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PREFACE 

This handbook has three principal aims: 

1) To introduce the concept of microcomputer software 

2) To provide a survey of the systems software and 
development tools available for the TMS 9900 family of 
microcomputers 

3) To act as a guide to the steps involved in developing 
software for a microcomputer-based product. 

This book introduces a systematic approach to software design from the 
start. Previously, much microprocessor-based development was done in a 
haphazard, experimental manner, with users learning how to do it as 
they went along. This approach was inevitable as the tools provided by 
microprocessor manufacturers were not very sophisticated. In addition, 
few people (even within the manufacturers) had much experience in 
regard to microprocessors or microprocessor applications. 

Recently, this situation has changed. With rapidly falling hardware 
costs and rising labour costs, software has become the major 
investment in developing a microprocessor-based product. It is no 
longer appropriate to adopt a "trial and error" approach -- this is 
both expensive and time-consuming. 

It is therefore important that the software designer has a set of 
tools which make a job easier and more controllable. Texas Instruments 
is committed to providing these tools. A complete range of systems 
software and development tools is now available for the TMS 9900 range 
of microcomputer, comparable with those provided for minicomputers and 
mainframes. 

Some of these tools (compilers, assemblers, link-editors, etc.) are 
very similar to those already existing for larger computers. Texas 
Instruments was in a good position to develop these due to its wide 
experience in minicomputers (from which the 9900 microprocessor was 
originally developed). The 9900 shares the same basic instruction set 
as the 990 range of minicomputers, for which extensive software 
exists, including compilers for most of the major high-level 
languages. Other tools, such as the AMPL emulator, which provides 
real-time in circuit testing, had to be designed from scratch. 

This handbook is a guide to the tools currently available and to the 
methods of using them to best effect (something which is not always 
known to a user unless he has a background in software). Part of the 
book's purpose is to highlight the design choices; for example, 
providing information that would help the user in choosing the 
appropriate language or development system for a particular 
application. The design techniques introduced are intended to bring 
out design choices in the application itself. 



Much can be learned from recent thinking in software design which, in 
historical terms, has just emerged from the Dark Ages (the science of 
software is little more than twenty years old) and is being 
established for the first time on a systematic basis. However, the 
techniques now increasingly being adopted for mainframe software 
design need some adapting to the special environment of the 
microcomputer. This book is directed to achieving a professional 
approach to software design for microcomputers, by combining 
state-of-the-art techniques with experience gained from designing and 
building microcomputer systems for real applicatons. 
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HOW TO USE THIS BOOK 

The first chapter (Introduction) is directed at those who do not have 
experience with sofware or microprocessors. It describes the elements 
of a computer, what software is and how it fits into a 
microcomputer-based system, and what is special about microcomuters as 
opposed to minicomputers or mainframes. 

The second chapter (Software Concepts) explores microcomputer software 
in more detail, presenting a range of ideas which are important in 
software design. It describes aspects particular to microcomputer 
software -- for example, ROM/RAM partitioning and the relationship 
between development and target systems. Chapter IV, "Data", and 
Chapter V, "Algorithms", introduce basic concepts of software design. 
These ideas, and the notations introduced to describe them, are used 
extensively in the rest of the book. These sections are worth reading 
even by those familiar with the rest of the material in this chapter. 
They form the basis of the systematic approach to software design 
adopted by this book. 

Chapter III, Software Development, examines the various steps involved 
in developing a microcomputer-based system, from problem definition to 
implementation, with software particularly in mind. Once again, a 
systematic approach to software development is adopted as far as is 
possible. Along the way, the software and hardware tools used in 
software development and testing (editors, compilers, emulators, etc.) 
are described. 

The remaining chapters describe each of the three programming 
languages in which it is possible to implement a software design for 
the TMS 9900: Pascal, POWER BASIC, and Assembly Language. These 
chapters are not intended to be complete tutorial manuals (these are 
available elsewhere) but they should give the reader a good feel for 
the capabilities of each language, and the applications for which it 
is best suited. Each chapter contains a Reference Section, which sets 
out in abbreviated form all the important constructs and features of 
the language. This will be a useful reference guide once the basic 
ideas of the language have been mastered. In addition, the Assembly 
Language chapter includes a large "Algorithms and Techniques" section, 
which describes ideas and techniques for implementing commonly used 
programming concepts in Assembly Language. 
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CHAPTER I 

INTRODUCTION 

1.1 WHAT IS A MICROCOMPUTER? 

A microcomputer is a complete computer system implemented on a few 
square inches of printed circuit board. A microcomputer is built with 
a handful of standard integrated circuits. For small scale 
applications, it is possible to implement a complete computer system 
on a single chip of silicon (an integrated circuit). In larger 
applications, the heart of the system is a component called the 
microprocessor. 

A microprocessor is a general purpose integrated circuit that can be 
programmed to perform a particular function. A microcomputer-based 
product can be constructed from a microprocessor, a selection of 
inputs and outputs and program memory. The inputs and outputs can be 
anything that is, or that can be converted to, digital electrical 
signals. The hardware design for a microcomputer product simply 
consists of interfacing inputs and outputs to the microprocessor -
which is usually very straightforward. Its operation is specified by 
the program: a list of instructions to the microprocessor which is 
stored in the system's memory. In contrast with the hardware (the 
physical components of the system), the program which controls the 
system's operation is referred to as software. 

There are several advantages to using a microcomputer instead of more 
conventional techniques. First, because a microcomputer uses 
standard, highly integrated components, it is inexpensive. The 
component count is much reduced compared with a conventional logic 
implementation (such as TTL); and the design cost is several orders of 
magnitude less than the development of a custom integrated circuit. 
In fact, the design is significantly quicker and less expensive than 
any form of hardware design because software is much easier to 
manipulate. In addition, software has the advantage of flexibility. 
If the software is well designed, changes can be incorporated, even 
late in the development process, with little disruption. 

The microcomputer provides computer power small enough and inexpensive 
enough to be incorporated in almost any electrical device. This has 
two results: 

1) Many existing devices can be built more inexpensively 
using a microcomputer 

2) There are exciting new possibilities, due to the immense 
power of the microprocessor. 

Unlike traditional computers, the inputs and outputs of a 
microcomputer are not restricted to standard peripherals such as card 
readers and line printers; devices which, fundamentally, can only 
handle paperwork. 



The microcomputer allows computing power to be located where it is 
needed, rather than being locked away in a distant 'computer room'. 
It is small enough and inexpensive enough to permit its use in a 
dedicated application, where it does one thing all its life; and it is 
even economic to allow it to remain idle for a large proportion of its 
time, to ensure that it is there when required. The microcomputer 
makes it possible for users to determine what computers shall do. 
Previously, the economics of a computer dictated how it could be 
employed. For example, a large mainframe had to be kept running all 
the time simply to justify its expense. The microprocessor has gone a 
long way in taming computer power, and making it obedient to the needs 
of the user. 

The major effort of microcomputer design goes into software. Software 
is in a number of ways easier to deal with than hardware. However, it 
must be treated with respect. Designing the software for a complex 
application is not trivial, especially as the availability of the 
microprocessor leads to more ambitious projects. This book shows what 
is involved in developing microcomputer software. As it is a new 
technique, new methods must be used: those developed for hardware 
design are not appropriate. Even techniques used in the design of 
software for 'mainframe' or 'mini' computers need adaptation, because 
of the special features and the different areas of application of 
microcomputers. 

This introductory chapter explains what a microcomputer is, and how 
software and computer programs fit into the picture. The second 
chapter explores some of the concepts essential to the software 
designer. The third chapter examines the actual process of software 
development, and the steps that are involved in carrying through a 
design from problem definition to implementation. 



1.2 BLACK BOXES AND DIGITAL ELECTRONICS 

A mechanical or electrical device can be considered, very simply, as a 
black box with inputs and outputs: 

HOUTPUTS INPUTS 

FIGURE 1-1. ELECTRICAL DEVICE 

The black box processes these inputs and produces outputs in a 
well-defined fashion. For example, a typewriter takes key presses as 
input and produces printed characters corresponding to the key inputs 
as outputs. This is a particularly simple example: the processing may 
be time-dependent, and may also depend on previous inputs and 
outputs. All problems that are solvable by machinery can be analyzed 
in this manner. The black box, with its inputs and outputs, may be 
called a system. 

How can such a black box be built? The traditional, non-computer 
method would be to design a dedicated piece of hardware: a mechanical 
device. Methods of implementation have varied. Early workers used 
wires, pulleys, cogs and a great deal of mechanical ingenuity. 

More recently, electronics has made things much easier. Perhaps the 
most signi!icant advance in black-box implementation was the invention 
of digital electronics, based on the binary digit, or bit. 

A bit can be considered as a switch. It has two possible states: on 
or off, 1 or 0, high or low. Bits can easily be represented in 
electronic circuits, and they can be used to store information. 
Circuit elements can be designed that combine bits in various useful 
ways. One such element is the AND gate as depicted in the following 
figure. 
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FIGURE 1-2. AND GATE 

The possible states of A, B and C are conventionally represented as 
"0" and "1". For given con,litions of the inputs A and B, the output C 
is completely determined. For an AND gate, C is 1 only when both A 
and B are 1. 

By combining logic elements such as the AND gate, complex black boxes 
can be designed to perform a variety of functions. Solving a real 
world problem, of course, depends on translating real inputs (such as 
mechanical movements, temperature readings, etc.) into bits, and 
translating bits back into the real world. 

This process of translation can be represented (adding to the black 
box diagram) as: 

OUTPUTS DATA INFORMATION DATA 
INPUTS __-___—• 

FIGURE 1-3. TRANSLATION PROCESS 

'Information' is used here in a very wide sense. It may involve 
physical interaction - for example, turning on a motor. 

'Data' is a term used for information divorced from its meaning - that 
is, information translated into a pattern of bits for processing by a 
digital circuit. The digital circuit does not know or care what the 
data represents; it simply processes bits according to the logic built 
into it. 

Digital electronics is powerful because it is only concerned with 
bits. The bits can represent anything, and the same techniques can be 
used for a wide range of different applications. However, this can 
cause problems, because bits (data) are entirely abstract entities. 



The designer must be very sure that he knows exactly what his data 
represents. Translating information into data (i.e., bits) in a well 
thought-out manner is probably the most important step in designing a 
digital system. 

In the last 20 years, advances in technology have made it possible to 
place several thousand basic logic elements on a single chip of 
silicon. However, with the technological advance has come the problem 
of organization. Organizing all these logic elements to perform the 
desired action is a very difficult, time consuming, and expensive 
task, requiring a highly skilled designer (or team of designers). In 
addition, because an AND gate is a piece of hardware - a physical 
device - it is quite awkward to manipulate. Once a design has been 
put together, it is extremely difficult to change in any significant 
way without starting again from scratch. 

This is where the computer comes in. 



1.3 ELEMENTS OF A MICROCOMPUTER 

Like other digital devices, computers work with bits. In fact, they 
usually work with groups of bits. The TMS 9900 family of 
microprocessors uses a basic unit of 16 bits, called a word. The 
possible operations that can be performed on words are strictly 
limited and well defined, which is what makes the computer possible. 

Of the total range of operations, the most useful are selected to form 
the computer's instruction set. Each instruction performs one 
operation. For example, there is an operation to perform a logical 
AND on two words of data: 

first word 0 1 0 1 1 0 1 1 1 0 0 1 0 1 1 0 
second word 0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 

result 0 1 0 1 0 0 0 1 1 0 0 0 0 1 0 0 

Corresponding bits in each word are ANDed together to produce the 
corresponding bit in the resultant word. Here, a word is treated as 
containing 16 unconnected bits. The instructions which operate on 
words in this way are called logical instructions. 

Using the binary number system, a 16-bit word can also 
number. There is a group of arithmetic instructions which 
as numbers, and perform the usual arithmetic operations on 
example, add: 

first word 0 1 0 1 1 0 1 1 1 0 0 1 0 1 1 0 
second word 0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 

result 1 0 1 1 0 0 0 1 0 1 0 0 0 0 1 1 

represent a 
treat words 
them. For 

(The binary number system is described in Section 6.11.2 The 
TMS 9900 instruction set also includes operations on bytes (1 byte = 8 
bits) of data. 

In addition there are instructions to read inputs and write outputs, 
and to move data around within the computer. 

The operation of the computer can be specified by a list of these 
basic instructions. The list of instructions is called a program, and 
is stored in the computer's memory. A computer, then, looks like the 
following figure: 
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FIGURE 1-4. COMPUTER AND PROGRAM 

The stored program controls the operation of the computer. The 
processor fetches the program instructions one at a time in sequence, 
and executes them. The sequential flow of the program can be altered 
by conditional instructions, which cause a jump to another part of the 
program, if the condition is met. One example of a condition is 
whether a particular data word is greater than zero. This makes very 
powerful programs possible. 

The program completely determines the operation of the system. If the 
initial conditions and all of the inputs are known, the action of the 
computer will be entirely predictable. 

Thus a computer is a black box - but a black box with a difference. 
Program memory is designed to be alterable. Simply by changing the 
program, the operation of the system can be altered. All the 
mechanical parts of the system (the hardware) are the same, but it is, 
in effect, a different black box. Computers are characterized by this 
new element (software) which determines their operation. Computer 
hardware can be regarded as a pool of resources, which is organized by 
the software. By placing the burden of organization on software, many 
of the problems of designing a digital system are solved. 



Looking at a computer in more detail: 
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FIGURE 1-5. COMPUTER SYSTEM 

The Arithmetic and Logic Unit (ALU) performs the operations requested 
by the program (addition, subtraction, logical ANDing, etc.). The 
Control Section supervises the reading and writing of program, data, 
and I/O, and ensures that everything happens in the proper sequence. 
These two elements are traditionally grouped together to form the 
Central Processing Unit (CPU), or Processor. When this is implemented 
on a single silicon chip it is called a Microprocessor, or MPU. The 
complete system is a Microcomputer. The Texas Instruments TMS 9940 is 
a complete microcomputer on a single chip. 

Besides inputs and outputs, a computer will probably need a place in 



which to store data (i.e., a scratchpad or filing system). Therefore 
a computer will generally have data memory as well as program memory. 
Unlike program memory, data memory must be capable of being changed by 
the program. 

The inputs and outputs, more than anything else, determine what a 
computer system looks like to the user. When the usual peripherals 
(card reader, VDU console, line printer, magnetic tapes, etc.) are 
connected, it looks like everyone's idea of a computer. But interface 
it to motors, lights, switches, gauges and it could be anything from a 
washing machine to a car dashboard. A microcomputer is small and 
inexpensive enough to be hidden in almost any piece of electrical 
equipment, and the user need not even know that it is there. 
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1.4 MOST MICROCOMPUTERS ARE DEDICATED 

Until a few years ago, the only computers in common use were general 
purpose machines. A general purpose digital computer consists of a 
central processing unit (CPU), main memory and a number of peripherals 
- devices which enable data to be input to and output from the 
computer. A typical configuration might look something like this: 

FIGURE 1-6. TYPICAL COMPUTER 

One of the most important peripherals is the backing store. This is a 
memory device that is slower than the main memory, but has a large 
capacity. Its principal function is to load programs and data into 
the computer's main memory. A general purpose computer has a large 
repertoire of programs in its backing store, any one of which can be 
loaded and executed. Some of these programs are systems programs, 
which control the operation of thr2 computer and provide commonly 
required tasks (these will normally be provided by the computer 
manufacturer), while others are applications programs developed by the 
user. 

The most important systems program is that which runs the entire 
computer, and controls the loading and executing of other programs 
under commands from the user. This program is variously called the 
executive, monitor or operating system and is loaded into main memory 
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when the computer is switched on, remaining in control the whole time 
the system is running. Other systems programs provide software tools 
for developing applications programs. They can be called in as 
required by the operating system. 

A general purpose computer is, therefore, a chameleon-like machine 
which can perform almost any function depending on the program which 
is loaded into it. However, the range of things it can do is limited 
by the peripherals which are connected to the computer. Standard 
peripheral devices include keyboard and visual display unit (VDU), 
teletype, line printer, punched card or paper tape readers and 
punches, and magnetic disc or magnetic tape devices. These last two 
are forms of backing store; the others are means of communicating with 
the user. 

The input and output devices of a general 
designed to handle only alphanumeric characters 
numbers). This INPUT LIMITATION, as well as 
expense of such computers, has limited their use 
ACCOUNTING, payroll MANAGEMENT, and scientific  

purpose computer are 
(i.e., letters and 

the physical size and 
to such things as 

calculations. Although 
they have tremendous automatic processing power, a lot of human effort 
is required to translate input into machine readable form, and to 
interpret machine generated output. A general purpose computer 
requires spoon feeding: special purpose input must be converted into 
digestible punched cards. Computers have a bad name in many quarters 
because of the drastic changes which must be made to traditional 
patterns of work in order to to adapt them to the (until now) 
inflexible computer. 

There is no reason why a microcomputer should not be constructed as a 
general purpose computer: the Texas Instruments TM 990/4 is exactly 
that. But the microcomputer has opened up a new possibility: the 
dedicated system. A dedicated microcomputer might look like this: 
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FIGURE 1-7. DEDICATED MICROCOMPUTER 
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This system could serve as a weighing scale. A program would be 
written to read the pressure sensor and the price (entered on the 
keypad), multiply the weight by the price, display the result, and 
print a ticket. With extra software, the system could become a 
complete cash register. The complete microcomputer and associated 
circuitry could be fitted into one corner of the case. 

A dedicated microcomputer can only execute one program, which starts 
running when the system is switched on and only stops when it is 
switched off. Most real-time programs are endless loops. In the 
example pictured above, the program would spend most of its time in a 
loop repeatedly checking whether or not there was any input from the 
pressure sensor or the keypad. If there was, that portion of the 
program written to deal with that input would execute. 

A dedicated microcomputer will probably have no backing store and no 
executive. The program will be stored permanently in memory. 

1 rl 



1.5 SO WHAT? 

The dedicated microcomputer has accomplished two things: 

1) It has revolutionized the design of both small and 
large-scale electrical devices, from toys to cars 

2) It has changed the role of the large general purpose 
computer, or 'mainframe'. 

With the arrival of the minicomputer several years ago, the death of 
the mainframe has been predicted; that death sentence has been 
premature. It now seems there will always be a need in some 
applications for a large centralized database of information, and 
massive processing power. But microprocessors have changed the way 
information is input to, and output from, mainframes. 

Microcomputers have been used to build 'intelligent' peripherals for 
mainframes (disc controllers, for example) which can handle some of 
the local 'housekeeping' functions required by the peripheral and take 
the load off the central processor. 

One significant development in this regard has been the intelligent 
terminal, a visual display unit containing a microcomputer. The 
intelligent terminal provides local processing power for small tasks, 
can be linked to the mainframe for reference to central files and for 
handling a large amount of processing. 

With the development of 'personal' computers, the microcomputer system 
is likely to be carried a stage further. A storekeeper, for example, 
might use a microcomputer to handle his daily transactions, and then 
transmit his accounts over a dial-up link to the central office 
computer. The British Post Office's Postal system is an example of 
how such a scheme could be implemented on a large scale. This is a 
public computer network which can be accessed by anyone with the right 
equipment (which can be as small as a TV set and a keyboard) via the 
telephone network. It provides information and services, and can even 
be used to transmit software to a user's computer. 

The microcomputer allows the distribution of computing power to the 
place in which it is needed - the office, the factory floor, even the 
home. Local processors can be linked to larger computers, using the 
telephone network if permanent connection is not required. Special 
purpose microcomputers can be constructed to collect information where 
it is generated and in the form that it exists. These microcomputers 
can automatically translate information into data suitable for a 
mainframe automatically, without the tedious manual process of data 
preparation. 



Microcomputer applications range from simple real-time control 
functions (such as a weighing scale) to sophisticated computer 
networks. (A 'real-time' application is one in which the computer is 
in direct control of a process, event, or phenomenon such as 
monitoring electronic ignition timing and fuel mixing, and modifying 
it during its actual occurence. The TMS 9900 family is particularly 
suited to cover a wide range of these applications. It has features 
that are useful for real--time control, such as the Communications 
Register Unit (CRU), which is a bit-oriented method of input and 
output. The CRU allows the 9900 to input and output data either in 
single bits or in groups of any size from 1-16 bits. It was developed 
from Texas Instruments' experience with the 960 and 980 series of 
minicomputers, in process control applications. In addition, the 9900 
has a powerful minicomputer architecture, including multiply and 
divide instructions and multiple addressing modes. The 9900 family 
shares the same basic instruction set as the 990 range of 
minicomputers, including the powerful DS990/10, which operates in a 
multi-user environment with up to 1 Megabyte of memory. The 990/10 is 
currently being used in a wide range of commercial and industrial 
minicomputer applications. One advanced feature of 990 and 9900 
architecture is the workspace register concept, lending itself 
naturally to the implementation of modern programming techniques such 
as high level languages. The architecture of the 9900 is described in 
detail in the Assembler chapter. Texas Instruments supplies extensive 
software support for the whole range of 990 and 9900 products. 

The microcomputer has a dual personality: it is both electronic 
component and computer. This is why it provides such a rich field for 
applications. The technology and the opportunity exist for a wide 
range of products; the only real limit is the imagination of the 
designer. 



CHAPTER II 

SOFTWARE CONCEPTS 

2.1 OVERVIEW 

This chapter covers a wide range of topics with which the software 
designer should be familiar. Each section is relatively 
self-contained, although later sections tend to draw on ideas 
introduced in earlier ones. The chapter does not present any kind of 
sequential argument, but rather sketches out a broad spectrum of ideas 
and concepts. It is intended to provide the reader with the 
background, or context, from which further exploration can be 
undertaken. 

2.2 ROM AND RAM - SEMICONDUCTOR MEMORY 

Computer memory can be thought of as a collection of pigeon holes or 
locations in which values (i.e., numbers or patterns of bits) can be 
stored. These locations can be referred to by their consecutively 
numbered addresses. 

Semiconductor memory systems are typically organized in bytes. 

The TMS 9900 family can operate on both bytes and words (16 bits) of 
data. A word is stored in two consecutive memory locations, starting 
at an even address. 

A general purpose computer requires a program memory that can be 
written to as well as read, since different programs must be loaded 
into it from the backing store. However, once the program is loaded, 
the portion of program memory in which the program is stored will not 
normally be changed until the operating system loads in the next 
Program. (The program can change data memory, but not the program 
code.) 

A dedicated system only executes one program. Normally it will not 
need an operating system, and the program need never be changed. 
Therefore a special type of program memory, called Read Only Memory 
(ROM) is used for dedicated microcomputer systems. A ROM memory chip 
is programmed (i.e., loaded with a program) once, outside the system 
in which it will be used, and retains its contents permanently (even 
when the power is switched off). This last feature is important 
because there will probably be no backing store from which to load the 
program when the device is switched on. 

2.2.1 ROM Types 

There are several different types of ROM, each with its own 
characteristics. 



Mask ROM has the program inserted as part of the manufacturing 
process. A mask must be made to etch the pattern of binary digits 
which form the program on the surface of the silicon chip. Generating 
this mask is an expensive process, because it must be done with great 
precision. However, once the mask has been made, programmed ROMs can 
be manufactured very inexpensively. Where large quantities 
(thousands) of identical ROMs are required, this method is by far the 
least expensive. 

Programmable ROM (PROM) is manufactured with fusible metal links in 
each memory cell. These links can be selectively fused by applying 
high voltage pulses to the PROM chip after manufacture using a device 
known as a PROM Programmer. Blank PROMs are supplied by Texas 
Instruments and can be programmed by the user (usually an equipment 
manufacturer) to put in his system. Once the pattern of 0's and l's 
has been 'burned in' in this way the PROM cannot be erased. PROMs are 
more expensive per chip than mask ROMs, but work out cheaper overall 
for small to medium quantities (hundreds), because of the cost of 
manufacturing a mask. 

Erasable Programmable ROM (EPROM) is supplied blank and programmed in 
the same way as PROM. But the high voltage pulses do not break 
fusible links: instead they selectively establish static charges in 
the memory cells, which turn on or off switching devices (transistors) 
that represent the 0's and l's. An EPROM is a very useful device. It 
can be programmed permanently, like a fusible link PROM; by exposing 
it to ultraviolet light for a period of about 20 minutes, it becomes 
erased and can be programmed with something different. EPROMs are 
slightly more expensive than PROMs, but their special features make 
them valuable for many applications, particularly in development. 

Most microcomputer systems require some memory that can be written to 
as well as read, for storage of intermediate results. This is 
achieved by using RAM (Random Access Memory) instead of ROM. RAM is 
actually a misleading term, since ROM can also be accessed randomly. 
(Read/Write Memory would be more descriptive, but 'RAM' is the 
traditional term.) In a general purpose computer, the main memory is 
implemented entirely with RAM. A microcomputer system is more likely 
to have a partitioned memory - some ROM and some RAM. One of the most 
important decisions to make when designing a microcomputer system is 
how much ROM and RAM to build in. The fact that memory is partitioned 
also has consequences for the design of software. 

2.2.2 RAM Types 

Semiconductor RAM is volatile; the contents disappear when the power 
is switched off. There are, in fact, two types of RAM: 

• Static RAM retains its contents for as long as the power 
is switched on. 

• Dynamic RAM must be refreshed, that is, read or written 
to every few milliseconds, or its contents decay. 



Dynamic RAM requires some external circuitry to implement 
this refresh, and is therefore more difficult to design 
into a microcomputer. However, it is less expensive and 
smaller than static RAM. Static RAM is normally used for 
systems that require a relatively small amount of RAM; 
dynamic RAM for larger systems where the cost of refresh 
circuitry can be justified by the savings on memory 
chips. 

2.2.3 ROM/RAM Summary 

Both ROM and RAM are supplied by Texas Instruments as standard 
integrated circuits, and are therefore very suitable for microcomputer 
products. 

The characteristics of semiconductor memory are summed up in Table 2-1 
below. 

TABLE 2-1. SEMICONDUCTOR MEMORY CHARACTERISTICS 

Mask PROM EPROM Static Dynamic 
ROM RAM RAM 

Readable? 

Writeable? 

User programmable? 
(outside system) 

Eraseable? 
(outside system) 

Retain contents 
without power? 
(non-volatile) 

Require refresh? 
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2.3 DEVELOPMENT SYSTEMS 

In traditional forms of computing, software is usually developed on 
the machine on which it is to run. Such computers are general purpose 
machines capable of running many different programs, including the 
'software tools' used in program development. 

With microcomputers, this is not usually possible. Normally, a 
dedicated system cannot be used to develop the software that is to run 
on it. Most microcomputer systems are designed to run only one 
program, and probably will not have the peripheral devices (keyboard, 
printer, etc.), much less the software tools, required for program 
development. 

For this reason, a general purpose computer system called a 
development system is used to develop software for a microcomputer. 
The dedicated microcomputer in which the software will finally run is 
called the target system. The development system is often a 
minicomputer, such as the Texas Instruments 990/4 or 990/10. The 
990/4 and 990/10 have the same instruction set as the TMS 9900 family 
of microprocessors, which makes software development a lot easier. 
(The 990/4 uses a TMS 9900 as its central processor). However, it is 
possible to develop software for a microcomputer on a large mainframe 
computer, such as an IBM 370. Texas Instruments provides software 
development tools for 990 minicomputers, and also cross-support 
software that can be used on other general purpose computers. 

A microcomputer development system is likely to have one or two 
special purpose peripherals, such as a PROM Programmer. The AMPL 
package (Advanced Microprocessor Prototyping Laboratory) provided by 
Texas Instruments for the 990/4 and 990/10 minicomputers also allows 
target system emulation. The target hardware is connected by a cable 
to the development system. The emulator runs a program contained in 
the development system's memory, on the actual hardware of the target 
system. All the resources of the development system are available to 
monitor and to change the program if necessary. AMPL provides 
sophisticated testing aids for both hardware and software. 

Using the peripheral devices and the software tools provided with the 
AMPL development system, it is possible to write a microcomputer 
program, translate it into machine understandable form (i.e., binary 
digits), test it under simulation on the development system, try it 
out in the target system hardware, and finally write it permanently 
into the memory of the target microcomputer system. 



2.4 DESIGNING A MICROCOMPUTER SYSTEM 

Developing a microcomputer application involves two steps: 

1) Specifying the hardware of the system 

2) Writing the software to drive it. 

2.4.1 Hardware Design 

The hardware of a system can be regarded as resources, to be 
manipulated by the software. The hardware needs to be fixed at a 
relatively early stage of a project, because it typically requires a 
much longer production lead time than software. If necessary, 
software can be changed in a matter of weeks or even (if the program 
is in PROM) days before production begins. 

To fully exploit this software flexibility, some thought must be given 
to the initial hardware design. The detailed algorithms that will be 
used need not be considered at this stage, except for the resources 
they will require. 

In particular, all the inputs and outputs (the I/O) need to be 
identified early and designed into the hardware. Discovery, at a late 
stage in development, that a vital input or output signal is missing 
can be both frustrating and expensive. 

It is a good idea to design as much as possible of the system logic in 
software rather than hardware. Changes in the way the system operates 
(perhaps in response to altered market requirements) can then be made 
much more easily. 

Trade-offs can often be made between hardware and software. Where an 
operation can be carried out either way, it is usually an advantage to 
do it in software (as the computer is already there) and save the cost 
of the extra hardware elements, provided the processor will not be 
overloaded. A rough estimation of the system load (e.g., seconds of 
processing time per second of real-time) needs to be made early in the 
effort. 

With this approach, hardware design becomes simply a matter of 
interfacing signals to the computer. 

Use of a ready-built microcomputer board (or boards) simplifies the 
process of hardware design. Texas Instruments supplies a range of 
microcomputer modules (the TM990 series) which are ready built 
microcomputers with a range of inputs and outputs, and memory 
configurations, to suit many requirements. Expansion boards are 
available to extend both memory and I/O, and to provide such 
additional functions as analog to digital and digital to analog 
conversion. 
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2.4.2 Software Design 

Once the system hardware has been fixed, software design can continue 
in parallel with the building of hardware to the agreed system 
specification. Designing the software involves, first, considering 
the data structures that the program will use; second, developing the 
algorithms that will manipulate the data. The data represents all 
information about the application resident in the computer. If the 
data is inadequate or badly structured, it will be difficult to write 
a good program. An algorithm is a specification of what the system is 
to do in unambiguous terms -- that is, a detailed description of how 
the microcomputer will carry out the task. It is very desirable to 
separate the design of data structures and algorithms from the details 
of implementation, because these initial stages involve fundamentally 
understanding the problem. It is not wise to bring in details of 
implementation (programming languages, etc.) until the task to be 
performed is well understood. Novice software designers tend to rush 
into programming too early. 

Studies have proved that time spent at the beginning of a project in 
thoroughly understanding the task to be performed, and developing the 
best possible design (not just one that works), is repaid many times 
over in time saved at the development, debugging and testing stages; 
even eliminating errors in the final product, which can be very 
expensive to correct. 

Implementation of a design involves, finally, translating it into a 
form that the computer can understand -- a pattern of binary digits 
representing a program. However, the language of machines is not 
designed for humans to understand, and programming in binary is not 
really a practical proposition. 

Programming languages were developed to make the implementation 
process easier. Texas Instruments has developed for the user 
superstructures of the Pascal and BASIC languages that are supported 
by the TMS 9900 family of microprocessors. The TMS 9900 can also run 
on assembly language to fit the user's needs. Of course, the 
appropriate implementation of language depends on the task to be 
performed. Chapters IV through VI provide descriptions of these 
language alternatives. 



2.5 DATA 

Data, which is just a collection of bits, can be used to represent any 
kind of information. Often it will be some form of numeric 
information, but this need not be the case. On input and output, each 
bit will probably signal the state of an I/O line; high or low, 0 or 
1. 

It is worth spending a good deal of time deciding how the information 
will be represented inside the computer, because this is the basis of 
every microcomputer application. The data must extract the essential 
elements of the task, to be manipulated by the program algorithm (see 
paragraph 2.6). 

2.5.1 Data Types 

The first step in determining how data is to be represented in the 
computer is to identify on the different kinds of information that 
need to be stored, and to define a data type for each. The different 
values that each data type can take should be enumerated. If a system 
needs to work with the days of the week, for example, a type called 
"day" can be defined as follows: 

type day = (Monday, Tuesday, Wednesday, Thursday, 
Friday) 

At this stage it is neither necessary or desirable to worry about how 
this data type will be implemented. Data items of type "day" must be 
capable of taking five different values representing the days of the 
week. These items could be stored as the values 0-4, 1-5 or as 
arbitrary patterns of bits. That decision can be made later. At this 
point it is important simply to understand the problem. 

Declarations such as the one above simply specify a data type  
providing a rule for translating information into data. Such 
decalarations do not reserve storage within the computer. Storage is 
provided by actually declaring data items or variables as in the 
following example: 

var startday, endday : day 

This statement declares two variables, or storage locations, of type 
"day", named "startday" and "endday". Whatever implementation is 
later decided on for "day", that amount of storage and that 
interpretation will be assigned to "startday" and "endday". 

The advantage of declaring data types at the start can easily be 
seen. The definition is localized in one place, and can be changed 
with minimal disruption (for example by adding Saturday and Sunday). 
If design choices are clarified and isolated as above, flexibility can 
be carried right through to the final program. The alternative method 
of implementation is to postpone thinking about data types until the 
actual variables are required, declaring, for example: 



var startday : (Monday, Tuesday, Wednesday, Thursday, 
Friday) 

each time a new variable is required. This is not recommended, 
because changing the definition could involve searching through the 
whole of the software for each variable declaration. 

The notations used as examples in this section are not intended for 
direct implementation on a computer. Rather, they are part of 
design language allowing systematic thought about data structures, 
without worrying about the implementation details (syntax, 
punctuation, etc.) required by a particular programming language. The 
underlined words are keywords in the language that define its basic 
constructs. 

This design language can be compared to the logic diagrams used by 
circuit designers. As yet there is no standard for software design 
languages. The notations used in this and the following sections 
incorporate most of the features generally agreed to be useful in 
software design. There is no reason why a designer should not adapt 
these notations to suit his own needs. The main requirement is that 
the language chosen must be readily understandable to other designers 
as well as to the author should he reexamine his design plans at a 
later date. The notations used here follow the good practices 
advocated by leading practitioners of the art of software (there is a 
list of references at the end of the chapter). 

Where the values of a data type follow an obvious sequence, only the 
start and end need be enumerated: 

type weeknumber = (1..52) 

Designing good data types is not an easy matter, and there is no 
standard way to go about it. This is perhaps the biggest challenge of 
software design. It involves abstracting the elements of the real 
world that are relevant to the particular problem. One approach is to 
try a number of alternatives before deciding upon a solution. 

In a microcomputer, data is closely related to input and output. 
Decisions made about I/O will strongly affect the choice of data and 
vice versa. It is also impossible to design good data structures 
without some conception of how algorithms and programs work (see the 
next section). However, data design logically precedes algorithm and 
program design. Data must exist before you can perform operations on 
it. For some programmers, data occurs only as a byproduct of 
programming: it is never considered separately. This leads to bad 
software. 

Microcomputer design is usually an iterative process. Each aspect of 
the design (I/O, data, algorithms) must be considered separately, with 
the implications for the rest of the design. This is the only way to 
approach such a multidimensional problem. Several passes may be 
necessary before the pieces of the jigsaw fit together and the design 



finally crystallizes. All this needs to be done before the design 
gets beyond the paper stage. 

A systematic approach means considering each aspect in turn, so that 
nothing gets omitted. Data is one of the most important pieces of the 
design puzzle. In the early stages of a design, it may be useful to 
consider several alternative ways of organizing the data. This 
approach is more likely to yield an optimum design than picking one 
method and staying with it. It is a good design exercise to vary one 
element of the design and consider the implications. With a field as 
new as microprocessors, it is often possible to find fresh ways of 
doing things. 

2.5.2 Data Structures 

Data types of the kind described above can be structured in various 
useful ways. Various data structures include the record, the field, 
the array, and the list. These data structures are defined below. 

One of these structures is the record, which enables like 
grouped together. A record is simply a collection 
dissimilar) data types. Consider an application that 
number of gas pumps at a self-service filling station. 
contain various information about a pump as follows: 

type pump record = record  
status : (off, filling, completed) 
grade : (regular, premium, unleaded) 
gallons : (0..30) 
end 

data to be 
of (probably 
controls a 
A record can 

var pumpl, pump2 : pump record 

The type declaration defines the structure of the 
statement declares two record variables, pumpl 
type. End closes the record definition. n 
pump record into one word. 

The record in this example contains three fields, each of which has a 
unique name. The status field for the first pump can be referred to 
unambiguously as "pumpl.status". All of the information about this 
pump can be referred to collectively as "pumpl". This is a very 
useful shorthand when dealing with large and complex collections of 
data. 

The fields in a record can be of any type, including structured 
types. This provides the possibility of building very powerful data 
structures. Types of fields in a record can be predefined, e.g.: 

type status values = (off, filling, completed) 

type pump record = record 
status : status va ues 

record; the var 
and pump2, of tHT 
is used to make 



The algorithm for this application involves continually checking the 
status field of each pump record in turn. When a status of 
"completed" is read, the program calculates the cost of the gas 
delivered based on the grade and gallons fields of both the record and 
a table of prices, and displays the calculated cost at the cash desk. 
When the account is paid, the status of the pump is reset to "off" and 
the cycle can begin again. 

Another structured data type is the array. An array is an ordered 
list of elements of the same type that can be referred to by the name 
of the array and an index. The index specifies the array member's 
position in the list of elements comprising the array. 

type buffer = array [1..80] of character 

var bufl : buffer 

or, equivalently 

var bufl : array [1..80] of character 

"Character" is a previously defined type. The number of elements in 
the array (80 in this case) is specified by listing the possible 
values of the index, in square brackets. 

The fourth element of the array (i.e., the fourth character in the 
buffer) can thus be referred to as "bufl[4]"; this element is of type 
"character". 

Note that 1..80 in the array declaration has the same form as the 
right hand side of a type declaration. In fact, a type name can be 
used in place of an explicit list of values. The index values need 
not be numeric. Thus, an array containing the daily receipts of a 
store can be declared: 

var daily_takings [day] of money 

the receipts for Tuesday can then be referenced by 

daily_takings [tuesday] 

Arrays can be employed for any list of identical items. The elements 
can be any data type, including records and other arrays. 

Arrays are useful principally because they can be referenced using a 
variable as the index. For example: 

bufl [pointer] 

where "pointer" is declared, 



Var pointer : 1..80 

These declarations can be combined into a third: 

type buf size = 1..80 

var bufl : array [buf_size] of character 

var pointer : buf_size 

The above declarations make changes to the buffer size much easier and 
also aids in documentation. With an appropriate choice of names, 
designs such as this can be self-documenting. 

With an index variable, the same portion of the program can be used to 
operate on different array elements, according to the value of the 
index. This is relevant to the gas station example (above). As it 
stands, a separate piece of program needs to be written for each 
pump. Instead of declaring pumpl, pump2 as separate variables, 
declare an array of pump records: 

type no_of_pumps = 1..10 

var pump : array [no_of_pumps] of pump_record 

var pump_no : no_of_pumps 

The same program can then be used for any pump, first setting pump_no 
to the required value, then referring in the program to: 

pump[pump_no].grade 

For the grade field of the pump specified by pump_no. Notice how the 
notation workst 

pump is an array  
pump[pump_no] is an element of the array, and is a record 
pump[pump_no].grade is a field of the record, and is of 

type: (regular, premium, unleaded) 

Any array can be indexed by adding "[index]"; any record can have a 
field specified by adding ".field". By nesting definitions in this 
way, these data structures provide the necessary tools for managing 
the complex data found in the real world. Once learned, the notation 
is a very powerful tool for managing the complex data found in the 
real world. 

It is not necessary to grasp the whole of a large data structure at 
once. Beyond a certain point, it is mentally impossible. Using a 
technique such as this, if each level of the structure is correct and 
well understood, the user can be confident that the whole is correct. 
This is the principle on which most modern software design techniques 
are based, and it applies to algorithms and programs as well as data. 



Returning to the gas station example, one problem appears in the 
original design. In order to save the cost information, a customer 
cannot use a pump until its previous customer has paid his bill. 
Several solutions, however, are possible. An array of pump records 
for each pump, one record per customer. A decision will then have to 
be made as to how many customers will queue at each pump. In another 
solution, the cost information can be stored in a separate data 
structure (or printed out) as soon as it becomes available, and the 
pump cleared. 

A third possibility is to structure the data not by pumps, but by 
customers -- one record per customer. A customer record might look 
something like this: 

type customer record = record  
pump_number : no_of_pumps 
status : (off, filling, completed) 
grade : (regular, premium, unleaded) 
gallons : (0..30) 
end 

Each time a customer arrives, a new record is created. An array of 
customer records can then be declared. These records can be assigned 
to customers as they arrive. However, customers leaving will create 
"holes" in the array which will have to be filled. This problem can 
be solved (e.g., by a "tidying up" algorithm). Such a solution, 
however, is rather messy. In the array structure in this application 
there seems to be no obvious meaning for the index. This is one 
indication that an array is not the right structure to use in this 
application. 

A structure, called the list, is more appropriate to the situation 
spelled out above. Liag, and other useful data structures such as 
trees, are described in more detail in the references given at the end 
of this chapter. Records and arrays must have their size (the amount 
of storage allocated to them) defined when the program is written. 
These allocations cannot be changed while the program is running. 
Lists, on the other hand, allow data elements (usually records) to be 
dynamically assigned from a pool, or heap, of storage space while the 
program is executing Elements can be deleted from anywhere within 
the list when no longer required and the storage returned to the 
heap. 

The different solutions illustrate a point made earlier: that data can 
be structured in many ways, and it is worth exploring the 
alternatives. Data design determines the 'objects' with which the 
system will work and affects both algorithms and I/O. The best way to 
arrive at an optimum solution is to be aware of the choices that can 
be made. 



2.6 ALGORITHMS 

An algorithm is a list of instructions: a statement of 'how to do' 
something. More precisely, it is the specification of a finite number 
of steps required to achieve a desired end. A function can be 
performed by a computer if and only if that function can be stated as 
an algorithm. A sample algorithm for making tea might include: 

fill kettle; 
put kettle on; 
put tea in teapot; 
while kettle is not boiling 

twiddle thumbs; 
fill teapot; 
for number of cups required 

pour cup 

Some of the operations described can themselves be analyzed into al-
gorithms. For example, 'pour cup': 

if milk is required 
aen 

pour milk; 
pour tea 

else 
pour tea 

The words underlined are not part of the basic operations; these 
keywords form Control structures that determine which part of the 
algorithm is to be executed, depending on some condition. If the same 
sequence of operations had to be carried out every time, computers 
would not be very useful. But a computer is capable of making a 
simple decision -- provided all the possible outcomes are enumerated 
in the program, and the computer is told exactly where to look to test 
whether the condition is satisfied. 

The operation of an algorithm can be varied, depending on the state of 
some input or the result of a previous operation. By combining 
control structures such as the ones shown here, extremely powerful 
algorithms can be developed to control, for example, the operation of 
a complex scientific instrument or an industrial process. 

There are various control structures that can be devised. However, it 
can be proved that any sequential algorithm (and any computer program) 
can be written using only three basic constructs -- sequence, 
selection and iteration -- all of which are included in the above 
example. 

The sequence is the basis for all algorithms and all computer 
programs. It is so fundamental that there is no keyword associated 
with it. A sequence is simply a list of operations carried out one 



after the other: 

fill kettle; 
put kettle on; 
put tea in teapot 

A sequence can be represented diagrammatically as follows: 

Inomilme•mimn• 

P 
R 
E 
P 
A 
R 
E 

FILL 
KETTLE 

PUT KETTLE 
ON 

PUT TEA 
IN TEA POT 

FIGURE 2-1. SEQUENCE 

Which simply means: fill kettle, then put kettle on, then put tea in 
teapot. It is often useful to give a sequence a name, because it can 
then be treated as a single operation and included in a 'higher-level' 
algorithm. In the diagram, the long vertical box represents the 
sequence as a whole; the other boxes are the elements of which it is 
composed. The elements of the sequence are carried out in order, from 
top to bottom. The connecting lines show that these elements belong 
to that sequence (the lines do not indicate logic flow, as in a 
flowchart). The elements of a sequence might be simple operations, or 
they can themselves be any of the three basic constructs (sequence, 
selection or iteration). 

The selection is a decision construct. Depending on a condition, one 
of two or more alternative operations is selected and performed. For 
example, 

if weather is fine 
then walk 
else take car 

diagrammatically, this is represented as: 



FIGURE 2-2. SELECTION 

The circle represents the selection; that is, a single element which 
can be either of two things. The boxes are the components of the 
selection. For each execution of the selection, one and only one of 
the components is executed. Once again, the connecting lines express 
that the components are members of the selection (they are subordinate 
to it). 

There is a selection in the example algorithm: 
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pour tea 
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POUR 
TEA 

   

   

pour tea 

       

FIGURE 2-3. SELECTION WITH SEQUENCE 

Here, the first alternative is a sequence of operations. The control 
words begin and end have been added to the verbal description to make 
quite clear that the sequence is regarded as one operation, as far as 
the selection construct is concerned. The words begin  end are 
used to bracket statements in the same way that parentheses are used 
to bracket numerical expressions: 

5 x (2 + 7) = 45 



Note that only one of the alternatives is executed. When it is 
completed, the algorithm continues with the next operation after the 
if construct (if there is one). 

A special case occurs when there 
executed when the condition is satisfied. 
nothing is done. This can be regarded 
the components is the null action, "do 
usually left out of the diagram. 
written: 

is 
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FIGURE 2-4. SELECTION:SPECIAL CASE 

Here, 'pour cup' is a sequence consisting of an if construct (with 
only one alternative) and a simple operation. 'Pour tea' is always 
executed; 'pour milk' is executed only if milk is required. 

This illustrates an important point about algorithms and programs. 
There are often several alternative ways of writing an algorithm to 
perform a particular function. It is worthwhile spending a little 
time determining which is the best solution. It is not sufficient 
that an algorithm works (in some circumstances): it must be clearly 
understood, and correct in all circumstances. The best algorithms are 
those that clearly reflect the structure of the problem. 

Just as a good data structure extracts the essential elements of the 
information being represented, so a good algorithm extracts the 
essential elements of the process being performed and uses these 
elements as the basis of its structure. 

It is possible to have a selection with more than two alternatives. 
This is represented in the design language by the case construct: 



PUT ON 
COAT 

GO FOR 
WALK 

GO FOR 
WALK 

STAY 
INSIDE 

case weather of 

sunny: go for walk; 

raining: begin  

put coat on; 

go for walk 

end;  

snowing: stay inside 

end 

FIGURE 2-5. CASE CONSTRUCT 

The case labels sunny, raining, snowing specify the possible values of 
the case expression weather (weather will have been declared as type 
(sunny, raining, snowing)), and the actions to be performed for each. 

The case labels can specify a list or a range of values. There can be 
any number of case alternatives. Case constructs can have an 
otherwise clause that specifies an action to be carried out if the 
case expression has a value not expressed in any of the case labels: 

case number of 

0..3,8 : add number to total; 
4,6,7 : subtract number from total; 
5,9 : divide total by 2; 
otherwise write (-number out of range-) 

end 

Diagramatically, this is represented as: 
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FIGURE 2-6. CASE WITH OTHERWISE 

The iteration, or loop, is a powerful construct that allows an 
operation to be repeated either a specified number of times, or while 
some condition remains true. Usually a sequence of operations is 
repeated. Both forms of iteration are shown in the example: 

for number of cups required 
pour cup 

'Pour cup' is executed the required number of times. 

While kettle is not boiling 
twiddle thumbs 

This may not look like a repeated operation; but an algorithm is 
written on the assumption that only one thing can be lone at a time. 
This is certainly true in a computer. While the executor of this 
algorithm is twiddling his thumbs, he cannot check whether the kettle 
is boiling. Therefore, after twiddling his thumbs for a while, he 
must return and test whether the kettle is boiling. If it hasn't 
boiled yet (i.e., condition is true), he can carry out some more thumb 
twiddling, otherwise he must continue with the next operation. The 
period set for thumb twiddling had better not be too long, otherwise 
the kettle will boil dry. This kind of consideration is often 
important in writing a real-time microcomputer program; and wait loops 
such as this are often required. 



In the diagram, an iteration can be represented by a lozenge-shaped 
box: 
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FIGURE 2-7. ITERATION 

As most computer programs carry out some operation repeatedly 
(otherwise there would be little point getting a computer to do it), 
the iteration is a useful construct. 

Although many programming languages provide additional control 
structures, it is wise to stick to the three described. Programs 
written using only these three constructs have been shown to be easily 
understood, easily amended, and above all likely to be correct. This 
discipline is known as structured programming, and is one of the most 
important techniques available to the software designer. 

The three constructs presented here are basic mental structures, 
representing very closely the way the mind analyzes a problem. 
Consequently they are very easy and natural to "think in", once the 
notation has become familiar. 

Other notations, such as flowcharts, have often been used for 
designing computer programs. Flowcharts may be useful at the lowest 
levels of implementation, when coding in Assembly Language for 
instance (see the next section). However, they are designed to 



represent the way machines operate rather than the structure of an 
application. Trying to understand a problem using flowcharts involves 
bending the mind to work in the way machines do. This may be 
necessary at some point, but is not advisable in the earlier design 
stages. 

Flowcharts concentrate on the details of process implementation, and 
have no way of representing hierarchical structure. Breaking a 
problem down into hierarchical levels (i.e., high-level algorithms 
that contain lower-level algorithms and so on) is the only way to 
understand it clearly, because the spread of information, from overall 
structure to fine detail, is so great. The notation used in this 
chapter may be unfamiliar to the user brought up on flowcharts, or 
used to programming in languages such as FORTRAN. It is worth making 
the effort to understand this notation, however, because of its 
value. 

The diagrammatic notation used in this book was developed by Eric 
Richards, from an original notation designed by Michael Jackson (see 
References at the end of this section). 

2.7 PROGRAMMING LANGUAGES 

2.7.1 Assembly Language 

The earliest computers were programmed directly in machine code; that 
is, binary digits. Each instruction in a computer is represented by a 
unique pattern of bits within a word of program code. For example, in 
the TMS 9900, 

1010XXXXXXXXXXXX means "add" 

The X's carry other information and can be 0's or 1's. Some 
instructions require two or three words, because they contain data, 
addresses of memory locations, etc. 

Programming in machine code is extremely tedious and very prone to 
errors. Therefore Assembly Language was invented. Using Assembly 
Language, a program can be written with meaningful mnemonics (e.g., 
MPY for multiply) instead of binary code for instructions, and symbols 
instead of numeric addresses for memory locations: 



C @WORD1,@WORD2 COMPARE WORD1 WITH WORD2 
JEQ SAME JUMP IF RESULT = 0 TO LABEL "SAME" 

SAME TB 7 TEST INPUT BIT 7 

WORD1 BSS 2 RESERVE STORAGE (BLOCK STARTING 
WORD2 BSS 2 WITH SYMBOL) FOR WORD1 AND WORD2 

2 BYTES = 1 WORD EACH 

Translation from Assembly Language to machine code, which must be done 
before the program can be executed, is a tedious but fairly 
straightforward process; the sort of thing computers do well. The 
translation is handled automatically by a computer program called an 
Assembler. This is one of the software tools that will be provided 
with a microprocessor development system. 

One of the advantages of using an Assembler is that programs can 
easily be changed. For example, an extra instruction can be inserted 
in an Assembly Language program and the program simply reassembled. 
Inserting an extra instruction in a machine code program would involve 
going through the whole program changing jump addresses, because the 
position of all the code after the insertion would have changed. 

2.7.2 High-Level Languages 

Assembly Language, though a great improvement on machine code, still 
requires a problem to be translated to a large extent into terms 
before it can be programmed. Each Assembly Language instruction 
corresponds to one machine instruction, and the programmer must turn a 
selection construct, for example, into the low-level tests and 
conditional jumps that are the only things the computer understands. 
In addition, the programmer must manage all the resources of the 
computer, such as data storage. 

High level languages (HLL) were introduced in an attempt to enable the 
computer to handle all these 'housekeeping' functions automatically, 
and to free the programmer to concentrate on the problem. One of the 
first high-level languages was FORTRAN, which stands for FORmula 
TRANslation. It allows programs to be written in a stylized language 
that combines elements of mathematics and English: 

I = 5*J + 7 
IF (I.EQ.27) THEN GOTO 100 

I and J are variables which represent memory locations. But the 
programmer does not have to worry about where in memory they are; this 
is handled automatically by the compiler, which is a computer program 
that translates high-level language programs into machine code. 



The input to a compiler or assembler is called source code; the output 
is object code. It is important to note that execution of a compiler 
or assembler is completely separate from execution of the resulting 
program. A compiler or assembler is a utility program- used during 
software development, that translates a program written in a 
programming language into a machine executable form. In developing a 
microcomputer application, the compiler/assembler will run on the 
development system and the compiled or assembled program will be 
designed to execute on the target system. 

In the FORTRAN example, the program will take the value stored in the 
memory location represented by J, multiply it by 5, add 7 and place 
t'ne result in the memory location represented by I. If J contained 3, 
22 would be assigned to I. The program then tests the value of I, and 
if it is 27 jumps to the place in the program that has the label 100. 

It is much easier to write programs in FORTRAN than in assembly 
language. However, in some respects FORTRAN is still closer to the 
way a machine operates than to the way human beings think. The GOTO 
statement, for example, is obviously derived from the Assembly 
Language JMP; it is a machine construct and not a logical one. 

Implementation of selections, for example, can be ambiguous, requiring 
GOTO statements and labels: 

IF (I.EQ.5) THEN GOTO 50 

GOTO 100 
50 . 

• 

100 . 

Not only is this confusing, but the order is inverted: the then action 
comes second. FORTRAN was designed before much research—Had been 
carried out into algorithms. 

More recently, high-level languages have been designed with the 
intention of getting as close to the problem as possible. Many of 
these are based on ALGOL (ALGOrithmic Language), which was designed in 
the 1960s to be a natural language for writing algorithms. 

One of the best modern high-level languages is acknowledged to be 
PASCAL. PASCAL has a coherence which some committee-designed 
languages lack. It implements most of the generally accepted good 
programming practices. Besides the basic algorithm constructs, PASCAL 
also has powerful data structures. Software designs can be turned 
into PASCAL programs with very little effort. A PASCAL program looks 
very similar to the design language introduced in Section 5: 



TYPE NUMBER RANGE = -128..127; 

VAR MAX : NUMBER RANGE; 
A : ARRAY [1..10] OF NUMBER RANGE; 
I : INTEGER; 

MAX := A[1]; 
FOR I := 2 TO 10 DO 

IF A[I] > MAX raEN MAX := A[I]; 

(:= is the assignment operator, read "becomes equal to") 

2.7.3 Interpreters 

Languages such as FORTRAN are compiled languages; that is, the source 
program is turned into machine code in a separate step (perhaps on a 
different machine) before it is executed. 

