variables of any type
(including records, arrays, etc.) except files (and semaphores in

Microprocessor Pascal).

4.5.10.2 Procedure Statement. A procedure statement invokes the
specified procedure. Its general form is:

<procedure name> (<parameter list>)
or

<procedure name>

e.g.,CALCULATE_MEAV (A, 5, 4*X)

(There is no keyword corresponding to CALL in other languages)

Parameters must match in number and type with those declared with the
procedure.

4.5.10.3 START Statement (Microprocessor Pascal only). A START
statement is similar to the procedure statement except that it invokes
the activation of a specified program or process to execute
in parallel with the system.

START <identifier> (<parameter list>)
Or

START <identifier>

Where <identifier> is a <program name> or a <process name>.

A procedure statement invokes the procedure as part of the current
sequential program; a START statement creates the new process as a
separate site of execution that will be provided its own share of
processing time by the executive in parallel with the current
program. Once a process has been STARTed, the initiating program
effectively loses control over it; except via the synchronization
primitives such as semaphores and interprocess files. The started
process becomes a separate entity.

4.5.10.4 ESCAPE Statement. The ESCAPE statement is a 'structured
jump'. It is used to terminate execution of a structured statement,
procedure or program (or process in Microprocessor Pascal). It allows
an orderly exit to be made through the normal exit point of the
structure. Its form is:

ESCAPE <identifier>

Where <identifier> may be an escape label, procedure name, program
name (or process name).

An escape label, followed by a colon, may prefix any structured
statement. Each escape label is implicitly declared by its appearance
in the program, and can only be referenced within the structured
statement it precedes. Unlike GOTO labels, ESCAPE labels need not be

declared at the start of the program.

LOOP: WHILE I <= N DO
BEGIN
IF EOF THEN ESCAPE LOOP;
READ (VAL);
SUM := SUM + VAL;
I := I + 1
END;

4.5.10.5 GOTO Statement. The GOTO statement is an unstructured jump:

GOTO <label>

It transfers system execution directly to the statement having the
specified label.

A statement label is an unsigned integer which must be declared in a
LABEL declaration at the start of the block in which it is used.

PROGRAM SAMPLE;
LABEL 2;
•
•
BEGIN

2 : I := I + 1;
IF VECTOR [I] < 100 THEN GOTO 2;

•
END.

GOTO statements should be used as little as possible (if at all)
because they tend to lead to 'spaghetti code' that is difficult to
follow and prone to error. In some languages (e.g. FORTRAN) GOTO'S
are necessary because the constructs needed to implement control
structures are not complete. This is not the case in Pascal, which
has a complete set of sequence, selection and iteration constructs
that are sufficient to implement any program algorithm. In almost
every case in which a GOTO may be used, an ESCAPE statement can be
used instead, or the program can be restructured to eliminate the need
for any jump at all. This will result in clearer code.

4.5.10.6 ASSERT Statement. The ASSERT statement allows the
programmer to check, using a BOOLEAN expression, a condition that
should be true at a particular point in the program. Its form is:

ASSERT <expression>

Where <expression> must be of type BOOLEAN.

For example, if it is known that a particular variable should never
exceed a value of 100, the programmer can write

ASSERT X <= 100

at a suitable point in the program. If the BOOLEAN expression is not
TRUE when the ASSERT statement is executed a run-time error occurs.

The ASSERT statement is particularly valuable for system debugging.
Code for ASSERT statements is controlled by a compiler option. When
the program is debugged the ASSERT option can be turned off to
prevent ASSERT code being generated.

4.5.11 STRUCTURED STATEMENTS

Pascal provides structured statements that directly implement the
design techniques introduced earlier in this book (see Subsection 2.6,
'Algorithms'). These statements have a single entry and exit points,
which means that they automatically produce hierarchical, nested
code. There are no jumps to confuse the programmer and upset the
structure.

Pascal does provide a GOTO instruction; but it is purposely made
difficult to use. All labels must be declared at the beginning of the
program, which means that any departures from structured code are
clearly visible.

4.5.11.1 Compound Statement. A compound statement is a sequence of
statements enclosed by the keywords BEGIN and END. A compound
statement is treated as a single statement.

BEGIN <statement list> END

where <statement list> is a list of Pascal statements, simple or
structured, separated by semicolons. The statements making up the
list are executed one by one in the order that they appear, but the
entire list is treated as a single statement.

BEGIN
EXCHANGE := Xl;
X1 := X2;
X2 := EXCHANGE
END

The semicolon is used to separate Pascal
any individual statement. Therefore
following the last statement in the
compiler simply assumes that there is an
semicolon and END.

statements and is not part of
a semicolon is not needed
list. If one does occur, the
empty statement between the

The empty statement is quite legal in Pascal and can occur in many
places without causing any harm. However, the presence of an extra
semicolon can sometimes change the meaning of a statement:

IF A = B
THEN

X := 1;
ELSE

Y := 1

The IF statement is terminated prematurely by the semicolon; ELSE is
treated as a new statement and will be flagged as an error (because
there cannot be a statement beginning with the keyword ELSE.

This particular error is easy to find because it will be picked up by
the compiler Other cases of extra or missing semicolons may be more
subtle; code may be generated that is logically wrong but
syntactically correct, so that the compiler will not find it.
Therefore it is as well to know exactly where semicolons are needed
and why.

The compound statement implements the sequence construct described in
Chapter II.

4.5.11.2 IF Statement. The IF statement specifies execution of one
of two alternative statements depending on a condition. The second
alternative may be the empty statement. The form of the IF statement
is:

IF <expression> THEN <statement>
Or

IF <expression> THEN <statement> ELSE <statement>

where <expression> must be of type BOOLEAN.

If the expression evaluates to TRUE the first <statement> alternative,
the THEN clause, is executed; otherwise the second <statement>
alternative, the ELSE clause, is executed if it is present. The
<statement>s can be any Pascal statements, including compound
statements and other IF statements.

Examples:
IF COUNT >= 0 AND COUNT <= LENGTH

THEN READ (X[I]);

IF X < Y THEN MAX := Y
ELSE MAX := X;

In nested IF statements, there is a possible ambiguity
ELSE clauses. This is resolved by always associated an
most recent unmatched THEN.

IF A > B THEN IF B > C THEN MIN := C
ELSE MIN := B;

is equivalent to:

IF A > B THEN
BEGIN
IF B > C THEN MIN := C

ELSE MIN := B
END;

with regard to
ELSE with the

In cases such as this, it is wise to use explicit BEGIN...ENDs to make
the logical structure perfectly clear.

4.5.11.3 CASE Statement. The CASE statement is an
IF statement allowing more than two alternatives. A
allows a statement to be selected for execution
evaluation of an expression at run time. The form of
is:

CASE <expression> OF
<case label list> : <statement>;

. . .
<case label list> : <statement>
OTHERWISE <statement list>

END

extension of the
CASE statement
depending on the
a CASE statement

where <expression> must be of an enumeration type. <case label list>
is a list of one or more <case label>s separated by commas. The <case
label list> : <statement> combination may be repeated any number of
times within the CASE statement; each occurence must be separated from
the previous one by a semicolon. The OTHERWISE clause is optional.

A <case label> is either a constant value or a subrange value of the
same enumeration type as the <expression- . Each <case label list>
specifies the list of values of <expression> for which the
corresponding <statement> alternative will be executed.

The value of <expression> at run time is used as the selector into the
CASE statement. If the <case label> indicated by the selector is
present in the CASE statement. the corresponding <statement> is
executed; otherwise the <statement list> following the OTHERWISE
clause is executed. If the selected <case label> is not present and
there is no OTHERWISE clause, a run-time error will occur.

Examples:
CASE NUM OF

0..3.8 : TOTAL := TOTAL + NUM;
4,6,7 : TOTAL := TOTAL - NUM;
5,9 : TOTAL := TOTAL DIV 2

END;

CASE ALFA OF
'A'.."M' : CH := SUCC(ALFA);
'N'..'Z' : CH := PRED'ALFA)
OTHERWISE

WRITELN('NOT IN ALPHABET');
INT := ORD(ALFA)

END;

The IF and CASE statements implement the selection construct described
in Section 2 6.

4.5.11.4 FOR Statement. The FOR statement provides the repeated
execution of a given statement for a progression of values that are
assigned to the control variable of the FOR statement. This statement
should be used if the number of repetitions required is known before
the statement is executed. The form of the FOR statement is one of
the following:

FOR <identifier> := <initial value> TO <final value>
DO <statement>

or
FOR <identifier> := <initial value> DOWNTO <final value>

DO <statement>

where <identifier> is the control variable, and <initial value> and
<final value> are of the same enumeration type which must not be a set
type.

The control variable is implicitly declared by its appearance in the
FOR statement, and therefore may only be referenced within the FOR
statement. If a variable of the same name has previously been
declared, that variable will be temporarily inaccessible within the
FOR statement. The value of the control variable may not be changed
within the FOR statement.

The control variable is assigned the <initial value> prior to the
first execution of the <statemen->. If the <initial value> is greater
(less) than the final value in the TO (DOWNTO) clause, the <statement>
is never executed. Otherwise, after each execution of the <statement>
the control variable is incremented (decremented) by one until the
value of the control variable is greater (less) than the <final
value>. Both <initial value> and <final value> are only evaluated

once on entering the FOR statement, so that the total number of
repetitions is determined at that time.

Examples:
FOR I := N DOWNTO 1 DO

SUM := SUM + A[I];

FOR DAY := MON TO FRI DO
BEGIN
READ(HRS, RATE);
PAYIDAY) := RATE * HRS
END;

4.5.11.5 WHILE Statement. The WHILE statement allows for the
repeated execution of a given statement as long as a specified
condition remains true. The form of the WHILE statement is:

WHILE <expression> DO <statement>

where <expression> is of type BOOLEAN.

<expression> is evaluated before each execution of <statement>. If
the <expression> is false initially, <statement> is not executed at
all; otherwise it is executed repeatedly as long as <expression>
evaluates to true.

The WHILE statement is used where the number of repetitions cannot
easily be predicted in advance. For example, <expression> might
represent the state of an external input.

Examples:
I := 1;
WHILE I <= MAX DO

BEGIN
VALUE := AMT[I] + TAX[I+2];
I := I + 1
END;

There is an alternative form of WHILE statement called the
REPEAT...UNTIL:

REPEAT
<statement list>
UNTIL <expression>

where <expression> is BOOLEAN.

The difference is that <expression> is evaluated after each execution
of <statement list>; so that even if it is false <statement list> is
always executed at least once.

It is a good idea to standardize either on WHILE or REPEAT to avoid
confusion on what happens when <expression> is false. In general, the
WHILE construct is more flexible because it includes the important
special case of zero iterations. REPEAT....UNTIL can then be used as
an optimization technique for the rare cases when an action must
always be performed at least once.

The structure diagram iteration symbol is intended to be a WHILE, and
is best kept as such. A REPEAT....UNTIL construct can then be written
explicitly as:

FIGURE 4-5. REPEAT UNTIL CONSTRUCT

This is often a truer reflection of the situation, because in a case
like this there is usually something special associated with the first
iteration.

With the sequence, selection and iteration constructs described,
Pascal programs can be written directly from the software design:

KWHIL
COND

BEGIN
A;

WHILE CONDDO
BEGIN
F COND THEN

B
ELSE

C•
D;

F CONO THEN
E

ELSE
BEGIN
F;
G
END

END

END

FIGURE 4-6. PASCAL PROGRAM

If the Pascal code is indented to reflect the structure, there is a
strong visual resemblance between the program and the structure
diagram, which can be used as a check.

4.5.12 File Manipulation

The standard procedures READ and WRITE are provided for input from and
output to files. In addition, the procedures READLN and WRITELN (read
and write line) apply to text files. These are described in full in
the Microprocessor Pascal System User's Manual.

4.5.13 Standard Routines

Pascal provides a number of standard procedures and functions, of
which a list is provided in the Reference Section.

4.5.14 Dynamic Storage Allocation

Dynamic memory areas referred to as heap packets may be allocated or
deallocated during program execution through use of the standard
procedures NEW and DISPOSE. These are described in the Micprocessor
Pascal System User's Guide.

4.5.15 CRU I/O

Pascal supports direct 9900 CRU I/O (see Section VI) with the
following standard procedures:

CRUBASE (BASE)
LDCR (WIDTH, VALUE)
SBO (DISP)
SBZ (DISP)
STCR (WIDTH, VALUE)

and the BOOLEAN function:

TB (DISP)

These are described in detail in the MPP User's Guide.

4.6 CONCURRENCY

The microprocessor executive and microprocessor interpretive executive
(as well as the interactive Host Debugger provide for concurrent
execution of a multiple-process system. This section describes some
of the functions performed by the executive, and also the mechanisms
provided for synchronization and communication between processes.

4.6.1 Processes

System, program and process declarations were described earlier in
this chapter. When a system is executed, the system <process body> is
automatically started- All other processes, including programs, must

be explicitly started using the START statement. The system <process
body> therefore usually contains a series of START statements. When a
process is started, stack space is allocated to it from the starter's
own stack. The amount of stack space to be allocated to a process is
set using the concurrent characteristic

(*1 stacksize = required_stack_size *)

The concurrent characteristics are part of the process declaration.

A process's execution is terminated when it runs to completion or by
using the run-time support routine P$ABORT to abort it.

A process can be in one of three states:

1) Ready - the process is able to run but there is a
higher priority processes currently executing.

2) Active - the process is being executed. Under
Microprocessor Pascal, the active process (there can
only be one) is always the one with the highest
priority.

3) Blocked - the process is suspended (waiting for a
signal from another process, or perhaps from an
interrupt) and unable to run until the event has
occurred.

4.6.2 Process Record

Each process has a unique process record. This is used by the
executive to access information concerning a particular process (where
its stack is located, its identity, its priority, etc.). The process
record is used for storing its volatile environment: display, program
counter (PC), workspace pointer (WP), and status register (ST). (For
an explanation of PC, WP and ST see Chapter VI.)

The display is a 16-word area containing addresses of the stack frames
that can be accessed by the currently executing routine. The display
is a 'short cut' means of access to remote stack frames that is
quicker than tracing back through the stack frame linkage.

4.6.3 Semaphores

Processes are independent. However, it is often necessary to
synchronize their actions. The simplest way of doing this is via the
semaphore and its primitive operations wait and signal. Until they
have completed, nothing must access the semaphore, the queues they
operate on, or the operations themselves. This indivisibility is
assured by setting the interrupt mask to zero on entry to the
routines, and then resetting it back to its previous value on exiting
them.) The basic idea of a semaphore is described below-

The semaphore is considered to be so fundamental to process
synchronization that Micprocessor Pascal predefines it as a type
structure composed of two elements: a non-negative counter of
unserviced events and a queue (possibly empty) of suspended
processes. The queue uses First In First Out (FIFO) ordering.

SIGNAL : Increments the counter if the semaphore queue is
empty, otherwise it activates the first process in the
queue. (The process is removed from the semaphore
queue and reinserted into the scheduling queue.)

WAIT : Decrements the counter if it is non-zero, otherwise
the issuing process (the currently active process) is
suspended. (The process is removed from the scheduling
queue and inserted into the semaphore queue.)

Before a semaphore can be used, it must first be initialized.
performed using the INITSEMAPHORE routine.

A variable of type SEMAPHORE cannot be changed directly by a
program. It can only be accessed via the EXTERNAL run-time
semaphore routines When declaring these external routines it
necessary to declare the following:

This is

user's
support
is also

TYPE semastate = (awaited,zero,signaled);

The Micprocessor Pascal Run-Time Support system gives greater
flexibility in handling semaphores by providing additional routines to
the wait and signal operations (a full list of these can be found in
the Reference Section of Chapter VI).

4.6.4 Process Synchronization

A process that is dependent on the occurence of an event can perform a
WAIT to ensure that the event has occured. If it has, the waiting
process executes. If not, the waiting process is suspended in that
semaphore's queue until the event occurs. A SIGNAL operation
performed on the associated semaphore allows a process to signal the
occurence of an event. If some process is waiting for the event, it
is made ready for execution (the process is removed from that
semaphore's queue and inserted into the ready queue). In both of
these cases, the process that called SIGNAL remains in the active
state. The semaphores of the Executive RTS can thus be thought of as
"counting" semaphores in that occurence of an event is never lost,
even if no process is waiting when the event occurs. A count is kept
in the semaphore of all events that occurred (by SIGNAL) but were not
received (by WAIT).

When semaphores are used to ensure exclusive access to two or more
resources, extreme caution must be exercised to prevent a condition

known as "deadlock". This takes place when a situation is created in
which two or more processes are suspended, awaiting a condition that
cannot happen because there is no active process to cause the needed
event to occur.

For example, consider two simultaneously executing processes (A and B)
both requiring exclusive access to resources (X and Y). The following
sequence will result:

A gets X .. A requests Y B gets Y B requests X

In the above example, neither A nor B will ever resume execution, as A
will be waiting for Y (which B has) and B will be waiting for X (which
A hasl To prevent a situation such as this, either and/or both
processes must check the availability of succeeding resources and, if
unavailable, release those already acquired.

4.6 5 Interprocess Communication

4.6.5.1 Shared Variables. The simplest form of interprocess
communication is accomplished through the sharing of variables. A
nested process can access all its parent's variables. (Heap variables
can also be accessed since it is possible to pass pointers as
parameters to a process.)

However, it is essential that only a
operate on any shared variable at
representing the shared variable as a
mutual exclusion semaphore, and
referencing the variable with wait
semaphore. For example:

single process is allowed to
a time. This can be achieved by
record structure containing a
enclosing any code sections

and signal operations on the

VAR b: RECORD
mutex: SEMAPHORE;
shared_variable: any_type;
END;

WITH b DO
BEGIN

wait(mutex);
($ access/modify shared_variable $)
signal(mutex);

END;

4.6.5.2 Message Buffer. A message buffer is a shared data structure
through which interprocess communication is possible. It allows a
process to send messages to another process without the sender having
to wait until the receiver is ready for the message (i.e., the
messages are buffered). In this context a message is any structure
that can be copied from one process to another.

File
var

PROCESS One

File
var

PROCESS Two

Note: Deadlock could result if the order of the wait operations is
reversed in either routine.

Updating the buffer element pointers, NEXT IN and NEXT OUT, by MODing
them with MAXUSERS and then adding one allows the message buffer to be
used in a circular fashion (a buffer managed in this way is known as a
circular or ring buffer).

Note: MESSAGE_IN and MESSAGE OUT must be variables of type MESSAGE.

4.6.5.3 Interprocess Files. The third interprocess communication
mechanism involves file variables that are linked together via
channels. In this application, a file is not associated with any
external storage medium; it is simply a logical device to enable one
process to send information to another. The communication mechanism
is handled by the executive. However, the same routines (READ, WRITE,
etc) used are the same utilized with external files.

Channels are system maintained shared data structures that conduct
information between file variables and synchronize the execution of
participating processes.

$$$$$$$$$
>$ Channel $
$$$$$$$$$

A file variable has a character string name; initially this is the
same as the variable's identifier, but it can be changed using the
procedure SETNAME.

A channel also has a character string name. It is identical to the
names of all file variables connected to it.

Files must be opened by calling the procedure REWRITE for write
operations and RESET for read operations before any I/O can be
performed. (If the file is already open, then it is automatically
closed before it is reopened in the appropriate mode.) This also
causes the file variable to be connected to a channel with the same
name as the file variable. If no channel exists by that name, one is
created and given the appropriate characteristics.

Closing an open file (using the procedure CLOSE, or by exiting a
routine in which a file variable is declared) also disconnects the
file variable from the channel. A channel is normally destroyed when
all file variables have been disconnected from it

The following allows processes A and B to communicate with each other
via the channel TRANSFER. Process A opens the file TRANSFER for

A message buffer is of the form:

CONST max messages = ($ some number $)
TYPE message_index = 1..max_messages;

message = some user_defined_structure;
VAR message_buffer: RECORD

mutex.not_empty,not_full: SEMAPHORE;
next_in,next_out: message_index;
buffer : ARRAY[message_index] OF message;
END;

MUTEX
NOT_EMPTY

NCT_FULL

NEXT_IN
NEXT OUT

Initially,

- Ensures mutual exclusion (initialized to 1)
- Indicates how many messages are in the buffer

(initialized to 0)
- Indicates how many vacant elements in the buffer

(initialized to max messages)

- Where the next message is to be stored
- Where the next message is to be taken from

NEXT_IN=NEXT_OUT=0.

To deposit a message into the buffer:-
WITH message_buffer DO
BEGIN

wait(not_full);
wait(mutex);
buffer[next_inl:=message_in;
next_in:=next_in MOD maxusers +1;
signal(mutex);
signal(not_empty);

END;

To remove a message from the buffer:-
WITH message_buffer DO
BEGIN

wait(not_empty);
wait(mutex);
message_out:=buffer[next_out];
next_out;=next_out MOD maxusers +1;
signal(mutex);
signal(not_full);

END;

writing, while process B opens it for reading.

PROCESS a()• PROCESS b(
VAR transfer: TEXT; VAR transfer: TEXT;

rewrite(transfer); reset(transfer):
writeln(transfer,...); readln(transfer,...

A similar effect would be produced by:

PROCESS a(output:TEXT;...); PROCESS b(input:TEXT;...);
•

writeln(

);

reset(input);
readln() ;

start a(filenamed('transfer'),—);
start b(filenamed('transfer'),—);

The function FILENAMED results in a file with the initial name equal
to the specified string.

It is not necessary to perform a REWRITE operation in process A as
this is automatically performed on the default output text file
OUTPUT.

Note: Each peripheral device in the system is identified by an
alphanumeric name (from 1 to 8 characters long) and has a dedicated
channel of the same name.

4.7 INTERRUPT HANDLING

The 990 range of processors recognize 16 distinct interrupt levels,
numbered 0 (highest priority interrupt) to 15 (lowest priority
interrupt). A full description of the 990 interrupt structure is
given in Chapter VI.

A device process is a process that has been written to service a
particular interrupt level. These processes are identified by their
priorities. All processes in this system are assigned a priority, in
the range 0 to 32,677. The first 16 priorities, 0 to 15, are reserved
for use by device processes.

A process with a priority of 5 may service level 5 through level 15
interrupts. A process's priority is set using the concurrent
characteristic

($1 priority = interrupt_level $)

If a number of devices all use the same interrupt level, then that
level's device process must first determine which device actually

caused the interrupt before it can start servicing it.

All interrupts except the level 0 interrupt (RESET), are disabled by
calling the procedure MASK. The procedure UNMASK enables interrupts
which are more urgent than the priority of the calling process.

A correspondence is established between an interrupt level and a
semaphore using the procedure EXTERNALEVENT. A device process
executes a WAIT on the semaphore associated with its interrupt level.
When an interrupt occurs, the executive performs a SIGNAL on the
semaphore associated with the interrupt level, thus activating the
suspended device process.

The procedure ALTEXTERNALEVENT allows the user to specify an
alternative process that will be executed if the primary process is
not suspended on the interrupt's semaphore. This procedure is
intended to be used to service unexpected or spurious interrupts.

The correspondence between a semaphore and an interrupt level can be
broken using the NOEXTERNALEVENT procedure, while the alternative
process correspondence can be broken by the NOALTEXTERNALEVENT
procedure.

PROGRAM level_7_handler(....);
VAR level_7_sem,spurious_level_7: SEMAPHORE;

• PROCESS interrupt_7(level: SEMAPHORE);

BEGIN
($# priority=7; $);
WHILE true do
BEGIN ($ do forever $)

wait(level);

END ($ forever loop $)
END;
PROCESS spurious_7(level: SEMAPHORE);

BEGIN
($# priority=7; $);
wait(level);

END
BEGIN ($ level_7_handler $)

initsemaphore(level_7_sem,01;
initsemaphore(spuriouslevel7,0);
externalevent(level_7sem.7):
altexternalevent(spurious_level_7,7)4
start interrupt_7(level_7_sem);
start spurious_7(spurious_level_7);

END ($ level7handler $)

Under TIPMX (the concurrent executive provided for use with TI Pascal)

interrupts are serviced using the WAITINTERUPT procedure. An active
device process executes the WAITINTERRUPT procedure. This suspends
the calling procedure until an interrupt occurs at the level equal to
the process's priority. Using WAITINTERRUPT in a process whose
priority is greater than 15 results in an error and the call fails.
This procedure is included in the Micprocessor Pascal run-time support
system for compatibility with earlier products. As WAITINTERRUPT is
implemented using semaphores and several of the semaphore handling
routines, the Micprocessor Pascal user is not encouraged to use it in
new applications.

4.8 REFERENCE SECTION

4.8.1 System Commands

Create/edit a file
Compile a Pascal program
Debug a compiled Pascal program
Execute a compiled Pascal program
Save an edited file
Display a stored file
Terminate an MPP session
Compile and save a Pascal program
Print a stored file
Execute sci command
Wait for background task to finish
Delete files and synonyms used
Copy text files
File utility program

$ only for DX990 users
$$ only for FS990 users

EDIT
COMPILE
DEBUG
EXECUTE
SAVE
SHOW
QUIT

$ BATCH
$ PRINT
$ SCI

WAIT
$ PURGE
$$ COPY
$$ UTILITY

4.8.2 Debug Commands

Resume execution
Help
Select default process
Terminate DEBUG session

Display process
Display all processes

Assign breakpoints
Delete breakpoints
Delete all breakpoints
List breakpoints
Execute single instruction

G 0
HELP(<command>)
SDP(<process>)
QUIT

DP([<process>])
DAP

AB(<routine>,<statement number>)
DB(<routine>,<statement number>)
DAB(<process>)
LB/ f<process>))
SS([<process>1,<flag`)

Show stack frame
Show heap packet
Show common area
Show indirect variable value
Show absolute memeory location
Modify stack frame value
Modify heap value
Modify common value
Modify indirect variable
Modify memory

Trace process execution
Trace routine entry/exit
Trace statement flow

DEBUG the process
Breakpoint process
Hold process
Release process

Connect input file
Connect output file

Simulate interrupt

Select CRU mode

SF(kroutine>],[<disp>],[<length>])
SH([<routine>],(<disP>],[<length>])
SC(common name,[<disp>]►[<length>])
SI(<routine>,<disp>,[<length>])
SM(<address>,[<length>])
MF(<routine>,[<disp>],[<ver>],<value>
MH(<routine>,[<disP>],[<ver>] <value>
MC(<routine>,[<disp>],[<ver>],<valup
MI(<routine>,<disp>,[<ver>],<value> 1
MM(<routine>,[<ver>],<value>

TP(kprocess>h<flag>
TR(kprocess>h<flag>
TS([<process>],<flag>

DEBUG(<process>)
BP(<process>)
HP(<process>)
RP(<process>)

CIF(<filel>,[<file2>]
COF(<filel>,[<file2>]

SIMI(<level>)

CRU([<process>],<cru mode>)

)
)
)

)
)

[<x>]
Indicates that the item <x> is optional.

<process>
If omitted it defaults to that set by SDP. It may be either a name
(younges2 instance of the process) or an integer constant (older
instance of a particular process), found using DAP.

<routine>
May be either a name (most recent activation of the routine) or an
integer constant (earlier activation), found using DP. Optionally it
specifies the process which activated it by preceding <routine> by
<process> followed by '.'

<flag>
Is an identifier that is either TRUE or FALSE : if TRUE command is
enabled: if FALSE command is disabled.

<disp>
Is the byte displacement.

<ver>
Is the old value of the variable being modified, if it does not match
the actual value an error occurs.

<filel>
8 character Microprocessor Interpretive Executive file name
identifier.

<file2>
File pathname specified as a string (enclosed in double quotes). If
omitted it defaults to user's terminal.

<cru mode> One of the following :

EXECUTE Execute all CRU instructions
OFF Ignore all CRU instructions
DEBUG All CRU I/O is simulated by the user

(default value)

NOTE : Parenthesis may be omitted if all the parameters are optional
or defaulted. Trailing commas may be omitted.

4.8.3 Utility Commands (990/4 only)

Create a file
Compress a file
Change file name
Change file protection
Delete file
Change listing file/device
Receive file across data link
Transmit file across data link
Map disc
Display time and date
Terminate utility program execution

CF,<file name>
CM,<file name>
CM,<old file name>,<new file name>
CP,<file name>,<U or W or D>
DF,<file name>
DO,<file or device name>
DR,<file name>
DT,<file name>
MD,<disc name>
TI
TE

4.8.4 EDIT Commands

Help
Edit/compose mode
Syntax check
Terminate and save edit
Terminate without saving
Change editing files

Scroll file down
Scroll file up
New line
Tab
Back tab
Set tab increment
Move cursor up
Move cursor down

CMD HELP
F7 kev
CMD CHECK
CMD QUIT
CMD ABORT
CMD INPUT

Fl key
F2 key
RETURN key
SHIFT TAB SKIP key
FIELD key
CMD TAB(<character count>)
up-arrow key
down-arrow key

Move cursor right
Move cursor left
Move to home position
Find [nth occurrence of]

specified pattern
Relative positioning
Move to top of file
Move to bottom of file

Insert line before
Duplicate line
Delete line
Skip to next tab setting
Insert character
Delete character
Clear line
Replace strings [11 times]

Split line

right-arrow '-ey
left-arrow key
HOME key
CMD FIND(<pattern>,

[<occurence number>])
CMD [+ or -]<line count>
CMD TOP
CMD BOTTOM

unlabelled grey key
F4 key
ERASE INPUT key
TAB SKIP key
INS CHAR key
DEL CHAR key
ERASE FIELD key
CMD REPLACE(<original pattern>.

<new pattern>,[<repeat count>])
F8 key

CMD HELP -
Strike the CMD key and then type in the word HELP.

[<exp>]
Indicates that item <exp> is optional.

<pattern>
Is either a string of characters enclosed within double quotes
or an identifier.

NOTE:
Optional items may be omitted (they default to the value 1) along
with any preceding commas.

4.8.5 STANDARD Routines

All functions marked '$' must be declared EXTERNAL.

DEFINITION FUNCTION ARGUMENT RESULT

Absolute value ABS INTEGER,LONGINT,
REAL

As argument

$ Arctangent ARCTAN REAL REAL
Character corresponding CHR BOOLEAN, INTEGER,

SCALAR type
CHAR

$ I/O column index COLUMN TEXT INTEGER
$ Cosine COS REAL REAL
End of file/medium EOF TEXT, FILE BOOLEAN
End of line EOLN TEXT BOOLEAN
$ Exponential EXP REAL REAL
Create file connection FILENAMED string ANYFILE
Real conversion FLOAT INTEGER,LONGINT REAL
$ Natural logarithm LN REAL REAL
Convert to longint LINT INTEGER,LONGINT,

REAL
LONGINT

Address or entry point LOCATION variable,
procedure,process

INTEGER

Round convert longint LROUND REAL LONGINT
Truncate,convert longint LTRUNC REAL LONGINT
Odd number? ODD INTEGER,LONGINT BOOLEAN
Ordinal position ORD BOOLEAN,CHAR,

SCALAR type
INTEGER

Predecessor PRED ENUMERATION type As argument
Round ROUND REAL INTEGER
$ Sine SIN REAL REAL
Return size (bytes) SIZE type,variable;

tagfields
INTEGER

$ Status of last I/O op STATUS ANYFILE INTEGER
Square SQR INTEGER,LONGINT,

REAL
As argument

$ Square root SQRT REAL REAL
Successor SUCC ENUMERATION type As argument
Truncate,convert integer TRUNC REAL INTEGER

4.8.6 CRU Operations

PROCEDURE CRUBASE (base:INTEGER)
PROCEDURE LDCR (width,value:INTEGER)
PROCEDURE SBO (displacement:INTEGER)
PROCEDURE SBZ (displacement:INTEGER)
PROCEDURE STCR (width:INTEGER; VAR value:INTEGER)
FUNCTION TB (displacement:INTEGER): BOOLEAN

Where <width> is a number in the range 0 to 15.
<displacement> is a number in the range -128 to +127.

4-8.7 Standard Procedures

All procedures marked '$' must be declared EXTERNAL.

CLOSE (f);

Place file <f> in closed state.

DATE (v);

Get the current date in the form 'YY.DDD', where 'YY' is the year and
'DDD' is the Julian day.

DECODE (s,n,stat,q);

Convert string <s>, starting at the <n>th component of <s>- into a
form compatible with the read variable <q> (see NOTE 2) and store it
in <q>. The status of the operation is returned in <stat>.

DISPOSE (p);
DISPOSE (p,tl,..,tn); tl..tn -> tagfields

Deallocate the heap packet specified by <p> and set <p> to NIL.

ENCODE (s,n,stat,p);

Convert the write parameter <p> (see NOTE 1) into character format and
store the result in <s>, starting at the <n>th component. The status
of the operation is returned in <stat>.

HALT

Terminate program execution.

IOTERM (f,oldvalue,newvalue);

Change file <f>'s default error termination flag to <newvalue> and
return the original in <oldvalue>.

MESSAGE (x);

Write the string <x to the system message file.

NEW (p); NEW (p,tl,..,tn); tl..tn -> tagfields

Allocate heap space to the variable referenced by <p> =nd return a
pointer to it in <p>.

PACK (a,i,z);

Pack the components of array <a> into the packed array <z>, starting
at the <i>th element of <a>.

PAGE (f);

Continue output of file <f> on a new page.

READ (f,vl,..,vn);

TEXT READ (v1,..,vn); ---> READ(INPUT,v1,..,vn);

RANDOM READ (f,recnum,vi,..,vn);

Read the components of a sequential, text or random file into the
specified variables <vi> (see NOTE 2). If the first argument is not a
file variable <f>, the file INPUT is used. For RANDOM files the
second argument specifies the logical record number <recnum>, starting
from zero. For sequential and RANDOM files, the remaining arguments
must be compatible with the particular file components.

READLN (f,vl,..,vn);
READLN (v1,..,vn); ---> READLN(INPUT,vl,..vn);
READLN(INPUT);

Read the components of a text file into the specified variables and
then carry on reading until the next end-of-line marker has been
read.