With an interpreted language, such as BASIC, there is no separate 
compilation step. The program is not stored in machine code but in 
intermediate code which can be regarded as condensed source code with 
all unnecessary symbols removed. (During development the symbols are 
also stored so that the program can be printed out in source form and 
easily changed.) At execution time, the interpreter, which resides 
with the program in the target system, looks at each line of 
intermediate code, determines what it means and carries out the 
necessary action. The intermediate code is not executed directly; the 
interpreter contains machine code to carry out every operation that 
can be specified in the intermediate code, and it is this which is 
executed. 

Intermediate code is much more compact than machine code; however, the 
overhead of the interpreter, must always be there also. Beyond a 
certain size, an interpreted program will take less memory than an 
equivalent compiled program. However, an interpreted program will run 
a lot slower, due to the extra work that must be done at execution 
time in actually interpreting the intermediate code. 

BASIC is an extremely simple language in which it is easy to write 
programs. Development is also very easy and very quick because 
programs do not have to be compiled. They can be executed as soon as 
they are entered. The BASIC interpreter checks each line for syntax 
errors as it is entered, so mistakes are easy to correct. 

Texas Instruments' POWER BASIC (see Chapter V) is designed to run on 
the TM990 range of microcomputer boards. A BASIC program can be 
developed and executed using, at minimum, one TM 990 board and a 
teletype terminal. No development system is required. BASIC provides 
a very powerful and inexpensive microcomputer system which is ideal 
for low-volume applications and experimental work. 



TI's Microprocessor PASCAL (see Chapter IV) provides the user with the 
choice of executing either compiled or interpreted code on his target 
system. A Microprocessor PASCAL source program can be compiled to 
either interpretive code or 9900 machine code. The two versions will 
execute identically, apart from considerations of speed and code 
size. This feature allows the user to trade-off execution speed 
against memory, and to select which is more important for his 
particular application. Even if he selects machine code for the final 
version, interpretive code has a number of advantages when debugging 
the system. 

2.7.4 High-Level vs Low-Level 

Faced with the choice of which language is best, there is no easy 
answer. The solution depends on the application. 

Low-level (Assembly) language allows the programmer direct access to 
all the features of the machine and thus the opportunity to write 
compact and efficient programs. To capitalize on this requires skill 
and time. The opportunity equally exists to make mistakes and to 
write inefficient programs. 

High-level languages can shorten development time by a factor of 5 or 
more, and produce more reliable code. With a high-level language it 
is much more difficult to make expensive mistakes. High-level 
programs are more understandable (if properly written, they can be 
self-documenting), so that a project is less likely to be dependent on 
one programmer. Changes are easier to make in the late stages of a 
project. The cost is some code inefficiency because a compiler cannot 
optimize as much as a good assembly programmer. However, this becomes 
less true as the size of the program increases. Inefficiencies (and 
errors) may be introduced in a large assembly language program simply 
because of the intellectual difficulty of managing such a large amount 
of detail (especially when it is worked on by more than one 
programmer). Compilers do not suffer from this problem. 

Restrictions on code size, particularly for high volume products, may 
dictate the use of assembly language in order to produce the most 
compact code possible. Unless this is the case, it makes sense to use 
a high-level language. Assembly language projects of more than a few 
K (= thousand) bytes should be considered very carefully because 
complexity increases very rapidly with size. (Some studies have 
estimated that complexity is proportional to the square of the size of 
the program). 

For many projects, a compromise solution may be attractive. For 
example, the control aspects, where clarity of the design is 
important, can be programmed in high-level language, with assembly 
language routines for critical low- level areas such as input and 
output. 

An alternative (or complementary) solution is to hand-optimize 



compiler-produced code, once the program has been completely checked 
out; or even to rewrite it in assembly language after proving the 
design in (say) PASCAL. Both approaches have been used very 
successfully by Texas Instruments in internal projects. 

2.8 MODULAR PROGRAMMING 

With a project of any size, it is usually helpful to split the overall 
problem up into smaller tasks or modules which can be tackled 
separately. 

When adopting this approach, two things must be considered: 

1) The detailed nature of each module 

2) How the modules will fit together to form 
a complete system. 

To simplify the task of module interfacing, modules that are as 
self-contained as possible should be selected. In other words, the 
module boundaries should be drawn so that each module needs to 
communicate as little as possible with the other modules in the 
system. The ways in which each module interfaces with the rest of the 
system must be clearly defined. 

The algorithmic notation described in Section V is a natural medium 
for designing such modular systems. A high-level algorithm can be 
written that describes the operation of the system. For example: 
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The terminal leaves of this diagram (INITIALIZE, TASK A, TASK B and 
TASK C), are natural candidates to be treated as modules and developed 
separately. The diagram defines how they fit together in terms of 
program structure. Their interaction with the data, however, still 
needs to be defined. Once the way they interact has been clearly 
specified, they can even be written by different programmers 
(INITIALIZE probably has to be written in consultation). 

Each module can in turn be split into successively smaller modules, 
until the complete problem has been broken down into manageable 
segments. At every level in the structure, the modules can be 
regarded as 'black boxes' that perform specified functions and combine 
in clearly defined ways. The programmer can focus on a particular 
level in the structure, knowing that he can concentrate on the other 
levels at other times. If the ways in which modules can be combined 
to form larger modules are restricted to the three constructs 
described in Section V, the programmer can be sure that modules will 
not have 'side effects' or contain jumps to other modules that will 
upset the structure. 

This hierarchical approach makes a complex problem intellectually 
manageable, and has been shown to lead to better, more correct, and 
more maintainable software. 

The same approach can be applied to data using the structures 
described in Section IV. The data structures parallel program 
constructs; in fact, the diagrammatic notation, (described earlier) 
can also be used for data. The sequence construct can be used to 
represent records, and the iteration construct for arrays. Thus, the 
array 'pump' of 'pump records' in subsection 2.5.2 can be drawn: 
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This means that data, too, can be treated in a modular fashion. 

The selection construct can be regarded as representing the 
record variant, a record structure in which part of the record can 
have alternative forms. For example, a personnel record for a college 
might need to contain different information depending upon whether it 
represented a student, faculty member or a member of the 
administrative staff: 
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In the design language, this can be written: 

type  personnel_record = record 
name : name recoiTi--- 
age : 0..1n; 
college : (cas, tech, music, 
status : (student, faculty, 
case status of 

student : 

faculty : 

admin 

end 
end 

jour); 
admin); 

(graduate status : (graduate, 
undergraduate); 

year : 1..7); 
(tenure : boolean; 
rank : (inst, asst, assoc, prof)); 

(position : (asstdean, dean, 
chairman, other); 

length_of_service : 1..50) 

According to the value of status (called the tag field), only one of 
the variants will be used to determine the structure of the record in 
any particular case. 

2.9 PROCEDURES 

A procedure (sometimes known as a subroutine) is a separate subprogram 
(a separate algorithm, or list of statements) that is declared within 
a program. A name is assigned to a procedure to enable the user to 
reference it. 

Declaring a procedure is similar to defining a new statement or 
operation in the programming language. Once a procedure has been 
declared it can be referenced or called from the main program simply 
by writing its name. For example, if the programmer has written a 
procedure called CALCULATE MEAN, to find the mean of a series of 
numbers, he can simply write 

CALCULATE MEAN 

in the main program wherever this operation needs to be performed. 
(Some languages require a keyword, such as CALL, to precede the 
procedure name.) 

In a case like this, the operation will probably have to be performed 
on several different sets of numbers which are stored as different 
variables. This can be accomplished by passing variable names as 
parameters to the procedure in order to specify the data objects on 
which it operates. 



CALCULATE MEAN (ARRAY_OF_NUMBERS) 

Later the same procedure might be called by: 

CALCULATE MEAN (DIFFERENT_ARRAY_OF_NUMBERS) 

When a procedure is declared, the number and type of parameters are 
specifiel in the procedure header. The variable names written here 
are used in the statements in the procedure body. They are the 
formal parameters. When the procedure is executed (called), the 
formal parameters will be replaced by the actual parameters specified 
in the procedure call. 

Procedure declaration: 
PROCEDURE SEQ (A : INTEGER; B : REAL; C : ARRAY [1..80] 

OF CHAR) 
BEGIN 

(* PROCEDURE BODY *) 
A := 5; 
B := 6.2; 
C[A] := 'P'; 

END; 

Procedure call: 
SEQ (X, Y, Z); 

The number and type of the actual parameters must exactly match the 
formal parameters. Thus, X must be declared as INTEGER, Y as REAL and 
Z as an ARRAY[1..80] OF CHAR. 

A function is a procedure that returns a single value of a particular 
type. The type is specified in the function header: 

FUNCTION NUMBER (A : BOOLEAN; B : CHAR) : INTEGER; 
BEGIN 

END; 

and the function can be written as part of an expression: 

P := 5 * NUMBER (TRUE, 'X') 

Besides variables, values or expressions can usually be passed as 
parameters, provided they are the right type. 



Procedures can declare local variables which are only used within the 
procedure. Usually, the procedure also has access to the variables of 
the program in which it is declared. (This depends on the programming 
language, being used; in some languages, Pascal for example, procedures 
can be declared within procedures.) 

Procedures form a natural method of writing modular programs, 
particularly if they can be nested (declared within other procedures) 
to any depth as in Pascal. In implementation, procedures save code. 
An instruction sequence that can be used in several places in the 
program only occurs once in the object code. When a procedure call is 
executed, the processor transfers execution to the procedure, saving 
the address of the the calling instruction in the main program. Once 
the called procedure has finished, the action returns to the 
instruction following the calling instruction, and action resumes. 

Quite apart from code saving, procedures are a useful way of 
structuring a program, and may be used even when the procedure is 
called only once. In a block structured language such as PASCAL, 
variables declared within a procedure are completely local to that 
procedure, and cannot interfere with the operation of a procedure that 
is separately declared. (Procedures still have access to the 
variables of the program or procedure that contains them, so this has 
to be carefully controlled.) A procedure can even declare local 
variables with the same name as variables declared elsewhere in the 
program, and these variables will not interfere with each other. This 
means that, in a large application, program modules can be written by 
different programmers without risking incompatibility. 

2.10 REAL-TIME SOFTWARE 

Applications software for a general purpose computer usually has a 
beginning, a middle and an end. This software has a specific 
processing task to perform, and when this is complete, returns the 
resources of the computer to the operating system so that they can be 
allocated to another task. 

Real-time software, on the other hand, usually has only a beginning 
and a middle. On power-up, the software will probably perform some 
kind of initialization procedure (such as clearing the data memory, 
setting all outputs to the required values, and perhaps sending a 
signal to the operator) and will then go into some form of endless 
loop, in which it monitors the inputs to the system and performs the 
required functions. Using the notation introduced earlier in this 
chapter, this can be represented as: 
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There is no point in the software relinquishing control, because the 
system would then be 'dead' and unable to respond to any inputs. 
Real-time software only stops when the system is switched off. In 
fact, the software behaves rather like the operating system of a 
general purpose computer, sharing out resources to the different tasks 
to be handled, and remaining in control at all times. Computer 
operating systems can be regarded as a specialized application of real 
time software -- an application which has been extensively studied. 
Many of the techniques developed for writing operating systems can be 
successfully applied to other real-time situations. 

The fundamental problem in designing software for a real-time system 
is that a sequential list of instructions (a program) must usually 
carry out a number of different parallel functions. A microprocessor 
can only do one thing at a time. How can it simultaneously handle all 
the inputs and outputs it has to deal with? 

The answer, of course, is that the microprocessor performs its 
functions at a speed that makes it appear to be handling all functions 
in parallel. The system acts rather like a juggler keeping several 
balls in the air at once. It returns to give each one a push within a 
specified time, or a ball will fall to the ground. In a well designed 
system there should be no danger of this. The software is designed to 
service every requirement long before it becomes critical. 



2.10.1 Software Organization 

The challenge of writing real-time software is to organize all the 
loosely related tasks into a coherent whole that can be expressed as a 
sequential program. In most real-time systems, the processor must 
respond to a number of inputs which are asynchronous; that is, 
completely at random. The processor cannot tell, for example, exactly 
when an operator is going to press a button, or a sensor is going to 
register an input. In a typical real-time dedicated system, there 
will be a number of tasks, or processes, to be performed, each of 
which can be described by a sequential algorithm. The tasks may be 
completely unconnected, or they may be interrelated in a variety of 
ways. Some tasks will need to be performed at regular intervals 
(checking input lines, for example), others only infrequently, when a 
particular condition occurs. 

For example, a system controlling an industrial process may need to 
monitor several different chemical reactions, and take corrective 
action if certain parameters are exceeded. The monitor function for 
each reaction can be described as a logically separate task. 

There will also be a task associated with communicating with the 
operator and allowing him to display the status of each reaction, 
change parameters, etc. This task will need to pass information to 
and from the other tasks. 

Two techniques have traditionally been used to convert a complex 
situation like this into a single sequential algorithm: polling and 
interrupts. A third alternative is to use an executive. An executive 
handles the details of software organization automatically, and allows 
the programmer to concentrate on writing the, separate tasks and 
defining how they are related. 

2.10.1.1 Polling. In a polled system, the tasks to be performed are 
simply written one after the other in the program. A polled program 
consists of an endless loop. As the program executes, it passes 
through check points corresponding to these tasks. At each check 
point, the program decides whether or not to perform the corresponding 
task. Once the list of tasks has been exhausted, the program begins 
execution again. The system deals with a asynchronous input simply by 
placing a check on that input somewhere within the loop, and checking 
(or polling) the input when it reaches that point. A polled system 
therefore does not respond to an asynchronous input immediately. The 
worst case response time corresponds to the maximum time taken to 
complete the polling loop. 

Complex polling structures can be constructed in which some inputs are 
polled more frequently than others. However, this requires 
considerable thought, because the program structure required to do 
this is not naturally derived from the problem. In general, polling 
is a good technique for simple systems where immediate response to 
asynchronous inputs is not required. A complex polled system is 
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difficult to construct and not very flexible. 

A simple polled system might look like this: 

FIGURE 2-12. POLLING SYSTEM 



The polling system displayed above carries out three separate tasks 
depending on the state of three inputs. Each task is completely 
transparent to the others (apart from the processing time it takes 
up). 

Depending on how the system is constructed, the interval between polls 
of a particular input may be fixed or variable. In the previous 
example, the time taken for a single pass of the polling loop depends 
on what actions are performed. The worst case response time of the 
system is the maximum possible time between polls, plus the time 
needed to carry out the action. In evaluating a system design, it 
must be verified that the response time will be adequate for each 
action. 

2.10.1.2 Interrupts. Some signals may require attention so urgently 
that they cannot wait to be polled. In this case a signal can be 
connected in hardware so that it interrupts the processor. The 
processor will suspend whatever it is doing and attend to the new 
signal. When the 9900 receives an interrupt it performs a 
context switch and executes an interrupt service routine written to 
deal with that particular interrupt. The context switch completely 
saves whatever the microprocessor was doing so that it can be resumed 
when the interrupt service routine is complete. (Reference the 
description of context switches in Section VI.) 

The 9900 provides 16 levels of priority interrupts, so that very 
complex interrupt structures can be constructed. A higher priority 
interrupt can preempt a lower priority interrupt. While an interrupt 
service routine is executing, all interrupts of equal or lower 
priority are masked out (ignored). When calculating the response time 
for an interrupt, the possible masking effect of equal and higher 
priority interrupts must be considered. It is wise to keep interrupt 
service routines as short as possible (particularly high priority 
ones) because they prevent the system from doing anything else. 

An interrupt routine is not part of the main program structure: it is 
a separate entity with its own structure which can temporarily 
'borrow' system resources at any time during the execution of the main 
program. If there are portions of program which must not be 
preempted, interrupts can be temporarily disabled by setting the 
interrupt mask to zero. Interrupts are discussed in more detail in 
Section VI. 

Many systems employ both polling and interrupts. Polling is an 
effective technique for small systems and for systems in which there 
are no tight timing constraints. Interrupts can introduce complexity 
into a system. With a complex interrupt structure it may be difficult 
to determine the exact behavior of a system; and hang-ups can be 
created. The classic 'deadlock' situation occurs when an interrupt 
routine waits for an event that can only be triggered by a lower 
priority routine. (The routine of lower priority cannot execute until 
routine has finished.) No way out of this situation exists; 



obviously, software must be designed to avoid such deadlocks. 

One common use for interrupts is to provide a time reference for 
polling. Consider a program in which a particular input or group of 
inputs require interrogation every 20 ms. Arranging the required 
checks may prove difficult in a complex system with a number of 
program paths. In order to satisfy the above polling requirements, an 
interrupt can be set to occur every 20 ms. For an input requiring 
polling every 100 ms, interrogation takes place every fifth 
interrupt. The 9940 has an internal timer which can be used to 
generate the interrupts; otherwise interrupts can be provided by the 
9901 Programmable Systems Interface, or by using external hardware to 
divide the system clock. 

When estimating system load, the average frequency of each interrupt 
must be calculated to determine the amount of time the processor will 
spend servicing interrupts. The minimum time between interrupts is 
also important, because if interrupts occur too close together, some 
may be lost. 

2.10.1.3 Executives. To simplify the organization of real-time 
software, an executive can be used. Like high-level language and 
structured design, use of an executive is one more technique that 
brings software design closer to the problem. In particular, it 
allows a complex real-time system to be written as if it consisted of 
a number of separate, smaller processes executing simultaneously and 
in parallel. This simplifies software design, because it is closer to 
the reality of most real-time situations. 

A system's processes can be regarded as competing for system 
resources; particularly for processor time. One of the most important 
parts of an executive is the scheduler, which allocates processor time 
among the various processes. There are various ways of doing this. 
One of the simplest is time slicing: each process in turn is allocated 
a fixed period, or slice, of processor time. The allocation is 
repeated cyclically. 

Other scheduling techniques involve some notion of priority. A high 
priority process will be allowed to run in preference of a process 
with a lower priority. 

A process will often need to communicate and synchronize its execution 
with other processes in the system. This can be done using the 
semaphore, which is basically a signalling mechanism between 
processes. A process may signal a semaphore to indicate that a 
particular event has occurred (for example, that a character has been 
received from an input device and placed in a buffer). Another 
process may be waiting for that signal (in our example, to take the 
character out of the buffer and print it). When the signal is 
received, the second process can be executed. Conceptually, both 
processes can be regarded as executing simultaneously. 

A process waiting for a signal from a particular semaphore is said to 



be suspended on that semaphore. More than one process can be 
suspended on a single semaphore. In addition, signals can be queued 
at a semaphore (for example, several characters can be placed in the 
buffer before any are processed). This gives the system a certain 
amount of elasticity. 

Mechanisms such as semaphores support the scheduling of ready 
processes. At any one time, the highest priority process that is not 
suspended on a semaphore will be running. When this process cannot 
run any further (i.e., it becomes suspended on a semaphore and is 
waiting for an event), or terminates, the next highest priority 
process that is ready. 

The executive maintains lists of processes ready but of lower priority 
than the currently executing process, and of processes waiting on 
semaphores. When a semaphore is signalled or the running process 
becomes suspended, the executive updates these lists and takes 
appropriate action. 

Interrupts can be incorporated in such a system by treating them as 
signals to semaphores. The interrupt service routine is a process 
suspended on a semaphore, which is signalled directly by the 
interrupt. If the interrupt service routine is of a higher priority 
than the process currently executing (which will usually be the case), 
the interrupt routine will execute. 

An executive makes it possible to design a system as if it were made 
up of a number of simultaneous, parallel processes, executing 
independently but communicating via semaphores: 
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Like all programs, the execution is in fact sequential. But the 
executive handles the work of adapting a sequential processor to a 
parallel world. It makes the design of real-time software much 



simpler, and thereby makes possible more complex applications. For a 
complex real-time system, an executive is virtually a necessity. 

Texas Instruments supplies a range of executives, tailored to 
different areas of application, for developing real-time software. 
These are designed to work with Pascal or assembly language, and can 
be adapted for use with other languages. The executive is normally 
supplied as a basic core or kernel,a library of routines implementing 
specific features. As a result, only those features of the executive 
which are actually used need be incorporated in the final system. In 
addition to semaphores, some executives provide more powerful 
synchronization mechanisms such as interprocess files. 



CHAPTER III 

SOFTWARE DEVELOPMENT 

3.1 OVERVIEW 

The end result of software development is a program -- a pattern of 
bits residing in memory that instructs the processor what to do. To 
achieve this, several stages must be undertaken: 

1) Definition of the problem 

2) Design of the system - hardware and software, and how 
they will fit together 

3) Design of the software (hardware development can be 
carried out in parallel 

4) Programming the design (i.e., turning it into source 
program code) 

5) Translating the source into binary machine code 

6) Testing the software 

7) Integrating the hardware and software 

8) Evaluating the final system. 

Each of these is an iterative process. Problems encountered at any 
stage may alter decisions taken at a previous stage, so that the true 
picture is probably more like this: 
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3.2 PROBLEM DEFINITION 

The first step in development is to define the problem that is to be 
solved. 

The way in which a problem is stated is often highly dependent on the 
implementation techniques believed to be available, that is, on the 
way similar problems have been solved in the past. Microprocesscirs 
have opened up a new range of possibilities. Therefore, when defining 
a problem, it is worth considering whether it can be restated to take 
advantage of the microprocessor's capabilities. 

A microprocessor is both a programmable logic device and a computer. 
Where it is being used to replace conventional logic, its abilities as 
a computer may also be used to advantage, and vice versa. For 
example, a microprocessor might replace digital logic in controlling a 
scientific instrument. In this application, it can also be used to 
perform calculations on the results obtained by the instrument, 
something not easily achieved by digital logic. New forms of operator 
interface might also be considered; a keyboard and visual display 
screen, for example, rather than the traditional knobs and switches. 
The instrument might be given some degree of programmabilty to allow 
the user to set up a series of operations to be performed unattended. 
There are a whole range of new possibilities introduced simply by 
using a microprocessor. 

A full problem definition for a microcomputer based product involves: 

1) Defining the environment that is the devices and 
signals with which the product must operate, the 
operator controls and displays, and any special 
interfaces 

2) Defining how the product reacts to this environment 
that is the actions it is required to take, the inputs 
it is required to respond to and the outputs it is 
required to produce. 

This amounts to defining a black box (see Chapter 1, Section 1.2). 

Once the black box has been defined, attention can be given to how to 
implement it. This is the field of system design. The system 
designer must decide how to integrate hardware and software, whether 
any special interfaces are required, if any additional hardware is 
needed (for analog to digital conversion, for instance), and so on. 

Problem definition cannot be isolated from system design, particularly 
in such a new field. The way in which a problem is stated determines 
how the system will be designed, and vice versa. To extract the 
maximum Potential from the technology, it is wise not to start with a 
rigid problem definition, and to be open to ideas that may come up in 
the system design stage. 



INPUTS 

3.3 SYSTEM DESIGN 

Microprocessor system design differs from conventional digital design 
in that a microprocessor system is centralized. Hardware design 
consists simply of connecting all the inputs and outputs to the 
microprocessor, and ensuring that it has enough memory: 
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FIGURE 3-2. MICROPROCESSOR DESIGN 

Determining the exact input and output requirements means a 
consideration of the software algorithms to be used (although they 
need not be.programmed yet). Several iterations may be needed before 
a 'best fit' solution is achieved. 

It is important to define the precise I/O configuration early in a 
project. From this base, both hardware and software designers can 
work. If the configuration is left at all vague, it is almost certain 
that the hardware and software will not, work together or will work 
incorrectly. 

Once the system configuration is established, hardware and software 
development can be carried out in parallel. 

Some time can usefully be spent at the study phase of a project in 
sorting out the design issues. It is not necessary to make decisions 
at the outset, but rather to identify the choices to be made. The 
right solution can then be determined by investigation. Identifying 
(and documenting) various design choices at the beginning (as opposed 
to simply taking what seems to be the right choice at the time) 
facilitates backtracking when necessary. Therefore, it is worth 
keeping a record of the design process. Notes, and formal documents 
such-  as specifications, can be collected together to form a project 
notebook. 

For example, an analog input (a voltage, for example) may be 
required. Decisions to be made include: 

1) How much precision (i.e., how many bits) is required 

2) How often a reading must be taken 

3) What type of analog/digital converter can be used 

4) Whether the input should be binary or coded decimal. 



Decisions must be made on how much of the available information is 
required. For example, if a temperature is to be input, is the actual 
value required (to what precision?) or is a threshold indication 
enough? 

Hardware/software trade-offs are important. When writing a number to 
a seven segment display, should the conversion from binary to decimal 
digits, and then from digits to the signals used to drive the display 
segments be handled by microprocessor software or by external 
hardware? 
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If processor resources are available, it makes sense to perform the 
conversion in software and save the cost of extra hardware. However, 
this depends on the processor having enough spare time to handle it. 

3.4 ESTIMATING SYSTEM LOAD 

One of the characteristics of a microcomputer system is that it can do 
only one thing at a time. If it is required to handle several things 
in parallel (as a real time system usually is) it must do so by 
handling each one in turn and at. sufficient speed so that the effect 
on each is the same. An important part of specification is defining 
"sufficient speed". (?'or example: an analog input might need to be 
sampled every 5 ms, this being the minimum period in which it could 
change significantly in a particular application). An important part 
of system design is to determine that the processor can meet these 
specifications. Given a number of real-time tasks to be performed can 
the processor satisfy all of them simultaneously? 

A useful measure of this is system load, which can be defined as: 

Processor Time 

Real-Time 

For a given task, the load on the system is the processor time taken 
to perform the task, divided by how often the task must be performed 
(the "sufficient speed" specification). If the processor spends 2 ms 
carrying out a particular task, and the task must be performed every 
10 ms, this represents a .2 or 20 per cent system load. 



The total system load can be obtained by calculating the system load 
for each task that must he performed, and adding them together. 
System load is not a foolproof test of a design's practicality; but it 
does give the designer an indication of the magnitude of the task, and 
quickly shows up impossible specifications. Estimating the load for a 
given task involves a consideration of the software algorithm that 
will be used to perform it. This need not be very detailed at this 
stage. A rough calculation often shows that use of system resources 
is dominated by a very small number of tasks. 

An estimation of 0.1 per cent could be out by a factor of 5 without 
making too much difference; a task calculated at 25 percent however 
needs careful evaluation. Usually, it is only necessary to look at a 
very small portion of program, which can be coded experimentally if 
necessary. 

If the total system load comes out at more than 50 percent, the design 
should be reconsidered. There are two reasons for leaving a wide 
margin: 

1) To allow for errors in the estimation, and for 
modifications to the software 

2) Most systems have a degree of randomness: the average 
rate at which things happen may be predictable, but it 
may sometimes be exceeded by quite a large amount. It 
is wise to leave some power in reserve to deal with 
bursts of activity. 

Besides the raw estimates of system load, timing constraints need to 
be considered. The straightforward estimate assumes that processing 
time is spread evenly over real-time. If the system needs to do a 
great deal within a period of 1 ms, and then nothing for 50 ms, this 
obviously must be taken into account. In this case, the load during 
the 1 ms period should be evaluated separately. 

If the system load does come to more than 50 per cent, there are 
several alternatives: 

1) Unload some of the work from software to external 
hardware 

2) Reduce the specification of the system 

3) Consider using a more powerful processor, or adding a 
second processor. 

If the system load comes out very low (less than 1 per cent, for 
example) it is not necessarily a bad, provided design and cost 
criteria are met. However, if there are tasks being performed by 
external hardware that could equally be done in software, this is 
worth considering. Microprocessors have become inexpensive enough to 
make it economically feasible to have them lying idle most of the 
time. On the other hand, having to redesign because design parameters 



have been pushed too far can be expensive. 

Once the load has been calculated and the design fixed, the design 
engineer needs to beware of 'creeping enhancements'. Microprocessor 
systems follow a revised form of Parkinson's Law: designs expand to 
fill 150 percent of the resources available. To avoid this, the 
designer needs to evaluate carefully the effect of suggeste'd 
enhancements, and consider them in relation to his loading estimates -
which can be checked experimentally once the design is built. 

3.5 SOFTWARE DESIGN 

Software design consists of turning the specifications of what the 
processor is to do into precise software algorithms and data 
structures, using the system configuration established during system 
design. 

The basis of software is data, since this represents the information 
that will be manipulated by the algorithms. A system uses two types 
of data: input and output data, which is the system's means of 
communication with the outside world, and stored data, which is held 
in memory and represents those things of which the system must keep a 
record. 

The first task of the software designer should be to determine: 

• What data is required 

• How it should be organized (structured). 

The data should be structured to reflect as closely as possible the 
information it represents. This involves: 

• Identifying those aspects of the information which are 
fundamental and not superficial 

• using these as the basis for structuring 

• wherever possible using structures instead of single 
unrelated data items. This makes the software more 
coherent and more manageable. 

If this is done, then both data and program will be clearer, and 
easier to change if the requirements are modified. 

'Data' (Chapter II, Section 2.5) considers data structuring in detail, 
and gives some examples. 

Once the data structure has been established, the algorithms that will 
operate on the data can be constructed. Algorithms are described in 
detail in Chapter II, Section 2.6. 



3.6 TOP-DOWN DESIGN 

A completed software design consists of a complex multi-dimensional 
mass of information, ranging from overall structure to details of 
implementation. When constructing such an edifice from scratch, what 
is the best way to approach it? 

At the start, two 'ends' of the problem are known: 

1) What the system is supposed to do, and 

2) The basic operations (i.e., instructions) the processor 
is capable of performing. 

This leads to two approaches to software design: 

1) Starting from the problem and working down towards the 
details of implementation. This involves splitting the 
problem into smaller segments, considering each in turn 
and further subdividing until the basic processor 
operations are reached 

2) Starting from the basic operations, putting them 
together into larger units that will perform more 
complex operations, and so working up towards a 
solution of the complete problem. 
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The second method is the traditional way of designing software. 
It has been called the "bottom-up' approach. For example, if it 
became clear that a system required a keyboard input routine and 
a display routine, these would be written, together with other 
routines, and used as building blocks to construct larger modules 
which would then be put together to make the complete system. 

However, it has been found by experience that the first method, 
'top-down' design, produces software that is better, clearer and 
easier to maintain. The problem with bottom-up design is that 
usually not enough thought is given to the way in which the 
blocks will fit together before constructing them. Therefore the 
designer ends up with blocks that are not exactly the right size 
or shape, and he either has to reconstruct the blocks, or (to 
pursue the analogy) use a lot of mortar and build a system that 
is not very robust, and is difficult to change without toppling 
the whole structure. 

Actually, the situation is not quite as clear cut as this. Pure 
bottom-up design is not possible, because the designer must have 
given the problem some 'top-down' thought or he would have no 
idea what building blocks to construct. But traditionally this 
was not expressed (largely because there was no language or 
notation to express it in), and what is not expressed cannot be 
clearly thought about. The only language available to write down 
a design was program code. There was, therefore, a strong 
temptation to start programming very early, before the larger 
design issues were properly worked out. 

Design languages and notations like those introduced in Chapter 
II, Sections 2.4 and 2.5 solved this problem. It is these 
notations which make top-down design possible, by allowing the 
designer to have a concrete grasp of his design at all levels, 
and to postpone consideration of details until important design 
issues have been worked out. 

A design might be conceived initially like this: 
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FIGURE 3-4. INITIAL DESIGN 
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FIGURE 3-5. READ INPUT 

This could be a device which, after initialization, would wait 
for an operator command, perform the appropriate action, and then 
return to wait for the next command. The device is specified in 
very general terms, but its basic operation is already clear. 

The operator interface might be a teletype keyboard, on which the 
user would type a command telling the system what to do. Suppose 
a command consists of a line entered on a teletype keyboard, 
terminated by a carriage return (CR). The device prompts the 
operator for a command by outputting '?' to the teletype. READ 
INPUT could then be expanded like this: 

The terminal boxes of this diagram can be further expanded when 
the design reaches that level of detail. 

Because of the single entry and exit properties of the constructs 
used, the designer can be confident that however he expands the 
design of, for example, the box labelled 'TAKE APPROPRIATE 
ACTION', it will not affect any of the other boxes in the 
diagram, or the structure of the diagram. (This cannot be said 
of flowcharts, which is why it is difficult to use flowcharts 
without descending to the detailed level.) 

It is this property of structured notation which makes it 
possible to hold off consideration of details and to design in a 
hierarchical fashion, from the top downwards. 



In a practical system, top-down design must often be tempered 
with bottom-uo considerations. It is impossible to start 
designing at the top without some idea of what is possible at the 
bottom. For example, it may be necessary to code and try out an 
I/O routine or a critical. piece of code, in order to check the 
feasibility of the design. With a complex problem, it may be 
necessary to attack the intractable mass in the middle from both 
ends. However, the most important progression in design is from 
problem towards implementation. The reason for stressing it here 
(and elsewhere) is that, traditionally, software has not been 
designed this way - which is as logical as starting to build a 
house before the plans have been drawn. 

3.7 PROGRAMMING 

Programming involves turning a software design into source 
program code, following the syntax rules of a particular 
programming language. The amount of work involved depends on the 
programming language selected for implementation. 

Pascal was designed as a problem-oriented language incorporating 
modern design techniques. Turning a software design into Pascal 
should involve little more than formalizing it and writing it to 
conform to the syntax rules. The constructs used in design can 
be implemented directly in Pascal. The routine work of 
translating the design into machine instructions is handled by 
the compiler. 

BASIC, like Pascal, is a high-level language that handles much of 
the routine work (data allocation, for example) of translating 
the design into machine terms automatically. However, BASIC is 
designee as a simple language and is not quite as powerful as 
Pascal. It does not provide all the design constructs in a 
directly usable form. 



BASIC does have other advantages. Being simple, it is easy to 
learn. As an interpreted language, it has special 
characteristics which are explained in Chapter V. Because it is 
designed to run on the TM990 range of microcomputer modules, a 
design can be developed very quickly and cheaply using standard 
hardware and a very low cost development system. BASIC is ideal 
for experimental and low volume designs. 

Assembly Language is the most powerful, the most time consuming 
and the most difficult alternative. It gives the programmer 
complete control over all the resources of the microcomputer, but 
to exploit this control requires skill and discipline. Program 
development also takes much longer than in a high level 
language. Assembly language should be used where code size and 
efficiency is crucial (for example, for a large volume product). 
It can also be used to code critical areas of a program written 
in a high level language (I/O routines, for example). In 
general, assembly language can be used very effectively in small 
areas; large programs quickly become unwieldy. 

Selecting which language to use depends very much on the 
application, the development facilities available, the 
development timescale, and the skills of the programmers. The 
remaining chapters of this book describe each language in more 
detail. They are not intended to be a complete description, but 
rather to give a feel for each language, so that the designer can 
select which one best meets his needs. 

Programming, or coding, is a relatively mechanical process which 
involves expressing a software design in a precise, unambiguous 
form that conforms to strict syntax rules. The real creative 
work of development is done at the system design and software 
design stages. When choosing which implementation language and 
what type of development system to use, the designer is choosing 
how much of the programming process will be handled automatically 
by software development tools (compilers, linkers, etc.) and how 
much will be done by a human programmer. 
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3.8 TRANSLATION 

Having written a program on paper, it must be physically entered 
into the development system in a machine readable form. This 
will be done by typing the source program in at a keyboard. The 
source program, which is in a programming language, must then be 
translated into machine executable form - that is, a pattern of 
binary O's and l's corresponding to the microprocessor's 
instruction set. 

The steps involved in this process, and the concepts behind it, 
are covered in this section. Utility programs (software tools) 
are used at various stages in the process to perform particular 
steps: these are described, too. 

3.8.1 Files 

Much of the mechanics of program development consists of 
manipulating files on a development system. A file is a 
sequential list of information held on a backing storage device 
(disc, magnetic tape, etc). A file can be read as input data by 
a program running on the development system; the program can 
write back a file of output data. 

iOUTPUT 
FILE  

FROM BACKING TO BACKING 
STORAGE STORAGE 

FIGURE 3-6. I/O 

Utility programs are Provided with a development system to 
perform many of the tasks associated with program development -
for example, translating source code written in a high-level 
language into machine code that can be understood by the 
microprocessor. The source code is held on a file in backing 
storage; the machine code is written to another file. 

A utility program may have several input and several output 
files, depending on the function it performs. An output file 
need not go to backing storage: if it contains textual 
information it might be sent directly to a printer. Similarly, 
an input file might be taken from a card reader or even be typed 
in at a keyboard - they both provide sequential information to 



the program. 

Utility programs are the principal tools of the software 
engineer. Once a design has passed the paper stage, it will 
consist of files held on the development system. Stored in this 
way, the design is manipulated using various software tools 
(utilities). To a hardware engineer, for instance, this medium 
may be unfamiliar; however it has a number of advantages over 
circuit diagrams, printed circuit boards and soldering irons. In 
particular, it can be manipulated by computer programs, thus 
partly automating the design process. 

3.8.2 Text Files 

In order to store textual information in a machine which 
recognizes only binary digits, some form of code must be used -
that is, some rule for transforming textual information into 
binary data. The code adopted for the 990 and 9900 series is 
ASCII (American Standard Code for Information Interchange). The 
ASCII code specifies a unique bit pattern (number) for each 
member of the ASCII character set - letters, digits, punctuation 
marks and control characters. 7 bits are sufficient to uniquely 
identify an ASCII character. ASCII characters are usually stored 
one per byte (8 bits), with the most significant bit often being 
used for error detection (parity check). 

Character ASCII code 
Binary Hexadecimal* 

A 01000001 41 
T 01010100 54 
1 00110001 31 
5 00110101 35 
? 00111111 3F 

line feed 00001010 OA 

This means that textual information can be held in memory, saved 
as a text file on backup storage and manipulated by utility 
programs. 

It is the input and output devices (Visual Display Unit, printer, 
etc.) that recognize '01000001' as 'A', and so on. They 
translate key presses into ASCII coded data, and coded data back 
into displayed and printed characters. 

Program manipulation of textual data is normally limited to 
moving it around in memory (to insert or delete text), searching 
for particular sequences of characters, and similar operations. 
Arithmetic operations on text do not make much sense. 

* For the hexadecimal number system, see Section VI. 
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In many programs (particularly those which communicate with a 
user) there is an application for converting coded digits into 
binary numbers, and vice versa. In a large computer, this is 
usually handled automatically by standard input and output 
routines. The microprocessor user normally has to design his own 
input and output, and write the routines himself. 

Program development, as far as the user is concerned, consists 
largely of manipulating text files on a development system - text 
files which represent program code. 

3.9 SOFTWARE TOOLS 

3.9.1 Text Editor 

A text editor is a program which allows the user to enter text at 
a keyboard, and save it in a file on backup storage (cassette, 
floppy or hard disc). The text will usually consist of source 
code in assembly or high level language; however most editors 
will allow any kind of textual information to be entered. An 
editor also allows the user to modify text (hence its name) by 
entering editor commands at the keyboard. 
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FIGURE 3-7. TEXT EDITOR 

3.9.2 Assembler 

An assembler converts assembly language source code into object 
code, for execution by the microprocessor. The input to the 
assembler will normally be a text file created by the editor. 
The output will be a file of object code. The assembler also 
generates a listing file, which is a text file containing details 
of the assembly, and any error messages. 

FIGURE 3-8. ASSEMBLER 



3.9.3 Compiler 

A compiler performs the same function as an assembler, but its 
input will be source code written in a particular high level 
language. Some compilers produce object code (machine code) 
directly; others generate assembly language source, which must be 
run through an assembler to generate object code. This is an 
extra step. but it does give the user the option of hand 
optimizing the compiler output before it is assembled. 

The TI Pascal compiler generates object code; but hand 
optimization is allowed for by providing a reverse assembler, 
which converts the compiler output back into assembly language 
source. 

3.9.4 Absolute and Relocatable Code 

Before a program can be executed, it must be located at a 
particular place in memory. Addresses in a program refer to 
particular memory locations, and the right data or program code 
must be present at those locations for the program to work. 

Some assemblers for the 9900 (the Line-By-Line Assembler for 
example) produce only absolute code; that is, the position of the 
code is specified at the time of assembly, and cannot 
subsequently be changed. 

However, other assemblers can produce relocatable code. Program 
and data addresses are calculated relative to the program base 
address - usually 0. Address fields are specified as 
"relocatable" in the object code output. When the program is 
loaded for execution, starting at, for example, address 100, the 
loader program can add this value to all the fields tagged 
"relocatable" so that the program will execute correctly. 
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Relocatable code allows the programmer to postpone deciding where 
the program will be located until the time comes to load it. 
This can be very useful when a system is being constructed from a 
number of different program modules. Each module can be 
assembled separately without needing to calculate exactly where 
it will fit in memory - which would involve knowing the lengths 
of all the other modules. More important still, one module can 
be changed (perhaps increasing its length) without the need to 
reassemble all the others in different positions to make room for 
it. 

A system consisting of more than one module will probably need to 
be linked as well as loaded - see the following section for more 
information on the linker. 



3.9.5 Linker 

A linker, or link editor, is a program which will combine 
separately compiled or assembled object modules to form a 
complete system. 

With a system of any size, it is much easier to break the program 
down into modules which can be written separately. Usually, 
these modules will be chosen so that each performs a fairly 
self-contained function and can be treated as a logical unit. 

The interfaces between these modules - that is, the way that they 
will fit together to form a complete system - must be carefully 
considered when the system is being designed. Modules will often 
need to use programs or data contained in other modules. These 
can be defined as external references to symbolic names: they 
will be indicated (tagged) as unresolved addresses in the object 
code. Definitions to be used by other modules will also be 
included in the object code. The linker connects together, or 
resolves, these loose ends by linking references with their 
corresponding definitions. 

Modules to be linked will usually be relocatable. The linker 
stacks them one after the other in memory, adjusting all the 
addresses accordingly. Output from a linker can either be a 
larger relocatable module, or absolute code, designed to be 
executed at a particular position in memory. 

Linkers and relocatable code make a great difference to software 
development. It is possible to break a project down into 
manageable modules. One module can be changed without 
reassembling/recompiling the whole system. The linker 
automatically takes care of changes in module size and in the 
addresses of external variables. This can save a great deal of 
time (and money) in developing software. 

A linker also allows the use of libraries of standard routines. 
It can provide, for example, mathematical capabilities or 
run-time support for a particular programming language. A 
library consists of a number of different modules, which can 
either be written by the user or supplied by a manufacturer. 
These modules are stored as relocatable object code. A user can 
reference any of these modules in his program; when the time 
comes to link, the linker will automatically select from the 
library the modules required by the program, and link them into 
the system. 

With a linker, some modules can be written in high level language 
and others in assembler, according to their characteristics. 
This makes possible a very flexible approach to system design. 



3.9.6 Loader 

A loader is a software utility that loads an executable program 
from some form of backup storage into read/write (RAM) memory, 
for execution by the processor. It is therefore used on a 
general purpose computer rather than a dedicated microcomputer 
system, where the program is likely to be already in ROM memory 
and does not need loading. However, during debugging it may be 
necessary to load a program into RAM memory in a development 
system for test execution. 

Some loaders are relocating loaders - that is, they can take a 
relocatable object program from backup storage and place it at 
any specified position in memory, adjusting the addresses tagged 
'relocatable' so that the program will execute correctly. 

3.10 BASIC PROGRAM DEVELOPMENT 

BASIC program development is a little different from any of the 
other languages because a separate compilation/assembly step is 
not required. A BASIC program is entered in source form using an 
editor which is part of the BASIC system. The program is stored 
in a condensed source form which is directly executable by the 
interpreter. This makes BASIC program development particularly 
simple. It is described in more detail in Chapter V. 

3.11 BACKUP 

Once programming has begun, the work of the software designer 
will be held entirely on files in backing storage: While storage 
media are inherently very reliable, errors do occasionally occur 
(due, for example, to dust accidentally getting into a disc 
drive) which can wipe out days or even weeks of work. It is 
therefore necessary to have some form of backup for important 
files - an extra copy, stored away from the computer. There are 
many ways of doing this: for example, copying files at regular 
intervals to magnetic tape or paper tape. 

One method which works particularly well for floppy disc-based 
systems, and can also be used for hard discs, is to duplicate the 
complete disc (or discs) containing the files for a project. The 
suggested way of doing this is to have 2 backup discs for each 
disc in use. The 3 discs (labelled A, B, C for convenience) can 
be used in a backup cycle: 
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At regular intervals - at least once a week, but depending on how 
much updating has been done - the current disc is backed up. 
This is done by copying the complete disc to the second backup 
(C). The copy should be verified after it has been made. 

COPY s
TB   

CURRENT DISC 

FIRST BACKUP 

SECONDBACKUP 

Once this has been done, the second backup (C) becomes the 
current disc, the previous current disc (A) is relegated to 
backup, and the first backup to second backup: 
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There are two reasons for using C as the new current disc instead 
of continuing with A: 

1) If the cycle is carried out regularly each disc will get 
the same amount of use 

2) If for any reason the copy did not work, this will 
quickly become apparent when trying to use C. 

If the current disc becomes corrupted at any time, the first backup 
can be used to restore the situation at the time of the last backup 
cycle. 

The second backup provides an extra insurance policy against 
catastrophes - for example if a disc drive fault corrupts both the 
current disc and the first backup, or a power failure occurs during 
the backup process. 

The extra expense of triplicating discs (not much for floppies) and 
the time spent backing up is more than paid for by the savings if a 
fault does occur. 3.12 TESTING 

Once a program has been written, it must be tested. However, a 
microcomputer program is often designed to run on a system other than 
the one on which it is developed. The program is often ready for 
testing some time before the target system is built; and in any case 
the target system May not provide the facilities needed to test a 
program. 

3.13 SIMULATOR 

To overcome this problem, some means of simulating the target system 
environment on the development system is required. Texas Instruments 
provides a 9900 Simulator that executes on the 990/10 minicomputer, 
or, as part of the Transportable Cross Support package, on other 
machines. The simulation occurs entirely in software. In effect, the 



simulator builds a software model of the target system on the 
development system. Inputs and outputs are simulated in software. 
The simulator records what would happen if the program was executed on 
the hardware it is designed for. It allows the user to trace exactly 
what goes on when the program is running - examining memory contents 
for example, and following the program's flow of execution. 

The simulator can be operated interactively, with the user sitting at 
a terminal and directly controlling what happens, or by submittimg a 
list of commands and letting it run (batch mode). 

3.14 INTEGRATION 

While a simulator provides powerful debugging facilities, and can be 
used to check out completely the logic of a program, it does not prove 
that the software will work correctly with the target system 
hardware. The critical stage of hardware/software integration is best 
handled using an emulator. 

3.15 EMULATOR 

An emulator allows the software to be tried out in the target system 
hardware, while retaining the facilities of the development system to 
monitor program execution and change the program if necessary. 

This is achieved by connecting the development system to the target by 
a special cable - in effect an umbilical cord. The microprocessor is 
removed from the target system and the cable plugged-in in its place. 

The cable includes a buffer module containing a microprocessor and RAM 
memory. This emulator memory can be loaded from the development 
system with the program under test. The program executes in the 
buffer module exactly as it would in the target system (in real-time) 
and is connected to the target system hardware for input and output. 
But the development system can monitor program execution, trace the 
program flow and stop execution if specified conditions (breakpoints) 
occur. 
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FIGURE 3-9. EMULATOR 

Emulation is provided by the AMPL (Advanced Microprocessor Prototyping 
Laboratory) module, which can be used with a 990/4 or 990/10 
minicomputer. The emulator is controlled by a powerful high-level 
language, in which sophisticated test procedures can be written. 

Once the system is working in emulation, it can be programmed into 
PROMs and the umbilical cord to the development system can be 
removed. At this stage the device should undergo a thorough 
evaluation, preferably by someone not involved in its development. 

3.16 PRODUCTION 

Once a working system has been obtained that satisfies the design 
criteria, the hardware can be frozen and production of the device can 
begin. (If the device is 1-off, of course, it is the end of the 
road.) Hardware typically requires a much longer production lead time 
than software (for printed circuit board layout, tooling, etc.) and 
therefore needs to be frozen much earlier. Minor software changes and 
enhancements can still be made, provided they do not affect the 
hardware. This should not be carried too far: major changes to 
software can take a long time and may require hardware changes, too. 

It is wise not to freeze the software until it has been tested with 
pre-production hardware. Minor problems introduced by the move from 
prototype to production may be able to be fixed in software. This 
will usually be much easier than modifying the hardware at this 
stage. 



3.17 DEVELOPMENT SYSTEMS 

Texas Instruments provides a range of development systems, from the 
simple to the sophisticated, for developing microcomputer software. 
The choice to be made depends on the size of the company, finance 
available, type of application, and the programming language 
selected. 

In this area, investment usually pays off. For example, the cost of a 
TM 990/4 minicomputer with FS AMPL has to be weighed against the extra 
time spent by an expensive engineer if he does not have access to 
these facilities. 

3.17.1 TM 990/4 

The TM 990/4 is a minicomputer which uses the TMS 9900 microprocessor 
as its central processing unit (CPU). With dual floppy discs as 
backing storage, the 990/4 supports the Terminal Executive Development 
System (TXDS). This is a software package which provides a range of 
tools for the development of microcomputer software. These include: 

TXEDIT - Text Editor 

TXMIRA - Relocating Assembler 

TXLINK - Linker 

TXDBUG - Debug Monitor 

TXPROM - PROM Programmer 

TXPROM requires a Prom Programming Unit, a hardware module which plugs 
into the 990/4 chassis. 

3.17.2 TM 990/10 

the TM 990/10 minicomputer is designed for the medium to large user, 
who may be working on several projects at the same time. Under the 
hard disc-based DX10 operating system. the 990/10 provides an 
interactive multi-user environment with up to 1 Mbyte of main memory, 
and all the resources of a powerful general purpose computer. 
Software can be developed for a target system in assembly language or 
Pascal. A software simulator is available for testing target 
Programs. 

The 990/10 can be configured with a range of peripheral hardware, 
including several types of hard discs, floppy discs, magnetic tape and 
line printers. Each user interacts with the system through flexible 
menu-oriented command procedures, which prompt the user for required 



Parameters. The system is designed to be easy to use: most procedures 
supply default parameters, which are linked to other procedures. (For 
example, the "Print File" command defaults to the file most recently 
edited. The file name is displayed on the screen and can be accepted 
or changed by the user.) The command procedures themselves are 
written in a powerful interpretive language. The user can add new 
procedures or change existing ones as required. The system supports a 
Powerful screen-based editor. 

In addition to being a development system, the 990/10 is a general 
purpose computer that can be used for other applications. It supports 
several high-level languages including COBOL, RPGII, BASIC. A 3780 
emulator package is available to allow connection to IBM mainframes, 

3.17.3 AMPL 

AMPL (Advanced Microprocessor Prototyping Laboratory) is a hardware 
and software package that can be added to a TM 990/4 or TM 990/10 
minicomputer to provide complete emulation and trace facilities. AMPL 
is a very useful tool in the critical stage of hardware - software 
integration. It can also be used as a sophisticated software-driven 
logic analyzer - an essential tool for tracing faults in a 
microprocessor system. 

3.17.4 TM 990 Boards 

The TM990 range of microcomputer boards provides standard hardware 
that can be configured to suit many applications. Using these boards, 
hardware development is reduced to a minimum. A complete system can 
be built from a chassis, power supply and one or more TM 990 boards. 

Assembly language and BASIC software for a system such as this can be 
developed using software utilities placed in ROM on the TM 990 boards, 
without the need for a separate development system. This approach is 
not recommended for projects of any size, because the facilities 
available on a full development system are much more sophisticated and 
can greatly improve programmer productivity. However, it is useful 
for low volume and experimental work, where the expense of a 
development system cannot be justified. 

For assembly language programming, a system containing a TM 990/100 or 
/101 board and a /302 Software Development Board provides a text 
editor, symbolic assembler, loader and debugger. The /302 board 
includes a dual audio cassette interface, which provides a simple, 
low-cost form of backing storage. It also includes a PROM 
programmer. 

A simple BASIC development system can be implemented using a single 
TM990/100 or 101 board (see Evaluation BASIC, Chapter V). More 
facilities can be made available, however, by adding a memory 
expansion board or /302 development board and using Development 
BASIC. A /302 board, with the Development BASIC Software Enhancement 



Package, provides a PROM programmer and audio cassettes, as well as 
additional BASIC facilities. 



CHAPTER IV 

PASCAL 

4.1 INTRODUCTION 

Pascal was originated in the early 1970's by Professor Niklaus Wirth 
of ETH University, Zurich, Switzerland. Like the majority of modern 
programming languages, it is derived from ALGOL (ALGOrithmic 
Language). Previous 'high-level' languages, such as FORTRAN, were 
designed to take advantage of a particular computer's instruction set 
(FORTRAN was designed around the IBM 360) and can more properly be 
regarded as high-level assemblers. For example, standard FORTRAN 
makes certain restrictions on the form of array subscripts, DO loop 
expressions, and so on, because this makes the code particularly easy 
to implement on the 360. However, these restrictions also made the 
language difficult to remember (it has a lot of 'quirks'), and the 
restrictions quickly lost their significance when the language was 
implemented on later generations of computers with different 
instruction sets. 

ALGOL was the first serious attempt to design a language that was 
independent of any particular machine's instruction set. The aim of 
the ALGOL designers was to construct a language that would make it 
easy to write clear, correct and maintainable programs. In this they 
largely succeeded. However, while ALGOL became popular with academic 
users, it was never very widely used in industry. This was partly 
because the ALGOL designers were uncompromising in refusing to 
consider implementation efficiency, and partly because ALGOL did not 
gain strong backing from computer manufacturers. 

But ALGOL was the inspiration for a completely new generation of 
languages, of which Pascal is probably the most successful. 

Pascal corrects most of the failings of ALGOL, while still retaining 
its ease of use. It leaves out some of the little-used but expensive 
(in code and time) features of ALGOL, and is designed with efficiency 
of implementation in mind. Therefore it is possible to implement 
Pascal efficiently on a small computer or a microcomputer. It is a 
very practical language. '"ascal was developed principally by one man 
so it has a coherence that some committee-designed languages lack. 
Pascal is very regular (orthogonal): it has few 'quirks', and so is 
easy to learn. The features of Pascal make it equally suited for 
systems and applications work, so that there is no need to use two 
different languages. 

Not only does Pascal have powerful program structures, directly 
implementing the constructs described in Section II, but it also has 
extremely powerful data structures which are very necessary for 
manipulating complex applications. In fact, the Pascal language is 
very close to the design language described in Chapter II because they 



both come from the same root. Turning a software design into Pascal 
should involve little more than "tightening-up" the syntax and turning 
English-language descriptions into precise Pascal statements. 

With rapidly decreasing hardware costs and increasing labor costs, 
software has become the major investment in developing a 
computer-based product. This cost trend has led to the move from 
low-level to high-level languages, necessitating standardization 
within high-level languages. At least as important as the investment 
made in existing software is the cost of retraining programmers to use 
a new language; and to use it efficiently. 

With this in mind, Texas Instruments has made a commitment to use 
Pascal as a corporate standard for all software, whether for 
mainframes or microcomputers. Pascal has become the primary language 
for the Q90 and 9900 range of mini and microcomputers. The majority 
of 9900 systems software is now being written in Pascal- Pascal also 
provides the base for a range of modular software to supply many 
commonly recurring needs. 

Pascal provides a high-level standard that protects software (and the 
programming skills, to implement that software) from future 
obsolescence due to the introduction of new hardware. This form of 
standardization has now become more important than that on a 
particular low-level machine architecture. 

Texas Instruments supports two implementations of Pascal: Texas 
Instruments Pascal (TIP) and the Microprocessor Pascal System. The 
languages are fundamentally the same, but provide slightly different 
features to support their different areas of application. Because 
microcomputer software is the main concern here, this chapter 
concentrates mainly on Microprocessor Pascal system. 

4.2 TEXAS INSTRUMENTS PASCAL OVERVIEW 

TI Pascal was developed prior to the Microprocessor Pascal system and 
was designed to compile and execute on larger machines (the Texas 
Instruments DS 990/10 and the IBM 70). TIP provides 'large machine' 
features such as dynamic arrays and extended precision reals. It also 
includes some extra compiler options allowing, for example, 
optimization probes to be inserted in the program to identify the most 
frequently executed paths. 

TIP generates a conventional serfuential program for execution under 
the control of an operating system. TIP was extended to allow 
execution in other environments (such as a target microcomputer 
system) by the introduction of TIPMX (TI Pascal Microprocessor 
Executive). TIPMX provides the run-time environment for a TI Pascal 
program. and also supports concurrency (see below). In a TIPMX 
system, concurrency is provided by procedure calls to the TIPMX 
executive. 



4.3 MICROPROCESSOR PASCAL OVERVIEW 

Microprocessor Pascal was designed from the start to produce code for 
a target microcomputer system, and to compile on the single-user 
floppy disc based FS990/4 computer and the multi-user DS 990/10. 

The Microprocessor Pascal system provides a complete development 
environment for the design, coding, and debugging of Pascal systems 
for microcomputers. 

Four major components assist in software development: 

• an interactive, syntax-checking editor for source 
preparation and checking 

• a compiler to compile source into interpretive code 

• an interactive debugging interpreter 

• a code generator to generate 9900 native object code 

Two executives support the execution of the user's system on a target 
computer. One supports the interpretive code produced by the 
compiler; the other supports the object code produced by the code 
generator. These executives are functionally identical, so that the 
user has a choice of running either interpreted or compiled code on 
his target system. 

Because microcomputer systems are real time, concurrency is an 
integral part of the Microprocessor Pascal System language (rather 
than being implemented as procedure calls as in TIPMX). A concurrent 
system consists of a number of independent processes executing in a 
single environment. Each process is a separate sequential program, 
and the processes are written as if they were executing 
simultaneously. In fact, the processor can only - do one thing at a 
time; the executive divides processing time between the processes so 
that the effect is of simultaneous execution. Using this approach, a 
programmer can identify the various tasks that a real-time system has 
to perform, with their inputs and outputs, and write a separate 
process for each: the executive will handle the rest. This can 
greatly simplify a complex problem. Synchronization of processes is 
accomplished by signalling devices called semaphores. More complex 
communication between processes can be handled by interprocess files. 
Further information on concurrency is presented later in the chapter 
(subsection 4.5). Attention is now turned to Microprocessor Pascal 
system major components. 



4.3.1 Microprocessor Pascal system Editor 

Microprocessor Pascal features an interactive, screen-based editor 
that allows the user to create and modify Microprocessor Pascal system 
source files. When editing, a page of text is displayed on a video 
display unit (VDU screen). The text may be modified simply by 
positioning the cursor and typing new information. Characters can be 
inserted and deleted anywhere on the screen. The displayed page can 
be positioned anywhere within the text file; page boundaries are not 
fixed. 

Alternatively, the user can press the command (CMD) key and enter a 
range of edit commands, including find string, replace string, etc. 

When creating a source file, the editor assists line by, line program 
layout by automatically positioning the cursor for a new line. The 
cursor can be moved forward or backward using the TAB keys. This 
helps in indenting text to reflect the program structure. The tab 
increment (number of columns for each indentation) can be set by the 
user. 

When the program has been entered, the user can perform a Pascal 
syntax check without leaving the editor by entering tv'o ('PECK 
command- The editor is not equipped to detect semantic errors (such 
as undeclared identifiers), but will perform a complete syntax check 
that will find such errors as misspelled or missing keywords, 
incorrect punctuation, invalid constructs, etc. 

When the editor finds an error, it outputs an appropriate error 
message to the screen, displays the relevant area of text and 
positions the cursor over the error so that the user can edit it 
immediately. When this is done, the CHECK command can be reentered 
and checking will resume from the earliest point at which the text was 
changed. (THE checker only 'backs up' as much as is necessary; it 
does not need to restart from the beginning of the file). 

The syntax checker speeds up and simplifies the process of correcting 
syntax errors. It eliminates exiting the editor, executing the 
compiler printing the listing, and re-editing the source file for 
each mistake. The entire process becomes a single interactive step. 

The CHECK facility is entirely optional. The Micprocessor Pascal 
system editor can be used for text files other than MPP source. 

A full list of editor commands is presented later in this chapter 
(subsection 4.6)- 

4.3.2 Microprocessor Pascal Compiler and Code Generator 

The Microprocessor Pascal compiler generates interpretive Pascal code 
from a Microprocessor Pascal source file. This code can be executed 
directly using the interpretive debugger or the Microprocessor 
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Interpretive Executive, or it can be passed through the Microprocessor 
Pascal system code generator to produce native 9900 object code that 
will run under the Microprocessor Pascal executive. 

Thus, Microprocessor Pascal gives the user a choice of executing 
either interpretive or native code. Interpretive code and native code 
for the same Microprocessor Pascal system source file will be 
functionally identical, apart from considerations of speed and code 
size. 

Interpretive code executes slower than native code; but (beyond a 
certain size, which accounts for the overhead of the interpreter) an 
interpreted system is much smaller. Interpretive code takes up about 
half the memory required by the equivalent native code. Therefore, 
for a large application, interpretive code can represent a great 
saving in memory. 
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In selecting whether to use native or interpretive code, the user can 
trade off speed against memory size. One example of such a trade-off 
is the Microprocessor Pascal compiler itself. On the FS990/4 floppy 
disc based system, the compiler executes interpretively so that it 
will fit into the available memory space (it still runs at an 
acceptable speed). On the DS990/10, where there are no memory 
restrictions, it executes as native code to maximize the speed. 

Various compiler options are available. These options include: 

LIST - generate source listing 
MAP - generate variable map 
STATMAP - generate map of displacements for each 

statement in the object module 
DEBUG - insert statement numbers in code for 

debugger 
ASSERTS - generate code for ASSERTS statement 
CKINDEX - insert run-time checks for array indices 
CKPTR - insert run-time checks for NIL pointers 
CKSET - insert run-time checks for set element 

expressions 
CKSUB - insert run-time checks for subrange 

assignments in bounds 

4.3.3 Micprocessor Pascal Debugger 

The Micprocessor Pascal debugger is an interactive interpreter that 
allows the user to control and monitor execution of a Micprocessor 
Pascal. This greatly simplifies the task of finding errors in a 
system (debugging). 

The debugger is designed for use with a concurrent (multiple process) 
system. The user can monitor the execution of a single process, or 
examine and control process scheduling and communication. Debugging 
usually proceeds with one aspect of a system at a time. 

The user can set breakpoints at any Pascal statement by specifying the 
routine and the statement number (printed on the source listing). The 
system can be executed in single-step mode (one Pascal statement at a 
time), or continuously until a breakpoint is reached. Three modes of 
tracing, trace process scheduling, trace routine entry/exit and trace 
statement flow, are possible. 

The contents of a routine's stack frame (data area), heap, and common 
areas, can be displayed and modified. The scheduling algorithm can be 
overridden by holding (suspending) a particular process until an 
explicit release command is given. 

The user can also reconnect interprocess files (discussed later in 
this section) using the Connect Input File and Connect Output File 
commands. The new file that results can be sent to an external file 
or to the terminal. The process concerned will then input or output 



to the device specified. If it is a terminal, the system will prompt 
for input, and send a message identifying the source for output. 

Interrupts can be simulated using the SIMulate Interrupts command. 

The system has three ways of dealing with CRU I/O (for a description 
of the CRU, See Section VI). CRU statements can be directly executed, 
ignored. or simulated by the user. The "CRU" command is used to 
specify which option applies to a particular process. When simulated 
I/O is specified, the CRU address and value are displayed for output 
and the user is prompted for input. This feature can be useful when 
debugging software for a target system, which is likely to have a 
different CRU configuration from the development system. 

The Micprocessor Pascal debugger is a very powerful high-level tool 
for verifying the detailed execution of a piece of software. It is 
designed to integrate closely with the other components of 
Microprocessor Pascal and to form a complete system in which designs 
can be smoothly carried through to implementation. 

4.4 PASCAL STRUCTURE 

4.4.1 Features 

Pascal has structured statements which allow the user to produce a 
readable, maintainable, and easily checked program algorithm with 
mimimum effort. These structures, if used as intended, automatically 
generate hierarchical, nested code resulting in an easier understand, 
and (as has been proved) better, more correct software. Pascal's 
structured statements include IF CASE, FOR, WHILE and REPEAT; they 
are described in Paragraph 4.5.11. 

Pascal provides extensive data structuring: RECORD and ARRAY data 
structures can be combined and nested to any level The POINTER data 
type allows powerful structures such as linked lists and trees. It 
also permits dynamic storage allocation. Pascal's data structures are 
described in Paragraph 4.5.3. 

One of Pascal's most useful features is data typing. This allows data 
to be grouped according to use, and can clarify the design of a 
program so that, for example, it is easier to change at a late stage 
in development. Compiler checks on type compatibility can greatly 
reduce the risk of undetected errors in program code. 

In addition to the standard data types, Pascal allows the user to 
define his own data types, which can have values represented by 
meaningful names as well as numbers. This can assist in program 
documentation. The type concept was discussed in Section II. Its 
Pascal implementation is described here in Paragraphs 4.5.4 to 4.5.7. 

Pascal allows the user to define meaningful names for his identifiers 
(there are no arbitrary length restrictions). By using these 



identifiers and standard keywords (IF...THEN...ELSE), the programmer 
creates a largely self-documenting program. 

Pascal is a block structured language, which means that procedures 
(and processes) can be nested to any depth. It is therefore a natural 
language for writing modular software. Block structure and scope 
rules are described in Paragraph 4.4.6. 

The concurrency features of Micprocessor Pascal allow a new approach 
to software design. particularly for microcomputers. A real-time 
problem can now be divided into separate parallel processes, each of 
which can be simply specified and coded. (A powerful extension of the 
concept of modular software). Concurrency was designed into 
Microprocessor Pascal from the start; all the development tools that 
make up the Microprocessor Pascal system were designed to support it. 
However, if the user wishes to develop a conventional sequential 
program in Microprocessor Pascal, he can do so without incurring any 
extra expense. The mechanisms involved in concurrency are described 
in more detail. Additional information can be obtained in the 
references stated at the end of this chapter. 

4.4.2 Stack and Heap 

Like the majority of modern high-level languages, Pascal has a stack 
architecture. The stack is an area of data storage from which 
sections (called stack frames) are allocated to a program or procedure 
at the time it is invoked. When the program or procedure has finished 
executing, its data storage area is returned to the stack for use by 
other routines. The workspace register concept of the 9900 (see 
Section VI) forms a natural basis for implementing stack frames. 

Stack architecture means that data is completely separated from 
program code, so that Pascal adapts naturally to the ROM/RAM 
environment of a microcomputer. It also means that Pascal code is 
automatically re-entrant. If a routine is simultaneously invoked from 
different parts of a system (as can well happen in a concurrent 
system) both invocations can use the same program code; it is only 
necessary to create different stack frames. 

In addition to the storage provided in the stack, Pascal is able to 
allocate storage dynamically, under program control, from an area 
called the heap. This is accomplished using the standard procedures 
NEW and DISPOSE, and the pointer variable described in Paragraph 
4-5.6.5. 

4.4.3 Systems and Programs 

The largest unit in Micprocessor Pascal is a SYSTEM. A system maK 
contain a number of processes, apparently executing in parallel. 
Level 1 (highest level) process is declared, in Microprocessor Pascal, 
by the keyword PROGRAM. A conventional sequential program can be 
regarded as a special case of a system with only one PROGRAM. 



4.4.4 Processes and Procedures 

Each PROGRAM can contain within it subordinate processes that are 
declared by the keyword PROCESS. The keyword PROGRAM is used at the 
highest level because processes at this level have special 
properties. This also maintains compatibility with standard Pascal. 

A system, program or process can contain within it procedures or 
functions. 

Processes and procedures look similar but, in practice, are quite 
different A procedure is, logically, a part of the sequential 
program that calls it, whereas a process is a separate sequential task 
that executes in parallel with all the other processes in the system 
including the one that calls, or STARTS it. 

4.4.5 Declarations and Statements 

There are two principal parts to any Pascal system, program, process, 
or procedure: the Declarations, and the Statement Body. 

Declarations define identifiers that can later be referred to by name 
(instead of by repeating the declaration). These identifiers specify 
the data that the program is to work with; the statements specify 
exactly what is to be done with this data. 

PROGRAM FACTORIAL; 

VAR I,J.N : INTEGER; (*DECLARATIONS*) 
(*DECLARE VARIABLES NAMED*) 
(*I. J. N OF TYPE INTEGER*) 

BEGIN (*COMPUTE FACTORIAL*) (*BODY*)  
RESET(INPUT); 
READ(N); (* READ IN A VALUE FOR N *) 
I := 1; J := 1; (* SET I AND J TO 1 *) 
WHILE I <> N DO 

BEGIN (*USE I AND J TO COMPUTE *) 
I := I + 1; (* FACTORIAL N *) 
J := I * 
END; 

WRITELN(J) (* OUTPUT VALUE OF *) 
END. (* FACTORIAL N *) 

The declarations also specify any subordinate processes, procedures, 
etc., and assign identifiers to them so that they can be referred to 
in the statement body. 

Pascal programs are free format; the program can be laid out in any 
manner on the page. Statements for example, need not utart in a 
particular column; nor are they restricted to one per line, though 
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this is usually good practice. 

Pascal gives the programmer a free hand in formatting his program. 
However, for readability, it is a good idea to lay out the program to 
reflect its structure. This can be done by using indentation. In the 
example above, the BEGIN...END compound statement depending on the 
WHILE clause is indented to show that it is one level down in the 
program hierarchy. In fact, the indentation reflects the appearance 
of the structure diagram for the program (see Section II): 

FIGURE 4-2. PROGRAM STRUCTURE 
DIAGRAM 



Formatted in this way. the program is much more readable and the 
structure can be seen at a glance. 

4.4.6 Block Structure 

One of the most important features of Pascal is its block structure. 
Some of the basic ideas of block structuring are discussed in Section 
II. 

A block is a self-contained area of program that contains both a 
statement body and the declarations (type, variable, procedure, etc.) 
Relating to it. A Pascal program consists of a hierarchy of blocks, 
nested one within another. An Micprocessor Pascal system block, which 
is a complete MPP system, contains a number of program blocks. which 
in turn can contain process blocks, procedure and function blocks, 
etc. The hierarchy is displayed below in the diagram in Paragraph 
4.5. 

The declarations made at the start of a block apply to that block and 
to any blocks nested within it. This is called the scope of the 
declaration. Scope can be formally defined as the range of system 
text over which the declaration is valid. Identifiers cannot be 
referenced outside their scope, i.e. outside the block in which they 
are declared. For example, consider the following: 



SYSTEM X; 
<declarations> (*system declarations*) 

PROGRAM A; 
<declarations> 

PROCEDURE P; 
<declarations> 
BEGIN 

END; 

(*program declarations*) 

(*procedure declarations*) 

(*Procedure body*) 

PROCEDURE Q; 
<declarations> (*procedure declarations*) 
BEGIN 

(*Procedure body*) 

E▪  ND; 

BEGIN 
(*Program body*) 

END; 

PROGRAM B; 
<declarations> (*program declarations*) 

PROCEDURE R; 
<declarations> (*procedure declarations*) 
BEGIN 
. (*Procedure body*) 

END; 

BEGIN 
. (*Program body*) 
• 
END; 

BEGIN 
(*System bodv*) 

END. 

The declarations in PROGRAM A cannot be referenced in PROGRAM B or 
PROCEDURE R, but can be referenced in both PROCEDURE P and PROCEDURE 
Q. The declarations in PROCEDURE P cannot be referenced in PROCEDURE 
Q or in PROGRAM A. 

If a reference is made to a declaration (variable, type, procedure, 
etc.) that is not in scope, the compiler will generate an error 
message. Block structure and scope rules are thus powerful tools for 
managing program structure. Procedure P, for example, can be written 
without worrying whether it will interfere with procedure Q. A 



variable can even be declared in P with the same name as a variable 
declared in Q; they will be completely different variables because 
they are in different areas of scope. If a variable is declared in P 
with the same name as a variable declared in A, the compiler will 
create a new variable with this name, and references to it in P will 
always access this local definition. Where there is a possible 
ambiguity, the compiler always chooses the most local declaration. 

This does not mean that it is good practice to declare different 
variables with the same name. But, should it happen (if, for example, 
modules are written by different programmers) there is no cause for 
worry. Note that in the example, both P and Q can access the 
declarations made at the start of program A; the interaction with data 
declared in higher-level modules needs to be clearly defined when 
writing a system. This should be part of the module specification. 

As well as assisting program structure, block structuring (combined 
with Pascal's stack architecture) can save memory space. Data area is 
not allocated to a procedure from the stack frame until it is actually 
called. This means that if, say, procedure P is called followed by 
procedure Q, the space taken up by the variables of procedure P is 
returned to the stack when it has finished executing, and the same 
memory area can be used for the variables of procedure Q. The system 
only allocates data space to the routines currently executing. 

A variable has an extent as well as a scope. Extent is the time 
during system execution for which storage space is allocated to the 
variable. Apart from dynamically allocated variables, this extent is 
the duration of execution of the block in which the variable is 
declared. In a concurrent system, a variable's extent continues as 
long as any of the processes declared in the same block are 
executing. The reason for this is that the variable is in scope in 
such a process and might be referenced. 

4.5 PASCAL LANGUAGE 

4.5.1 Basic Rules 

A Pascal system, program, or process is made up of symbols from a 
finite vocabulary. The vocabulary consists of identifiers, numbers, 
strings, operators and keywords. These in turn are composed of 
sequences of characters from the underlying character set, which is 

+ - 

the letters A-Z, a-z 
the digits 0-9 

and the special characters: 
/ " . : = $ < > ) [ { # 

Special symbols are used for operators and delimiters. These include: 

- * / := = <> < <= >= > 



Keyword symbols are reserved words with a fixed meaning; they may not 
be used as identifiers. They are written as a sequence of letters and 
interpreted as a single symbol. 

ACCESS ELSE MOD REPEAT 
AND END NIL SEMAPHORE* 
ANYFILE* ESCAPE NOT SET 
ARRAY FALSE OF START* 
ASSERT FILE OR SYSTEM* 
BEGIN FOR OTHERWISE TEXT 
BOOLEAN FUNCTION OUTPUT THEN 
CASE GOTO PACKED TO 
CHAR IF PROCEDURE TRUE 
COMMON IN PROCESS* TYPE 
CONST INPUT PROGRAM UNTIL 
DIV INTEGER RANDOM VAR 
DO LABEL REAL WHILE 
DOWNTO LONGINT RECORD WITH 

* not in TIP 

Identifiers are names denoting user defined or predefined entities. 
An identifier consists of a letter or '$' Followed by any combination 
of letters, digits, '$' Or (underscore). A lower-case letter is 
treated as if it were the corresponding upper-case letter. For 
example. the identifier Data Size is the same as the identifier 
DATA SIZE. A maximum length is imposed by the restriction that 
identifiers must not cross line boundaries so that they may not be 
more than 72 characters long. All characters in an identifier are 
significant. Process, routine and common names should be unique 
within the first 6 characters. 

Legal Identifiers: 
X 
$VAR 
LONG IDENTIFIER 
NUMBER _3 
READ — 

Illegal Identifiers: 
ARRAY (Reserved word) 
ROOTS (Cannot start with _) 

7RDVAL (Cannot start with number) 
MAX VALUE (Cannot contain blank) 
TOTAL-SUM (Cannot contain -) 

Some identifiers are standard, that is they are predefined with a 
given meaning They can be redefined by the user, in which case the 
standard meaning no longer applies. For example, if the standard 
routine name READ is redefined, the standard routine READ cannot be 



A comment is any sequence of characters beginning with { or (* and 
ending with } or *) (except within a string). A remark is any 
seauence of characters beginning with " and extending to the end of 
the line (except within a string). Comments and remarks are ignored 
by the compiler, and can be used to annotate program text. 

4.5.2 Systems 

In Microprocessor Pascal, a system is declared as follows (the full 
syntax definition is given in the Microprocessor Pascal System User's 
Manual. 

SYSTEM <identifier>; 

<system data declarations>; 

<system routine declarations>; 

<process body> . 

The <system data declarations> declare global constants that are 
common to the whole system. The <system routine declarations> declare 
the programs and procedures that make up the system. The <process 
body> consists of the statements that make up the 'main program' of 
the system (the first process to be executed). In a concurrent 
system. this 'main program' will probably contain (besides 
initialization statements) a series of START statements to set up the 
various concurrent processes of which the system is composed. For 
example: 

A program (Level 1 process) declaration is as follows: 

PROGRAM <identifier> <program parameters>; 

<program data declarations>; 

<program routine declarations>; 

<process body>. 

The <program parameters> are optional. The <program data 
declarations> declare data objects local to the program. The <program 
routine declarations> can contain process, procedure or function 
declarations. 

A process declaration is: 

PROCESS <identifier> <process parameters>; 

<process data declarations> 

<process routine declarations> 



<process body>; 

The <process routine declarations> can declare subordinate processes, 
procedures, and functions. 

Procedures are declared as follows: 

PROCEDURE <identifier> <procedure parameters>; 

<procedure data declarations> 

<procedure and function declarations> 

<compound statement›; 

A procedure may declare subordinate procedures and functions, but not 
processes. The compound statement (described in Section 4.12.1) is 
simply a list of statements which describe the action of the 
procedure. Syntactically, a <process body> is also a compound 
statement. 

Functions are the same as procedures, except that they return a single 
value of a specified type. The type is defined in the function 
header: 

FUNCTION <identifier> <function parameters> : <type identifier›; 

Types are discussed in the following sections. 

Micprocessor Pascal regards a single sequential program as a system 
with only one program. The SYSTEM declaration can be left out, and 
the program declared as: 

PROGRAM <identifier>; 
<declarations> 
<program body> . 

(The syntax given here is not complete: a full syntax definition is 
given in the Micprocessor Pascal System User's Manual, and is included 
in the Reference Section of this chapter.) 



The declarations hierarchy is represented in the following diagram: 

SYSTEM 

PROGRAMS PROCEDURES FUNCTIONS 

\\\ ///7 / \ 
PROCESSES PROCEDURES FUNCTIONS PROCEDURES FUNCTIONS PROCEDURES FUNCTIONS 

/\ /\ 

PROCESSES PROCEDURES FUNCTIONS 
/I\ /\ /\ 

ETC 

FIGURE 4-3. DECLARATIONS 

HEIRARCHY 

The hierarchy for a sequential program which does not allow concurrent 
processes is represented as follows: 

PROGRAM 

\ / \ 
ETC / \ 

PROCEDURES FUNCTIONS 

PROCEDURES FUNCTIONS PROCEDURES FUNCTIONS 

ETC 

FIGURE 4-4. SEQUENTIAL PROGRAM 
NOT SUPPORTING CONCURRENCY 



4.5.3 Data Declaration• 

The data declarations section of a program consists of four separate 
parts: 

<constant declaration *tart> 
<type declaration part> 
<variable declaration part> 
<common declaration part> 

The <constant declaration part> allows an identifier to be used as a 
synonym for a constant. For example: 

CONST MAX = 100; 
ASTERISK = '*'; 
ONE HALF = 0.5; 

Constant declarations are described in detail in the Micprocessor 
Pascal User's Manual. 

Type and variable declarations are described below. The COMMON 
declaration allows variables to be shared between modules; it is 
described in the Microprocessor Pascal User's Manual. 

4.5.4 Type Declarations 

The type concept allows the user to group data according to its use. 
Types are introduced in Section II. 

A data type declaration defines the set of values a variable of the 
type specified may assume and the set of operations that may be 
performed on these values. Each variable is associated with one and 
only one type. The simple types consist of the standard types 
INTEGER, REAL, BOOLEAN and CHAR; plus the user-defined scalar or or 
subrange types. Structured types are made up of component types 
structured according to accepted methods. Structured types are 
declared by specifying the types of the components and the method of 
structuring. The structuring methods available consist of arrays, 
records, sets, pointers, semaphores (not TIP) and files. 

A type declaration introduces an identifier as the name of a new data 
type. It can later be used to refer to that type; for example, to 
define variables, or to define structured types in which that type is 
included. The form of a type declaration is: 

TYPE <type declaration list> 

where <type declaration list> is one or more of the following: 

<identifier> = <type definition›; 



For example: 

TYPE VECTOR = ARRAY [1..10] OF REAL; 
DAYS = (MON,TUE,WED,THU,FRI,SAT,SUN); 
DIGITS = '0'..'9'; 
COMPLEX = RECORD 

RE,IM : REAL; 
END; 

The various forms of <type definition> are described in subsequent 
sections. 

The TYPE declaration does not declare any actual variables (storage 
locations); this is accomplished in the variable (VAR) declaration 
(described in section 4.8 

4.5.5 Simple Types 

4.5.5.1 Integer and Longint. A value of type INTEGER is a whole 
number in the range -32768 to 32767 (signed 16-bit quantity). A value 
of type LONGINT ranges from -2147483648 to 2147483647 (signed 32-bit 
quantity). 

The basic operators defined for INTEGER and LONGINT operands are: 

unary plus or add 
negate or subtract 
multiply 

DIV divide and truncate result 
MOD modulus A MOD X = A - ((A DIV X) * X) 

The operator/ (divide) can be applied to integers, but always 
produces a REAL result. The relational operators =, <>, <, >, <=, >= 
can be applied to integers and produce a BOOLEAN result. Standard 
functions applying to INTEGER and LONGINT are described in the 
Reference Section. 

4.5.5.2 Boolean. A value of type BOOLEAN is one of the logical 
values TRUE or FALSE. The following operators are defined for BOOLEAN 
operands and yield BOOLEAN results: 

NOT logical negation 
AND logical conjunction 
OR logical disjunction 

TRUE and FALSE are predeclared keywords such that FALSE < TRUE. Thus 
the relational operators can be used with BOOLEAN operands to provide 
additional operations. For example: 

equivalence 
<> exclusive OR 



4.5.5.3 CHAR. Values of type CHAR are ordered according to their 
ASCII value. A character constant can be written either as a single 
character between single quotes, or by specifying its hex value, 
preceded by '['. For example, 

'A' 
'[OD' 

4.5.5.4 Enumeration. INTEGER, LONGINT, BOOLEAN and CHAR are special 
cases of the enumeration type. An enumeration type is any simple type 
except REAL. The characteristics of an enumeration type are: 

1) There is a distinct set of values which a variable of 
that type can take. 

2) These values have a unique linear order in which each 
value (except the first and last) has a single 
predecessor and a single successor. 

The integers 
-32768,-32767....-1,0.1,...32766.32767 

Clearly follow these rules; so do the characters, which have a unique 
order (A,B,C, etc) defined by their ASCII representation. However, 
the user can also define his own enumeration types in a TYPE 
declaration simply by specifying a type name and an ordered set of 
values: 

TYPE DAYS = (MON,TUE,WED,THU,FRI,SAT,SUN); 

The values are represented by identifiers which must be unique and 
which can be regarded as primitive values (such as '7' or '125'). It 
is not necessary to translate them into numbers, or know how they are 
represented within the computer, any more than it is necessary to work 
out the internal-bit pattern used to represent '125'. 'MON', 'TUE', 
etc- are values in their own right. 

These user defined types are called scalar types. The relational 
operators (>, <, etc.) are defined for all enumeration types. The 
BOOLEAN expression MON < WED is TRUE because the values form an 
ordered set in which MON precedes WED. However, the arithmetic 
operators (+, -, etc.) are only defined for the standard types INTEGER 
and LONGINT (and REAL); it is meaningless to write MON + WED. The 
following standard functions apply to enumeration types: 

SUCC(X) the successor of X 

PRED(X) the predecessor of X 

ORD(X) the integer ordinal value of X within the set 
of values (not defined for INTEGER or LONGINT) 

e.g., SUCC(WED) = THU, PRED(WED) = TUE, ORD(WED) = 3. 



Scalar types are useful for counting purposes for example, to index 
into an array or control the number of iterations of a FOR loop: 

FOR DAY := MON TO FRI DO 
TOTAL_TAKINGS := TOTAL_TAKINGS + TAKINGS[DAY]; 

The variable DAY is declared to be of type DAYS; the array TAKINGS is 
declared to be indexed by type DAYS. 

4.5.5.5 Subrange. A type can be defined as a subrange of any 
previously defined enumeration type by specifying the smallest and 
largest values in the subrange: 

TYPE WEEKDAYS = MON..FRI; 
ARRAY INDEX = 1..25; 

This is a useful feature, because a compiler option can be used to 
insert run-time checks to ensure variables do not exceed their 
specified subrange. This can be a great help in debugging. Types can 
also be used in declaring arrays, for example: 

VAR TABLE : ARRAY [ARRAY_INDEX] OF INTEGER; 
SICKDAYS : ARRAY [DAYS] OF BOOLEAN; 

This performs the double function of specifying the size of the array. 
and the type of the index variable. Constructs such as this make it 
easy to change the size of an array at a late stage in development, 
simply by altering one or two TYPE statements. (Arrays and variable 
declarations are discussed in this Chapter.) Section 4.8.) 

4.5.5.6 REAL. The type REAL can be used to represent real values 
with from 6 to 7 decimal digits of precision. The range of absolute 
values that can be represented is approximately 1.0E-78 through 
1.0E75. 

The following operators accept operands of type REAL and yield a REAL 
result: 

unary plus or add 
negate or subtract 
multiply 
divide 

The relational operators are defined for REAL operands and yield a 
BOOLEAN result. The standard functions TRUNC, ROUND, LTRUNC, LROUND 
will truncate or round a REAL value to give an INTEGER or LONGINT 
result. 



4.5.6 Structured Types. 

Structured types can be constructed from other types which are called 
components. The components can be structured to form an array, 
record, set, file, pointer, or semaphore. 

4.5.6.1 Array Type. An array type consists of a group of components 
which are all of the same type. The form of an array type definition 
is: 

ARRAY [ <index type list> ] OF <component type> 

The <component type> can be any type except FILE. This means that it 
is possible to have arrays of arrays, records or any other structured 
type. The <index type list> is a list of <index type>s separated by 
commas. These can be either explicit subrange definitions (such as 
1..5) or the name of a suitable enumeration type (such as DAYS). The 
number of <index type>s in the Oellaration determines the number of 
dimensions of the arra.% There is no limit to the number of 
dimensions an arra., may have. Each <index type> definition determines 
both the size of that dimension of the array, and the type of the 
variable that will be used to index it. An <index type> can be any 
enumeration type; the types of different dimensions need not be the 
same. For example: 

VAR HOLIDAYS : ARRAY [1..52, DAYS] OF BOOLEAN 

An exactly equivalent definition is: 

VAR HOLIDAYS : ARRAY [1..52] OF 
ARRAY [DAYS] OF BOOLEAN 

The assignment operator can be used between arrays of compatible 
types. For example: 

VAR A,B : ARRAY [1..20, 25..50, 1..2]; 
• 

A := B; 

This causes every element in array A to be assigned the value of the 
corresponding element in array B. 

consists of 
called fields. 
. A field of a 
) Except file 

a number of 
Each field in a 
record can be of 
. The form of a 

4.5.6-2 Record Type. A record type 
components of possibly different types 
record type is given a distinct name 
any type (including array, record, etc. 
record type definition is: 

RECORD <field list> END 

A <field list> is an arbitrary number of <record section>s separated 



by semicolons. Each <record section> is of the form: 

<field identifier list> : <type> 

where <field identifier list> is a list of field identifiers separated 
by commas. For example: 

TYPE COMPLEX = RECORD 
RE, IM : REAL 
END; 

DATE = RECORD 
MONTH : 

DAY 
YEAR : 
END; 

(JAN,FEB,MAR,APR.MAY,JUN,JUL, 
AUG,SEP,OCT,NOV,DEC); 

1..31; 
INTEGER 

The assignment operator (:=' can be applied to records of exactly the 
same type. 

A field of a record is referenced by specifying the name of the record 
variable and the field name separated by a period. For example: 

VAR START, FINISH : DATE; 
Cl, C2, C3 : COMPLEX; 

START.DAY := 20; 
FINISH.YEAR := 1978; 

Cl.RE := 3.4; 
C3.IM := 5.8; 

and 
START := FINISH; 

which is equivalent to 

START.MONTH := FINISH.MONTH; 
START.DAY := FINISH.DAY; 
START.YEAR := FINISH.YEAR; 

Pascal also allows record variants which means that part of a record 
can be interpreted in more than one way. This allows, for example, a 
personnel record for a college to contain different information 
(different fields) according to whether It described a student or a 
member of staff. Record variants are described in detail in the 
Microprocessor Pascal System User's Guide. 

4.5.6.3 Set Type. Pascal allows a set type where the possible values 
are subsets of the base type which can be any enumeration type. For 
example, with the base type 1..5, possible values of a set variable 
include: 



[1,2,3] 
[2,3,5] 
[1,2,3,4,5] 
] (the empty set) 

A full range of operators is defined for sets (union, intersection, 
inclusion. etc.) The set type is described in detail in the 
Microprocessor Pascal System User's Guide. 

4.5.6.4 File Type. A file type is a structure which consists of a 
sequence of components (of unspecified length) which are all of the 
same type. A file is usually associated with a mass storage medium, 
such as tape or disc. However, this is not necessarily the case in 
Microprocessor Pascal rile variables can be used as a means of 
communicating between concurrent processes. One process can write 
information to a logical file and another can read it. The 
Microprocessor Pascal Executive or Microprocessor Interpretive 
Executive perform the file management without involving any external 
storage devices. 

The form of a file type definition is: 

FILE OF <component type> 
or 

RANDOM FILE OF <component type> 
or 

TEXT 

The component type of a file can be any type except pointer or file. 
The number of components, that is the length of the file, is not 
specified and can grow to any size, depending on the storage medium 
with which the file is associated. 

The prefix RANDOM denotes a random file in which components are 
accessible by their component number. This numbering is defined to be 
the natural ordering of the sequence of components with the first 
component being number zero. 

A TEXT file is a sequential file of type CHAR which is divided into 
lines by end-of-line markers. INPUT and OUTPUT are standard 
predeclared TEXT files. 

TYPE REC = RECORD 
NAME : PACKED ARRAY [1..15] OF 
ID NUM : INTEGER 
END; 

VAR F : FILE OF INTEGER; 
EMPLOYEE : RANDOM FILE OF REC; 
TEMP : TEXT; 

Standard procedures and functions (READ, WRITE, etc.) are provided for 
file manipulation. 



4.5.6.5 Pointer Type. Variables may be referenced indirectly by 
means of a pointer which can be thought of as the address of a 
variable. The form of a pointer type definition is: 

@<type identifier> 

A pointer variable can only point to the type for which it is 
declared. This goes a long way to 'taming' the potentially dangerous 
pointer type, which (in languages such as PL1) is allowed to roam 
freely throughout memory, and can cause chaos if the programmer makes 
a small error in manipulating it. (In Pascal it, is always possible 
to use the type transfer function; but the programmer is obliged to 
tell the compiler that he is doing something risky.) 

The <type identifier> need not be defined before the pointer type is 
defined, provided it is declared later in the declaration section. 
This is a forward type declaration, which is only permitted with 
pointer types. All pointer types include the predefined value NIL, 
which points to no element at all. 

TYPE PTR = @LIST; 
LIST = RECORD 

VALUE : REAL; 
LOC : 0..FF 
END; 

PTR is declared to "point to the type LIST". 

The operators applying to pointer operands with compatible types are: 

assignment 
equal (TRUE if the operands point to the same address) 

<> not equal 

Pointers allow storage to be dynamically allocated from a storage area 
called the heap through the use of star dard proced ure NEW. Pointers 
can also be used to construct data structures such as linked lists and 
binary trees. A linked list is easily created by defining a record 
which contains one field that is a pointer to the next record. 
Similarly, a binary tree of records can be constructed by defining a 
'right link' and 'left link' pointer within the record. 

4.5.6.6 Packed Types. The symbol PACKED may precede a record or 
array type definition. If a structure is declared to be PACKED, 
several unstructured components of the structure are stored in one 
word if possible. Packing may economize the storage requirements of a 
data structure but at the expense of efficiency of access of the 
components. 

One example of a packed array is a string defined to be: 



PACKED ARRAY (<index type>] OF CHAR 

Characters are stored one per byte. 

Details of the packing algorithm are presented in the Microprocessor 
Pascal User's Manual. 

4.5.7 Type Compatibility and Transfer 

Pascal has strict rules for compatibility between types. In general, 
incompatible types cannot appear on opposite sides of an assignment 
statement, or as operands of the same operator. 

Two types are distinct if they are explicitly or implicitly 
in different parts of the program. A type is explicitly 
using a TYPE declaration. A type may be implicitly declared 
declaration or in other places where a name is not associated 
type (e.g., in specifying an array index type). 

declared 
declared 
in a VAR 
with the 

Two types are 

1) They 

2) Both 

3) Both 

4) Both 

5) Both 

6) Both 

compatible if one of the following is true: 

identical types 

subranges of the same enumeration type 

string types with the same length 

set types with compatible base types 

file types with compatible element types. 

are 

are 

are 

are 

are 

are types pointer types which point to identical 

Arrays or records are compatible only if they are declared to be of 
the exact same type. 

There is no implicit conversion of types except from INTEGER and 
LONGINT to REAL and between INTEGER and LONGINT. 

The strict compatibility rules of Pascal give the programmer a means 
of checking that he is not using a variable in the wrong place (for 
example, using the wrong variable to index an array; or specifying the 
indices of a multi-dimensional array in the wrong way). It is 
possible to completely ignore this facility by (for instance) not 
declaring any new types and specifying all array indices as unnamed 
subranges of integer. However, intelligent use of the TYPE concept 
can greatly reduce the possibility of errors, and make a program more 
readable and easier to change- 

It is possible to override the compatibility check by using the type 
transfer facility, which temporarily changes the type of a variable. 
The form of a type transfer variable is: 



<variable>::<type identifier> 

e.g., PTR::INTEGER 

The variable is temporarily treated as if it were the type specified 
after the double colon. No conversion is performed; only the apparent 
type of the variable is altered. Use of this facility transfers 
responsibility from the compiler to the programmer, therefore he needs 
to be sure he knows what he is doing. 

It is also possible to override the type structure by using variants 
in record structures without checking the tag fields (see the 
Micprocessor Pascal User's Manual). 

4.5.8 Variables 

Variables are used to reference areas of storage within a module. A 
variable declaration associates with an identifier a location which 
can hold a value of a specified type. The form of a variable 
declaration is: 

VAR <variable declaration list> 

where <variable declaration list> is one or more of the following: 

<identifier list> : <type definition>; 

Where <identifier list> is a list of identifiers separated by commas. 
A <type definition> can be a standard type (INTEGER, REAL, etc.), the 
Name of a type defined in a type declaration statement, or a new type 
definition taking any of the forms allowed in a type declaration. In 
the last case, the new type will not have any name associated with 
it. For example: 

VAR NYEARS : INTEGER; 
AMOUNT,VALUE,RATE : REAL; 
TEN YEARS : VECTOR; 
PROFIT : ARRAY [1..10] OF BOOLEAN; 

'Type VECTOR was defined in the example earlier in this chapter). 

A variable can either be a simple identifier that references the 
entire variable, or may be a qualified variable which is used to 
reference part of a structured variable. 

4.5.8.1 Indexed Variable. An indexed variable is used to reference 
an element of an array. Its form is: 

<variable> [ <expression>,<expression>,  ,<expression> ] 

e.g., VECTOR [5] 



The expressions are used to subscript into each of the n declared 
dimensions. If an array variable is declared to have n dimensions, 
then the indexed variable may have from 1 to n subscript expressions. 
For example, if an array is declared 

A : ARRAY [1..10 1..20] OF INTEGER 

then 

A [5] 

is a legal indexed variable; it is an 

ARRAY [1..20] OF INTEGER 

This array can itself be indexed, e.g., 

A [5] [6] 

which is exactly equivalent to 

A [5, 6] 

The types of the subscript expression must correspond exactly with the 
declared index types. There is a compiler option to check the value 
of a subscript to make sure it is within the declared bounds. 

4.5.8.2 Record Variable  

A record variable is used to reference a field within a record. Its 
form is: 

<variable>.<field identifier> 

where <field identifier> is one of the fields declared in the record 
type definition. 

PUMP_ONE.GRADE 
Cl.RE 
START.DAY 

Any record can be qualified; any array can be subscripted. Since it 
is possible to construct arrays of records and records containing 
arrays, variables such as 

ARR [5] . FIELD [4] 

are possible. Thus: 

ARR is an array 
ARR [5] is a record 
ARR 15] . FIELD is an array 



ARR [5] . FIELD [4] is an element 

Very powerful and complex data structures can be built in this way. 

4.5.8.3 Pointer Variable  

A pointer variable is used to reference the variable pointed to by 
a pointer type. Its form is: 

<variable>@ 

Where <variable> is a pointer type. The value of a pointer variable 
is undefined until either a value is assigned to it or a NEW is 
performed on it to allocate an area of dynamic storage. The constant 
NIL can be assigned to any pointer variable in order to have it point 
to nothing at all. A compiler option (CKPTR) is available to check if 
a reference is made to a NIL pointer. 

4.5.9 Expressions 

Expressions combine the values of variables and constants using 
operators to generate new values. Expressions consist of operands, 
operators, and function calls. 

4.5.9.1 Operands. Operands reference the values of constants or 
variables. An operand may be one of the following: 

<integer constant> 
<real constant> 
<string constant> 
<character constant> 
<constant identifier> 
NIL 
<set> 
<variable> 
<function call> 

4.5.9.2 Operators. An operator specifies an operation that is to be 
performed on one or two operands. An operator can only be applied to 
two operands if their types are compatible. Some operators accept 
mixed mode operands; if an INTEGER value is added to a REAL, the 
INTEGER is first converted to REAL and then added to give a REAL 
result. 

Operators have a precedence specifying the order of their evaluation 
in a complex expression. 



The operators are: 

Group 1 : Multiplying operators: 

• multiplication; set intersection 
real division 

DIV integer division (divide and truncate) 
MOD modulus A MOD X = A - ((A DIV X) * X) 

Group 2 : Adding operators: 

• addition; unary plus; set union 
- subtraction; unary minus; set difference 

Group 3 : Relational operators: 

• equal 
<> not equal 
• less than; proper set inclusion 
• greater than; proper set inclusion 
<= less than or equal; set inclusion 
>= greater than or equal; set inclusion 
IN set membership 

Logical operators: 

Group 4: NOT Negation 
Group 5: AND Conjunction 
Group 6: OR Disjunction 

The list of operators is in order of precedence with groups of higher 
precedence listed first. In an expresssion, operators of highest 
precedence are evaluated first; operators of equal precedence are 
evaluated from left to right within the expression. Parentheses may 
be used to alter the order of evaluation. 



Examples: 
Expression Value 
2 + 3 * 5 17 
15 DIV 4 * 4 12 
NOT (5 + 5 >= 20) TRUE 
6 + 6 DIV 3 8 
3 < 5 OR 2>= 6 AND 1 > 2 TRUE 

In a BOOLEAN expression of the form: 

X AND Y 

if X is false, Y is not evaluated and the value of the expression is 
FALSE. Similarly, in a BOOLEAN expression of the form: 

X OR Y 

if X is TRUE, Y is not evaluated and the value of the expression is 
TRUE. This is called short circuit evaluation. 

4.5.9.3 Function Calls. A function is a subroutine that returns a 
single value of a specific type. It is invoked by a function call: 

<function identifier> <parameters> 

If the function has parameters, these are of the form 

( <actual parameter>, ,<actual parameter> ) 

where each actual parameter is a variable or expression. The actual 
parameters must match the types of the formal parameters declared with 
the function. 

4.5.10 SIMPLE STATEMENTS 

Simple statements used by Pascal are described below. 

4.5.10.1 Assignment Statement. The assignment statement specifies an 
expression that is to be evaluated and assigned to a variable. Its 
general form is: 

<variable> := <expression> 

e.g., x := 5 

The symbol ':=' can be read 'becomes equal to'. The type of 
<expression> must be compatible with the type of <variable>, except 
that an INTEGER expression is automatically converted to LONGINT or 
REAL, and a LONGINT expression is automatically converted to INTEGER 
or REAL. Direct assignments can be made to variables of any type 
(including records, arrays, etc.) except files (and semaphores in 



Microprocessor Pascal). 

4.5.10.2 Procedure Statement. A procedure statement invokes the 
specified procedure. Its general form is: 

<procedure name> ( <parameter list> ) 
or 

<procedure name> 

e.g.,CALCULATE_MEAV (A, 5, 4*X) 

(There is no keyword corresponding to CALL in other languages) 

Parameters must match in number and type with those declared with the 
procedure. 

4.5.10.3 START Statement (Microprocessor Pascal only). A START 
statement is similar to the procedure statement except that it invokes 
the activation of a specified program or process to execute 
in parallel with the system. 

START <identifier> ( <parameter list> ) 
Or 

START <identifier> 

Where <identifier> is a <program name> or a <process name>. 

A procedure statement invokes the procedure as part of the current 
sequential program; a START statement creates the new process as a 
separate site of execution that will be provided its own share of 
processing time by the executive in parallel with the current 
program. Once a process has been STARTed, the initiating program 
effectively loses control over it; except via the synchronization 
primitives such as semaphores and interprocess files. The started 
process becomes a separate entity. 

4.5.10.4 ESCAPE Statement. The ESCAPE statement is a 'structured 
jump'. It is used to terminate execution of a structured statement, 
procedure or program (or process in Microprocessor Pascal). It allows 
an orderly exit to be made through the normal exit point of the 
structure. Its form is: 

ESCAPE <identifier> 

Where <identifier> may be an escape label, procedure name, program 
name (or process name). 

An escape label, followed by a colon, may prefix any structured 
statement. Each escape label is implicitly declared by its appearance 
in the program, and can only be referenced within the structured 
statement it precedes. Unlike GOTO labels, ESCAPE labels need not be 



declared at the start of the program. 

LOOP: WHILE I <= N DO 
BEGIN 
IF EOF THEN ESCAPE LOOP; 
READ (VAL); 
SUM := SUM + VAL; 
I := I + 1 
END; 

4.5.10.5 GOTO Statement. The GOTO statement is an unstructured jump: 

GOTO <label> 

It transfers system execution directly to the statement having the 
specified label. 

A statement label is an unsigned integer which must be declared in a 
LABEL declaration at the start of the block in which it is used. 

PROGRAM SAMPLE; 
LABEL 2; 
• 
• 
BEGIN 

2 : I := I + 1; 
IF VECTOR [I] < 100 THEN GOTO 2; 

• 
END. 

GOTO statements should be used as little as possible (if at all) 
because they tend to lead to 'spaghetti code' that is difficult to 
follow and prone to error. In some languages (e.g. FORTRAN) GOTO'S 
are necessary because the constructs needed to implement control 
structures are not complete. This is not the case in Pascal, which 
has a complete set of sequence, selection and iteration constructs 
that are sufficient to implement any program algorithm. In almost 
every case in which a GOTO may be used, an ESCAPE statement can be 
used instead, or the program can be restructured to eliminate the need 
for any jump at all. This will result in clearer code. 



4.5.10.6 ASSERT Statement. The ASSERT statement allows the 
programmer to check, using a BOOLEAN expression, a condition that 
should be true at a particular point in the program. Its form is: 

ASSERT <expression> 

Where <expression> must be of type BOOLEAN. 

For example, if it is known that a particular variable should never 
exceed a value of 100, the programmer can write 

ASSERT X <= 100 

at a suitable point in the program. If the BOOLEAN expression is not 
TRUE when the ASSERT statement is executed a run-time error occurs. 

The ASSERT statement is particularly valuable for system debugging. 
Code for ASSERT statements is controlled by a compiler option. When 
the program is debugged the ASSERT option can be turned off to 
prevent ASSERT code being generated. 

4.5.11 STRUCTURED STATEMENTS 

Pascal provides structured statements that directly implement the 
design techniques introduced earlier in this book (see Subsection 2.6, 
'Algorithms'). These statements have a single entry and exit points, 
which means that they automatically produce hierarchical, nested 
code. There are no jumps to confuse the programmer and upset the 
structure. 

Pascal does provide a GOTO instruction; but it is purposely made 
difficult to use. All labels must be declared at the beginning of the 
program, which means that any departures from structured code are 
clearly visible. 

4.5.11.1 Compound Statement. A compound statement is a sequence of 
statements enclosed by the keywords BEGIN and END. A compound 
statement is treated as a single statement. 

BEGIN <statement list> END 

where <statement list> is a list of Pascal statements, simple or 
structured, separated by semicolons. The statements making up the 
list are executed one by one in the order that they appear, but the 
entire list is treated as a single statement. 

BEGIN 
EXCHANGE := Xl; 
X1 := X2; 
X2 := EXCHANGE 
END 



The semicolon is used to separate Pascal 
any individual statement. Therefore 
following the last statement in the 
compiler simply assumes that there is an 
semicolon and END. 

statements and is not part of 
a semicolon is not needed 
list. If one does occur, the 
empty statement between the 

The empty statement is quite legal in Pascal and can occur in many 
places without causing any harm. However, the presence of an extra 
semicolon can sometimes change the meaning of a statement: 

IF A = B 
THEN 

X := 1; 
ELSE 

Y := 1 

The IF statement is terminated prematurely by the semicolon; ELSE is 
treated as a new statement and will be flagged as an error (because 
there cannot be a statement beginning with the keyword ELSE. 

This particular error is easy to find because it will be picked up by 
the compiler Other cases of extra or missing semicolons may be more 
subtle; code may be generated that is logically wrong but 
syntactically correct, so that the compiler will not find it. 
Therefore it is as well to know exactly where semicolons are needed 
and why. 

The compound statement implements the sequence construct described in 
Chapter II. 

4.5.11.2 IF Statement. The IF statement specifies execution of one 
of two alternative statements depending on a condition. The second 
alternative may be the empty statement. The form of the IF statement 
is: 

IF <expression> THEN <statement> 
Or 

IF <expression> THEN <statement> ELSE <statement> 

where <expression> must be of type BOOLEAN. 

If the expression evaluates to TRUE the first <statement> alternative, 
the THEN clause, is executed; otherwise the second <statement> 
alternative, the ELSE clause, is executed if it is present. The 
<statement>s can be any Pascal statements, including compound 
statements and other IF statements. 

Examples: 
IF COUNT >= 0 AND COUNT <= LENGTH 

THEN READ (X[I]); 



IF X < Y THEN MAX := Y 
ELSE MAX := X; 

In nested IF statements, there is a possible ambiguity 
ELSE clauses. This is resolved by always associated an 
most recent unmatched THEN. 

IF A > B THEN IF B > C THEN MIN := C 
ELSE MIN := B; 

is equivalent to: 

IF A > B THEN 
BEGIN 
IF B > C THEN MIN := C 

ELSE MIN := B 
END; 

with regard to 
ELSE with the 

In cases such as this, it is wise to use explicit BEGIN...ENDs to make 
the logical structure perfectly clear. 

4.5.11.3 CASE Statement. The CASE statement is an 
IF statement allowing more than two alternatives. A 
allows a statement to be selected for execution 
evaluation of an expression at run time. The form of 
is: 

CASE <expression> OF 
<case label list> : <statement>; 

. . . 
<case label list> : <statement> 
OTHERWISE <statement list> 

END 

extension of the 
CASE statement 
depending on the 
a CASE statement 

where <expression> must be of an enumeration type. <case label list> 
is a list of one or more <case label>s separated by commas. The <case 
label list> : <statement> combination may be repeated any number of 
times within the CASE statement; each occurence must be separated from 
the previous one by a semicolon. The OTHERWISE clause is optional. 

A <case label> is either a constant value or a subrange value of the 
same enumeration type as the <expression- . Each <case label list> 
specifies the list of values of <expression> for which the 
corresponding <statement> alternative will be executed. 

The value of <expression> at run time is used as the selector into the 
CASE statement. If the <case label> indicated by the selector is 
present in the CASE statement. the corresponding <statement> is 
executed; otherwise the <statement list> following the OTHERWISE 
clause is executed. If the selected <case label> is not present and 
there is no OTHERWISE clause, a run-time error will occur. 



Examples: 
CASE NUM OF 

0..3.8 : TOTAL := TOTAL + NUM; 
4,6,7 : TOTAL := TOTAL - NUM; 
5,9 : TOTAL := TOTAL DIV 2 

END; 

CASE ALFA OF 
'A'.."M' : CH := SUCC(ALFA); 
'N'..'Z' : CH := PRED'ALFA) 
OTHERWISE 

WRITELN('NOT IN ALPHABET'); 
INT := ORD(ALFA) 

END; 

The IF and CASE statements implement the selection construct described 
in Section 2 6. 

4.5.11.4 FOR Statement. The FOR statement provides the repeated 
execution of a given statement for a progression of values that are 
assigned to the control variable of the FOR statement. This statement 
should be used if the number of repetitions required is known before 
the statement is executed. The form of the FOR statement is one of 
the following: 

FOR <identifier> := <initial value> TO <final value> 
DO <statement> 

or 
FOR <identifier> := <initial value> DOWNTO <final value> 

DO <statement> 

where <identifier> is the control variable, and <initial value> and 
<final value> are of the same enumeration type which must not be a set 
type. 

The control variable is implicitly declared by its appearance in the 
FOR statement, and therefore may only be referenced within the FOR 
statement. If a variable of the same name has previously been 
declared, that variable will be temporarily inaccessible within the 
FOR statement. The value of the control variable may not be changed 
within the FOR statement. 

The control variable is assigned the <initial value> prior to the 
first execution of the <statemen->. If the <initial value> is greater 
(less) than the final value in the TO (DOWNTO) clause, the <statement> 
is never executed. Otherwise, after each execution of the <statement> 
the control variable is incremented (decremented) by one until the 
value of the control variable is greater (less) than the <final 
value>. Both <initial value> and <final value> are only evaluated 



once on entering the FOR statement, so that the total number of 
repetitions is determined at that time. 

Examples: 
FOR I := N DOWNTO 1 DO 

SUM := SUM + A[I]; 

FOR DAY := MON TO FRI DO 
BEGIN 
READ(HRS, RATE); 
PAYIDAY) := RATE * HRS 
END; 

4.5.11.5 WHILE Statement. The WHILE statement allows for the 
repeated execution of a given statement as long as a specified 
condition remains true. The form of the WHILE statement is: 

WHILE <expression> DO <statement> 

where <expression> is of type BOOLEAN. 

<expression> is evaluated before each execution of <statement>. If 
the <expression> is false initially, <statement> is not executed at 
all; otherwise it is executed repeatedly as long as <expression> 
evaluates to true. 