RESET (f);

Opens a file <f> for input and positions it to its first component.
If a sequential or text file is empty then EOF'F) becomes true,
otherwise it is false.

REWRITE (f);

marks a file <f> as empty and then opens it for output. For a
sequential or text file EOF(F) becomes true. This is automatically
performed for OUTPUT.

SETNAME (f,name);

Associate logical channel <f> to the physical file <name>. <Name> may

not be the file OUTPUT.

TIME (v);

Get the current time of day in the form 'HH.MM.SS'. <V> is a packed
array (1 to 8) of char.

UNPACK (z,a,i);

Unpack the components of the packed array <z> into the array <a>
starting at the <i>th element of <a>.

WRITE (f,vl,..,vn);

TEXT WRITE (vl,..,vn); ---> WRITE(INPUT,vl,..,vn);

RANDOM WRITE (f,recnum,vl,..,vn);

Write the components to a sequential, text or random file from the
specified variables <vl>..<vn> (see NOTE 2). If the first argument is
not a file variable <f>, the file OUTPUT is used. For RANDOM files
the second argument specifies the logical record number <recnum>.
starting from zero. For sequential and RANDOM files, the remaining
arguments must be compatible with the particular file components.

WRITELN (f,v1,..,vn);
WRITELN (vi,..,vn); --->WRITELN(OUTPUT,v1,..vn);

WRITELN(OUTPUT);
Write the components to a text file <f> from the specified variables
<vl>..<vn> (see NOTE 1) and then write an end-of-line marker.

NOTE 1: WRITE VARIABLES for TEXT files may be of the form :
E I E:M I E:M:N

E is an expression of type CHAR, INTEGER, LONGINT, BOOLEAN. REAL or a
string.

If M (an INTEGER expression) is present then it represents the minimum
field width. If M is omitted, and E is REAL, then its value is
written in floating point format.

If N (an INTEGER expression) is specified then the real number E will
be output in fixed point format with N digits after the decimal
point.

If E is INTEGER or LONGINT then the value may be written as a string
of hex digits (not preceded by #) in the form :

E HEX 2 E:M HEX

If E is BOOLEAN then the identifier FALSE or TRUE is written preceded
by M-5 blanks. If M<5 then the character T or F is written.

If E is a string (PACKED ARRAY of characters) then the whole string is
output.

Default field widths for WRITE operations :

INTEGER
LONGINT
REAL
BOOLEAN
CHAR
Hex
String

10
15
15
5
1
10
length of string

NOTE 2: READ VARIABLES for TEXT files :

V is a variable to be assigned the value read and must be either CHAR,
INTEGER, LONGINT, BOOLEAN, REAL or a string.

If V is a CHAR then V is assigned the next character read.

If V is a string of length L then the next L characters are read.

If V is BOOLEAN then either the character T or F is read or the
identifier TRUE or FALSE.

If V is INTEGER-
makes up the number
character that is
end-of-line markers
is zero.

LONGINT or REAL then a sequence of characters that
is read. The sequence may be terminated by any
not part of the number. Preceding blanks and

are skipped. If the field is blank the value read

TEXT I/O RETURN CODES

0 Normal completion
1 Bad parameter passed to I/O routine

Field width too large for logical record
Incomplete data (READ only)

4 Invalid character in field (READ only)
5 Data value too large (READ only)
6 Attempt to read past end-of-file (READ only)
7 Field larger than logical record size

4.8.8 Microprocessor Pascal Executive

All Micprocessor Pascal executive procedures/functions must be declared EXTERNAL.

4.8.8.1 Processor Management (Scheduling) Routines.

TYPE non device priority = 16..32766;

PROCEDURE setpriority(VAR oldvalue: non-oldvalue: non device_priority:
newvalue: non device_priority);

changes the priority of the first non-device process in the scheduling
queue.

PROCEDURE SWAP:

removes the first non-device process from the scheduling queue and
inserts it behind the last process with the same priority.

4.8.8.2 Semaphore Routines.

TYPE nonneg = 0..32766;
semaphorestate = (awaited, zero, signaled);

PROCEDURE CSIGNAL(sema: SEMAPHORE; VAR waiter: BOOLEAN);

performs a conditional signal operation on <sema> - i.e., if a waiter
exists on this semaphore a SIGNAL operation is performed on it and
<waiter> is set to TRUE.

PROCEDURE CWAIT(sema: SEMAPHORE; VAR received: BOOLEAN';

performs a conditional wait operation on <sema> - ie if it has been
SIGNALed a WAIT operation is performed on it and <received> is set to
TRUE.

PROCEDURE INITSEMAPHORE(VAR sema: SEMAPHORE; count: nonneg);

initializes the semaphore <sema> to <count> and sets the queue
management to FIFO.

PROCEDURE SIGNAL(sema:SEMAPHORE);

performs a SIGNAL operation on <sema>.

PROCEDURE WAIT(sema: SEMAPHORE);

performs a WAIT operation on <sema>.

PROCEDURE TERMSEMAPHORE(VAR sema: SEMAPHORE);

returns the space occupied by the semaphore <sema> to MPX. If there
is anything waiting on it an error occurs.

PROCEDURE WAITSIGNAL(WAITFOR, signalthe: SEMAPHORE);

performs a WAIT operation on <waitfor> and a SIGNAL operation on
<signalthe> in an indivisible manner.

FUNCTION SEMASTATE(SEMA: SEMAPHORE): semaphorestate;

returns the state of the semaphore <sema>.

FUNCTION SEMAVALUE(SEMA: SEMAPHORE): INTEGER;

returns the count of <sema>'s initial value plus the total number of
SIGNALs performed on it minus the total number of WAITs performed on
it.

4.8.8.3 Semaphore Attributes.

TYPE interrupt_level = 0..15;

PROCEDURE ALTEXTERNALEVENT(SEMA: SEMAPHORE;
level: interupt-level);

attaches the semaphore <sema> to the interrupt <level> as the
alternative receiver of an interrupt.

PROCEDURE EXTERNALEVENT(SEMA: SEMAPHORE;
level: interrupt_level);

attaches the semaphore <sema> to the interrupt <level> as the primary
receiver of an interrupt.

PROCEDURE NOALTEXTERNALEVENT(LEVEL: INTERRUPTLEVELI;

detaches any semaphore which has been designated the alternative
receiver of the interrupt <level>. Nothing happens if no semaphore
has been designated thus.

4.8.8.4 Interrupt Routines.

TYPE interrupt result = -1..15;

FUNCTION INTLEVEL: interrupt result;

returns the interrupt level of the interrupt currently being serviced
(0 to 15) or -1 if no interrupt is being serviced.

PROCEDURE MASK;

disables all interrupts except for interrupt level 0.

PROCEDURE UNMASK;

enables all interrupts which are more urgent than the priority of the
calling process.

PROCEDURE WAITINTERRUPT;

suspends the calling process until an interrupt of equal priority to
the process occurs.

4.8.8.5 Process Management.

TYPE processid = @processid;

FUNCTION MY$PROCESS processid;

Returns the process identification of the calling process.

4.8.8.6 Memory Management.

PROCEDURE FREE(VAR ptr: pointer);

Returns the area referenced by <ptr> to the heap, <ptr> is set to
NIL.

4.8.8.7 Microprocessor Executive Error and Exception Codes.

In the process record, there is a field (word >36) which contains a
CLASS CODE in the left-hand byte and a REASON CODE in the right-hand
byte. The CLASS CODES provides information on the general area in
which there is some problem; the REASON CODE, more specific
information concerning the problem.

For example, an error code of >8508 would indicate:

1) The general area of the problem is in process management
(CLASS CODE 85) and,

2) Specifically, there was not enough heap available to
start a process (REASON CODE 08).

The CLASS CODES and REASON CODES are listed in the left-hand column
be low.

ERROR CODES

CLASS ERROR CODES

user error = 81;
scheduling_error = 82;
semaphore_ error = 83;
interrupt error = 84;
process mgmt error = 85;

86;
87;
88;
89;

HEAP MANAGEMENT ERROR REASON CODES

heap invalid = 1;
heap overflow error = 2;
heap packet error = 3;

INTERRUPT ERROR REASON CODES

interuppt invalid = 1;
interrupt level
invalid = 2;
interrupt semaphore

invalid = 3;
interrupt not
handled = 4;
interrupt trap
vector error = 5;
interrupt handler
priority error = 6;

EXCEPTION HANDLER REASON ERROR CODES

exception handler not
established from
process = 1;
exception handler
cannot have
parameters = 2;
exception handler
cannot be in
assembly language = 3;
exception handler
local variables too
large for stack = 4;

exception_error =
memory mgmt_error =
file error =
host=file_error =

PROCESS MANAGEMENT REASON ERROR CODES

not a process = 1;
aborted = 2;
not started invalid
priority = 3;
not started invalid
stacksize = 4;
not started negative
heapsize = 5;
not started process
is in assembly
language = 6;
not started no memory
for semaphore = 7;
not started no memory
for process_heap = 8;
not started no memory
for process stack = 9;
not started no memory
process_frame = 10;

SEMAPHORE ERROR REASON CODES

semaphore invalid = 1;
semaphore count
error = 2;
semaphore operation

error = 3;
semaphore count
overflow = 4;
semaphore interrupt
handler priority
error = 5;

SCHEDULING ERROR REASON CODES

scheduler invalid = 1;
scheduler priority
error = 2;

USER ERROR REASON CODES

stack overflow = 1;
stack overflow = 2;

CHAR HEX

✓ 56
W 57
X 58
Y 59
Z 5A
[5B
\ 5C
] 5D

5E
5F ,
60

a 61
b 62
c 63
d 64
e 65
f 66
g 67
h 68
i 69
j 6A
k 6B
1 6C
m 6D
n 6E
o 6F
p 70
q 71
✓ 72
s 73
t 74
u 75
✓ 76
w 77
x 78
y 79
z 7A

7B

1
7C
7D
7E

DEL 7F

4.8.9 ASCII Character Set

CHAR HEX CHAR HEX

NUL 00 + 2B
SOH 01 . 2C
STX 02 - 2D
ETX 03 . 2E
EOT 04 / 2F
ENQ 05 0 30
ACK 06 1 31
BEL 07 2 32
BS 08 3 33
HT 09 4 34
LF OA 5 35
VT OB 6 36
FF OC 7 37
CR OD 8 38
SO OE 9 39
S1 OF : 3A
DLE 10 ; 3B
DC1 11 < 3C
DC2 12 = 3D
DC3 13 > 3E
DC4 14 ? 3F
NAK 15 @ 40
SYN 16 A 41
ETB 17 B 42
CAN 18 C 43
EM 19 D 44
SUB 1A E 45
ESC 1B F 46
FS 1C G 47
GS 1D H 48
RS 1E I 49
US 1F J 4A
SPACE 20 K 4B
! 21 L 4C
" 22 M 4D
1 23 N 4E
$ 24 0 4F
% 25 P 50
& 26 Q 51

27 R 52
(28 S 53
) 29 T 54
* 2A U 55

4.8.10 HEX-DECIMAL Table

EVEN BYTE ODD BYTE

HEX DEC HEX DEC HEX DEC

0 0 0 0 0 0
1 4,096 1 256 1 16
2 8,192 2 512 2 32
3 12,288 3 768 3 48
4 16,384 4 1,024 4 64
5 20,480 5 1,280 5 80
6 24,576 6 1,536 6 96
7 28,672 7 1,792 7 112
8 32,768 8 2,048 8 128
9 36,864 9 2,304 9 144
A 40,960 A 2,560 A 160
B 45,056 B 2,816 B 176
C 49,152 C 3,072 C 192
D 53,248 D 3,328 D 208
E 57,344 E 3,584 E 224
F 61,440 F 3,840 F 240

HEX DEC

0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
A 10
B 11
C 12
D 13
E 14
F 15

4.8.11 BACKUS-NAUR Form (BNF) SYNTAX Definitions

"is defined to be"
for enclosing non-terminal symbols
(ie entities defined by a production)
for enclosing optional entities
for enclosing entities that may be repeated
zero or more times
for representing alternatives
indicates symbol [is to appear in the text

< >

4.8.12 COMPILER Options

<option control comment>::=
"1" $ <option list> "1"

<option list>::=
<option> { , <option> }

<option>::=
r NO] <option identifier>
[RESUME] <option identifier>

Below is the full list of available compiler options along with the
default value for each.

72COL DEFAULT=TRUE
Only scans the first 72 columns, when turned off the whole source line
is scanned.

ASSERTS DEFAULT=TRUE
Generates object code for ASSERT statements.

CKINDEX DEFAULT=FALSE
Disables run-time checks for array indices.

CKPTR DEFAULT=FALSE
Disables run-time checks for pointers equal to NIL.

CKSET DEFAULT=FALSE
Disables run-time checks for set element expressions.

CKSUB DEFAULT=FALSE
Disables run-time checks for subrange assignments in bounds, also
checks result bounds of PRED and SUCC.

DEBUG DEFAULT=TRUE
Statement numbers are incorporated into the code for use by the source
level interactive debugger.

LIST DEFAULT=TRUE
Enables printing of source listing, error lines are always listed.

MAP DEFAULT=FALSE
When TRUE prints a map of the routine's variables and commons after
listing the routine.

NULLBODY DEFAULT=FALSE
Should not be used in user programs. Used by the configuration
processor to insert 'dummy' routine bodies in a program to be
compiled.

OBJECT DEFAULT=FALSE
When TRUE generates object code.

PAGE DEFAULT=FALSE
When TRUE printing continues at the top of
the begining of each source line.

a new page, set to false at

STATMAP DEFAULT=FALSE
When TRUE a map of displacements for each statement in the object
module is to be generated by CODEGEN.

4.8.13 CONCURRENT CHARACTERISTICS

<concurrent characteristics>::=

"1" * <concurrent characteristic list>

<concurrent characteristic list>::=

<concurrent character> { ; <concurrent character> }

<concurrent character>::=

<concurrent character keyword> = <parameter identifier>
<concurrent character keyword> = <integer constant>

Where <concurrent character keyword> is one of the following:

Number of words allocated to the system,
program or process heap
Priority of the system,program or process
Number of words allocated to the system,
program or process heap

HEAPSIZE

PRIORITY
STACKSIZE

These may only appear immediately following the initial BEGIN of a
system, program or process declaration.

4.8.14 SYSTEM DECLARATION

A system may consist of a single program so long as no processes are
declared within it. The syntax for such a system is:

PROGRAM <identifier ; <program block>

<system>::=
SYSTEM <identifier> <system block>

<system block>::=
<label declaration part><constant declaration part>

<type declaration part><common declaration part>
<access declaration part><system routines><body>

<label declaration part>::=
LABEL <statement label> { , <statement label> } ;
<empty>

<empty>::=

<statement label>::=
<digit> { <digit> }

<constant declaration part>::=
CONST <constant declaration> { ; <constant declaration> } ;
<empty>

<constant declaration>::=
<identifier> = <constant>
<identifier> = <integer constant expression>

<type declaration part>::=
TYPE <type declaration>
<empty>

{ ; <type declaration> 1 ; I

<type declaration>::=
<identifier> = <type>

<variable declaration part>::=
VAR <variable declaration>
<empty>

{ ; <variable declaration> 1 ; I

<variable declaration>::=
<identifier list> : <type>

<identifier list>::=
<identifier> 1 <identifier> }

<common declaration part>::=
COMMON <variable declaration> { ; <variable declaration> } ;
<empty>

<access declaration part>::=
ACCESS <identifier list> ; I <empty>

<system routines>::=
{ <system routine> }

<system routine>::=
<program declaration> 1 <procedure declaration>
<function declaration>

<program declaration>::=
<program header><program block>
<program header> FORWARD ;

; I

<program header> EXTERNAL [Pascal] ;

<program header>::=
PROGRAM <identifier>(<program parameter list>] ;

<program parameter list>::=
(<program parameter> { , <program parameter> 1)

<program parameter>::=
<identifier list> : <type identifier>

<program block>::=
<label declaration part><constant declaration part>
<type declaration part><variable declaration part>
<common declaration part><access declaration part>
<program routines><body>

<program routines>::=
{ <program routine> }

<program routine>::=
<process declaration> 1 <procedure declaration> 1
<function declaration>

<procedure declaration>::=
<procedure header><block> 1
<procedure header> FORWARD ; 1
<procedure header> EXTERNAL [Pascal] ;

<procedure header>::=
PROCEDURE <identifier> [<parameter list>] ;

<parameter list>::=
(<any parameter> ; <any parameter> })

<any parameter>::=
(VAR] <identifier list> : <type identifier>

<block>::=
<label declaration part><constant declaration part>
<type declaration part><variable declaration part>
<common declaration part><access declaration part>
<routines><body>

<routines>::=
I <routine> }

<routine>::=
<procedure declaration> 1 <function declaration>

<function declaration>::=
<function header><block> ; 1
<function header> FORWARD ; 1
<function header> EXTERNAL [Pascal] ;

<function header>::=
FUNCTION <identifier>[<parameter list>] : <result type> ;

<process declaration>::=
<process header><program block> ; I
<process header> FORWARD ; 1
<process header> EXTERNAL [Pascal] ;

<process header>::=
PROCESS <identifier> [<program parameter list>] ;

<body>::=
<compound statement>

TYPE SYNTAX

<type>::= <simple type> I <structured type>

<simple type>::=
<scalar type> 1 <subrange type> 1 <type identifier>

<type identifier>::=
<identifier> 1 ANYFILE 1 SEMAPHORE 1 TEXT 1 REAL
INTEGER 1 LONGINT 1 BOOLEAN 1 CHAR

<scalar type>::=
<scalar identifier> { , <scalar identifier>)

<subrange type>::=
<enumeration constant> .. <enumeration constant>

<enumeration constant>::=
<character constant> 1 <boolean constant> 1
<integer constant> 1 <scalar identifier>

<scalar identifier>::=
<identifier>

<structured type>::=
[PACKED] <unpacked structure>
<file type> 1 <set type>

<unpacked structure>::=
<array type> 1 <record type>

<pointer type> I

<array type>::=
ARRAY "[" <index type> { , <index type> } "]"

OF <type>

<index type>::=

BOOLEAN I CHAR 1 <scalar type> 1 <subrange type>
<identifier>

<record type>::=
RECORD <field list> END

<field list>::=
<fixed part> 1 <fixed part>_; <variant part> <variant part>

<fixed part>::=
<record section> { ; <record section> }

<record section>::=
<field identifier>
<empty>

<field identifier>::=
<identifier>

<field identifier> : <type>

<variant part>::=
CASE [<tagfield>] <tagfield type> OF <variant>

{ ; <variant> }

<tagfield type>::=
BOOLEAN 1 CHAR 1 INTEGER LONGINT 1 <identifier>

<tagfield>::=
<identifier> :

<variant>::=
<variant label list> : (<field list>) I <empty>

<variant label list>::=
<variant label> { <variant label> }

<variant label>::=
<enumeration constant> 1
<enumeration constant> .. <enumeration constant>

<set type>::=
SET OF <simple type>

<pointer type>::=
@ <type identifier>

<file type>::=
[RANDON] FILE OF <type>

<result type>::=
BOOLEAN I CHAR 1 INTEGER I LONGINT
SEMAPHORE 1 <identifier>

REAL

STATEMENT

<compound statement>::=
BEGIN <statement> { ; <statement> } END

<statement>::=
[<statement label> :]<simple statement>
[<statement label> :][<escape label> :

<structured statement>
I

<simple statement>::=
<empty statement> 1 <assignment statement>
<procedure statement> 1 <escape statement>
<assert statement> 1 <goto statement> 1 <start statement>

<empty statement>::=
<empty>

<assignment statement>::=
<variable> := <expression>

<procedure statement>::=
<procedure identifier> [<actual parameter list>

<actual parameter list>::=
(<actual parameter> { , <actual parameter>

<actual parameter>::=
<expression> 1 <variable>

<procedure identifier>::=
<identifier>

<start statement>::=
START <process identifier> [<actual parameter list>

<escape statement>::=
ESCAPE <escape label> 1 ESCAPE <routine identifier>

<escape label>::=
<identifier>

<routine identifier>::=
<program identifier> 1 <process identifier> 1
<procedure identifier> 1 <function identifier>

<goto statement>::=
GOTO <statement label>

<assert statement>::=
ASSERT <expression>

<structured statement>::=
<compound statement> 1 <conditional statement>
<repetitive statement> 1 <with statement>

<conditional statement>::=
<if statement> 1 <case statement>

<if statement>::=
IF <expression> THEN <statement>
[ELSE <statement>]

<case statement>::=
CASE <expression> OF <case element> { ; <case element>
[OTHERWISE <statement> 1 ; <statement> }]
END

<case element>::=
<case label list> : <statement> 1 <empty>

<case label list>::=
<case label> 1 , <case label> }

<case label>::=
<enumeration constant> 1
<enumeration constant> .. <enumeration constant>

<repetitive statement>::=
<for statement> 1 <while statement> 1 <repeat statement>

<for statement>::=
FOR <control variable> <generator> DO <Statement>

<control variable>::=
<identifier>

<generator>::=
<initial value> TO <final value> 1

:= <initial value> DOWNTO <final value>

<initial value>::=
<expression>

<final value>::=
<expression>

<while statement>::=
WHILE <expression> DO <statement>

<repeat statement>::=
REPEAT <statement> { ; <statement>
UNTIL <expression>

}

<with statement>::=
WITH <with variable list> DO <statement>

<with variable list>::=
<with variable> { , <with variable> }

}

<with variable>::=
<record variable> 1 <identifier> = <record variable>

EXPRESSION

<expression>::=
<boolean term> <expression> OR <boolean term>

<boolean term>::=
<boolean factor> 1 <boolean term> AND <boolean factor>

<boolean factor>::=
<boolean primary> 1 NOT <boolean primary>

<boolean primary>::=
<simple expression> 1
<boolean primary><relational operator><simple expression>

<relational operator>::=
= 1 <> 1 < 1 <= 1 > 1 >= 1 IN

<simple expression>::=
<term> 1 <adding operator><term>
<simple expression><adding operator><term>

<adding operator>::=
+ 1 -

<term>::=
<factor> <term><multiplying operator><factor>

<multiplying operator>::=
* 1 / 1 DIV 1 MOD

<factor>::=
(<expression>) 1 <set> 1 <unsigned constant> 1 <variable>
<function identifier> [<actual parameter list>]

<function identifier>::=
<identifier>

<set>::=
"[" <element list> "]"

<element list>::=
<element> { , <element> }

<element>::-
<expression> I <expression> .. <expression>

<unsigned constant>::=

<constant identifier> 1 <boolean constant> 1
<scalar identifier> I <character constant>
<string constant> 1 <integer constant> 1 NIL 1
<real constant>

<constant identifier>::=
<identifier>

VARIABLE

<variable>::=
<variable identifier> 1 <component variable>
<type-transferred variable>

<variable identifier>::=
<identifier>

<component variable>::=
<indexed variable> I <field designator> 1
<referenced variable>

<indexed variable>::=
<array variable> "r" <expression> { , <expression>

<array variable>::=
<variable>

<field designator>::=
<record variable> . <field identifier>

<record variable>::=
<variable>

<field identifier>::=
<identifier>

<referenced variable>::=
<pointer variable> @

<pointer variable>::=
<variable>

<type-transferred variable>::=
<variable> :: <type identifier>

INTEGER CONSTANT EXPRESSION

<integer constant expression>::=
<integer constant term> 1

ni.

<adding operator><integer constant term> 1
<integer constant expression><adding operator>

<integer constant term>

<integer constant term>::=
<integer constant factor> 1
<integer constant term><intmult operator>

<integer constant factor>

<intmult operator>::=
* I DIV 1 MOD

<integer constant factor>::=
(<integer constant expression>) 1
<integer constant identifier> 1 <integer constant>

<integer constant identifier>::=
<identifier>

LANGUAGE ELEMENT

<symbol>::=
<special symbol> 1 <keyword symbol> 1 <identifier> <constant>

<constant>::=
<enumeration constant> 1 <real constant> 1 <string constant>
<constant identifier>

<separator>::=
<space> 1 <end of logical source record> 1 <comment> I <remark>

<comment>::=
<open comment><any sequence of graphic characters
not containing <close comment> ><close comment>

<open comment>::=
"I n 1 (*

<close comment>::=
.1n I *)

<remark>::=
n <any sequence of graphic characters extending

to the end of the logical source record>

<special symbol>::=

@ I :[i I 1) :IL 1"1 I !=11)>Im I t>'11-!
1

:=
Note : The following substitutions may be used.

(* --> "I", *) --> "}n , (. --> n[n. --> n]n , @

<keyword symbol>::=

ACCESS I AND I ANYFILE 'ARRAY I ASSERT I BEGIN 1 BOOLEAN
CASE 1 CHAR I COMMON 1 CONST I DIV DO 1 DOWNTO 1
ELSE END 1 ESCAPE 1 FALSE 1 FILE FOR FUNCTION I

I GOTO IF IN 1 INPUT I INTEGER 1 LABEL LONGINT
MOD 1 NIL NOT 1 OF 1 OR 1 OTHERWISE I OUTPUT1 PACKED
PROCEDURE PROCESS 1 PROGRAM 1 RANDOM I REAL REPEAT
SEMAPHORE SET I START 1 SYSTEM I TEXT 1 THEN 1 TO I
TRUE (TYPE 1 UNTIL 1 VAR I WHILE 1 WITH

<identifier>::=
<letter> { <letter> I I <digit> }

<letter>::=

:1(13)11:1;11FJ111/111;7C I Y I
I KIZ,11;11N101

<digit>::=
0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9

<boolean constant>::=
FALSE 1 TRUE

<character constant>::=
' <character> '

<string constant>::=
<character><character> { <character> }

<character>::=
<graphic character> I i <hexdigit><hexdigit>

<graphic character>::=
<special character> I <letter> I <digit> I
<space> I <nonstandard character>

<special character>::=

I ;,I I
 "I61 T 1

<space>::=

I 1[1 1]1 i 11; 1 ;11 ; I I

<nonstandard character>::=
<any other character available on a particular
system or device>

<hexdigit>::=
<digit>lAIBICIDIEIF

<integer constant>::=
<digits> [L11
<hexdigit> <hexdigit> } [L]

<real constant>::=

<digits> . <digits>
<digits> . <digits> E <scale factor>
<digits> E <scale factor>

<digits>::=
<digit> { <digit> }

<scale factor>::=
[<sign>] <digits>

<sign>::-
+1-

CHAPTER V

POWER BASIC

5.1 INTRODUCTION

BASIC (Beginner's All Purpose Symbolic Instruction Code) is a
high-level interpreted language. Although it does not support the
full block structured approach of the Algol based languages (Algol 68,
PASCAL, etc.), the BASIC language is easy to learn and supports a
variety of useful features. These features are discussed below.

In an interpreted language, no machine code is produced. Instead, as
each source line is entered, it is checked for syntax errors (does the
source line conform to the language specifications?) and, if valid, is
stored in a condensed and encoded form called interpretive code-
Because interpreted languages are normally used in an interactive
mode, syntax errors are immediately reported to the user. Before the
next source lines can be entered, the line containing the error(s)
must be corrected. The stored code can be 'executed' at any time (it
is not necessary to wait until the whole program has been entered) by
issuing the RUN command. The interpretive code is not directly
executed. Instead, the interpreter examines each statement in the
interpretive code and calls in a machine language subroutine (which is
part of the interpreter) to carry out the desired operation.

Semantic errors (non-existent variables and arrays, incorrectly
referenced arrays, etc.) And run-time errors (incorrect program
logic) require that the line(s) containing the errors be revised
before the program can be rerun. With a compiled language, the whole
program must be recompiled after modifications are made. It may also
be necessary to link edit the compiled program should it contain any
external references.

The advantages of using an interpretive language follow:

• Because the interpreter calls in complete assembly
language subroutines to perform each function, each
statement in the interpretive code can specify a
complex operation. This results in compact, memory
efficient code.

• There is no need to go through separate compilation,
link edit steps, etc. to produce executable code. As
part of the edit step, each source statement is
translated into 'executable' interpretive code as it is
entered.

• Each source line is checked for errors as it is
entered; it is impossible to enter a syntactically
incorrect statement.

• Interpretive programs are usually developed
interactively. As a result, it is only necessary to
retype the relevant line(s) and rerun the routine in
order to change the program. The user is able to see
the result of his change immediately. Also, the
interpreter provides excellent error diagnostics and
good recovery techniques.

• Because the interpreter is in control the total time,
it is more difficult for the programmer to find himself
in irrecoverable error situations.

• To transport a program to another machine it is only
necessary to provide a version of the interpreter
written in the new machine's instruction code. Any
program written in interpretive code can then be run on
the new machine.

Because of the extra work done by the interpreter in reading
interpretive code, calling subroutines, etc, interpretive code
executes several times slower than compiled code. This is the
principal disadvantage to using interpretive code. In addition, BASIC
was designed as a simple language, and does not provide the powerful
program and data structuring techniques of, say, PASCAL. As such, it
is probably not a suitable language for developing large or complex
applications. However, for small to medium sized applications, and
for experimental work demanding speed in program development, BASIC is
very acceptable.

5.2. POWER BASIC

POWER BASIC is a family of software products designed for the
industrial user. It provides all of the facilities of BASIC plus
specially designed features to support real-time industrial control
applications. The POWER BASIC family consists of three members :
Evaluation POWER BASIC, Development POWER BASIC, and Configurable
POWER BASIC. In addition, there is an Enhancement Software Package
available for use with Development POWER BASIC.

POWER BASIC is designed to run on the TM 990 range of microcomputer
modules (it can also be adapted to run on other systems). It is
possible to set up a POWER BASIC development system with a minimum of
capital outlay. A chasis containing two or three microcomputer
modules from the TM990 board range, a 733 ASR terminal, a single audio
cassette recorder and a PROM programmer, provide all the facilities
necessary to develop a POWER BASIC application program and store it in
Programmable Read Only Memory (PROM)- The floppy disc based FS990/4
system provides more sophisticated features, which allow a POWER BASIC
program to be tailored for any application to achieve minimum code
size.

5.2.1 Evaluation POWER BASIC

Evaluation POWER BASIC is a four-EPROM package that resides on either
a TM 990/100M or a /101M CPU module. Additional RAM in the form of
TM 990/201 or /206 memory expansion boards may be configured into the
system as necessary.

Apart from the standard features of BASIC, Evaluation, POWER BASIC
allows the user to access control equipment in real-time (timing is
provided by the TIC function) by either memory-mapped I/O (MEM
function) or via TI's standard bitwise Communications Register Unit
(BASE, CRB and CRF functions). It also allows the user to load a
program from (LOAD command) and save a program (SAVE command) on
digital cassettes.

Evaluation POWER BASIC is intended for users to try out the features
of POWER BASIC. It is not meant for serious development work, apart
from experimental applications.

Used with the /101M CPU board. Evaluation POWER BASIC supports the
following execution environments:

• Single-user single-partition

• Single-user two-partition

• Two-user two-partition

Selection of the appropriate environment is implemented via the 5-pole
DIP on the /101M CPU board. Section 2.9 of the TM990 POWER BASIC
Reference Manual describes this feature in greater detail

Communication between partitions is made possible by the system
defined common array:COM(0) to COM(9). Thus Evaluation POWER BASIC
can be used to control two separate tasks, the execution of each being
synchronized using the COM array. For example, one partition can be
used to control an industrial process while the other collects control
data (from a terminal for example).

PARTITION #1

10 REM GATHER DATA
20 COM(0)=0
30 INPUT V1,...,V9
40 IF COM(0)<>0 THEN GOTO 40
50 COM(1)=V1::COM(2)=V2

• • •

90 COM(0)=1
100 GOTO 30

PARTITION 12

10 REM CONTROL PROCESS
20 'initialize' V1,...,V9
30 IF COM(0)=0 THEN GOTO 120
40 V1=COM(1)::V2=COM(2)

110 COM(0)=0
120 'use' V1,...,V9
130 GOTO 30

Partition #1 gathers input from the terminal and passes it across
partition 12 via the COM array. COM(0) is used to synchronize

to
the

data transfer; mutual exclusion is guaranteed by allowing #1 to access
the array only when COM(0)=0; when COM(0)=1 only #2 can access it.
After loading the array, #2 is informed that fresh data is ready by
setting COM(0) to 1. This also prevents #1 from modifying the array
contents until #2 has copied them. Once the contents have been
copied, #1 is given exclusive control of the array by setting COM(0)
to 0.

In a single-user two-partition environment, CTRL T (pressing the T key
while holding down the CTRL key) will transfer control from one
partition to the other.

5.2.2 Development POWER BASIC

Development POWER BASIC is a six-EPROM package that resides on either
a TM 990/100M or a /101M CPU board plus either a TM 990/302 Software
Development Board or a TM 990/201 memory expansion board. Additional
memory expansion boards can be included if required.

In Development Power BASIC, the two-partition feature is removed to
allow the inclusion of additional features. With the CALL statement,
Development POWER BASIC allows the user to access assembly language
routines that have been burnt into PROM. Development POWER BASIC also
allows the user to write interrupt service routines in POWER BASIC and
to associate these with particular interrupt levels (using the TRAP,
IMASK, and IRTN statements). Development POWER BASIC also provides
full character handling facilities (character search, match and
conversion functions), better control structures (including the ELSE,
ON and ERROR statements) and more varied print formatting (hexadecimal
formatting and direct output of hex ASCII codes).

In addition, the Enhancement Software Package is accessible from
Development POWER BASIC. The Enhancement Software Package is a
two-EPROM package used in conjunction with Development POWER BASIC.
This provides the additional capability of loading a program from and
saving a program on low cost audio cassettes. If the TM 990/302
Software Development Board is configured into the system, it is
possible to program POWER BASIC applications into TMS2716 EPROMs
(using the PROgram command). The software package also provides
decimal print formatting and complete error message reporting.

5.2.3 Configurable POWER BASIC

Configurable POWER BASIC is a floppy disc based development package
that is designed to run on a 990/4 minicomputer under the TX990
operating system (version 2.3 or later). The package has two parts, a
configurator and an interpreter. Configurable POWER BASIC allows the
user to generate an applications system of minimum size by deleting
the POWER BASIC editor along with any parts of the interpreter that
are used.