The WHILE statement is used where the number of repetitions cannot 
easily be predicted in advance. For example, <expression> might 
represent the state of an external input. 

Examples: 
I := 1; 
WHILE I <= MAX DO 

BEGIN 
VALUE := AMT[I] + TAX[I+2]; 
I := I + 1 
END; 

There is an alternative form of WHILE statement called the 
REPEAT...UNTIL: 

REPEAT 
<statement list> 
UNTIL <expression> 

where <expression> is BOOLEAN. 

The difference is that <expression> is evaluated after each execution 
of <statement list>; so that even if it is false <statement list> is 
always executed at least once. 



It is a good idea to standardize either on WHILE or REPEAT to avoid 
confusion on what happens when <expression> is false. In general, the 
WHILE construct is more flexible because it includes the important 
special case of zero iterations. REPEAT....UNTIL can then be used as 
an optimization technique for the rare cases when an action must 
always be performed at least once. 

The structure diagram iteration symbol is intended to be a WHILE, and 
is best kept as such. A REPEAT....UNTIL construct can then be written 
explicitly as: 

FIGURE 4-5. REPEAT UNTIL CONSTRUCT 

This is often a truer reflection of the situation, because in a case 
like this there is usually something special associated with the first 
iteration. 

With the sequence, selection and iteration constructs described, 
Pascal programs can be written directly from the software design: 



KWHIL 
COND  

BEGIN 
A; 

WHILE CONDDO 
BEGIN 
F COND THEN 

B 
ELSE 

C• 
D; 

F CONO THEN 
E 

ELSE 
BEGIN 
F; 
G 
END 

END 

END 

FIGURE 4-6. PASCAL PROGRAM 

If the Pascal code is indented to reflect the structure, there is a 
strong visual resemblance between the program and the structure 
diagram, which can be used as a check. 



4.5.12 File Manipulation 

The standard procedures READ and WRITE are provided for input from and 
output to files. In addition, the procedures READLN and WRITELN (read 
and write line) apply to text files. These are described in full in 
the Microprocessor Pascal System User's Manual. 

4.5.13 Standard Routines 

Pascal provides a number of standard procedures and functions, of 
which a list is provided in the Reference Section. 

4.5.14 Dynamic Storage Allocation 

Dynamic memory areas referred to as heap packets may be allocated or 
deallocated during program execution through use of the standard 
procedures NEW and DISPOSE. These are described in the Micprocessor 
Pascal System User's Guide. 

4.5.15 CRU I/O 

Pascal supports direct 9900 CRU I/O (see Section VI) with the 
following standard procedures: 

CRUBASE (BASE) 
LDCR (WIDTH, VALUE) 
SBO (DISP) 
SBZ (DISP) 
STCR (WIDTH, VALUE) 

and the BOOLEAN function: 

TB (DISP) 

These are described in detail in the MPP User's Guide. 

4.6 CONCURRENCY 

The microprocessor executive and microprocessor interpretive executive 
(as well as the interactive Host Debugger provide for concurrent 
execution of a multiple-process system. This section describes some 
of the functions performed by the executive, and also the mechanisms 
provided for synchronization and communication between processes. 

4.6.1 Processes 

System, program and process declarations were described earlier in 
this chapter. When a system is executed, the system <process body> is 
automatically started- All other processes, including programs, must 



be explicitly started using the START statement. The system <process 
body> therefore usually contains a series of START statements. When a 
process is started, stack space is allocated to it from the starter's 
own stack. The amount of stack space to be allocated to a process is 
set using the concurrent characteristic 

(*1  stacksize = required_stack_size *) 

The concurrent characteristics are part of the process declaration. 

A process's execution is terminated when it runs to completion or by 
using the run-time support routine P$ABORT to abort it. 

A process can be in one of three states: 

1) Ready - the process is able to run but there is a 
higher priority processes currently executing. 

2) Active - the process is being executed. Under 
Microprocessor Pascal, the active process (there can 
only be one) is always the one with the highest 
priority. 

3) Blocked - the process is suspended (waiting for a 
signal from another process, or perhaps from an 
interrupt) and unable to run until the event has 
occurred. 

4.6.2 Process Record 

Each process has a unique process record. This is used by the 
executive to access information concerning a particular process (where 
its stack is located, its identity, its priority, etc.). The process 
record is used for storing its volatile environment: display, program 
counter (PC), workspace pointer (WP), and status register (ST). (For 
an explanation of PC, WP and ST see Chapter VI.) 

 

The display is a 16-word area containing addresses of the stack frames 
that can be accessed by the currently executing routine. The display 
is a 'short cut' means of access to remote stack frames that is 
quicker than tracing back through the stack frame linkage. 

4.6.3 Semaphores 

Processes are independent. However, it is often necessary to 
synchronize their actions. The simplest way of doing this is via the 
semaphore and its primitive operations wait and signal. Until they 
have completed, nothing must access the semaphore, the queues they 
operate on, or the operations themselves. This indivisibility is 
assured by setting the interrupt mask to zero on entry to the 
routines, and then resetting it back to its previous value on exiting 
them.) The basic idea of a semaphore is described below- 



The semaphore is considered to be so fundamental to process 
synchronization that Micprocessor Pascal predefines it as a type 
structure composed of two elements: a non-negative counter of 
unserviced events and a queue (possibly empty) of suspended 
processes. The queue uses First In First Out (FIFO) ordering. 

SIGNAL : Increments the counter if the semaphore queue is 
empty, otherwise it activates the first process in the 
queue. (The process is removed from the semaphore 
queue and reinserted into the scheduling queue.) 

WAIT : Decrements the counter if it is non-zero, otherwise 
the issuing process (the currently active process) is 
suspended. (The process is removed from the scheduling 
queue and inserted into the semaphore queue.) 

Before a semaphore can be used, it must first be initialized. 
performed using the INITSEMAPHORE routine. 

A variable of type SEMAPHORE cannot be changed directly by a 
program. It can only be accessed via the EXTERNAL run-time 
semaphore routines When declaring these external routines it 
necessary to declare the following: 

This is 

user's 
support 
is also 

TYPE semastate = (awaited,zero,signaled); 

The Micprocessor Pascal Run-Time Support system gives greater 
flexibility in handling semaphores by providing additional routines to 
the wait and signal operations (a full list of these can be found in 
the Reference Section of Chapter VI). 

4.6.4 Process Synchronization 

A process that is dependent on the occurence of an event can perform a 
WAIT to ensure that the event has occured. If it has, the waiting 
process executes. If not, the waiting process is suspended in that 
semaphore's queue until the event occurs. A SIGNAL operation 
performed on the associated semaphore allows a process to signal the 
occurence of an event. If some process is waiting for the event, it 
is made ready for execution (the process is removed from that 
semaphore's queue and inserted into the ready queue). In both of 
these cases, the process that called SIGNAL remains in the active 
state. The semaphores of the Executive RTS can thus be thought of as 
"counting" semaphores in that occurence of an event is never lost, 
even if no process is waiting when the event occurs. A count is kept 
in the semaphore of all events that occurred (by SIGNAL) but were not 
received (by WAIT). 

When semaphores are used to ensure exclusive access to two or more 
resources, extreme caution must be exercised to prevent a condition 



known as "deadlock". This takes place when a situation is created in 
which two or more processes are suspended, awaiting a condition that 
cannot happen because there is no active process to cause the needed 
event to occur. 

For example, consider two simultaneously executing processes (A and B) 
both requiring exclusive access to resources (X and Y). The following 
sequence will result: 

A gets X .. A requests Y B gets Y B requests X 

In the above example, neither A nor B will ever resume execution, as A 
will be waiting for Y (which B has) and B will be waiting for X (which 
A hasl To prevent a situation such as this, either and/or both 
processes must check the availability of succeeding resources and, if 
unavailable, release those already acquired. 

4.6 5 Interprocess Communication 

4.6.5.1 Shared Variables. The simplest form of interprocess 
communication is accomplished through the sharing of variables. A 
nested process can access all its parent's variables. (Heap variables 
can also be accessed since it is possible to pass pointers as 
parameters to a process.) 

However, it is essential that only a 
operate on any shared variable at 
representing the shared variable as a 
mutual exclusion semaphore, and 
referencing the variable with wait 
semaphore. For example: 

single process is allowed to 
a time. This can be achieved by 
record structure containing a 
enclosing any code sections 

and signal operations on the 

VAR b: RECORD 
mutex: SEMAPHORE; 
shared_variable: any_type; 
END; 

WITH b DO 
BEGIN 

wait(mutex); 
($ access/modify shared_variable $) 
signal(mutex); 

END; 

4.6.5.2 Message Buffer. A message buffer is a shared data structure 
through which interprocess communication is possible. It allows a 
process to send messages to another process without the sender having 
to wait until the receiver is ready for the message (i.e., the 
messages are buffered). In this context a message is any structure 
that can be copied from one process to another. 



File 
var 

PROCESS One 

File 
var 

PROCESS Two 

Note: Deadlock could result if the order of the wait operations is 
reversed in either routine. 

Updating the buffer element pointers, NEXT IN and NEXT OUT, by MODing 
them with MAXUSERS and then adding one allows the message buffer to be 
used in a circular fashion (a buffer managed in this way is known as a 
circular or ring buffer). 

Note: MESSAGE_IN and MESSAGE OUT must be variables of type MESSAGE. 

4.6.5.3 Interprocess Files. The third interprocess communication 
mechanism involves file variables that are linked together via 
channels. In this application, a file is not associated with any 
external storage medium; it is simply a logical device to enable one 
process to send information to another. The communication mechanism 
is handled by the executive. However, the same routines (READ, WRITE, 
etc) used are the same utilized with external files. 

Channels are system maintained shared data structures that conduct 
information between file variables and synchronize the execution of 
participating processes. 

$$$$$$$$$ 
>$ Channel $ 
$$$$$$$$$ 

A file variable has a character string name; initially this is the 
same as the variable's identifier, but it can be changed using the 
procedure SETNAME. 

A channel also has a character string name. It is identical to the 
names of all file variables connected to it. 

Files must be opened by calling the procedure REWRITE for write 
operations and RESET for read operations before any I/O can be 
performed. (If the file is already open, then it is automatically 
closed before it is reopened in the appropriate mode.) This also 
causes the file variable to be connected to a channel with the same 
name as the file variable. If no channel exists by that name, one is 
created and given the appropriate characteristics. 

Closing an open file (using the procedure CLOSE, or by exiting a 
routine in which a file variable is declared) also disconnects the 
file variable from the channel. A channel is normally destroyed when 
all file variables have been disconnected from it 

The following allows processes A and B to communicate with each other 
via the channel TRANSFER. Process A opens the file TRANSFER for 



A message buffer is of the form: 

CONST max messages = ($ some number $) 
TYPE message_index = 1..max_messages; 

message = some user_defined_structure; 
VAR message_buffer: RECORD 

mutex.not_empty,not_full: SEMAPHORE; 
next_in,next_out: message_index; 
buffer : ARRAY[message_index] OF message; 
END; 

MUTEX 
NOT_EMPTY 

NCT_FULL 

NEXT_IN 
NEXT OUT 

Initially, 

- Ensures mutual exclusion (initialized to 1) 
- Indicates how many messages are in the buffer 

(initialized to 0) 
- Indicates how many vacant elements in the buffer 

(initialized to max messages) 

- Where the next message is to be stored 
- Where the next message is to be taken from 

NEXT_IN=NEXT_OUT=0. 

To deposit a message into the buffer:- 
WITH message_buffer DO 
BEGIN 

wait(not_full); 
wait(mutex); 
buffer[next_inl:=message_in; 
next_in:=next_in MOD maxusers +1; 
signal(mutex); 
signal(not_empty); 

END; 

To remove a message from the buffer:- 
WITH message_buffer DO 
BEGIN 

wait(not_empty); 
wait(mutex); 
message_out:=buffer[next_out]; 
next_out;=next_out MOD maxusers +1; 
signal(mutex); 
signal(not_full); 

END; 



writing, while process B opens it for reading. 

PROCESS a( )• PROCESS b(  
VAR transfer: TEXT; VAR transfer: TEXT; 

rewrite(transfer); reset(transfer): 
writeln(transfer,...); readln(transfer,... 

A similar effect would be produced by: 

PROCESS a(output:TEXT;...); PROCESS b(input:TEXT;...); 
• 

writeln( 

 

); 

reset(input); 
readln( ) ; 

 

start a(filenamed('transfer'),—); 
start b(filenamed('transfer'),—); 

The function FILENAMED results in a file with the initial name equal 
to the specified string. 

It is not necessary to perform a REWRITE operation in process A as 
this is automatically performed on the default output text file 
OUTPUT. 

Note: Each peripheral device in the system is identified by an 
alphanumeric name (from 1 to 8 characters long) and has a dedicated 
channel of the same name. 

4.7 INTERRUPT HANDLING 

The 990 range of processors recognize 16 distinct interrupt levels, 
numbered 0 (highest priority interrupt) to 15 (lowest priority 
interrupt). A full description of the 990 interrupt structure is 
given in Chapter VI. 

A device process is a process that has been written to service a 
particular interrupt level. These processes are identified by their 
priorities. All processes in this system are assigned a priority, in 
the range 0 to 32,677. The first 16 priorities, 0 to 15, are reserved 
for use by device processes. 

A process with a priority of 5 may service level 5 through level 15 
interrupts. A process's priority is set using the concurrent 
characteristic 

($1 priority = interrupt_level $) 

If a number of devices all use the same interrupt level, then that 
level's device process must first determine which device actually 



caused the interrupt before it can start servicing it. 

All interrupts except the level 0 interrupt (RESET), are disabled by 
calling the procedure MASK. The procedure UNMASK enables interrupts 
which are more urgent than the priority of the calling process. 

A correspondence is established between an interrupt level and a 
semaphore using the procedure EXTERNALEVENT. A device process 
executes a WAIT on the semaphore associated with its interrupt level. 
When an interrupt occurs, the executive performs a SIGNAL on the 
semaphore associated with the interrupt level, thus activating the 
suspended device process. 

The procedure ALTEXTERNALEVENT allows the user to specify an 
alternative process that will be executed if the primary process is 
not suspended on the interrupt's semaphore. This procedure is 
intended to be used to service unexpected or spurious interrupts. 

The correspondence between a semaphore and an interrupt level can be 
broken using the NOEXTERNALEVENT procedure, while the alternative 
process correspondence can be broken by the NOALTEXTERNALEVENT 
procedure. 

PROGRAM level_7_handler(....); 
VAR level_7_sem,spurious_level_7: SEMAPHORE; 

•  PROCESS interrupt_7(level: SEMAPHORE); 

BEGIN 
($# priority=7;  $); 
WHILE true do 
BEGIN ($ do forever $) 

wait(level); 

END ($ forever loop $) 
END; 
PROCESS spurious_7(level: SEMAPHORE); 

BEGIN 
($# priority=7;  $); 
wait(level); 

END 
BEGIN ($ level_7_handler $) 

initsemaphore(level_7_sem,01; 
initsemaphore(spuriouslevel7,0); 
externalevent(level_7sem.7): 
altexternalevent(spurious_level_7,7)4 
start interrupt_7(level_7_sem); 
start spurious_7(spurious_level_7); 

END ($ level7handler $) 

Under TIPMX (the concurrent executive provided for use with TI Pascal) 



interrupts are serviced using the WAITINTERUPT procedure. An active 
device process executes the WAITINTERRUPT procedure. This suspends 
the calling procedure until an interrupt occurs at the level equal to 
the process's priority. Using WAITINTERRUPT in a process whose 
priority is greater than 15 results in an error and the call fails. 
This procedure is included in the Micprocessor Pascal run-time support 
system for compatibility with earlier products. As WAITINTERRUPT is 
implemented using semaphores and several of the semaphore handling 
routines, the Micprocessor Pascal user is not encouraged to use it in 
new applications. 

4.8 REFERENCE SECTION 

4.8.1 System Commands 

Create/edit a file 
Compile a Pascal program 
Debug a compiled Pascal program 
Execute a compiled Pascal program 
Save an edited file 
Display a stored file 
Terminate an MPP session 
Compile and save a Pascal program 
Print a stored file 
Execute sci command 
Wait for background task to finish 
Delete files and synonyms used 
Copy text files 
File utility program 

$ only for DX990 users 
$$ only for FS990 users 

EDIT 
COMPILE 
DEBUG 
EXECUTE 
SAVE 
SHOW 
QUIT 

$ BATCH 
$ PRINT 
$ SCI 

WAIT 
$ PURGE 
$$ COPY 
$$ UTILITY 

4.8.2 Debug Commands 

Resume execution 
Help 
Select default process 
Terminate DEBUG session 

Display process 
Display all processes 

Assign breakpoints 
Delete breakpoints 
Delete all breakpoints 
List breakpoints 
Execute single instruction  

G 0 
HELP( <command> ) 
SDP( <process> ) 
QUIT 

DP( [<process>] ) 
DAP 

AB( <routine>,<statement number> ) 
DB( <routine>,<statement number> ) 
DAB( <process> ) 
LB/ f<process>) ) 
SS( [<process>1,<flag` ) 



Show stack frame 
Show heap packet 
Show common area 
Show indirect variable value 
Show absolute memeory location 
Modify stack frame value 
Modify heap value 
Modify common value 
Modify indirect variable 
Modify memory 

Trace process execution 
Trace routine entry/exit 
Trace statement flow 

DEBUG the process 
Breakpoint process 
Hold process 
Release process 

Connect input file 
Connect output file 

Simulate interrupt 

Select CRU mode  

SF( kroutine>],[<disp>],[<length>] ) 
SH( [<routine>],(<disP>],[<length>] ) 
SC( common name,[<disp>]►[<length>] ) 
SI( <routine>,<disp>,[<length>] ) 
SM( <address>,[<length>] ) 
MF( <routine>,[<disp>],[<ver>],<value> 
MH( <routine>,[<disP>],[<ver>] <value> 
MC( <routine>,[<disp>],[<ver>],<valup 
MI( <routine>,<disp>,[<ver>],<value> 1 
MM( <routine>,[<ver>],<value> 

TP( kprocess>h<flag> 
TR( kprocess>h<flag> 
TS( [<process>],<flag> 

DEBUG( <process> ) 
BP( <process> ) 
HP( <process> ) 
RP( <process> ) 

CIF( <filel>,[<file2>] 
COF( <filel>,[<file2>] 

SIMI( <level> ) 

CRU( [<process>],<cru mode> ) 

) 
) 
) 

) 
) 

[<x>] 
Indicates that the item <x> is optional. 

<process> 
If omitted it defaults to that set by SDP. It may be either a name 
(younges2 instance of the process) or an integer constant (older 
instance of a particular process), found using DAP. 

<routine> 
May be either a name (most recent activation of the routine) or an 
integer constant (earlier activation), found using DP. Optionally it 
specifies the process which activated it by preceding <routine> by 
<process> followed by '.' 

<flag> 
Is an identifier that is either TRUE or FALSE : if TRUE command is 
enabled: if FALSE command is disabled. 

<disp> 
Is the byte displacement. 

<ver> 
Is the old value of the variable being modified, if it does not match 
the actual value an error occurs. 



<filel> 
8 character Microprocessor Interpretive Executive file name 
identifier. 

<file2> 
File pathname specified as a string (enclosed in double quotes). If 
omitted it defaults to user's terminal. 

<cru mode> One of the following : 

EXECUTE Execute all CRU instructions 
OFF Ignore all CRU instructions 
DEBUG All CRU I/O is simulated by the user 

(default value) 

NOTE : Parenthesis may be omitted if all the parameters are optional 
or defaulted. Trailing commas may be omitted. 

4.8.3 Utility Commands (990/4 only) 

Create a file 
Compress a file 
Change file name 
Change file protection 
Delete file 
Change listing file/device 
Receive file across data link 
Transmit file across data link 
Map disc 
Display time and date 
Terminate utility program execution  

CF,<file name> 
CM,<file name> 
CM,<old file name>,<new file name> 
CP,<file name>,<U or W or D> 
DF,<file name> 
DO,<file or device name> 
DR,<file name> 
DT,<file name> 
MD,<disc name> 
TI 
TE 

4.8.4 EDIT Commands 

Help 
Edit/compose mode 
Syntax check 
Terminate and save edit 
Terminate without saving 
Change editing files 

Scroll file down 
Scroll file up 
New line 
Tab 
Back tab 
Set tab increment 
Move cursor up 
Move cursor down 

CMD HELP 
F7 kev 
CMD CHECK 
CMD QUIT 
CMD ABORT 
CMD INPUT 

Fl key 
F2 key 
RETURN key 
SHIFT TAB SKIP key 
FIELD key 
CMD TAB( <character count> ) 
up-arrow key 
down-arrow key 



Move cursor right 
Move cursor left 
Move to home position 
Find [nth occurrence of] 

specified pattern 
Relative positioning 
Move to top of file 
Move to bottom of file 

Insert line before 
Duplicate line 
Delete line 
Skip to next tab setting 
Insert character 
Delete character 
Clear line 
Replace strings [11 times] 

Split line  

right-arrow '-ey 
left-arrow key 
HOME key 
CMD FIND( <pattern>, 

[<occurence number>] ) 
CMD [ + or - ]<line count> 
CMD TOP 
CMD BOTTOM 

unlabelled grey key 
F4 key 
ERASE INPUT key 
TAB SKIP key 
INS CHAR key 
DEL CHAR key 
ERASE FIELD key 
CMD REPLACE( <original pattern>. 

<new pattern>,[<repeat count>] ) 
F8 key 

CMD HELP - 
Strike the CMD key and then type in the word HELP. 

[<exp>] 
Indicates that item <exp> is optional. 

<pattern> 
Is either a string of characters enclosed within double quotes 
or an identifier. 

NOTE: 
Optional items may be omitted (they default to the value 1) along 
with any preceding commas. 



4.8.5 STANDARD Routines 

All functions marked '$' must be declared EXTERNAL. 

DEFINITION FUNCTION ARGUMENT RESULT 

Absolute value ABS INTEGER,LONGINT, 
REAL 

As argument 

$ Arctangent ARCTAN REAL REAL 
Character corresponding CHR BOOLEAN, INTEGER, 

SCALAR type 
CHAR 

$ I/O column index COLUMN TEXT INTEGER 
$ Cosine COS REAL REAL 
End of file/medium EOF TEXT, FILE BOOLEAN 
End of line EOLN TEXT BOOLEAN 
$ Exponential EXP REAL REAL 
Create file connection FILENAMED string ANYFILE 
Real conversion FLOAT INTEGER,LONGINT REAL 
$ Natural logarithm LN REAL REAL 
Convert to longint LINT INTEGER,LONGINT, 

REAL 
LONGINT 

Address or entry point LOCATION variable, 
procedure,process 

INTEGER 

Round convert longint LROUND REAL LONGINT 
Truncate,convert longint LTRUNC REAL LONGINT 
Odd number? ODD INTEGER,LONGINT BOOLEAN 
Ordinal position ORD BOOLEAN,CHAR, 

SCALAR type 
INTEGER 

Predecessor PRED ENUMERATION type As argument 
Round ROUND REAL INTEGER 
$ Sine SIN REAL REAL 
Return size (bytes) SIZE type,variable; 

tagfields 
INTEGER 

$ Status of last I/O op STATUS ANYFILE INTEGER 
Square SQR INTEGER,LONGINT, 

REAL 
As argument 

$ Square root SQRT REAL REAL 
Successor SUCC ENUMERATION type As argument 
Truncate,convert integer TRUNC REAL INTEGER 



4.8.6 CRU Operations 

PROCEDURE CRUBASE (base:INTEGER) 
PROCEDURE LDCR (width,value:INTEGER) 
PROCEDURE SBO (displacement:INTEGER) 
PROCEDURE SBZ (displacement:INTEGER) 
PROCEDURE STCR (width:INTEGER; VAR value:INTEGER) 
FUNCTION TB (displacement:INTEGER): BOOLEAN 

Where <width> is a number in the range 0 to 15. 
<displacement> is a number in the range -128 to +127. 

4-8.7 Standard Procedures 

All procedures marked '$' must be declared EXTERNAL. 

CLOSE (f); 

Place file <f> in closed state. 

DATE (v); 

Get the current date in the form 'YY.DDD', where 'YY' is the year and 
'DDD' is the Julian day. 

DECODE (s,n,stat,q); 

Convert string <s>, starting at the <n>th component of <s>- into a 
form compatible with the read variable <q> (see NOTE 2) and store it 
in <q>. The status of the operation is returned in <stat>. 

DISPOSE (p); 
DISPOSE (p,tl,..,tn); tl..tn -> tagfields 

Deallocate the heap packet specified by <p> and set <p> to NIL. 

ENCODE (s,n,stat,p); 

Convert the write parameter <p> (see NOTE 1) into character format and 
store the result in <s>, starting at the <n>th component. The status 
of the operation is returned in <stat>. 

HALT 

Terminate program execution. 

IOTERM (f,oldvalue,newvalue); 

Change file <f>'s default error termination flag to <newvalue> and 
return the original in <oldvalue>. 



MESSAGE (x); 

Write the string <x to the system message file. 

NEW (p); NEW (p,tl,..,tn); tl..tn -> tagfields 

Allocate heap space to the variable referenced by <p> =nd return a 
pointer to it in <p>. 

PACK (a,i,z); 

Pack the components of array <a> into the packed array <z>, starting 
at the <i>th element of <a>. 

PAGE (f); 

Continue output of file <f> on a new page. 

READ (f,vl,..,vn); 

TEXT READ (v1,..,vn); ---> READ(INPUT,v1,..,vn); 

RANDOM READ (f,recnum,vi,..,vn); 

Read the components of a sequential, text or random file into the 
specified variables <vi> (see NOTE 2). If the first argument is not a 
file variable <f>, the file INPUT is used. For RANDOM files the 
second argument specifies the logical record number <recnum>, starting 
from zero. For sequential and RANDOM files, the remaining arguments 
must be compatible with the particular file components. 

READLN (f,vl,..,vn); 
READLN (v1,..,vn); ---> READLN(INPUT,vl,..vn); 
READLN(INPUT); 

Read the components of a text file into the specified variables and 
then carry on reading until the next end-of-line marker has been 
read. 

RESET (f); 

Opens a file <f> for input and positions it to its first component. 
If a sequential or text file is empty then EOF'F) becomes true, 
otherwise it is false. 

REWRITE (f); 

marks a file <f> as empty and then opens it for output. For a 
sequential or text file EOF(F) becomes true. This is automatically 
performed for OUTPUT. 

SETNAME (f,name); 

Associate logical channel <f> to the physical file <name>. <Name> may 



not be the file OUTPUT. 

TIME (v); 

Get the current time of day in the form 'HH.MM.SS'. <V> is a packed 
array (1 to 8) of char. 

UNPACK (z,a,i); 

Unpack the components of the packed array <z> into the array <a> 
starting at the <i>th element of <a>. 

WRITE (f,vl,..,vn); 

TEXT WRITE (vl,..,vn); ---> WRITE(INPUT,vl,..,vn); 

RANDOM WRITE (f,recnum,vl,..,vn); 

Write the components to a sequential, text or random file from the 
specified variables <vl>..<vn> (see NOTE 2). If the first argument is 
not a file variable <f>, the file OUTPUT is used. For RANDOM files 
the second argument specifies the logical record number <recnum>. 
starting from zero. For sequential and RANDOM files, the remaining 
arguments must be compatible with the particular file components. 

WRITELN (f,v1,..,vn); 
WRITELN (vi,..,vn); --->WRITELN(OUTPUT,v1,..vn); 

WRITELN(OUTPUT); 
Write the components to a text file <f> from the specified variables 
<vl>..<vn> (see NOTE 1) and then write an end-of-line marker. 

NOTE 1: WRITE VARIABLES for TEXT files may be of the form : 
E I E:M I E:M:N 

E is an expression of type CHAR, INTEGER, LONGINT, BOOLEAN. REAL or a 
string. 

If M (an INTEGER expression) is present then it represents the minimum 
field width. If M is omitted, and E is REAL, then its value is 
written in floating point format. 

If N (an INTEGER expression) is specified then the real number E will 
be output in fixed point format with N digits after the decimal 
point. 

If E is INTEGER or LONGINT then the value may be written as a string 
of hex digits (not preceded by #) in the form : 

E HEX 2 E:M HEX 

If E is BOOLEAN then the identifier FALSE or TRUE is written preceded 
by M-5 blanks. If M<5 then the character T or F is written. 



If E is a string (PACKED ARRAY of characters) then the whole string is 
output. 

Default field widths for WRITE operations : 

INTEGER 
LONGINT 
REAL 
BOOLEAN 
CHAR 
Hex 
String 

10 
15 
15 
5 
1 
10 
length of string 

NOTE 2: READ VARIABLES for TEXT files : 

V is a variable to be assigned the value read and must be either CHAR, 
INTEGER, LONGINT, BOOLEAN, REAL or a string. 

If V is a CHAR then V is assigned the next character read. 

If V is a string of length L then the next L characters are read. 

If V is BOOLEAN then either the character T or F is read or the 
identifier TRUE or FALSE. 

If V is INTEGER-
makes up the number 
character that is 
end-of-line markers 
is zero. 

LONGINT or REAL then a sequence of characters that 
is read. The sequence may be terminated by any 
not part of the number. Preceding blanks and 

are skipped. If the field is blank the value read 

TEXT I/O RETURN CODES 

0 Normal completion 
1 Bad parameter passed to I/O routine 

Field width too large for logical record 
Incomplete data (READ only) 

4 Invalid character in field (READ only) 
5 Data value too large (READ only) 
6 Attempt to read past end-of-file (READ only) 
7 Field larger than logical record size 

4.8.8 Microprocessor Pascal Executive 

All Micprocessor Pascal executive procedures/functions must be declared EXTERNAL. 



4.8.8.1 Processor Management (Scheduling) Routines. 

TYPE non device priority = 16..32766; 

PROCEDURE setpriority(VAR oldvalue: non-oldvalue: non device_priority: 
newvalue: non device_priority); 

changes the priority of the first non-device process in the scheduling 
queue. 

PROCEDURE SWAP: 

removes the first non-device process from the scheduling queue and 
inserts it behind the last process with the same priority. 

4.8.8.2 Semaphore Routines. 

TYPE nonneg = 0..32766; 
semaphorestate = (awaited, zero, signaled); 

PROCEDURE CSIGNAL(sema: SEMAPHORE; VAR waiter: BOOLEAN); 

performs a conditional signal operation on <sema> - i.e., if a waiter 
exists on this semaphore a SIGNAL operation is performed on it and 
<waiter> is set to TRUE. 

PROCEDURE CWAIT(sema: SEMAPHORE; VAR received: BOOLEAN'; 

performs a conditional wait operation on <sema> - ie if it has been 
SIGNALed a WAIT operation is performed on it and <received> is set to 
TRUE. 

PROCEDURE INITSEMAPHORE(VAR sema: SEMAPHORE; count: nonneg); 

initializes the semaphore <sema> to <count> and sets the queue 
management to FIFO. 

PROCEDURE SIGNAL(sema:SEMAPHORE); 

performs a SIGNAL operation on <sema>. 

PROCEDURE WAIT(sema: SEMAPHORE); 

performs a WAIT operation on <sema>. 

PROCEDURE TERMSEMAPHORE(VAR sema: SEMAPHORE); 

returns the space occupied by the semaphore <sema> to MPX. If there 
is anything waiting on it an error occurs. 

PROCEDURE WAITSIGNAL(WAITFOR, signalthe: SEMAPHORE); 



performs a WAIT operation on <waitfor> and a SIGNAL operation on 
<signalthe> in an indivisible manner. 

FUNCTION SEMASTATE(SEMA: SEMAPHORE): semaphorestate; 

returns the state of the semaphore <sema>. 

FUNCTION SEMAVALUE(SEMA: SEMAPHORE): INTEGER; 

returns the count of <sema>'s initial value plus the total number of 
SIGNALs performed on it minus the total number of WAITs performed on 
it. 

4.8.8.3 Semaphore Attributes. 

TYPE interrupt_level = 0..15; 

PROCEDURE ALTEXTERNALEVENT(SEMA: SEMAPHORE; 
level: interupt-level); 

attaches the semaphore <sema> to the interrupt <level> as the 
alternative receiver of an interrupt. 

PROCEDURE EXTERNALEVENT(SEMA: SEMAPHORE; 
level: interrupt_level); 

attaches the semaphore <sema> to the interrupt <level> as the primary 
receiver of an interrupt. 

PROCEDURE NOALTEXTERNALEVENT(LEVEL: INTERRUPTLEVELI; 

detaches any semaphore which has been designated the alternative 
receiver of the interrupt <level>. Nothing happens if no semaphore 
has been designated thus. 

4.8.8.4 Interrupt Routines. 

TYPE interrupt result = -1..15; 

FUNCTION INTLEVEL: interrupt result; 

returns the interrupt level of the interrupt currently being serviced 
(0 to 15) or -1 if no interrupt is being serviced. 

PROCEDURE MASK; 

disables all interrupts except for interrupt level 0. 

PROCEDURE UNMASK; 



enables all interrupts which are more urgent than the priority of the 
calling process. 

PROCEDURE WAITINTERRUPT; 

suspends the calling process until an interrupt of equal priority to 
the process occurs. 

4.8.8.5 Process Management. 

TYPE processid = @processid; 

FUNCTION MY$PROCESS processid; 

Returns the process identification of the calling process. 

4.8.8.6 Memory Management. 

PROCEDURE FREE(VAR ptr: pointer); 

Returns the area referenced by <ptr> to the heap, <ptr> is set to 
NIL. 

4.8.8.7 Microprocessor Executive Error and Exception Codes. 

In the process record, there is a field (word >36) which contains a 
CLASS CODE in the left-hand byte and a REASON CODE in the right-hand 
byte. The CLASS CODES provides information on the general area in 
which there is some problem; the REASON CODE, more specific 
information concerning the problem. 

For example, an error code of >8508 would indicate: 

1) The general area of the problem is in process management 
(CLASS CODE 85) and, 

2) Specifically, there was not enough heap available to 
start a process (REASON CODE 08). 

The CLASS CODES and REASON CODES are listed in the left-hand column 
be low. 



ERROR CODES 

CLASS ERROR CODES 

user error = 81; 
scheduling_error = 82; 
semaphore_ error = 83; 
interrupt error = 84; 
process mgmt error = 85; 

86;  
87;  
88;  
89;  

HEAP MANAGEMENT ERROR REASON CODES 

heap invalid = 1; 
heap overflow error = 2; 
heap packet error = 3; 

INTERRUPT ERROR REASON CODES 

interuppt invalid = 1; 
interrupt level 
invalid = 2; 
interrupt semaphore 

invalid = 3; 
interrupt not 
handled = 4; 
interrupt trap 
vector error = 5; 
interrupt handler 
priority error = 6; 

EXCEPTION HANDLER REASON ERROR CODES 

exception handler not 
established from 
process = 1; 
exception handler 
cannot have 
parameters = 2; 
exception handler 
cannot be in 
assembly language = 3; 
exception handler 
local variables too 
large for stack = 4; 

exception_error = 
memory mgmt_error = 
file error = 
host=file_error = 



PROCESS MANAGEMENT REASON ERROR CODES 

not a process = 1; 
aborted = 2; 
not started invalid 
priority = 3; 
not started invalid 
stacksize = 4; 
not started negative 
heapsize = 5; 
not started process 
is in assembly 
language = 6; 
not started no memory 
for semaphore = 7; 
not started no memory 
for process_heap = 8; 
not started no memory 
for process stack = 9; 
not started no memory 
process_frame = 10; 

SEMAPHORE ERROR REASON CODES 

semaphore invalid = 1; 
semaphore count 
error = 2; 
semaphore operation 

error = 3; 
semaphore count 
overflow = 4; 
semaphore interrupt 
handler priority 
error = 5; 

SCHEDULING ERROR REASON CODES 

scheduler invalid = 1; 
scheduler priority 
error = 2; 

USER ERROR REASON CODES 

stack overflow = 1; 
stack overflow = 2; 



CHAR HEX 

✓ 56 
W 57 
X 58 
Y 59 
Z 5A 
[ 5B 
\ 5C 
] 5D 

5E 
5F , 
60 

a 61 
b 62 
c 63 
d 64 
e 65 
f 66 
g 67 
h 68 
i 69 
j 6A 
k 6B 
1 6C 
m 6D 
n 6E 
o 6F 
p 70 
q 71 
✓ 72 
s 73 
t 74 
u 75 
✓ 76 
w 77 
x 78 
y 79 
z 7A 

7B 

1 
7C 
7D 
7E 

DEL 7F 

4.8.9 ASCII Character Set 

CHAR HEX CHAR HEX 

NUL 00 + 2B 
SOH 01 . 2C 
STX 02 - 2D 
ETX 03 . 2E 
EOT 04 / 2F 
ENQ 05 0 30 
ACK 06 1 31 
BEL 07 2 32 
BS 08 3 33 
HT 09 4 34 
LF OA 5 35 
VT OB 6 36 
FF OC 7 37 
CR OD 8 38 
SO OE 9 39 
S1 OF : 3A 
DLE 10 ; 3B 
DC1 11 < 3C 
DC2 12 = 3D 
DC3 13 > 3E 
DC4 14 ? 3F 
NAK 15 @ 40 
SYN 16 A 41 
ETB 17 B 42 
CAN 18 C 43 
EM 19 D 44 
SUB 1A E 45 
ESC 1B F 46 
FS 1C G 47 
GS 1D H 48 
RS 1E I 49 
US 1F J 4A 
SPACE 20 K 4B 
! 21 L 4C 
" 22 M 4D 
1 23 N 4E 
$ 24 0 4F 
% 25 P 50 
& 26 Q 51 

27 R 52 
( 28 S 53 
) 29 T 54 
* 2A U 55 



4.8.10 HEX-DECIMAL Table 

EVEN BYTE ODD BYTE 

HEX DEC HEX DEC HEX DEC 

0 0 0 0 0 0 
1 4,096 1 256 1 16 
2 8,192 2 512 2 32 
3 12,288 3 768 3 48 
4 16,384 4 1,024 4 64 
5 20,480 5 1,280 5 80 
6 24,576 6 1,536 6 96 
7 28,672 7 1,792 7 112 
8 32,768 8 2,048 8 128 
9 36,864 9 2,304 9 144 
A 40,960 A 2,560 A 160 
B 45,056 B 2,816 B 176 
C 49,152 C 3,072 C 192 
D 53,248 D 3,328 D 208 
E 57,344 E 3,584 E 224 
F 61,440 F 3,840 F 240 

HEX DEC 

0 0 
1 1 
2 2 
3 3 
4 4 
5 5 
6 6 
7 7 
8 8 
9 9 
A 10 
B 11 
C 12 
D 13 
E 14 
F 15 

4.8.11 BACKUS-NAUR Form (BNF) SYNTAX Definitions 

"is defined to be" 
for enclosing non-terminal symbols 
(ie entities defined by a production) 
for enclosing optional entities 
for enclosing entities that may be repeated 
zero or more times 
for representing alternatives 
indicates symbol [ is to appear in the text 

< > 



4.8.12 COMPILER Options 

<option control comment>::= 
"1" $ <option list> "1" 

<option list>::= 
<option> { , <option> } 

<option>::= 
r NO ] <option identifier> 
[ RESUME ] <option identifier> 

Below is the full list of available compiler options along with the 
default value for each. 

72COL DEFAULT=TRUE 
Only scans the first 72 columns, when turned off the whole source line 
is scanned. 

ASSERTS DEFAULT=TRUE 
Generates object code for ASSERT statements. 

CKINDEX DEFAULT=FALSE 
Disables run-time checks for array indices. 

CKPTR DEFAULT=FALSE 
Disables run-time checks for pointers equal to NIL. 

CKSET DEFAULT=FALSE 
Disables run-time checks for set element expressions. 

CKSUB DEFAULT=FALSE 
Disables run-time checks for subrange assignments in bounds, also 
checks result bounds of PRED and SUCC. 

DEBUG DEFAULT=TRUE 
Statement numbers are incorporated into the code for use by the source 
level interactive debugger. 

LIST DEFAULT=TRUE 
Enables printing of source listing, error lines are always listed. 

MAP DEFAULT=FALSE 
When TRUE prints a map of the routine's variables and commons after 
listing the routine. 

NULLBODY DEFAULT=FALSE 
Should not be used in user programs. Used by the configuration 
processor to insert 'dummy' routine bodies in a program to be 
compiled. 



OBJECT DEFAULT=FALSE 
When TRUE generates object code. 

PAGE DEFAULT=FALSE 
When TRUE printing continues at the top of 
the begining of each source line. 

a new page, set to false at 

STATMAP DEFAULT=FALSE 
When TRUE a map of displacements for each statement in the object 
module is to be generated by CODEGEN. 

4.8.13 CONCURRENT CHARACTERISTICS 

<concurrent characteristics>::= 

"1" * <concurrent characteristic list> 

<concurrent characteristic list>::= 

<concurrent character> { ; <concurrent character> } 

<concurrent character>::= 

<concurrent character keyword> = <parameter identifier> 
<concurrent character keyword> = <integer constant> 

Where <concurrent character keyword> is one of the following: 

Number of words allocated to the system, 
program or process heap 
Priority of the system,program or process 
Number of words allocated to the system, 
program or process heap 

HEAPSIZE 

PRIORITY 
STACKSIZE 

These may only appear immediately following the initial BEGIN of a 
system, program or process declaration. 

4.8.14 SYSTEM DECLARATION 

A system may consist of a single program so long as no processes are 
declared within it. The syntax for such a system is: 

PROGRAM <identifier ; <program block> 

<system>::= 
SYSTEM <identifier> <system block> 

<system block>::= 
<label declaration part><constant declaration part> 



<type declaration part><common declaration part> 
<access declaration part><system routines><body> 

<label declaration part>::= 
LABEL <statement label> { , <statement label> } ; 
<empty> 

<empty>::= 

<statement label>::= 
<digit> { <digit> } 

<constant declaration part>::= 
CONST <constant declaration> { ; <constant declaration> } ; 
<empty> 

<constant declaration>::= 
<identifier> = <constant> 
<identifier> = <integer constant expression> 

<type declaration part>::= 
TYPE <type declaration> 
<empty> 

{ ; <type declaration> 1 ; I 

<type declaration>::= 
<identifier> = <type> 

<variable declaration part>::= 
VAR <variable declaration> 
<empty> 

{ ; <variable declaration> 1 ; I 

<variable declaration>::= 
<identifier list> : <type> 

<identifier list>::= 
<identifier> 1 <identifier> } 

<common declaration part>::= 
COMMON <variable declaration> { ; <variable declaration> } ; 
<empty> 

<access declaration part>::= 
ACCESS <identifier list> ; I <empty> 

<system routines>::= 
{ <system routine> } 

<system routine>::= 
<program declaration> 1 <procedure declaration> 
<function declaration> 

<program declaration>::= 
<program header><program block> 
<program header> FORWARD ; 

; I 



<program header> EXTERNAL [ Pascal ] ; 

<program header>::= 
PROGRAM <identifier>( <program parameter list> ] ; 

<program parameter list>::= 
( <program parameter> { , <program parameter> 1 ) 

<program parameter>::= 
<identifier list> : <type identifier> 

<program block>::= 
<label declaration part><constant declaration part> 
<type declaration part><variable declaration part> 
<common declaration part><access declaration part> 
<program routines><body> 

<program routines>::= 
{ <program routine> } 

<program routine>::= 
<process declaration> 1  <procedure declaration> 1 
<function declaration> 

<procedure declaration>::= 
<procedure header><block> 1 
<procedure header> FORWARD ; 1 
<procedure header> EXTERNAL [ Pascal ] ; 

<procedure header>::= 
PROCEDURE <identifier> [ <parameter list> ] ; 

<parameter list>::= 
( <any parameter> ; <any parameter> } ) 

<any parameter>::= 
( VAR ] <identifier list> : <type identifier> 

<block>::= 
<label declaration part><constant declaration part> 
<type declaration part><variable declaration part> 
<common declaration part><access declaration part> 
<routines><body> 

<routines>::= 
I <routine> } 

<routine>::= 
<procedure declaration> 1 <function declaration> 

<function declaration>::= 
<function header><block> ; 1 
<function header> FORWARD ; 1 
<function header> EXTERNAL [ Pascal ] ; 



<function header>::= 
FUNCTION <identifier>[ <parameter list> ] : <result type> ; 

<process declaration>::= 
<process header><program block> ; I 
<process header> FORWARD ; 1 
<process header> EXTERNAL [ Pascal ] ; 

<process header>::= 
PROCESS <identifier> [ <program parameter list> ] ; 

<body>::= 
<compound statement> 

TYPE SYNTAX 

<type>::= <simple type> I <structured type> 

<simple type>::= 
<scalar type> 1 <subrange type> 1 <type identifier> 

<type identifier>::= 
<identifier> 1 ANYFILE 1 SEMAPHORE 1 TEXT 1 REAL 
INTEGER 1 LONGINT 1 BOOLEAN 1 CHAR 

<scalar type>::= 
<scalar identifier> { , <scalar identifier> ) 

<subrange type>::= 
<enumeration constant> .. <enumeration constant> 

<enumeration constant>::= 
<character constant> 1 <boolean constant> 1 
<integer constant> 1 <scalar identifier> 

<scalar identifier>::= 
<identifier> 

<structured type>::= 
[ PACKED ] <unpacked structure> 
<file type> 1 <set type> 

<unpacked structure>::= 
<array type> 1 <record type> 

<pointer type> I 

<array type>::= 
ARRAY "[" <index type> { , <index type> } "]" 

OF <type> 

<index type>::= 



BOOLEAN I CHAR 1 <scalar type> 1 <subrange type> 
<identifier> 

<record type>::= 
RECORD <field list> END 

<field list>::= 
<fixed part> 1 <fixed part>_; <variant part> <variant part> 

<fixed part>::= 
<record section> { ; <record section> } 

<record section>::= 
<field identifier> 
<empty> 

<field identifier>::= 
<identifier> 

<field identifier> : <type> 

<variant part>::= 
CASE [ <tagfield> ] <tagfield type> OF <variant> 

{ ; <variant> } 

<tagfield type>::= 
BOOLEAN 1 CHAR 1 INTEGER LONGINT 1 <identifier> 

<tagfield>::= 
<identifier> : 

<variant>::= 
<variant label list> : ( <field list> ) I <empty>  

<variant label list>::= 
<variant label> { <variant label> } 

<variant label>::= 
<enumeration constant> 1 
<enumeration constant> .. <enumeration constant> 

<set type>::= 
SET OF <simple type> 

<pointer type>::= 
@ <type identifier> 

<file type>::= 
[ RANDON ] FILE OF <type> 

<result type>::= 
BOOLEAN I CHAR 1 INTEGER I LONGINT 
SEMAPHORE 1 <identifier> 

REAL 



STATEMENT 

<compound statement>::= 
BEGIN <statement> { ; <statement> } END 

<statement>::= 
[ <statement label> : ]<simple statement> 
[ <statement label> : ][ <escape label> : 

<structured statement> 
I 

<simple statement>::= 
<empty statement> 1 <assignment statement> 
<procedure statement> 1 <escape statement> 
<assert statement> 1  <goto statement> 1  <start statement> 

<empty statement>::= 
<empty> 

<assignment statement>::= 
<variable> := <expression> 

<procedure statement>::= 
<procedure identifier> [ <actual parameter list> 

<actual parameter list>::= 
( <actual parameter> { , <actual parameter> 

<actual parameter>::= 
<expression> 1 <variable> 

<procedure identifier>::= 
<identifier> 

<start statement>::= 
START <process identifier> [ <actual parameter list> 

<escape statement>::= 
ESCAPE <escape label> 1 ESCAPE <routine identifier> 

<escape label>::= 
<identifier> 

<routine identifier>::= 
<program identifier> 1 <process identifier> 1 
<procedure identifier> 1 <function identifier> 

<goto statement>::= 
GOTO <statement label> 

<assert statement>::= 
ASSERT <expression> 

<structured statement>::= 
<compound statement> 1 <conditional statement> 
<repetitive statement> 1 <with statement> 



<conditional statement>::= 
<if statement> 1 <case statement> 

<if statement>::= 
IF <expression> THEN <statement> 
[ ELSE <statement> ] 

<case statement>::= 
CASE <expression> OF <case element> { ; <case element> 
[ OTHERWISE <statement> 1 ; <statement> } ] 
END 

<case element>::= 
<case label list> : <statement> 1 <empty> 

<case label list>::= 
<case label> 1 , <case label> } 

<case label>::= 
<enumeration constant> 1 
<enumeration constant> .. <enumeration constant> 

<repetitive statement>::= 
<for statement> 1 <while statement> 1 <repeat statement> 

<for statement>::= 
FOR <control variable> <generator> DO <Statement> 

<control variable>::= 
<identifier> 

<generator>::= 
<initial value> TO <final value> 1 

:= <initial value> DOWNTO <final value> 

<initial value>::= 
<expression> 

<final value>::= 
<expression> 

<while statement>::= 
WHILE <expression> DO <statement> 

<repeat statement>::= 
REPEAT <statement> { ; <statement> 
UNTIL <expression> 

} 

<with statement>::= 
WITH <with variable list> DO <statement> 

<with variable list>::= 
<with variable> { , <with variable> } 

} 



<with variable>::= 
<record variable> 1 <identifier> = <record variable> 

EXPRESSION 

<expression>::= 
<boolean term> <expression> OR <boolean term> 

<boolean term>::= 
<boolean factor> 1 <boolean term> AND <boolean factor> 

<boolean factor>::= 
<boolean primary> 1 NOT <boolean primary> 

<boolean primary>::= 
<simple expression> 1 
<boolean primary><relational operator><simple expression> 

<relational operator>::= 
= 1 <> 1 < 1 <= 1 > 1 >= 1 IN 

<simple expression>::= 
<term> 1 <adding operator><term> 
<simple expression><adding operator><term> 

<adding operator>::= 
+ 1 - 

<term>::= 
<factor> <term><multiplying operator><factor> 

<multiplying operator>::= 
* 1 / 1 DIV 1 MOD 

<factor>::= 
( <expression> ) 1 <set> 1 <unsigned constant> 1 <variable> 
<function identifier> [ <actual parameter list> ] 

<function identifier>::= 
<identifier> 

<set>::= 
"[" <element list> "]" 

<element list>::= 
<element> { , <element> } 

<element>::- 
<expression> I <expression> .. <expression> 

<unsigned constant>::= 



<constant identifier> 1 <boolean constant> 1 
<scalar identifier> I <character constant> 
<string constant> 1 <integer constant> 1 NIL 1 
<real constant> 

<constant identifier>::= 
<identifier> 

VARIABLE 

<variable>::= 
<variable identifier> 1 <component variable> 
<type-transferred variable> 

<variable identifier>::= 
<identifier> 

<component variable>::= 
<indexed variable> I <field designator> 1 
<referenced variable> 

<indexed variable>::= 
<array variable> "r" <expression> { , <expression> 

<array variable>::= 
<variable> 

<field designator>::= 
<record variable> . <field identifier> 

<record variable>::= 
<variable> 

<field identifier>::= 
<identifier> 

<referenced variable>::= 
<pointer variable> @ 

<pointer variable>::= 
<variable> 

<type-transferred variable>::= 
<variable> :: <type identifier> 

INTEGER CONSTANT EXPRESSION 

<integer constant expression>::= 
<integer constant term> 1 

ni. 



<adding operator><integer constant term> 1 
<integer constant expression><adding operator> 

<integer constant term> 

<integer constant term>::= 
<integer constant factor> 1 
<integer constant term><intmult operator> 

<integer constant factor> 

<intmult operator>::= 
* I DIV 1 MOD 

<integer constant factor>::= 
( <integer constant expression> ) 1 
<integer constant identifier> 1 <integer constant> 

<integer constant identifier>::= 
<identifier> 

LANGUAGE ELEMENT 

<symbol>::= 
<special symbol> 1 <keyword symbol> 1 <identifier> <constant> 

<constant>::= 
<enumeration constant> 1 <real constant> 1 <string constant> 
<constant identifier> 

<separator>::= 
<space> 1 <end of logical source record> 1 <comment> I <remark> 

<comment>::= 
<open comment><any sequence of graphic characters 
not containing <close comment> ><close comment> 

<open comment>::= 
"I n  1 (* 

<close comment>::= 
.1n I  *) 

<remark>::= 
n <any sequence of graphic characters extending 

to the end of the logical source record> 

<special symbol>::= 

@ I :[i I 1) :IL 1"1 I !=11)>Im I  t>'11-! 
1 

:= 
Note : The following substitutions may be used. 

(* --> "I",  *) --> "}n , (. --> n[n. --> n]n , @  

<keyword symbol>::= 



ACCESS I AND I ANYFILE 'ARRAY I ASSERT I BEGIN 1 BOOLEAN 
CASE 1 CHAR I COMMON 1 CONST I DIV DO 1 DOWNTO 1 
ELSE END 1 ESCAPE 1 FALSE 1 FILE FOR FUNCTION I 

I GOTO IF IN 1 INPUT I INTEGER 1 LABEL LONGINT  
MOD 1 NIL NOT 1 OF 1 OR 1 OTHERWISE I OUTPUT1 PACKED 
PROCEDURE PROCESS 1 PROGRAM 1 RANDOM I REAL REPEAT 
SEMAPHORE SET I START 1 SYSTEM I TEXT 1 THEN 1 TO I 
TRUE ( TYPE 1 UNTIL 1 VAR I WHILE 1 WITH 

<identifier>::= 
<letter> { <letter> I I <digit> } 

<letter>::= 

:1(13)11:1;11FJ111/111;7C I Y I 
I KIZ,11;11N101 

<digit>::= 
0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 

<boolean constant>::= 
FALSE 1 TRUE 

<character constant>::= 
' <character> ' 

<string constant>::= 
<character><character> { <character> } 

<character>::= 
<graphic character> I i <hexdigit><hexdigit> 

<graphic character>::= 
<special character> I  <letter>  I  <digit>  I 
<space> I  <nonstandard character> 

<special character>::= 

I ;,I I 
 "I61 T 1  

<space>::= 

I 1[  1 1]1 i 11; 1 ;11 ; I I 

<nonstandard character>::= 
<any other character available on a particular 
system or device> 

<hexdigit>::= 
<digit>lAIBICIDIEIF 

<integer constant>::= 
<digits> [L11 
# <hexdigit> <hexdigit> } [ L ] 

<real constant>::= 



<digits> . <digits> 
<digits> . <digits> E <scale factor> 
<digits> E <scale factor> 

<digits>::= 
<digit> { <digit> } 

<scale factor>::= 
[ <sign> ] <digits> 

<sign>::- 
+1- 



CHAPTER V 

POWER BASIC 

5.1 INTRODUCTION 

BASIC (Beginner's All Purpose Symbolic Instruction Code) is a 
high-level interpreted language. Although it does not support the 
full block structured approach of the Algol based languages (Algol 68, 
PASCAL, etc.), the BASIC language is easy to learn and supports a 
variety of useful features. These features are discussed below. 

In an interpreted language, no machine code is produced. Instead, as 
each source line is entered, it is checked for syntax errors (does the 
source line conform to the language specifications?) and, if valid, is 
stored in a condensed and encoded form called interpretive code-
Because interpreted languages are normally used in an interactive 
mode, syntax errors are immediately reported to the user. Before the 
next source lines can be entered, the line containing the error(s) 
must be corrected. The stored code can be 'executed' at any time (it 
is not necessary to wait until the whole program has been entered) by 
issuing the RUN command. The interpretive code is not directly 
executed. Instead, the interpreter examines each statement in the 
interpretive code and calls in a machine language subroutine (which is 
part of the interpreter) to carry out the desired operation. 

Semantic errors (non-existent variables and arrays, incorrectly 
referenced arrays, etc.) And run-time errors (incorrect program 
logic) require that the line(s) containing the errors be revised 
before the program can be rerun. With a compiled language, the whole 
program must be recompiled after modifications are made. It may also 
be necessary to link edit the compiled program should it contain any 
external references. 

The advantages of using an interpretive language follow: 

• Because the interpreter calls in complete assembly 
language subroutines to perform each function, each 
statement in the interpretive code can specify a 
complex operation. This results in compact, memory 
efficient code. 

• There is no need to go through separate compilation, 
link edit steps, etc. to produce executable code. As 
part of the edit step, each source statement is 
translated into 'executable' interpretive code as it is 
entered. 

• Each source line is checked for errors as it is 
entered; it is impossible to enter a syntactically 
incorrect statement. 



• Interpretive programs are usually developed 
interactively. As a result, it is only necessary to 
retype the relevant line(s) and rerun the routine in 
order to change the program. The user is able to see 
the result of his change immediately. Also, the 
interpreter provides excellent error diagnostics and 
good recovery techniques. 

• Because the interpreter is in control the total time, 
it is more difficult for the programmer to find himself 
in irrecoverable error situations. 

• To transport a program to another machine it is only 
necessary to provide a version of the interpreter 
written in the new machine's instruction code. Any 
program written in interpretive code can then be run on 
the new machine. 

Because of the extra work done by the interpreter in reading 
interpretive code, calling subroutines, etc, interpretive code 
executes several times slower than compiled code. This is the 
principal disadvantage to using interpretive code. In addition, BASIC 
was designed as a simple language, and does not provide the powerful 
program and data structuring techniques of, say, PASCAL. As such, it 
is probably not a suitable language for developing large or complex 
applications. However, for small to medium sized applications, and 
for experimental work demanding speed in program development, BASIC is 
very acceptable. 

5.2. POWER BASIC 

POWER BASIC is a family of software products designed for the 
industrial user. It provides all of the facilities of BASIC plus 
specially designed features to support real-time industrial control 
applications. The POWER BASIC family consists of three members : 
Evaluation POWER BASIC, Development POWER BASIC, and Configurable 
POWER BASIC. In addition, there is an Enhancement Software Package 
available for use with Development POWER BASIC. 

POWER BASIC is designed to run on the TM 990 range of microcomputer 
modules (it can also be adapted to run on other systems). It is 
possible to set up a POWER BASIC development system with a minimum of 
capital outlay. A chasis containing two or three microcomputer 
modules from the TM990 board range, a 733 ASR terminal, a single audio 
cassette recorder and a PROM programmer, provide all the facilities 
necessary to develop a POWER BASIC application program and store it in 
Programmable Read Only Memory (PROM)- The floppy disc based FS990/4 
system provides more sophisticated features, which allow a POWER BASIC 
program to be tailored for any application to achieve minimum code 
size. 



5.2.1 Evaluation POWER BASIC 

Evaluation POWER BASIC is a four-EPROM package that resides on either 
a TM 990/100M or a /101M CPU module. Additional RAM in the form of 
TM 990/201 or /206 memory expansion boards may be configured into the 
system as necessary. 

Apart from the standard features of BASIC, Evaluation, POWER BASIC 
allows the user to access control equipment in real-time (timing is 
provided by the TIC function) by either memory-mapped I/O (MEM 
function) or via TI's standard bitwise Communications Register Unit 
(BASE, CRB and CRF functions). It also allows the user to load a 
program from (LOAD command) and save a program (SAVE command) on 
digital cassettes. 

Evaluation POWER BASIC is intended for users to try out the features 
of POWER BASIC. It is not meant for serious development work, apart 
from experimental applications. 

Used with the /101M CPU board. Evaluation POWER BASIC supports the 
following execution environments: 

• Single-user single-partition 

• Single-user two-partition 

• Two-user two-partition 

Selection of the appropriate environment is implemented via the 5-pole 
DIP on the /101M CPU board. Section 2.9 of the TM990 POWER BASIC 
Reference Manual describes this feature in greater detail 

Communication between partitions is made possible by the system 
defined common array:COM(0) to COM(9). Thus Evaluation POWER BASIC 
can be used to control two separate tasks, the execution of each being 
synchronized using the COM array. For example, one partition can be 
used to control an industrial process while the other collects control 
data (from a terminal for example). 

PARTITION #1 

10 REM GATHER DATA 
20 COM(0)=0 
30 INPUT V1,...,V9 
40 IF COM(0)<>0 THEN GOTO 40 
50 COM(1)=V1::COM(2)=V2 

• • • 

90 COM(0)=1 
100 GOTO 30  

PARTITION 12 

10 REM CONTROL PROCESS 
20 'initialize' V1,...,V9 
30 IF COM(0)=0 THEN GOTO 120 
40 V1=COM(1)::V2=COM(2) 

110 COM(0)=0 
120 'use' V1,...,V9 
130 GOTO 30 

Partition #1 gathers input from the terminal and passes it across 
partition 12 via the COM array. COM(0) is used to synchronize 

to 
the 



data transfer; mutual exclusion is guaranteed by allowing #1 to access 
the array only when COM(0)=0; when COM(0)=1 only #2 can access it. 
After loading the array, #2 is informed that fresh data is ready by 
setting COM(0) to 1. This also prevents #1 from modifying the array 
contents until #2 has copied them. Once the contents have been 
copied, #1 is given exclusive control of the array by setting COM(0) 
to 0. 

In a single-user two-partition environment, CTRL T (pressing the T key 
while holding down the CTRL key) will transfer control from one 
partition to the other. 

5.2.2 Development POWER BASIC 

Development POWER BASIC is a six-EPROM package that resides on either 
a TM 990/100M or a /101M CPU board plus either a TM 990/302 Software 
Development Board or a TM 990/201 memory expansion board. Additional 
memory expansion boards can be included if required. 

In Development Power BASIC, the two-partition feature is removed to 
allow the inclusion of additional features. With the CALL statement, 
Development POWER BASIC allows the user to access assembly language 
routines that have been burnt into PROM. Development POWER BASIC also 
allows the user to write interrupt service routines in POWER BASIC and 
to associate these with particular interrupt levels (using the TRAP, 
IMASK, and IRTN statements). Development POWER BASIC also provides 
full character handling facilities (character search, match and 
conversion functions), better control structures (including the ELSE, 
ON and ERROR statements) and more varied print formatting (hexadecimal 
formatting and direct output of hex ASCII codes). 

In addition, the Enhancement Software Package is accessible from 
Development POWER BASIC. The Enhancement Software Package is a 
two-EPROM package used in conjunction with Development POWER BASIC. 
This provides the additional capability of loading a program from and 
saving a program on low cost audio cassettes. If the TM 990/302 
Software Development Board is configured into the system, it is 
possible to program POWER BASIC applications into TMS2716 EPROMs 
(using the PROgram command). The software package also provides 
decimal print formatting and complete error message reporting. 

5.2.3 Configurable POWER BASIC 

Configurable POWER BASIC is a floppy disc based development package 
that is designed to run on a 990/4 minicomputer under the TX990 
operating system (version 2.3 or later). The package has two parts, a 
configurator and an interpreter. Configurable POWER BASIC allows the 
user to generate an applications system of minimum size by deleting 
the POWER BASIC editor along with any parts of the interpreter that 
are used. 

The configurator determines what POWER BASIC features are required by 



the user's application program and builds a link control file. With 
this file along with the POWER BASIC object library, the TX990 Link 
Editor produces a POWER BASIC run-time module. This module contains 
both the user's application program and an interpreter customized to 
the user's requirements (only the POWER BASIC features used by the 
application program are built into it). Using the TXPROM utility, the 
module can be burnt into 2716 EPROMs. 

If the application program's EPROM(s) are inserted at address >3000, 
toggling the reset switch causes the program to execute 
automatically. However, if the EPROM(S) are inserted elsewhere, the 
following command must be used to execute the program: 

LOAD <address> 

where <address> is the address of the first pair of EPROMs containing 
the POWER BASIC application program. 

The interpreter provides all the features of Development POWER BASIC, 
its Enhancement Software Package, plus a number of other features. 

Configurable POWER BASIC supports a comprehensive file management 
package that allows the user to create, access and delete files 
(either sequential or random access) on the 990/4's floppy disc 
units. In accordance with 990 philosophy, all file and device I/O 
operations are performed via conceptual links called logical unit 
numbers or lunos. The physical connection between a luno and a 
specific file or device is made (opened) by the BOPEN statement and is 
broken (closed) by the BCLOSE statement. The RESET statement closes 
all lunos that are open at the time the statement is executed. Files 
can be created by either the BDEFS (define sequential file) or the 
BDEFR (define random files statements, and deleted by the BDEL 
statement. Reading from and writing to files or devices can be 
performed by the COPY statement or by: 

BINARY <exp> 

where <exp> specifies the required I/O operation. 

The '@' operator has been added to the PRINT statement to give the 
user complete cursor control. With this the user can specify an exact 
starting position for output on the screen (911 or 913 VDT) either by 
supplying the 'x' and 'y' co-ordinates or by using these positioning 
commands: 

B Move cursor to begining of line 
C Clear screen and move cursor to HOME position 
D Move cursor down 
H Move cursor to HOME position 
L Move cursor to left 
R Move cursor to right 

For example; To clear the screen and print the message 'INPUT NAME' to 
the VDT screen, starting on the fifth line at the twelfth character 



position, either of the following commands is required. 

PRINT @"C5D12R";"INPUT NAME" 
Or PRINT @"C";@(5,12);"INPUT NAME" 

Other features of Configurable POWER BASIC include: DIGITS (specify 
the number of digits to be printed in free format), STACK (interrogate 
the GOSUB stack) statements, NUMBER (set initial and increment values 
for the automatic line numbering facility), PURGE (delete the 
specified lines), SOURCE (show how much room the program will occupy 
when saved), and BYE (terminate a Configurable POWER BASIC session) 
commands. 

The diagram that follows illustrates Configurable POWER BASIC as it 
relates to memory. 
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5.3. BASIC LANGUAGE OVERVIEW 

BASIC is an uncomplicated,easy to learn language, based upon a few 
simple concepts. A BASIC program consists of a series of numbered 
statement lines. The statements are executed in ascending numerical 
order. A line normally contains one BASIC statement; although the 
concatenation operator (::) can be used to write more than one 
statement on a line. One of the simplest statements, the assignment 
statement, is used to assign the value of an expression to a variable: 

50 A2 = 5 + 7 

When the above line is executed, A2 will be assigned the value of the 
arithmetic expression '5+7' (the integer 12). 

There is no variable declaration; a variable is implicitly declared by 
its first appearance on the left-hand side of an assignment 
statement. Variable names are restricted to from one to three letters 
or a combination of a letter and a number in the range 0-127. There 
is no typing of data. Variables can have integer, real or character 
string values, depending on the context. The only data structure 
provided is the array, which can have one or more dimensions. 

The principal device for structuring a program is the GOTO statement, 
which transfers execution directly to a statement number. The 
IF..THEN statement implements selection; it must be combined with the 
GOTO statement if the alternatives are longer than one or two 
statements. The FOR..NEXT statement implements iteration (see 
Subsection 2.5). In general, programming constructs have to be built 
by the programmer using IFs, FORS and GOTOs. 

Subroutines, 'procedures' (see Subsection 2.8) can be called using the 
GOSUB statement, which simply places the address of the statement 
following the GOSUB on a last-in-first-out stack, from where it is 
retrieved when a RETURN is executed. Subroutines are not declared 
separately from the main program. The GOSUB simply specifies a 
statement number; the statements between that number and the next 
RETURN are treated as a subroutine. Scope rules are simple. Once a 
variable has been introduced, it can be referenced anywhere in the 
program. Subroutines can be nested (up to 10 deep), but the 
programmer needs to check that the GOSUBs and RETURNS match (the 
interpreter does not perform this check). Subroutine parameters are 
not allowed. 

The main attraction of BASIC is its simplicity. Programs can be 
entered and executed easily even by users who are not skilled 
programmers. BASIC is a high level language, and as such 
automatically handles such details as storage allocation (to which the 
assembly language programmer devotes a lot of attention). The 
development environment provided by BASIC is particularly simple and 
easy to use; even novices can learn to develop a BASIC program in a 
matter of hours. BASIC is ideal for the rapid development of 
relatively simple applications. 



However. it does have limitations. Because of its simplicity, BASIC 
performs very few checks on the integrity of program and data (such as 
are performed automatically by the PASCAL compiler, for instance). It 
is quite legal, for example, to assign an integer value to a character 
string variable. This may be valuable in some circumstances. However 
BASIC supplies no warning if it is done by mistake. In addition, the 
structuring and self-documenting features of PASCAL are missing. For 
a complex application, PASCAL is probably a better alternative. 

5.4. POWER BASIC OPERATION 

5.4.1 Operating Modes 

POWER BASIC has two modes of operation: 

1) Keyboard mode is automatically entered when POWER BASIC is 
initialized. Entering a numbered line causes that line to 
be stored in the appropriate place in the program space. 
Entering an unnumbered line causes the statement(s) to be 
immediately executed and keyboard mode to be re-entered as 
soon as the necessary processing has been performed. 

2) Execution mode is entered by issuing either a RUN, a CONT or 
a GOTO statement causing the POWER BASIC interpreter to 
execute the previously stored program; RUN starts at the 
lowest line number in the program; CONT continues from the 
last line that was previously interpreted; GOTO proceeds 
from the line specified. This mode is terminated by any one 
of the following conditions: 

• Error condition arising. 

• STOP or END statement executed. 

• Pressing the ESCape key on the terminal. 

Note : There are a number of statements which can only be issued in 
keyboard mode. The POWER'BASIC Reference Manual refers to these as 
commands. These commands are also listed in the Reference Section at 
the end of this chapter. 

5.4.2 Editing Source Statements 

POWER BASIC supports a simple editor that allows the user to easily 
modify (or edit) already entered source statements. The available 
edit commands are: 



CR or LF Enter the edited line 
ctrl H Backspace the cursor one character 
ctrl F Forwardspace the cursor one character 

(An attempt to forwardspace past the last 
character will have no effect apart from 
sounding the bell on the terminal) 

RUBOUT Backspace and remove character 
<ln> ctrl E Display the line <ln> for editing 

Development POWER BASIC supports two additional commands that are not 
available in Evaluation POWER BASIC: 

ctrl I<n> Insert <n> blanks 
ctrl D<n> Delete <n> characters 

'Ctrl E' strike the E key while holding down the CTRL key. 
'Ctrl I<n>' hold down the CTRL key while striking the I key, then 
strike the numeric key corresponding to the value <n>. 

When the Carriage Return or LineFeed key is pressed, all characters 
displayed are entered, regardless of the position of the cursor. 

Entering only a line number (and nothing else) causes the specified 
line to be deleted from the stored program. Entering a statement with 
a line number that already exists causes the original statement to be 
replaced by the new one. 

The editor is automatically invoked when the interpreter encounters a 
syntax error in a line being entered via the ASR. However, if the 
program is being loaded from cassette (using the LOAD command) and a 
syntax error is encountered, the interpreter will display the number 
of the line containing the error. The whole line is ignored as it can 
not be stored correctly and the load operation will continue. 

5.4.3 Automatic Line Numbering 

The automatic line numbering facility is invoked by terminating an 
input line with a linefeed instead of a carriage return. This causes 
the interpreter to output the incremented line number and keyboard 
mode to be re-entered. The incremented line number is 10 greater than 
the last line number entered. Entering a line containing just a 
linefeed initializes the line number to 10. Terminating a line with a 
carriage return disables this facility. 

5.4.4 System Initialization 

Toggling the reset switch causes POWER BASIC to clear and scan the 
system RAM area to determine how much memory is present. This 
operation begins at location >FFDC and continues on down through 
contiguous memory to location >4000 or until a read/write mismatch is 
encountered. (A fully populated /100M microcomputer board only holds 
1K of RAM . This is addressed from >FC00 to >FFFF. Any additional 



memory in the form of memory expansion boards, must be configured so 
that it terminates at >EFFF. The interpreter ignores the resulting 
memory 'hole', from >F000 to >FBFF. 

The POWER BASIC interpreter next performs the auto-baud sequence. 
This initializes the serial I/O interface for terminal communication. 
After the user has struck the A (or carriage return) key on the 
terminal, the interpreter measures the time of the start bit and 
determines the baud rate of the terminal. The onboard TMS9902 
Asynchronous Communications Controller is then set to this baud rate 
(all terminal I/O is performed through the 9902.) 

In Development POWER BASIC the UNIT flag is restored to a value of 
one; all output is directed to Port A on the microcomputer board. 

Once all POWER BASIC pointers have been initialized, the following 
message is output: 

TM990 BASIC REV X.n.m 
*READY 

where : X = language level 

n = release number 

m = revision number 

At this stage, POWER BASIC is in keyboard mode waiting for user 
input. 

Refer to the POWER BASIC Reference Manual for instructions on setting 
up the hardware configuration. 

5.5. VARIABLES 

A POWER BASIC variable can be used to store either an integer number, 
a real number, or a character string depending on the context in which 
the variable is used. Thus, although a variable may contain a number 
(integer or real) it can be used as though it contained a character 
string, and vice versa. All variables, whatever their type, occupy 
the same amount of storage (6 bytes in Development Power BASIC, 4 
bytes in Evaluation POWER BASIC). 

5.5.1 Variable Names 

A variable name is either an alphabetic character followed by a number 
in the range 0 to 127 (e.g. Z100) or an alphabetic string up to three 
characters long (e.g. A, ST, and LST). The variable name cannot be 
identical to a POWER BASIC keyword; nor can it form the beginning of a 
keyword. The following variable names are not valid: 

LIS Beginning of LIST which is 



a POWER BASIC statement 

MEM A POWER BASIC function 

TOT First 2 letters form the 
POWER BASIC keyword TO 

for a full list of reserved words refer to the Reference Section. 

5.5.2 Variable Declarations 

Variables are not explicitly declared in BASIC. Instead a variable is 
implicitly declared by assigning a value to a valid variable name. 
For example, to declare the variable TST and assign it the value 100 
the statement: 

TST=100 

is used. 

A value can be assigned to a variable either by a READ (read a value 
from a DATA statement), an INPUT (accept input from the terminal) or a 
LET statement. The statement 'TST=100' is an implied LET, as are 
statements of the form: 

<variable>=<expression> 

where <expression> may contain function calls: 

FRD=SIN(PI*NUM) 

with both PI and NUM having been previously declared. 

An attempt to use a variable that has not been declared (assigned a 
value) will result in error 40 (UNDEFINED VARIABLE). 

5.5.3 Numeric Representation 

If a number can be represented in a 16-bit two's complement form, it 
is stored in integer format, otherwise it will be stored in 
floating point format. 

5.5.3.1 Integer Variables. An integer variable can store a value in 
the range -32768 to +32767. 

5.5.3.2 Floating Point Variables. Floating point format allows a 
real number in the range 10E-75. ('E' represents the multiplier 10, 
the integer number following is the power to which 10 is raised.) 
This representation provides approximately 7 digits of accuracy for 
Evaluation POWER BASIC and approximately 11 digits of accuracy for 



Development POWER BASIC. 

5.5.4 Character String Variables 

A character string is a string of characters enclosed within single or 
double quotes. Paired double quotes can be used to enclose single 
quotes and vice versa. In Development POWER BASIC, non-printable 
characters may be included in a character string by writing their 
hexadecimal ASCII representation enclosed in angle brackets. The 
angle brackets (< >) are stored along with the character string and 
are interpreted when the string is read from a DATA statement or when 
the string is being printed. 

A variable is specified as containing a character string by preceeding 
the variable name by a dollar sign (#$'). In this form, a variable 
should be used to store a string of 5 characters for Development POWER 
BASIC, or 3 characters for Evaluation POWER BASIC. The last byte is 
used to terminate the string and contains the null character (zero). 

5.5.5 Array Variables 

An array can be thought of as a list of variables stored consecutively 
with each variable being represented as an array element. The area of 
memory reserved for the array is referenced by the array name. This 
is followed by a number enclosed in parentheses or square brackets 
(internally the parentheses are converted into and stored as square 
brackets). The number is known as the array subscript and indicates 
which element in the array is to be accessed. 

Note : A and A(0) refer to two completely different variables. 

To allocate the array STR with 10 elements the following statement is 
required: 

DIM STR(9) 

The elements are referenced by 

STR(0), STR(1), STR(9). 

The size parameter supplied to the DIMension statement is one less 
than might be expected as BASIC automatically allocates space starting 
from element zero. 

Although an array may be used to hold character strings, it is 
declared (in the DIMension statement) without the dollar sign. 

POWER BASIC allows an array to be declared with any number of 
dimensions; however, for most practical applications, a two 
dimensional array is usually sufficient. 



5.6. POWER BASIC PROGRAM 

A POWER BASIC program consists of a number of statements, each with a 
line number. Statements may either perform some action, such as 
adding two variables together and assigning the sum to a third 
variable ("A=B+C'), or may be control statements, that change the 
execution flow of the system. A full list of POWER BASIC statements 
is provided in the Reference Section at the end of this chapter. 

POWER BASIC allows the user to write a number of statements on one 
line, with each statement being executed in turn. The general syntax 
for an input line is: 

-line number- <statement> [ :: <statement> ] -! comment- 

where Indicate optional items 
[ Indicate item is repeated as many times as 

required - 0,1,.... 
Exceptions : 

• A NEXT statement should be the first statement on an input 
line; otherwise it will not be located to terminate the FOR 
loop. 

• A DATA statement should be the only statement on an input 
line. 

• A REM statement takes the remainder of a line as comment; 
statements following will be treated as comments. 

5.6.1 Control Statements 

POWER BASIC statements are normally executed in ascending line number 
order. However, it is not usually possible to write an effective 
applications program in a straightforward sequential manner. For this 
reason, POWER BASIC supports a number of control statements that allow 
the user to dictate the order in which program statements are 
executed. 

5.6.1.1 GOTO Statement. The first of these control statements is the 
'GOTO'. This provides a simple, yet very powerful, mechanism for 
changing program flow. The syntax for this statement is: 

GOTO <ln> 

This causes contol to be transferred to line <ln>. 

Restraint must be exercised with this statement; too liberal a usage 
will lead to an unintelligible and unnecessarily complex program. 

Possibly the best use of this statement is in building constructs that 
are not included in BASIC (the WHILE, DO FOREVER and REPEAT UNTIL 



loops; more about these later). 

5.6.1.2 IF THEN Statement. Occasionally it is necessary to perform 
some specific action only if a certain condition is met. For example, 
the only time the telephone should be answered is if it is ringing. 
To provide for this situation, Power BASIC provides the IF THEN 
statement. The above operation can now be expressed as 'IF the phone 
is ringing THEN answer it'. The syntax for this is : 

IF <condition> THEN <sequence> 

Statements in <sequence> must be separated from each other by the 
statement separator ('::'). <Condition> may be any valid expression 
that yields a value of true or false. 

The POWER BASIC statements <sequence> is only executed if <condition> 
proves to be true. 

Note: The statement separator does not delimit the IF THEN statement, 
it only separates the statements in <sequence> from each other. 

100 IF condl THEN statementl::IF cond2 THEN statement2 

Is not the same as: 

100 IF condl THEN statementl 
101 IF cond2 THEN statement2 

In the first case, <statement2> is only executed if BOTH <condi> AND 
<cond2> are true. In the second case, <statement2> is executed if 
<cond2> is true, irrespective of <condi>. 

The number of statements that can be associated with the THEN keyword 
is limited by the length of the input line. This can be overcome 
using the following: 

IF NOT(condl) THEN GOTO 150 

. Sequence of statements to be performed 

. when <condl>=true 
• 

150 REM end the IF THEN clause 

The REM statement is a remark (comment), and is ignored by the 
interpreter. 

If <condi> is false, then NOT(condl) is true and program control is 
passed to the REM statement following the sequence. But if <condi> is 
true, then NOT(condl) is false and program execution continues from 
the line following the IF THEN statement. 

A WHILE loop can be built up as follows: 



10 IF NOT(condl) THEN GOTO 200 

. Sequence to be performed 

. WHILE <condl>=true 

GOTO 10 
200 REM <condl>=false 

A DO FOREVER loop can be expressed as: 

50 REM start forever loop 

. • Sequence to be performed continuously 

G▪  OTO 50 

A REPEAT UNTIL loop is: 

145 REM start repeat loop 

. Sequence to be performed 

. UNTIL <condl>=true 

IF NOT(condl) THEN GOTO 145 
REM drop through to here when <condl>=true 



An IF THEN ELSE construct can be implemented as: 

IF NOT(condl) THEN GOTO 100 
• 
. Sequence to be performed 
. when <condl>=true 

GOTO 200 
100 REM start ELSE part 

. • Sequence to be peformed 

. when <condl>=false 

200 REM end IF THEN ELSE 

This can be easily expanded to allow an ELSEIF: 

IF NOT(condl) THEN GOTO 192 

.▪  Sequence to be performed 

. when <condl>=true 

GOTO 475 
192 IF NOT(cond2) THEN GOTO 320 

. Sequence to be performed 

. when <cond2>=true and <condl>=false 

GOTO 475 
320 REM start ELSE part 

. • Sequence to be performed 

. when <condl>=<cond2>=false 

475 REM end IF THEN ELSEIF ELSE 

NOT is a recognized Development POWER BASIC boolean primitive that 
returns a value of TRUE if its argument evaluates to FALSE; otherwise 
it returns a value of FALSE. However, this is not supported by 
Evaluation POWER BASIC. It is simple to effect the NOT function by 
taking the complement of . the relational operator in the condition. 

A condition can be written in the form: 
<expl><relop><exp2> 

The negation of a condition can then be written : 
<expl><relop*><exp2> 

where <relop*> is the complement of <relop> and is derived from the 
following table. 



Relationship <relop> <relop*> 

Equal to 
Greater than 
Less than 
Greater than or equal to 
Less than or equal to 
Not equal to 

1 

A
  A

  V
  A

  
V

 II  
V

  I
I  
II
 

, 
 

, 

H
 V
  A

  V
  A

 A
 

11
  
I
I
 V
 

For example: 
NOT( a > b ) becomes ( a <= b ) 
NOT( p = q ) becomes ( p <> q ) 

An expression is considered to have a truth value of TRUE if it 
evaluates to a non-zero value, otherwise it is considered FALSE. Thus 
the statement : 

IF <expression> THEN statement(s) 

is shorthand for 

IF <expression> <>0 THEN statement(s) 

5.6.1.3 ELSE STATEMENT. Development POWER BASIC supports the ELSE 
statement. This is normally used in conjunction with the IF THEN 
statement. The syntax for this is: 

ELSE <sequence> 

where the statements in <sequence> are separated from each other by 

The ELSE statement uses the ELSE flag (set or reset by the last 
IF THEN statement depending on whether the condition is true or false) 
to determine whether the statement(s) following the ELSE keyword are 
to be executed. Several ELSE statements may appear between IF THEN 
statements. Each will be executed if the condition proved to be 
false, otherwise they will be skipped. 

Typically, this statement will be used as: 

100 IF condl THEN seql 
110 ELSE seq2 
120 REM end IF THEN ELSE 

In the above, <seql> is only executed if <condi> is true; if <condi> 
is false then <seq2> is executed. After executing the appropriate 
sequence, control is passed to the REM statement (line 120). 

<Seq2> may itself consist of an IF THEN ELSE: 



100 IF condl THEN seql 
110 ELSE IF cond2 THEN seq2 
120 ELSE seq3 
130 REM end IF THEN ELSEIF 

Here <seq3> is executed only if both <condi> and <cond2> are false; 
<seq2> if <condi> is false and <cond2> is true; and <seql> if <condi> 
is true. 

5.6.1.4 FOR NEXT Statement. A simple loop construct (perform a 
sequence of statements a known number of times) can be implemented by 
as follows. 

Num=int 
100 IF num>lst THEN GOTO 350 1 IF NOT(num<=lst) 

num=num+1 increment loop count 

. ▪  Sequence to be performed 

. while num<=lst 

GOTO 100 
350 REM end iterative loop 

where 'int' = initial value 
'1st' = final value 
'num' = loop counter 

The above loop is performed until the final value is exceeded. 

To implement a count-down loop, the test and increment statements 
would have to be changed to: 

100 IF num<lst THEN GOTO 350 ! IF NOT(num>=1st) 
num=num-1 ! decrement loop counter 

These simple loop constructs can be made more powerful by modifying 
the increment (decrement for the count-down loop) statement to: 

num=num+stp 
where 'stp' = required increment/decrement 

As this type of loop is used often, BASIC provides its own loop 
construct in the form of the FOR NEXT statement. The syntax of this 
is: 

FOR <var>=<start> TO <final> STEP <step> 

. • Sequence to be performed 

NEXT <var> 

The <start>, <final> and <step> values can be any valid numeric 



expression. If the <step> value is one, the STEP keyword may be 
omitted. The variable <var> specified by NEXT must coincide with that 
used by the FOR. 

The FOR statement opens the loop and the NEXT statement closes it. If 
the condition: 

(step value)*(start value) > (step value)*(final value) 

is true when the FOR statement is first encountered, the loop will not 
be executed. But if this condition is false, the FOR variable is set 
to the <start> value and the sequence of statements between the FOR 
and NEXT statements are executed. When the NEXT statement is 
encountered the FOR variable is incremented/decremented by the <step> 
value. Control is passed back to the FOR statement and while the 
condition : 

(step value)*(FOR variable) <= (step value)*(final value) 

remains true the loop will be executed. When execution of the loop is 
finished, control is transferred to the statement following the NEXT. 

FOR NEXT loops can be nested (contained within one another). There is 
a maximum nesting depth of 5 for Evaluation Power BASIC, 10 for 
Development Power BASIC. No overlapping is allowed; inner loops must 
be closed before closing outer loops. Nested FOR NEXT loops must have 
different FOR variables; they can not share control variables. 
Otherwise, loop boundaries will not be clearly defined. 

100 FOR K=1 TO 100 

-- 200 FOR J=9 TO 0 STEP -1 

-- 275 NEXT J 

490 NEXT K 

100 FOR K=1 TO 100 - 

-- 200 FOR K=90 TO 160 

-- 387 NEXT K 

480 NEXT K 

CORRECT NESTING 

INCORRECT NESTING 
CONTROL VARIABLE 
SHARED; LOOP 
BOUNDARIES NOT 
CLEAR 



100 FOR K=1 TO 100 STEP 3 

• INCORRECT NESTING 
200 FOR J=9 TO 0 OVERLAPPING LOOP 
. BOUNDARIES 

300 NEXT K 

400 NEXT J 

Within the loop, the control variable can not be modified. It can 
however be used to access the elements of an array (for example). 

While control can be transferred from within a loop to a statement 
outside, it is not possible to transfer control from outside to the 
inside. 

A FOR NEXT loop can be written on a single line with '::' separating 
each statement: 

100 FOR I=0 TO 10 ::sequence::NEXT I 

This disables the ESCape key on the terminal while the loop is being 
executed(until the loop has completed it is not possible to interrupt 
program execution and return Power BASIC to keyboard mode). This is 
because POWER BASIC will only recognize an interrupt at the end of the 
currently executing statement. Also, if the initial check indicates 
that the loop is not to be executed, error 31 (FOR W/O NEXT) will 
result because the NEXT statement will not be found. 

5.6.2 Subroutines 

As previously stated, statements are normally executed in a 
straightforward sequential manner. A subroutine represents a method 
of executing a number of statements outside of the normal sequence. 

Pictorally, subroutine execution is: 

Main 

> Subroutine start 

- Subroutine end 



If a subroutine is only used once, there is little point in separating 
the subroutine code from the calling routine. No benefit is derived 
apart from (perhaps) clarifying the program structure. However, there 
is a benefit when a 
statements that appear 
example follows. 

. ) 

subroutine is used to replace a number of 
in several different places in a program. An 

Call to SEQA 
• )- SEQA 
• ) to SEQA 

• ) Call to SEQA 
• )- SEQA 
• ) • ) 

• )- SEQA 
• ) 

• ) 
• )- SEQA 
• ) 



Program execution would become: 

Main 

> Subroutine start 
• 

- Subroutine end 

. Subroutine start 
• 4------ 

- Subroutine end 

. Subroutine start 

- Subroutine end 

If the subroutine is large there can be a considerable saving realized 
in program storage (because of a small overhead) in calling and in 
returning from the subroutine. 

A POWER BASIC subroutine is simply a sequence of statements that is 
entered using the GOSUB statement and exited via a RETURN statement. 
A subroutine can have multiple exit points (each distinguished by a 
RETURN statement), but this is usually considered bad programming 
practice. The syntax for the GOSUB and Return statements are: 

GOSUB <ln> 
RETURN 

An example follows: 

100 GOSUB 2000 
- 110 REM RETURN TO HERE 

2000 REM START OF SUBROUTINE <- 

- 2300 RETURN ! EXIT SUBROUTINE 

A GOSUB statement causes the address of the statement immediately 
following it to be pushed onto the GOSUB stack and then passes control 
to the specified line. In the above, the address of line 110 is 
pushed onto the top of the stack before control is passed over to line 
2000. 

The RETURN statement transfers program control back from a subroutine 



to the statement following the last GOSUB executed, by popping the top 
item off the GOSUB stack. In the above, the last entry to the stack 
(address of line 110) is popped thus allowing control to be passed 
back to line 110. 

If a subroutine is exited by any way other than a RETURN statement, 
program flow can become unpredictable. POWER BASIC performs no check 
that a subroutine has been exited via a RETURN statement . Executing 
a RETURN statement when a subroutine has not been invoked will result 
in Error 12 (STACK UNDERFLOW). 

Subroutine calls may be nested, (a subroutine may call another 
subroutine, upto a maximum of 10 levels for Evaluation Power BASIC and 
20 levels for Development Power BASIC). In other words, there can be 
a maximum of 10 outstanding RETURNS at any one time. An attempt to 
exceed this number will result in error 11 (STACK OVERFLOW). 

55 GOSUB 200 
60 REM RETURN TO HERE FROM S/R1 

200 REM START OF S/R1 

270 GOSUB 1000 
280 REM RETURN TO HERE FROM S/R2 

400 RETURN ! EXIT S/R1 

1000 REM START S/R2 

-- 1200 RETURN ! EXIT S/R2 

Pictorally, program execution becomes : 

Master 
• 
• 
GOSUB -----* Subroutine 1 
. <  
• 

GOSUB ----* Subroutine 2 
. <  • 

- RETURN 

- RETURN 

4- 



As a POWER BASIC subroutine has complete access to all variables 
defined in a program, no parameter passing mechanism is supplied (nor 
is one really necessary). POWER BASIC is not a block structured 
language. Therefore, the programmer must make his own checks that 
variables are not accessed incorrectly (inadvertently modified by a 
subroutine). If a subroutine can write over critical data, it is 
necessary to use temporary variables for storage of this data. The 
programmer should then make sure that the subroutine can only access 
this data through the temporary variables. 

5.6.3 ON Statement 

The ON statement is a type of 'computed' GOTO. The syntax for this 
is: 

ON <expression> THEN GOSUB/GOTO <11>,<12›,...,<ln> 

A branch is made to line <li>, depending on the value of <expression>, 
via a GOTO or GOSUB statement. This is equivalent to: 

IF <expression>=1 THEN GOTO/GOSUB <11> 
ELSE IF <expression>=2 THEN GOTO/GOSUB <12> 

ELSE IF <expression>=n THEN GOTO/GOSUB <ln> 

If a GOSUB is used on returning from the subroutine, control passes to 
the statement following the ON statement. 

If the expression evaluates to less than one or greater than 'n', no 
transfer is made and execution continues from the statement following 
the ON. 

5.6.4 ERROR Statement 

The ERROR statement allows the user to specify a POWER BASIC routine 
that is to be executed when an error occurs. The syntax for this is: 

ERROR <ln> 

When an error condition arises, control is passed to line <ln> via a 
GOSUB statement; this preserves the address of the statement in which 
the error occurred on the GOSUB stack. If the error is recoverable, a 
return to the line with the error is made by a RETURN statement. 
However, if the error is unrecoverable, control will not be 
transferred back by the RETURN. 

When the error-handling routine has been invoked, the system function 
SYS can be interrogated to find the cause of the error. SYS(1) will 
return the error code number, and SYS(2) the number of the statement 
in which the error occurred. Once the error has been trapped using 
this statement, future errors will not be trapped until another ERROR 



statement is executed. 

Use of the ERROR statement suppresses the automatic printing of error 
code/message. 

10 ERROR 1000 

1000 REM ERROR HANDLING ROUTINE 
1010 IF NOT(SYS(1)=23) THEN PRINT "ERROR=",SYS(1)::STOP 
1020 RESTOR 
1030 RETURN 

When an error occurs, control is transferred to statement 1000. If 
the error was not due to "READ OUT OF DATA" (error 23) then the 
message "ERROR=" and the error code are printed to the terminal, and 
program execution STOPs. Otherwise the error is corrected by 
resetting the READ pointer to the first DATA statement in the 
program. The RETURN statement next passes control back to the line 
where the error occurred. 

5.6.5 CRU Operations 

The 9900 supplies a bit-oriented method of I/O called the 
Communications Register Unit (CRU). Under Power BASIC the CRU is 
accessed using the BASE statement and the CRB and CRF functions. For 
full details of the CRU and its operation refer to Section 6.8. 

5.6.5.1 BASE Statement. CRU operations are performed on a signed 
displacement (in the range -128 to +127 bits) from a base address. 
This base address is set using the BASE statement. The syntax for 
this statement is :- 

BASE <exp> 

where <exp> is any valid arithmetic expression. 

Note: The base address is a 12 bit address that is stored in bits 3 to 
14 of workspace register 12. Because of this, the value of <exp> must 
be twice that of the actual CRU base address desired. For example; to 
access a device that has a CRU base address of 32, <exp> must evaluate 
to 64. 

5.6.5.2 CRB Function. Single-bit I/O is 
function. Depending on the context in which 
either reads or writes to the specified bit. 

performed using the CRB 
it is used, this function 

When reading, the function returns a 1 if the 
and a 0 if it is not set. For example; 

specified bit is set, 



IF CRB(15) THEN <statement> 

<Statement> is only executed if the 15th bit from the base address is 
set to 1. 

When writing, the selected bit is set to 1 if the assigned value is 
non-zero, and to 0 if the assigned value is zero. For example; 

CRB(100)=200 

Sets the 100th bit from the base address to 1. 

5.6.5.3 CRF Function. The specified number of bits are transferred 
to or read from the CRU starting at the address set by the BASE 
statement. The specified number of bits is in the range 0 to 15. If 
zero, all 16 bits are transferred. For example; 

CRF(0)= -1 

Transfers the 16 bit value (minus one - hex FFFF) to the CRU address 
specified by the BASE statement. 

VAL=CRF(8) 

Reads the 8 bit value from the CRU base address and stores the result 
in VAL. (VAL will be in integer format with the value occupying the 
least significant byte of the integer word.) 

5.6.6 MEM Function. 

The memory modification (MEM) function reads or modifies the specified 
byte memory location. The main use for this function is in performing 
memory mapped I/O. For example, if a peripheral device register is 
located at address >AE00, the character 'A' can be output by 

MEM(OAEOOH)=65 !DEC 65=ASCII 'A' 
or MEM(OAEO0H)=ASC('A') 

ASC returns the decimal ASCII code of the character argument. 

A character can be read from the device by 

$CIN=%MEM(OAEOOH) 

5.6.7 Interrupts 

Development POWER BASIC allows the user to perform interrupt handling 
using Power BASIC statements. This is achieved through the IMASK, 
TRAP and IRTN statements. 

When an interrupt occurs, the interpreter completes the POWER BASIC 



statement it is executing and then executes the specified Power BASIC 
interrupt subroutine. On completion of the interrupt routine, 
execution continues from the statement following the last one executed 
before the interrupt was recognized. 

With the TM 990/100M and /101M microcomputer modules, all interrupt 
lines are connected to the onboard TMS 9901 Programmable Systems 
Interface. It is this device that informs the 9900 microprocessor 
when an interrupt has been generated. The 9901 is accessed via CRU 
instructions using a hardware base address of >80; this address needs 
to be doubled when used in the BASE statement to set the base address 
of the 9901. For an interrupt to be recognized by the 9901 (and 
subsequently by the 9900), its level must be enabled. This is 
performed by setting the appropriate mask bit in the 9901's CRU 
address space to 1 (for details on the operation of this device refer 
to the TMS 9901 Programmable Systems Interface' Data Manual). 

To program the 9901 to enable an interrupt level it is necessary to: 

1) Select interrupt mode. 
2) Write a 1 to the appropriate mask bit. 

For example: to enable interrupt level 7: 

BASE 100H !set base address of 9901 
CRB(0)=0 !set control bit=interrupt mode 
CRB(7)=1 !enable mask 7 

If a 0 is written (instead of 1) to the mask bit that interrupt level 
is disabled. For example, to disable interrupt level 12: 

CRB (0) =0 !select control bit=interrupt mode 
CRB(12)=0 !disable mask 12 

The above example assumes that the base address of the 9901 has 
already been set. 

Additional information on interrupts is contained in Section II of 
this manual. 



5.6.7.1 IMASK Statement. The IMASK statement is used to control the 
interrupt mask (bits 12 to 15 of the Status Register) of the TMS9900 
microprocessor. The 9900 recognizes 16 distinct interrupt levels, 
level 0 is the highest priority interrupt and level 15, the lowest. 

Level 0 is reserved for the RESET function and level 3 for the 
real-time clock. Apart from these two, all other interrupt levels may 
be used by external devices. Several devices may share the same 
interrupt level (if system considerations require it). If this is the 
case, the programmer must ascertain which device caused the interrupt 
by polling the devices' status registers. 

An interrupt can only be recognized by the TMS9900 when the incoming 
interrupt has an equal or higher priority (equal or lower numerical 
level value) than that specified in the interrupt mask of the status 
register. If, for example, the interrupt mask is set to 5, then only 
interrupt levels 0 to 5 will be recognized by the processor. The 
interrupt mask can be changed using the IMASK statement. The syntax 
for this statement is: 

IMASK <exp> 

where <exp> is an arithmetic expression in the range 0 to 15. 

Note : Setting the interrupt mask to 2, 1 or 0 disables the real time 
clock. 

5.6.7.2 TRAP Statement. The TRAP statement is used to define a POWER 
BASIC subroutine that is to be executed when an interrupt of the 
specified level occurs. The syntax for this statement is: 

TRAP <exp> TO <ln> 

where <exp> is the interrupt level and <ln> is the line number of the 
first statement of the interrupt routine. 

5.6.7.3 IRTN Statement. The last statement of an interrupt subroutie 
must he an IRTN. When this statement is executed, the interpreter 
recognizes that the interrupt has been serviced and that it should 
continue program execution from where it left off. The syntax for 
this statement is: 

IRTN 



<--- 16 bits --> <--- 16 bits --> 

5.7. POWER BASIC STORAGE ALLOCATION 

The paragraphs that follow discuss variable storage and the system 
memory map. 

5.7.1 Variable Storage 

Variable storage starts in high memory and builds down toward low 
memory as each new variable is declared. In Development POWER BASIC a 
variable is allocated 6 consecutive bytes; while in Evaluation Power 
BASIC only 4 bytes are used. 

Suppose variable 
variable used 

>FE00 

will 
storage 
be allocated 

starts at 
space 

>FE00 

memory 
as follows: 

address >FE00, the first 

3rd 4th 5th 6th 

>FDFC 1st 2nd 3rd 4th 

>FDFA 1st 2nd 

Evaluation POWER BASIC Development POWER BASIC 

The next variable will be allocated space as follows: 

>FE00 >FE00 

3rd 4th 5th 6th 
first )- 

>FDFC 1st 2nd ) variable -( 3rd 4th 

3rd 4th >FDFA 1st 2nd 

>FDF8 1st 2nd ) second 
variable 

5th 6th 

3rd 4th 

>FDF2 1st 2nd 

Evaluation POWER BASIC Development POWER BASIC 

5.7.1.1 Integer Format. Integer numbers are stored in 32 bits. 



 40 bit 7 bit 4.1 

The first word (bits 0 to 15) is set to zero indicating an integer 
number. The second word (bits 16 to 31) contains the two's complement 
integer value. 

Although Development POWER BASIC only uses two words to store an 
integer number, three words are actually allocated. If three words 
were not allocated it would be extremely difficult for the interpreter 
to swap a variable's contents between integer, floating point or 
character string formats as the context required. 

5.7.1.2 Floating Point Format. Floating point numbers are 
represented internally as a fraction multiplied by a power of 16 (this 
power is known as the characteristic) and are stored as: 

Evaluation Power BASIC 

[ 7 bit <--- 24 bit 

Sir 
Characteristic 

Mantissa 

v v 

Development Power BASIC 

Bit 0 is the sign bit and represents the sign of the floating point 
number: 0 for positive, 1 for negative. Bits 1 to 7 hold the 
characteristic coded in Excess 64 notation (the characteristic is 
incremented by 64; this gives the characteristic a range of 0 to 127 
representing a true exponent range of -64 to +63). The remaining 24 
bits (40 for Development Power BASIC) contain the normalized mantissa 
(the mantissa is normalized if its fitst hex digit is non-zero). 
Negative fractions are stored in true form with the sign bit set to 
one and not in two's complement notation. 

A notional point is understood to exist between bits 7 and 8 (between 
the characteristic and the mantissa). 



5.7.1.3 Character String Format 

A character string is stored as follows: 

Evaluation Power BASIC 

occupy 

byte 1  byte 2 byte 3  0 <-- string delimiter 

7 bit ASCII characters (8th bit set to 0) 

0 byte 1  byte 2  byte byte 4 byte 

Development Power BASIC 

Suppose the 
successive 

$A='ABC' 
$B='MNO' 

would cause 

two 
memory 

these 

variables 

strings 

locations. 
A and B, defined 

The statements: 

to be stored 

High memory 

as follows: 

in that order, 

'C' 0 0 0 

A --> 'B' 'C' 0 

'0' 0 'A' 'B' A —> 

B --> 'M' "N" 0 0 

'0' 0 

'M' "N" B —> 

Low memory 

Evaluation Power BASIC Development Power BASIC 

However, the statement: 

$B='12345' 

would result in: 



High memory 

'C' 0 0 0 

A --> .5- 0 'C' 0 

.3, -4- 'A' 'B' A --> 

B —> '1' •2•  -5, 0 

.3, -4- 

B ---> '1' "2' 

Low memory 

Evaluation POWER BASIC Development POWER BASIC 

With Evaluation Power BASIC, the statement: 

PRINT $B 

would output the string '12345', while the statement: 

PRINT $A 

would output the string '5'. 

An effect similar to overwriting the contents 
produced with Development POWER BASIC statement : 

$B='1234567' 

When a character string is too long to be held in 
should be used. 

of variable A can be 

a variable, an array 

5.7.1.4 Array Storage. An array is referenced by its array header. 
This contains information such as the size of each dimension and its 
stride. The stride is the number of bytes between successive elements 
of an array. For a one-dimensional array the stride is 6; 4 for 
Evaluation Power BASIC. 

The memory address of any element in a one dimensional array is 
calculated (in bytes) as: 

start address + n * subscript 

where start 
n = 4 

6 

address = address of array header + 4 
for Evaluation POWER BASIC 
for Development POWER BASIC 

If the array hea3o.c located at >EFFO, the 9th element, 
array name(8), starts at memory address: 

>EFFO + 4 + n*8 



0 

'G' "H" 

'E' 

'C' "D" 

'B' "A" 

For Evaluation POWER BASIC = >EFF4 + 4*8 = >F014 
For Development POWER BASIC = >EFF4 + 6*8 = >F024 

To allocate a ten-element array (STR) and store the character string 
'ABCDEFGHIJ' into it, the following statements are required. 

DIM STR(9) 
$STR(0)="ABCDEFGHIJ' 

This string would be stored as :- 

High memory 

-> 

'A" 

'C' 

'E' 

'G' 

0 

'B' 

'D' 

'H' 

'F' 

0 

•-•••••). 

) Element 
STR(2) 

) 

) Element 
STR(1) 

) 

) Element 
)4--- STR(0) 
) 

Array Header 
for STR 
Low memory 

Evaluation POWER BASIC 

The statements: 

Development POWER BASIC 

PRINT $STR(0) 
PRINT $STR(1) 
PRINT $STR(2) 

would produce the following output: 

ABCDEFGHIJ ABCDEFGHIJ 
EFGHIJ GHIJ 
IJ 
Evaluation Power BASIC Development Power BASIC 

Individual bytes of an array containing a character string can be 
accessed by placing a semicolon (';') after the array subscript; and 
then writing the number of the required byte in that element. For 
example, $STR(1;3) references the letter 'G' (the letter 'I' in 
Development POWER BASIC). 



The statement: 

DIM LST(25,9) 

allocates space for 26 one-dimensional arrays each containing 10 
elements. The stride for the first indice will be 60 (40 for 
Evaluation POWER BASIC); the stride for the second will be 6 (4 for 
Evaluation POWER BASIC). 

The memory address of any element in a two-dimensional array is 
calculated (in bytes) as: 

start address + n*(subscriptl*multiplier + subscript2) 

where start address = address of array header.+ 4*m 
m = number of dimensions 
multiplier = maximum value of subscript2 + 1 
n = 4 for Evaluation Power BASIC 

6 for Development Power BASIC 

If the array header for LST is located at >E4DC then the element 
LST(16,4) is at memory address: 

>E4DC + 4*2 + n*(16*10 + 4) = >E4E4 + n*164 

for Evaluation Power BASIC = >E4E4 + 4*164 = >E774 
For Development Power BASIC = >E4E4 + 6*164 = >E8BC 

5.7.2 System Memory Map 

RAM, in addition to that supplied on board with the TM 990/101 M and 
/100 M CPU boards, must be configured to be contiguous and end at 
address >EFFF. For full details on how to do this, refer to Section 3 
of the TM 990/201 and TM 990/206 Memory Expansion Boards Data Manual. 

The lower limit of RAM is determined at system initialization time by 
autosizing. (This can be altered using the 'NEW <exp>' command, 
where <exp> is the address of the first byte of RAM to be used.) The 
first few bytes of RAM are reserved for sytem use. 

Once the system has been initialized, the memory map will look 
something like: 



End of user storage (EUS) 

4--- Begining of user 
storage (BUS) 

) Enhancement Software Package 

) Evaluation ) Development 
) Power BASIC ) Power BASIC 

>FEEC  System stacks   

>FEAO 

 

System ptrs 

  

  

GOSUB,FUNCTION 
and FOR NEXT 

stacks 

  

  

I/O buffer 

  

     

  

VDT 

  

  

VNT 

  

  

SLT 

  

  

System 

  

     

>3000 

>0000 

 

ROM based 
Power BASIC 
interpreter 

  

Note : The actual addresses of the unspecified portions of memory are 
dependent on the amount of RAM configured into the system. Each of 
these portions is accessed via pointers contained in system pointers 
(memory addresses >FEAO to >FEEB). 

When a POWER BASIC statement is entered, it is checked for syntax 
errors. Syntactically correct statements are encoded to minimize 
storage space. The encoded statement is stored in the program space 
in ascending line number order. Program space starts at BUS and 
builds up in memory towards EUS. Line numbers are stripped off the 
statements as they are encoded and are stored in the Statement 
Location Table (SLT) along with the statement's position in the 
program space. (This allows statements that are entered out of 
sequence to be repositioned in their correct program space.) When a 
variable is first encountered, its name is encoded and entered into 
the Variable Name Table (VNT). Before a statement is encoded, all 
variable names present are compared with the variables in the VNT. 
The statement's variables are then replaced by the variable name's 
position (indicated by a location number) in that table. For example, 



the statement: 

LET AJ=SIN (PI*RAD) 

can initially be converted into: 

LET <77>=SIN(<76>,<75>) 

Each two-digit hexadecimal number enclosed by angle brackets is 
incremented by >70 to indicate that an entry in the VNT is being 
referenced. <77> is the 8th entry in the VNT, <76> the 7th and <75> 
the 6th. 

As the program grows, it may be necessary to move the system tables 
(VNT, VDT and SLT) up in memory in order to expand program space and 
increase the size of each table. At run time, space is allocated to 
each variable as they are defined; the address of this space is 
recorded in the Variable Definition Table (VDT). Variable storage 
space is allocated from below the I/O buffer down towards BUS. The 
Next Variable Storage Pointer (NVS) contains the address of the memory 
location that will be allocated to the next variable defined. If 
insufficient space exists, the run will terminate with error 10 
(STORAGE overflow). 

Note: All addresses refer to Development Power BASIC. 

5.8. REFERENCE SECTION 

+ / - Means plus or minus 
/ Means not equal 

An item preceded by an asterisk ('*') denotes a feature that is 
not supported by Evaluation Power BASIC. 

5.8.1 Character Set 

1) Upper and lower case alphabet. 
2) Digits 0 to 9. 
3) Special characters 

! " # $ % ( 1 $ * : = - ? / < > 

Non-printable characters may be specified by enclosing the character's 
hex representation with angle brackets. 

CHARACTER USE 
Statement separator 
Tail remark indicator 
Equivalent to PRINT 



5.8.2 Hexadecimal Constants 

A hexadecimal integer constant is one to four hex digits followed by 
the letter H. A hex constant begining with one of the letters A - F 
must be preceded by a zero. 

5.8.3 Variable Names 

A variable name starts with an alphabetic character optionally 
followed by up to two additional alphabetic characters or a number in 
the range 0 to 127. The variable name may not be the same as a POWER 
BASIC keyword; nor can it form the begining of a keyword. 

5.8.4 String Variables 

A varible is specified as being a sring variable variables may have a 
byte index following the subscript(s) to indicate a byte position 
within the specified string. To indicate the byte index, place a 
semicolon (;) after the last subscript; then insert the byte 
position. 



5.8.5 POWER BASIC Commands 

POWER BASIC commands may not appear in a program. 

COMMAND FUNCTION 

CONtinue 
<ln> LISt 

LOAd <exp> 

NEW <exp> 

PROgram 
RUN 

SAVe <exp> 

SIZe  

Continue execution from last break 
List current program from specified line 

<ln>=null, line=lowest line number present 
<ln>= /null, line=<ln> 

Load a BASIC program from specified device 
<exp>=null, device=733 digital cassette 
<exp>=0, device=733 digital cassette 
<exp>=1 or 2, device=audio cassette > 
<exp>=address, device=2716 eprom 

Clear system for new program 
<exp>=null, RAM limit set by autosizing 
<exp>= /null, RAM limit=<exp> 

Burn current program into 2716 EPROM 
Clears all variable space, pointers, and 
stacks and executes current program from 
lowest line number present 
Save current program on specified device 
<exp>=null, device=733 digital cassette 
<exp>=0, device=733 digital cassette 
<exp>=1 or 2, device=audio cassette > 
Display size of current program 

When using an audio cassette player all interrupts are 
disabled. The real time clock is stopped and zeroed. 