The configurator determines what POWER BASIC features are required by

the user's application program and builds a link control file. With
this file along with the POWER BASIC object library, the TX990 Link
Editor produces a POWER BASIC run-time module. This module contains
both the user's application program and an interpreter customized to
the user's requirements (only the POWER BASIC features used by the
application program are built into it). Using the TXPROM utility, the
module can be burnt into 2716 EPROMs.

If the application program's EPROM(s) are inserted at address >3000,
toggling the reset switch causes the program to execute
automatically. However, if the EPROM(S) are inserted elsewhere, the
following command must be used to execute the program:

LOAD <address>

where <address> is the address of the first pair of EPROMs containing
the POWER BASIC application program.

The interpreter provides all the features of Development POWER BASIC,
its Enhancement Software Package, plus a number of other features.

Configurable POWER BASIC supports a comprehensive file management
package that allows the user to create, access and delete files
(either sequential or random access) on the 990/4's floppy disc
units. In accordance with 990 philosophy, all file and device I/O
operations are performed via conceptual links called logical unit
numbers or lunos. The physical connection between a luno and a
specific file or device is made (opened) by the BOPEN statement and is
broken (closed) by the BCLOSE statement. The RESET statement closes
all lunos that are open at the time the statement is executed. Files
can be created by either the BDEFS (define sequential file) or the
BDEFR (define random files statements, and deleted by the BDEL
statement. Reading from and writing to files or devices can be
performed by the COPY statement or by:

BINARY <exp>

where <exp> specifies the required I/O operation.

The '@' operator has been added to the PRINT statement to give the
user complete cursor control. With this the user can specify an exact
starting position for output on the screen (911 or 913 VDT) either by
supplying the 'x' and 'y' co-ordinates or by using these positioning
commands:

B Move cursor to begining of line
C Clear screen and move cursor to HOME position
D Move cursor down
H Move cursor to HOME position
L Move cursor to left
R Move cursor to right

For example; To clear the screen and print the message 'INPUT NAME' to
the VDT screen, starting on the fifth line at the twelfth character

position, either of the following commands is required.

PRINT @"C5D12R";"INPUT NAME"
Or PRINT @"C";@(5,12);"INPUT NAME"

Other features of Configurable POWER BASIC include: DIGITS (specify
the number of digits to be printed in free format), STACK (interrogate
the GOSUB stack) statements, NUMBER (set initial and increment values
for the automatic line numbering facility), PURGE (delete the
specified lines), SOURCE (show how much room the program will occupy
when saved), and BYE (terminate a Configurable POWER BASIC session)
commands.

The diagram that follows illustrates Configurable POWER BASIC as it
relates to memory.

R
Editor

0
M Interpreter

User's
R Program
A
M

User's
Variables

Editor

R Interpreter
0
M

User's
Program

R
A User's
M Variables

R

Customized
Interpreter

0
M User's

Program

R
A User's
M Variables

->

- - >

->

->

After program is After PROM After Configurator
developed Programmer and PROM Programmer

5- A

5.3. BASIC LANGUAGE OVERVIEW

BASIC is an uncomplicated,easy to learn language, based upon a few
simple concepts. A BASIC program consists of a series of numbered
statement lines. The statements are executed in ascending numerical
order. A line normally contains one BASIC statement; although the
concatenation operator (::) can be used to write more than one
statement on a line. One of the simplest statements, the assignment
statement, is used to assign the value of an expression to a variable:

50 A2 = 5 + 7

When the above line is executed, A2 will be assigned the value of the
arithmetic expression '5+7' (the integer 12).

There is no variable declaration; a variable is implicitly declared by
its first appearance on the left-hand side of an assignment
statement. Variable names are restricted to from one to three letters
or a combination of a letter and a number in the range 0-127. There
is no typing of data. Variables can have integer, real or character
string values, depending on the context. The only data structure
provided is the array, which can have one or more dimensions.

The principal device for structuring a program is the GOTO statement,
which transfers execution directly to a statement number. The
IF..THEN statement implements selection; it must be combined with the
GOTO statement if the alternatives are longer than one or two
statements. The FOR..NEXT statement implements iteration (see
Subsection 2.5). In general, programming constructs have to be built
by the programmer using IFs, FORS and GOTOs.

Subroutines, 'procedures' (see Subsection 2.8) can be called using the
GOSUB statement, which simply places the address of the statement
following the GOSUB on a last-in-first-out stack, from where it is
retrieved when a RETURN is executed. Subroutines are not declared
separately from the main program. The GOSUB simply specifies a
statement number; the statements between that number and the next
RETURN are treated as a subroutine. Scope rules are simple. Once a
variable has been introduced, it can be referenced anywhere in the
program. Subroutines can be nested (up to 10 deep), but the
programmer needs to check that the GOSUBs and RETURNS match (the
interpreter does not perform this check). Subroutine parameters are
not allowed.

The main attraction of BASIC is its simplicity. Programs can be
entered and executed easily even by users who are not skilled
programmers. BASIC is a high level language, and as such
automatically handles such details as storage allocation (to which the
assembly language programmer devotes a lot of attention). The
development environment provided by BASIC is particularly simple and
easy to use; even novices can learn to develop a BASIC program in a
matter of hours. BASIC is ideal for the rapid development of
relatively simple applications.

However. it does have limitations. Because of its simplicity, BASIC
performs very few checks on the integrity of program and data (such as
are performed automatically by the PASCAL compiler, for instance). It
is quite legal, for example, to assign an integer value to a character
string variable. This may be valuable in some circumstances. However
BASIC supplies no warning if it is done by mistake. In addition, the
structuring and self-documenting features of PASCAL are missing. For
a complex application, PASCAL is probably a better alternative.

5.4. POWER BASIC OPERATION

5.4.1 Operating Modes

POWER BASIC has two modes of operation:

1) Keyboard mode is automatically entered when POWER BASIC is
initialized. Entering a numbered line causes that line to
be stored in the appropriate place in the program space.
Entering an unnumbered line causes the statement(s) to be
immediately executed and keyboard mode to be re-entered as
soon as the necessary processing has been performed.

2) Execution mode is entered by issuing either a RUN, a CONT or
a GOTO statement causing the POWER BASIC interpreter to
execute the previously stored program; RUN starts at the
lowest line number in the program; CONT continues from the
last line that was previously interpreted; GOTO proceeds
from the line specified. This mode is terminated by any one
of the following conditions:

• Error condition arising.

• STOP or END statement executed.

• Pressing the ESCape key on the terminal.

Note : There are a number of statements which can only be issued in
keyboard mode. The POWER'BASIC Reference Manual refers to these as
commands. These commands are also listed in the Reference Section at
the end of this chapter.

5.4.2 Editing Source Statements

POWER BASIC supports a simple editor that allows the user to easily
modify (or edit) already entered source statements. The available
edit commands are:

CR or LF Enter the edited line
ctrl H Backspace the cursor one character
ctrl F Forwardspace the cursor one character

(An attempt to forwardspace past the last
character will have no effect apart from
sounding the bell on the terminal)

RUBOUT Backspace and remove character
<ln> ctrl E Display the line <ln> for editing

Development POWER BASIC supports two additional commands that are not
available in Evaluation POWER BASIC:

ctrl I<n> Insert <n> blanks
ctrl D<n> Delete <n> characters

'Ctrl E' strike the E key while holding down the CTRL key.
'Ctrl I<n>' hold down the CTRL key while striking the I key, then
strike the numeric key corresponding to the value <n>.

When the Carriage Return or LineFeed key is pressed, all characters
displayed are entered, regardless of the position of the cursor.

Entering only a line number (and nothing else) causes the specified
line to be deleted from the stored program. Entering a statement with
a line number that already exists causes the original statement to be
replaced by the new one.

The editor is automatically invoked when the interpreter encounters a
syntax error in a line being entered via the ASR. However, if the
program is being loaded from cassette (using the LOAD command) and a
syntax error is encountered, the interpreter will display the number
of the line containing the error. The whole line is ignored as it can
not be stored correctly and the load operation will continue.

5.4.3 Automatic Line Numbering

The automatic line numbering facility is invoked by terminating an
input line with a linefeed instead of a carriage return. This causes
the interpreter to output the incremented line number and keyboard
mode to be re-entered. The incremented line number is 10 greater than
the last line number entered. Entering a line containing just a
linefeed initializes the line number to 10. Terminating a line with a
carriage return disables this facility.

5.4.4 System Initialization

Toggling the reset switch causes POWER BASIC to clear and scan the
system RAM area to determine how much memory is present. This
operation begins at location >FFDC and continues on down through
contiguous memory to location >4000 or until a read/write mismatch is
encountered. (A fully populated /100M microcomputer board only holds
1K of RAM . This is addressed from >FC00 to >FFFF. Any additional

memory in the form of memory expansion boards, must be configured so
that it terminates at >EFFF. The interpreter ignores the resulting
memory 'hole', from >F000 to >FBFF.

The POWER BASIC interpreter next performs the auto-baud sequence.
This initializes the serial I/O interface for terminal communication.
After the user has struck the A (or carriage return) key on the
terminal, the interpreter measures the time of the start bit and
determines the baud rate of the terminal. The onboard TMS9902
Asynchronous Communications Controller is then set to this baud rate
(all terminal I/O is performed through the 9902.)

In Development POWER BASIC the UNIT flag is restored to a value of
one; all output is directed to Port A on the microcomputer board.

Once all POWER BASIC pointers have been initialized, the following
message is output:

TM990 BASIC REV X.n.m
*READY

where : X = language level

n = release number

m = revision number

At this stage, POWER BASIC is in keyboard mode waiting for user
input.

Refer to the POWER BASIC Reference Manual for instructions on setting
up the hardware configuration.

5.5. VARIABLES

A POWER BASIC variable can be used to store either an integer number,
a real number, or a character string depending on the context in which
the variable is used. Thus, although a variable may contain a number
(integer or real) it can be used as though it contained a character
string, and vice versa. All variables, whatever their type, occupy
the same amount of storage (6 bytes in Development Power BASIC, 4
bytes in Evaluation POWER BASIC).

5.5.1 Variable Names

A variable name is either an alphabetic character followed by a number
in the range 0 to 127 (e.g. Z100) or an alphabetic string up to three
characters long (e.g. A, ST, and LST). The variable name cannot be
identical to a POWER BASIC keyword; nor can it form the beginning of a
keyword. The following variable names are not valid:

LIS Beginning of LIST which is

a POWER BASIC statement

MEM A POWER BASIC function

TOT First 2 letters form the
POWER BASIC keyword TO

for a full list of reserved words refer to the Reference Section.

5.5.2 Variable Declarations

Variables are not explicitly declared in BASIC. Instead a variable is
implicitly declared by assigning a value to a valid variable name.
For example, to declare the variable TST and assign it the value 100
the statement:

TST=100

is used.

A value can be assigned to a variable either by a READ (read a value
from a DATA statement), an INPUT (accept input from the terminal) or a
LET statement. The statement 'TST=100' is an implied LET, as are
statements of the form:

<variable>=<expression>

where <expression> may contain function calls:

FRD=SIN(PI*NUM)

with both PI and NUM having been previously declared.

An attempt to use a variable that has not been declared (assigned a
value) will result in error 40 (UNDEFINED VARIABLE).

5.5.3 Numeric Representation

If a number can be represented in a 16-bit two's complement form, it
is stored in integer format, otherwise it will be stored in
floating point format.

5.5.3.1 Integer Variables. An integer variable can store a value in
the range -32768 to +32767.

5.5.3.2 Floating Point Variables. Floating point format allows a
real number in the range 10E-75. ('E' represents the multiplier 10,
the integer number following is the power to which 10 is raised.)
This representation provides approximately 7 digits of accuracy for
Evaluation POWER BASIC and approximately 11 digits of accuracy for

Development POWER BASIC.

5.5.4 Character String Variables

A character string is a string of characters enclosed within single or
double quotes. Paired double quotes can be used to enclose single
quotes and vice versa. In Development POWER BASIC, non-printable
characters may be included in a character string by writing their
hexadecimal ASCII representation enclosed in angle brackets. The
angle brackets (< >) are stored along with the character string and
are interpreted when the string is read from a DATA statement or when
the string is being printed.

A variable is specified as containing a character string by preceeding
the variable name by a dollar sign (#$'). In this form, a variable
should be used to store a string of 5 characters for Development POWER
BASIC, or 3 characters for Evaluation POWER BASIC. The last byte is
used to terminate the string and contains the null character (zero).

5.5.5 Array Variables

An array can be thought of as a list of variables stored consecutively
with each variable being represented as an array element. The area of
memory reserved for the array is referenced by the array name. This
is followed by a number enclosed in parentheses or square brackets
(internally the parentheses are converted into and stored as square
brackets). The number is known as the array subscript and indicates
which element in the array is to be accessed.

Note : A and A(0) refer to two completely different variables.

To allocate the array STR with 10 elements the following statement is
required:

DIM STR(9)

The elements are referenced by

STR(0), STR(1), STR(9).

The size parameter supplied to the DIMension statement is one less
than might be expected as BASIC automatically allocates space starting
from element zero.

Although an array may be used to hold character strings, it is
declared (in the DIMension statement) without the dollar sign.

POWER BASIC allows an array to be declared with any number of
dimensions; however, for most practical applications, a two
dimensional array is usually sufficient.

5.6. POWER BASIC PROGRAM

A POWER BASIC program consists of a number of statements, each with a
line number. Statements may either perform some action, such as
adding two variables together and assigning the sum to a third
variable ("A=B+C'), or may be control statements, that change the
execution flow of the system. A full list of POWER BASIC statements
is provided in the Reference Section at the end of this chapter.

POWER BASIC allows the user to write a number of statements on one
line, with each statement being executed in turn. The general syntax
for an input line is:

-line number- <statement> [:: <statement>] -! comment-

where Indicate optional items
[Indicate item is repeated as many times as

required - 0,1,....
Exceptions :

• A NEXT statement should be the first statement on an input
line; otherwise it will not be located to terminate the FOR
loop.

• A DATA statement should be the only statement on an input
line.

• A REM statement takes the remainder of a line as comment;
statements following will be treated as comments.

5.6.1 Control Statements

POWER BASIC statements are normally executed in ascending line number
order. However, it is not usually possible to write an effective
applications program in a straightforward sequential manner. For this
reason, POWER BASIC supports a number of control statements that allow
the user to dictate the order in which program statements are
executed.

5.6.1.1 GOTO Statement. The first of these control statements is the
'GOTO'. This provides a simple, yet very powerful, mechanism for
changing program flow. The syntax for this statement is:

GOTO <ln>

This causes contol to be transferred to line <ln>.

Restraint must be exercised with this statement; too liberal a usage
will lead to an unintelligible and unnecessarily complex program.

Possibly the best use of this statement is in building constructs that
are not included in BASIC (the WHILE, DO FOREVER and REPEAT UNTIL

loops; more about these later).

5.6.1.2 IF THEN Statement. Occasionally it is necessary to perform
some specific action only if a certain condition is met. For example,
the only time the telephone should be answered is if it is ringing.
To provide for this situation, Power BASIC provides the IF THEN
statement. The above operation can now be expressed as 'IF the phone
is ringing THEN answer it'. The syntax for this is :

IF <condition> THEN <sequence>

Statements in <sequence> must be separated from each other by the
statement separator ('::'). <Condition> may be any valid expression
that yields a value of true or false.

The POWER BASIC statements <sequence> is only executed if <condition>
proves to be true.

Note: The statement separator does not delimit the IF THEN statement,
it only separates the statements in <sequence> from each other.

100 IF condl THEN statementl::IF cond2 THEN statement2

Is not the same as:

100 IF condl THEN statementl
101 IF cond2 THEN statement2

In the first case, <statement2> is only executed if BOTH <condi> AND
<cond2> are true. In the second case, <statement2> is executed if
<cond2> is true, irrespective of <condi>.

The number of statements that can be associated with the THEN keyword
is limited by the length of the input line. This can be overcome
using the following:

IF NOT(condl) THEN GOTO 150

. Sequence of statements to be performed

. when <condl>=true
•

150 REM end the IF THEN clause

The REM statement is a remark (comment), and is ignored by the
interpreter.

If <condi> is false, then NOT(condl) is true and program control is
passed to the REM statement following the sequence. But if <condi> is
true, then NOT(condl) is false and program execution continues from
the line following the IF THEN statement.

A WHILE loop can be built up as follows:

10 IF NOT(condl) THEN GOTO 200

. Sequence to be performed

. WHILE <condl>=true

GOTO 10
200 REM <condl>=false

A DO FOREVER loop can be expressed as:

50 REM start forever loop

. • Sequence to be performed continuously

G▪ OTO 50

A REPEAT UNTIL loop is:

145 REM start repeat loop

. Sequence to be performed

. UNTIL <condl>=true

IF NOT(condl) THEN GOTO 145
REM drop through to here when <condl>=true

An IF THEN ELSE construct can be implemented as:

IF NOT(condl) THEN GOTO 100
•
. Sequence to be performed
. when <condl>=true

GOTO 200
100 REM start ELSE part

. • Sequence to be peformed

. when <condl>=false

200 REM end IF THEN ELSE

This can be easily expanded to allow an ELSEIF:

IF NOT(condl) THEN GOTO 192

.▪ Sequence to be performed

. when <condl>=true

GOTO 475
192 IF NOT(cond2) THEN GOTO 320

. Sequence to be performed

. when <cond2>=true and <condl>=false

GOTO 475
320 REM start ELSE part

. • Sequence to be performed

. when <condl>=<cond2>=false

475 REM end IF THEN ELSEIF ELSE

NOT is a recognized Development POWER BASIC boolean primitive that
returns a value of TRUE if its argument evaluates to FALSE; otherwise
it returns a value of FALSE. However, this is not supported by
Evaluation POWER BASIC. It is simple to effect the NOT function by
taking the complement of . the relational operator in the condition.

A condition can be written in the form:
<expl><relop><exp2>

The negation of a condition can then be written :
<expl><relop*><exp2>

where <relop*> is the complement of <relop> and is derived from the
following table.

Relationship <relop> <relop*>

Equal to
Greater than
Less than
Greater than or equal to
Less than or equal to
Not equal to

1

A
 A

 V
 A

V

 II
V

 I
I
II

,

,

H
 V
 A

 V
 A

 A

11

I
I
 V

For example:
NOT(a > b) becomes (a <= b)
NOT(p = q) becomes (p <> q)

An expression is considered to have a truth value of TRUE if it
evaluates to a non-zero value, otherwise it is considered FALSE. Thus
the statement :

IF <expression> THEN statement(s)

is shorthand for

IF <expression> <>0 THEN statement(s)

5.6.1.3 ELSE STATEMENT. Development POWER BASIC supports the ELSE
statement. This is normally used in conjunction with the IF THEN
statement. The syntax for this is:

ELSE <sequence>

where the statements in <sequence> are separated from each other by

The ELSE statement uses the ELSE flag (set or reset by the last
IF THEN statement depending on whether the condition is true or false)
to determine whether the statement(s) following the ELSE keyword are
to be executed. Several ELSE statements may appear between IF THEN
statements. Each will be executed if the condition proved to be
false, otherwise they will be skipped.

Typically, this statement will be used as:

100 IF condl THEN seql
110 ELSE seq2
120 REM end IF THEN ELSE

In the above, <seql> is only executed if <condi> is true; if <condi>
is false then <seq2> is executed. After executing the appropriate
sequence, control is passed to the REM statement (line 120).

<Seq2> may itself consist of an IF THEN ELSE:

100 IF condl THEN seql
110 ELSE IF cond2 THEN seq2
120 ELSE seq3
130 REM end IF THEN ELSEIF

Here <seq3> is executed only if both <condi> and <cond2> are false;
<seq2> if <condi> is false and <cond2> is true; and <seql> if <condi>
is true.

5.6.1.4 FOR NEXT Statement. A simple loop construct (perform a
sequence of statements a known number of times) can be implemented by
as follows.

Num=int
100 IF num>lst THEN GOTO 350 1 IF NOT(num<=lst)

num=num+1 increment loop count

. ▪ Sequence to be performed

. while num<=lst

GOTO 100
350 REM end iterative loop

where 'int' = initial value
'1st' = final value
'num' = loop counter

The above loop is performed until the final value is exceeded.

To implement a count-down loop, the test and increment statements
would have to be changed to:

100 IF num<lst THEN GOTO 350 ! IF NOT(num>=1st)
num=num-1 ! decrement loop counter

These simple loop constructs can be made more powerful by modifying
the increment (decrement for the count-down loop) statement to:

num=num+stp
where 'stp' = required increment/decrement

As this type of loop is used often, BASIC provides its own loop
construct in the form of the FOR NEXT statement. The syntax of this
is:

FOR <var>=<start> TO <final> STEP <step>

. • Sequence to be performed

NEXT <var>

The <start>, <final> and <step> values can be any valid numeric

expression. If the <step> value is one, the STEP keyword may be
omitted. The variable <var> specified by NEXT must coincide with that
used by the FOR.

The FOR statement opens the loop and the NEXT statement closes it. If
the condition:

(step value)*(start value) > (step value)*(final value)

is true when the FOR statement is first encountered, the loop will not
be executed. But if this condition is false, the FOR variable is set
to the <start> value and the sequence of statements between the FOR
and NEXT statements are executed. When the NEXT statement is
encountered the FOR variable is incremented/decremented by the <step>
value. Control is passed back to the FOR statement and while the
condition :

(step value)*(FOR variable) <= (step value)*(final value)

remains true the loop will be executed. When execution of the loop is
finished, control is transferred to the statement following the NEXT.

FOR NEXT loops can be nested (contained within one another). There is
a maximum nesting depth of 5 for Evaluation Power BASIC, 10 for
Development Power BASIC. No overlapping is allowed; inner loops must
be closed before closing outer loops. Nested FOR NEXT loops must have
different FOR variables; they can not share control variables.
Otherwise, loop boundaries will not be clearly defined.

100 FOR K=1 TO 100

-- 200 FOR J=9 TO 0 STEP -1

-- 275 NEXT J

490 NEXT K

100 FOR K=1 TO 100 -

-- 200 FOR K=90 TO 160

-- 387 NEXT K

480 NEXT K

CORRECT NESTING

INCORRECT NESTING
CONTROL VARIABLE
SHARED; LOOP
BOUNDARIES NOT
CLEAR

100 FOR K=1 TO 100 STEP 3

• INCORRECT NESTING
200 FOR J=9 TO 0 OVERLAPPING LOOP
. BOUNDARIES

300 NEXT K

400 NEXT J

Within the loop, the control variable can not be modified. It can
however be used to access the elements of an array (for example).

While control can be transferred from within a loop to a statement
outside, it is not possible to transfer control from outside to the
inside.

A FOR NEXT loop can be written on a single line with '::' separating
each statement:

100 FOR I=0 TO 10 ::sequence::NEXT I

This disables the ESCape key on the terminal while the loop is being
executed(until the loop has completed it is not possible to interrupt
program execution and return Power BASIC to keyboard mode). This is
because POWER BASIC will only recognize an interrupt at the end of the
currently executing statement. Also, if the initial check indicates
that the loop is not to be executed, error 31 (FOR W/O NEXT) will
result because the NEXT statement will not be found.

5.6.2 Subroutines

As previously stated, statements are normally executed in a
straightforward sequential manner. A subroutine represents a method
of executing a number of statements outside of the normal sequence.

Pictorally, subroutine execution is:

Main

> Subroutine start

- Subroutine end

If a subroutine is only used once, there is little point in separating
the subroutine code from the calling routine. No benefit is derived
apart from (perhaps) clarifying the program structure. However, there
is a benefit when a
statements that appear
example follows.

.)

subroutine is used to replace a number of
in several different places in a program. An

Call to SEQA
•)- SEQA
•) to SEQA

•) Call to SEQA
•)- SEQA
•) •)

•)- SEQA
•)

•)
•)- SEQA
•)

Program execution would become:

Main

> Subroutine start
•

- Subroutine end

. Subroutine start
• 4------

- Subroutine end

. Subroutine start

- Subroutine end

If the subroutine is large there can be a considerable saving realized
in program storage (because of a small overhead) in calling and in
returning from the subroutine.

A POWER BASIC subroutine is simply a sequence of statements that is
entered using the GOSUB statement and exited via a RETURN statement.
A subroutine can have multiple exit points (each distinguished by a
RETURN statement), but this is usually considered bad programming
practice. The syntax for the GOSUB and Return statements are:

GOSUB <ln>
RETURN

An example follows:

100 GOSUB 2000
- 110 REM RETURN TO HERE

2000 REM START OF SUBROUTINE <-

- 2300 RETURN ! EXIT SUBROUTINE

A GOSUB statement causes the address of the statement immediately
following it to be pushed onto the GOSUB stack and then passes control
to the specified line. In the above, the address of line 110 is
pushed onto the top of the stack before control is passed over to line
2000.

The RETURN statement transfers program control back from a subroutine

to the statement following the last GOSUB executed, by popping the top
item off the GOSUB stack. In the above, the last entry to the stack
(address of line 110) is popped thus allowing control to be passed
back to line 110.

If a subroutine is exited by any way other than a RETURN statement,
program flow can become unpredictable. POWER BASIC performs no check
that a subroutine has been exited via a RETURN statement . Executing
a RETURN statement when a subroutine has not been invoked will result
in Error 12 (STACK UNDERFLOW).

Subroutine calls may be nested, (a subroutine may call another
subroutine, upto a maximum of 10 levels for Evaluation Power BASIC and
20 levels for Development Power BASIC). In other words, there can be
a maximum of 10 outstanding RETURNS at any one time. An attempt to
exceed this number will result in error 11 (STACK OVERFLOW).

55 GOSUB 200
60 REM RETURN TO HERE FROM S/R1

200 REM START OF S/R1

270 GOSUB 1000
280 REM RETURN TO HERE FROM S/R2

400 RETURN ! EXIT S/R1

1000 REM START S/R2

-- 1200 RETURN ! EXIT S/R2

Pictorally, program execution becomes :

Master
•
•
GOSUB -----* Subroutine 1
. <
•

GOSUB ----* Subroutine 2
. < •

- RETURN

- RETURN

4-

As a POWER BASIC subroutine has complete access to all variables
defined in a program, no parameter passing mechanism is supplied (nor
is one really necessary). POWER BASIC is not a block structured
language. Therefore, the programmer must make his own checks that
variables are not accessed incorrectly (inadvertently modified by a
subroutine). If a subroutine can write over critical data, it is
necessary to use temporary variables for storage of this data. The
programmer should then make sure that the subroutine can only access
this data through the temporary variables.

5.6.3 ON Statement

The ON statement is a type of 'computed' GOTO. The syntax for this
is:

ON <expression> THEN GOSUB/GOTO <11>,<12›,...,<ln>

A branch is made to line , depending on the value of <expression>,
via a GOTO or GOSUB statement. This is equivalent to:

IF <expression>=1 THEN GOTO/GOSUB <11>
ELSE IF <expression>=2 THEN GOTO/GOSUB <12>

ELSE IF <expression>=n THEN GOTO/GOSUB <ln>

If a GOSUB is used on returning from the subroutine, control passes to
the statement following the ON statement.

If the expression evaluates to less than one or greater than 'n', no
transfer is made and execution continues from the statement following
the ON.

5.6.4 ERROR Statement

The ERROR statement allows the user to specify a POWER BASIC routine
that is to be executed when an error occurs. The syntax for this is:

ERROR <ln>

When an error condition arises, control is passed to line <ln> via a
GOSUB statement; this preserves the address of the statement in which
the error occurred on the GOSUB stack. If the error is recoverable, a
return to the line with the error is made by a RETURN statement.
However, if the error is unrecoverable, control will not be
transferred back by the RETURN.

When the error-handling routine has been invoked, the system function
SYS can be interrogated to find the cause of the error. SYS(1) will
return the error code number, and SYS(2) the number of the statement
in which the error occurred. Once the error has been trapped using
this statement, future errors will not be trapped until another ERROR

statement is executed.

Use of the ERROR statement suppresses the automatic printing of error
code/message.

10 ERROR 1000

1000 REM ERROR HANDLING ROUTINE
1010 IF NOT(SYS(1)=23) THEN PRINT "ERROR=",SYS(1)::STOP
1020 RESTOR
1030 RETURN

When an error occurs, control is transferred to statement 1000. If
the error was not due to "READ OUT OF DATA" (error 23) then the
message "ERROR=" and the error code are printed to the terminal, and
program execution STOPs. Otherwise the error is corrected by
resetting the READ pointer to the first DATA statement in the
program. The RETURN statement next passes control back to the line
where the error occurred.

5.6.5 CRU Operations

The 9900 supplies a bit-oriented method of I/O called the
Communications Register Unit (CRU). Under Power BASIC the CRU is
accessed using the BASE statement and the CRB and CRF functions. For
full details of the CRU and its operation refer to Section 6.8.

5.6.5.1 BASE Statement. CRU operations are performed on a signed
displacement (in the range -128 to +127 bits) from a base address.
This base address is set using the BASE statement. The syntax for
this statement is :-

BASE <exp>

where <exp> is any valid arithmetic expression.

Note: The base address is a 12 bit address that is stored in bits 3 to
14 of workspace register 12. Because of this, the value of <exp> must
be twice that of the actual CRU base address desired. For example; to
access a device that has a CRU base address of 32, <exp> must evaluate
to 64.

5.6.5.2 CRB Function. Single-bit I/O is
function. Depending on the context in which
either reads or writes to the specified bit.

performed using the CRB
it is used, this function

When reading, the function returns a 1 if the
and a 0 if it is not set. For example;

specified bit is set,

IF CRB(15) THEN <statement>

<Statement> is only executed if the 15th bit from the base address is
set to 1.

When writing, the selected bit is set to 1 if the assigned value is
non-zero, and to 0 if the assigned value is zero. For example;

CRB(100)=200

Sets the 100th bit from the base address to 1.

5.6.5.3 CRF Function. The specified number of bits are transferred
to or read from the CRU starting at the address set by the BASE
statement. The specified number of bits is in the range 0 to 15. If
zero, all 16 bits are transferred. For example;

CRF(0)= -1

Transfers the 16 bit value (minus one - hex FFFF) to the CRU address
specified by the BASE statement.

VAL=CRF(8)

Reads the 8 bit value from the CRU base address and stores the result
in VAL. (VAL will be in integer format with the value occupying the
least significant byte of the integer word.)

5.6.6 MEM Function.

The memory modification (MEM) function reads or modifies the specified
byte memory location. The main use for this function is in performing
memory mapped I/O. For example, if a peripheral device register is
located at address >AE00, the character 'A' can be output by

MEM(OAEOOH)=65 !DEC 65=ASCII 'A'
or MEM(OAEO0H)=ASC('A')

ASC returns the decimal ASCII code of the character argument.

A character can be read from the device by

$CIN=%MEM(OAEOOH)

5.6.7 Interrupts

Development POWER BASIC allows the user to perform interrupt handling
using Power BASIC statements. This is achieved through the IMASK,
TRAP and IRTN statements.

When an interrupt occurs, the interpreter completes the POWER BASIC

statement it is executing and then executes the specified Power BASIC
interrupt subroutine. On completion of the interrupt routine,
execution continues from the statement following the last one executed
before the interrupt was recognized.

With the TM 990/100M and /101M microcomputer modules, all interrupt
lines are connected to the onboard TMS 9901 Programmable Systems
Interface. It is this device that informs the 9900 microprocessor
when an interrupt has been generated. The 9901 is accessed via CRU
instructions using a hardware base address of >80; this address needs
to be doubled when used in the BASE statement to set the base address
of the 9901. For an interrupt to be recognized by the 9901 (and
subsequently by the 9900), its level must be enabled. This is
performed by setting the appropriate mask bit in the 9901's CRU
address space to 1 (for details on the operation of this device refer
to the TMS 9901 Programmable Systems Interface' Data Manual).

To program the 9901 to enable an interrupt level it is necessary to:

1) Select interrupt mode.
2) Write a 1 to the appropriate mask bit.

For example: to enable interrupt level 7:

BASE 100H !set base address of 9901
CRB(0)=0 !set control bit=interrupt mode
CRB(7)=1 !enable mask 7

If a 0 is written (instead of 1) to the mask bit that interrupt level
is disabled. For example, to disable interrupt level 12:

CRB (0) =0 !select control bit=interrupt mode
CRB(12)=0 !disable mask 12

The above example assumes that the base address of the 9901 has
already been set.

Additional information on interrupts is contained in Section II of
this manual.

5.6.7.1 IMASK Statement. The IMASK statement is used to control the
interrupt mask (bits 12 to 15 of the Status Register) of the TMS9900
microprocessor. The 9900 recognizes 16 distinct interrupt levels,
level 0 is the highest priority interrupt and level 15, the lowest.

Level 0 is reserved for the RESET function and level 3 for the
real-time clock. Apart from these two, all other interrupt levels may
be used by external devices. Several devices may share the same
interrupt level (if system considerations require it). If this is the
case, the programmer must ascertain which device caused the interrupt
by polling the devices' status registers.

An interrupt can only be recognized by the TMS9900 when the incoming
interrupt has an equal or higher priority (equal or lower numerical
level value) than that specified in the interrupt mask of the status
register. If, for example, the interrupt mask is set to 5, then only
interrupt levels 0 to 5 will be recognized by the processor. The
interrupt mask can be changed using the IMASK statement. The syntax
for this statement is:

IMASK <exp>

where <exp> is an arithmetic expression in the range 0 to 15.

Note : Setting the interrupt mask to 2, 1 or 0 disables the real time
clock.

5.6.7.2 TRAP Statement. The TRAP statement is used to define a POWER
BASIC subroutine that is to be executed when an interrupt of the
specified level occurs. The syntax for this statement is:

TRAP <exp> TO <ln>

where <exp> is the interrupt level and <ln> is the line number of the
first statement of the interrupt routine.