5.8.6 Edit Commands 

CR 
LF 

ESCAPE 
DEL/RUBOUT 
ctrl D<n> 
ctrl I<n> 
ctrl H 
ctrl F 

<ln> ctrl E  

Enter line into program source 
Enter line into program source. Enable 
auto-numbering facility 
Cancel input line, return to keyboard 

Backspace and delete character 
Delete <n> characters 
Insert <n> blanks 

Backspace 1 character 
Forwardspace 1 character 
Display line <ln> for editing 

5.8.7 POWER BASIC Statements 

POWER BASIC program lines are of the form: 

(line number)- <statement> ( :: <statement> ] -icomment- 

Where ( ) Indicate optional items 
( ] Indicate item is repeated as many times 

as required - 0,1,.... 

Exceptions: 
NEXT should not be preceded by '::<statement(s)>' 
REM should not be followed by '::<statement(s)>' 
DA a should the only statement on a line 

BAUD <expl>,<exp2> 
Sets the baud rate of the serial I/O port(s) of the TMS 9902 
Asynchronous Communications Controller. 

<expl>=0, port=A (CRU address >80) 
<expl>/0, port=B (CRU address >180) 
<exp2>=0, baud rate=19200 
<exp2>=1, baud rate=9600 
<exp2>=2, baud rate=4800 
<exp2>=3, baud rate=2400 
<exp2>=4, baud rate=1200 
<exp2>=5, baud rate=300 
<exp2>=6, baud rate=110 

BASE <exp> 
Sets CRU base address to <exp> for subsequent CRU operations. 

CALL <name>,<add>- , <parms> ) 
Transfers control to an assembly language subroutine. 

<name>=IDenTity of subroutine in quotes 
<add>=hex address of subroutine 
<parms>=upto 4 parameters for subroutine, separated by 

commas. If the parameter is contained in parenthesis, the address of 
the parameter is passed over. Parameters passed in R4, R5, R6, and 
R7. Return address is contained in R11. 



DATA <item>[ , <item> ] 
Defines internal data block for access by READ. 

<item>=<exp> or <string> 

DEF FN<i> (( <arg> ))=<exp> 
Defines a single line arithmetic statement. <i>=function 
identifier letter 

<arg>=upto 3 single letter dummy variables, separated by 
commas. When calling FNi the dummy variables may be replaced by any 
valid Power BASIC variable/array. 

DIM <var> ( <dim> [ , <dim> ] ) 
Allocates user space for dimensioned array. (The dimension starts at 
element 0. 

<dim>=size of dimension 

ELSE <statement> [ :: <statement> ] 
When the most recently executed IF THEN statement is false, all 
subsequent ELSE statements are executed; otherwise they are ignored. 

END 
Terminates program execution and return to keyboard mode. 

ERRO <ln> 
Specifies a subroutine,starting at line <ln>, that is to be executed 
via a GOSUB statement when an error occurs. 

ESCAPE 
Enables the ESCape key to interrupt program execution. 

for <var>=<expl> TO <exp2> (STEP <exp3>) 
The FOR statement is used with the NEXT statement to open and close a 
program loop. Both identify the same variable <var>. If STEP is 
omitted, a stepsize of 1 is assumed. 

<expl>=starting value 
<exp2>=final value 
<exp3>=step value, default value=l 

GOSUB <ln> 
Transfers control to an internal POWER BASIC subroutine starting at 
line <ln>. Stores the address of the statement following on the GOSUB 
stack. 

GOTO <ln> 
Transfers control to line <ln>. 

IF <cond> THEN <statement> [ :: <statement> ] 
The statement(s) following the THEN keyword are only executed if the 
condition <cond> is true. 

IMASK <exp> 
Sets the interrupt mask of the TMS 9900 microprocessor to allow 
interrupts of higher or equal priority (equal or lower numerical 



value) to <exp>. <Exp> is valid over the range 0 to 15. 

I RTN 
Used to return from an interrupt routine. Restores the program 
environment existing prior to taking the interrupt. 

(;) 
INPUT <item> [ (0<item> ] 

Take input (numeric or string) from the terminal and store into 
variables <item> in the INPUT list. Input is prompted with a question 
mark ('?') for numeric data and a colon (":') for character data. A 
double question mark ("??') signifies an illegal number. 

(LET ) <var>=<exp> 
Evaluate <exp> and store the result in the variable, string variable 
or array element <var>. 

NEXT <var> 
Delimits a FOR loop. The variable <var> must match the FOR variable. 

NOESC 
Disables ESCape key on the terminal- 

(GOSUB) 
ON <exp> THEN (GOTO) <ln> [ , <ln> ] 

Transfer control, via a GOSUB or a GOTO statement, to the line 
specified by the value of the expression. 

<exp>=n then nth <ln> in list 
<exp> out of range then line following the ON 

POP 
Removes top item from the GOSUB stack. 

PRINT <item> ( , <item> I 
Prints (without formatting) the contents or the evaluated expressions 
of the items in the PRINT list. 

RANDOM <exp> 
Sets the seed for the random number generator to the value of the 
expression <exp>. 

READ <item> [ , <item> ] 
Stores input from the internal DATA block into variables <item> in the 
READ list. 

REM <text> 
Inserts comment lines (REMarks) into a user program. The rest of the 
line regarded as a comment. 

RESTOR <ln> 



Resets the DATA pointer to the specified line <ln>. If <ln> not 
present, the pointer is set to the first DATA statement. 

RETURN 
Returns from a POWER BASIC subroutine and remove the last entry in the 
GOSUB stack. 

STOP 
Terminates program execution and returns to keyboard mode. 

TIME <item> 
Interrogate the 24 hour time of day clock. 

<item>=null output time in HR:MN:SD format 
<item>=$<var> store time in string variable 
<item>=<expl>,<exp2>,<exp3> set clock to specified 

time. <expl>=hours;<exp2>=mins;<exp3>=secs 

TRAP <exp> TO <ln> 
Defines the entry point <ln> of a Power BASIC interrupt routine for 
the given interrupt level <exp>. <Exp> is valid over the range 0 to 
15. Levels 0 (RESET) and 3 (CLOCK) are reserved and can not be 
serviced by the TRAP statement. 

UNIT <exp> 
Designates the device(s) to receive all printed output. 

<exp>=1, I/O port=A 
<exp>=2, I/O port=B 
<exp>=3, I/O ports A and B 

5.8.8 Operators 

5.8.8.1 Arithmetic Operators. 

A=B Assignment 
A-B Subtraction 
A+B Addition 
A*B Multiplication 
A/B Division 
A^B Exponentiation 
-A Unary minus 
+A Unary plus 



5.8.8.2 Relational Operators. Return values of 1 
(TRUE) or 0 (FALSE). 

A=B TRUE if equal, else FALSE 
A==B TRUE if approximately equal (+/- 9.5E-7), 

else FALSE 
A<B TRUE if less than, else FALSE 
A<=B TRUE if less than or equal, else FALSE 
A>B TRUE if greater than, else FALSE 
A>=B TRUE if greater than or equal, else FALSE 
A<>B TRUE if not equal, else FALSE 

5.8.8.3 Boolean Operators. Return values of 1 
(TRUE) or 0 (FALSE). A non-zero value 
variable is considered TRUE; a zero-valued variable is 
considered FALSE. 

NOT A TRUE if FALSE (zero), else FALSE 
A AND B TRUE if both TRUE (non-zero), else FALSE 
A OR B TRUE if either TRUE (non-zero), else FALSE 

5.8.8.4 Logical Operators. Perform 'bitwise" operations 
on the operand(s). Operand(s) are 
converted into 16 bit integers before the operation. 

LNOT A l's complement 
A LAND B Bitwise AND 
A LOR B Bitwise OR 
A LXOR B Bitwise exclusive OR 



FUNCTION EXPLANATION 

ABS (<exp>) 
ATN (<exp>) 
COS (<exp>) 
EXP (<exp>) 
INP (<exp>) 
LOG (<exp>) 
RND (<exp>) 
SIN (<exp>) 
SQR (<exp>) 

Absolute value of <exp> 
Arctangent of <exp>, <exp> in radians 
Cosine of <exp>, <exp> in radians 
Raise e to the power of <exp> 

Signed integer part of <exp> 
Natural logarithm of <exp> 
Random number between 0 and 1 
Sine of <exp>, <exp> in radians 
Square root of <exp> 

5.8.8.5 Operator Precedence 

1) Expressions in parentheses 
2) Exponentiation and negation 
3) *./ 
4) +,- 
5) <=,<> 
6) >=,< 
7) =,> 
8) ==,LXOR 
9) NOT,LNOT 
10) AND,LAND 
11) OR,LOR 
12) Assignment (=) 

5.8.9 Arithmetic Functions 

5.8.10 CRU Operations 

CRB ( <exp>) 
Read CRU bit selected by the CRU hardware base address plus <exp>. 
<Exp> is valid over the range -128 to 1127. 

CRB ( <expl>)=<exp2> 
Sets or resets CRU bit selected by CRU base address plus <expl>. If 
<exp2> is non-zero, the bit will be set, otherwise it will reset. 
<Expl> is valid over a range of -128 to 1127. 

CRF ( <exp>) 
Read <exp> CRU bits from the CRU hardware base address . <Exp> is 
valid over the range 0 to 15. If <exp>=0 then 16 bits will be read. 

CRF ( <expl>)=<exp2> 
Output <expl> bits of <exp2> to CRU lines at the CRU hardware base 
address. <Expl> is valid over the range 0 to 15. If <expl>=0 then 16 



bits will be output. 

5.8.11 Memory Functions 

BIT (<var>,<exp>) 
Reads the bit, within the variable <var>, specified by <exp>. Returns 
a 1 if the bit is set and 0 if not set. 

BIT (<var>,<expl>)=<exp2> 
Modifies the bit, within the variable <var>, specified by <expl>. The 
selected bit is set to 1 if <exp2> is non-zero, otherwise it is set to 
0. 

MEM (<exp>) 
Read the byte from user memory specified by <exp>. 

MEM (<expl>)=<exp2> 
Store byte <exp2> into the user memory specified by <expl>. 

5.8.12 Miscellaneous Functions 

NRY (<exp>) 
Samples the keyboard in run-time mode. If <exp>=0 then return the 
decimal value of the last key struck and clear the key register. Zero 
is returned if no key was struck. If <exp>/0 then compare the last 
key struck with the decimal value of <exp>. If they are the same, a 
value of 1 is returned and the key register is reset, otherwise a 0 is 
returned. 

SYS (<exp>) 
Obtain system parameters generated during program execution. 

<exp>=0, parameter=input control character 
<exp>=1 parameter=error code number 
<exp>=2, parameter=error line number 

TIC (<exp>) 
Samples the real time clock and returns the current TIC value minus 
the value of <exp>. One TIC equals 40 milliseconds. TIC (0) obtains 
the current value. 



5.8.13 String Operations 

<$var> denotes either a literal string, enclosed in 
quotes, or a string variable 

$<var> denotes a string variable 

CHARACTER ASSIGNMENT 
characters are transferred one by one until a null character is 
found. 

$<var>=<$var> 

CHARACTER PICK 
The number of characters to be transferred can be specified. 

$<var>=<$var>,<exp> 
When <exp> characters have been transferred the string will be 
terminated with a null character. 

CHARACTER CONCATENATION 
Strings are concatenated using the '+' operator. Concatenation 
operations may be chained together, the final string will 
automatically be terminated with a null character. 

$<var>=<$var>+<$var> [ + <$var> 

CHARACTER REPLACEMENT 
Replacement is similar to character pick except that a null 
character is not placed at the end of the string. 

$<var>=<$var>;<$var> 

CHARACTER INSERTION 
Characters can be inserted into a string using the slash ('/") 
operator. 

$<var>=<$var>/<$var> 

CHARACTER DELETION 
<Exp> number of characters can be deleted from a string. 

$<var>=<$var>/<exp> 

BYTE REPLACEMENT 
Individual bytes within a string can be altered using the decimal 
equivalent of an ASCII character along with the percent sign 
(I%0)

. 
 

$<var>=%<exp> [ % <exp> ] 

STRING COMPARISON 
Character strings may be compared using : 

IF <$var><relop><$var>-,<exp>- THEN <sequence> 

where <relop>=relational operator 
If the second string is followed by a comma, the expression 
following indicates the number of characters to be compared. 

CONVERT FROM ASCII TO BINARY 
A character string may be converted to a number by using the 
assignment operator along with an error variable. The delimiting 



character is placed in the first byte of the error variable. 
<var>=<$var>,<var> 

CONVERT FROM BINARY TO ASCII 
A number is converted to a string simply by assigning the number 
to a string variable. The string is automatically terminated 
with a null character. 

$<var>=<exp> 
Formatted conversions can be made by preceding <exp> with the 
formatting operator ('#') and a string. 

$<var>=#<$var>,<exp> 

5.8.14 String Functions 

ASC ($<var>) 
Returns the ASCII decimal value of the first character in the 
specified string. 

LEN ($<var>) 
Returns the length of the specified string. Zero is returned if the 
string is the null string. 

MCH ($<varl>,$<var2>) 
Return the number of characters that are the same in the two strings. 
A zero is returned if no match is found. 

SRH ($<varl>,$<var2>) 
Return the character position of where the first string is located in 
the second. A zero is returned if the search is unsuccessful. 



5.8.15 INPUT Options 

INPUT <feature><item> [<del><feature><item>] 

<item> Either a variable, a string variable, or 
an array element 

<del> Explanation 

Delimit items in INPUT list 
Delimit items in INPUT list. Suppress 
<cr><lf> if at end of statement line 

<feature> Explanation 

string Prompt with string then get input 
?<ln> Upon an invalid input or control character, 

a GOSUB to the line <ln> is executed 
%<exp> Requires entry of exactly <exp> characters 
#<exp> A maximum of <exp> characters to be entered 
• Suppress prompting 
null Prompt (':' for numeric, '?' for character) 

and then get input 



5.8.16 PRINT Options 

PRINT <feature><item> [<del><feature><item>] 

Either a variable, an expression, a string 
variable, a string, or an array element 

Explanation 

Delimit items in PRINT list. TAB to 
next print field 
Delimit items in PRINT list. Suppress 
<cr><lf> if at end of statement line 

Explanation 

TAB to column specified by <exp.> 
Print <exp> in hex in free format 
Print <exp> in hex in word format 
Print <exp> in hex in byte format 
Decimal formatting - only available with 
the Enhancement Software Package. 
<string> in quotes, consisting of: 

9 Digit holder 
0 Digit holder or force 0 
$ Digit holder and floats $ 
S Digit holder and floats sign 
< Digit holder before decimal and floats 

on negative number 
> Appears after decimal if negative 
E Sign holder after decimal 

Decimal point specifier 
Comma in output - suppressed if before 
significant digit 
Translated to decimal point on output 

<item> 

<del> 

<feature> 

TAB (<exp>) 
#<exp> 
#,<exp> 
#;<exp> 
#<string> 



5.8.17 Floating Point XOP Package 

For use with Assembly language routines. 

FORMAT XOP <ga>,<op> 
where <ga> - general memory address operand 

<op> - XOP number 

FPAC - Floating Point ACcumulator 

XOP NO. FUNCTION 
0 LOAD FPAC with 6 byte number addressed by <ga> 
1 STORE FPAC in 6 byte number addressed by <ga> 
2 ADD 6 byte number addressed by <ga> to FPAC, 

store result in FPAC 
3 SUBTRACT 6 byte number addressed by <ga> to 

FPAC, store result in FPAC 
4 MULTIPLY FPAC by 6 byte number addressed by 

<ga>, store result in FPAC 
5 DIVIDE FPAC by 6 byte number addressed by 

<ga>, store result in FPAC 
6 SCALE adjusts FPAC's exponent to value of byte 

addressed by <ga> 
7 NORMALISE FPAC - 1st hex digit of mantissa is 

non-zero. Operand not used 
8 CLEAR FPAC. Operand not used 
9 NEGATE FPAC - change 1st bit. If FPAC=0 then 

no change. Operand not used 
10 FLOAT FPACs 2nd word - 16 bit two's complement 

number to floating point. Operand not used 

Converting Integer to Floating Point 

1)  
2)  
3)  
4) FLOAT FPAC. 
5) STORE FPAC in 

DECNO BSS 
FLPT BSS 

CLR 
CLR 
LI 
MOV 
XOP 
XOP 
XOP  

6 byte area. 

6 
6 

@DECNO 
@DECNO+4 
RO,NUM 
RO,@DECNO+2 
@DECNO,0 
0,10 
@FLPT,1 

Set words 1 and 3 of 6-byte reserved area 
Store integer number in 2nd word of area. 
LOAD this 6-byte number into FPAC. 

to zero. 



5.8.18 Variable Storage 

A variable occupies 4 consecutive bytes in Evaluation Power BASIC and 
6 in Development Power BASIC. Variable storage is allocated down 
through memory (from high memory to low). The variable is referenced 
by the address of the lowest byte it occupies. 

Character String Format 

Evaluation Power BASIC 

byte 2 [ byte 3 byte 4 1‹  byte 1 

7 bit ASCII character, 8th bit=0 

string delimiter 
(contains 0) 

[ byte 1  byte byte 5 byte 6 byte byte 4 

Development POWER BASIC 

Integer Format 

[ 
All zeros Twos complement All zeros 

1 1 I 
4---16 bits- > 4.---16 bits ----> *---16 bits ----> 
<----Evaluation POWER BASIC ----* 
< Development POWER BASIC -> 

Floating Point Format  

S 

g -> 
n 

Characteristic 
> ----*Mantissa 

7 bits 24 bits-  1< *---16 bits 

<------Evaluation Power BASIC 
Development Power BASIC 



CHAR HEX 

V 56 
W 57 
X 58 
Y 59 
Z 5A 
[ 5B 
\ 5C 

1 
5D 
5E 
5F 

, 60 
A 61 
B 62 
C 63 
D 64 
E 65 
F 66 
G 67 
H 68 
I 69 
J 6A 
K 6B 
L 6C 
M 6D 
N 6E 
0 6F 
P 70 
Q 71 
R 72 
S 73 
T 74 
U 75 
V 76 
w 77 
X 78 
Y 79 
Z 7A 

1 

7B 
7C 
7D 
7E 

DEL 7F 

5.8.19 ASCII Character Set 

CHAR HEX CHAR HEX 

NUL 00 + 2B 
SOH 01 I 2C 
STX 02 - 2D 
ETX 03 . 2E 
EOT 04 / 2F 
ENQ 05 0 30 
ACK 06 1 31 
BEL 07 2 32 
BS 08 3 33 
HT 09 4 34 
LF OA 5 35 
VT OB 6 36 
FF OC 7 37 
CR OD 8 38 
SO OE 9 39 
S1 OF : 3A 
DL1 10 ; 33 
DC1 11 < 3C 
DC2 12 = 3D 
DC3 13 > 3E 
DC4 14 ? 3F 
WA 15 @ 40 
SYN 16 A 41 
ETB 17 B 42 
CAN 18 C 43 
EM 19 D 44 
SUB 1A E 45 
ESC 1B F 46 
FS 1C G 47 
GS 1D H 48 
RS 1E I 49 
US 1F J 4A 
SPACE 20 K 4B 
! 21 L 4C 
" 22 M 4D 
# 23 N 4E 
$ 24 0 4F 
% 25 P 50 
& 26 Q 51 
. 27 R 52 
I 28 S 53 
) 29 T 54 
* 2A U 55 



5.8.20 Hex-Decimal Table 

EVEN BYTE ODD BYTE 

HEX DEC HEX DEC HEX DEC HEX DEC 

0 0 0 0 0 0 0 0 
1 4,096 1 256 1 16 1 1 
2 8,192 2 512 2 32 2 2 
3 12,288 3 768 3 48 3 3 
4 16,384 4 1,024 4 64 4 4 
5 20,480 5 1,280 5 80 5 5 
6 24,576 6 1,536 6 96 6 6 
7 28,672 7 1,792 7 112 7 7 
8 32,768 8 2,048 8 128 8 8 
9 36,864 9 2,304 9 144 9 9 
A 40,960 A 2,560 A 160 A 10 
B 45,056 B 2,816 B 176 B 11 
C 49,152 C 3,072 C 192 C 12 
D 53,248 D 3,328 D 208 D 13 
E 57,344 E.  3,584 E 224 E 14 
F 61,440 F 3,840 F 240 F 15 



5.8.21 Error Codes 

Code Error message 

1 Syntax error 
2 Unmatched parenthesis 
3 Invalid line number 
4 Illegal variable name 
5 Too many variables 
6 Illegal character 
7 Expecting operator 
8 Illegal function name 
9 Illegal function argument 
10 Storage overflow 
11 Stack overflow 
12 Stack underflow 
13 No such line number 
14 Expecting string variable 
15 Invalid screen command 
16 Expecting dimensioned variable 
17 Subscript out of range 
18 Too few subscripts 
19 Too many subscripts 
20 Expecting simple variable 
21 Digits out of range (0< no. digits >12) 
22 Expecting variable 
23 Read out of data 
24 Read type differs from data type 
25 Square root of negative number 
26 Log of non-positive number 
27 Expression too complex 
28 Division by zero 
29 Floating point overflow 
30 Fix error 
31 FOR without NEXT 
32 NEXT without FOR 
33 Exp function has invalid argument 
34 Unnormalised number 
35 Parameter error 
36 Missing assignment operator 
37 Illegal delimiter 
38 Undefined function 
39 Undimensioned variable 
40 Undefined variable 
41 Expansion EPROM not installed 
42 Interrupt without TRAP 
43 Invalid baud rate 
44 Tape read error 
45 EPROM verify error 
46 Invalid device number 



CHAPTER VI 

ASSEMBLY LANGUAGE 

6.1 INTRODUCTION 

The relationship between assembly language and the computer it was 
designed to support is displayed below. Assembly language provides 
the interface between the hardware operation and the high-level 
language specifying the problem. Therefore, assembly language is 
machine dependent. As such, it has the capability to access the 
low-level features of the machine (memory, hardware registers, etc.) 

PROBLEM (REAL WORLD) 

FIGURE 6-1. ASSEMBLY LANGUAGE AND COMPUTER 

Due to its low-level nature, assembly language does not have the 
programming aids that are built into high-level languages. For 
example, high-level languages automatically provide the necessary data 
mappings and addressing mechanisms used to access declared variables, 
while the assembly language programmer must perform this housekeeping 
for himself. 

Assembly language is useful when tight control must be maintained over 
the use of resources (for example where particularly compact or 
efficient code is required). A disadvantage of using assembly is that 
alot of programmer skill and time are required to realize compactness 
and efficiency. Using high-level languages can speed up program 
production considerably and the program will be less prone to errors. 



Also, an assembly language program becomes more and more difficult to 
manage as its size increases. 

However, assembly language is ideal for short, frequently executed 
program segments such as I/O routines and for high-volume applications 
where savings on code (and hardware) outweigh the extra development 
effort. 

The machine instruction is a hardware-defined operation and is the 
basic unit of processing. The complete range of hardware instructions 
designed into a particular processor forms the instruction set 
(sixty-nine instructions make up the TMS9900 instruction set.) 

Every program written for the 9900 (or any other processor) will 
eventually be broken down into a sequence of these basic 
instructions. Each instruction is actually stored in program memory 
as a number (a string of '0's and 'l's). In this state the 
instruction is usually referred to as a machine code instruction. 

While programming at the machine code level is possible, it is not 
very practical. Moreover, understanding the function of a machine 
code program is very difficult and requres careful study. 

Assembly language allows programming directly in the machine's 
instruction set using mnemonics instead of numbers. Further, most 
assembly languages allow symbolic referencing; using a name to 
reference a data item or a code segment (the assembler translates 
these references into their actual memory addresses). 

Consider the following example. A value is stored at address >4E70 
(symbolic location START). This value is to be transferred to address 
>5630 (symbolic location NEW). The assembly language instruction 

MOV @START,@NEW 

will do this. The machine code equivalent is: 

>C820 4E70 5630 

The symbol '>' indicates that the number that follows is a hexadecimal 
number (the hexadecimal number system is described in Subsection 
6.11.2. 

Before an assembly language program can be executed, it must first be 
converted into a form the processor can handle (machine code). This 
conversion is performed by an assembler on a one for one basis. (A 
single assembly language instruction generates one machine code 
instruction.) 

Instructions can be one, two or three words long. The length of an 
instruction depends on the number of operands contained and the type 
of addressing allowed. The MOV instruction above has two memory 
address operands (START and NEW) and thus requires three words of 
storage. If one of these operands had been a register only two words 
would be needed. Had both operands been registers one word would be 
sufficient. 



6.2 INSTRUCTION FORMAT 

An instruction consists of four fields, each separated from the other 
by at least one space. 

1) Label field - An optional field; when used the 
user-supplied name is assigned the current value of the 
location counter (the address in memory where the 
instruction will be stored). This field starts in 
column 1. An asterisk in column one indicates that the 
whole line is a comment. 

2) Opcode field - The operation code, or mnemonic, 
specifies what the instruction does (e.g. MOV). 
Assembler directives, assembly language instructions 
and pseudo-instructions are covered by this term. 

3) Operand field - This field specifies.the argument(s) of 
the opcode; e.g., where the data is to be taken from 
(source) and/or where the the data is to be stored 
(destination). 

4) Comment field - An optional field ignored by the 
assembler and used for documentation purposes. 
Although comments have no effect on the code produced, 
they are useful. They allow the programmer to describe 
exactly what is done at the point in the code where the 
action is performed. If used properly, comments can 
make a Program completely self documenting. 

The assembler places no restrictions on the position of any field in 
the line, except for the label field. However, it is advantageous for 
the programmer to adopt some convention. The recommended convention 
is as follows: 

• label field 

• opcode field 

• operand field 

• comment field 

starts in column 1 

starts in column 8 

starts in column 13 

starts in column 31 

Several examples follow. 



OP 
LABEL CODE OPERAND(S) COMMENTS 

RESET CI R4,>100 Contents of R4= >100? 
* 
* operands - 1 workspace register, 1 immediate value 
* 

C R2,R3 Contents of R2=R3? 
* 
* operands - both workspace registers 
* 

B @RESET Branch to RESET 
* 
* operands - 1 symbolic memory location 
* 

RSET Reset the 9900 
* 
* operands - none 
* 

From the above examples, it can be seen that the number of operands 
depends solely upon the instruction. 

6.3 INSTRUCTION FORMAT RESTRICTIONS 

Restrictions to instruction formats are listed below. 

1) If a label is present, the instruction starts in column 
one; otherwise column one is left blank. 

2) A label consists of up to six alphanumeric characters, 
the first of which must be alphabetic. 

3) All fields are separated by one or more spaces. 

4) Operands, if more than one is required, are separated 
by commas. 

6.4 MEMORY ORGANIZATION 

Computer memory is sequential and consists of a large number of 
storage cells or locations. Each location has a unique address. 
Using this address, the processor is able to directly reference a 
particular location. 

Memory is used for storing patterns of bits that may be interpreted as 
either: 

1) Programs - lists of instructions that tell the 
processor what to do. 

2) Program Data - patterns of bits that can be used to 



represent numbers, status of switches, etc (anything 
that the computer is programmed to deal with). 

6.4.1 Byte 

A byte is a group of eight binary digits (bits). The most significant 
bit (MSB) is designated bit zero and the least significant bit (LSB) 
as bit seven. The contents of a byte can be represented by two hex 
digits (>00 to >FF). 

7 6 5 4 3 2 1 0 
2 2 2 2 2 2 2 2 

MSB LSB 

0 1 2 3 4 5 6 7 bit position 

01101010 binary = 6A hex 

6.4.2 Word 

A memory word, on the 9900, occupies 16 bits (2 bytes). A word's MSB 
is designated bit 0 and its LSB as bit 15. The contents of a word can 
be represented by four hex digits (>0000 to >FFFF). 

I4----most significant byte ----*I4----least significant byte 

             

MSB 

           

LSB 

             

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

15 0 
2 2 

The architecture of the TMS9900 is based on words. However, 
semi-conductor memory is usually organized in bytes. Therefore, 
although the word is the basic unit, byte addressing is used. This 
means that the addresses of consecutive words in storage are n, n+2, 
n+4, etc. The first byte of a word (the most significant byte) must 
be on an even numbered address. 



WORD 

BYTE BYTE 

1 

3 

5 

7 

0 

2 

4 

6 

8 

Storing a single byte's worth of data in a memory word is not very 
efficient. The 9900 instruction set provides a number of instructions 
for byte operations (e.g., MOVB, CB, AB, SB, etc). Using these 
instructions, it is possible to individually access/manipulate each of 
the bytes within a word. 

6.4.3 Registers 

Most computers provide a number of general purpose hardware registers 
that are accessible to the assembly language programmer. All 
operations are centred around these registers. To add the contents of 
two memory locations (A and B) together and store the result in the 
first location (A), these steps are necessary: 

1) Load the contents of one of the locations into a 
register. 

2) Add the contents of the other location into this 
register. 

3) Store the contents of this register into memory 
location A. 

The register-oriented instruction evolved because of the great 
differences in operation speeds between hardware registers and ferrite 
core memory. 

The introduction of semi-conductor memory (considerably faster than 
ferrite core) into computer systems has eliminated the need for such 
registers. With the TMS9900 microprocessor, direct memory to memory 
operations are possible. The above example can now be performed in a 
single instruction. 

The 9900 has only three dedicated hardware registers: 

1) Program Counter (PC) - contains the address of the next 
instruction to be executed. 



2) Workspace Pointer (WP) - contains the address of the 
first word of the current workspace. 

3) Status Register (ST) - stores the processor's 
status flags (bits 0 to 6) and the current interrupt 
mask (bits 12 to 15). Bits 7 to 11 are reserved for 
future use. 

6.4.4 Workspace Registers 

The TMS 9900 does not provide one set of hardware implemented 
registers. Instead, any contiguous 16-word area of read/write memory 
(RAM) may be defined as the 16-word workspace. The 16 
workspace registers (RO to R15) may be used exactly as if they were 
implemented in hardware. However, the location of the workspace may 
be changed during program execution to give 16 completely new 
registers. This is called a context switch and occurs automatically 
during an interrupt or when the BLWP instruction is used to call a 
subroutine. The workspace can also be changed using the Load 
Workspace Pointer Immediate instruction (LWPI). 

Although the registers can be located anywhere in memory, only 4 bits 
are needed to completely specify any word address within the 
workspace. This allows a register operand to be incorporated into the 
instruction word without having to set aside another word for the 
address. 

The BSS (Block Starting with Symbol) assembler directive allows the 
user to reserve an area of data storage for use as a workspace. The 
following lines of code reserve a 16-word area starting at address 
>2000. The LWPI instruction causes this value to be loaded into the 
WP. When the instruction has been executed, RO references address 
>2000, R1 references address >2002, etc. 

AORG >2000 
WKSP BSS 32 Reserve 16 word area 

WKSP Set WP= >2000 

The benefit of this approach is realized when it is necessary to save 
the contents of the registers (for example, on interrupt). With the 
traditional approach, the content of every register has to be copied 
into reserved memory locations. With the 9900, only the three 
dedicated registers need to be saved and the WP loaded with the 
address of another workspace. This is handled automatically when an 
interrupt occurs. 



6.4.5 Register Functions 

In general, when a register is required as an operand for an 
instruction, any of the 16 workspace registers can be used. However, 
for certain operations (in particular the context switch) some of the 
registers have specially designated functions, as follows: 

RO If the count operand to the shift instruction is 
zero, the shift count is taken from bits 12 to 
15 of RO. If the 4 bits are all zeros, the 
shift count is set to 16. 

Rll Branch and Link instruction uses Rll to store 
its return address. Rll stores the effective 
address of the source operand for an XOP. 

R12 Bits 3 and 4 of R12 contain the hardware base 
for the CRU instructions. 

R13 When a context switch occurs, R14 is used to store 
the old PC. 

R15 When a context switch occurs, R15 is used to store 
the old ST. 

Note: The MPY and DIV instructions use two consecutive registers, the 
first is supplied as an operand to the instruction (e.g.,if R2 is the 
register operand, R2 and R3 are both used). If R15 is the specified 
register, the word following the workspace is used to store either the 
remainder for DIV or the least significant half of the result for 
MPY. 

6.4.6 Context Switch 

When a context switch occurs, the WP and PC registers are loaded with 
new values. The old contents of the WP, PC and ST registers are then 
stored in the new workspace registers 13, 14 and 15 respectively. The 
old registers can be accessed using the indexed mode of addressing 
(see Addressing Modes, Section 6.4.7) on the new register 13. 

Interrupts (both hardware and software) and the BLWP instruction cause 
a context switch to take place. For an interrupt, the WP and PC are 
taken from the interrupt's trap (or transfer) vector. The BLWP 
instruction requires the address of a two-word area, containing the 
new WP and PC, as its operand. 

A context switch provides a completely fresh environment, or context, 
for program execution and results in program control being transferred 
to a new routine. The last instruction in this routine must be an 
RTWP. This restores the environment existing prior to the context 
switch. 



Consider 

Address 

the following code: 

Label Instruction Comment 

AORG >200 
0200 MAINWP BSS 32 Define main's registers 
0220 SUBPTR DATA SUBWP SUB's registers 
0222 DATA SUB SUB's entry point 

• 
MAIN EQU Entry point for MAIN 

LWPI MAINWP Load WP with >200 

1000 BLWP @SUBPTR Execute subroutine SUB 

1200 SUBWP BSS 32 Define SUB's registers 
1220 SUB EQU Entry point for SUB 

1300 RTWP Exit from SUB 



R13 
R14 
R15 

The context switch is 

WP 0200 

PC 1004 

On executing the 
BLWP instruction 

R13 
R14 
R15 

shown diagrammatically below. 

MAINWP 

1  RO 

1200 

      

0200 

    

R13 
R14 
R15 

    

    

1004 

    

      

      

SUBWP MAINWP 

I RO WP 

PC 

WP 

PC 

1220 

After executing the 
BLWP instruction 

0200 

1004 

After executing the 
RTWP instruction 

MAINWP 

I RO 



6.4.7 Addressing Modes 

Often a programmer wants to use an instruction in slightly different 
ways. For example: At one point he may want an operand to be a 
workspace register. Later, he may want the operand to be a specified 
memory location, or he may want it to be a memory location the address 
of which is contained in a workspace register. 

Implementing these different ways of accessing operands by way of a 
different instruction for each method is wasteful, and can easily lead 
to confusion. If, instead, a part of the instruction is reserved for 
specifying which method is to be used, a compact, but very powerful, 
instruction set is produced. (The method of accessing an operand is 
usually referred to as the addressing mode.) 

The 9900 microprocessor provides five distinct addressing modes for 
instructions that specify a general address as an operand. Full 
details on these modes are available in Section 3 of the 'TMS9900 
Assembly Language Programmer's Guide'. A simplified description of 
each of these modes is presented below. 

6.4.7.1 Workspace Register Addressing. This mode specifies a 
workspace register that contains the operand. 

MOV R4,R10 Copy contents of R4 into R10 

>0100 R4 >0100 R4 

R10 R10 >09E6 >0100 

Before After 



6.4.7.2 Workspace Register Indirect Addressing. This mode specifies a 
workspace register that contains the address of the operand. To 
identify this mode the workspace register is preceeded by an asterisk 
(*). 

MOV *R7,R9 Copy contents of address in R7 to R9 

Location Contents 

R7 >1000 

R9 >096E 

Before 

Location Contents 

1000 4E76 

R7 >1000 ----------> 1000 4E76 

• 
R9 >4E76 

After 

6.4.7.3 Symbolic Memory Addressing. This mode specifies a memory 
address that contains the operand. To identify this mode, the memory 
address is preceeded by an at sign (@). (If a symbolic name such as 
TABLE is used, the name must be defined somewhere in the program.) 

MOV @TABLE,@>7C Copy contents of the word at 
symbolic address TABLE into 
address >7C 

Location Contents 

Before 

After 

007C 0471 
• 

TABLE 6483 

Location Contents 

007C 6483 

TABLE 6483 

6.4.7.4 Indexed Memory Addressing. This mode specifies a memory 
address that contains the operand. This address is the sum of the 
contents of a workspace register and a symbolic address. This mode is 
written as an address preceeded by a ' sign and followed by a 



workspace register enclosed in parentheses (the index register). 
Register 0 can not be used as an index register. 

R7 

R10 

MOV @2(R7),@TABLE(R10) Copy contents of word at 
location (2+contents of R7) 
into location (address of 
TABLE + contents of R10) 

Location Contents 

1000 4849 
1002 2041 

TABLE 454D 
. 5443 
. 2052 
. 5546 

>1000 

>0006 

Before 

Location Contents 

R7 >1000 1000 4849 
1002 2041 

R10 >0006 
TABLE 454D 

5443 
After 2052 

• 2041 

6.4.7.5 Workspace Register Indirect Autoincrement Addressing. This 
mode is similar to workspace register indirect addressing mode except 
that after obtaining the address from the workspace register, the 
register is incremented (by one for byte operations and two for word 
operations). To identify this mode, the register is preceeded by an 
asterisk(*) and followed by a plus sign (+). 

MOV *R3+,*R2 Copy contents of the word at the 
address in R3 into the word at the 
address in R2. Inbrement R3 by 2 

G 10 



Location Contents 

R3 >0480 0480 FF90 
0482 372C 

• 
--,------+ 7F96 0000 R2 >7F96 

Before 

Location Contents 

R3 >0482 0480 FF90 
1----+0482 372C 

• 
• • 

__-------* 7F96 FF90 
• • 

R2 >7F96 

After 

This mode is very useful for indexing through structures such as 
tables, where a succession of memory locations must be accessed in 
sequence. 

6.4.8 Specialized Addressing Modes 

The preceding addressing modes are all used to address variables 
(data) and can be used with any instruction that specifies a general 
memory address as its operand(s). The following three modes have more 
specialized applications. 

6.4.8.1 Immediate Addressing. This mode is used by immediate 
instructions. The word immediately following the instruction contains 
the operand (the operand is contained in the program code). Immediate 
instructions that require two operands have a workspace register 
preceding the immediate value. 

LWPI >FE70 Place >FE70 in the WP 
LI R5,1000 Place 1000 in R5 

6.4.8.2 CRU Bit Addressing. This mode is used by CRU bit 
instructions for performing bit I/O. The operand is a signed 
displacement in the range -128 to +127 bits from the CRU base address 
which is stored in workspace register. 12. (Only bits 3 to 14 are 
actually used.) When the CRU is addressed the least significant bit 
(bit 15) of this register is not transferred onto the address bus. 
Because of this it is necessary to store the doubled base address in 
the register. Thus, if register 12 contains >80, the actual base 
address of the hardware accessed is only >40. 



SBO 8 Sets the CRU bit, 8 greater then the base address, 
to one. If R12 contains >20 then CRU bit 2,4 will 
be set to one by this instruction 

SBZ DTR Sets the CRU bit to zero. If DTR has the value 
10, and R12 contains >40, then this instruction 
sets CRU bit 42 to zero 

6.4.8.3 Program Counter Relative Addressing. This mode is used by 
the jump instructions. The operand for this mode is a symbolic 
address (not preceded by an 'at' sign) or a signed displacement. This 
addressing mode can only be used to transfer control to a location 
within the range of -128 to +127 words from the current location. For 
jumps outside this range, the branch instruction must be used 
(B @location). 

When a symbolic address is given, the assembler performs the 
following: 

1) Subtracts the value of the incremented PC (address of 
the current instruction + 2) from the symbolic 
address. 

2) Halve the difference to arrive at the displacement in 
words. 

To jump to symbolic location THERE, the instruction 

JMP THERE 

is required. If THERE was at location >2090 and the jump instruction 
is at location >2060, then 

JMP $+>30 30 byte jump from here 

would perform the same operation. The symbol is used to represent 
the current value of the location counter (the address at which the 
instruction will be stored in memory). 

6.5 SUBROUTINES 

In a low-level language a subroutine, or procedure, is simply a 
sequence of assembly language instructions preceded by a symbolic name 
(a label) and terminated by a return statement. 

The subroutine CLOSE can be defined by: 

CLOSE 1st instruction 

It is in fact better to use the EQUate directive and set the 
subroutine name equal to the address of the subroutine (= the current 

e 



value of the location counter) in the previous line: 

CLOSE EQU $ 
1st instruction 

Although both approaches produce the same machine code, the second 
clearly indicates a subroutine's entry point and thus aids program 
documentation. 

The Branch and Link instruction (BL) causes the address of the next 
instruction to be stored in workspace register 11, and then passes 
control to the specified routine. The operand for this instruction is 
the address (or the name if the symbolic memory addressing mode is 
used) of the required subroutine. For example, if subroutine RESET is 
located at memory address >2000, then either of the following may be 
used. (The first is much clearer.) 

BL @RESET 
or BL @>2000 

The BL instruction provides a 'short linkage' which is best used for a 
small subroutine that is local to the area of the program from which 
it is called. A subroutine called with a BL uses the same workspace 
as the calling program, and so the subroutine is able to directly 
access the calling program's registers. 

The Branch and Load Workspace Pointer instruction (BLWP) causes a 
context switch to take place and then transfers control to the 
specified subroutine. The operand for this instruction is the address 
of a two-word area that contains the addresses of the new workspace 
and of the subroutine to he executed. (When a context switch takes 
place the incremented PC--the address of the instruction following the 
BLWP--IS stored in register 14 of the new workspace.) 

SUB DATA SUBWP SUB's workspace 
DATA SUBPC SUB's entry point 

BLWP @SUB 

If SUB is at memory address >1000, then 

BLWP @>1000 

can also be used. 

A BLWP establishes a completely new context that is separate from the 
calling program, thus, a BLWP subroutine can be written separately 
from the calling program without any danger that it will inadvertently 
corrupt the caller's registers. The registers of the calling program 
can be accessed using the indexed addressing mode, because when a 
context switch is performed, register 13 of the new workspace 
automatically contains the address of the old workspace. For example, 



register 5 of the old workspace can be referenced by writing: 

@l0(R13) 

as the operand of an instruction. The indexed address is obtained by 
adding 10 to the contents of register 13, to arrive at an address 10 
bytes offset from the start of the old workspace (in other words 
register 5, because each register occupies 2 bytes). BLWP is a very 
useful instruction for implementing modular software in assembly 
language (see Chapter II). 

Control is returned from a subroutine either by a RTWP instruction (if 
the subroutine was invoked by a BLWP instruction) or the RT 
pseudo-instruction (if the subroutine was invoked by the BL 
instruction). The RTWP instruction restores the context (PC. WP and 
ST) of the calling program from registers 13, 14 and 15 of the new 
workspace. The RT pseudo-instruction translates into: 

B *R11 

which is an indirect jump to the address contained in register 11 
(location used by BL instruction to store old PC). 

6.6 PARAMETER PASSING 

All high-level languages have a built in parameter passing mechanism. 
When using subroutines (or procedures, in the more modern languages) 
the programmer must conform to their conventions. 

Low-level languages, on the other hand, impose no such restrictions as 
all parameter passing mechanisms must be explicitly implemented by the 
Programmer. To avoid confusion, it is important that the programmer 
chooses his own convention and sticks to it. 

However, when low-level language routines are to be incorporated into 
a high-level language program, it is necessary that these routines use 
the conventions of the host language. 

The main methods of parmeter passing and their implementation in 9900 
assembly language are given below. 

1) The paremeter is stored in a register 

a) Subroutine invoked by BL instruction has direct 
access to all the calling routine's registers. 

b) Subroutine invoked by BLWP instruction: 

MOV @2*n(R13),TEMP Copy contents of calling 
routine's workspace 
register N into TEMP 

e 17 



RO  

  

R13 

 

     

     

Subroutine's Calling routine's 
workspace workspace 

Note: The register number is doubled as byte addressing is 
used on the 9900. 

2) The parameter is stored in an area of memory that is 
referenced by a register: 

a) Subroutine invoked by BL instruction: 

MOV @2*m(Rn),TEMP Copy contents of Mth word 
( Mth parameter ) of the 
parameter block into TEMP 

1st word 

IMth word I 

Parameter block 

Calling routine's 
workspace 

RO 



b) Subroutine invoked by BLWP instruction: 

MOV @2*n(R13),Rs 

MOV @2*m(Rs),TEMP 

Copy address in calling 
routine's workspace register 
N into register S 
Copy contents of Mth word of 
parameter block into TEMP 

    

r--*I 1st word 

 

 

1--01 RO 

  

RO 

  

   

   

  

_J 

 

Mth word 

 

R13 

Rn 
Parameter block 

Subroutine's Calling routine's 
workspace workspace 

3) This is a variation on the previous method. In this 
method, the parameter block appears in-line (it 
immediately follows the call). With this approach the 
subroutine must ensure that the return address (where 
control is transferred when the subroutine is exited) 
is updated to skip over the parameter block and pick up 
the instruction after the call. This can be done using 
the indirect autoincrement addressing mode on Rll for 
the BL instruction and R14 for the BLWP instruction. 
This approach can only he used when the data to be 
passed to the subroutine is constant ( its value is 
known when the program is assembled). 



a) Subroutine invoked by BL instruction: 

BL @SUBR Call SUBR 
DATA Parameter block 

SUBR MOV *R11+,TEMP Store 1st parameter in TEMP, 
update the return address in 
register 11 

RT Return 

b) Subroutine invoked by BLWP instruction: 

SUBADD DATA SUBWP SUB's workspace 
DATA SUBPC SUB's entry pointer 

BLWP @SUBADD 
DATA  
• 
• 
• 

SUB MOV *R14+,TEMP 

• 
• 

RTWP  

Call SUB 
Parameter block 

Store 1st parameter in TEMP, 
update the return address in 
register 14 

Return 

Note : Invoking a subroutine is faster using the BL instruction as no 
context switch takes place, but there is a grave risk that data might 
be inadvertently lost when any of the calling routine's registers are 
used for temporary storage purposes. 



6.7 STRUCTURING 

With a high-level language, structuring presents no problem. 
High-level languages were designed with this in mind; structuring 
constructs are an integral part of the language. 

However, assembly (or low-level) languages are designed around the 
hardware and are not considered to be problem-oriented languages. The 
Programmer must provide the necessary structures. Turning a software 
design into an executable program is considerably more difficult in 
assembly language because oroblem-oriented design constructs must be 
translated accurately into groups of low-level machine instructions. 
The information that follows describes assembly language 
implementation of the basic sequence, and selection and iteration 
constructs used in software design. 

In writing an assembly language program, it is effective to produce a 
software design before writing the code; this enables the programmer 
to design the application's logic before worrying about the 
implementation details (which, in assembly language, are 
considerable). This approach has been shown to lead to better and 
more correct software, and has been used very successfully for 
internal TI projects. The sequence, selection and iteration 
constructs (and the notation used here) are described in Chapter II. 

6.7.1 Selection 

Normally the action taken at a specific point in a program depends on 
a number of factors or conditions. If one of the conditions changes, 
the action to be performed changes. This choice of action is 
represented by the selection construct displayed below. 



ACTION N 

CONDITION 1 ACTION 1 

ACTION 2 

• 
• 
• 

FIGURE 6-2. SELECTION CONSTRUCT 

Implementing this construct at the assembly language level requires an 
understanding of the condition codes (or status flags). These are 
stored in the processor status word (on the 9900 this is a special 
hardware register called the status register - ST), with each flag 
occupying one bit. 



6.7.1.1 Condition Codes. 

L> A> EQ C OV OP X 

0 1 2 3 4 5 6 bit position 

Condition Codes for the TMS 9900 status register 

• Logical Greater Than (L>) contains the result of a 
comparison of words or bytes as unsigned binary 
numbers; the sign bit is interpreted as part of the 
number. Thus a negative number is logically greater 
than a positive one. (See Paragraph 6.13.2.2 for the 
binary representation of negative numbers.) 

• Arithmetic Greater Than (A>) contains the result of a 
comparison of words or bytes as twos complement 
numbers. 

• Equal (EC)) is set when the words or bytes being 
compared are equal. 

• Carry (C) is set by a carry out of the most significant 
bit of a word (or byte) during arithmetic operations. 
The carry bit is used by the shift operations to store 
the last bit shifted out of the specified workspace 
register. 

• Overflow (OV) is set when the result of an arithmetic 
operation is too large or too small to be correctly 
stored in 16 bits. (Refer to section 2.4.5 of the 'TMS 
9900 Assembly Language Programmer's Guide' for full 
details.) 

• Odd Parity (OP) bit is set in byte operations when the 
parity of the result is odd, and reset when the parity 
is even. The parity of a byte is odd when the number 
of bits having a value of one is odd, and even when 
this number is even. 

• Extended operation (X) is set when a software 
implemented extended operation (XOP) is initiated. 

The processor automatically sets (or resets) the 
appropriate status flags once it has executed an 
instruction. Only certain instructions affect certain 
flags, for example, the 'X' flag is only set by an 
extended operation instruction. 



6.7.1.2 Jump Instructions. Perhaps the most important members of a 
machine's instruction set are the jump instructions. These transfer 
control (unconditonally or conditionally according to the state of one 
or more status flags) from one point in a program to another, without 
affecting the flags. The jump instructions available are listed 
below: 

JMP JOC JEQ JGT 
JHE JLT JH JL 
JNE JLE JNC JNO 
JOP 

The conditional jump instructions (all those listed above except JMP) 
can be used to implement the selection construct. For example the 
contents of R2 (>10, =10, or <10) determine which sequence will 
execute ( ACT1, ACT2, or ACT3 respectively). The execution of 
sequence ACT4 follows. 

The structure diagram for this is: 

FIGURE 6-3. JUMP INSTRUCTION 



In 9900 assembly language this can be coded as: 

ACTO EQU $ 
CI R2,10 Compare R2 with 10 
JGT ACT1 To ACT1 if R2 > 10 
JEQ ACT2 To ACT2 if R2 = 10 

ACT3 EQU $ To here if R2 < 10 

C▪  ode for ACT3 

J▪  MP ACT4 To ACT4 
ACT1 EQU $ 

Code for ACT1 

JMP ACT4 To ACT4 
ACT2 EQU $ 

Code for ACT2 

ACT4 EQU $ 

Code for ACT4 

Note : If R2 contains 10 then after executing the code for ACT2, 
program control drops through to the code for ACT4. 



TRUE ACT1 

ACT2 

ACT3 

ACTO 

For a simple two-way selection: 

FIGURE 6-4. TWO-WAY SELECTION 

The code structure for this may appear as: 

ACTO EQU $ 
'test' 

JNE ACT2 To ACT2 if condition false 
ACT1 EQU $ 

Code for ACT1 

JMP ACT3 To ACT3 
ACT2 EQU $ 

Code for ACT2 

ACT3 EQU $ 

Code for ACT3 



6.7.2 Iteration 

Quite often it is necessary for a sequence of instructions to be 
executed a number of times. One way of implementing this repitition 
is to code the sequence the required number of times. However, if 
either the sequence to be coded and/or the repetition number is large, 
a large amount of memory will be used. Further, if the sequence is to 
be repeated until a particular condition arises, the repetition number 
is unknown. The use of the iteration construct overcomes these 
problems. 

Example: a sequence (SEQ1) must be repeated N times (where N is a 
variable supplied by a previous stage) followed by the execution of 
SEQ2. 

The structure diagram illustrating this follows: 

FIGURE 6-5. ITERATION 



This can he coded in 9900 assembly language as: 

SEQA EQU $ 
MOV @N,RO Copy count into RO,sets flags 

SEQAST JEQ SEQ2 To SEQ2 if RO = 0 
SEQ1 EQU $ 

Code for SEQ1 

DEC RO Decrement repetition count 
JMP SEQAST To SEQAST 

SEQ2 EQU $ 

Code for SEQ2 

If N is a constant (e.g. 20), the following is applicable: 

LI R0,20 Set RO to 20 
SEQ1 EQU $ 

Code for SEQ1 

DEC RO Decrement repetition count 
JNE SEQ1 To SEQ1 if RO > 0 

SEQ2 EQU $ To here if RO = 0 

Code for SEQ2 

Example: While KEY=0 perform SEQ1. When..KEY is changed perform SEQ2. 

The structure diagram for this task follows: 

FIGURE 6-6. ITERATION AGAIN 



The code representing this may be: 

SEQA EQU $ 
CI KEY,O Compare KEY with 0 
JNE SEQ2 To SEQ2 if KEY/0 

SEQ1 EQU $ To here if KEY = 0 

Code for SEQ1 

JMP SEQA To SEQA 
SEQ2 EQU $ 

Code for SEQ2 

6.7.3 Sequence 

On the surface, the sequence is the simplest construct to implement. 
The sequence represents a number of elements that are executed one 
after the other. At the single instruction level, assembly language 
programs are naturally sequential. However, when writing a program 
with a complex structure, some additional thought is needed to ensure 
that the logical flow of the program is always sequential and from top 
to bottom. Probably the best way to do this is to exactly follow the 
order in which blocks of code appear on the structure diagram. 

If the program flow is not sequential but jumps backwards and forwards 
in an irregular manner, the program will be be difficult to follow and 
modify. It is important that a single block on the structure diagram 
be implemented as a single block of code. 

This is, in fact, the easiest and the most natural way to write 
programs; it is certainly the easiest to follow. 

Consider this structure diagram: 

FIGURE 6-7. SEQUENCE 



This may be represented in code as: 

'test' 'test' 'test' 
JNE B JNE B JNE B 

A EQU S A EQU $ A EQU $ 

Code for A Code for A Code for A 

JMP C C EQU $ C EQU $ 
B EQU $ 

Code for C Code for C 
Code for B 

D EQU $ Jmp D 
C EQU $ B EQU $ 

Code for D 
Code for C Code for B 

D EQU $ JMP C 
B EQU $ D EQU $ 

Code for D 
Code for B Code for D 

• 
JMP C 

Of the three sets of code listed above, only the first is structured 
according to the diagram. The other two are both less clear and less 
compact than the first. 

If the program is not sequential, it is easy to omit a branch 
instruction, or even branch to the wrong location. 

With a more complex structure diagram (see below), the probability of 
producing an incorrect program increases dramatically. This can be 
reduced by exactly following the diagram when writing the code. 

FIGURE 6-8. COMPLEX STRUCTURE 
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3 
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The 9900 assembly language code for this is: 

SEQ1 'test' 
JNE SEQ2 To SEQ2 if false 

Code for A 

JMP G To G 
SEQ2 EQU $ 

'test' 
JNE SEQ3 To SEQ3 if false 

Code for B 

JMP F To F 
SEQ3 EQU $ 

LI R0,20 Set loop count to 20 
C EQU $ 

Code for C 

DEC RO Decrement loop count 
JNE C To C if count > 0 
'test' To here if count = 
JNE E To E if false 

D EQU $ 

Code for D 

JMP F To F 
E EQU $ 

Code for E 

F EQU $ 

Code for F 

G EQU $ 

Code for G 



6.8 COMMUNICATIONS REGISTER UNIT 

The 9900 supplies a bit-oriented method of I/O called the 
Communications Register Unit (CRU). This provides a maximum of 4096 
bits of read space and 4096 bits of write space. Each bit (or line) 
is individually addressable. Although the CRU uses the address bus to 
access its read and write spaces, these are totally independent from 
the memory address space. 