5.6.7.3 IRTN Statement. The last statement of an interrupt subroutie
must he an IRTN. When this statement is executed, the interpreter
recognizes that the interrupt has been serviced and that it should
continue program execution from where it left off. The syntax for
this statement is:

IRTN

<--- 16 bits --> <--- 16 bits -->

5.7. POWER BASIC STORAGE ALLOCATION

The paragraphs that follow discuss variable storage and the system
memory map.

5.7.1 Variable Storage

Variable storage starts in high memory and builds down toward low
memory as each new variable is declared. In Development POWER BASIC a
variable is allocated 6 consecutive bytes; while in Evaluation Power
BASIC only 4 bytes are used.

Suppose variable
variable used

>FE00

will
storage
be allocated

starts at
space

>FE00

memory
as follows:

address >FE00, the first

3rd 4th 5th 6th

>FDFC 1st 2nd 3rd 4th

>FDFA 1st 2nd

Evaluation POWER BASIC Development POWER BASIC

The next variable will be allocated space as follows:

>FE00 >FE00

3rd 4th 5th 6th
first)-

>FDFC 1st 2nd) variable -(3rd 4th

3rd 4th >FDFA 1st 2nd

>FDF8 1st 2nd) second
variable

5th 6th

3rd 4th

>FDF2 1st 2nd

Evaluation POWER BASIC Development POWER BASIC

5.7.1.1 Integer Format. Integer numbers are stored in 32 bits.

 40 bit 7 bit 4.1

The first word (bits 0 to 15) is set to zero indicating an integer
number. The second word (bits 16 to 31) contains the two's complement
integer value.

Although Development POWER BASIC only uses two words to store an
integer number, three words are actually allocated. If three words
were not allocated it would be extremely difficult for the interpreter
to swap a variable's contents between integer, floating point or
character string formats as the context required.

5.7.1.2 Floating Point Format. Floating point numbers are
represented internally as a fraction multiplied by a power of 16 (this
power is known as the characteristic) and are stored as:

Evaluation Power BASIC

[7 bit <--- 24 bit

Sir
Characteristic

Mantissa

v v

Development Power BASIC

Bit 0 is the sign bit and represents the sign of the floating point
number: 0 for positive, 1 for negative. Bits 1 to 7 hold the
characteristic coded in Excess 64 notation (the characteristic is
incremented by 64; this gives the characteristic a range of 0 to 127
representing a true exponent range of -64 to +63). The remaining 24
bits (40 for Development Power BASIC) contain the normalized mantissa
(the mantissa is normalized if its fitst hex digit is non-zero).
Negative fractions are stored in true form with the sign bit set to
one and not in two's complement notation.

A notional point is understood to exist between bits 7 and 8 (between
the characteristic and the mantissa).

5.7.1.3 Character String Format

A character string is stored as follows:

Evaluation Power BASIC

occupy

byte 1 byte 2 byte 3 0 <-- string delimiter

7 bit ASCII characters (8th bit set to 0)

0 byte 1 byte 2 byte byte 4 byte

Development Power BASIC

Suppose the
successive

$A='ABC'
$B='MNO'

would cause

two
memory

these

variables

strings

locations.
A and B, defined

The statements:

to be stored

High memory

as follows:

in that order,

'C' 0 0 0

A --> 'B' 'C' 0

'0' 0 'A' 'B' A —>

B --> 'M' "N" 0 0

'0' 0

'M' "N" B —>

Low memory

Evaluation Power BASIC Development Power BASIC

However, the statement:

$B='12345'

would result in:

High memory

'C' 0 0 0

A --> .5- 0 'C' 0

.3, -4- 'A' 'B' A -->

B —> '1' •2• -5, 0

.3, -4-

B ---> '1' "2'

Low memory

Evaluation POWER BASIC Development POWER BASIC

With Evaluation Power BASIC, the statement:

PRINT $B

would output the string '12345', while the statement:

PRINT $A

would output the string '5'.

An effect similar to overwriting the contents
produced with Development POWER BASIC statement :

$B='1234567'

When a character string is too long to be held in
should be used.

of variable A can be

a variable, an array

5.7.1.4 Array Storage. An array is referenced by its array header.
This contains information such as the size of each dimension and its
stride. The stride is the number of bytes between successive elements
of an array. For a one-dimensional array the stride is 6; 4 for
Evaluation Power BASIC.

The memory address of any element in a one dimensional array is
calculated (in bytes) as:

start address + n * subscript

where start
n = 4

6

address = address of array header + 4
for Evaluation POWER BASIC
for Development POWER BASIC

If the array hea3o.c located at >EFFO, the 9th element,
array name(8), starts at memory address:

>EFFO + 4 + n*8

0

'G' "H"

'E'

'C' "D"

'B' "A"

For Evaluation POWER BASIC = >EFF4 + 4*8 = >F014
For Development POWER BASIC = >EFF4 + 6*8 = >F024

To allocate a ten-element array (STR) and store the character string
'ABCDEFGHIJ' into it, the following statements are required.

DIM STR(9)
$STR(0)="ABCDEFGHIJ'

This string would be stored as :-

High memory

->

'A"

'C'

'E'

'G'

0

'B'

'D'

'H'

'F'

0

•-•••••).

) Element
STR(2)

)

) Element
STR(1)

)

) Element
)4--- STR(0)
)

Array Header
for STR
Low memory

Evaluation POWER BASIC

The statements:

Development POWER BASIC

PRINT $STR(0)
PRINT $STR(1)
PRINT $STR(2)

would produce the following output:

ABCDEFGHIJ ABCDEFGHIJ
EFGHIJ GHIJ
IJ
Evaluation Power BASIC Development Power BASIC

Individual bytes of an array containing a character string can be
accessed by placing a semicolon (';') after the array subscript; and
then writing the number of the required byte in that element. For
example, $STR(1;3) references the letter 'G' (the letter 'I' in
Development POWER BASIC).

The statement:

DIM LST(25,9)

allocates space for 26 one-dimensional arrays each containing 10
elements. The stride for the first indice will be 60 (40 for
Evaluation POWER BASIC); the stride for the second will be 6 (4 for
Evaluation POWER BASIC).

The memory address of any element in a two-dimensional array is
calculated (in bytes) as:

start address + n*(subscriptl*multiplier + subscript2)

where start address = address of array header.+ 4*m
m = number of dimensions
multiplier = maximum value of subscript2 + 1
n = 4 for Evaluation Power BASIC

6 for Development Power BASIC

If the array header for LST is located at >E4DC then the element
LST(16,4) is at memory address:

>E4DC + 4*2 + n*(16*10 + 4) = >E4E4 + n*164

for Evaluation Power BASIC = >E4E4 + 4*164 = >E774
For Development Power BASIC = >E4E4 + 6*164 = >E8BC

5.7.2 System Memory Map

RAM, in addition to that supplied on board with the TM 990/101 M and
/100 M CPU boards, must be configured to be contiguous and end at
address >EFFF. For full details on how to do this, refer to Section 3
of the TM 990/201 and TM 990/206 Memory Expansion Boards Data Manual.

The lower limit of RAM is determined at system initialization time by
autosizing. (This can be altered using the 'NEW <exp>' command,
where <exp> is the address of the first byte of RAM to be used.) The
first few bytes of RAM are reserved for sytem use.

Once the system has been initialized, the memory map will look
something like:

End of user storage (EUS)

4--- Begining of user
storage (BUS)

) Enhancement Software Package

) Evaluation) Development
) Power BASIC) Power BASIC

>FEEC System stacks

>FEAO

System ptrs

GOSUB,FUNCTION
and FOR NEXT

stacks

I/O buffer

VDT

VNT

SLT

System

>3000

>0000

ROM based
Power BASIC
interpreter

Note : The actual addresses of the unspecified portions of memory are
dependent on the amount of RAM configured into the system. Each of
these portions is accessed via pointers contained in system pointers
(memory addresses >FEAO to >FEEB).

When a POWER BASIC statement is entered, it is checked for syntax
errors. Syntactically correct statements are encoded to minimize
storage space. The encoded statement is stored in the program space
in ascending line number order. Program space starts at BUS and
builds up in memory towards EUS. Line numbers are stripped off the
statements as they are encoded and are stored in the Statement
Location Table (SLT) along with the statement's position in the
program space. (This allows statements that are entered out of
sequence to be repositioned in their correct program space.) When a
variable is first encountered, its name is encoded and entered into
the Variable Name Table (VNT). Before a statement is encoded, all
variable names present are compared with the variables in the VNT.
The statement's variables are then replaced by the variable name's
position (indicated by a location number) in that table. For example,

the statement:

LET AJ=SIN (PI*RAD)

can initially be converted into:

LET <77>=SIN(<76>,<75>)

Each two-digit hexadecimal number enclosed by angle brackets is
incremented by >70 to indicate that an entry in the VNT is being
referenced. <77> is the 8th entry in the VNT, <76> the 7th and <75>
the 6th.

As the program grows, it may be necessary to move the system tables
(VNT, VDT and SLT) up in memory in order to expand program space and
increase the size of each table. At run time, space is allocated to
each variable as they are defined; the address of this space is
recorded in the Variable Definition Table (VDT). Variable storage
space is allocated from below the I/O buffer down towards BUS. The
Next Variable Storage Pointer (NVS) contains the address of the memory
location that will be allocated to the next variable defined. If
insufficient space exists, the run will terminate with error 10
(STORAGE overflow).

Note: All addresses refer to Development Power BASIC.

5.8. REFERENCE SECTION

+ / - Means plus or minus
/ Means not equal

An item preceded by an asterisk ('*') denotes a feature that is
not supported by Evaluation Power BASIC.

5.8.1 Character Set

1) Upper and lower case alphabet.
2) Digits 0 to 9.
3) Special characters

! " # $ % (1 $ * : = - ? / < >

Non-printable characters may be specified by enclosing the character's
hex representation with angle brackets.

CHARACTER USE
Statement separator
Tail remark indicator
Equivalent to PRINT

5.8.2 Hexadecimal Constants

A hexadecimal integer constant is one to four hex digits followed by
the letter H. A hex constant begining with one of the letters A - F
must be preceded by a zero.

5.8.3 Variable Names

A variable name starts with an alphabetic character optionally
followed by up to two additional alphabetic characters or a number in
the range 0 to 127. The variable name may not be the same as a POWER
BASIC keyword; nor can it form the begining of a keyword.

5.8.4 String Variables

A varible is specified as being a sring variable variables may have a
byte index following the subscript(s) to indicate a byte position
within the specified string. To indicate the byte index, place a
semicolon (;) after the last subscript; then insert the byte
position.

5.8.5 POWER BASIC Commands

POWER BASIC commands may not appear in a program.

COMMAND FUNCTION

CONtinue
<ln> LISt

LOAd <exp>

NEW <exp>

PROgram
RUN

SAVe <exp>

SIZe

Continue execution from last break
List current program from specified line

<ln>=null, line=lowest line number present
<ln>= /null, line=<ln>

Load a BASIC program from specified device
<exp>=null, device=733 digital cassette
<exp>=0, device=733 digital cassette
<exp>=1 or 2, device=audio cassette >
<exp>=address, device=2716 eprom

Clear system for new program
<exp>=null, RAM limit set by autosizing
<exp>= /null, RAM limit=<exp>

Burn current program into 2716 EPROM
Clears all variable space, pointers, and
stacks and executes current program from
lowest line number present
Save current program on specified device
<exp>=null, device=733 digital cassette
<exp>=0, device=733 digital cassette
<exp>=1 or 2, device=audio cassette >
Display size of current program

When using an audio cassette player all interrupts are
disabled. The real time clock is stopped and zeroed.

5.8.6 Edit Commands

CR
LF

ESCAPE
DEL/RUBOUT
ctrl D<n>
ctrl I<n>
ctrl H
ctrl F

<ln> ctrl E

Enter line into program source
Enter line into program source. Enable
auto-numbering facility
Cancel input line, return to keyboard

Backspace and delete character
Delete <n> characters
Insert <n> blanks

Backspace 1 character
Forwardspace 1 character
Display line <ln> for editing

5.8.7 POWER BASIC Statements

POWER BASIC program lines are of the form:

(line number)- <statement> (:: <statement>] -icomment-

Where () Indicate optional items
(] Indicate item is repeated as many times

as required - 0,1,....

Exceptions:
NEXT should not be preceded by '::<statement(s)>'
REM should not be followed by '::<statement(s)>'
DA a should the only statement on a line

BAUD <expl>,<exp2>
Sets the baud rate of the serial I/O port(s) of the TMS 9902
Asynchronous Communications Controller.

<expl>=0, port=A (CRU address >80)
<expl>/0, port=B (CRU address >180)
<exp2>=0, baud rate=19200
<exp2>=1, baud rate=9600
<exp2>=2, baud rate=4800
<exp2>=3, baud rate=2400
<exp2>=4, baud rate=1200
<exp2>=5, baud rate=300
<exp2>=6, baud rate=110

BASE <exp>
Sets CRU base address to <exp> for subsequent CRU operations.

CALL <name>,<add>- , <parms>)
Transfers control to an assembly language subroutine.

<name>=IDenTity of subroutine in quotes
<add>=hex address of subroutine
<parms>=upto 4 parameters for subroutine, separated by

commas. If the parameter is contained in parenthesis, the address of
the parameter is passed over. Parameters passed in R4, R5, R6, and
R7. Return address is contained in R11.

DATA <item>[, <item>]
Defines internal data block for access by READ.

<item>=<exp> or <string>

DEF FN<i> ((<arg>))=<exp>
Defines a single line arithmetic statement. <i>=function
identifier letter

<arg>=upto 3 single letter dummy variables, separated by
commas. When calling FNi the dummy variables may be replaced by any
valid Power BASIC variable/array.

DIM <var> (<dim> [, <dim>])
Allocates user space for dimensioned array. (The dimension starts at
element 0.

<dim>=size of dimension

ELSE <statement> [:: <statement>]
When the most recently executed IF THEN statement is false, all
subsequent ELSE statements are executed; otherwise they are ignored.

END
Terminates program execution and return to keyboard mode.

ERRO <ln>
Specifies a subroutine,starting at line <ln>, that is to be executed
via a GOSUB statement when an error occurs.

ESCAPE
Enables the ESCape key to interrupt program execution.

for <var>=<expl> TO <exp2> (STEP <exp3>)
The FOR statement is used with the NEXT statement to open and close a
program loop. Both identify the same variable <var>. If STEP is
omitted, a stepsize of 1 is assumed.

<expl>=starting value
<exp2>=final value
<exp3>=step value, default value=l

GOSUB <ln>
Transfers control to an internal POWER BASIC subroutine starting at
line <ln>. Stores the address of the statement following on the GOSUB
stack.

GOTO <ln>
Transfers control to line <ln>.

IF <cond> THEN <statement> [:: <statement>]
The statement(s) following the THEN keyword are only executed if the
condition <cond> is true.

IMASK <exp>
Sets the interrupt mask of the TMS 9900 microprocessor to allow
interrupts of higher or equal priority (equal or lower numerical

value) to <exp>. <Exp> is valid over the range 0 to 15.

I RTN
Used to return from an interrupt routine. Restores the program
environment existing prior to taking the interrupt.

(;)
INPUT <item> [(0<item>]

Take input (numeric or string) from the terminal and store into
variables <item> in the INPUT list. Input is prompted with a question
mark ('?') for numeric data and a colon (":') for character data. A
double question mark ("??') signifies an illegal number.

(LET) <var>=<exp>
Evaluate <exp> and store the result in the variable, string variable
or array element <var>.

NEXT <var>
Delimits a FOR loop. The variable <var> must match the FOR variable.

NOESC
Disables ESCape key on the terminal-

(GOSUB)
ON <exp> THEN (GOTO) <ln> [, <ln>]

Transfer control, via a GOSUB or a GOTO statement, to the line
specified by the value of the expression.

<exp>=n then nth <ln> in list
<exp> out of range then line following the ON

POP
Removes top item from the GOSUB stack.

PRINT <item> (, <item> I
Prints (without formatting) the contents or the evaluated expressions
of the items in the PRINT list.

RANDOM <exp>
Sets the seed for the random number generator to the value of the
expression <exp>.

READ <item> [, <item>]
Stores input from the internal DATA block into variables <item> in the
READ list.

REM <text>
Inserts comment lines (REMarks) into a user program. The rest of the
line regarded as a comment.

RESTOR <ln>

Resets the DATA pointer to the specified line <ln>. If <ln> not
present, the pointer is set to the first DATA statement.

RETURN
Returns from a POWER BASIC subroutine and remove the last entry in the
GOSUB stack.

STOP
Terminates program execution and returns to keyboard mode.

TIME <item>
Interrogate the 24 hour time of day clock.

<item>=null output time in HR:MN:SD format
<item>=$<var> store time in string variable
<item>=<expl>,<exp2>,<exp3> set clock to specified

time. <expl>=hours;<exp2>=mins;<exp3>=secs

TRAP <exp> TO <ln>
Defines the entry point <ln> of a Power BASIC interrupt routine for
the given interrupt level <exp>. <Exp> is valid over the range 0 to
15. Levels 0 (RESET) and 3 (CLOCK) are reserved and can not be
serviced by the TRAP statement.

UNIT <exp>
Designates the device(s) to receive all printed output.

<exp>=1, I/O port=A
<exp>=2, I/O port=B
<exp>=3, I/O ports A and B

5.8.8 Operators

5.8.8.1 Arithmetic Operators.

A=B Assignment
A-B Subtraction
A+B Addition
A*B Multiplication
A/B Division
A^B Exponentiation
-A Unary minus
+A Unary plus

5.8.8.2 Relational Operators. Return values of 1
(TRUE) or 0 (FALSE).

A=B TRUE if equal, else FALSE
A==B TRUE if approximately equal (+/- 9.5E-7),

else FALSE
A<B TRUE if less than, else FALSE
A<=B TRUE if less than or equal, else FALSE
A>B TRUE if greater than, else FALSE
A>=B TRUE if greater than or equal, else FALSE
A<>B TRUE if not equal, else FALSE

5.8.8.3 Boolean Operators. Return values of 1
(TRUE) or 0 (FALSE). A non-zero value
variable is considered TRUE; a zero-valued variable is
considered FALSE.

NOT A TRUE if FALSE (zero), else FALSE
A AND B TRUE if both TRUE (non-zero), else FALSE
A OR B TRUE if either TRUE (non-zero), else FALSE

5.8.8.4 Logical Operators. Perform 'bitwise" operations
on the operand(s). Operand(s) are
converted into 16 bit integers before the operation.

LNOT A l's complement
A LAND B Bitwise AND
A LOR B Bitwise OR
A LXOR B Bitwise exclusive OR

FUNCTION EXPLANATION

ABS (<exp>)
ATN (<exp>)
COS (<exp>)
EXP (<exp>)
INP (<exp>)
LOG (<exp>)
RND (<exp>)
SIN (<exp>)
SQR (<exp>)

Absolute value of <exp>
Arctangent of <exp>, <exp> in radians
Cosine of <exp>, <exp> in radians
Raise e to the power of <exp>

Signed integer part of <exp>
Natural logarithm of <exp>
Random number between 0 and 1
Sine of <exp>, <exp> in radians
Square root of <exp>

5.8.8.5 Operator Precedence

1) Expressions in parentheses
2) Exponentiation and negation
3) *./
4) +,-
5) <=,<>
6) >=,<
7) =,>
8) ==,LXOR
9) NOT,LNOT
10) AND,LAND
11) OR,LOR
12) Assignment (=)

5.8.9 Arithmetic Functions

5.8.10 CRU Operations

CRB (<exp>)
Read CRU bit selected by the CRU hardware base address plus <exp>.
<Exp> is valid over the range -128 to 1127.

CRB (<expl>)=<exp2>
Sets or resets CRU bit selected by CRU base address plus <expl>. If
<exp2> is non-zero, the bit will be set, otherwise it will reset.
<Expl> is valid over a range of -128 to 1127.

CRF (<exp>)
Read <exp> CRU bits from the CRU hardware base address . <Exp> is
valid over the range 0 to 15. If <exp>=0 then 16 bits will be read.

CRF (<expl>)=<exp2>
Output <expl> bits of <exp2> to CRU lines at the CRU hardware base
address. <Expl> is valid over the range 0 to 15. If <expl>=0 then 16

bits will be output.

5.8.11 Memory Functions

BIT (<var>,<exp>)
Reads the bit, within the variable <var>, specified by <exp>. Returns
a 1 if the bit is set and 0 if not set.

BIT (<var>,<expl>)=<exp2>
Modifies the bit, within the variable <var>, specified by <expl>. The
selected bit is set to 1 if <exp2> is non-zero, otherwise it is set to
0.

MEM (<exp>)
Read the byte from user memory specified by <exp>.

MEM (<expl>)=<exp2>
Store byte <exp2> into the user memory specified by <expl>.

5.8.12 Miscellaneous Functions

NRY (<exp>)
Samples the keyboard in run-time mode. If <exp>=0 then return the
decimal value of the last key struck and clear the key register. Zero
is returned if no key was struck. If <exp>/0 then compare the last
key struck with the decimal value of <exp>. If they are the same, a
value of 1 is returned and the key register is reset, otherwise a 0 is
returned.

SYS (<exp>)
Obtain system parameters generated during program execution.

<exp>=0, parameter=input control character
<exp>=1 parameter=error code number
<exp>=2, parameter=error line number

TIC (<exp>)
Samples the real time clock and returns the current TIC value minus
the value of <exp>. One TIC equals 40 milliseconds. TIC (0) obtains
the current value.

5.8.13 String Operations

<$var> denotes either a literal string, enclosed in
quotes, or a string variable

$<var> denotes a string variable

CHARACTER ASSIGNMENT
characters are transferred one by one until a null character is
found.

$<var>=<$var>

CHARACTER PICK
The number of characters to be transferred can be specified.

$<var>=<$var>,<exp>
When <exp> characters have been transferred the string will be
terminated with a null character.

CHARACTER CONCATENATION
Strings are concatenated using the '+' operator. Concatenation
operations may be chained together, the final string will
automatically be terminated with a null character.

$<var>=<$var>+<$var> [+ <$var>

CHARACTER REPLACEMENT
Replacement is similar to character pick except that a null
character is not placed at the end of the string.

$<var>=<$var>;<$var>

CHARACTER INSERTION
Characters can be inserted into a string using the slash ('/")
operator.

$<var>=<$var>/<$var>

CHARACTER DELETION
<Exp> number of characters can be deleted from a string.

$<var>=<$var>/<exp>

BYTE REPLACEMENT
Individual bytes within a string can be altered using the decimal
equivalent of an ASCII character along with the percent sign
(I%0)

.

$<var>=%<exp> [% <exp>]

STRING COMPARISON
Character strings may be compared using :

IF <$var><relop><$var>-,<exp>- THEN <sequence>

where <relop>=relational operator
If the second string is followed by a comma, the expression
following indicates the number of characters to be compared.

CONVERT FROM ASCII TO BINARY
A character string may be converted to a number by using the
assignment operator along with an error variable. The delimiting

character is placed in the first byte of the error variable.
<var>=<$var>,<var>

CONVERT FROM BINARY TO ASCII
A number is converted to a string simply by assigning the number
to a string variable. The string is automatically terminated
with a null character.

$<var>=<exp>
Formatted conversions can be made by preceding <exp> with the
formatting operator ('#') and a string.

$<var>=#<$var>,<exp>

5.8.14 String Functions

ASC ($<var>)
Returns the ASCII decimal value of the first character in the
specified string.

LEN ($<var>)
Returns the length of the specified string. Zero is returned if the
string is the null string.

MCH ($<varl>,$<var2>)
Return the number of characters that are the same in the two strings.
A zero is returned if no match is found.

SRH ($<varl>,$<var2>)
Return the character position of where the first string is located in
the second. A zero is returned if the search is unsuccessful.

5.8.15 INPUT Options

INPUT <feature><item> [<feature><item>]

<item> Either a variable, a string variable, or
an array element

 Explanation

Delimit items in INPUT list
Delimit items in INPUT list. Suppress
<cr><lf> if at end of statement line

<feature> Explanation

string Prompt with string then get input
?<ln> Upon an invalid input or control character,

a GOSUB to the line <ln> is executed
%<exp> Requires entry of exactly <exp> characters
#<exp> A maximum of <exp> characters to be entered
• Suppress prompting
null Prompt (':' for numeric, '?' for character)

and then get input

5.8.16 PRINT Options

PRINT <feature><item> [<feature><item>]

Either a variable, an expression, a string
variable, a string, or an array element

Explanation

Delimit items in PRINT list. TAB to
next print field
Delimit items in PRINT list. Suppress
<cr><lf> if at end of statement line

Explanation

TAB to column specified by <exp.>
Print <exp> in hex in free format
Print <exp> in hex in word format
Print <exp> in hex in byte format
Decimal formatting - only available with
the Enhancement Software Package.
<string> in quotes, consisting of:

9 Digit holder
0 Digit holder or force 0
$ Digit holder and floats $
S Digit holder and floats sign
< Digit holder before decimal and floats

on negative number
> Appears after decimal if negative
E Sign holder after decimal

Decimal point specifier
Comma in output - suppressed if before
significant digit
Translated to decimal point on output

<item>

<feature>

TAB (<exp>)
#<exp>
#,<exp>
#;<exp>
#<string>

5.8.17 Floating Point XOP Package

For use with Assembly language routines.

FORMAT XOP <ga>,<op>
where <ga> - general memory address operand

<op> - XOP number

FPAC - Floating Point ACcumulator

XOP NO. FUNCTION
0 LOAD FPAC with 6 byte number addressed by <ga>
1 STORE FPAC in 6 byte number addressed by <ga>
2 ADD 6 byte number addressed by <ga> to FPAC,

store result in FPAC
3 SUBTRACT 6 byte number addressed by <ga> to

FPAC, store result in FPAC
4 MULTIPLY FPAC by 6 byte number addressed by

<ga>, store result in FPAC
5 DIVIDE FPAC by 6 byte number addressed by

<ga>, store result in FPAC
6 SCALE adjusts FPAC's exponent to value of byte

addressed by <ga>
7 NORMALISE FPAC - 1st hex digit of mantissa is

non-zero. Operand not used
8 CLEAR FPAC. Operand not used
9 NEGATE FPAC - change 1st bit. If FPAC=0 then

no change. Operand not used
10 FLOAT FPACs 2nd word - 16 bit two's complement

number to floating point. Operand not used

Converting Integer to Floating Point

1)
2)
3)
4) FLOAT FPAC.
5) STORE FPAC in

DECNO BSS
FLPT BSS

CLR
CLR
LI
MOV
XOP
XOP
XOP

6 byte area.

6
6

@DECNO
@DECNO+4
RO,NUM
RO,@DECNO+2
@DECNO,0
0,10
@FLPT,1

Set words 1 and 3 of 6-byte reserved area
Store integer number in 2nd word of area.
LOAD this 6-byte number into FPAC.

to zero.

5.8.18 Variable Storage

A variable occupies 4 consecutive bytes in Evaluation Power BASIC and
6 in Development Power BASIC. Variable storage is allocated down
through memory (from high memory to low). The variable is referenced
by the address of the lowest byte it occupies.

Character String Format

Evaluation Power BASIC

byte 2 [byte 3 byte 4 1‹ byte 1

7 bit ASCII character, 8th bit=0

string delimiter
(contains 0)

[byte 1 byte byte 5 byte 6 byte byte 4

Development POWER BASIC

Integer Format

[
All zeros Twos complement All zeros

1 1 I
4---16 bits- > 4.---16 bits ----> *---16 bits ---->
<----Evaluation POWER BASIC ----*
< Development POWER BASIC ->

Floating Point Format

S

g ->
n

Characteristic
> ----*Mantissa

7 bits 24 bits- 1< *---16 bits

<------Evaluation Power BASIC
Development Power BASIC

CHAR HEX

V 56
W 57
X 58
Y 59
Z 5A
[5B
\ 5C

1
5D
5E
5F

, 60
A 61
B 62
C 63
D 64
E 65
F 66
G 67
H 68
I 69
J 6A
K 6B
L 6C
M 6D
N 6E
0 6F
P 70
Q 71
R 72
S 73
T 74
U 75
V 76
w 77
X 78
Y 79
Z 7A

1

7B
7C
7D
7E

DEL 7F

5.8.19 ASCII Character Set

CHAR HEX CHAR HEX

NUL 00 + 2B
SOH 01 I 2C
STX 02 - 2D
ETX 03 . 2E
EOT 04 / 2F
ENQ 05 0 30
ACK 06 1 31
BEL 07 2 32
BS 08 3 33
HT 09 4 34
LF OA 5 35
VT OB 6 36
FF OC 7 37
CR OD 8 38
SO OE 9 39
S1 OF : 3A
DL1 10 ; 33
DC1 11 < 3C
DC2 12 = 3D
DC3 13 > 3E
DC4 14 ? 3F
WA 15 @ 40
SYN 16 A 41
ETB 17 B 42
CAN 18 C 43
EM 19 D 44
SUB 1A E 45
ESC 1B F 46
FS 1C G 47
GS 1D H 48
RS 1E I 49
US 1F J 4A
SPACE 20 K 4B
! 21 L 4C
" 22 M 4D
23 N 4E
$ 24 0 4F
% 25 P 50
& 26 Q 51
. 27 R 52
I 28 S 53
) 29 T 54
* 2A U 55

5.8.20 Hex-Decimal Table

EVEN BYTE ODD BYTE

HEX DEC HEX DEC HEX DEC HEX DEC

0 0 0 0 0 0 0 0
1 4,096 1 256 1 16 1 1
2 8,192 2 512 2 32 2 2
3 12,288 3 768 3 48 3 3
4 16,384 4 1,024 4 64 4 4
5 20,480 5 1,280 5 80 5 5
6 24,576 6 1,536 6 96 6 6
7 28,672 7 1,792 7 112 7 7
8 32,768 8 2,048 8 128 8 8
9 36,864 9 2,304 9 144 9 9
A 40,960 A 2,560 A 160 A 10
B 45,056 B 2,816 B 176 B 11
C 49,152 C 3,072 C 192 C 12
D 53,248 D 3,328 D 208 D 13
E 57,344 E. 3,584 E 224 E 14
F 61,440 F 3,840 F 240 F 15

5.8.21 Error Codes

Code Error message

1 Syntax error
2 Unmatched parenthesis
3 Invalid line number
4 Illegal variable name
5 Too many variables
6 Illegal character
7 Expecting operator
8 Illegal function name
9 Illegal function argument
10 Storage overflow
11 Stack overflow
12 Stack underflow
13 No such line number
14 Expecting string variable
15 Invalid screen command
16 Expecting dimensioned variable
17 Subscript out of range
18 Too few subscripts
19 Too many subscripts
20 Expecting simple variable
21 Digits out of range (0< no. digits >12)
22 Expecting variable
23 Read out of data
24 Read type differs from data type
25 Square root of negative number
26 Log of non-positive number
27 Expression too complex
28 Division by zero
29 Floating point overflow
30 Fix error
31 FOR without NEXT
32 NEXT without FOR
33 Exp function has invalid argument
34 Unnormalised number
35 Parameter error
36 Missing assignment operator
37 Illegal delimiter
38 Undefined function
39 Undimensioned variable
40 Undefined variable
41 Expansion EPROM not installed
42 Interrupt without TRAP
43 Invalid baud rate
44 Tape read error
45 EPROM verify error
46 Invalid device number

CHAPTER VI

ASSEMBLY LANGUAGE

6.1 INTRODUCTION

The relationship between assembly language and the computer it was
designed to support is displayed below. Assembly language provides
the interface between the hardware operation and the high-level
language specifying the problem. Therefore, assembly language is
machine dependent. As such, it has the capability to access the
low-level features of the machine (memory, hardware registers, etc.)

PROBLEM (REAL WORLD)

FIGURE 6-1. ASSEMBLY LANGUAGE AND COMPUTER

Due to its low-level nature, assembly language does not have the
programming aids that are built into high-level languages. For
example, high-level languages automatically provide the necessary data
mappings and addressing mechanisms used to access declared variables,
while the assembly language programmer must perform this housekeeping
for himself.

Assembly language is useful when tight control must be maintained over
the use of resources (for example where particularly compact or
efficient code is required). A disadvantage of using assembly is that
alot of programmer skill and time are required to realize compactness
and efficiency. Using high-level languages can speed up program
production considerably and the program will be less prone to errors.

Also, an assembly language program becomes more and more difficult to
manage as its size increases.

However, assembly language is ideal for short, frequently executed
program segments such as I/O routines and for high-volume applications
where savings on code (and hardware) outweigh the extra development
effort.

The machine instruction is a hardware-defined operation and is the
basic unit of processing. The complete range of hardware instructions
designed into a particular processor forms the instruction set
(sixty-nine instructions make up the TMS9900 instruction set.)

Every program written for the 9900 (or any other processor) will
eventually be broken down into a sequence of these basic
instructions. Each instruction is actually stored in program memory
as a number (a string of '0's and 'l's). In this state the
instruction is usually referred to as a machine code instruction.

While programming at the machine code level is possible, it is not
very practical. Moreover, understanding the function of a machine
code program is very difficult and requres careful study.

Assembly language allows programming directly in the machine's
instruction set using mnemonics instead of numbers. Further, most
assembly languages allow symbolic referencing; using a name to
reference a data item or a code segment (the assembler translates
these references into their actual memory addresses).

Consider the following example. A value is stored at address >4E70
(symbolic location START). This value is to be transferred to address
>5630 (symbolic location NEW). The assembly language instruction

MOV @START,@NEW

will do this. The machine code equivalent is:

>C820 4E70 5630

The symbol '>' indicates that the number that follows is a hexadecimal
number (the hexadecimal number system is described in Subsection
6.11.2.

Before an assembly language program can be executed, it must first be
converted into a form the processor can handle (machine code). This
conversion is performed by an assembler on a one for one basis. (A
single assembly language instruction generates one machine code
instruction.)

Instructions can be one, two or three words long. The length of an
instruction depends on the number of operands contained and the type
of addressing allowed. The MOV instruction above has two memory
address operands (START and NEW) and thus requires three words of
storage. If one of these operands had been a register only two words
would be needed. Had both operands been registers one word would be
sufficient.