The CRU transfers data along a separate three-wire bus (the wires are 
known as CRUIN, CRUOUT and CRUCLK). 

Using the CRU, it is possible to test, set or reset a single bit 
anywhere in the 4096-bit address space, using a single instruction. 
Instructions are also provided to read and write to any group of from 
1 to 16 bits. 

This 'bit-picking' I/O is particularly useful for control 
applications, where input and output is typically single 
bits (sensors, switches, warning lights, relays, valves, etc.) all of 
which are either on or off. 

The CRU was developed from Texas Instruments' experience in designing 
minicomputers for process control applications. It grew out of the 
method of I/O used, with great success, on the 960 minicomputer. As 
the majority of microprocessor applications involve some kind of 
control, this feature is very valuable. 

The 9900 is the only major microprocessor to have a bit-oriented I/O 
structure, as well as the byte and word-oriented techniques such as 
memory mapping. 

The five CRU instructions operate from a base address, which must be 
stored in workspace register 12 (R12). The contents of this register 
are known as the software base address. (In fact only bits 3 to 14 of 
this register are used to generate the address, the other bits are 
ignored. The value of these 12 bits is referred to as the hardware 
base address. The keywords 'hardware' and 'software' are used to 
avoid confusion when specifying the base address. The software base 
address is twice the hardware base address.) 

The three single-bit CRU instructions use a signed displacement, from 
the base address, to reference a particular line. This displacement 
allows the instructions to access any CRU bit within a range of -128 
to +127 bits from the base address. 

Suppose a number of CRU operations are required around CRU line >100 
and a particular instruction needs to access CRU line >120. To do 
this, set the hardware base address to >100 (a software base address 
of >200) and use a signed displacement of +32 (>20). 

With the two multiple-bit CRU instructions, the base address must 
reference the first CRU line that the instruction is to access. For 
example, if the transfer is to start at CRU line >50 then the hardware 



base address must be >50. (This is equivalent to a software base 
address of >AO.) 

6.8.1 Single-Bit CRU Instructions 

The operand of a single-bit CRU instruction is a signed displacement 
(in the range -128 to +127) from the base address. This specifies the 
particular line to be accessed. 

This is displayed in the following diagram: 

software base address 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

                

XX XX XX 

            

XX 

                

<----hardware base address 

PLUS 

8 

signed displacement from CRU 
instruction with sign extended 

EQUALS 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

               

00 00 00 

            

               

CRU bit address 
address bus 

XX indicates that the bit is ignored 
00 indicates that the bit is set to 0 

SBO : Set Bit to One. This sets the specified CRU output line to a 
logical one. 

Assume a control device is connected to CRU output line >10F. This 
device turns on a motor when its CRU line is set to a one. If the 
hardware base address is set to >100 (this corresponds to a software 
base address of >200) then a displacement of +15 is required. The 
instructions to active this motor are: 

LI R12,>200 
SBO 15 

Set software base address 
Set >10F to 1 

15 



SBZ : Set Bit to Zero. This sets the specified CRU output line to a 
logical zero. 

Assume that a control device is connected to CRU output line >80. 
This device closes a valve when its CRU line is set to zero. Also 
assume that workspace register 12 contains >140. To access CRU output 
line >80 a displacement of ->20 is required. The instruction to close 
the valve is: 

SBZ ->20 Set >80 to 0 

TB : Test Bit. This instruction reads the digital input and sets the 
equal status flag (bit 2) to the value of the bit. 

Assume that 
base address 
input line 
is a '1') or 

workspace register 12 contains >140 (this is a hardware 
of >AO). The following lines wll test the input on CRU 
>A4 and either execute the code at location RUN (if input 
WAIT (if input is a '0'). 

TB 4 Test CRU input line >A4 
JEQ RUN If on, go to RUN 

WAIT If off, contine 

RUN EQU 

6.8.2 Multiple-Bit CRU Instructions 

The operands of a multiple-bit CRU operation are: 

1) A general memory address. For a 'read' operation this 
address specifies where the input is to be stored, and 
for a 'write' operation from where the output is to be 
taken. 

2) A count of the number of bits (in the range 0 to 15) to 
be transferred. 

These instructions transfer from 1 to 16 bits. A 16-bit transfer is 
specified by setting the count to zero. 

Unless otherwise explicitly stated, when less than nine bits of data 
is being transferred, the processor uses the most significant byte of 
a word for the operation. (This can be overridden by using the 
indirect addressing mode to reference the required byte.) 
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The base address for the operation is the CRU address of the first CRU 
line to be accessed. 

For a transfer of more than 8 bits: 

memory word 

0 1 7 8 

 

CRU lines 

15 

 

For example, In a transfer involving 10 bits, the data is taken from 
or stored in bits 15 to 6. 

For a transfer of less than 9 bits: 

memory word CRU lines 

0 1 7 8 15 

> 

*CI 

For example, In a transfer involving only 5 bits, the data is taken 
from, or stored in bits 7 to 3. 



LDCR : LoaD Communications Register. This instruction transfers 
("writes') the specified number of bits from the source operand into 
the CRU. 

To write 9 bits from symbolic location OUT to the CRU starting at CRU 
output line >40, the necessary instructions are: 

LI R12,>80 Set software base address 
LDCR OUT,9 Output 9 bits 

location OUT CRU lines 
0 1 7 8 15 

• 

.i•••••••••• 

STCR : STore Communications Register. This instruction transfers 
("reads') the specified number of bits from the CRU input lines into 
the specified memory location. 

To read 7 bits, starting from CRU input line >60, into the memory 
location addressed by workspace register 2, the necessary instructions 
are: 

LI R12,>C0 Set software base address 
STCR *R2,7 Read in 7 bits 

>40 
>41 
>42 
>43 
>44 
>45 
>46 
>47 
>48 



memory word referenced by R2 CRU lines 
0 1 7 8 15 

>60 
>61 
>62 
>63 
>64 
>65 
>66 

Note: If workspace register 2 had contained an odd address (it 
referenced a word's least significant byte) then the input would have 
been stored in bits 15 to 9. 

6.9 INTERRUPTS 

In a real-time system, there are two methods of determining when an 
external event has occured ( for example, when a device connected to 
the computer needs to be serviced). 

1) Polling - In this mode, the program polls, or tests 
every device known to it in a cyclic fashion. When a 
ready device is found, the device is immediately 
serviced, and the program continues its polling cycle. 

Although the program immediately services a device when 
it is found to be ready, there can be a delay between 
the time when the device generatesa ready signal and 
the time when the program reads the ready signal. 
Because of this, polling is only practical on a simple 
system, or when response time is not critical. 

2) Interrupts - In this mode, the device signals the 
processor when it is ready to perform the next 
operation. This signal is known as an interrupt. 

With a more complex system (one that contains a number 
of devices) the processor is able to perform another 
action while waiting for an interrupt. As soon as an 
interrupt occurs, the processor stops what it was doing 
and services the device that caused the interrupt. 
When the device has been serviced, the .processor 
continues the action it was performing prior to the 
interrupt. 



13 14 15 
0 0 0 
0 0 1 
0 1 0 
0 1 1 
1 0 0 
1 0 1 
1 1 0 
1 1 1 
0 0 0 
0 0 1 
0 1 0 
0 1 1 
1 0 0 
1 0 1 
1 1 0 
1 1 1 

0 0,1 HIGH PRIORITY 
0,1 2 
0 -- 2 3 
0 -- 3 4 
0 -- 4 5 
0 -- 5 6 
0 -- 6 7 
0 -- 7 8 
0 -- 8 9 
0 -- 9 10 
0 -- 10 11 
0 -- 11 12 
0 -- 12 13 
0 -- 13 14 
0 -- 14 15 LOW PRIORITY 
0 -- 15 

6.9.1 Interrupt Structure 

The 9900 supports up to 16 interrupt levels, numbered from 0 to 15. 
Level 0 has the highest priority; 15 the lowest. The interrupt mask, 
bits 12 to 15, determine which interrupts are recognized. 

A device with a lower priority (higher numerical level number) than 
that contained in the interrupt mask is not allowed to interrupt the 
processor. 

For example, if the interrupt mask contains '0011',only devices with 
an interrupt level of 0 to 3 are allowed to interrupt the processor. 
An interrupt from a device with a lower priority is ignored until the 
interrupt mask is reset to a value that is greater or equal to the 
device's interrupt level. 

Often, instead of being coupled directly to the 9900 microprocessor, 
interrupt lines are connected to a TMS 9901 Programmable Systems 
Interface. The 9901 decides whether the interrupting device is 
allowed to generate interrupts; and, if so, passes the interrupt to 
the 9900. A device that is allowed to generate interrupts is said to 
be enabled. An interrupt is enabled by setting the the 9901's control 
bit to 0 (select interrupt mode) and then writing a 1 to the 
appropriate mask bit. Full details of the operation of this device 
are given in the TMS 9901 Programmable Systems Interface data manual. 

Note : The 9901 is a CRU-DRIVEN device; before it can be accessed 
(using CRU instructions) its base address must be stored in workspace 
register 12. Further, this base address is dependent on the hardware 
configuration. 

TABLE 6-1. INTERRUPT MASK TABLE 

INTERRUPT MASK INTERRUPT LEVELS MASK SET BY  
BITS ALLOWED INTERRUPT LEVEL 

12 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 
1 
1 



6.9.2 Interrupt Transfer Vector 

Every interrupt level has a two-word dedicated location known as the 
interrupt transfer vector. A transfer vector contains: 

1) The address of the workspace that is to be used by the 
interrupt service routine. 

2) The address of the service routine's entry point. 

Low-order memory, address >00 to >3F, is reserved for these transfer 
vectors. 

ADDRESS 

TABLE 6-2. 

INTERRUPT 

INTERRUPT TRANSFER 

VECTOR 
VECTOR CONTENTS 

0000 0 WP ADDRESS FOR LEVEL 0 
0002 0 PC ADDRESS FOR LEVEL 0 
0004 1 WP ADDRESS FOR •LEVEL 1 
0006 1 PC ADDRESS FOR LEVEL 1 
0008 2 WP ADDRESS FOR LEVEL 2 
000A 2 PC ADDRESS FOR LEVEL 2 
000C 3 WP ADDRESS FOR LEVEL 3 
000E 3 PC ADDRESS FOR LEVEL 3 
0010 4 WP ADDRESS FOR LEVEL 4 
0012 4 PC ADDRESS FOR LEVEL 4 
0014 5 WP ADDRESS FOR LEVEL 5 
0016 5 PC ADDRESS FOR LEVEL 5 
0018 6 WP ADDRESS FOR LEVEL 6 
001A 6 PC ADDRESS FOR LEVEL 6 
001C 7 WP ADDRESS FOR LEVEL 7 
001E 7 PC ADDRESS FOR LEVEL 7 
0020 8 WP ADDRESS FOR LEVEL 8 
0022 8 PC ADDRESS FOR LEVEL 8 
0024 9 WP ADDRESS FOR LEVEL 9 
0026 9 PC ADDRESS FOR LEVEL 9 
0028 10 WP ADDRESS FOR LEVEL 10 
002A 10 PC ADDRESS FOR LEVEL 10 
002C 11 WP ADDRESS FOR LEVEL 11 
002E 11 PC ADDRESS FOR LEVEL 11 
0030 12 WP ADDRESS FOR LEVEL 12 
0032 12 PC ADDRESS FOR LEVEL 12 
0034 13 WP ADDRESS FOR LEVEL 13 
0036 13 PC ADDRESS FOR LEVEL 13 
0038 14 WP ADDRESS FOR LEVEL 14 
003A 14 PC ADDRESS FOR LEVEL 14 
003C 15 WP ADDRESS FOR LEVEL 15 
003E 15 PC ADDRESS FOR LEVEL 15 



6.9.3 Interrupt Sequence 

The level of the highest priority pending interrupt request is 
continually compared with the contents of the interrupt mask. When 
the interrupt level of the pending request is equal to or less than 
the mask contents, the interrupt is taken after the currently 
executing instruction has completed. 

For example, if the processor is servicing a level 4 interrupt, only 
interrupts of level 3 and higher will be recognized. (This does not 
hold for level 0 interrupts. This is predefined as the RESET 
interrupt.) 

To process an interrupt, a context switch takes place. The contents 
of the transfer vector 's first word is stored in the WP register; 
those of the second word in the PC register. The old contents of the 
WP, PC and ST registers are stored in the new workspace registers 13, 
14 and 15 respectively. 

No additional interrupt is taken until the first instruction of the 
service routine has been executed. If the first instruction sets the 
interrupt mask to zero using 

LIMI 0 

(Load Interrupt Mask Immediate with zero) then further interrupts will 
be inhibited. 

After storing the contents of the ST register, the processor 
decrements the incoming interrupt level by one and stores the result 
in the PT pt increment mask. This disables the current interrupt 
level leaving only higher levels enabled. (This does not happen with 
level 0 interrupts.) 

The last instruction in the service routine must be a 'RTWP'. This 
causes the processor to restore the contents from workspace registers 
13, 14 and 15 into the WP, PC and ST registers respectively (it 
restores the original environment). Control then returns to the point 
where the interrupt was taken. 

Several interrupt lines may be combined at one level; it becomes the 
programmer's responsibility to determine which device generated the 
interrupt by polling the devices and then executing the appropriate 
service routine. 

Any interrupt request must remain active until the interrupt is taken, 
and must be reset before the service routine is completed. 
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6.10 EXTENDED OPERATION INSTRUCTIONS 

Extended operation instructions (XOPs) enable the user to extend the 
existing instruction set by defining instructions that are implemented 
by software routines. 

The 9900 supports 16 extended operation instructions, numbered 0 to 
15. 

If the program is running under an executive, extended operation 
instructions are used in a slightly different way. They are used as a 
method of entering operating system routines that perform specific 
functions. These functions, in particular input/output operations, 
are provided by the system because it is not safe to allow their 
implementation by the user as the functions affect other users too 
easily. Extended operation instructions, used in this manner are also 
known as extracodes or supervisor calls (SVCS). 

This type of instruction is usually referred to as a 
software interrupt. Software interrupts differ from hardware 
generated interrupts in that software interrupts have no priority 
sequencing. (There is no waiting to be recognized by the processor, 
an extended operation instruction is taken as soon as it is issued). 
Also, the extended operation instruction requires an operand that 
allows the programmer to pass a parameter over to the service 
routine. 

6.10.1 Defining Extended Operation Instructions 

The Extended Operation Instruction (XOP) is a valid assembly language 
mnemonic; unfortunately, it does not convey any detail about the 
operation a particular XOP performs. However, it is possible to 
assign a more meaningful mnemonic to an extended operation instruction 
using the Define Extended Operation (DXOP) directive. Its operands 
are: 

1) The mnemonic by which the XOP is to be known 

2) The number of the XOP involved 

This directive associates the mnemonic to a particular XOP; when the 
mnemonic appears an an intruction's opcode, the XOP's routine is 
invoked. For example: 

DXOP CALL,4 
• 
• 

CALL @FRED 

The first instruction associates the mnemonic CALL to XOP 4. The 
second instruction is an example of an extended operation 
instruction. The effect of this is to invoke the code for XOP 4 with 



the symbolic address FRED as its parameter. 

6.10.2 Extended Operation Instructions Trap Vectors 

Like the hardware interrupt, the extended operation instruction has a 
two-word dedicated area known as a trap vector and containing: 

1) The address of the workspace to be used by the XOP 

2) The address of the XOP routine's entry point 

These trap vectors 

ADDRESS 

are located at memory addresses >40 to >7F. 

TABLE 6-3. XOP TRAP VECTOR TABLE 

XOP NUMBER VECTOR CONTENTS 

0040 0 WP ADDRESS FOR XOP 0 
0042 0 PC ADDRESS FOR XOP 0 
0044 1 WP ADDRESS FOR XOP 1 
0046 1 PC ADDRESS FOR XOP 1 
0048 2 WP ADDRESS FOR XOP 2 
004A 2 PC ADDRESS FOR XOP 2 
004C 3 WP ADDRESS FOR XOP 3 
004E 3 PC ADDRESS FOR XOP 3 
0050 4 WP ADDRESS FOR XOP 4 
0052 4 PC ADDRESS FOR XOP 4 
0054 5 WP ADDRESS FOR XOP 5 
0056 5 PC ADDRESS FOR XOP 5 
0058 6 WP ADDRESS FOR XOP 6 
005A 6 PC ADDRESS FOR XOP 6 
005C 7 WP ADDRESS FOR XOP 7 
005E 7 PC ADDRESS FOR XOP 7 
0060 8 WP ADDRESS FOR XOP 8 
0062 8 PC ADDRESS FOR XOP 8 
0064 9 WP ADDRESS FOR XOP 9 
0066 9 PC ADDRESS FOR XOP 9 
0068 10 NP ADDRESS FOR XOP 10 
006A 10 PC ADDRESS FOR XOP 10 
006C 11 WP ADDRESS FOR XOP 11 
006E 11 PC ADDRESS FOR XOP 11 
0070 12 WP ADDRESS FOR XOP 12 
0072 12 PC ADDRESS FOR XOP 12 
0074 13 WP ADDRESS FOR XOP 13 
0076 13 PC ADDRESS FOR XOP 13 
0078 14 WP ADDRESS FOR XOP 14 
007A 14 PC ADDRESS FOR XOP 14 
007C 15 NP ADDRESS FOR XOP 15 
007E 15 PC ADDRESS FOR XOP 15 



Before an extended operation instruction is executed, its trap vector 
must contain the appropriate values. For the CALL extended operation 
above: 

AORG >50 CALL's trap vector at >50 
DATA CALLWP Workspace for CALL 
DATA CALLPC Entry point for CALL 

6.10.3 Extended Operation Instruction Execution 

When an extended operation instruction is executed, the processor 

1) Locates the XOP's trap vector (4 times the XOP number 
plus >40 ) and then loads the WP and PC registers with 
the values contained there. 

2) Performs a context switch. 

3) Sets bit 6 of the status register to 1 (this indicates 
that an extended operation instruction is being 
executed) if it is implemented in software. 

4) Places the effective address of the instructions's 
operand into the new workspace register 11. 

5) Passes control to the routine's entry point. 

Return from an extended operation instruction is via the RTWP 
instruction. This restores the program environment existing before 
the instruction was executed. 
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FIGURE 6-12. EXTENDED OPERATION INSTRUCTION EXECUTION 

Note: Extended operation instructions can also be called using the XOP 
instruction. This requires two operands: 

1) Source operand, as above for CALL 

2) XOP number 

The extended operation instruction above 

CALL @FRED 

can be written as 

XOP @FRED,4 

The latter code doe not require the DXOP directive to be used. 

However, it is recommended that the first approach be adopted as the 
mnemonic indicates what the routine actually does and thus aids 
program readability. 



6.11 ALGORITHMS AND TECHNIQUES 

The paragraphs that follow provide information about algorithms and 
techniques that are applicable to 9900 assembley language. 

6.11.1 Invoking the 9900 Family of Assemblers 

Although the 9900 family of assemblers are upward compatable, there 
are restrictions on the use of certain instructions. 

Long Distance Destination LDD 
Long Distance Source LDS 
Load Memory Map File LMF 

The above instructions are only valid on the 990/10 minicomputer with 
map option. The following instructions are valid for the /10 and /4 
computers. Although they are not illegal for the TMS 9900 
microprocessor, they do not necessarily operate as described in the 
Reference Section. 

Clock Off CKOF 
Clock On CKON 
Idle IDLE 
Load Rom and Execute LRE 
Reset I/O RSET 

Note: A two-pass assembler reads the source program twice, maintaining 
a location counter as it reads the source lines. On the first pass it 
builds a symbol table containing the name of every symbol used in the 
program and the address where it was defined. During the second pass 
the machine code is produced using the operation codes and the 
completed symbol table. 

6.11.1.1 LBLA. The Line-By-Line Assembler is a two-EPROM package 
that is used in conjunction with the TIBUG monitor supplied with the 
TM 990/101 and /100 microprocessor boards. With these two additional 
EPROMs correctly installed, the Line-By-Line assembler is entered by 
the following sequence: 

W=XXXX space 
P=XXXX 9E8 return 

TIBUG MONITOR USER REPLIES 
PROMPTS AND REPLIES 

Note: In some versions the address maybe 9E6. 

This initializes the workspace, sets the program counter to the entry 
point of the assembler and begins execution. 

The assembler prints the address of the first word of memory into 

A tl 



which the subsequent program will be stored and waits for instructions 
to be entered. To exit from the assembler and return to TIBUG press 
the escape key (ESC). 

Once the program has been entered, it can be executed by performing 
the same sequence of commands used for entering the assembler. 
However, P should be set to the program's entry point instead of 9E8. 

For further details refer to the TM 990/402 Line-By-Line Assembler 
User's Guide. 

6.11.1.2 SYMBOLIC. Symbolic is a ROM resident two-pass assembler 
that is supplied with the TM 990/302 Software Development Board. It 
interprets source statements stored on audio cassette that have been 
created via the resident Text Editor and produces absolute (not 
relocatable) machine code. The first instruction in the program 
should be an AORG directive that sets the location counter to the 
absolute start address of the program. Before executing the symbolic 
assembler, the cassette containing the source statements must be 
positioned to the begining of the program. The assembler is invoked 
by: 

.SA <devl>,<dev2>,<dev3> return 

where DEV1 is the device number of the cassette containing the source 
statements. DEV2 is the device number of the cassette where the 
object code is to be stored; and DEV3 is the device number of the 
listing device. 

After the first pass, the assembler responds with: 

* * REWIND TAPE 

* * HIT 'CR' TO GO 

If DEV1 and DEV2 are the same, the assembler responds with these 
messages following the second pass: 

** SWAP TAPES 

** HIT 'CR' TO GO 

If the program is too large to fit into the assembler's buffer at one 
time, more steps will be involved. 

Having stored the object code on cassette, the next step is to invoke 
the Relocatable Loader to load the absolute program into the board's 
user memory. This is performed by: 

.RL <dev> return 

where DEV is the device number of the cassette containing the object 
code. 

An 



The loader requires information to determine where the program is to 
be loaded into memory, how much of the program is to be loaded, etc. 
When the loader is ready for this information, it informs the user by 
prompting 

Once loaded, the assembled program is executed by invoking the 
Debugger Utility and issuing the EX command (after the debugger has 
prompted for input): 

.DR return 
?EX return 

See the TM 990/302 Software Develpoment Board User's Guide for further 
details. 

6.11.1.3 TXMIRA. TXMIRA is a two-pass assembler that runs on a 990/4 
microcomputer under the floppy disc based TXDS Control Program. The 
assembler is invoked by replying to the Control Program prompts as 
follows: 

PROGRAM: DSCX:TXMIRA/SYS return 
INPUT: DSCX:NAME/ASM return 

OUTPUT: DSCX:NAME/OBJ,DSCX:NAME/LST return 
OPTIONS: return 

TXDS CONTROL USER REPLIES 
PROGRAM PROMPTS 

DSCX:NAME/EXT is the full pathname of the file (or device) containing 
the program to be assembled. 

During output, if a file does not exist, it will be created on the 
specified floppy disc with the name given. The second parameter 
specifies where the listing is to be sent. This is usually a device 
such as the line printer (LP). If this parameter is missing, the 
system default printer will be used. 

For a full list of the available options refer to Section 5.4 of the 
Model 990 Computer Terminal Executive Development System (TXDS) 
Programmer's Guide. 

The TXDS Linking Utility Program (TXLINK) must be used to resolve any 
external references (REFs) contained by the program. 

Execution of an assembled and linked (if necessary) program is via the 
EX or RU commands of the TXDS Standalone Debug Monitor (TXDBUG). 

6.11.1.4 SDSMAC. SDSMAC (Software Development System Macro 
Assembler) is a multipass macro assembler that runs on a 990/10 
minicomputer under the hard disc based DX10 operating system. This 
assembler is invoked by issuing a XMA command to the SCI (System 



Command Interpreter) prompt and then supplying the relevant 
information to the XMA prompts. 

[1 XMA return 

SCI PROMPT 

EXECUTE MACRO ASSEMBLER 
SOURCE ACCESS NAME: DISC.SOURCENAME return 
OBJECT ACCESS NAME: DISC.OBJECTNAME return 

LISTING ACCESS NAME: DISC.LISTNAME return 
ERROR ACCESS NAME: DISC.ERRORNAME return 

OPTIONS: return 
MACRO LIBRARY PATHNAME: DISC.LIBRARYNAME return 

XMA COMMAND PROMPTS USER REPLIES 

DISC specifies the name of the (installed) disc on which the file 
resides. If the file does not exist prior to the command for the 
listing, object, and error access name prompts, it will be created on 
the specified disc with the name given. 

DISC.xxxxNAME is the full pathname of the file (or device) to be 
used. 

When creating a program on the /10 it is good practice to create a 
directory (using the CFDIR command) through which all files related to 
that particular program are referenced. This allows the replies to 
the XMA prompts to be of the form: 

DISC.PROGNAME.EXT 

where PROGNAME is the directory name for the program files, and EXT is 
one of ASM, OBJ, LST, ERR, MACRO. 

When the assembly is complete it may be necessary to execute the Link 
Editor (XLE command) to resolve all external references to the 
assembled program. The assembled and linked (if necessary) program 
must then be installed as either a procedure, task or overlay (using 
the IP, IT or IO commands). This can then be executed by the XT 
command. 



6.11.2 Number Representations 

The information that follows discusses how numbers are internally 
treated by the computer. 

6.11.2.1 Number Systems  

A number in the decimal, base 10, system is composed of the digits 0 -
9. Numbers greater than 9 are represented using the 
decimal place convention. The value of each place is ten times that 
of the place to its immediate right. 

For example, the decimal number 2976 means 

3 2 1 0 
2*10 + 9*10 + 7*10 + 6*10 

0 
Note : 10 is equal to 1 

While the decimal system is the most frequently used number system it 
is not suitable for use on a computer. 

The smallest unit of storage in a computer is the bit (from Binary 
digIT). The bit can be thought of as a single wire that can only be 
in one of two states: on or off, 'high' or 'low', '1' or '0'. The 
binary system automatically lends itself to this. 

A number in the binary, base 2, system uses only the digits 0 and 1. 
The value of each place, in the binary place convention, is twice that 
of the place to its immediate right (as opposed to 10 in the decimal 
system). 

For example, the binary number 1011101 (93 decimal) means 

6 5 4 3 2 1 0 
1*2 + 0*2 + 1*2 + 1*2 + 1*2 + 0*2 + 1*2 

0 
Note: 2 is equal to 1 

Writing large numbers in their binary representation is too cumbersome 
for most applications. However, it is possible to group bits together 
and represent each group by a single digit. This gives rise to the 
octal and hexidecimal number systems. 

Octal, base 8, representation uses the digits 0 - 7. An octal digit 
corresponds exactly to 3 bits. 

Hexadecimal (or hex for short) notation, base 16, uses the digits 0 -
9 plus A - F to represent the decimal values 10 - 15. Each hex digit 
corresponds to exactly 4 bits. 



1<--3rd->1<--2nd->1<--lst->1 Octal digits 

Binary digits 

Hex digits 

1001111111011010 

1001 1111 1101 1010 

9 f d a 

BINARY 

10 

OCTAL 

2 

DECIMAL 

2 

HEX 

1000 10 8 8 
1010 12 10 a 

10000 20 16 10 
11111111 377 255 ff 

Note: Ten does not correspond to an integral power of two. Therefore 
conversion from decimal to binary (and vice versa) is more difficult. 

6.11.2.2 Representation of Negative Numbers, Negative numbers are 
stored in two's complement form. In this form, the most significant 
bit of a word (bit 0) indicates the sign of the number. If it 
contains a 0, the number is positive; if it contains a 1, its 
negative. The remaining 15 bits (bits 1 - 15) hold the two's 
complement value of the number. For a positive number this is simply 
the binary representation of that number. 

The representation of a negative number however, (for example 1096) is 
derived as follows: 

1) Take the magnitude of the number, in this case 1096, 
and write it in binary, using the full word length of 
the machine. (For the TMS 9900 microprocessor this is 
16 bits.) 

1096 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 

2) Take the one's complement of this number ( change the 
state of each bit; replace O's with l's and l's with 
O's). 

1 1 1 1 1 0 1 1 1 0 1 1 0 1. 1 1 

3) Add 1 to the least significant bit- 



1 1 1 1 1 0 1 1 1 0 1 1 0 1 1 1 
+1 

1 1 1 1 1 0 1 1 1 0 1 1 1 0 0 0 

The positive number 1096 is stored as >0448 while the negative number 
-1096 is stored as >FBB8. 

6.11.2.3 Representation of Fractions. The general equation to 
convert a binary fraction into its decimal equivalent is: 

-1 -2 -n 
0.d1 d2  dn = dl*2 + d2*2 +  + dn*2 

where dl  dn represent binary digits 

for example, the binary fraction 0.1001 is equivalent to 

-1 -2 -3 -4 
1*2 + 0*2 + 0*2 + 1*2 

= 0.5 + 0 + 0 + 0.0625 

= 0.5625 

To convert a decimal fraction to its approximate binary equivalent, 
multiply the decimal fraction continually by 2, saving the integer 
part of the result (either '0' or '1') until the result is zero. 
Unfortunately it is not always possible to produce an exact binary 
representation. 

Consider the number 0.8125. 

0.8125 0.6250 0.2500 0.5000 
*2 *2 *2 *2 

1.6250 1.2500 0.5000 1.0000 

This number can be accurately expressed as 0.1101. 

Now consider the number 0.9725. 

0.9725 0.9450 0.8900 0.7800 0.5600 
*2 *2 *2 *2 *2 

1.9450 1.8900 1.7800 1.5600 1.1200 

0.1200 0.2400 0.4800 0.9600 
*2 *2 *2 *2 

0.2400 0.4800 0.9600 1.9200 



We could continue this process indefinately, but there is little point 
to it as the number 0.9725 can not be accurately represented in 
binary. After 9 iterations the binary approximation to the number is 
0.111110001. This yields the number 0.970703125; an error of 
0.001796875. Obviously the error can be reduced further by performing 
several more iterations. However, there are practical limitations to 
how far this can be taken. 

6.11.2.4 Representation of Floating Point Numbers. Floating point 
numbers can be stored in two consecutive 9900 memory words using 
Excess 64 notation. The 32-bit real word is formed as follows: 

SIGN bit 

- - > <-- 7 bit --> <--   24 bit MANTISSA 
EXCESS 64 EXPONENT 

A real number is converted into the form 'fraction*exponent'. The 
fraction is stored in the 24-bit mantissa in true form and not two's 
complement. The sign bit is used to indicate whether the number is 
Positive or negative. The most significant hex digit of the mantissa 
must be normalized (it must contain a value other than zero). This is 
performed simply by shifting the four places to the left (one hex 
digit) and decrementing the exponent value by one until the mantissa 
is normalized. 

Excess 64 notation means that when the value of the exponent lies 
between 127 and 64 the value is decremented by 64 to give a true 
exponent range of +63 to 0. The values 0 to 63 are used to represent 
the true exponent range of -1 to -64. 

Consider the number -107.5 

In true binary this is 
01101011.1000 -- 107.5 
In 'fraction*exponent' form this is 

2 2 
0.0110101110000 * 16 -- 0.41992188 * 16 
The fraction is already normalised 
In floating point format this is 
1 1000010 0110101110000....0 
(Sign=negative,Exponent=+2) 

The number -107.5 would be stored as >C26B8000 



Now consider the number 0.03125 

In true binary this is 
0.00001000 -- 0.03125 
In 'fraction*exponent' form this is 

0 0 
0.000010 * 16 -- 0.03125 * 16 
Normalizing the fraction gives 
0.1000 * 16**-1 -- 0.5 * 16**-1 
In floating point format this is 
0 0000000 1000000000000....0 
(Sign=mositive,Exponent=-1) 

The number 0.03125 would be stored as >00800000 

6.11.2.5 Binary Coded Decimal. A number that is stored in a decimal 
form is said to be in Binary Coded Decimal notation (BCD). In this 
form. a word holds four decimal digits with each digit occupying four 
bits. For numbers greater than 9999, more than one word is required 
to store the BCD value. 

If signed numbers are allowed, the user must decide on some convention 
for indicating whether a number is positive or negative (such as using 
the least significant four bits of the least significant word to 
contain the sign). 

most significant word least significant word 

sign digit 

most 
significant digit 

least 
significant digit 

BCD is not supported by the 9900 instruction set (all arithmetic 
operations are performed on two's complement numbers). Thus it is 
necessary for the user to supply the appropriate BCD operations, such 
as add and subtract, as well as the routines to convert a number from 
two's complement to BCD notation and vice versa. 



6.11.3 Position Independent Code 

A program is normally assembled and linked to produce an executable 
object module that is designed to reside at a particular position in 
memory. Jump addresses, data references, etc. are directed to this 
portion of code, and normally the program will not execute correctly 
in any other position. However, it is possible to write a module so 
that it will execute at any position in memory. (This is different 
from relocatable code, which is not directly executable until it has 
gone through a location step to resolve all addresses tagged 
relocatable into absolute form. It is then no longer relocatable.) 

Writing a program in Position Independent Code makes the program fully 
portable and at the same time directly executable. This is achieved 
by referencing relocatable addresses. For example: 

BL @SUB 

(where SUB is in a relocatable code segment) using the indexed mode of 
addressing on a displacement from the program's entry point. The 
first instructions cause the actual address of the entry point to be 
stored in the indexing register. 

ENTRY EQU $ ENTRY EQU $ 

• 
B▪  L @SUB BL @SUB-ENTRY(R4) 

SUB EQU $ SUB E▪  QU $ 
• 

RELOCATABLE CODE POSITION INDEPENDENT CODE 

In the above example, workspace register 4 (R4) contains the actual 
address of ENTRY. Obtaining this is performed by: 

START EQU $ 
LI R10,>045B Load R10 with RT instruction 
BL R10 Execute instruction in R10 

ENTRY EQU $ Rll contains add of entry 
MOV R11,R4 R4 contains add of entry 



6.11.4 ROM/RAM Systems 

Before burning a program into ROM (the usual course of events for a 
microprocessor based application/control program), it is necessary to 
separate the variable data and temporary storage locations from the 
constant data and program instructions, and then add instructions to 
the program to ensure that all the variable data is correctly 
initialized. 

The simplest way of initializing data is by using the DATA, BYTE, and 
TEXT assembler directives: 

TEMPI DATA 100 
TEMP2 DATA 25 

MSG TEXT 'READY' 
BYTE >D,>A,0 

While this will work in a RAM environment such as a development system 
where the program is loaded prior to each execution, it will not work 
in a dedicated microcomputer. There will be no operating system to 
load the progam and initialize the data. If the data is placed in 
RAM, it will never be initialized; if in ROM, it cannot be changed by 
the program (this is perfectly all right for constants). Even in a 
RAM environment, if the program is restarted without reloading, the 
data will not be reinitialized. 

The only way of ensuring variables are correctly initialized is to 
include instructions in the program code to do the initialization. 
This can be performed by: 

• Data storage allocation in RAM 
TEMPI BSS 2 

MSG BSS 8 

VAREND BSS 0 

• Initial variable values in ROM 
VALUES DATA 100 

DATA 25 

TEXT 'READY' 
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• Inialization loop 
ENTRY EQU $ 

LI Rl,TEMP1 
LI R2,VALUES 

INIT MOV *R2+,*Rl+ 
CI R1,VAREND 
JNE @INIT 
• 

R1 pt TEMPI 
R2 pt VALUE 

Load initial values 
Done? 
To INIT if no 

The label VAREND (no storage space is allocated to it) is used to 
delimit the block of data; its address is used to terminate the 
initialization loop INIT. 

The initialization can also be performed by: 

LI R1,100 Set TEMP1=100 
MOV R1,@TEMP1 
LI R1,25 Set TEMP2=25 
MOV R1,@TEMP2 
• 
• 

The above does not make use of the table of values 
(VALUES). 

MOV @VALUES,@TEMP1 Set TEMP1=100 
MOV @VALUES+2,@TEMP2 Set TEMP2=25 

Although both of these methods are simple and straightforward, they 
can be more costly in memory space (they both require 4 words of ROM 
for each variable) for programs with a number of variables to be 
initialized. 

Pictorally, the process can be represented as: 

PAM System 

 

ROM/RAM System 

 



As shown in the diagram, at run time, the RAM image (held in ROM) is 
copied into the appropriate RAM storage area. 

Note : A complete ROM/RAM system must contain 

1) All interrupt vectors. If any interrupt level is not 
used then a spurious interrupt handler should be 
written and included in the system. All unused 
interrupt levels should set their WP and PC to access 
this routine. 

2) If any XOPs are used then the appropriate XOP trap 
vectors must be included. 

3) LOAD vector at >FFFC. 

6.11.5 Macro Processing 

Suppose a sequence of source lines will be used often in a 
program. There are several methods to accomplish this: 

1) Explicitly write the sequence wherever it is to 
appear. 

2) Make a subroutine out of the sequence and code 
subroutine calls wherever the sequence should appear. 

3) Write the sequence at the begining of the program, 
associating a name with it. Insert this name wherever 
the sequence is to appear in the program and pass the 
program through a special program called a 
macro processor. The output from this is a program in 
which every occurrence of the sequence name is replaced 
by the sequence of source lines. 

The following text is only concerned with the last method described 
above. The sequence of source lines is a macro. Associating a name 
to a macro is called macro definition and writing this name in a 
source line is known as a macro call. 

Like the subroutine, macros can have parameters. Macro calls may 
require text that has approximately the same form as subroutine 
calls. For example, some instructions may use different operands. 
This can be handled by defining parameters for the macro. The actual 
operands required are then specified in the macro call (an example is 
presented below). 

A macro processor processes text. This text may in fact be a program; 
to the macro processor however it is simply text. The macro processor 
is only concerned with macro related operations. Source lines that do 
not contain such operations are unchanged as output. Input to a macro 
processor is text containing macro definitions, macro calls, macro 
instructions and macro keywords. Output is text that has had all the 
macro calls replaced by the appropriate replacement text; all other 



macro operations are removed). 

Diagrammatically, this can be expressed as: 

TEXT+MACRO CALLS, 
INSTRUCTIONS, 
AND KEYWORDS. 

MACRO DEFINITIONS 
---___+  

MODIFIED SOURCE TEXT 
(MACRO OPERATIONS 

REMOVED,CALLS ARE 
REPLACED BY THEIR 
REPLACEMENT TEXT) 

MACRO 

PROCESSOR 

A macro processor has two phases: 

1)  Macro definition - A macro is defined and subsequently 
included into its macro library. 

2)  Macro expansion - A macro operation is found in the 
source text. A macro call causes the input to be 
'switched' to the macro's replacement text. Processing 
continues from there until this text is exhausted. 
Other macro operations cause the macro processor to 
perform the necessary, inbuilt, operation. 

The benefit of using a macro processor is that, once defined, a macro 
can be called from anywhere within the source (or replacement) text, 
with each call having specific arguments. Obviously, it is a good 
idea to build up a macro library (containing both special and general 
purpose macros). This can then be either automatically accessed when 
the macro processor is used or actually included into the macro 
processor itself. 

Although a macro is only written once, the output from a macro 
processor will contain the replacement text wherever a macro was 
called in the source text. Note that although a macro call and a 
subroutine call look similar when written in a source program, a 
subroutine call is implemented in the object module by a short calling 
sequence to the subroutine, which only appears once. Wherever a macro 
call is written, the complete code sequence specified in the macro 
definition will be placed in the object module at the point of the 
call. 

The SDSMAC assembler supports a macro language (therefore it's a macro 
assembler). A short description of defining and calling a macro under 
this assembler follows. Full details of the SDSMAC assembler 
capabilities are available in Section 7 of the TMS9900 Assembly 
Language Programmer's Guide. 

6.11.5.1 Macro Definition. Macro definition is performed by the 
$MACRO instruction. All source lines following this instruction up to 
but excluding the definition terminator ($END macro instruction) 
constitute a macro. 



Mname $MACRO parm 

• 
)- Macro 

• 
$END 

where: MNAME is the name of the macro FARM is the list of parameters, 
separated by commas, that the macro uses 

$MACRO causes MNAME and its attributes to be stored in the assembler's 
symbol table. A similar table, the parameter table, is used to hold 
the names of the individual parameters and their attributes. 
(Information about any macro variables used within a program is also 
stored in this table.) $END informs the assembler that the definition 
is complete. All the source lines between these two macro 
instructions are stored in an encoded form in a macro file. 

6.11.5.2 Macro Call. A macro is called by writing its name in the 
opcode field of an instruction, with the actual parameters written in 
the operand field. 

When this is done, the actual parameters are linked to the dummy ones 
(those supplied at definition time) in the parameter table and then 
macro expansion takes place. The lines output from the macro expander 
are then passed straight to the assembler. 

For example, to define a macro (AGAIN) with dummy parameters AD and 
NOW, the following lines are required: 

AGAIN $MACRO AD,NOW 

▪ )- Macro's replacement lines 

SEND 

To call this with real parameters R4, *6 the following code is 
required: 

AGAIN R4,*6 

SDSMAC supports conditional assembly through the $IF, $ELSE and $ENDI 
macro instructions. The general form for conditional assembly is: 

$IF expression 

• Block A 

$ELSE 

• Block B 

$ENDIF 

C__Gq 



If the expression in the above example is true, Block A is included in 
the program; if not, Block B is included. 

A simplified form of this follows: 

$IF expression 

Block A 

$ENDIF 

Unlike most macro processors, SDSMAC allows the programmer to directly 
access and modify the individual components of each entry in the 
parameter table. Thus 'expression' can be: 

P2.S='WORD' Is the string component of variable P2 
equal to the string WORD 

T.L=5 Is the length component of variable T 
equal to 5 

SDSMAC also supplies a number of keywords such as $PCALL (paremeter 
appears as a macro instruction operand) and $PIND (parameter is an 
indirect workspace register address) that enable the programmer to 
test a variable's attribute component. These keywords are used with 
the logical operators AND ("&'), OR ('++'), Exclusive OR ('&&') and 
NOT ('it'). For example: 

P2.A & $PCALL This expression has a non zero value 
when the variable P2 is a parameter 
supplied in a macro instruction. 
Otherwise the value is zero. 



6.11.6 Nested Subroutines 

A subroutine is nested when it is invoked by another subroutine. The 
only problem with nested subroutine calls is that of ensuring that a 
subroutine's return address is not lost or overwritten. This is 
particularly troublesome if the subroutines are called via a BL 
instruction (the return address is stored in workspace register 11). 

Conceptually the flow of control is as follows: 

B▪  L . 
4  

RT 
• RT 

Executing the second BL instruction results in the loss of the first 
return address. Exiting the inner routine causes the continuous 
execution of the code located between the BL and RT instructions. 

One approach to resolve this is: 

BL *Save return address 
. <  MOV R11,R10 

B▪  L . 

RT 
*Restore return address 
MOV R10,R11 
RT 

The two instructions: 
MOV R10,R11 
RT 

can he replaced by: 
BL *R10 



6.11.7 Stacks 

Another way of performing this saving and restoring of return 
addresses is by implementing a stack mechanism. In this, an area of 
memory is set aside as a stack. A stack usually starts at a high 
address and builds down towards low memory as items are added, (pushed 
onto the stack). 

>FFFF 

 

High memory 

  

>0000 

* 
Low memory 

A register is reserved to point to the current top of stack; it points 
to the last item added to the stack. This register is usually 
referred to as the stack pointer. 

The first instruction in a subroutine pushes the return address onto 
the stack and decrements the stack pointer. The last instruction, 
prior to a return, pops (or removes) the last entry from the stack, 
updating the stack pointer in the process. 

SUB PUSH R11 

POP Rll 
RT 

PUSH and POP are not recognized assembly language instructions. If 
SDSMAC is available,these operations can be implemented by macros. 

The reason for giving both PUSH and POP arguments (R11) is to make the 
stack operations general purpose, thus allowing data other than return 
addresses to be stored on the stack. However, if the stack is used in 
this way, care must be taken to ensure that all such items are removed 
before popping the return address. 

PUSH and POP may be defined as macros as follows: 

PUSH $MACRO OP ;Define macro PUSH 
DECT R10 ;Decrement stack pointer 
MOV :OP.S:,*R10 ;Move data onto stack 
$END PUSH 

c re 



POP $MACRO SO ;Define macro POP 
MOV *R10+,:SO.S: ;Move data from stack 
$END POP 

Workspace register 10 (R10) is used above as the stack pointer; the 
macro operands may be any valid operand for a MOV instruction. 

Before the stack can be used, the stack pointer must be initialized to 
the address of the top of the stack 55us two; otherwise the first word 
in the stack will not be used. 

6.11.8 Automatic Workspace Allocation 

Transparent stacking of workspaces is achieved by calling all 
subroutines through an XOP named CALL. Return from any subroutine is 
via a normal RTWP instruction. Arguments may be passed by standard 
register conventions. The stack builds down through memory and will 
be N*32 bytes deep, where N is the nesting level. An example 
follows. 



* EXAMPLE OF USE 
XOPWP EQU >FFOO 
TPSTCK EQU >FECO 

AORG >78 
DATA XOPWP 
DATA CALLPC 

AORG >80 
MAIN LWPI TPSTCK 

DXOP CALL,14 

CALL @SUBR 

• 
SUER EQU $ 

RTWP  

;ASSIGN WSP 
;ASSIGN TOP OF STACK 

;XOP VECTOR 
;XOP WORKSPACE 
;XOP ENTRY POINT 

;ARBITRARY START 
;SET TOP OF STACK 
;DEFINE XOP CALL 

;CALLS SUBR 

;SUB'S ENTRY POINT 

;NORMAL RETURN 

* CALL XOP 
* THIS ROUTINE AUTOMATICALLY STACKS WORKSPACES DOWN 
* THROUGH MEMORY. RTWP WILL RETURN TO THE CALLER 
* WITH THE OLD WORKSPACE, EFFECTIVELY POPPING THE 
* STACK 
CALLPC LIMI 0 

LI R1,-6 
A R13,R1 
MOV R13,*R1+ 
MOV R14,*R1+ 
MOV R15,*R1+ 
MOV R11,R14 
AI R13,-32 
RTWP 

* THIS XOP REQUIRES 148 
* AT 3MHZ THIS IS 48.84 

;NON INTERRUPTABLE 
;OFFSET TO NEW WSP'S R13 
;PT TO NEW WSP'S R13 
;MOVE RETURN WP 
;MOVE RETURN PC 
;MOVE RETURN ST 
;SUBROUTINE'S ENTRY POINT 
;HIT NEXT WORKSPACE 
;CALL SUBROUTINE 

CYCLES TO EXECUTE 
MICROSECONDS 

-A7 



6.11.9 Recursion 

A nested subroutine has been defined as one that is called by another 
subroutine: 

BL . 

BL . 

BL . 

47- ;1r 
RT 

RT 

Recursion is not unusual; however, care must be taken to ensure that 
no return addresses are lost; otherwise the flow of control will not 
be as expected. 

In the definition above there is nothing to stop the nested subroutine 
from being the same as the calling subroutine. If this is the case, 
the subroutine is known as a recursive subroutine (a subroutine that 
calls itself) and the mechanism is known as recursion. Care must be 
taken to ensure that a recursive subroutine does get caught up into an 
endless recursion loop. 

Recursion presents problems. For example, how is a subroutine's 
return address to be saved? Obviously, simply copying it into another 
workspace register will not work, as on the next recursive call the 
value will be overwritten by the new return address. Here a stack 
mechanism is essential. By pushing the return addresses onto a stack 
the problem is solved, as long as the storage space allocated to the 
stack is not exceeded. 

Suppose, in a multiple-user environment, a number of programs need to 
perform the same operation. The code performing this can be included 
in each program, or it could be written in such a way that it is 
possible for the programs to share a single copy of the code and 
execute it (simultaneously, if necessary) as though each program had 
its own copy. Code written to allow this is known as 
re-entrant code. 

A recursive subroutine must be written in this way as, in effect, it 
shares the code with itself. 

• 
• 
• 
• 

6-6R 



6.11.10 Re-entrancy 

There are two problems associated with re-entrancy: 

1) The subroutine code must not modify itself. Modifying 
code is dangerous, is difficult to debug and is 
discouraged. Storing the code in ROM elimiantes 
re-entrancy. If self modifying code is include, the 
program will not work as expected. 

2) On entry to the subroutine, the data local to the 
subroutine must be correctly initialized. This implies 
that the data local to previous invocations must be 
Preserved, and restored on exiting the routine. The 
simplest way of performing this is using a stack: 

ENTRY EQU $ 
PUSH Rll 
PUSH @ARG1 
PUSH @ARG2 

PUSH RO 
LIRO,... 
MOV RO,@ARG1 
LI RO,... 
MOV RO,@ARG2 

Save return address 
Save ARG1 
Save ARG2 

Save RO 

Reset ARG1 

Reset ARG2 

POP RO Restore RO 

POP @ARG2 Restore ARG2 
POP @ARG1 Restore ARG1 
POP Rll Restore return address 
RT 

Note : The stacked items are popped in reverse order. 



6.11.11 Jump Table 

Suppose it is necessary to branch to a label (Li) depending on the 
value of a key (i); if i=1, then 11, if i=2 then L2, etc. Assume that 
RO contains the key. This can be written as: 

CI R0,1 
JEQ Ll 
CI R0,2 

JEQ Ln 
JGT OVER 

UNDER EQU $ Under range 

OVER EQU $ Over range 

Ll EQU $ KEY=1 

A more efficient method would be to replace each 

CI RO,i with a DEC RO 

This saves one word for each comparison. 

Probably the best method of implementing this would be to create a 
table of addresses, in ascending key order, of the labels. Using the 
index mode of addressing on the key, the following code is utilized: 

TABLE DATA L1,L2,....,Ln Table of addresses 

* Key in range 
A RO,R0 
JLE UNDER 
CI R0,2*n 
JGT OVER 

* Yes then branch to Ll 

KEY->word offset,set code 
KEY<=0? 

KEY>n? 

6-70 



6.12 REFERENCE SECTION 

The paragraphs that follows provides additional explanation to the 
inforamtion on 9900 assembley language presented in this chapter. 

6.12.1 Instruction Formats 

9 MPY,DIV,XOP 

BIT POSITIONS 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
I -t-  

OP CODE  B 
I 

 TD 
I I I 

D 
r 

TS 
1 i -v . 

S 
I I 
OP CODE 

I I I 

I I 

I 

I 
SIGNED 

I 
DISPLACEMENT 

111 

I I I 
OP CODE D 

I • I 
TS 
I 

' 

I I 
OP CODE 

I I I II 
C TS 

III 
S 

- I 
OPCODE 

II! 1 
C 

III 
W 
I I I 

OPCODE 
I 

i 1 I 

1114-111 

I I 
TS 

I 
S 
I I 

I 

OPCODE NU 
I 
OPCODE 

I I I I I 
NU 1 

I 1 

t 

I 1 I 1 I 
IMMEDIATE 
1 1 1 1 1 

VALUE 
-I 

I 

+1111 
OP CODE 

1+1 
D 

I I • 
TS 

I 

ili 
S 

• I II 

FORMAT NO. 
AND USE 

1 ARITHMETIC 

2 JUMP 

3 LOGICAL 

4 CRU 

5 SHIFT 

6 PROGRAM 

7 CONTROL 

8 IMMEDIATE 

OPCODE - Assembly language mnemonic 
B - Byte indicator (1=byte, 0=word) 
Td - Destination address mode 
D - Destination address 
Ts - Source address mode 
S - Source address 
C - Shift or cru transfer count 
W - Workspace register number 
NU - Not used 
SIGNED - Signed displacement of -128 to +127 words 

TD/TS 

CODE 

FIELD: 

MODE EFFECTIVE ADDRESS 
00 WORKSPACE REGISTER Rx WP+2*[S OR D] 
01 INDIRECT *Rx (WP+2*[S OR ID]) 
10 INDEXED (S OR D/0) @LABEL(Rx) (1113+2* [S OR D])+(PC+2) 
10 SYMBOLIC (S OR D=0) @LABEL (PC+2) 
11 INDIRECT WITH AUTO *Rx+ (WP+2* [S OR  D]); 

INCREMENT Increment eff. address 



An extra word is required for each operand code of 2. 

6.12.2 Status Register 

0 1 2 3 4 5 6 7 11 12 15 

L> A> C 0 P X Reserved Int. mask 

0 - Logical greater (L>) 
1 - Arithmetic greater (A>) 
2 - Equal (=) 
3 - Carry from msb (C) 
4 - Overflow (0) 
5 - Parity (P) 
6 - XOP in progress (X) 

Interrupt mask : F - All interrupts enabled 
0 - Only interrupt level 0 enabled 

6.12.3 Interrupts 

Trap addr Workspace Pointer (WP) 

Trap addr+2 Entry Point (PC) 

Note: 1) Interrupt vectors 0-15 from 0 to >3C 
2) XOP vectors from >40 to >7C 
3) LOAD vector at >FFFC 
4) Interrupt 0 is the RESET interrupt 

6.12.4 CRU 

All CRU instructions use bits 3 - 14 of workspace register 12 (R12) as 
the base address for CRU operations. For CRU operations involving 
less than 9 bits (LDCR and STCR instructions) the most significant 
byte (bits 0 - 7) of a word is used. 



6.12.5 Register Restrictions 

Memory Memory 
address 

WP+>00 

WP+>02 

WP+>16 

WP+>18 

WP+>1A 

WP+>1C 

WP+>1E  

Shift count (bits 12 - 15) 

Index 
capability 

Data or 
addresses 

B1 - Return address; 
XOP - Operand effective add. 
CRU base address (bits 3 - 14) 

Saved WP 

Saved PC 

♦ v Saved ST 

RO 

R11 

R12 

R13 

R14 

R15 

Note: The MPY and DIV instructions use two consecutive registers, the 
first of which is supplied as an operand to the instruction (if R2 is 
the register operand then R2 and R3 are both used). If R15 is the 
specified register then the word following the workspace is used to 
store the remainder for DIV or the least significant half of the 
result for MPY. 