6.2 INSTRUCTION FORMAT

An instruction consists of four fields, each separated from the other
by at least one space.

1) Label field - An optional field; when used the
user-supplied name is assigned the current value of the
location counter (the address in memory where the
instruction will be stored). This field starts in
column 1. An asterisk in column one indicates that the
whole line is a comment.

2) Opcode field - The operation code, or mnemonic,
specifies what the instruction does (e.g. MOV).
Assembler directives, assembly language instructions
and pseudo-instructions are covered by this term.

3) Operand field - This field specifies.the argument(s) of
the opcode; e.g., where the data is to be taken from
(source) and/or where the the data is to be stored
(destination).

4) Comment field - An optional field ignored by the
assembler and used for documentation purposes.
Although comments have no effect on the code produced,
they are useful. They allow the programmer to describe
exactly what is done at the point in the code where the
action is performed. If used properly, comments can
make a Program completely self documenting.

The assembler places no restrictions on the position of any field in
the line, except for the label field. However, it is advantageous for
the programmer to adopt some convention. The recommended convention
is as follows:

• label field

• opcode field

• operand field

• comment field

starts in column 1

starts in column 8

starts in column 13

starts in column 31

Several examples follow.

OP
LABEL CODE OPERAND(S) COMMENTS

RESET CI R4,>100 Contents of R4= >100?
*
* operands - 1 workspace register, 1 immediate value
*

C R2,R3 Contents of R2=R3?
*
* operands - both workspace registers
*

B @RESET Branch to RESET
*
* operands - 1 symbolic memory location
*

RSET Reset the 9900
*
* operands - none
*

From the above examples, it can be seen that the number of operands
depends solely upon the instruction.

6.3 INSTRUCTION FORMAT RESTRICTIONS

Restrictions to instruction formats are listed below.

1) If a label is present, the instruction starts in column
one; otherwise column one is left blank.

2) A label consists of up to six alphanumeric characters,
the first of which must be alphabetic.

3) All fields are separated by one or more spaces.

4) Operands, if more than one is required, are separated
by commas.

6.4 MEMORY ORGANIZATION

Computer memory is sequential and consists of a large number of
storage cells or locations. Each location has a unique address.
Using this address, the processor is able to directly reference a
particular location.

Memory is used for storing patterns of bits that may be interpreted as
either:

1) Programs - lists of instructions that tell the
processor what to do.

2) Program Data - patterns of bits that can be used to

represent numbers, status of switches, etc (anything
that the computer is programmed to deal with).

6.4.1 Byte

A byte is a group of eight binary digits (bits). The most significant
bit (MSB) is designated bit zero and the least significant bit (LSB)
as bit seven. The contents of a byte can be represented by two hex
digits (>00 to >FF).

7 6 5 4 3 2 1 0
2 2 2 2 2 2 2 2

MSB LSB

0 1 2 3 4 5 6 7 bit position

01101010 binary = 6A hex

6.4.2 Word

A memory word, on the 9900, occupies 16 bits (2 bytes). A word's MSB
is designated bit 0 and its LSB as bit 15. The contents of a word can
be represented by four hex digits (>0000 to >FFFF).

I4----most significant byte ----*I4----least significant byte

MSB

LSB

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

15 0
2 2

The architecture of the TMS9900 is based on words. However,
semi-conductor memory is usually organized in bytes. Therefore,
although the word is the basic unit, byte addressing is used. This
means that the addresses of consecutive words in storage are n, n+2,
n+4, etc. The first byte of a word (the most significant byte) must
be on an even numbered address.

WORD

BYTE BYTE

1

3

5

7

0

2

4

6

8

Storing a single byte's worth of data in a memory word is not very
efficient. The 9900 instruction set provides a number of instructions
for byte operations (e.g., MOVB, CB, AB, SB, etc). Using these
instructions, it is possible to individually access/manipulate each of
the bytes within a word.

6.4.3 Registers

Most computers provide a number of general purpose hardware registers
that are accessible to the assembly language programmer. All
operations are centred around these registers. To add the contents of
two memory locations (A and B) together and store the result in the
first location (A), these steps are necessary:

1) Load the contents of one of the locations into a
register.

2) Add the contents of the other location into this
register.

3) Store the contents of this register into memory
location A.

The register-oriented instruction evolved because of the great
differences in operation speeds between hardware registers and ferrite
core memory.

The introduction of semi-conductor memory (considerably faster than
ferrite core) into computer systems has eliminated the need for such
registers. With the TMS9900 microprocessor, direct memory to memory
operations are possible. The above example can now be performed in a
single instruction.

The 9900 has only three dedicated hardware registers:

1) Program Counter (PC) - contains the address of the next
instruction to be executed.

2) Workspace Pointer (WP) - contains the address of the
first word of the current workspace.

3) Status Register (ST) - stores the processor's
status flags (bits 0 to 6) and the current interrupt
mask (bits 12 to 15). Bits 7 to 11 are reserved for
future use.

6.4.4 Workspace Registers

The TMS 9900 does not provide one set of hardware implemented
registers. Instead, any contiguous 16-word area of read/write memory
(RAM) may be defined as the 16-word workspace. The 16
workspace registers (RO to R15) may be used exactly as if they were
implemented in hardware. However, the location of the workspace may
be changed during program execution to give 16 completely new
registers. This is called a context switch and occurs automatically
during an interrupt or when the BLWP instruction is used to call a
subroutine. The workspace can also be changed using the Load
Workspace Pointer Immediate instruction (LWPI).

Although the registers can be located anywhere in memory, only 4 bits
are needed to completely specify any word address within the
workspace. This allows a register operand to be incorporated into the
instruction word without having to set aside another word for the
address.

The BSS (Block Starting with Symbol) assembler directive allows the
user to reserve an area of data storage for use as a workspace. The
following lines of code reserve a 16-word area starting at address
>2000. The LWPI instruction causes this value to be loaded into the
WP. When the instruction has been executed, RO references address
>2000, R1 references address >2002, etc.

AORG >2000
WKSP BSS 32 Reserve 16 word area

WKSP Set WP= >2000

The benefit of this approach is realized when it is necessary to save
the contents of the registers (for example, on interrupt). With the
traditional approach, the content of every register has to be copied
into reserved memory locations. With the 9900, only the three
dedicated registers need to be saved and the WP loaded with the
address of another workspace. This is handled automatically when an
interrupt occurs.

6.4.5 Register Functions

In general, when a register is required as an operand for an
instruction, any of the 16 workspace registers can be used. However,
for certain operations (in particular the context switch) some of the
registers have specially designated functions, as follows:

RO If the count operand to the shift instruction is
zero, the shift count is taken from bits 12 to
15 of RO. If the 4 bits are all zeros, the
shift count is set to 16.

Rll Branch and Link instruction uses Rll to store
its return address. Rll stores the effective
address of the source operand for an XOP.

R12 Bits 3 and 4 of R12 contain the hardware base
for the CRU instructions.

R13 When a context switch occurs, R14 is used to store
the old PC.

R15 When a context switch occurs, R15 is used to store
the old ST.

Note: The MPY and DIV instructions use two consecutive registers, the
first is supplied as an operand to the instruction (e.g.,if R2 is the
register operand, R2 and R3 are both used). If R15 is the specified
register, the word following the workspace is used to store either the
remainder for DIV or the least significant half of the result for
MPY.

6.4.6 Context Switch

When a context switch occurs, the WP and PC registers are loaded with
new values. The old contents of the WP, PC and ST registers are then
stored in the new workspace registers 13, 14 and 15 respectively. The
old registers can be accessed using the indexed mode of addressing
(see Addressing Modes, Section 6.4.7) on the new register 13.

Interrupts (both hardware and software) and the BLWP instruction cause
a context switch to take place. For an interrupt, the WP and PC are
taken from the interrupt's trap (or transfer) vector. The BLWP
instruction requires the address of a two-word area, containing the
new WP and PC, as its operand.

A context switch provides a completely fresh environment, or context,
for program execution and results in program control being transferred
to a new routine. The last instruction in this routine must be an
RTWP. This restores the environment existing prior to the context
switch.

Consider

Address

the following code:

Label Instruction Comment

AORG >200
0200 MAINWP BSS 32 Define main's registers
0220 SUBPTR DATA SUBWP SUB's registers
0222 DATA SUB SUB's entry point

•
MAIN EQU Entry point for MAIN

LWPI MAINWP Load WP with >200

1000 BLWP @SUBPTR Execute subroutine SUB

1200 SUBWP BSS 32 Define SUB's registers
1220 SUB EQU Entry point for SUB

1300 RTWP Exit from SUB

R13
R14
R15

The context switch is

WP 0200

PC 1004

On executing the
BLWP instruction

R13
R14
R15

shown diagrammatically below.

MAINWP

1 RO

1200

0200

R13
R14
R15

1004

SUBWP MAINWP

I RO WP

PC

WP

PC

1220

After executing the
BLWP instruction

0200

1004

After executing the
RTWP instruction

MAINWP

I RO

6.4.7 Addressing Modes

Often a programmer wants to use an instruction in slightly different
ways. For example: At one point he may want an operand to be a
workspace register. Later, he may want the operand to be a specified
memory location, or he may want it to be a memory location the address
of which is contained in a workspace register.

Implementing these different ways of accessing operands by way of a
different instruction for each method is wasteful, and can easily lead
to confusion. If, instead, a part of the instruction is reserved for
specifying which method is to be used, a compact, but very powerful,
instruction set is produced. (The method of accessing an operand is
usually referred to as the addressing mode.)

The 9900 microprocessor provides five distinct addressing modes for
instructions that specify a general address as an operand. Full
details on these modes are available in Section 3 of the 'TMS9900
Assembly Language Programmer's Guide'. A simplified description of
each of these modes is presented below.

6.4.7.1 Workspace Register Addressing. This mode specifies a
workspace register that contains the operand.

MOV R4,R10 Copy contents of R4 into R10

>0100 R4 >0100 R4

R10 R10 >09E6 >0100

Before After

6.4.7.2 Workspace Register Indirect Addressing. This mode specifies a
workspace register that contains the address of the operand. To
identify this mode the workspace register is preceeded by an asterisk
(*).

MOV *R7,R9 Copy contents of address in R7 to R9

Location Contents

R7 >1000

R9 >096E

Before

Location Contents

1000 4E76

R7 >1000 ----------> 1000 4E76

•
R9 >4E76

After

6.4.7.3 Symbolic Memory Addressing. This mode specifies a memory
address that contains the operand. To identify this mode, the memory
address is preceeded by an at sign (@). (If a symbolic name such as
TABLE is used, the name must be defined somewhere in the program.)

MOV @TABLE,@>7C Copy contents of the word at
symbolic address TABLE into
address >7C

Location Contents

Before

After

007C 0471
•

TABLE 6483

Location Contents

007C 6483

TABLE 6483

6.4.7.4 Indexed Memory Addressing. This mode specifies a memory
address that contains the operand. This address is the sum of the
contents of a workspace register and a symbolic address. This mode is
written as an address preceeded by a ' sign and followed by a

workspace register enclosed in parentheses (the index register).
Register 0 can not be used as an index register.

R7

R10

MOV @2(R7),@TABLE(R10) Copy contents of word at
location (2+contents of R7)
into location (address of
TABLE + contents of R10)

Location Contents

1000 4849
1002 2041

TABLE 454D
. 5443
. 2052
. 5546

>1000

>0006

Before

Location Contents

R7 >1000 1000 4849
1002 2041

R10 >0006
TABLE 454D

5443
After 2052

• 2041

6.4.7.5 Workspace Register Indirect Autoincrement Addressing. This
mode is similar to workspace register indirect addressing mode except
that after obtaining the address from the workspace register, the
register is incremented (by one for byte operations and two for word
operations). To identify this mode, the register is preceeded by an
asterisk(*) and followed by a plus sign (+).

MOV *R3+,*R2 Copy contents of the word at the
address in R3 into the word at the
address in R2. Inbrement R3 by 2

G 10

Location Contents

R3 >0480 0480 FF90
0482 372C

•
--,------+ 7F96 0000 R2 >7F96

Before

Location Contents

R3 >0482 0480 FF90
1----+0482 372C

•
• •

__-------* 7F96 FF90
• •

R2 >7F96

After

This mode is very useful for indexing through structures such as
tables, where a succession of memory locations must be accessed in
sequence.

6.4.8 Specialized Addressing Modes

The preceding addressing modes are all used to address variables
(data) and can be used with any instruction that specifies a general
memory address as its operand(s). The following three modes have more
specialized applications.

6.4.8.1 Immediate Addressing. This mode is used by immediate
instructions. The word immediately following the instruction contains
the operand (the operand is contained in the program code). Immediate
instructions that require two operands have a workspace register
preceding the immediate value.

LWPI >FE70 Place >FE70 in the WP
LI R5,1000 Place 1000 in R5

6.4.8.2 CRU Bit Addressing. This mode is used by CRU bit
instructions for performing bit I/O. The operand is a signed
displacement in the range -128 to +127 bits from the CRU base address
which is stored in workspace register. 12. (Only bits 3 to 14 are
actually used.) When the CRU is addressed the least significant bit
(bit 15) of this register is not transferred onto the address bus.
Because of this it is necessary to store the doubled base address in
the register. Thus, if register 12 contains >80, the actual base
address of the hardware accessed is only >40.

SBO 8 Sets the CRU bit, 8 greater then the base address,
to one. If R12 contains >20 then CRU bit 2,4 will
be set to one by this instruction

SBZ DTR Sets the CRU bit to zero. If DTR has the value
10, and R12 contains >40, then this instruction
sets CRU bit 42 to zero

6.4.8.3 Program Counter Relative Addressing. This mode is used by
the jump instructions. The operand for this mode is a symbolic
address (not preceded by an 'at' sign) or a signed displacement. This
addressing mode can only be used to transfer control to a location
within the range of -128 to +127 words from the current location. For
jumps outside this range, the branch instruction must be used
(B @location).

When a symbolic address is given, the assembler performs the
following:

1) Subtracts the value of the incremented PC (address of
the current instruction + 2) from the symbolic
address.

2) Halve the difference to arrive at the displacement in
words.

To jump to symbolic location THERE, the instruction

JMP THERE

is required. If THERE was at location >2090 and the jump instruction
is at location >2060, then

JMP $+>30 30 byte jump from here

would perform the same operation. The symbol is used to represent
the current value of the location counter (the address at which the
instruction will be stored in memory).

6.5 SUBROUTINES

In a low-level language a subroutine, or procedure, is simply a
sequence of assembly language instructions preceded by a symbolic name
(a label) and terminated by a return statement.

The subroutine CLOSE can be defined by:

CLOSE 1st instruction

It is in fact better to use the EQUate directive and set the
subroutine name equal to the address of the subroutine (= the current

e

value of the location counter) in the previous line:

CLOSE EQU $
1st instruction

Although both approaches produce the same machine code, the second
clearly indicates a subroutine's entry point and thus aids program
documentation.

The Branch and Link instruction (BL) causes the address of the next
instruction to be stored in workspace register 11, and then passes
control to the specified routine. The operand for this instruction is
the address (or the name if the symbolic memory addressing mode is
used) of the required subroutine. For example, if subroutine RESET is
located at memory address >2000, then either of the following may be
used. (The first is much clearer.)

BL @RESET
or BL @>2000

The BL instruction provides a 'short linkage' which is best used for a
small subroutine that is local to the area of the program from which
it is called. A subroutine called with a BL uses the same workspace
as the calling program, and so the subroutine is able to directly
access the calling program's registers.

The Branch and Load Workspace Pointer instruction (BLWP) causes a
context switch to take place and then transfers control to the
specified subroutine. The operand for this instruction is the address
of a two-word area that contains the addresses of the new workspace
and of the subroutine to he executed. (When a context switch takes
place the incremented PC--the address of the instruction following the
BLWP--IS stored in register 14 of the new workspace.)

SUB DATA SUBWP SUB's workspace
DATA SUBPC SUB's entry point

BLWP @SUB

If SUB is at memory address >1000, then

BLWP @>1000

can also be used.

A BLWP establishes a completely new context that is separate from the
calling program, thus, a BLWP subroutine can be written separately
from the calling program without any danger that it will inadvertently
corrupt the caller's registers. The registers of the calling program
can be accessed using the indexed addressing mode, because when a
context switch is performed, register 13 of the new workspace
automatically contains the address of the old workspace. For example,

register 5 of the old workspace can be referenced by writing:

@l0(R13)

as the operand of an instruction. The indexed address is obtained by
adding 10 to the contents of register 13, to arrive at an address 10
bytes offset from the start of the old workspace (in other words
register 5, because each register occupies 2 bytes). BLWP is a very
useful instruction for implementing modular software in assembly
language (see Chapter II).

Control is returned from a subroutine either by a RTWP instruction (if
the subroutine was invoked by a BLWP instruction) or the RT
pseudo-instruction (if the subroutine was invoked by the BL
instruction). The RTWP instruction restores the context (PC. WP and
ST) of the calling program from registers 13, 14 and 15 of the new
workspace. The RT pseudo-instruction translates into:

B *R11

which is an indirect jump to the address contained in register 11
(location used by BL instruction to store old PC).

6.6 PARAMETER PASSING

All high-level languages have a built in parameter passing mechanism.
When using subroutines (or procedures, in the more modern languages)
the programmer must conform to their conventions.

Low-level languages, on the other hand, impose no such restrictions as
all parameter passing mechanisms must be explicitly implemented by the
Programmer. To avoid confusion, it is important that the programmer
chooses his own convention and sticks to it.

However, when low-level language routines are to be incorporated into
a high-level language program, it is necessary that these routines use
the conventions of the host language.

The main methods of parmeter passing and their implementation in 9900
assembly language are given below.

1) The paremeter is stored in a register

a) Subroutine invoked by BL instruction has direct
access to all the calling routine's registers.

b) Subroutine invoked by BLWP instruction:

MOV @2*n(R13),TEMP Copy contents of calling
routine's workspace
register N into TEMP

e 17

RO

R13

Subroutine's Calling routine's
workspace workspace

Note: The register number is doubled as byte addressing is
used on the 9900.

2) The parameter is stored in an area of memory that is
referenced by a register:

a) Subroutine invoked by BL instruction:

MOV @2*m(Rn),TEMP Copy contents of Mth word
(Mth parameter) of the
parameter block into TEMP

1st word

IMth word I

Parameter block

Calling routine's
workspace

RO

b) Subroutine invoked by BLWP instruction:

MOV @2*n(R13),Rs

MOV @2*m(Rs),TEMP

Copy address in calling
routine's workspace register
N into register S
Copy contents of Mth word of
parameter block into TEMP

r--*I 1st word

1--01 RO

RO

_J

Mth word

R13

Rn
Parameter block

Subroutine's Calling routine's
workspace workspace

3) This is a variation on the previous method. In this
method, the parameter block appears in-line (it
immediately follows the call). With this approach the
subroutine must ensure that the return address (where
control is transferred when the subroutine is exited)
is updated to skip over the parameter block and pick up
the instruction after the call. This can be done using
the indirect autoincrement addressing mode on Rll for
the BL instruction and R14 for the BLWP instruction.
This approach can only he used when the data to be
passed to the subroutine is constant (its value is
known when the program is assembled).

a) Subroutine invoked by BL instruction:

BL @SUBR Call SUBR
DATA Parameter block

SUBR MOV *R11+,TEMP Store 1st parameter in TEMP,
update the return address in
register 11

RT Return

b) Subroutine invoked by BLWP instruction:

SUBADD DATA SUBWP SUB's workspace
DATA SUBPC SUB's entry pointer

BLWP @SUBADD
DATA
•
•
•

SUB MOV *R14+,TEMP

•
•

RTWP

Call SUB
Parameter block

Store 1st parameter in TEMP,
update the return address in
register 14

Return

Note : Invoking a subroutine is faster using the BL instruction as no
context switch takes place, but there is a grave risk that data might
be inadvertently lost when any of the calling routine's registers are
used for temporary storage purposes.

6.7 STRUCTURING

With a high-level language, structuring presents no problem.
High-level languages were designed with this in mind; structuring
constructs are an integral part of the language.

However, assembly (or low-level) languages are designed around the
hardware and are not considered to be problem-oriented languages. The
Programmer must provide the necessary structures. Turning a software
design into an executable program is considerably more difficult in
assembly language because oroblem-oriented design constructs must be
translated accurately into groups of low-level machine instructions.
The information that follows describes assembly language
implementation of the basic sequence, and selection and iteration
constructs used in software design.

In writing an assembly language program, it is effective to produce a
software design before writing the code; this enables the programmer
to design the application's logic before worrying about the
implementation details (which, in assembly language, are
considerable). This approach has been shown to lead to better and
more correct software, and has been used very successfully for
internal TI projects. The sequence, selection and iteration
constructs (and the notation used here) are described in Chapter II.

6.7.1 Selection

Normally the action taken at a specific point in a program depends on
a number of factors or conditions. If one of the conditions changes,
the action to be performed changes. This choice of action is
represented by the selection construct displayed below.

ACTION N

CONDITION 1 ACTION 1

ACTION 2

•
•
•

FIGURE 6-2. SELECTION CONSTRUCT

Implementing this construct at the assembly language level requires an
understanding of the condition codes (or status flags). These are
stored in the processor status word (on the 9900 this is a special
hardware register called the status register - ST), with each flag
occupying one bit.

6.7.1.1 Condition Codes.

L> A> EQ C OV OP X

0 1 2 3 4 5 6 bit position

Condition Codes for the TMS 9900 status register

• Logical Greater Than (L>) contains the result of a
comparison of words or bytes as unsigned binary
numbers; the sign bit is interpreted as part of the
number. Thus a negative number is logically greater
than a positive one. (See Paragraph 6.13.2.2 for the
binary representation of negative numbers.)

• Arithmetic Greater Than (A>) contains the result of a
comparison of words or bytes as twos complement
numbers.

• Equal (EC)) is set when the words or bytes being
compared are equal.

• Carry (C) is set by a carry out of the most significant
bit of a word (or byte) during arithmetic operations.
The carry bit is used by the shift operations to store
the last bit shifted out of the specified workspace
register.

• Overflow (OV) is set when the result of an arithmetic
operation is too large or too small to be correctly
stored in 16 bits. (Refer to section 2.4.5 of the 'TMS
9900 Assembly Language Programmer's Guide' for full
details.)

• Odd Parity (OP) bit is set in byte operations when the
parity of the result is odd, and reset when the parity
is even. The parity of a byte is odd when the number
of bits having a value of one is odd, and even when
this number is even.

• Extended operation (X) is set when a software
implemented extended operation (XOP) is initiated.

The processor automatically sets (or resets) the
appropriate status flags once it has executed an
instruction. Only certain instructions affect certain
flags, for example, the 'X' flag is only set by an
extended operation instruction.

6.7.1.2 Jump Instructions. Perhaps the most important members of a
machine's instruction set are the jump instructions. These transfer
control (unconditonally or conditionally according to the state of one
or more status flags) from one point in a program to another, without
affecting the flags. The jump instructions available are listed
below:

JMP JOC JEQ JGT
JHE JLT JH JL
JNE JLE JNC JNO
JOP

The conditional jump instructions (all those listed above except JMP)
can be used to implement the selection construct. For example the
contents of R2 (>10, =10, or <10) determine which sequence will
execute (ACT1, ACT2, or ACT3 respectively). The execution of
sequence ACT4 follows.

The structure diagram for this is:

FIGURE 6-3. JUMP INSTRUCTION

In 9900 assembly language this can be coded as:

ACTO EQU $
CI R2,10 Compare R2 with 10
JGT ACT1 To ACT1 if R2 > 10
JEQ ACT2 To ACT2 if R2 = 10

ACT3 EQU $ To here if R2 < 10

C▪ ode for ACT3

J▪ MP ACT4 To ACT4
ACT1 EQU $

Code for ACT1

JMP ACT4 To ACT4
ACT2 EQU $

Code for ACT2

ACT4 EQU $

Code for ACT4

Note : If R2 contains 10 then after executing the code for ACT2,
program control drops through to the code for ACT4.

TRUE ACT1

ACT2

ACT3

ACTO

For a simple two-way selection:

FIGURE 6-4. TWO-WAY SELECTION

The code structure for this may appear as:

ACTO EQU $
'test'

JNE ACT2 To ACT2 if condition false
ACT1 EQU $

Code for ACT1

JMP ACT3 To ACT3
ACT2 EQU $

Code for ACT2

ACT3 EQU $

Code for ACT3

6.7.2 Iteration

Quite often it is necessary for a sequence of instructions to be
executed a number of times. One way of implementing this repitition
is to code the sequence the required number of times. However, if
either the sequence to be coded and/or the repetition number is large,
a large amount of memory will be used. Further, if the sequence is to
be repeated until a particular condition arises, the repetition number
is unknown. The use of the iteration construct overcomes these
problems.

Example: a sequence (SEQ1) must be repeated N times (where N is a
variable supplied by a previous stage) followed by the execution of
SEQ2.

The structure diagram illustrating this follows:

FIGURE 6-5. ITERATION

This can he coded in 9900 assembly language as:

SEQA EQU $
MOV @N,RO Copy count into RO,sets flags

SEQAST JEQ SEQ2 To SEQ2 if RO = 0
SEQ1 EQU $

Code for SEQ1

DEC RO Decrement repetition count
JMP SEQAST To SEQAST

SEQ2 EQU $

Code for SEQ2

If N is a constant (e.g. 20), the following is applicable:

LI R0,20 Set RO to 20
SEQ1 EQU $

Code for SEQ1

DEC RO Decrement repetition count
JNE SEQ1 To SEQ1 if RO > 0

SEQ2 EQU $ To here if RO = 0

Code for SEQ2

Example: While KEY=0 perform SEQ1. When..KEY is changed perform SEQ2.

The structure diagram for this task follows:

FIGURE 6-6. ITERATION AGAIN

The code representing this may be:

SEQA EQU $
CI KEY,O Compare KEY with 0
JNE SEQ2 To SEQ2 if KEY/0

SEQ1 EQU $ To here if KEY = 0

Code for SEQ1

JMP SEQA To SEQA
SEQ2 EQU $

Code for SEQ2

6.7.3 Sequence

On the surface, the sequence is the simplest construct to implement.
The sequence represents a number of elements that are executed one
after the other. At the single instruction level, assembly language
programs are naturally sequential. However, when writing a program
with a complex structure, some additional thought is needed to ensure
that the logical flow of the program is always sequential and from top
to bottom. Probably the best way to do this is to exactly follow the
order in which blocks of code appear on the structure diagram.

If the program flow is not sequential but jumps backwards and forwards
in an irregular manner, the program will be be difficult to follow and
modify. It is important that a single block on the structure diagram
be implemented as a single block of code.

This is, in fact, the easiest and the most natural way to write
programs; it is certainly the easiest to follow.

Consider this structure diagram:

FIGURE 6-7. SEQUENCE

This may be represented in code as:

'test' 'test' 'test'
JNE B JNE B JNE B

A EQU S A EQU $ A EQU $

Code for A Code for A Code for A

JMP C C EQU $ C EQU $
B EQU $

Code for C Code for C
Code for B

D EQU $ Jmp D
C EQU $ B EQU $

Code for D
Code for C Code for B

D EQU $ JMP C
B EQU $ D EQU $

Code for D
Code for B Code for D

•
JMP C

Of the three sets of code listed above, only the first is structured
according to the diagram. The other two are both less clear and less
compact than the first.

If the program is not sequential, it is easy to omit a branch
instruction, or even branch to the wrong location.

With a more complex structure diagram (see below), the probability of
producing an incorrect program increases dramatically. This can be
reduced by exactly following the diagram when writing the code.

FIGURE 6-8. COMPLEX STRUCTURE

T Ej

41•1•1 111.

F
,••••••••••0

D

With SEQ3 defined as:

S
E
Q
3

•••=11111.

The 9900 assembly language code for this is:

SEQ1 'test'
JNE SEQ2 To SEQ2 if false

Code for A

JMP G To G
SEQ2 EQU $

'test'
JNE SEQ3 To SEQ3 if false

Code for B

JMP F To F
SEQ3 EQU $

LI R0,20 Set loop count to 20
C EQU $

Code for C

DEC RO Decrement loop count
JNE C To C if count > 0
'test' To here if count =
JNE E To E if false

D EQU $

Code for D

JMP F To F
E EQU $

Code for E

F EQU $

Code for F

G EQU $

Code for G

6.8 COMMUNICATIONS REGISTER UNIT

The 9900 supplies a bit-oriented method of I/O called the
Communications Register Unit (CRU). This provides a maximum of 4096
bits of read space and 4096 bits of write space. Each bit (or line)
is individually addressable. Although the CRU uses the address bus to
access its read and write spaces, these are totally independent from
the memory address space.

The CRU transfers data along a separate three-wire bus (the wires are
known as CRUIN, CRUOUT and CRUCLK).

Using the CRU, it is possible to test, set or reset a single bit
anywhere in the 4096-bit address space, using a single instruction.
Instructions are also provided to read and write to any group of from
1 to 16 bits.

This 'bit-picking' I/O is particularly useful for control
applications, where input and output is typically single
bits (sensors, switches, warning lights, relays, valves, etc.) all of
which are either on or off.

The CRU was developed from Texas Instruments' experience in designing
minicomputers for process control applications. It grew out of the
method of I/O used, with great success, on the 960 minicomputer. As
the majority of microprocessor applications involve some kind of
control, this feature is very valuable.

The 9900 is the only major microprocessor to have a bit-oriented I/O
structure, as well as the byte and word-oriented techniques such as
memory mapping.

The five CRU instructions operate from a base address, which must be
stored in workspace register 12 (R12). The contents of this register
are known as the software base address. (In fact only bits 3 to 14 of
this register are used to generate the address, the other bits are
ignored. The value of these 12 bits is referred to as the hardware
base address. The keywords 'hardware' and 'software' are used to
avoid confusion when specifying the base address. The software base
address is twice the hardware base address.)

The three single-bit CRU instructions use a signed displacement, from
the base address, to reference a particular line. This displacement
allows the instructions to access any CRU bit within a range of -128
to +127 bits from the base address.

Suppose a number of CRU operations are required around CRU line >100
and a particular instruction needs to access CRU line >120. To do
this, set the hardware base address to >100 (a software base address
of >200) and use a signed displacement of +32 (>20).

With the two multiple-bit CRU instructions, the base address must
reference the first CRU line that the instruction is to access. For
example, if the transfer is to start at CRU line >50 then the hardware

base address must be >50. (This is equivalent to a software base
address of >AO.)

6.8.1 Single-Bit CRU Instructions

The operand of a single-bit CRU instruction is a signed displacement
(in the range -128 to +127) from the base address. This specifies the
particular line to be accessed.

This is displayed in the following diagram:

software base address

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

XX XX XX

XX

<----hardware base address

PLUS

8

signed displacement from CRU
instruction with sign extended

EQUALS

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

00 00 00

CRU bit address
address bus

XX indicates that the bit is ignored
00 indicates that the bit is set to 0

SBO : Set Bit to One. This sets the specified CRU output line to a
logical one.

Assume a control device is connected to CRU output line >10F. This
device turns on a motor when its CRU line is set to a one. If the
hardware base address is set to >100 (this corresponds to a software
base address of >200) then a displacement of +15 is required. The
instructions to active this motor are:

LI R12,>200
SBO 15

Set software base address
Set >10F to 1

15

SBZ : Set Bit to Zero. This sets the specified CRU output line to a
logical zero.

Assume that a control device is connected to CRU output line >80.
This device closes a valve when its CRU line is set to zero. Also
assume that workspace register 12 contains >140. To access CRU output
line >80 a displacement of ->20 is required. The instruction to close
the valve is:

SBZ ->20 Set >80 to 0

TB : Test Bit. This instruction reads the digital input and sets the
equal status flag (bit 2) to the value of the bit.

Assume that
base address
input line
is a '1') or

workspace register 12 contains >140 (this is a hardware
of >AO). The following lines wll test the input on CRU
>A4 and either execute the code at location RUN (if input
WAIT (if input is a '0').

TB 4 Test CRU input line >A4
JEQ RUN If on, go to RUN

WAIT If off, contine

RUN EQU

6.8.2 Multiple-Bit CRU Instructions

The operands of a multiple-bit CRU operation are:

1) A general memory address. For a 'read' operation this
address specifies where the input is to be stored, and
for a 'write' operation from where the output is to be
taken.

2) A count of the number of bits (in the range 0 to 15) to
be transferred.

These instructions transfer from 1 to 16 bits. A 16-bit transfer is
specified by setting the count to zero.

Unless otherwise explicitly stated, when less than nine bits of data
is being transferred, the processor uses the most significant byte of
a word for the operation. (This can be overridden by using the
indirect addressing mode to reference the required byte.)

ama/MIIA\

The base address for the operation is the CRU address of the first CRU
line to be accessed.

For a transfer of more than 8 bits:

memory word

0 1 7 8

CRU lines

15

For example, In a transfer involving 10 bits, the data is taken from
or stored in bits 15 to 6.

For a transfer of less than 9 bits:

memory word CRU lines

0 1 7 8 15

>

*CI

For example, In a transfer involving only 5 bits, the data is taken
from, or stored in bits 7 to 3.

LDCR : LoaD Communications Register. This instruction transfers
("writes') the specified number of bits from the source operand into
the CRU.

To write 9 bits from symbolic location OUT to the CRU starting at CRU
output line >40, the necessary instructions are:

LI R12,>80 Set software base address
LDCR OUT,9 Output 9 bits

location OUT CRU lines
0 1 7 8 15

•

.i••••••••••

STCR : STore Communications Register. This instruction transfers
("reads') the specified number of bits from the CRU input lines into
the specified memory location.

To read 7 bits, starting from CRU input line >60, into the memory
location addressed by workspace register 2, the necessary instructions
are:

LI R12,>C0 Set software base address
STCR *R2,7 Read in 7 bits

>40
>41
>42
>43
>44
>45
>46
>47
>48

memory word referenced by R2 CRU lines
0 1 7 8 15

>60
>61
>62
>63
>64
>65
>66

Note: If workspace register 2 had contained an odd address (it
referenced a word's least significant byte) then the input would have
been stored in bits 15 to 9.