6.12.6 Assembly Language Instructions 

Symbols Used 

G,G1,G2 - General memory addresses 
R - Workspace register address 
S - Symbolic memory address 
E - Expression (all symbols previously defined) 
I - Immediate value 
T - Term (range 0 - 15) 
( ) - Contents of the address within parenthesis 
-> - 'Replaces' 
: - 'Is compared to' 
C - Count (0 to 15) 
* - Result is compared to zero 



INSTRUCTION OPCODE 

FORMAT STATUS 
FORMAT EFFECT TYPE BITS 

AFFECTED 

ABSOLUTE VALUE 0740 6 *0-2,4 ABS G ABSOLUTE(G)->(G) 
ADD BYTES B000 1 *0 -- 5 AB G1,G2 (G1)+(G2)->(G2) 
ADD IMMEDIATE 0220 8 *0 -- 4 AI R.I (R)+I->(R) 
ADD WORDS A000 1 *0 -- 4 A G1,G2 (G1)+(G2)->(G2) 
AND IMMEDIATE 0240 8 *0 -- 2 ANDX R,I (R) AND I->(R) 
BRANCH 0440 6 B G->(PC) 
BRANCH AND LINK 0680 6 BL G G-> (PC) 

(PC)->(R11) 
BRANCH AND LOAD WP 0400 6 BLWP G (G) -> (WP) 

(0+2)->(PC) 
(OLD WP)->(R13) 
(OLD PC)->(R14) 
(OLD ST)->(R15) 

CLEAR 04C0 6 CLR G 0-> (G) 
CLOCK OFF 03C0 7 CKOF DISABLES CLOCK 
CLOCK ON 03A0 7 CKON ENABLES CLOCK 
COMPARE BYTES 9000 1 0-2,5 CB G1,G2 (G1):(G2) 
COMPARE IMMEDIATE 0280 8 0 -- 2 CI R,I (R) :I 
COMPARE WORDS 8000 1 0 -- 2 C G1,G2 (G1) : (G2) 
COMPARE ONES 2000 3 2 COC G,R ST2=AND OF RBITS 
CORRESPONDING CORRES. TO GBITS= 
COMPARE ZEROS 2400 3 2 CZC G,R ST2=NAND OF RBITS 
CORRESPONDING CORRES. TO GBITS= 
DECREMENT BY ONE 0600 6 *0 -- 4 DEC (G) (G) -1-> (G) 
DECREMENT BY TWO 0640 6 *0 -- 4 DECT (G) (G)-2->(G) 
DIVIDE 3C00 9 4 DIV G,R INT (R)/(G)->(R) 

REM (R)/(G)->(R+1 
EXECUTE INSTRUCTION 0480 6 X G EXECUTE INSTRUCTI 

AT ADDRESS G 
EXTENDED OPERATION 2C00 9 6 XOP G,T (>40+4*T)->(WP) 

(>42+4*T)->(PC1 
EFF ADD OF G->(R1 
(OLD WP)->(R13) 
(OLD PC)->(R14) 
(OLD ST)->(R15) 
1->ST6 

EXCLUSIVE OR 2800 3 *0 -- 2 XOR G,R (G) XOR (R)->(R) 
IDLE 0340 7 IDLE 
INCREMENT BY ONE 0580 6 *0 -- 4 INC G (G) +1-> (G) 
INCREMENT BY TWO 05C0 6 *0 -- 4 INCT G (G)+2->(G) 
INVERT BITS 0540 6 *0 -- 2 INV G 1'S COMP (G)->(G) 
JUMP (UNCONDITIONAL) 1000 2 JMP S S->(PC) 
JUMP IF CARRY 1800 2 JOC S S->(PC) IF ST3=1 
JUMP IF EQUAL 1300 2 JEQ S S->(PC) IF ST2=1 
JUMP IF GREATER THAN 1500 2 JGT S S->(PC) IF ST1=1 
JUMP IF HIGH OR EQUAL 1400 2 JHE S S->(PC) IF STO=1 

OR ST2=1 
JUMP IF LESS THAN 1100 2 JLT S S->(PC) IF ST1=0 

AND ST2=0 



JUMP IF LOGICAL HIGH 

JUMP IF LOGICAL LOW 

JUMP IF LOW OR EQUAL 

JUMP IF NO CARRY 
JUMP IF NO OVERFLOW 
JUMP IF NOT EQUAL 
JUMP IF ODD PARITY 
LOAD COMMUNICATIONS 

1B00 

1A00 

1200 

1700 
1900 
1600 
1C00 
3000 

2 

2 

2 

2 
2 
2 
2 
4 *0-2,5 

JH S 

JL S 

JLE S 

JNC S 
JNO S 
JNE S 
JOP S 
LDCR G,T 

S->(PC) IF STO=1 
AND ST2=0 
S->(PC) IF STO=0 
AND ST2=0 
S->(PC) IF STO=0 
OR ST2=1 
S->(PC) IF ST3=0 
S->(PC) IF ST4=0 
S->(PC) IF ST2=0 
S->(PC) IF ST5=1 
TRANSFER T BITS 

REGISTER FROM (G) TO CRU 
LOAD IMMEDIATE 0200 8 *0 -- 2 LI R,I I-> (R) 
LOAD INTERRUPT MASK 0300 8 12-15 LIMI I I->(INT. MASK) 
LOAD ROM AND EXECUTE 03E0 7 12-15 LREX (>FFFC)->(WP) 

(>FFFE)->(PC) 
(OLD WP)->(R13) 
(OLD PC)->(R14) 
(ST)--.(1115) 
0->(INT. MASK) 

MOVE BYTE D000 1 *0-2,5 MOVB G1,G2 (G1) -> (G2) 
MOVE WORD C000 1 *0 -- 2 MOV G1,G2 (G1) -> (G2) 
MULTIPLY 3500 9 MPY G,R MSW((G)*(R))->(R) 

LSW((G)*(11))->(R+1) 
NEGATE 0500 6 *0 -- 4 NEG G -(G)->(G) 
OR IMMEDIATE 0260 8 *0 -- 2 ORI R,I (R) OR I ->(R) 
RESET I/O 0360 7 RSET DISABLES INTERRUPTS 

RESETS I/O DEVICES 
BITS 12 -15 =0 

RETURN WORKSPACE 0380 7 0 -- 6 RTWP (R13)->(WP) 
POINTER 12-15 (R14)->(PC) 

(R15) -> (ST) 
SET BIT TO ONE 1D00 2 SBO E 1->(E+(R12)) 
SET BIT TO ZERO 1E00 2 SBZ E 0->(E+(R12)) 
SET TO ONES 0700 6 SETO G >FFFF->(G) 
SET ONES CORRESPONDING F000 1 *0-2,5 SOCB G1,G2 (G1) OR (G2) ->(G2) 
BYTE 
SET ONES CORRESPONDING E000 1 *0 -- 2 SOC G1,G2 (G1) OR (G2) -> (G2) 
WORD 
SHIFT LEFT ARITHMETIC 0A00 5 0 -- 4 SLA R,C ) IF C=0 THEN 4 
SHIFT RIGHT ARITHMETIC 0800 5 0 -- 3 SRA R,C ) LSBS OF RO USED. 
SHIFT RIGHT CIRCULAR OBOO 5 0 -- 3 SRC R,C ) IF THESE =0 THEN 
SHIFT RIGHT LOGICAL 0900 5 0 -- 3 SRL R,C ) C=16. 
STORE COMMUNICATIONS 3400 4 *0-2,5 STCR G,T T BITS FROM CRU 
REGISTER LINES TO G 
STORE STATUS REGISTER 02C0 8 STST R (ST)->(R) 
STORE WORKSPACE POINTER 02A0 9 STWP R (WP) -> (R) 
SUBTRACT BYTE 7000 1 *0 -- 5 SB G1,G2 (G2)-(G1)->(G2) 
SUBTRACT WORD 6000 1 *0 -- 4 S G1,G2 (G2)-(G1)->(G2) 
SWAP BYTES 06C0 6 SWPB G INTERCHANGE BITS 

0-7 WITH BITS 8-15 
OF WORD,G 

SET ZEROES 5000 1 *0-2,5 SZCB G1,G2 (INV(G1') AND (G2) 
CORRESPONDING BYTE -> (G2) 



SET ZEROES 4000 1 *0 -- 2 SZC G1,G2 (INV(G1)) AND (G2) 
CORRESPONDING WORD ->(G2) 
TEST BIT 1F00 2 2 TB E (R12)+E->ST2 

6.12.7 Pseudo-Instructions 

INSTRUCTION FORMAT EFFECT 

NO OPERATION NOP JMP $+2 
RETURN RT B *R11 

TRANSFER VECTOR for a "BLWP @label' 
label XVEC wpadd,pcadd 

6.12.8 Assembler Directives 

(SDSMAC only) 
label DATA wpadd 

DATA pcadd 
WPNT wpadd 

( ) - The item in parenthesis is optional 
(,x) - Anv number of 'x's (each preceded by a comma) 

All of these directives (except OPTION) may be preceded by a label and 
followed by a comment. 

ABSOLUTE ORIGIN - AORG exp 
AORG places the value of EXP (an absolute expression) in the 
location counter and defines the succeeding locations as 
absolute. 

RELOCATABLE ORIGIN - RORG (exp) 
RORG places the value of EXP (an absolute or relocatable 
expression) in the location counter; if encoutered in absolute 
code it also defines the succeeding locations as relocatable. If 
EXP is not used then the location counter is replaced by : 
Current length of program segment for absolute code 
Length of data segment for data relocatable code 
Length of common segment for common relocatable code 

DUMMY ORIGIN - DORG exp 
DORG places the value of EXP (a relocatable or absolute 
expression) in the location counter and defines the succeeding 
locations as a dummy block. No object code is generated for the 
dummy block, but the module is allowed to access the symbols of 
another module. 

DATA SEGMENT - DSEG 
DSEG places a value in the location counter and defines the 
succeeding locations as data relocatable. Either of the following 



values is placed in the location counter: 
maximum value location counter has ever attained as a result of 
assembling any preceding blocks of data relocatable code 
Zero, if no data relocatable code has been assembled 

DATA SEGMENT END - DEND 
DEND terminates a DSEG by placing a value in the location counter 
and defines succeeding locations as program relocatable. Either 
of the following values is placed in the location counter: 
Maximum value location counter has ever attained as a result of 
assembling any preceding blocks of program relocatable code 
Zero, if no program relocatable code has been assembled 

COMMON SEGMENT - CSEG (string) 
CSEG places a value in the location counter and defines the 
succeeding locations as common relocatable code. STRING is used 
to define the begining (or continuation) of the named common 
segment. (If STRING blank then it refers to the BLANK common 
segment.) If the string has not previously been used in a CSEQ 
directive, it sets the location counter to zero and defines the 
succeeding locations as relocatable to the new segment. Otherwise 
it is a continuation and the location counter is set to the 
maximum value it attained when previously assembling the segment. 

COMMON SEGMENT END - CEND 
CEND terminates a CSEG by placing a value in the location counter 
and defines succeeding locations as program relocatable. The 
location counter value is the same as for DEND. 

PROGRAM SEGMENT - PSEG  
PSEG places a value in the location counter and defines the 
succeeding locations as program relocatable. Either of the 
following values is placed in the location counter : 
Maximum value location counter has ever attained as a result of 
assembling any preceding blocks of program relocatable code 
Zero, if no program relocatable code has been assembled 

PROGRAM SEGMENT END -  PEND 
PEND terminates a PSEG by placing a value in the location counter 
and defines succeeding locations as program relocatable. The 
location counter value is the same as for DEND. 

BLOCK STARTING WITH SYMBOL - BSS exp  
BSS reserves EXP number of consecutive bytes. When a label 
precedes BSS it is assigned the address of the first byte of the 
block. 

BLOCK ENDING WITH SYMBOL - BES exp  
BES reserves EXP number of consecutive bytes. When a label 
precedes BES it is assigned the address of the first byte 
immediately following the block. 

INITIALIZE BYTE - BYTE exp(,exp) 
BYTE reserves successive bytes of memory and initializes them to 



their respective values of EXP. 

INITIALIZE WORD - WORD exp(,exp) 
WORD reserves successive words of memory and initializes them to 
their respective values of EXP. 

INITIALIZE TEXT - TEXT (-)strinq 
TEXT reserves successive bytes of memory and initializes them to 
the appropriate character in the string. The string is delimited 
by single quotes and can be up to 52 characters long. If the 
optional minus sign is present then the last character in the 
string is negated. 

WORD BOUNDARY ALIGN - EVEN 
EVEN aligns the location counter to a word boundary if it contains 
an odd value. otherwise it is unchanged. 

DEFINE ASSEMBLY TIME CONSTANTS - label EOU exp 
EQU assigns the value of EXP to LABEL. 

EXTERNAL DEFINITION - DEF symbol(,svmbol)  
DEF allows other programs to access a program's SYMBOLs. 

EXTERNAL REFERENCE - REF symbol(,symbol) 
REF provides access to SYMBOLs defined in other programs. 

SECONDARY EXTERNAL REFERENCE - SREF symbol(,symbol)  
SREF provides access to one or more SYMBOLs defined in other 
programs. 

FORCE LOAD - LOAD symbol(,symbol)  
LOAD causes a special object tag to be generated that acts as a 
Link Editor control command. SYMBOL is treated as if it were a 
value in an INCLUDE statement. This command is used in 
conjunction with SREF 

DEFINE EXTENDED OPERATION - DXOP svm,num  
DXOP assigns SYM to be used in the operator field as an extended 
operation. NUM, in the range 0 - 15, specifies the extended 
operation number. 

PROGRAM END - END (symbol) 
END terminates the assembly. Source lines following this 
directive are ignored. SYMBOL, if present, specifies the 
program's entry point. 

OUTPUT OPTIONS - OPTION key(,key) 
OPTION specifies the output and listing options to the assembler. 
A label is not allowed with this directive. KEY can be any of the 
following: 

XREF - Print cross reference table. 
OBJ - Print listing of the object code. 
SYMT - Print symbol table. 

Additional key words for SDSMAC only: 



NOLIST - Suppress printing 
TUNLIST - Limit listing for 
DUNLIST - Limit listing for 
BUNLIST - Limit listing for 
MUNLIST - Limit listing for 

of source listing. 
text directives (1 line) 
data directives (1 line) 
cycle directives (1 line) 
macro expansion (1 line) 

PROGRAM IDENTIFIER - IDT string 
IDT assigns a name to the program. This directive must precede 
any assembly language instructions or assembler directives that 
produce object code. Only the first 8 characters of STRING 
(delimited by single quotes) are used. 

PAGE TITLE - TITL string  
TITL supplies the title to be printed as the heading for the 
source listing. If a heading is required on the first page, a 
TITL directive must be the first source statement. STRING is 
delimited by single quotes and can be up to 50 characters in 
length. 

LIST SOURCE - LIST  
LIST restores printing of the source listing and is only required 
when a no source list directive is in effect. The directive in 
not Printed in the listing. 

No SOURCE LISTING - UNL  
UNL inhibits the printing of the source listing. The directive is 
not printed in the listing. 

PAGE EJECT - PAGE  
PAGE causes the assembler to continue the source listing on a new 
page. The directive is not printed in the listing. 

T1ORKSPACE POINTER - WPNT label SDSMAC only 
WPNT defines the current workspace (referenced by LABEL) to the 
assembler but produces no object code. 

COPY SOURCE FILES - COPY file SDSMAC only 
COPY causes input to the assembler to be taken from FILE. On 
end-of-file, input is resumed from the original file. 

DEFINE OPERATION - DFOP sym,op SDSMAC only 
DFOP defines a synonym (SYM) for an operation (OP). OP may be a 
mnemonic, a macro name, or the SYM of a previous DFOP or DXOP 
directive. 
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6.12.9 Object Record Format and Code 

1 byte 4 bytes 6/8 bytes (when required) 

tag 1st field 2nd field 

TAG 1st Field 2nd Field Meaning 

0 Length of all 
relocatable code 

Program ID 
(8 chars) 

Program start 

1 Address Not used Absolute entry point 
2 Address Not used Relocatable entry point 
3 Location of last 6 char External reference last 

appearance of 
symbol 

symbol Used in relocatable code 

4 Location of last 6 char External reference last 
appearance of 
symbol 

symbol Used in absolute code 

5 Location 6 char 
symbol 

Relocatable external 
Definition 

6 Location 6 char 
symbol 

Absolute external 
Definition 

7 Checksum for 
current record 

Not used Checksum 

8 Any value Not used Ignore checksum value 
9 Load address Not used Absolute load address 
A Load address Not used Relocatable load address 
B Data Not used Absolute data 
C Data Not used Relocatable data 
D Load bias Not used Load bias or offset 
F Illegal 
F Not used Not used End of record 

a_ an 



6.12.10 TMS 9900 Instruction Execution Times 

INSTRUCTION CLOCK 
CYCLES 

MEMORY 
ACCESS 

r 
ADD. MOD 
SOURCE 

TABLE 
DEBT 

A 14 4 A A 
AB 14 4 B B 
ABS (MSB=0) 12 2 A - 

(MSB=1) 14 3 A - 
AI 14 4 - - 
ANDI 14 4 - - 
B 8 2 A - 
BL 12 3 A - 
BLWP 26 6 A - 
C 14 3 A A 
CB 14 3 B B 
CI 14 3 - - 
CKOF 12 1 - - 
ryoN 12 1 - _ 
CLR 10 3 A - 
COC 14 3 A - 
CZC 14 3 A - 
DEC 10 3 A - 
DECT 10 3 A - 
DIV ST4 IS SET 16 3 A - 
ST4 IS RESET * 92-124 6 A - 

IDLE 12 1 - _ 
INC 10 3 A - 
INCT 10 3 A - 
INV 10 3 A - 
JUMP PC CHANGED 10 1 - - 

PC UNCHANGED 8 1 - _ 
LDCR C=0 52 3 A - 

1<=C<=8 20-2C 3 B - 
9<=C<=15 20-2C 3 A - 

LI 12 3 - - 
LIMI 16 2 - - 
LREX 12 1 - - 

- - 
-RESET FUNCTION 26 5 - - 
LOAD FUNCTION 22 5 - - 

INTERRUPT 
CONTEXT SWITCH 22 5 - - 

* Execution time is dependent upon the partial quotient 
after each clock cycle during execution 



INSTRUCTION CLOCK 
CYCLES 

MEMORY 
ACCESS 

ADD. MOD 
SOURCE 

TABLE 
DEST 
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- - 
MOV 14 A A 
MOVB 14 B B 
MPY 52 A - 
NEG 12 A - 
OPI 14 - - 
RSET 12 - - 
RTWP 14 - - 
S 14 A A 
SB 14 B B 
SAO 12 - - 
SAZ 12 - - 
SETO 10 A - 
SHIFT C40 12-2C - - 
C=0,R0=0 52 - - 
..-0,RO=N=0 20-2N - - 
SOC 14 A A 
SOCB 14 B B 
STCR C=0 60 A - 

1<=C<=7 42 B - 
C=8 44 B - 
9<=C<=15 58 A - 

STST 8 - - 
STWP 8 - - 
SWPB 10 A - 
SZC 14 A A 
SZCB 14 B B 
TB 12 - - 
X * 8 A - 
XOP 36 A - 
XOR 14 A - 

UNDEFINED 
OPCODES 6 1 - - 

* Execution time is added to that of the instruction 
located at the source address minus 4 clock cycles 
and 1 memory access time 
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ADDRESS MOD TABLE A 

MODE CLOCK 
CYCLES 

MEMORY 
ACCESS 

00 0 0 
01 4 1 
10* 8 1 
11 8 2 

ADDRESS MOD TABLE B  

MODE CLOCK i 
CYCLES 

MEMORY 
ACCESS 

00 0 0 
01 4 1 
10* 8 1 
11 6 2 

* Indexed addressing requires 1 more memory access than that 
shown for symbolic addressing 

T=tc (0) (C+ (W*M) ) 

T - Total instruction execution time 
tc(0) - Clock cycle time 
C - Number of clock cycles for instruction execution 

plus address modification 
W - Number of required wait states per memory access 

for instruction execution plus address modification 
M - Number of memory accesses 



6.12.11 TMS 9900 Pin Assignments 

PIN FUNCTION PIN FUNCTION  PIN FUNCTION 

1 Vbb 23 Al 45 D4 
2 Vcc 24 AO 46 D5 
3 WAIT 25 04 47 D6 
4 -LOAD 26 Vss 48 D7 
5 HOLDA 27 Vdd 49 D8 
6 -RESET 28 03 50 D9 
7 IAQ 29 DBIN 51 D10 
8 01 30 CRUOUT 52 Dll 
9 02 31 CRUIN 53 D12 
10 A14 32 -INTREQ 54 D13 
11 A13 33 IC3 55 D14 
12 Al2 34 IC2 56 D15 
13 All 35 IC1 57 NC 
14 A10 36 ICO 58 NC 
15 A9 37 NC 59 Vcc 
16 A8 38 NC 60 CRUCLK 
17 A7 39 NC 61 -WE 
18 A6 40 Vss 62 READY 
19 A5 41 DO 53 -NIEMEN 
20 A4 42 D1 64 -HOLD 
21 A3 43 D2 
22 A4 44 D3 

NC - No internal connection 
Vss - Pins 26,40 must be connected in parallel 
Vcc - Pins 2,59 must be connected in parallel 



6.12.12 ASCII Character Set 

CHAR HEX CHAR HEX CHAR HEX 

NUL 00 + 2B 
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SOH 01 , 2C 
STX 02 - 2D 
ETX 03 . 2E 
EOT 04 / 2F 
ENO 05 0 30 
ACK 06 1 31 

BEL 07 2 32 
BS 08 3 33 
HT 09 4 34 
LF OA 5 35 
VT OB 6 36 
FF OC 7 37 
CR OD 8 38 
SO OE 9 39 
Si OF 3A 
DLE 10 ; 3B 
0C1 11 < 3C 
DC2 12 = 3D 
DC3 13 > 3E 
DC4 14 ? 3F 
MAK 15 @ 40 
SYN 16 A 41 
ETB 17 B 42 
CAN 18 C 43 
EM 19 D 44 
SUB 1A E 45 
ESC IB F 46 
FS 1C G 47 
GS 1D H 48 
RS 1E I 49 
US 1F J 4A 
SPACE 20 K 4B 

21 L 4C 
II 22 M 4D 

# 23 N 4E 
$ 24 0 4F 
% 25 P 50 
& 26 Q 51 
. 27 R 52 
( 28 S 53 
) 29 T 54 
* 2A U 55 



6.12.13 Hex-Decimal Table 

EVEN BYTE 
, 

ODD BYTE 

HEX DEC HEX DEC HEX DEC HEX DEC 

0 0 0 0 0 0 0 0 
1 4,096 1 256 1 16 1 I 
2 8,192 2 512 2 32 2 2 
3 12,288 3 768 3 48 3 3 
4 16,384 4 1,024 4 64 4 4 
5 20,480 5 1,280 5 80 5 5 
6 24,576 6 1,536 6 96 6 6 
7 28,672 7 1,792 7 112 7 7 
9 32,768 3 2,048 8 128 8 8 
9  36,864 9 2,304 9 144 9 9 
A 40,960 A 2,560 A 160 A 10 
n 45,056 B 2,816 B 176 B 11 
C 49,152 C 3,072 C 192 C 12 
n 53,248 D 3,328 D 208 D 13 
E 57,344 E 3,584 E 224 E 14 
F 61,440 F 3,840 .F 240 F 15 



INDEX 

$ ARCTANGENT  4-53 
$ EXPONENTIAL  4-53 
$ I 0 COLUMN  4-53 
$ NATURAL LOGARITHM .  • 4-53 
$ SQUARE ROOT  4-53 

 4-49 
$$  4-49 
$END  6-61 
$MACRO  6-61 
$PCALL  6-63 
ABS  4-53,5-44, 

6-74 
ABSOLUTE CODE  3-16 
ABSOLUTE ORIGIN . . .  • 6-76 
ABSOLUTE VALUE . . .  • 4-53,5-44, 

6-74 
ACCUMULATOR  5-50 
ADD BYTES  6-74 
ADD IMMEDIATE  6-74 
ADD WORDS  6-74 
ADDRESS  2-1 
ADDRESSING MODES . .  • 6-11 
AI  6-74 
ALGORITHM  2-13 
ALTEXTERNALEVENT .  ▪  4-48,4-59 
ALU  1-8 
AMPL  2-4,3-25 
ANALOG  3-3 
AND  4-19,5-43 
AND IMMEDIATE  6-74 
ANDI  6-74,6-81 
AORG  6-78 
ARCTAN  4-53 
ARCTANGENT  4-53,5-44 
ARITHMETIC FUNCTIONS  ▪  5-44 
ARITHMETIC OPERATORS  ▪  4-20,5-42 
ARRAY  2-10,4-23, 

5-12 
ARRAY TYPE  2-10,4-22, 

4-71 
ARRAY VARIABLES . . . . 5-12 
ASC  5-47 
ASCII CHARACTER SET .  ▪  3-14,4-63, 

5-52,6-87 
ASR  5-2 
ASSEMBLER  3-15 
ASSEMBLER DIRECTIVES  ▪  6-76  

ASSEMBLY LANGUAGE . . . 6-1 
ASSERT STATEMENT . . . 4-34,4-71 
ASSIGN BREAKPOINTS . . 4-49 
ASSIGNMENT STATEMENT . 4-31 
ASSIGNMENT OPERATOR . . 4-23 
ATN  5-44 
AUTOINCREMENT  6-13,6-19 
AUTOMATIC LINE NUMBERING 5-9 
AUTOMATIC WORKSPACE . . 6-68 
BACK TAB  4-53 
BACKSPACE AND DELETE CHARACTER 

5-39 
BACKSPACE CHARACTER . . 5-39 
BACKUP  3-13,3-20 
BACKUS-NAUR  4-64 
BASE  3-16 
BASE STATEMENT • • .  ▪  5-25 
BASIC  5-1 
BASIC LANGUAGE . . .  • 5-1 
BATCH  3-22 
BAUD  5-39 
BCD  6-56 
BCLOSE  5-5 
BDEFR  5-5 
BDEFS  5-5 
BDEL  5-5 
BEGIN  4-10 
BES  6-77 
BINARY  1-6,5-5 
BINARY DIGIT  1-3 
BINARY CODED DECIMAL  • 6-56 
BIT  1-6 
BL 6-16 
BLOCK ENDING WITH SYMBOL 6-77 
BLOCK STARTING WITH SYMBOL 6-7, 

6-77 
BLOCK STRUCTURE . . . . 4-11 
BLWP  6-16 
BNF  4-64 
BOOLEAN  4-19 
BOOLEAN OPERATORS . .  ▪  5-43 
BOPEN  5-5 
BP  4-50 
BRANCH AND LINK . • . . 6-16,6-74 
BRANCH AND LOAD WP . . 6-74 
BREAKPOINT  4-6,4-50 
BREAKPOINT PROCESS .  4-50 
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BS  4-63,5-52, CODEGEN  4-66 
6-85 COF  4-50 

BSPACE  4-63 COLON  5-41 
BSS  6-73 COM  5-3 
BUFFER  4-46 COMMA  5-46,5-49 
BUNLIST  6-79 COMMON  4-67 
BUS  5-35 COMMON SEGMENT . . . . 6-77 
BYTE  1-6 COMMON SEGMENT END . . 6-77 
BYTE REPLACEMENT • • 5-46 COMP  6-74 
CALL  2-29.6-66 COMPARE BYTES  6-74 
CALLPC  6-67 COMPARE IMMEDIATE . . . 6-74 
CARRY  6-23 COMPARE ONES  6-74 
CASE STATEMENT . • • • 4-36,4-72 COMPARE WORDS . . . . . 6-74 
CASSETTE  3-15,3-26 COMPARE ZEROS  6-74 
CB  6-74,6-81 COMPILATION  2-23 
CELL  2-2 COMPILER  2-21 
CEND  6-73 COMPILER OPTIONS 4-2,4-6, 
CF  4-51 4-65 
CFDIR  6-51 COMPOUND STATEMENT 4-34 
CHANGE FILE NAME . . . 4-51 COMPRESS A FILE . . 4-51 
CHANGE FILE PROTECTION 4-51 COMPUTER  1-1 
CHANGE LISTING FILE . . 4-51 CONCATENATED  5-46 
CHANNEL  4-45 CONCATENATION  5-7,5-46 
CHAR  4-20 CONCURRENCY  4-3,4-41 
CHARACTER ASSIGNMENT 5-46 CONDENSED  2-23,3-20 
CHARACTER CONCATENATION 5-46 CONFIGURABLE POWER BASIC 5-4 
CHARACTER CORRESPONDING 4-53 CONFIGURATOR  5-4 
CHARACTER DELETION . . 5-46 CONNECT INPUT FILE . . 4-6,4-50 
CHARACTER INSERTION . . 5-46 CONNECT OUTPUT FILE . . 4-6,4-50 
CHARACTER PICK . . . . 5-46 CONSTANT  4-18 
CHARACTER REPLACEMENT . 5-46 CONT  5-8 
CHARACTER SET  4-63,5-36 CONTEXT  2-35 
CHARACTER STRING . . . 5-12,5-31 CONTEXT SWITCH . . . . 6-7,6-8 
CHECKSUM  6-80 CONTROL STATEMENTS . . 5-13 
CHIP  1-1,1-5 CONVERT TO LONGINT . . 4-53 
CHR  4-53 COPY  4-49 
CI  6-74,6-81 COPY SOURCE FILES . . . 6-79 
CIF  4-50 CORE  2-38 
CKINDEX  4-6,4-65 CORRESPONDING BYTE . . 6-75 
CKOF  6-48 CORRESPONDING WORD . . 6-76 
CRON  6-48 COS  4-53,5-44 
CKPTR  4-6 COSINE  4-53,5-44 
CKSET  4-6,4-65 COUNTER  4-43,6-6 
CKSUB  4-6,4-65 CPU. . • • . 1-8 
CLASS  4-60 CR  4-63,5-39, 
CLASS CODES  4-60 6-85 
CLEAR LINE  4-52 CRB  5-44 
CLOCK  2-36 CRB FUNCTION  5-25 
CLOCK OFF  6-48,6-74 CREATE  4-49,4-51, 
CLOCK ON  6-48,6-74 4-53 
CLR  6-81 CREATE A FILE . . . . 4-51 
CM  4-51 CREATE FILE CONNECTION 4-53 
COBOL  3-26 CRF FUNCTION  5-26 
COC  6-74,6-83 
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CRU  1-14,4-41, DELIMIT  5-48 
5-25 DEND  6-77 

CRU BIT ADDRESSING 6-14 DESIGN  1-2 
CRU I 0 •  4-7,4-41, DESIGNATOR  4-74 

4-51 DEST  6-81 
CRU INSTRUCTIONS . . . 5-27,6-33 DEV  6-49 
CRU OPERATIONS 5-25 DEVELOPMENT POWER BASIC 5-4 
CRUBASE  4-41 DEVELOPMENT SYSTEMS . . 2-4,3-25 
CRUCLK  6-32,6-84 DF  4-51 
CRUIN  6-31,6-84 DFOP  6-79 
CRUOUT  6-31,6-84 DIGIT  1-3 
CSEG  6-77 DIGITAL  1-1 
CSEQ  6-77 DIGITAL ELECTRONICS . . 1-3 
CURSOR  4-51 DIGITS OUT OF RANGE . . 5-54 
CWAIT  4-58 DIM  5-12 
CZC  6-74,6-81 DIMENSION  5-12 
DAB  4-49 DISABLE  5-27 
DAP  4-51,4-50 DISC  1-11 
DATA  1-4 DISJUNCTION  4-30 
DATA LINK  4-51 DISP  4-42,4-50 
DATA SEGMENT  6-76,6-77 DISPLAY..... • • . 5-38 
DATA TYPES  2-7,4-7 DISPLAY ALL PROCESSES . 4-49 
DATABASE  1-13 DISPLAY PROCESS . . . . 4-49 
DB  4-49 DISPLAY TIME AND DATE . 4-51 
DBIN  6-84 DISPOSE  4-8,4-41, 
DC  4-63,5-52, 4-54 

6-85 DIV  4-19,4-30, 
DEADLOCK  2-35,4-44 4-73,6-8, 
DEBUG  4-6 6-71,6-74, 
DEBUG COMMANDS . . . 4-49 6-81 
DEBUG THE PROCESS . . 4-50 DIVIDE  4-19,6-74 
DEBUGGER  4-6 DIVISION BY ZERO • • 5-54 
DEC  6-74,6-81 DLE  5-52,6-85 
DECLARATION  4-9 DN  6-54 
DECREMENT BY ONE 6-74 DORG  6-76 
DECREMENT BY TWO 6-74 DOWNTO  4-37 
DECT  6-74,6-81 DP  4-49 
DEDICATED  1-2 DR  4-51 
DEF  5-40,6-78 DS CX  6-50 
DEFAULT  3-26 DSEG  6-76 
DEFINE ASSEMBLY TIME CONSTANTS DT  4-51 

6-78 DTR  6-15 
DEFINE OPERATION . . . 6-79  DUMMY ORIGIN  6-76 
DEFINE XOP  6-67 DUNLIST  6-79 
DEL  4-52,5-39, DUPLICATE LINE . . • 4-52 

5-52,6-85 DXOP  6-41 
DELETE  4-49,4-51, DYNAMIC  2-2 

4-52,5-39 DYNAMIC STORAGE ALLOCATION 4-7, 
DELETE ALL BREAKPOINTS 4-49 4-41 
DELETE BREAKPOINTS . . 4-49 EDIT  4-49 
DELETE CHARACTER . . . 4-52,5-39 EDIT COMMANDS  4-51,5-8, 
DELETE FILE  4-51 5-39 
DELETE LINE  4-52 EDITOR  3-14,5-8 
DELETE N CHARACTERS . . 5-9,5-39 



ELSE STATEMENT . . .  

EM  

EMULATOR  
ENCODE  
EMULATOR  
ENABLE  
END OF FILE MEDIUM .  
END OF LINE  
ENQ  

4-35,4-72, 
5-17,5-40 
4-63,5-52, 
6-85 
3-22,5-27 
4-54 
3-22 
5-27 
4-55 
4-53,4-55 
4-63,5-52, 
6-85 

FORTRAN  
FORWARDSPACE  
FRACTIONS  
FS  

FUNCTION  
GO  
GOSUB  
GOTO  
GOTO STATEMENT . . .  
GREATER THAN  
GS  

4-33  

2-20 
5-9 
6-54 
4-63,5-52, 
6-85 
2-30 
4-49 
5-22,5-40 
5-13 

5-17 
4-63,5-52, 

ENTER  3-15,4-4 6-85 
ENTRANCY  6-69 HARDWARE  1-1 
EQUALLY  2-24,3-5, HARDWARE DESIGN . . . . 2-5 

4-1 HEX DECIMAL TABLE . . . 4-64,5-53, 
EQUALS  5-45,6-34 6-88 
EQUATE  6-15 HEXDIGIT  4-76 
EOT  4-63,5-52, HEX  6-52 

6-85 HEX DECIMAL TABLE . . . 4-64,5-53, 
EPROM  2-2,2-3 6-86 
EQUIPPED  4-4 HEXADECIMAL  3-14,3-15, 
EQ  6-23 6-52 
EQU  6-15,6-78 HIGH LEVEL LANGUAGE . . 2-21 
ERIC  2-20 IAQ  6-84 
EQUIVALENT  2-23 IC  6-84 
ERROR CODES  5-54 ID  6-80 
ESC  4-63,5-52, IDENTIFIER  4-14,6-79 

6-85 IDLE  6-48,6-74, 
ESCAPE  5-8 6-81 
ETB  4-63,5-52, IDT  6-79 

6-85 IF  4-35,5-14 
ETX  4-63,5-52, IF STATEMENT  4-35 

6-85 IF THEN STATEMENT . . . 5-14 
EVALUATION POWER BASIC 5-3 ILLEGAL CHARACTER . . . 5-54 
EXECUTIVE  2-36 ILLEGAL DELIMITER . . . 5-54 
EXT  6-51 ILLEGAL FUNCTION ARGUMENT 5-54 
EXTEND  2-5 ILLEGAL FUNCTION NAME . 5-54 
EXTENDED OPERATION . . 6-23,6-43 ILLEGAL VARIABLE NAME . 5-54 
EXTERNAL  3-18 IMASK STATEMENT . . . . 5-28 
EXTERNAL DEFINITION . . 4-53,6-78 IMMEDIATE ADDRESSING . 6-14 
EXTERNAL REFERENCE . . 6-78,6-80 INCOMPLETE DATA . . . . 4-59 
FALSE  4-19 INCREMENT BY ONE . . . 6-76 
FIELD  2-9 INCREMENT BY TWO . . . 6-76 
FIFO  4-43 INCT  6-74,6-81 
FILE  3-12 INDEX  2-10 
FLOATING POINT XOP • . 5-50 INDEXED MEMORY ADDRESSING 6-12 
FLAG  4-50 INDIRECT ADDRESSING . . 6-12,6-13 
FLOATING POINT FORMAT . 5-30,6-55 INITIALIZE BYTE . . . . 6-77 
FN  5-40 INITIALIZE TEXT . . . . 6-78 
FNI  5-40 INITIALIZE WORD . . . . 6-78 
FOCUS  2-26 INITSEMAPHORE  4-43,4-58 
FOR STATEMENT  5-19,5-40 INP  5-44 
FORWARDS  6-30 INPUT  1-3 



INPUT OPTIONS  
INS  
INSERT CHARACTER . .  
INSERT LINE BEFORE .  
INSTRUCTION  
INSTRUCTION FORMAT .  
INSTRUCTION FORMATS .  
INTEGER CONSTANT . .  
INTEGER FORMAT . . .  

5-48 
4-52 
4-52 
4-52 
1-6 
6-3,6-78 
6-4,6-73 
4-29 
5-29 

JUMP IF EQUAL  
JUMP IF GREATER THAN  
JUMP IF LESS THAN .  
JUMP IF LOGICAL HIGH  
JUMP IF LOGICAL LOW .  
JUMP IF NO CARRY . .  
JUMP IF NOT EQUAL . .  
JUMP IF ODD PARITY • • 
JUMP TABLE  

6-74 
6-74 
6-74 
6-75 
6-75 
6-75 
6-75 
6-75 
6-70 

INTEGER VARIABLES . . . 5-11 KERNEL  2-38 
INTERMEDIATE CODE . . . 2-23 KEYBOARD  5-8 
INTERPRETER  2-23 KEYPAD  1-12 
INTERPROCESS COMMUNICATION 4-44 KEYWORD  4-14 
INTERPROCESS FILES. . . 4-45 LABEL  6-3 
INTERRUPT  5-26,6-37 LANGUAGE ELEMENT . . . 4-75 
INTERRUPT ERROR . . . . 4-61 LB  4-51 
INTERRUPT HANDLING . . 4-47,5-26 LBLA  6-48 
INTERRUPT ROUTINES . . 4-47 LDCR  6-36,6-72, 
INTERRUPT SEQUENCE . . 6-41 6-75,6-81 
INTERRUPT STRUCTURE . . 2-35,4-47, LDD  6-48 

6-39 LDS  6-48 
INTERRUPT TRANSFER VECTOR 6-40, LEN  5-47 

6-42 LF  4-63,5-9, 
INTERRUPT WITHOUT TRAP 5-54 5-39,5-52, 
INTERRUPT LEVEL . . . 4-47,4-59 6-85 
INTERRUPT_ RESULT . . 4-59 LI  6-14,6-75, 
INTLEVEL  4-59 6-81 
INTMULT  4-75 LIBRARY  3-18 
INTREQ  6-84 LIMI  6-41,6-77, 
INV  6-74,6-81 6-83 
INVALID BAUD RATE . . . 5-54 LIMIT  6-81 
INVALID CHARACTER IN FIELD 4-57 LINEFEED  5-9 
INVALID DEVICE NUMBER . 5-54 LINK  3-19 
INVALID HEAP  4-66 LINKED  1-13,3-18, 
INVALID LINE NUMBER . . 5-54 3-19 
INVALID SCREEN COMMAND 5-54 LIS  5-10 
INVERT BITS  6-76 LIST SOURCE  6-79 
IRTN STATEMENT . . . . 5-28 LMF  6-48 
JEQ  2-21,6-24, LNOT  5-43,5-44 

6-72,6-74 LOAD  2-5,2-36, 
JGT  6-74 3-6,6-81, 
JH  6-75 6-84 
JHE  6-74 LOAD COMMUNICATIONS 6-75 
JL  6-75 LOAD IMMEDIATE . . 6-75 
JLE  6-24,6-75 LOAD INTERRUPT MASK . 6-39,6-75 
JLT  6-24,6-74 LOAD ROM AND EXECUTE 6-48,6-75 
JMP  6-24,6-74 LOADER  3-17,3-20, 
JNC  6-24,6-75 3-26,6-49 
JNE  6-24,6-75 LOCAL  1-13,2-31 
JNO  6-24,6-75 LOG  5-44 
JOC  6-24,6-74 LOGARITHM  5-44 
JOP  6-24,6-75 
JUMP  6-24 
JUMP IF CARRY  6-74 



LOGIC  1-1,1-4, MOVB  6-75,6-82 
1-5,1-8, MOVE BYTE  6-75 
2-5,2-8, MOVE CURSOR DOWN . 5-5 
2-14,3-2 MOVE CURSOR LEFT . 4-52 

LOGICAL OPERATORS . 5-43 MOVE CURSOR RIGHT . 4-52 
LONGINT  4-19 MOVE CURSOR UP . . . 4-51 
LOW LEVEL LANGUAGE 6-15 MOVE TO HOME POSITION 4-52 
LP  6-50 MOVE WORD  6-75 
LRE  6-48 MPIX  4-4 
LREX  6-75,6-81 MPP  4-2 
LSB  6-5 MPP CODE GENERATOR 4-4 
LSBS  6-75 MPP COMPILER  4-4,4-6 
LWPI  6-7,6-82 MPP DEBUGGER  4-6 
LXOR  5-43,5-44 MPP EDITOR  4-3 
MACRO CALL  6-62 MPU  1-8 
MACRO DEFINITIONS 6-61 MPY  6-8,6-71 
MACRO PROCESSING 6-60 MSB  6-5 
MAINFRAME  1-2,1-13 MUNLIST  6-79 
MANTISSA  6-55 MUTEX  4-44 
MAP DISC  4-51 NAK  4-63,5-52, 
MASK  4-48,4-59 6-85 
MC  4-50 NATIVE  4-3 
MCH  5-47 NAUR-BACCUS  4-64 
MD  4-51 NEG  6-82 
MEDIA  3-20 NEGATE  4-19,5-50, 
MEM  5-26,5-45 6-75 
MEM FUNCTION  5-26 NEGATIVE NUMBERS . • . 6-53 
MEMEN  6-84 NESTED SUBROUTINES • • 6-64 
MEMORY  1-6,2-1 NEW  4-8,4-55, 
MEMORY FUNCTIONS 5-45 5-38 
MEMORY MANAGEMENT . 4-62 NEW LINE  4-51 
MEMORY ORGANIZATION 6-4 NEXT  5-39,5-41 
MESSAGE BUFFER . . 4-44 NEXT WITHOUT FOR . . . 5-54 
MF...... . . 4-50 NKY  5-45 
MH  4-50 NO SOURCE LISTING . . • 6-79 
MICROCOMPUTER  1-1 NO SUCH LINE NUMBER . . 5-54 
MICROPROCESSOR • • • 1-1 NOALTEXTERNALEVENT . • 4-48 
MICROPROCESSOR PASCAL 4-2 NOESC  5-41 
MINICOMPUTER  1-13 NOEXTERNALEVENT 4-48 
MISCELLANEOUS FUNCTIONS 5-45 NOLIST  6-79 
MM  4-50 NOP  6-76 
MNEMONICS  2-20 NOT  4-20,5-43 
MOD  4-19 NULLBODY  4-65 
MODIFY COMMON VALUE • • 4-50 NUMBER SYSTEMS . . . . 6-52 
MODIFY HEAP VALUE . . . 4-50 NUMERIC REPRESENTATION 5-11 
MODIFY INDIRECT VARIABLE 4-50 NVS  5-36 
MODIFY MEMORY  4-50 OBJ  6-78 
MODIFY STACK FRAME VALUE 4-50 OBJECT  2-22 
MODULAR PROGRAMMING . . 2-25 OBJECT RECORD FORMAT . 6-80 
MODULE  2-25 OCTAL  6-52 
MOV  6-2,6-3, ON STATEMENT  5-24 

6-11,6-12, OPCODE. . . .... 6-3 
6-13,6-75, OPERAND  6-4 
6-82 OPERATING MODES . . • • 5-8 



OPERATOR PRECEDENCE • • 
OR  
OR IMMEDIATE  
ORDINAL POSITION 
ORI  

5-44 
4-19,5-43 
6-75 
4-53 
6-75,6-82 

PROCESS  
PROCESS MANAGEMENT .  
PROCESS MGMT ERROR .  
PROCESS RECORD . . .  
PROCESS SYNCHRONIZATION 

4-9 
4-60 
4-62 
4-42 
4-43 

OTHERWISE  4-36 PROCESSOR  1-7 
OUTPUT  1-4 PROGRAM  1-7,4-9 
OUTPUT OPTIONS • • • 6-78 PROGRAM COUNTER RELATIVE ADDRESSING 
OV  6-23 6-15 
P$ABORT  4-42 PROGRAM END  6-78 
PACK  4-55 PROGRAM IDENTIFIER . . 6-79 
PAGE  6-79 PROGRAM SEGMENT . . 6-77 
PAGE EJECT  6-79 PROM  2-2,5-2 
PAGE TITLE  6-79 PROMPT  5-48 
PARAMETER  4-31,6-17 PSEG  6-77 
PARAMETER ERROR . . . 5-54 PURGE  4-49 
PARAMETER PASSING . . . 6-17 QUEUE  2-12,4-43 
PARENTHESES  5-44 RAM  2-1,6-58 
PARITY  3-14,6-23, RANDOM  4-24,4-55 

6-72 READ  4-55,5-41 
PARM  6-62 OF READ OUT DATA 5-54 
PARTITION  5-3 READLN  4-55 
PASCAL LANGUAGE . 4-1 REAL  4-18 
PASCAL STRUCTURE 4-7 REAL CONVERSION . . 4-53 
PC  4-42,6-6 REAL TIME SOFTWARE 2-31 
PEND  6-77 RECORD  2-9 
PERIPHERALS  1-10 RECORD TYPE  4-22 
PLUS  5-36,5-42 RECORD VARIABLES 2-9 
POINTER  4-7,6-7 RECORD VARIANT  2-27 
POINTER TYPE  4-25 RECURSION  6-68 
POINTER VARIABLE . . . 4-29 RECURSIVE  6-68 
POP  5-41,6-65 REF  6-78 
POSITION INDEPENDENT CODE 6-57 REFRESH  2-2 
POWER BASIC  5-1 REFS  6-50 
POWER BASIC COMMANDS . 5-38 REGISTER FUNCTIONS 6-8 
POWER BASIC OPERATION . 5-8 REGISTER RESTRICTIONS 6-73 
POWER BASIC STATEMENTS 5-13,5-14, RELATIONAL OPERATORS 5-43 

5-26,5-39 RELOCATABLE CODE . . 3-17 
PRED  4-20 RELOCATABLE ORIGIN 3-18,6-76 
PRINT  4-49,5-6, RELOP  5-16 

5-36,5-41 REM  5-13 
PRINT OPTIONS  5-49 REPLACE STRINGS . . 4-52 
PROBLEM DEFINITION. . . 3-2 RESET  4-55,6-40 
PROCEDURE  2-29,6-15 RESET I 0  6-48,6-75 
PROCEDURE CRUBASE . . . 4-54 RESTOR  5-41 
PROCEDURE LDCR . . . . 4-54 RESUME EXECUTION 4-49 
PROCEDURE MASK . . . . 4-48,4-59 RETURN WORKSPACE . 6-75 
PROCEDURE SBO  4-54 REWIND  6-49 
PROCEDURE SBZ  4-54 REWRITE  4-55 
PROCEDURE STATEMENT . . 4-32,4-71 RL  6-49 
PROCEDURE STCR . . . . 4-54 RND  5-44 
PROCEDURE SWAP . . . . 4-58 ROM  2-1,6-58 
PROCEDURE UNMASK . . . 4-48,4-59 RORG  6-76 
PROCEDURE WAITINTERRUPT 4-60 ROUND  4-21,4-53 



RP  4-50 
RS  4-63,5-52, 

6-85 
RSET  6-4 
RTWP  6-8,6-40, 

6-75,6-82 
RX  6-71 
SA  6-49 
SAVE  4-49,5-38 
SB  6-82 
SBO  4-41,6-33, 

6-82 
SBZ  4-41,6-34, 

6-82 
SC  4-50 
SCALAR  4-18 
SCHEDULER  2-36 
SCROLL FILE DOWN . .  • 4-51 
SCROLL FILE UP . . .  • 4-51 
SDP  4-49 
SDSMAC  6-50 
SELECT CRU MODE . • .  4-50 
SELECT DEFAULT PROCESS 4-49 
SEMAPHORE ATTRIBUTES . 4-59 
SEMAPHORE ERROR . . . . 4-62 
SEMAPHORE ROUTINES . . 4-58 
SET BIT TO ONE . . . . 6-33,6-75 
SET BIT TO ZERO . . . . 6-34,6-75 
SET ONES CORRESPONDING 6-75 
SET TAB INCREMENT . . . 4-51 
SET TO ONES  6-75 
SET TYPE  4-23 
SET ZEROES  6-75 
SETNAME  4-55 
SETPRIORITY  4-58 
SF  4-50 
SH  4-50 
SHARED VARIABLES . .  4-44 
SHIFT  6-75,6-82 
SHIFT LEFT ARITHMETIC  6-75 
SHIFT RIGHT ARITHMETIC 6-75 
SHIFT RIGHT CIRCULAR . 6-75 
SHIFT RIGHT LOGICAL . . 6-77 
SHOW COMMON AREA • . . 4-50 
SHOW HEAP PACKET . . . 4-50 
SHOW INDIRECT VARIABLE VALUE 4-50 
SHOW STACK FRAME . . . 4-50 
SI  4-50 
SIGN  4-77,5-30, 

6-53 
SIGNAL  4-43 
SIMI  4-50 
SIMPLE STATEMENTS . .  4-31 
SIMPLE TYPES  4-19  

SIMULATE INTERRUPT 
SIN  
SINE  
SLICE  
SLT  
SM  
SOC  
SOCB  
SOFTWARE  
SOFTWARE DESIGN . . .  
SOFTWARE TOOLS . . .  
SOH  

SOURCE 
SOURCE STATEMENTS 
SPACE  
SPECIALIZED ADDRESSING 
SPLIT LINE  
SQR  
SQ RT  
SRA  
SRC  
SREF  
SRH  
SRL  
SS  
ST  
STACK  
STACK OVERFLOW . .  
STACK UNDERFLOW . .  
STACKSIZE  
START  

START STATEMENT . . .  
STATE  

STATEMENT SEPARATOR .  
STATIC RAM  
STATMAP  
STATUS REGISTER . . .  
STCR  
STOP  
STORAGE OVERFLOW . .  
STORE COMMUNICATIONS  
STORE STATUS REGISTER  
STORE WORKSPACE POINTER 
STRING COMPARISON . . . 
STRING FUNCTIONS . . . 
STRING OPERATIONS . . . 
STRING VARIABLES . . . 
STRUCTURED STATEMENTS .  

4-50 
4-53,5-44 
4-53,5-44 
2-36 
5-35,5-36 
4-50 
6-75,6-82 
6-75,6-82 
1-1 
2-6 
1-11 
4-63,5-52, 
6-85 
2-22 
5-8 
5-52,6-85 
6-14 
4-52 
5-44 
4-53 
6-75 
6-75 
6-78 
5-47 
6-75 
4-49 
4-42,6-7 
4-8 
5-23 
5-23 
4-42 
2-7,2-8, 
3-2,3-7, 
3-9,3-11, 
4-32,5-18 
4-32 
2-7,2-13, 
2-35,6-2, 
6-24 
5-14,5-36 
2-2 
4-6 
6-7,6-72 
4-41,6-36 
5-42 
5-36,5-54 
6-36,6-77 
6-75 
6-75 
5-46 
5-47 
5-46 
5-12,5-37 
4-34 



STRUCTURED TYPES . .  
STST  
STWP  
STX  
SUB  
SUBROUTINE  
SUBSCRIPT  
SUBTRACT  
SUBTRACT BYTE  
SUBTRACT WORD  
SUCC  
SWAP  

4-22 
6-75,6-82 
6-75,6-82 
5-52,6-85 
5-52 
2-29 
4-28 
4-19 
6-75 
6-75 
4-2 
4-58 

TRANSLATE  
TRAP  
TRAP STATEMENT .  
TRUE  
TRUNC  
TRUNCATE  
TRUNCATE CONVERT  
TUNLIST  
TXDBUG  
TXDS  
TXEDIT  
TXLINK  

1-13 
5-42 
5-28 
4-19 
4-53 
4-53 
4-53 
6-79 
3-25,6-50 
3-25 
3-25 
3-25,6-50 

SWAP BYTES  6-75 TXMIRA  3-25,6-50 
SWPB  6-75,6-82 TXPROM  3-25 
SYMBOLIC  6-49 TYPE . . . ... 4-18 
SYN  5-52,6-85 TYPE DECLARATIONS . . . 4-18 
SYNCHRONIZATION . . . . 4-43 TYPE SYNTAX  4-69 
SYS  5-45 TYPE TRANSFER  4-26 
SYSTEM  4-8 UNDEFINED FUNCTION . 5-54 
SYSTEM COMMANDS . . . . 4-49 UNDEFINED VARIABLE . . 5-54 
SYSTEM DECLARATION . . 4-66 UNDIMENSIONED VARIABLE 5-54 
SYSTEM DESIGN  3-3 UNL  6-79 
SYSTEM INITIALIZATION . 5-9 UNMASK  4-48,4-59 
SYSTEM LOAD  2-5 UNMATCHED PARENTHESIS . 5-54 
SYSTEM MEMORY MAP 5-34 UNTIL  4-38,5-15 
SZC  6-76,6-82 USER ERROR  4-62 
SZCB  6-75,6-82 UTILITY COMMANDS . 4-51 
TAB  4-4,4-51 VAR  4-19 
TAG FIELD  4-70 VARIABLE  2-7 
TAIL REMARK INDICATOR . 5-36 VARIABLE DECLARATIONS . 4-18,5-11 
TAPE READ ERROR . . . . 5-54 VARIABLE STORAGE . . . 5-29 
TARGET  2-4 VARIANT  2-27 
TB  4-41,4-54 VECTOR  6-39 
TC  6-83 VT  4-63,5-52, 
TD  6-71 6-85 
TERMINATE DEBUG SESSION 4-49 WAITFOR  4-58 
TERMINATE UTILITY PROGRAM EXECUTION WAITINTERRUPT  4-49 

4-51 WAITSIGNAL  4-58 
TERMSEMAPHORE  4-58 WHILE STATEMENT . . . . 4-38,4-72 
TEST BIT  6-34 WORD BOUNDARY ALIGN . . 6-78 
TEXAS INSTRUMENTS PASCAL 4-2 WORKSPACE  1-14 
TEXT EDITOR  3-14 WORKSPACE POINTER . . . 6-7 
TEXT FILES  3-13 WORKSPACE REGISTERS . . 6-7 
TEXT I 0 RETURN . • • • 4-57 WRITE  4-56 
TIBUG  6-48 WRITELN  4-56 
TIC  5-45 XMA  6-50 
TIMBER  2-38 XOP  5-50,6-43 
TM BOARDS  3-26 XOR  6-74,6-82 
TOO FEW SUBSCRIPTS 5-54 
TOO MANY SUBSCRIPTS . . 5-54 
TOO MANY VARIABLES . . 5-54 
TRACE PROCESS EXECUTION 4-50 
TRACE ROUTINE  4-6,4-50 
TRACE STATEMENT FLOW  4-6,4-50 
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