6.9 INTERRUPTS

In a real-time system, there are two methods of determining when an
external event has occured (for example, when a device connected to
the computer needs to be serviced).

1) Polling - In this mode, the program polls, or tests
every device known to it in a cyclic fashion. When a
ready device is found, the device is immediately
serviced, and the program continues its polling cycle.

Although the program immediately services a device when
it is found to be ready, there can be a delay between
the time when the device generatesa ready signal and
the time when the program reads the ready signal.
Because of this, polling is only practical on a simple
system, or when response time is not critical.

2) Interrupts - In this mode, the device signals the
processor when it is ready to perform the next
operation. This signal is known as an interrupt.

With a more complex system (one that contains a number
of devices) the processor is able to perform another
action while waiting for an interrupt. As soon as an
interrupt occurs, the processor stops what it was doing
and services the device that caused the interrupt.
When the device has been serviced, the .processor
continues the action it was performing prior to the
interrupt.

13 14 15
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0 0,1 HIGH PRIORITY
0,1 2
0 -- 2 3
0 -- 3 4
0 -- 4 5
0 -- 5 6
0 -- 6 7
0 -- 7 8
0 -- 8 9
0 -- 9 10
0 -- 10 11
0 -- 11 12
0 -- 12 13
0 -- 13 14
0 -- 14 15 LOW PRIORITY
0 -- 15

6.9.1 Interrupt Structure

The 9900 supports up to 16 interrupt levels, numbered from 0 to 15.
Level 0 has the highest priority; 15 the lowest. The interrupt mask,
bits 12 to 15, determine which interrupts are recognized.

A device with a lower priority (higher numerical level number) than
that contained in the interrupt mask is not allowed to interrupt the
processor.

For example, if the interrupt mask contains '0011',only devices with
an interrupt level of 0 to 3 are allowed to interrupt the processor.
An interrupt from a device with a lower priority is ignored until the
interrupt mask is reset to a value that is greater or equal to the
device's interrupt level.

Often, instead of being coupled directly to the 9900 microprocessor,
interrupt lines are connected to a TMS 9901 Programmable Systems
Interface. The 9901 decides whether the interrupting device is
allowed to generate interrupts; and, if so, passes the interrupt to
the 9900. A device that is allowed to generate interrupts is said to
be enabled. An interrupt is enabled by setting the the 9901's control
bit to 0 (select interrupt mode) and then writing a 1 to the
appropriate mask bit. Full details of the operation of this device
are given in the TMS 9901 Programmable Systems Interface data manual.

Note : The 9901 is a CRU-DRIVEN device; before it can be accessed
(using CRU instructions) its base address must be stored in workspace
register 12. Further, this base address is dependent on the hardware
configuration.

TABLE 6-1. INTERRUPT MASK TABLE

INTERRUPT MASK INTERRUPT LEVELS MASK SET BY
BITS ALLOWED INTERRUPT LEVEL

12
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

6.9.2 Interrupt Transfer Vector

Every interrupt level has a two-word dedicated location known as the
interrupt transfer vector. A transfer vector contains:

1) The address of the workspace that is to be used by the
interrupt service routine.

2) The address of the service routine's entry point.

Low-order memory, address >00 to >3F, is reserved for these transfer
vectors.

ADDRESS

TABLE 6-2.

INTERRUPT

INTERRUPT TRANSFER

VECTOR
VECTOR CONTENTS

0000 0 WP ADDRESS FOR LEVEL 0
0002 0 PC ADDRESS FOR LEVEL 0
0004 1 WP ADDRESS FOR •LEVEL 1
0006 1 PC ADDRESS FOR LEVEL 1
0008 2 WP ADDRESS FOR LEVEL 2
000A 2 PC ADDRESS FOR LEVEL 2
000C 3 WP ADDRESS FOR LEVEL 3
000E 3 PC ADDRESS FOR LEVEL 3
0010 4 WP ADDRESS FOR LEVEL 4
0012 4 PC ADDRESS FOR LEVEL 4
0014 5 WP ADDRESS FOR LEVEL 5
0016 5 PC ADDRESS FOR LEVEL 5
0018 6 WP ADDRESS FOR LEVEL 6
001A 6 PC ADDRESS FOR LEVEL 6
001C 7 WP ADDRESS FOR LEVEL 7
001E 7 PC ADDRESS FOR LEVEL 7
0020 8 WP ADDRESS FOR LEVEL 8
0022 8 PC ADDRESS FOR LEVEL 8
0024 9 WP ADDRESS FOR LEVEL 9
0026 9 PC ADDRESS FOR LEVEL 9
0028 10 WP ADDRESS FOR LEVEL 10
002A 10 PC ADDRESS FOR LEVEL 10
002C 11 WP ADDRESS FOR LEVEL 11
002E 11 PC ADDRESS FOR LEVEL 11
0030 12 WP ADDRESS FOR LEVEL 12
0032 12 PC ADDRESS FOR LEVEL 12
0034 13 WP ADDRESS FOR LEVEL 13
0036 13 PC ADDRESS FOR LEVEL 13
0038 14 WP ADDRESS FOR LEVEL 14
003A 14 PC ADDRESS FOR LEVEL 14
003C 15 WP ADDRESS FOR LEVEL 15
003E 15 PC ADDRESS FOR LEVEL 15

6.9.3 Interrupt Sequence

The level of the highest priority pending interrupt request is
continually compared with the contents of the interrupt mask. When
the interrupt level of the pending request is equal to or less than
the mask contents, the interrupt is taken after the currently
executing instruction has completed.

For example, if the processor is servicing a level 4 interrupt, only
interrupts of level 3 and higher will be recognized. (This does not
hold for level 0 interrupts. This is predefined as the RESET
interrupt.)

To process an interrupt, a context switch takes place. The contents
of the transfer vector 's first word is stored in the WP register;
those of the second word in the PC register. The old contents of the
WP, PC and ST registers are stored in the new workspace registers 13,
14 and 15 respectively.

No additional interrupt is taken until the first instruction of the
service routine has been executed. If the first instruction sets the
interrupt mask to zero using

LIMI 0

(Load Interrupt Mask Immediate with zero) then further interrupts will
be inhibited.

After storing the contents of the ST register, the processor
decrements the incoming interrupt level by one and stores the result
in the PT pt increment mask. This disables the current interrupt
level leaving only higher levels enabled. (This does not happen with
level 0 interrupts.)

The last instruction in the service routine must be a 'RTWP'. This
causes the processor to restore the contents from workspace registers
13, 14 and 15 into the WP, PC and ST registers respectively (it
restores the original environment). Control then returns to the point
where the interrupt was taken.

Several interrupt lines may be combined at one level; it becomes the
programmer's responsibility to determine which device generated the
interrupt by polling the devices and then executing the appropriate
service routine.

Any interrupt request must remain active until the interrupt is taken,
and must be reset before the service routine is completed.

Memory
address Memory

Level 8 (0020 0270
interrupt -(

0290 transfer vector (0022

WP
0270 Interrupt routine

workspace 0780

PC

0290 , Interrupt routine

1024

--->0780 Executing program
workspace

F ST
0800 Executing program

Interrupt mask=F
1022 INC R1
>1024

Executing program
data

FIGURE 6-9. STATE PRIOR TO A LEVEL 8 INTERRUPT

Memory
Memory
address

WP

PC

ST

0290

7

0270
ra0270 Interrupt routine

workspace
•

Level 8 (0020
interrupt -(

transfer vector (0022

Interrupt mask=7

0270

0290

R13

R14

R15

0780

1024

F

Interrupt routine

RTWP

FIGURE 6-10. STATE AFTER A LEVEL 8 INTERRUPT

6.10 EXTENDED OPERATION INSTRUCTIONS

Extended operation instructions (XOPs) enable the user to extend the
existing instruction set by defining instructions that are implemented
by software routines.

The 9900 supports 16 extended operation instructions, numbered 0 to
15.

If the program is running under an executive, extended operation
instructions are used in a slightly different way. They are used as a
method of entering operating system routines that perform specific
functions. These functions, in particular input/output operations,
are provided by the system because it is not safe to allow their
implementation by the user as the functions affect other users too
easily. Extended operation instructions, used in this manner are also
known as extracodes or supervisor calls (SVCS).

This type of instruction is usually referred to as a
software interrupt. Software interrupts differ from hardware
generated interrupts in that software interrupts have no priority
sequencing. (There is no waiting to be recognized by the processor,
an extended operation instruction is taken as soon as it is issued).
Also, the extended operation instruction requires an operand that
allows the programmer to pass a parameter over to the service
routine.

6.10.1 Defining Extended Operation Instructions

The Extended Operation Instruction (XOP) is a valid assembly language
mnemonic; unfortunately, it does not convey any detail about the
operation a particular XOP performs. However, it is possible to
assign a more meaningful mnemonic to an extended operation instruction
using the Define Extended Operation (DXOP) directive. Its operands
are:

1) The mnemonic by which the XOP is to be known

2) The number of the XOP involved

This directive associates the mnemonic to a particular XOP; when the
mnemonic appears an an intruction's opcode, the XOP's routine is
invoked. For example:

DXOP CALL,4
•
•

CALL @FRED

The first instruction associates the mnemonic CALL to XOP 4. The
second instruction is an example of an extended operation
instruction. The effect of this is to invoke the code for XOP 4 with

the symbolic address FRED as its parameter.

6.10.2 Extended Operation Instructions Trap Vectors

Like the hardware interrupt, the extended operation instruction has a
two-word dedicated area known as a trap vector and containing:

1) The address of the workspace to be used by the XOP

2) The address of the XOP routine's entry point

These trap vectors

ADDRESS

are located at memory addresses >40 to >7F.

TABLE 6-3. XOP TRAP VECTOR TABLE

XOP NUMBER VECTOR CONTENTS

0040 0 WP ADDRESS FOR XOP 0
0042 0 PC ADDRESS FOR XOP 0
0044 1 WP ADDRESS FOR XOP 1
0046 1 PC ADDRESS FOR XOP 1
0048 2 WP ADDRESS FOR XOP 2
004A 2 PC ADDRESS FOR XOP 2
004C 3 WP ADDRESS FOR XOP 3
004E 3 PC ADDRESS FOR XOP 3
0050 4 WP ADDRESS FOR XOP 4
0052 4 PC ADDRESS FOR XOP 4
0054 5 WP ADDRESS FOR XOP 5
0056 5 PC ADDRESS FOR XOP 5
0058 6 WP ADDRESS FOR XOP 6
005A 6 PC ADDRESS FOR XOP 6
005C 7 WP ADDRESS FOR XOP 7
005E 7 PC ADDRESS FOR XOP 7
0060 8 WP ADDRESS FOR XOP 8
0062 8 PC ADDRESS FOR XOP 8
0064 9 WP ADDRESS FOR XOP 9
0066 9 PC ADDRESS FOR XOP 9
0068 10 NP ADDRESS FOR XOP 10
006A 10 PC ADDRESS FOR XOP 10
006C 11 WP ADDRESS FOR XOP 11
006E 11 PC ADDRESS FOR XOP 11
0070 12 WP ADDRESS FOR XOP 12
0072 12 PC ADDRESS FOR XOP 12
0074 13 WP ADDRESS FOR XOP 13
0076 13 PC ADDRESS FOR XOP 13
0078 14 WP ADDRESS FOR XOP 14
007A 14 PC ADDRESS FOR XOP 14
007C 15 NP ADDRESS FOR XOP 15
007E 15 PC ADDRESS FOR XOP 15

Before an extended operation instruction is executed, its trap vector
must contain the appropriate values. For the CALL extended operation
above:

AORG >50 CALL's trap vector at >50
DATA CALLWP Workspace for CALL
DATA CALLPC Entry point for CALL

6.10.3 Extended Operation Instruction Execution

When an extended operation instruction is executed, the processor

1) Locates the XOP's trap vector (4 times the XOP number
plus >40) and then loads the WP and PC registers with
the values contained there.

2) Performs a context switch.

3) Sets bit 6 of the status register to 1 (this indicates
that an extended operation instruction is being
executed) if it is implemented in software.

4) Places the effective address of the instructions's
operand into the new workspace register 11.

5) Passes control to the routine's entry point.

Return from an extended operation instruction is via the RTWP
instruction. This restores the program environment existing before
the instruction was executed.

Memory
address Memory

XOP 2 (0048 0220
transfer -(
vector (004A 0240

0220 XOP 2 workspace
0700 WP

XOP 2 routine 0290

PC •
0892

---*0700 Executing program
workspace

ST
Executing program 0800

0890 XOP *1,2
s0892

[Executing program
data

FIGURE 6- 1 1 . ISSUING AN EXTENDED OPERATION INSTRUCTION

0240

Memory
address Memory

XOP 2
transfer

(
-(

0048 0220

vector (004A 0240

WP

PC

ST

Status bit 6=1

0220
,—*0220 I XOP 2 workspace

0950

0700
0892

Workspace

>0240 XOP 2 routine

Rll
R12
R13
R14
R15

RTWP

1-

0700 Executing program
workspace

FIGURE 6-12. EXTENDED OPERATION INSTRUCTION EXECUTION

Note: Extended operation instructions can also be called using the XOP
instruction. This requires two operands:

1) Source operand, as above for CALL

2) XOP number

The extended operation instruction above

CALL @FRED

can be written as

XOP @FRED,4

The latter code doe not require the DXOP directive to be used.

However, it is recommended that the first approach be adopted as the
mnemonic indicates what the routine actually does and thus aids
program readability.

6.11 ALGORITHMS AND TECHNIQUES

The paragraphs that follow provide information about algorithms and
techniques that are applicable to 9900 assembley language.

6.11.1 Invoking the 9900 Family of Assemblers

Although the 9900 family of assemblers are upward compatable, there
are restrictions on the use of certain instructions.

Long Distance Destination LDD
Long Distance Source LDS
Load Memory Map File LMF

The above instructions are only valid on the 990/10 minicomputer with
map option. The following instructions are valid for the /10 and /4
computers. Although they are not illegal for the TMS 9900
microprocessor, they do not necessarily operate as described in the
Reference Section.

Clock Off CKOF
Clock On CKON
Idle IDLE
Load Rom and Execute LRE
Reset I/O RSET

Note: A two-pass assembler reads the source program twice, maintaining
a location counter as it reads the source lines. On the first pass it
builds a symbol table containing the name of every symbol used in the
program and the address where it was defined. During the second pass
the machine code is produced using the operation codes and the
completed symbol table.

6.11.1.1 LBLA. The Line-By-Line Assembler is a two-EPROM package
that is used in conjunction with the TIBUG monitor supplied with the
TM 990/101 and /100 microprocessor boards. With these two additional
EPROMs correctly installed, the Line-By-Line assembler is entered by
the following sequence:

W=XXXX space
P=XXXX 9E8 return

TIBUG MONITOR USER REPLIES
PROMPTS AND REPLIES

Note: In some versions the address maybe 9E6.

This initializes the workspace, sets the program counter to the entry
point of the assembler and begins execution.

The assembler prints the address of the first word of memory into

A tl

which the subsequent program will be stored and waits for instructions
to be entered. To exit from the assembler and return to TIBUG press
the escape key (ESC).

Once the program has been entered, it can be executed by performing
the same sequence of commands used for entering the assembler.
However, P should be set to the program's entry point instead of 9E8.

For further details refer to the TM 990/402 Line-By-Line Assembler
User's Guide.

6.11.1.2 SYMBOLIC. Symbolic is a ROM resident two-pass assembler
that is supplied with the TM 990/302 Software Development Board. It
interprets source statements stored on audio cassette that have been
created via the resident Text Editor and produces absolute (not
relocatable) machine code. The first instruction in the program
should be an AORG directive that sets the location counter to the
absolute start address of the program. Before executing the symbolic
assembler, the cassette containing the source statements must be
positioned to the begining of the program. The assembler is invoked
by:

.SA <devl>,<dev2>,<dev3> return

where DEV1 is the device number of the cassette containing the source
statements. DEV2 is the device number of the cassette where the
object code is to be stored; and DEV3 is the device number of the
listing device.

After the first pass, the assembler responds with:

* * REWIND TAPE

* * HIT 'CR' TO GO

If DEV1 and DEV2 are the same, the assembler responds with these
messages following the second pass:

** SWAP TAPES

** HIT 'CR' TO GO

If the program is too large to fit into the assembler's buffer at one
time, more steps will be involved.

Having stored the object code on cassette, the next step is to invoke
the Relocatable Loader to load the absolute program into the board's
user memory. This is performed by:

.RL <dev> return

where DEV is the device number of the cassette containing the object
code.

An

The loader requires information to determine where the program is to
be loaded into memory, how much of the program is to be loaded, etc.
When the loader is ready for this information, it informs the user by
prompting

Once loaded, the assembled program is executed by invoking the
Debugger Utility and issuing the EX command (after the debugger has
prompted for input):

.DR return
?EX return

See the TM 990/302 Software Develpoment Board User's Guide for further
details.

6.11.1.3 TXMIRA. TXMIRA is a two-pass assembler that runs on a 990/4
microcomputer under the floppy disc based TXDS Control Program. The
assembler is invoked by replying to the Control Program prompts as
follows:

PROGRAM: DSCX:TXMIRA/SYS return
INPUT: DSCX:NAME/ASM return

OUTPUT: DSCX:NAME/OBJ,DSCX:NAME/LST return
OPTIONS: return

TXDS CONTROL USER REPLIES
PROGRAM PROMPTS

DSCX:NAME/EXT is the full pathname of the file (or device) containing
the program to be assembled.

During output, if a file does not exist, it will be created on the
specified floppy disc with the name given. The second parameter
specifies where the listing is to be sent. This is usually a device
such as the line printer (LP). If this parameter is missing, the
system default printer will be used.

For a full list of the available options refer to Section 5.4 of the
Model 990 Computer Terminal Executive Development System (TXDS)
Programmer's Guide.

The TXDS Linking Utility Program (TXLINK) must be used to resolve any
external references (REFs) contained by the program.

Execution of an assembled and linked (if necessary) program is via the
EX or RU commands of the TXDS Standalone Debug Monitor (TXDBUG).

6.11.1.4 SDSMAC. SDSMAC (Software Development System Macro
Assembler) is a multipass macro assembler that runs on a 990/10
minicomputer under the hard disc based DX10 operating system. This
assembler is invoked by issuing a XMA command to the SCI (System

Command Interpreter) prompt and then supplying the relevant
information to the XMA prompts.

[1 XMA return

SCI PROMPT

EXECUTE MACRO ASSEMBLER
SOURCE ACCESS NAME: DISC.SOURCENAME return
OBJECT ACCESS NAME: DISC.OBJECTNAME return

LISTING ACCESS NAME: DISC.LISTNAME return
ERROR ACCESS NAME: DISC.ERRORNAME return

OPTIONS: return
MACRO LIBRARY PATHNAME: DISC.LIBRARYNAME return

XMA COMMAND PROMPTS USER REPLIES

DISC specifies the name of the (installed) disc on which the file
resides. If the file does not exist prior to the command for the
listing, object, and error access name prompts, it will be created on
the specified disc with the name given.

DISC.xxxxNAME is the full pathname of the file (or device) to be
used.

When creating a program on the /10 it is good practice to create a
directory (using the CFDIR command) through which all files related to
that particular program are referenced. This allows the replies to
the XMA prompts to be of the form:

DISC.PROGNAME.EXT

where PROGNAME is the directory name for the program files, and EXT is
one of ASM, OBJ, LST, ERR, MACRO.

When the assembly is complete it may be necessary to execute the Link
Editor (XLE command) to resolve all external references to the
assembled program. The assembled and linked (if necessary) program
must then be installed as either a procedure, task or overlay (using
the IP, IT or IO commands). This can then be executed by the XT
command.

6.11.2 Number Representations

The information that follows discusses how numbers are internally
treated by the computer.

6.11.2.1 Number Systems

A number in the decimal, base 10, system is composed of the digits 0 -
9. Numbers greater than 9 are represented using the
decimal place convention. The value of each place is ten times that
of the place to its immediate right.

For example, the decimal number 2976 means

3 2 1 0
2*10 + 9*10 + 7*10 + 6*10

0
Note : 10 is equal to 1

While the decimal system is the most frequently used number system it
is not suitable for use on a computer.

The smallest unit of storage in a computer is the bit (from Binary
digIT). The bit can be thought of as a single wire that can only be
in one of two states: on or off, 'high' or 'low', '1' or '0'. The
binary system automatically lends itself to this.

A number in the binary, base 2, system uses only the digits 0 and 1.
The value of each place, in the binary place convention, is twice that
of the place to its immediate right (as opposed to 10 in the decimal
system).

For example, the binary number 1011101 (93 decimal) means

6 5 4 3 2 1 0
1*2 + 0*2 + 1*2 + 1*2 + 1*2 + 0*2 + 1*2

0
Note: 2 is equal to 1

Writing large numbers in their binary representation is too cumbersome
for most applications. However, it is possible to group bits together
and represent each group by a single digit. This gives rise to the
octal and hexidecimal number systems.

Octal, base 8, representation uses the digits 0 - 7. An octal digit
corresponds exactly to 3 bits.

Hexadecimal (or hex for short) notation, base 16, uses the digits 0 -
9 plus A - F to represent the decimal values 10 - 15. Each hex digit
corresponds to exactly 4 bits.

1<--3rd->1<--2nd->1<--lst->1 Octal digits

Binary digits

Hex digits

1001111111011010

1001 1111 1101 1010

9 f d a

BINARY

10

OCTAL

2

DECIMAL

2

HEX

1000 10 8 8
1010 12 10 a

10000 20 16 10
11111111 377 255 ff

Note: Ten does not correspond to an integral power of two. Therefore
conversion from decimal to binary (and vice versa) is more difficult.

6.11.2.2 Representation of Negative Numbers, Negative numbers are
stored in two's complement form. In this form, the most significant
bit of a word (bit 0) indicates the sign of the number. If it
contains a 0, the number is positive; if it contains a 1, its
negative. The remaining 15 bits (bits 1 - 15) hold the two's
complement value of the number. For a positive number this is simply
the binary representation of that number.

The representation of a negative number however, (for example 1096) is
derived as follows:

1) Take the magnitude of the number, in this case 1096,
and write it in binary, using the full word length of
the machine. (For the TMS 9900 microprocessor this is
16 bits.)

1096 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0

2) Take the one's complement of this number (change the
state of each bit; replace O's with l's and l's with
O's).

1 1 1 1 1 0 1 1 1 0 1 1 0 1. 1 1

3) Add 1 to the least significant bit-

1 1 1 1 1 0 1 1 1 0 1 1 0 1 1 1
+1

1 1 1 1 1 0 1 1 1 0 1 1 1 0 0 0

The positive number 1096 is stored as >0448 while the negative number
-1096 is stored as >FBB8.

6.11.2.3 Representation of Fractions. The general equation to
convert a binary fraction into its decimal equivalent is:

-1 -2 -n
0.d1 d2 dn = dl*2 + d2*2 + + dn*2

where dl dn represent binary digits

for example, the binary fraction 0.1001 is equivalent to

-1 -2 -3 -4
1*2 + 0*2 + 0*2 + 1*2

= 0.5 + 0 + 0 + 0.0625

= 0.5625

To convert a decimal fraction to its approximate binary equivalent,
multiply the decimal fraction continually by 2, saving the integer
part of the result (either '0' or '1') until the result is zero.
Unfortunately it is not always possible to produce an exact binary
representation.

Consider the number 0.8125.

0.8125 0.6250 0.2500 0.5000
*2 *2 *2 *2

1.6250 1.2500 0.5000 1.0000

This number can be accurately expressed as 0.1101.

Now consider the number 0.9725.

0.9725 0.9450 0.8900 0.7800 0.5600
*2 *2 *2 *2 *2

1.9450 1.8900 1.7800 1.5600 1.1200

0.1200 0.2400 0.4800 0.9600
*2 *2 *2 *2

0.2400 0.4800 0.9600 1.9200

We could continue this process indefinately, but there is little point
to it as the number 0.9725 can not be accurately represented in
binary. After 9 iterations the binary approximation to the number is
0.111110001. This yields the number 0.970703125; an error of
0.001796875. Obviously the error can be reduced further by performing
several more iterations. However, there are practical limitations to
how far this can be taken.

6.11.2.4 Representation of Floating Point Numbers. Floating point
numbers can be stored in two consecutive 9900 memory words using
Excess 64 notation. The 32-bit real word is formed as follows:

SIGN bit

- - > <-- 7 bit --> <-- 24 bit MANTISSA
EXCESS 64 EXPONENT

A real number is converted into the form 'fraction*exponent'. The
fraction is stored in the 24-bit mantissa in true form and not two's
complement. The sign bit is used to indicate whether the number is
Positive or negative. The most significant hex digit of the mantissa
must be normalized (it must contain a value other than zero). This is
performed simply by shifting the four places to the left (one hex
digit) and decrementing the exponent value by one until the mantissa
is normalized.

Excess 64 notation means that when the value of the exponent lies
between 127 and 64 the value is decremented by 64 to give a true
exponent range of +63 to 0. The values 0 to 63 are used to represent
the true exponent range of -1 to -64.

Consider the number -107.5

In true binary this is
01101011.1000 -- 107.5
In 'fraction*exponent' form this is

2 2
0.0110101110000 * 16 -- 0.41992188 * 16
The fraction is already normalised
In floating point format this is
1 1000010 0110101110000....0
(Sign=negative,Exponent=+2)

The number -107.5 would be stored as >C26B8000

Now consider the number 0.03125

In true binary this is
0.00001000 -- 0.03125
In 'fraction*exponent' form this is

0 0
0.000010 * 16 -- 0.03125 * 16
Normalizing the fraction gives
0.1000 * 16**-1 -- 0.5 * 16**-1
In floating point format this is
0 0000000 1000000000000....0
(Sign=mositive,Exponent=-1)

The number 0.03125 would be stored as >00800000

6.11.2.5 Binary Coded Decimal. A number that is stored in a decimal
form is said to be in Binary Coded Decimal notation (BCD). In this
form. a word holds four decimal digits with each digit occupying four
bits. For numbers greater than 9999, more than one word is required
to store the BCD value.

If signed numbers are allowed, the user must decide on some convention
for indicating whether a number is positive or negative (such as using
the least significant four bits of the least significant word to
contain the sign).

most significant word least significant word

sign digit

most
significant digit

least
significant digit

BCD is not supported by the 9900 instruction set (all arithmetic
operations are performed on two's complement numbers). Thus it is
necessary for the user to supply the appropriate BCD operations, such
as add and subtract, as well as the routines to convert a number from
two's complement to BCD notation and vice versa.

6.11.3 Position Independent Code

A program is normally assembled and linked to produce an executable
object module that is designed to reside at a particular position in
memory. Jump addresses, data references, etc. are directed to this
portion of code, and normally the program will not execute correctly
in any other position. However, it is possible to write a module so
that it will execute at any position in memory. (This is different
from relocatable code, which is not directly executable until it has
gone through a location step to resolve all addresses tagged
relocatable into absolute form. It is then no longer relocatable.)

Writing a program in Position Independent Code makes the program fully
portable and at the same time directly executable. This is achieved
by referencing relocatable addresses. For example:

BL @SUB

(where SUB is in a relocatable code segment) using the indexed mode of
addressing on a displacement from the program's entry point. The
first instructions cause the actual address of the entry point to be
stored in the indexing register.

ENTRY EQU $ ENTRY EQU $

•
B▪ L @SUB BL @SUB-ENTRY(R4)

SUB EQU $ SUB E▪ QU $
•

RELOCATABLE CODE POSITION INDEPENDENT CODE

In the above example, workspace register 4 (R4) contains the actual
address of ENTRY. Obtaining this is performed by:

START EQU $
LI R10,>045B Load R10 with RT instruction
BL R10 Execute instruction in R10

ENTRY EQU $ Rll contains add of entry
MOV R11,R4 R4 contains add of entry

6.11.4 ROM/RAM Systems

Before burning a program into ROM (the usual course of events for a
microprocessor based application/control program), it is necessary to
separate the variable data and temporary storage locations from the
constant data and program instructions, and then add instructions to
the program to ensure that all the variable data is correctly
initialized.

The simplest way of initializing data is by using the DATA, BYTE, and
TEXT assembler directives:

TEMPI DATA 100
TEMP2 DATA 25

MSG TEXT 'READY'
BYTE >D,>A,0

While this will work in a RAM environment such as a development system
where the program is loaded prior to each execution, it will not work
in a dedicated microcomputer. There will be no operating system to
load the progam and initialize the data. If the data is placed in
RAM, it will never be initialized; if in ROM, it cannot be changed by
the program (this is perfectly all right for constants). Even in a
RAM environment, if the program is restarted without reloading, the
data will not be reinitialized.

The only way of ensuring variables are correctly initialized is to
include instructions in the program code to do the initialization.
This can be performed by:

• Data storage allocation in RAM
TEMPI BSS 2

MSG BSS 8

VAREND BSS 0

• Initial variable values in ROM
VALUES DATA 100

DATA 25

TEXT 'READY'

Interrunts
*-- and XOPS --+

Variables
and

worsks aces

Program

RAM image

PROGRAM

RAM image

• Inialization loop
ENTRY EQU $

LI Rl,TEMP1
LI R2,VALUES

INIT MOV *R2+,*Rl+
CI R1,VAREND
JNE @INIT
•

R1 pt TEMPI
R2 pt VALUE

Load initial values
Done?
To INIT if no

The label VAREND (no storage space is allocated to it) is used to
delimit the block of data; its address is used to terminate the
initialization loop INIT.

The initialization can also be performed by:

LI R1,100 Set TEMP1=100
MOV R1,@TEMP1
LI R1,25 Set TEMP2=25
MOV R1,@TEMP2
•
•

The above does not make use of the table of values
(VALUES).

MOV @VALUES,@TEMP1 Set TEMP1=100
MOV @VALUES+2,@TEMP2 Set TEMP2=25

Although both of these methods are simple and straightforward, they
can be more costly in memory space (they both require 4 words of ROM
for each variable) for programs with a number of variables to be
initialized.

Pictorally, the process can be represented as:

PAM System

ROM/RAM System

As shown in the diagram, at run time, the RAM image (held in ROM) is
copied into the appropriate RAM storage area.

Note : A complete ROM/RAM system must contain

1) All interrupt vectors. If any interrupt level is not
used then a spurious interrupt handler should be
written and included in the system. All unused
interrupt levels should set their WP and PC to access
this routine.

2) If any XOPs are used then the appropriate XOP trap
vectors must be included.

3) LOAD vector at >FFFC.

6.11.5 Macro Processing

Suppose a sequence of source lines will be used often in a
program. There are several methods to accomplish this:

1) Explicitly write the sequence wherever it is to
appear.

2) Make a subroutine out of the sequence and code
subroutine calls wherever the sequence should appear.

3) Write the sequence at the begining of the program,
associating a name with it. Insert this name wherever
the sequence is to appear in the program and pass the
program through a special program called a
macro processor. The output from this is a program in
which every occurrence of the sequence name is replaced
by the sequence of source lines.

The following text is only concerned with the last method described
above. The sequence of source lines is a macro. Associating a name
to a macro is called macro definition and writing this name in a
source line is known as a macro call.

Like the subroutine, macros can have parameters. Macro calls may
require text that has approximately the same form as subroutine
calls. For example, some instructions may use different operands.
This can be handled by defining parameters for the macro. The actual
operands required are then specified in the macro call (an example is
presented below).

A macro processor processes text. This text may in fact be a program;
to the macro processor however it is simply text. The macro processor
is only concerned with macro related operations. Source lines that do
not contain such operations are unchanged as output. Input to a macro
processor is text containing macro definitions, macro calls, macro
instructions and macro keywords. Output is text that has had all the
macro calls replaced by the appropriate replacement text; all other

macro operations are removed).

Diagrammatically, this can be expressed as:

TEXT+MACRO CALLS,
INSTRUCTIONS,
AND KEYWORDS.

MACRO DEFINITIONS
---___+

MODIFIED SOURCE TEXT
(MACRO OPERATIONS

REMOVED,CALLS ARE
REPLACED BY THEIR
REPLACEMENT TEXT)

MACRO

PROCESSOR

A macro processor has two phases:

1) Macro definition - A macro is defined and subsequently
included into its macro library.

2) Macro expansion - A macro operation is found in the
source text. A macro call causes the input to be
'switched' to the macro's replacement text. Processing
continues from there until this text is exhausted.
Other macro operations cause the macro processor to
perform the necessary, inbuilt, operation.

The benefit of using a macro processor is that, once defined, a macro
can be called from anywhere within the source (or replacement) text,
with each call having specific arguments. Obviously, it is a good
idea to build up a macro library (containing both special and general
purpose macros). This can then be either automatically accessed when
the macro processor is used or actually included into the macro
processor itself.

Although a macro is only written once, the output from a macro
processor will contain the replacement text wherever a macro was
called in the source text. Note that although a macro call and a
subroutine call look similar when written in a source program, a
subroutine call is implemented in the object module by a short calling
sequence to the subroutine, which only appears once. Wherever a macro
call is written, the complete code sequence specified in the macro
definition will be placed in the object module at the point of the
call.

The SDSMAC assembler supports a macro language (therefore it's a macro
assembler). A short description of defining and calling a macro under
this assembler follows. Full details of the SDSMAC assembler
capabilities are available in Section 7 of the TMS9900 Assembly
Language Programmer's Guide.

6.11.5.1 Macro Definition. Macro definition is performed by the
$MACRO instruction. All source lines following this instruction up to
but excluding the definition terminator ($END macro instruction)
constitute a macro.

Mname $MACRO parm

•
)- Macro

•
$END

where: MNAME is the name of the macro FARM is the list of parameters,
separated by commas, that the macro uses

$MACRO causes MNAME and its attributes to be stored in the assembler's
symbol table. A similar table, the parameter table, is used to hold
the names of the individual parameters and their attributes.
(Information about any macro variables used within a program is also
stored in this table.) $END informs the assembler that the definition
is complete. All the source lines between these two macro
instructions are stored in an encoded form in a macro file.

6.11.5.2 Macro Call. A macro is called by writing its name in the
opcode field of an instruction, with the actual parameters written in
the operand field.

When this is done, the actual parameters are linked to the dummy ones
(those supplied at definition time) in the parameter table and then
macro expansion takes place. The lines output from the macro expander
are then passed straight to the assembler.

For example, to define a macro (AGAIN) with dummy parameters AD and
NOW, the following lines are required:

AGAIN $MACRO AD,NOW

▪)- Macro's replacement lines

SEND

To call this with real parameters R4, *6 the following code is
required:

AGAIN R4,*6

SDSMAC supports conditional assembly through the $IF, $ELSE and $ENDI
macro instructions. The general form for conditional assembly is:

$IF expression

• Block A

$ELSE

• Block B

$ENDIF

C__Gq

If the expression in the above example is true, Block A is included in
the program; if not, Block B is included.

A simplified form of this follows:

$IF expression

Block A

$ENDIF

Unlike most macro processors, SDSMAC allows the programmer to directly
access and modify the individual components of each entry in the
parameter table. Thus 'expression' can be:

P2.S='WORD' Is the string component of variable P2
equal to the string WORD

T.L=5 Is the length component of variable T
equal to 5

SDSMAC also supplies a number of keywords such as $PCALL (paremeter
appears as a macro instruction operand) and $PIND (parameter is an
indirect workspace register address) that enable the programmer to
test a variable's attribute component. These keywords are used with
the logical operators AND ("&'), OR ('++'), Exclusive OR ('&&') and
NOT ('it'). For example:

P2.A & $PCALL This expression has a non zero value
when the variable P2 is a parameter
supplied in a macro instruction.
Otherwise the value is zero.

6.11.6 Nested Subroutines

A subroutine is nested when it is invoked by another subroutine. The
only problem with nested subroutine calls is that of ensuring that a
subroutine's return address is not lost or overwritten. This is
particularly troublesome if the subroutines are called via a BL
instruction (the return address is stored in workspace register 11).

Conceptually the flow of control is as follows:

B▪ L .
4

RT
• RT

Executing the second BL instruction results in the loss of the first
return address. Exiting the inner routine causes the continuous
execution of the code located between the BL and RT instructions.

One approach to resolve this is:

BL *Save return address
. < MOV R11,R10

B▪ L .

RT
*Restore return address
MOV R10,R11
RT

The two instructions:
MOV R10,R11
RT

can he replaced by:
BL *R10

6.11.7 Stacks

Another way of performing this saving and restoring of return
addresses is by implementing a stack mechanism. In this, an area of
memory is set aside as a stack. A stack usually starts at a high
address and builds down towards low memory as items are added, (pushed
onto the stack).

>FFFF

High memory

>0000

*
Low memory

A register is reserved to point to the current top of stack; it points
to the last item added to the stack. This register is usually
referred to as the stack pointer.

The first instruction in a subroutine pushes the return address onto
the stack and decrements the stack pointer. The last instruction,
prior to a return, pops (or removes) the last entry from the stack,
updating the stack pointer in the process.

SUB PUSH R11

POP Rll
RT

PUSH and POP are not recognized assembly language instructions. If
SDSMAC is available,these operations can be implemented by macros.

The reason for giving both PUSH and POP arguments (R11) is to make the
stack operations general purpose, thus allowing data other than return
addresses to be stored on the stack. However, if the stack is used in
this way, care must be taken to ensure that all such items are removed
before popping the return address.

PUSH and POP may be defined as macros as follows:

PUSH $MACRO OP ;Define macro PUSH
DECT R10 ;Decrement stack pointer
MOV :OP.S:,*R10 ;Move data onto stack
$END PUSH

c re

POP $MACRO SO ;Define macro POP
MOV *R10+,:SO.S: ;Move data from stack
$END POP

Workspace register 10 (R10) is used above as the stack pointer; the
macro operands may be any valid operand for a MOV instruction.

Before the stack can be used, the stack pointer must be initialized to
the address of the top of the stack 55us two; otherwise the first word
in the stack will not be used.

6.11.8 Automatic Workspace Allocation

Transparent stacking of workspaces is achieved by calling all
subroutines through an XOP named CALL. Return from any subroutine is
via a normal RTWP instruction. Arguments may be passed by standard
register conventions. The stack builds down through memory and will
be N*32 bytes deep, where N is the nesting level. An example
follows.

* EXAMPLE OF USE
XOPWP EQU >FFOO
TPSTCK EQU >FECO

AORG >78
DATA XOPWP
DATA CALLPC

AORG >80
MAIN LWPI TPSTCK

DXOP CALL,14

CALL @SUBR

•
SUER EQU $

RTWP

;ASSIGN WSP
;ASSIGN TOP OF STACK

;XOP VECTOR
;XOP WORKSPACE
;XOP ENTRY POINT

;ARBITRARY START
;SET TOP OF STACK
;DEFINE XOP CALL

;CALLS SUBR

;SUB'S ENTRY POINT

;NORMAL RETURN

* CALL XOP
* THIS ROUTINE AUTOMATICALLY STACKS WORKSPACES DOWN
* THROUGH MEMORY. RTWP WILL RETURN TO THE CALLER
* WITH THE OLD WORKSPACE, EFFECTIVELY POPPING THE
* STACK
CALLPC LIMI 0

LI R1,-6
A R13,R1
MOV R13,*R1+
MOV R14,*R1+
MOV R15,*R1+
MOV R11,R14
AI R13,-32
RTWP

* THIS XOP REQUIRES 148
* AT 3MHZ THIS IS 48.84

;NON INTERRUPTABLE
;OFFSET TO NEW WSP'S R13
;PT TO NEW WSP'S R13
;MOVE RETURN WP
;MOVE RETURN PC
;MOVE RETURN ST
;SUBROUTINE'S ENTRY POINT
;HIT NEXT WORKSPACE
;CALL SUBROUTINE

CYCLES TO EXECUTE
MICROSECONDS

-A7

6.11.9 Recursion

A nested subroutine has been defined as one that is called by another
subroutine:

BL .

BL .

BL .

47- ;1r
RT

RT

Recursion is not unusual; however, care must be taken to ensure that
no return addresses are lost; otherwise the flow of control will not
be as expected.

In the definition above there is nothing to stop the nested subroutine
from being the same as the calling subroutine. If this is the case,
the subroutine is known as a recursive subroutine (a subroutine that
calls itself) and the mechanism is known as recursion. Care must be
taken to ensure that a recursive subroutine does get caught up into an
endless recursion loop.

Recursion presents problems. For example, how is a subroutine's
return address to be saved? Obviously, simply copying it into another
workspace register will not work, as on the next recursive call the
value will be overwritten by the new return address. Here a stack
mechanism is essential. By pushing the return addresses onto a stack
the problem is solved, as long as the storage space allocated to the
stack is not exceeded.

Suppose, in a multiple-user environment, a number of programs need to
perform the same operation. The code performing this can be included
in each program, or it could be written in such a way that it is
possible for the programs to share a single copy of the code and
execute it (simultaneously, if necessary) as though each program had
its own copy. Code written to allow this is known as
re-entrant code.

A recursive subroutine must be written in this way as, in effect, it
shares the code with itself.

•
•
•
•

6-6R

6.11.10 Re-entrancy

There are two problems associated with re-entrancy:

1) The subroutine code must not modify itself. Modifying
code is dangerous, is difficult to debug and is
discouraged. Storing the code in ROM elimiantes
re-entrancy. If self modifying code is include, the
program will not work as expected.

2) On entry to the subroutine, the data local to the
subroutine must be correctly initialized. This implies
that the data local to previous invocations must be
Preserved, and restored on exiting the routine. The
simplest way of performing this is using a stack:

ENTRY EQU $
PUSH Rll
PUSH @ARG1
PUSH @ARG2

PUSH RO
LIRO,...
MOV RO,@ARG1
LI RO,...
MOV RO,@ARG2

Save return address
Save ARG1
Save ARG2

Save RO

Reset ARG1

Reset ARG2

POP RO Restore RO

POP @ARG2 Restore ARG2
POP @ARG1 Restore ARG1
POP Rll Restore return address
RT

Note : The stacked items are popped in reverse order.

6.11.11 Jump Table

Suppose it is necessary to branch to a label (Li) depending on the
value of a key (i); if i=1, then 11, if i=2 then L2, etc. Assume that
RO contains the key. This can be written as:

CI R0,1
JEQ Ll
CI R0,2

JEQ Ln
JGT OVER

UNDER EQU $ Under range

OVER EQU $ Over range

Ll EQU $ KEY=1

A more efficient method would be to replace each

CI RO,i with a DEC RO

This saves one word for each comparison.

Probably the best method of implementing this would be to create a
table of addresses, in ascending key order, of the labels. Using the
index mode of addressing on the key, the following code is utilized:

TABLE DATA L1,L2,....,Ln Table of addresses

* Key in range
A RO,R0
JLE UNDER
CI R0,2*n
JGT OVER

* Yes then branch to Ll

KEY->word offset,set code
KEY<=0?

KEY>n?

6-70

6.12 REFERENCE SECTION

The paragraphs that follows provides additional explanation to the
inforamtion on 9900 assembley language presented in this chapter.

6.12.1 Instruction Formats

9 MPY,DIV,XOP

BIT POSITIONS

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
I -t-

OP CODE B
I

 TD
I I I

D
r

TS
1 i -v .

S
I I
OP CODE

I I I

I I

I

I
SIGNED

I
DISPLACEMENT

111

I I I
OP CODE D

I • I
TS
I

'

I I
OP CODE

I I I II
C TS

III
S

- I
OPCODE

II! 1
C

III
W
I I I

OPCODE
I

i 1 I

1114-111

I I
TS

I
S
I I

I

OPCODE NU
I
OPCODE

I I I I I
NU 1

I 1

t

I 1 I 1 I
IMMEDIATE
1 1 1 1 1

VALUE
-I

I

+1111
OP CODE

1+1
D

I I •
TS

I

ili
S

• I II

FORMAT NO.
AND USE

1 ARITHMETIC

2 JUMP

3 LOGICAL

4 CRU

5 SHIFT

6 PROGRAM

7 CONTROL

8 IMMEDIATE

OPCODE - Assembly language mnemonic
B - Byte indicator (1=byte, 0=word)
Td - Destination address mode
D - Destination address
Ts - Source address mode
S - Source address
C - Shift or cru transfer count
W - Workspace register number
NU - Not used
SIGNED - Signed displacement of -128 to +127 words

TD/TS

CODE

FIELD:

MODE EFFECTIVE ADDRESS
00 WORKSPACE REGISTER Rx WP+2*[S OR D]
01 INDIRECT *Rx (WP+2*[S OR ID])
10 INDEXED (S OR D/0) @LABEL(Rx) (1113+2* [S OR D])+(PC+2)
10 SYMBOLIC (S OR D=0) @LABEL (PC+2)
11 INDIRECT WITH AUTO *Rx+ (WP+2* [S OR D]);

INCREMENT Increment eff. address

An extra word is required for each operand code of 2.

6.12.2 Status Register

0 1 2 3 4 5 6 7 11 12 15

L> A> C 0 P X Reserved Int. mask

0 - Logical greater (L>)
1 - Arithmetic greater (A>)
2 - Equal (=)
3 - Carry from msb (C)
4 - Overflow (0)
5 - Parity (P)
6 - XOP in progress (X)

Interrupt mask : F - All interrupts enabled
0 - Only interrupt level 0 enabled

6.12.3 Interrupts

Trap addr Workspace Pointer (WP)

Trap addr+2 Entry Point (PC)

Note: 1) Interrupt vectors 0-15 from 0 to >3C
2) XOP vectors from >40 to >7C
3) LOAD vector at >FFFC
4) Interrupt 0 is the RESET interrupt

6.12.4 CRU

All CRU instructions use bits 3 - 14 of workspace register 12 (R12) as
the base address for CRU operations. For CRU operations involving
less than 9 bits (LDCR and STCR instructions) the most significant
byte (bits 0 - 7) of a word is used.

6.12.5 Register Restrictions

Memory Memory
address

WP+>00

WP+>02

WP+>16

WP+>18

WP+>1A

WP+>1C

WP+>1E

Shift count (bits 12 - 15)

Index
capability

Data or
addresses

B1 - Return address;
XOP - Operand effective add.
CRU base address (bits 3 - 14)

Saved WP

Saved PC

♦ v Saved ST

RO

R11

R12

R13

R14

R15

Note: The MPY and DIV instructions use two consecutive registers, the
first of which is supplied as an operand to the instruction (if R2 is
the register operand then R2 and R3 are both used). If R15 is the
specified register then the word following the workspace is used to
store the remainder for DIV or the least significant half of the
result for MPY.

6.12.6 Assembly Language Instructions

Symbols Used

G,G1,G2 - General memory addresses
R - Workspace register address
S - Symbolic memory address
E - Expression (all symbols previously defined)
I - Immediate value
T - Term (range 0 - 15)
() - Contents of the address within parenthesis
-> - 'Replaces'
: - 'Is compared to'
C - Count (0 to 15)
* - Result is compared to zero

INSTRUCTION OPCODE

FORMAT STATUS
FORMAT EFFECT TYPE BITS

AFFECTED

ABSOLUTE VALUE 0740 6 *0-2,4 ABS G ABSOLUTE(G)->(G)
ADD BYTES B000 1 *0 -- 5 AB G1,G2 (G1)+(G2)->(G2)
ADD IMMEDIATE 0220 8 *0 -- 4 AI R.I (R)+I->(R)
ADD WORDS A000 1 *0 -- 4 A G1,G2 (G1)+(G2)->(G2)
AND IMMEDIATE 0240 8 *0 -- 2 ANDX R,I (R) AND I->(R)
BRANCH 0440 6 B G->(PC)
BRANCH AND LINK 0680 6 BL G G-> (PC)

(PC)->(R11)
BRANCH AND LOAD WP 0400 6 BLWP G (G) -> (WP)

(0+2)->(PC)
(OLD WP)->(R13)
(OLD PC)->(R14)
(OLD ST)->(R15)

CLEAR 04C0 6 CLR G 0-> (G)
CLOCK OFF 03C0 7 CKOF DISABLES CLOCK
CLOCK ON 03A0 7 CKON ENABLES CLOCK
COMPARE BYTES 9000 1 0-2,5 CB G1,G2 (G1):(G2)
COMPARE IMMEDIATE 0280 8 0 -- 2 CI R,I (R) :I
COMPARE WORDS 8000 1 0 -- 2 C G1,G2 (G1) : (G2)
COMPARE ONES 2000 3 2 COC G,R ST2=AND OF RBITS
CORRESPONDING CORRES. TO GBITS=
COMPARE ZEROS 2400 3 2 CZC G,R ST2=NAND OF RBITS
CORRESPONDING CORRES. TO GBITS=
DECREMENT BY ONE 0600 6 *0 -- 4 DEC (G) (G) -1-> (G)
DECREMENT BY TWO 0640 6 *0 -- 4 DECT (G) (G)-2->(G)
DIVIDE 3C00 9 4 DIV G,R INT (R)/(G)->(R)

REM (R)/(G)->(R+1
EXECUTE INSTRUCTION 0480 6 X G EXECUTE INSTRUCTI

AT ADDRESS G
EXTENDED OPERATION 2C00 9 6 XOP G,T (>40+4*T)->(WP)

(>42+4*T)->(PC1
EFF ADD OF G->(R1
(OLD WP)->(R13)
(OLD PC)->(R14)
(OLD ST)->(R15)
1->ST6

EXCLUSIVE OR 2800 3 *0 -- 2 XOR G,R (G) XOR (R)->(R)
IDLE 0340 7 IDLE
INCREMENT BY ONE 0580 6 *0 -- 4 INC G (G) +1-> (G)
INCREMENT BY TWO 05C0 6 *0 -- 4 INCT G (G)+2->(G)
INVERT BITS 0540 6 *0 -- 2 INV G 1'S COMP (G)->(G)
JUMP (UNCONDITIONAL) 1000 2 JMP S S->(PC)
JUMP IF CARRY 1800 2 JOC S S->(PC) IF ST3=1
JUMP IF EQUAL 1300 2 JEQ S S->(PC) IF ST2=1
JUMP IF GREATER THAN 1500 2 JGT S S->(PC) IF ST1=1
JUMP IF HIGH OR EQUAL 1400 2 JHE S S->(PC) IF STO=1

OR ST2=1
JUMP IF LESS THAN 1100 2 JLT S S->(PC) IF ST1=0

AND ST2=0

JUMP IF LOGICAL HIGH

JUMP IF LOGICAL LOW

JUMP IF LOW OR EQUAL

JUMP IF NO CARRY
JUMP IF NO OVERFLOW
JUMP IF NOT EQUAL
JUMP IF ODD PARITY
LOAD COMMUNICATIONS

1B00

1A00

1200

1700
1900
1600
1C00
3000

2

2

2

2
2
2
2
4 *0-2,5

JH S

JL S

JLE S

JNC S
JNO S
JNE S
JOP S
LDCR G,T

S->(PC) IF STO=1
AND ST2=0
S->(PC) IF STO=0
AND ST2=0
S->(PC) IF STO=0
OR ST2=1
S->(PC) IF ST3=0
S->(PC) IF ST4=0
S->(PC) IF ST2=0
S->(PC) IF ST5=1
TRANSFER T BITS

REGISTER FROM (G) TO CRU
LOAD IMMEDIATE 0200 8 *0 -- 2 LI R,I I-> (R)
LOAD INTERRUPT MASK 0300 8 12-15 LIMI I I->(INT. MASK)
LOAD ROM AND EXECUTE 03E0 7 12-15 LREX (>FFFC)->(WP)

(>FFFE)->(PC)
(OLD WP)->(R13)
(OLD PC)->(R14)
(ST)--.(1115)
0->(INT. MASK)

MOVE BYTE D000 1 *0-2,5 MOVB G1,G2 (G1) -> (G2)
MOVE WORD C000 1 *0 -- 2 MOV G1,G2 (G1) -> (G2)
MULTIPLY 3500 9 MPY G,R MSW((G)*(R))->(R)

LSW((G)*(11))->(R+1)
NEGATE 0500 6 *0 -- 4 NEG G -(G)->(G)
OR IMMEDIATE 0260 8 *0 -- 2 ORI R,I (R) OR I ->(R)
RESET I/O 0360 7 RSET DISABLES INTERRUPTS

RESETS I/O DEVICES
BITS 12 -15 =0

RETURN WORKSPACE 0380 7 0 -- 6 RTWP (R13)->(WP)
POINTER 12-15 (R14)->(PC)

(R15) -> (ST)
SET BIT TO ONE 1D00 2 SBO E 1->(E+(R12))
SET BIT TO ZERO 1E00 2 SBZ E 0->(E+(R12))
SET TO ONES 0700 6 SETO G >FFFF->(G)
SET ONES CORRESPONDING F000 1 *0-2,5 SOCB G1,G2 (G1) OR (G2) ->(G2)
BYTE
SET ONES CORRESPONDING E000 1 *0 -- 2 SOC G1,G2 (G1) OR (G2) -> (G2)
WORD
SHIFT LEFT ARITHMETIC 0A00 5 0 -- 4 SLA R,C) IF C=0 THEN 4
SHIFT RIGHT ARITHMETIC 0800 5 0 -- 3 SRA R,C) LSBS OF RO USED.
SHIFT RIGHT CIRCULAR OBOO 5 0 -- 3 SRC R,C) IF THESE =0 THEN
SHIFT RIGHT LOGICAL 0900 5 0 -- 3 SRL R,C) C=16.
STORE COMMUNICATIONS 3400 4 *0-2,5 STCR G,T T BITS FROM CRU
REGISTER LINES TO G
STORE STATUS REGISTER 02C0 8 STST R (ST)->(R)
STORE WORKSPACE POINTER 02A0 9 STWP R (WP) -> (R)
SUBTRACT BYTE 7000 1 *0 -- 5 SB G1,G2 (G2)-(G1)->(G2)
SUBTRACT WORD 6000 1 *0 -- 4 S G1,G2 (G2)-(G1)->(G2)
SWAP BYTES 06C0 6 SWPB G INTERCHANGE BITS

0-7 WITH BITS 8-15
OF WORD,G

SET ZEROES 5000 1 *0-2,5 SZCB G1,G2 (INV(G1') AND (G2)
CORRESPONDING BYTE -> (G2)

SET ZEROES 4000 1 *0 -- 2 SZC G1,G2 (INV(G1)) AND (G2)
CORRESPONDING WORD ->(G2)
TEST BIT 1F00 2 2 TB E (R12)+E->ST2

6.12.7 Pseudo-Instructions

INSTRUCTION FORMAT EFFECT

NO OPERATION NOP JMP $+2
RETURN RT B *R11

TRANSFER VECTOR for a "BLWP @label'
label XVEC wpadd,pcadd

6.12.8 Assembler Directives

(SDSMAC only)
label DATA wpadd

DATA pcadd
WPNT wpadd

() - The item in parenthesis is optional
(,x) - Anv number of 'x's (each preceded by a comma)

All of these directives (except OPTION) may be preceded by a label and
followed by a comment.

ABSOLUTE ORIGIN - AORG exp
AORG places the value of EXP (an absolute expression) in the
location counter and defines the succeeding locations as
absolute.

RELOCATABLE ORIGIN - RORG (exp)
RORG places the value of EXP (an absolute or relocatable
expression) in the location counter; if encoutered in absolute
code it also defines the succeeding locations as relocatable. If
EXP is not used then the location counter is replaced by :
Current length of program segment for absolute code
Length of data segment for data relocatable code
Length of common segment for common relocatable code

DUMMY ORIGIN - DORG exp
DORG places the value of EXP (a relocatable or absolute
expression) in the location counter and defines the succeeding
locations as a dummy block. No object code is generated for the
dummy block, but the module is allowed to access the symbols of
another module.

DATA SEGMENT - DSEG
DSEG places a value in the location counter and defines the
succeeding locations as data relocatable. Either of the following

values is placed in the location counter:
maximum value location counter has ever attained as a result of
assembling any preceding blocks of data relocatable code
Zero, if no data relocatable code has been assembled

DATA SEGMENT END - DEND
DEND terminates a DSEG by placing a value in the location counter
and defines succeeding locations as program relocatable. Either
of the following values is placed in the location counter:
Maximum value location counter has ever attained as a result of
assembling any preceding blocks of program relocatable code
Zero, if no program relocatable code has been assembled

COMMON SEGMENT - CSEG (string)
CSEG places a value in the location counter and defines the
succeeding locations as common relocatable code. STRING is used
to define the begining (or continuation) of the named common
segment. (If STRING blank then it refers to the BLANK common
segment.) If the string has not previously been used in a CSEQ
directive, it sets the location counter to zero and defines the
succeeding locations as relocatable to the new segment. Otherwise
it is a continuation and the location counter is set to the
maximum value it attained when previously assembling the segment.

COMMON SEGMENT END - CEND
CEND terminates a CSEG by placing a value in the location counter
and defines succeeding locations as program relocatable. The
location counter value is the same as for DEND.

PROGRAM SEGMENT - PSEG
PSEG places a value in the location counter and defines the
succeeding locations as program relocatable. Either of the
following values is placed in the location counter :
Maximum value location counter has ever attained as a result of
assembling any preceding blocks of program relocatable code
Zero, if no program relocatable code has been assembled

PROGRAM SEGMENT END - PEND
PEND terminates a PSEG by placing a value in the location counter
and defines succeeding locations as program relocatable. The
location counter value is the same as for DEND.

BLOCK STARTING WITH SYMBOL - BSS exp
BSS reserves EXP number of consecutive bytes. When a label
precedes BSS it is assigned the address of the first byte of the
block.

BLOCK ENDING WITH SYMBOL - BES exp
BES reserves EXP number of consecutive bytes. When a label
precedes BES it is assigned the address of the first byte
immediately following the block.

INITIALIZE BYTE - BYTE exp(,exp)
BYTE reserves successive bytes of memory and initializes them to

their respective values of EXP.

INITIALIZE WORD - WORD exp(,exp)
WORD reserves successive words of memory and initializes them to
their respective values of EXP.

INITIALIZE TEXT - TEXT (-)strinq
TEXT reserves successive bytes of memory and initializes them to
the appropriate character in the string. The string is delimited
by single quotes and can be up to 52 characters long. If the
optional minus sign is present then the last character in the
string is negated.

WORD BOUNDARY ALIGN - EVEN
EVEN aligns the location counter to a word boundary if it contains
an odd value. otherwise it is unchanged.

DEFINE ASSEMBLY TIME CONSTANTS - label EOU exp
EQU assigns the value of EXP to LABEL.

EXTERNAL DEFINITION - DEF symbol(,svmbol)
DEF allows other programs to access a program's SYMBOLs.

EXTERNAL REFERENCE - REF symbol(,symbol)
REF provides access to SYMBOLs defined in other programs.

SECONDARY EXTERNAL REFERENCE - SREF symbol(,symbol)
SREF provides access to one or more SYMBOLs defined in other
programs.

FORCE LOAD - LOAD symbol(,symbol)
LOAD causes a special object tag to be generated that acts as a
Link Editor control command. SYMBOL is treated as if it were a
value in an INCLUDE statement. This command is used in
conjunction with SREF

DEFINE EXTENDED OPERATION - DXOP svm,num
DXOP assigns SYM to be used in the operator field as an extended
operation. NUM, in the range 0 - 15, specifies the extended
operation number.

PROGRAM END - END (symbol)
END terminates the assembly. Source lines following this
directive are ignored. SYMBOL, if present, specifies the
program's entry point.

OUTPUT OPTIONS - OPTION key(,key)
OPTION specifies the output and listing options to the assembler.
A label is not allowed with this directive. KEY can be any of the
following:

XREF - Print cross reference table.
OBJ - Print listing of the object code.
SYMT - Print symbol table.

Additional key words for SDSMAC only:

NOLIST - Suppress printing
TUNLIST - Limit listing for
DUNLIST - Limit listing for
BUNLIST - Limit listing for
MUNLIST - Limit listing for

of source listing.
text directives (1 line)
data directives (1 line)
cycle directives (1 line)
macro expansion (1 line)

PROGRAM IDENTIFIER - IDT string
IDT assigns a name to the program. This directive must precede
any assembly language instructions or assembler directives that
produce object code. Only the first 8 characters of STRING
(delimited by single quotes) are used.

PAGE TITLE - TITL string
TITL supplies the title to be printed as the heading for the
source listing. If a heading is required on the first page, a
TITL directive must be the first source statement. STRING is
delimited by single quotes and can be up to 50 characters in
length.

LIST SOURCE - LIST
LIST restores printing of the source listing and is only required
when a no source list directive is in effect. The directive in
not Printed in the listing.

No SOURCE LISTING - UNL
UNL inhibits the printing of the source listing. The directive is
not printed in the listing.

PAGE EJECT - PAGE
PAGE causes the assembler to continue the source listing on a new
page. The directive is not printed in the listing.

T1ORKSPACE POINTER - WPNT label SDSMAC only
WPNT defines the current workspace (referenced by LABEL) to the
assembler but produces no object code.

COPY SOURCE FILES - COPY file SDSMAC only
COPY causes input to the assembler to be taken from FILE. On
end-of-file, input is resumed from the original file.

DEFINE OPERATION - DFOP sym,op SDSMAC only
DFOP defines a synonym (SYM) for an operation (OP). OP may be a
mnemonic, a macro name, or the SYM of a previous DFOP or DXOP
directive.

7f1

6.12.9 Object Record Format and Code

1 byte 4 bytes 6/8 bytes (when required)

tag 1st field 2nd field

TAG 1st Field 2nd Field Meaning

0 Length of all
relocatable code

Program ID
(8 chars)

Program start

1 Address Not used Absolute entry point
2 Address Not used Relocatable entry point
3 Location of last 6 char External reference last

appearance of
symbol

symbol Used in relocatable code

4 Location of last 6 char External reference last
appearance of
symbol

symbol Used in absolute code

5 Location 6 char
symbol

Relocatable external
Definition

6 Location 6 char
symbol

Absolute external
Definition

7 Checksum for
current record

Not used Checksum

8 Any value Not used Ignore checksum value
9 Load address Not used Absolute load address
A Load address Not used Relocatable load address
B Data Not used Absolute data
C Data Not used Relocatable data
D Load bias Not used Load bias or offset
F Illegal
F Not used Not used End of record

a_ an

6.12.10 TMS 9900 Instruction Execution Times

INSTRUCTION CLOCK
CYCLES

MEMORY
ACCESS

r
ADD. MOD
SOURCE

TABLE
DEBT

A 14 4 A A
AB 14 4 B B
ABS (MSB=0) 12 2 A -

(MSB=1) 14 3 A -
AI 14 4 - -
ANDI 14 4 - -
B 8 2 A -
BL 12 3 A -
BLWP 26 6 A -
C 14 3 A A
CB 14 3 B B
CI 14 3 - -
CKOF 12 1 - -
ryoN 12 1 - _
CLR 10 3 A -
COC 14 3 A -
CZC 14 3 A -
DEC 10 3 A -
DECT 10 3 A -
DIV ST4 IS SET 16 3 A -
ST4 IS RESET * 92-124 6 A -

IDLE 12 1 - _
INC 10 3 A -
INCT 10 3 A -
INV 10 3 A -
JUMP PC CHANGED 10 1 - -

PC UNCHANGED 8 1 - _
LDCR C=0 52 3 A -

1<=C<=8 20-2C 3 B -
9<=C<=15 20-2C 3 A -

LI 12 3 - -
LIMI 16 2 - -
LREX 12 1 - -

- -
-RESET FUNCTION 26 5 - -
LOAD FUNCTION 22 5 - -

INTERRUPT
CONTEXT SWITCH 22 5 - -

* Execution time is dependent upon the partial quotient
after each clock cycle during execution

INSTRUCTION CLOCK
CYCLES

MEMORY
ACCESS

ADD. MOD
SOURCE

TABLE
DEST

LWPI 10

r
s
i e

r
 c
r tf)

 m
 v. ,-.1

 cr
 <1. c

r (NI
 C•4

 en M
 %V

 .:14 .1
. c

l. e
r cr.

.4
4

.r

r
 C
.4

N

 c

..Z

r S
j
.
 N

N

 CO .0.

- -
MOV 14 A A
MOVB 14 B B
MPY 52 A -
NEG 12 A -
OPI 14 - -
RSET 12 - -
RTWP 14 - -
S 14 A A
SB 14 B B
SAO 12 - -
SAZ 12 - -
SETO 10 A -
SHIFT C40 12-2C - -
C=0,R0=0 52 - -
..-0,RO=N=0 20-2N - -
SOC 14 A A
SOCB 14 B B
STCR C=0 60 A -

1<=C<=7 42 B -
C=8 44 B -
9<=C<=15 58 A -

STST 8 - -
STWP 8 - -
SWPB 10 A -
SZC 14 A A
SZCB 14 B B
TB 12 - -
X * 8 A -
XOP 36 A -
XOR 14 A -

UNDEFINED
OPCODES 6 1 - -

* Execution time is added to that of the instruction
located at the source address minus 4 clock cycles
and 1 memory access time

nn

ADDRESS MOD TABLE A

MODE CLOCK
CYCLES

MEMORY
ACCESS

00 0 0
01 4 1
10* 8 1
11 8 2

ADDRESS MOD TABLE B

MODE CLOCK i
CYCLES

MEMORY
ACCESS

00 0 0
01 4 1
10* 8 1
11 6 2

* Indexed addressing requires 1 more memory access than that
shown for symbolic addressing

T=tc (0) (C+ (W*M))

T - Total instruction execution time
tc(0) - Clock cycle time
C - Number of clock cycles for instruction execution

plus address modification
W - Number of required wait states per memory access

for instruction execution plus address modification
M - Number of memory accesses

6.12.11 TMS 9900 Pin Assignments

PIN FUNCTION PIN FUNCTION PIN FUNCTION

1 Vbb 23 Al 45 D4
2 Vcc 24 AO 46 D5
3 WAIT 25 04 47 D6
4 -LOAD 26 Vss 48 D7
5 HOLDA 27 Vdd 49 D8
6 -RESET 28 03 50 D9
7 IAQ 29 DBIN 51 D10
8 01 30 CRUOUT 52 Dll
9 02 31 CRUIN 53 D12
10 A14 32 -INTREQ 54 D13
11 A13 33 IC3 55 D14
12 Al2 34 IC2 56 D15
13 All 35 IC1 57 NC
14 A10 36 ICO 58 NC
15 A9 37 NC 59 Vcc
16 A8 38 NC 60 CRUCLK
17 A7 39 NC 61 -WE
18 A6 40 Vss 62 READY
19 A5 41 DO 53 -NIEMEN
20 A4 42 D1 64 -HOLD
21 A3 43 D2
22 A4 44 D3

NC - No internal connection
Vss - Pins 26,40 must be connected in parallel
Vcc - Pins 2,59 must be connected in parallel

6.12.12 ASCII Character Set

CHAR HEX CHAR HEX CHAR HEX

NUL 00 + 2B
Lc* h

 c
o
 (z

U

 A
 r.4 W

O
 r
I
N

 m
s
!' in

 %.o
 N

N
 O
l 4

0
3
()

A
C
II W

O
 riN

 m
 s

r in

h
 c

o
 01 4

I

in
 L

i in
 1/4t1 t11

 U
1 Ln

.1 1
th

io

 1/4 0
 la

 l0
 1/40

 1/40
 1/40

 U
t0

 1/40
 1/40

 10 1 0
 1 0

N
 N

N
N

N
N

N
N

N
N

N
1

›-1
O

r 0

a)
 4 -1 0

1 4

- r
n
 Y

 r-1
O

 fa,
 tyi $.4

 in
 .6)

N

SOH 01 , 2C
STX 02 - 2D
ETX 03 . 2E
EOT 04 / 2F
ENO 05 0 30
ACK 06 1 31

BEL 07 2 32
BS 08 3 33
HT 09 4 34
LF OA 5 35
VT OB 6 36
FF OC 7 37
CR OD 8 38
SO OE 9 39
Si OF 3A
DLE 10 ; 3B
0C1 11 < 3C
DC2 12 = 3D
DC3 13 > 3E
DC4 14 ? 3F
MAK 15 @ 40
SYN 16 A 41
ETB 17 B 42
CAN 18 C 43
EM 19 D 44
SUB 1A E 45
ESC IB F 46
FS 1C G 47
GS 1D H 48
RS 1E I 49
US 1F J 4A
SPACE 20 K 4B

21 L 4C
II 22 M 4D

23 N 4E
$ 24 0 4F
% 25 P 50
& 26 Q 51
. 27 R 52
(28 S 53
) 29 T 54
* 2A U 55

6.12.13 Hex-Decimal Table

EVEN BYTE
,

ODD BYTE

HEX DEC HEX DEC HEX DEC HEX DEC

0 0 0 0 0 0 0 0
1 4,096 1 256 1 16 1 I
2 8,192 2 512 2 32 2 2
3 12,288 3 768 3 48 3 3
4 16,384 4 1,024 4 64 4 4
5 20,480 5 1,280 5 80 5 5
6 24,576 6 1,536 6 96 6 6
7 28,672 7 1,792 7 112 7 7
9 32,768 3 2,048 8 128 8 8
9 36,864 9 2,304 9 144 9 9
A 40,960 A 2,560 A 160 A 10
n 45,056 B 2,816 B 176 B 11
C 49,152 C 3,072 C 192 C 12
n 53,248 D 3,328 D 208 D 13
E 57,344 E 3,584 E 224 E 14
F 61,440 F 3,840 .F 240 F 15

INDEX

$ ARCTANGENT 4-53
$ EXPONENTIAL 4-53
$ I 0 COLUMN 4-53
$ NATURAL LOGARITHM . • 4-53
$ SQUARE ROOT 4-53

 4-49
$$ 4-49
$END 6-61
$MACRO 6-61
$PCALL 6-63
ABS 4-53,5-44,

6-74
ABSOLUTE CODE 3-16
ABSOLUTE ORIGIN . . . • 6-76
ABSOLUTE VALUE . . . • 4-53,5-44,

6-74
ACCUMULATOR 5-50
ADD BYTES 6-74
ADD IMMEDIATE 6-74
ADD WORDS 6-74
ADDRESS 2-1
ADDRESSING MODES . . • 6-11
AI 6-74
ALGORITHM 2-13
ALTEXTERNALEVENT . ▪ 4-48,4-59
ALU 1-8
AMPL 2-4,3-25
ANALOG 3-3
AND 4-19,5-43
AND IMMEDIATE 6-74
ANDI 6-74,6-81
AORG 6-78
ARCTAN 4-53
ARCTANGENT 4-53,5-44
ARITHMETIC FUNCTIONS ▪ 5-44
ARITHMETIC OPERATORS ▪ 4-20,5-42
ARRAY 2-10,4-23,

5-12
ARRAY TYPE 2-10,4-22,

4-71
ARRAY VARIABLES 5-12
ASC 5-47
ASCII CHARACTER SET . ▪ 3-14,4-63,

5-52,6-87
ASR 5-2
ASSEMBLER 3-15
ASSEMBLER DIRECTIVES ▪ 6-76

ASSEMBLY LANGUAGE . . . 6-1
ASSERT STATEMENT . . . 4-34,4-71
ASSIGN BREAKPOINTS . . 4-49
ASSIGNMENT STATEMENT . 4-31
ASSIGNMENT OPERATOR . . 4-23
ATN 5-44
AUTOINCREMENT 6-13,6-19
AUTOMATIC LINE NUMBERING 5-9
AUTOMATIC WORKSPACE . . 6-68
BACK TAB 4-53
BACKSPACE AND DELETE CHARACTER

5-39
BACKSPACE CHARACTER . . 5-39
BACKUP 3-13,3-20
BACKUS-NAUR 4-64
BASE 3-16
BASE STATEMENT • • . ▪ 5-25
BASIC 5-1
BASIC LANGUAGE . . . • 5-1
BATCH 3-22
BAUD 5-39
BCD 6-56
BCLOSE 5-5
BDEFR 5-5
BDEFS 5-5
BDEL 5-5
BEGIN 4-10
BES 6-77
BINARY 1-6,5-5
BINARY DIGIT 1-3
BINARY CODED DECIMAL • 6-56
BIT 1-6
BL 6-16
BLOCK ENDING WITH SYMBOL 6-77
BLOCK STARTING WITH SYMBOL 6-7,

6-77
BLOCK STRUCTURE 4-11
BLWP 6-16
BNF 4-64
BOOLEAN 4-19
BOOLEAN OPERATORS . . ▪ 5-43
BOPEN 5-5
BP 4-50
BRANCH AND LINK . • . . 6-16,6-74
BRANCH AND LOAD WP . . 6-74
BREAKPOINT 4-6,4-50
BREAKPOINT PROCESS . 4-50

TnaPx -1

BS 4-63,5-52, CODEGEN 4-66
6-85 COF 4-50

BSPACE 4-63 COLON 5-41
BSS 6-73 COM 5-3
BUFFER 4-46 COMMA 5-46,5-49
BUNLIST 6-79 COMMON 4-67
BUS 5-35 COMMON SEGMENT 6-77
BYTE 1-6 COMMON SEGMENT END . . 6-77
BYTE REPLACEMENT • • 5-46 COMP 6-74
CALL 2-29.6-66 COMPARE BYTES 6-74
CALLPC 6-67 COMPARE IMMEDIATE . . . 6-74
CARRY 6-23 COMPARE ONES 6-74
CASE STATEMENT . • • • 4-36,4-72 COMPARE WORDS 6-74
CASSETTE 3-15,3-26 COMPARE ZEROS 6-74
CB 6-74,6-81 COMPILATION 2-23
CELL 2-2 COMPILER 2-21
CEND 6-73 COMPILER OPTIONS 4-2,4-6,
CF 4-51 4-65
CFDIR 6-51 COMPOUND STATEMENT 4-34
CHANGE FILE NAME . . . 4-51 COMPRESS A FILE . . 4-51
CHANGE FILE PROTECTION 4-51 COMPUTER 1-1
CHANGE LISTING FILE . . 4-51 CONCATENATED 5-46
CHANNEL 4-45 CONCATENATION 5-7,5-46
CHAR 4-20 CONCURRENCY 4-3,4-41
CHARACTER ASSIGNMENT 5-46 CONDENSED 2-23,3-20
CHARACTER CONCATENATION 5-46 CONFIGURABLE POWER BASIC 5-4
CHARACTER CORRESPONDING 4-53 CONFIGURATOR 5-4
CHARACTER DELETION . . 5-46 CONNECT INPUT FILE . . 4-6,4-50
CHARACTER INSERTION . . 5-46 CONNECT OUTPUT FILE . . 4-6,4-50
CHARACTER PICK 5-46 CONSTANT 4-18
CHARACTER REPLACEMENT . 5-46 CONT 5-8
CHARACTER SET 4-63,5-36 CONTEXT 2-35
CHARACTER STRING . . . 5-12,5-31 CONTEXT SWITCH 6-7,6-8
CHECKSUM 6-80 CONTROL STATEMENTS . . 5-13
CHIP 1-1,1-5 CONVERT TO LONGINT . . 4-53
CHR 4-53 COPY 4-49
CI 6-74,6-81 COPY SOURCE FILES . . . 6-79
CIF 4-50 CORE 2-38
CKINDEX 4-6,4-65 CORRESPONDING BYTE . . 6-75
CKOF 6-48 CORRESPONDING WORD . . 6-76
CRON 6-48 COS 4-53,5-44
CKPTR 4-6 COSINE 4-53,5-44
CKSET 4-6,4-65 COUNTER 4-43,6-6
CKSUB 4-6,4-65 CPU. . • • . 1-8
CLASS 4-60 CR 4-63,5-39,
CLASS CODES 4-60 6-85
CLEAR LINE 4-52 CRB 5-44
CLOCK 2-36 CRB FUNCTION 5-25
CLOCK OFF 6-48,6-74 CREATE 4-49,4-51,
CLOCK ON 6-48,6-74 4-53
CLR 6-81 CREATE A FILE 4-51
CM 4-51 CREATE FILE CONNECTION 4-53
COBOL 3-26 CRF FUNCTION 5-26
COC 6-74,6-83

Index-2

CRU 1-14,4-41, DELIMIT 5-48
5-25 DEND 6-77

CRU BIT ADDRESSING 6-14 DESIGN 1-2
CRU I 0 • 4-7,4-41, DESIGNATOR 4-74

4-51 DEST 6-81
CRU INSTRUCTIONS . . . 5-27,6-33 DEV 6-49
CRU OPERATIONS 5-25 DEVELOPMENT POWER BASIC 5-4
CRUBASE 4-41 DEVELOPMENT SYSTEMS . . 2-4,3-25
CRUCLK 6-32,6-84 DF 4-51
CRUIN 6-31,6-84 DFOP 6-79
CRUOUT 6-31,6-84 DIGIT 1-3
CSEG 6-77 DIGITAL 1-1
CSEQ 6-77 DIGITAL ELECTRONICS . . 1-3
CURSOR 4-51 DIGITS OUT OF RANGE . . 5-54
CWAIT 4-58 DIM 5-12
CZC 6-74,6-81 DIMENSION 5-12
DAB 4-49 DISABLE 5-27
DAP 4-51,4-50 DISC 1-11
DATA 1-4 DISJUNCTION 4-30
DATA LINK 4-51 DISP 4-42,4-50
DATA SEGMENT 6-76,6-77 DISPLAY..... • • . 5-38
DATA TYPES 2-7,4-7 DISPLAY ALL PROCESSES . 4-49
DATABASE 1-13 DISPLAY PROCESS 4-49
DB 4-49 DISPLAY TIME AND DATE . 4-51
DBIN 6-84 DISPOSE 4-8,4-41,
DC 4-63,5-52, 4-54

6-85 DIV 4-19,4-30,
DEADLOCK 2-35,4-44 4-73,6-8,
DEBUG 4-6 6-71,6-74,
DEBUG COMMANDS . . . 4-49 6-81
DEBUG THE PROCESS . . 4-50 DIVIDE 4-19,6-74
DEBUGGER 4-6 DIVISION BY ZERO • • 5-54
DEC 6-74,6-81 DLE 5-52,6-85
DECLARATION 4-9 DN 6-54
DECREMENT BY ONE 6-74 DORG 6-76
DECREMENT BY TWO 6-74 DOWNTO 4-37
DECT 6-74,6-81 DP 4-49
DEDICATED 1-2 DR 4-51
DEF 5-40,6-78 DS CX 6-50
DEFAULT 3-26 DSEG 6-76
DEFINE ASSEMBLY TIME CONSTANTS DT 4-51

6-78 DTR 6-15
DEFINE OPERATION . . . 6-79 DUMMY ORIGIN 6-76
DEFINE XOP 6-67 DUNLIST 6-79
DEL 4-52,5-39, DUPLICATE LINE . . • 4-52

5-52,6-85 DXOP 6-41
DELETE 4-49,4-51, DYNAMIC 2-2

4-52,5-39 DYNAMIC STORAGE ALLOCATION 4-7,
DELETE ALL BREAKPOINTS 4-49 4-41
DELETE BREAKPOINTS . . 4-49 EDIT 4-49
DELETE CHARACTER . . . 4-52,5-39 EDIT COMMANDS 4-51,5-8,
DELETE FILE 4-51 5-39
DELETE LINE 4-52 EDITOR 3-14,5-8
DELETE N CHARACTERS . . 5-9,5-39

ELSE STATEMENT . . .

EM

EMULATOR
ENCODE
EMULATOR
ENABLE
END OF FILE MEDIUM .
END OF LINE
ENQ

4-35,4-72,
5-17,5-40
4-63,5-52,
6-85
3-22,5-27
4-54
3-22
5-27
4-55
4-53,4-55
4-63,5-52,
6-85

FORTRAN
FORWARDSPACE
FRACTIONS
FS

FUNCTION
GO
GOSUB
GOTO
GOTO STATEMENT . . .
GREATER THAN
GS

4-33

2-20
5-9
6-54
4-63,5-52,
6-85
2-30
4-49
5-22,5-40
5-13

5-17
4-63,5-52,

ENTER 3-15,4-4 6-85
ENTRANCY 6-69 HARDWARE 1-1
EQUALLY 2-24,3-5, HARDWARE DESIGN 2-5

4-1 HEX DECIMAL TABLE . . . 4-64,5-53,
EQUALS 5-45,6-34 6-88
EQUATE 6-15 HEXDIGIT 4-76
EOT 4-63,5-52, HEX 6-52

6-85 HEX DECIMAL TABLE . . . 4-64,5-53,
EPROM 2-2,2-3 6-86
EQUIPPED 4-4 HEXADECIMAL 3-14,3-15,
EQ 6-23 6-52
EQU 6-15,6-78 HIGH LEVEL LANGUAGE . . 2-21
ERIC 2-20 IAQ 6-84
EQUIVALENT 2-23 IC 6-84
ERROR CODES 5-54 ID 6-80
ESC 4-63,5-52, IDENTIFIER 4-14,6-79

6-85 IDLE 6-48,6-74,
ESCAPE 5-8 6-81
ETB 4-63,5-52, IDT 6-79

6-85 IF 4-35,5-14
ETX 4-63,5-52, IF STATEMENT 4-35

6-85 IF THEN STATEMENT . . . 5-14
EVALUATION POWER BASIC 5-3 ILLEGAL CHARACTER . . . 5-54
EXECUTIVE 2-36 ILLEGAL DELIMITER . . . 5-54
EXT 6-51 ILLEGAL FUNCTION ARGUMENT 5-54
EXTEND 2-5 ILLEGAL FUNCTION NAME . 5-54
EXTENDED OPERATION . . 6-23,6-43 ILLEGAL VARIABLE NAME . 5-54
EXTERNAL 3-18 IMASK STATEMENT 5-28
EXTERNAL DEFINITION . . 4-53,6-78 IMMEDIATE ADDRESSING . 6-14
EXTERNAL REFERENCE . . 6-78,6-80 INCOMPLETE DATA 4-59
FALSE 4-19 INCREMENT BY ONE . . . 6-76
FIELD 2-9 INCREMENT BY TWO . . . 6-76
FIFO 4-43 INCT 6-74,6-81
FILE 3-12 INDEX 2-10
FLOATING POINT XOP • . 5-50 INDEXED MEMORY ADDRESSING 6-12
FLAG 4-50 INDIRECT ADDRESSING . . 6-12,6-13
FLOATING POINT FORMAT . 5-30,6-55 INITIALIZE BYTE 6-77
FN 5-40 INITIALIZE TEXT 6-78
FNI 5-40 INITIALIZE WORD 6-78
FOCUS 2-26 INITSEMAPHORE 4-43,4-58
FOR STATEMENT 5-19,5-40 INP 5-44
FORWARDS 6-30 INPUT 1-3

INPUT OPTIONS
INS
INSERT CHARACTER . .
INSERT LINE BEFORE .
INSTRUCTION
INSTRUCTION FORMAT .
INSTRUCTION FORMATS .
INTEGER CONSTANT . .
INTEGER FORMAT . . .

5-48
4-52
4-52
4-52
1-6
6-3,6-78
6-4,6-73
4-29
5-29

JUMP IF EQUAL
JUMP IF GREATER THAN
JUMP IF LESS THAN .
JUMP IF LOGICAL HIGH
JUMP IF LOGICAL LOW .
JUMP IF NO CARRY . .
JUMP IF NOT EQUAL . .
JUMP IF ODD PARITY • •
JUMP TABLE

6-74
6-74
6-74
6-75
6-75
6-75
6-75
6-75
6-70

INTEGER VARIABLES . . . 5-11 KERNEL 2-38
INTERMEDIATE CODE . . . 2-23 KEYBOARD 5-8
INTERPRETER 2-23 KEYPAD 1-12
INTERPROCESS COMMUNICATION 4-44 KEYWORD 4-14
INTERPROCESS FILES. . . 4-45 LABEL 6-3
INTERRUPT 5-26,6-37 LANGUAGE ELEMENT . . . 4-75
INTERRUPT ERROR 4-61 LB 4-51
INTERRUPT HANDLING . . 4-47,5-26 LBLA 6-48
INTERRUPT ROUTINES . . 4-47 LDCR 6-36,6-72,
INTERRUPT SEQUENCE . . 6-41 6-75,6-81
INTERRUPT STRUCTURE . . 2-35,4-47, LDD 6-48

6-39 LDS 6-48
INTERRUPT TRANSFER VECTOR 6-40, LEN 5-47

6-42 LF 4-63,5-9,
INTERRUPT WITHOUT TRAP 5-54 5-39,5-52,
INTERRUPT LEVEL . . . 4-47,4-59 6-85
INTERRUPT_ RESULT . . 4-59 LI 6-14,6-75,
INTLEVEL 4-59 6-81
INTMULT 4-75 LIBRARY 3-18
INTREQ 6-84 LIMI 6-41,6-77,
INV 6-74,6-81 6-83
INVALID BAUD RATE . . . 5-54 LIMIT 6-81
INVALID CHARACTER IN FIELD 4-57 LINEFEED 5-9
INVALID DEVICE NUMBER . 5-54 LINK 3-19
INVALID HEAP 4-66 LINKED 1-13,3-18,
INVALID LINE NUMBER . . 5-54 3-19
INVALID SCREEN COMMAND 5-54 LIS 5-10
INVERT BITS 6-76 LIST SOURCE 6-79
IRTN STATEMENT 5-28 LMF 6-48
JEQ 2-21,6-24, LNOT 5-43,5-44

6-72,6-74 LOAD 2-5,2-36,
JGT 6-74 3-6,6-81,
JH 6-75 6-84
JHE 6-74 LOAD COMMUNICATIONS 6-75
JL 6-75 LOAD IMMEDIATE . . 6-75
JLE 6-24,6-75 LOAD INTERRUPT MASK . 6-39,6-75
JLT 6-24,6-74 LOAD ROM AND EXECUTE 6-48,6-75
JMP 6-24,6-74 LOADER 3-17,3-20,
JNC 6-24,6-75 3-26,6-49
JNE 6-24,6-75 LOCAL 1-13,2-31
JNO 6-24,6-75 LOG 5-44
JOC 6-24,6-74 LOGARITHM 5-44
JOP 6-24,6-75
JUMP 6-24
JUMP IF CARRY 6-74

LOGIC 1-1,1-4, MOVB 6-75,6-82
1-5,1-8, MOVE BYTE 6-75
2-5,2-8, MOVE CURSOR DOWN . 5-5
2-14,3-2 MOVE CURSOR LEFT . 4-52

LOGICAL OPERATORS . 5-43 MOVE CURSOR RIGHT . 4-52
LONGINT 4-19 MOVE CURSOR UP . . . 4-51
LOW LEVEL LANGUAGE 6-15 MOVE TO HOME POSITION 4-52
LP 6-50 MOVE WORD 6-75
LRE 6-48 MPIX 4-4
LREX 6-75,6-81 MPP 4-2
LSB 6-5 MPP CODE GENERATOR 4-4
LSBS 6-75 MPP COMPILER 4-4,4-6
LWPI 6-7,6-82 MPP DEBUGGER 4-6
LXOR 5-43,5-44 MPP EDITOR 4-3
MACRO CALL 6-62 MPU 1-8
MACRO DEFINITIONS 6-61 MPY 6-8,6-71
MACRO PROCESSING 6-60 MSB 6-5
MAINFRAME 1-2,1-13 MUNLIST 6-79
MANTISSA 6-55 MUTEX 4-44
MAP DISC 4-51 NAK 4-63,5-52,
MASK 4-48,4-59 6-85
MC 4-50 NATIVE 4-3
MCH 5-47 NAUR-BACCUS 4-64
MD 4-51 NEG 6-82
MEDIA 3-20 NEGATE 4-19,5-50,
MEM 5-26,5-45 6-75
MEM FUNCTION 5-26 NEGATIVE NUMBERS . • . 6-53
MEMEN 6-84 NESTED SUBROUTINES • • 6-64
MEMORY 1-6,2-1 NEW 4-8,4-55,
MEMORY FUNCTIONS 5-45 5-38
MEMORY MANAGEMENT . 4-62 NEW LINE 4-51
MEMORY ORGANIZATION 6-4 NEXT 5-39,5-41
MESSAGE BUFFER . . 4-44 NEXT WITHOUT FOR . . . 5-54
MF...... . . 4-50 NKY 5-45
MH 4-50 NO SOURCE LISTING . . • 6-79
MICROCOMPUTER 1-1 NO SUCH LINE NUMBER . . 5-54
MICROPROCESSOR • • • 1-1 NOALTEXTERNALEVENT . • 4-48
MICROPROCESSOR PASCAL 4-2 NOESC 5-41
MINICOMPUTER 1-13 NOEXTERNALEVENT 4-48
MISCELLANEOUS FUNCTIONS 5-45 NOLIST 6-79
MM 4-50 NOP 6-76
MNEMONICS 2-20 NOT 4-20,5-43
MOD 4-19 NULLBODY 4-65
MODIFY COMMON VALUE • • 4-50 NUMBER SYSTEMS 6-52
MODIFY HEAP VALUE . . . 4-50 NUMERIC REPRESENTATION 5-11
MODIFY INDIRECT VARIABLE 4-50 NVS 5-36
MODIFY MEMORY 4-50 OBJ 6-78
MODIFY STACK FRAME VALUE 4-50 OBJECT 2-22
MODULAR PROGRAMMING . . 2-25 OBJECT RECORD FORMAT . 6-80
MODULE 2-25 OCTAL 6-52
MOV 6-2,6-3, ON STATEMENT 5-24

6-11,6-12, OPCODE. 6-3
6-13,6-75, OPERAND 6-4
6-82 OPERATING MODES . . • • 5-8

OPERATOR PRECEDENCE • •
OR
OR IMMEDIATE
ORDINAL POSITION
ORI

5-44
4-19,5-43
6-75
4-53
6-75,6-82

PROCESS
PROCESS MANAGEMENT .
PROCESS MGMT ERROR .
PROCESS RECORD . . .
PROCESS SYNCHRONIZATION

4-9
4-60
4-62
4-42
4-43

OTHERWISE 4-36 PROCESSOR 1-7
OUTPUT 1-4 PROGRAM 1-7,4-9
OUTPUT OPTIONS • • • 6-78 PROGRAM COUNTER RELATIVE ADDRESSING
OV 6-23 6-15
P$ABORT 4-42 PROGRAM END 6-78
PACK 4-55 PROGRAM IDENTIFIER . . 6-79
PAGE 6-79 PROGRAM SEGMENT . . 6-77
PAGE EJECT 6-79 PROM 2-2,5-2
PAGE TITLE 6-79 PROMPT 5-48
PARAMETER 4-31,6-17 PSEG 6-77
PARAMETER ERROR . . . 5-54 PURGE 4-49
PARAMETER PASSING . . . 6-17 QUEUE 2-12,4-43
PARENTHESES 5-44 RAM 2-1,6-58
PARITY 3-14,6-23, RANDOM 4-24,4-55

6-72 READ 4-55,5-41
PARM 6-62 OF READ OUT DATA 5-54
PARTITION 5-3 READLN 4-55
PASCAL LANGUAGE . 4-1 REAL 4-18
PASCAL STRUCTURE 4-7 REAL CONVERSION . . 4-53
PC 4-42,6-6 REAL TIME SOFTWARE 2-31
PEND 6-77 RECORD 2-9
PERIPHERALS 1-10 RECORD TYPE 4-22
PLUS 5-36,5-42 RECORD VARIABLES 2-9
POINTER 4-7,6-7 RECORD VARIANT 2-27
POINTER TYPE 4-25 RECURSION 6-68
POINTER VARIABLE . . . 4-29 RECURSIVE 6-68
POP 5-41,6-65 REF 6-78
POSITION INDEPENDENT CODE 6-57 REFRESH 2-2
POWER BASIC 5-1 REFS 6-50
POWER BASIC COMMANDS . 5-38 REGISTER FUNCTIONS 6-8
POWER BASIC OPERATION . 5-8 REGISTER RESTRICTIONS 6-73
POWER BASIC STATEMENTS 5-13,5-14, RELATIONAL OPERATORS 5-43

5-26,5-39 RELOCATABLE CODE . . 3-17
PRED 4-20 RELOCATABLE ORIGIN 3-18,6-76
PRINT 4-49,5-6, RELOP 5-16

5-36,5-41 REM 5-13
PRINT OPTIONS 5-49 REPLACE STRINGS . . 4-52
PROBLEM DEFINITION. . . 3-2 RESET 4-55,6-40
PROCEDURE 2-29,6-15 RESET I 0 6-48,6-75
PROCEDURE CRUBASE . . . 4-54 RESTOR 5-41
PROCEDURE LDCR 4-54 RESUME EXECUTION 4-49
PROCEDURE MASK 4-48,4-59 RETURN WORKSPACE . 6-75
PROCEDURE SBO 4-54 REWIND 6-49
PROCEDURE SBZ 4-54 REWRITE 4-55
PROCEDURE STATEMENT . . 4-32,4-71 RL 6-49
PROCEDURE STCR 4-54 RND 5-44
PROCEDURE SWAP 4-58 ROM 2-1,6-58
PROCEDURE UNMASK . . . 4-48,4-59 RORG 6-76
PROCEDURE WAITINTERRUPT 4-60 ROUND 4-21,4-53

RP 4-50
RS 4-63,5-52,

6-85
RSET 6-4
RTWP 6-8,6-40,

6-75,6-82
RX 6-71
SA 6-49
SAVE 4-49,5-38
SB 6-82
SBO 4-41,6-33,

6-82
SBZ 4-41,6-34,

6-82
SC 4-50
SCALAR 4-18
SCHEDULER 2-36
SCROLL FILE DOWN . . • 4-51
SCROLL FILE UP . . . • 4-51
SDP 4-49
SDSMAC 6-50
SELECT CRU MODE . • . 4-50
SELECT DEFAULT PROCESS 4-49
SEMAPHORE ATTRIBUTES . 4-59
SEMAPHORE ERROR 4-62
SEMAPHORE ROUTINES . . 4-58
SET BIT TO ONE 6-33,6-75
SET BIT TO ZERO 6-34,6-75
SET ONES CORRESPONDING 6-75
SET TAB INCREMENT . . . 4-51
SET TO ONES 6-75
SET TYPE 4-23
SET ZEROES 6-75
SETNAME 4-55
SETPRIORITY 4-58
SF 4-50
SH 4-50
SHARED VARIABLES . . 4-44
SHIFT 6-75,6-82
SHIFT LEFT ARITHMETIC 6-75
SHIFT RIGHT ARITHMETIC 6-75
SHIFT RIGHT CIRCULAR . 6-75
SHIFT RIGHT LOGICAL . . 6-77
SHOW COMMON AREA • . . 4-50
SHOW HEAP PACKET . . . 4-50
SHOW INDIRECT VARIABLE VALUE 4-50
SHOW STACK FRAME . . . 4-50
SI 4-50
SIGN 4-77,5-30,

6-53
SIGNAL 4-43
SIMI 4-50
SIMPLE STATEMENTS . . 4-31
SIMPLE TYPES 4-19

SIMULATE INTERRUPT
SIN
SINE
SLICE
SLT
SM
SOC
SOCB
SOFTWARE
SOFTWARE DESIGN . . .
SOFTWARE TOOLS . . .
SOH

SOURCE
SOURCE STATEMENTS
SPACE
SPECIALIZED ADDRESSING
SPLIT LINE
SQR
SQ RT
SRA
SRC
SREF
SRH
SRL
SS
ST
STACK
STACK OVERFLOW . .
STACK UNDERFLOW . .
STACKSIZE
START

START STATEMENT . . .
STATE

STATEMENT SEPARATOR .
STATIC RAM
STATMAP
STATUS REGISTER . . .
STCR
STOP
STORAGE OVERFLOW . .
STORE COMMUNICATIONS
STORE STATUS REGISTER
STORE WORKSPACE POINTER
STRING COMPARISON . . .
STRING FUNCTIONS . . .
STRING OPERATIONS . . .
STRING VARIABLES . . .
STRUCTURED STATEMENTS .

4-50
4-53,5-44
4-53,5-44
2-36
5-35,5-36
4-50
6-75,6-82
6-75,6-82
1-1
2-6
1-11
4-63,5-52,
6-85
2-22
5-8
5-52,6-85
6-14
4-52
5-44
4-53
6-75
6-75
6-78
5-47
6-75
4-49
4-42,6-7
4-8
5-23
5-23
4-42
2-7,2-8,
3-2,3-7,
3-9,3-11,
4-32,5-18
4-32
2-7,2-13,
2-35,6-2,
6-24
5-14,5-36
2-2
4-6
6-7,6-72
4-41,6-36
5-42
5-36,5-54
6-36,6-77
6-75
6-75
5-46
5-47
5-46
5-12,5-37
4-34

STRUCTURED TYPES . .
STST
STWP
STX
SUB
SUBROUTINE
SUBSCRIPT
SUBTRACT
SUBTRACT BYTE
SUBTRACT WORD
SUCC
SWAP

4-22
6-75,6-82
6-75,6-82
5-52,6-85
5-52
2-29
4-28
4-19
6-75
6-75
4-2
4-58

TRANSLATE
TRAP
TRAP STATEMENT .
TRUE
TRUNC
TRUNCATE
TRUNCATE CONVERT
TUNLIST
TXDBUG
TXDS
TXEDIT
TXLINK

1-13
5-42
5-28
4-19
4-53
4-53
4-53
6-79
3-25,6-50
3-25
3-25
3-25,6-50

SWAP BYTES 6-75 TXMIRA 3-25,6-50
SWPB 6-75,6-82 TXPROM 3-25
SYMBOLIC 6-49 TYPE 4-18
SYN 5-52,6-85 TYPE DECLARATIONS . . . 4-18
SYNCHRONIZATION 4-43 TYPE SYNTAX 4-69
SYS 5-45 TYPE TRANSFER 4-26
SYSTEM 4-8 UNDEFINED FUNCTION . 5-54
SYSTEM COMMANDS 4-49 UNDEFINED VARIABLE . . 5-54
SYSTEM DECLARATION . . 4-66 UNDIMENSIONED VARIABLE 5-54
SYSTEM DESIGN 3-3 UNL 6-79
SYSTEM INITIALIZATION . 5-9 UNMASK 4-48,4-59
SYSTEM LOAD 2-5 UNMATCHED PARENTHESIS . 5-54
SYSTEM MEMORY MAP 5-34 UNTIL 4-38,5-15
SZC 6-76,6-82 USER ERROR 4-62
SZCB 6-75,6-82 UTILITY COMMANDS . 4-51
TAB 4-4,4-51 VAR 4-19
TAG FIELD 4-70 VARIABLE 2-7
TAIL REMARK INDICATOR . 5-36 VARIABLE DECLARATIONS . 4-18,5-11
TAPE READ ERROR 5-54 VARIABLE STORAGE . . . 5-29
TARGET 2-4 VARIANT 2-27
TB 4-41,4-54 VECTOR 6-39
TC 6-83 VT 4-63,5-52,
TD 6-71 6-85
TERMINATE DEBUG SESSION 4-49 WAITFOR 4-58
TERMINATE UTILITY PROGRAM EXECUTION WAITINTERRUPT 4-49

4-51 WAITSIGNAL 4-58
TERMSEMAPHORE 4-58 WHILE STATEMENT 4-38,4-72
TEST BIT 6-34 WORD BOUNDARY ALIGN . . 6-78
TEXAS INSTRUMENTS PASCAL 4-2 WORKSPACE 1-14
TEXT EDITOR 3-14 WORKSPACE POINTER . . . 6-7
TEXT FILES 3-13 WORKSPACE REGISTERS . . 6-7
TEXT I 0 RETURN . • • • 4-57 WRITE 4-56
TIBUG 6-48 WRITELN 4-56
TIC 5-45 XMA 6-50
TIMBER 2-38 XOP 5-50,6-43
TM BOARDS 3-26 XOR 6-74,6-82
TOO FEW SUBSCRIPTS 5-54
TOO MANY SUBSCRIPTS . . 5-54
TOO MANY VARIABLES . . 5-54
TRACE PROCESS EXECUTION 4-50
TRACE ROUTINE 4-6,4-50
TRACE STATEMENT FLOW 4-6,4-50

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199
	Page 200
	Page 201
	Page 202
	Page 203
	Page 204
	Page 205
	Page 206
	Page 207
	Page 208
	Page 209
	Page 210
	Page 211
	Page 212
	Page 213
	Page 214
	Page 215
	Page 216
	Page 217
	Page 218
	Page 219
	Page 220
	Page 221
	Page 222
	Page 223
	Page 224
	Page 225
	Page 226
	Page 227
	Page 228
	Page 229
	Page 230
	Page 231
	Page 232
	Page 233
	Page 234
	Page 235
	Page 236
	Page 237
	Page 238
	Page 239
	Page 240
	Page 241
	Page 242
	Page 243
	Page 244
	Page 245
	Page 246
	Page 247
	Page 248
	Page 249
	Page 250
	Page 251
	Page 252
	Page 253
	Page 254
	Page 255
	Page 256
	Page 257
	Page 258
	Page 259
	Page 260
	Page 261
	Page 262
	Page 263
	Page 264
	Page 265
	Page 266
	Page 267
	Page 268
	Page 269
	Page 270
	Page 271
	Page 272
	Page 273
	Page 274
	Page 275
	Page 276
	Page 277
	Page 278
	Page 279
	Page 280
	Page 281
	Page 282
	Page 283
	Page 284
	Page 285
	Page 286
	Page 287
	Page 288
	Page 289
	Page 290
	Page 291
	Page 292
	Page 293
	Page 294
	Page 295
	Page 296
	Page 297
	Page 298
	Page 299
	Page 300
	Page 301
	Page 302
	Page 303
	Page 304
	Page 305
	Page 306
	Page 307
	Page 308
	Page 309
	Page 310
	Page 311
	Page 312
	Page 313
	Page 314
	Page 315
	Page 316
	Page 317

