
As you are now the owner of this document which should have come to you for free, please
consider making a donation of £1 or more for the upkeep of the (Radar) website which holds
this document. I give my time for free, but it costs me money to bring this document to you.
You can donate here https://blunham.com/Misc/Texas

Many thanks.

Please do not upload this copyright pdf document to any other website. Breach of copyright
may result in a criminal conviction.

This Acrobat document was generated by me, Colin Hinson, from a document held by me. I
requested permission to publish this from Texas Instruments (twice) but received no reply. It
is presented here (for free) and this pdf version of the document is my copyright in much the
same way as a photograph would be. If you believe the document to be under other
copyright, please contact me.

The document should have been downloaded from my website https://blunham.com/, or any
mirror site named on that site. If you downloaded it from elsewhere, please let me know
(particularly if you were charged for it). You can contact me via my Genuki email page:
https://www.genuki.org.uk/big/eng/YKS/various?recipient=colin

You may not copy the file for onward transmission of the data nor attempt to make
monetary gain by the use of these files. If you want someone else to have a copy of the file,
point them at the website. (https://blunham.com/Misc/Texas). Please do not point them at
the file itself as it may move or the site may be updated.

It should be noted that most of the pages are identifiable as having been processed by me.

I put a lot of time into producing these files which is why you are met with this page when you
open the file.

If you find missing pages, pages in the wrong order, anything else wrong with the file or
simply want to make a comment, please drop me a line (see above).

It is my hope that you find the file of use to you.

Colin Hinson
In the village of Blunham, Bedfordshire.

•
TEXAS INSTRUMENTS

TM 990
TM 990/1481
High Performance CPU Modules

Volume I

October 1980

TABLE OF CONTENTS

SECTION TITLE PAGE

1. INTRODUCTION 1-1
1.1 General 1-1
1.2 Manual Organization 1-1
1.3 General Specifications 1-4
1.4 Applicable Documents 1-4

2. INSTALLATION AND OPERATION 2-1
2.1 General 2-1
2.2 Unpacking and Inspection 2-1
2.3 Processor Module Options 2-1

2.3.1 External Interrupt Line (INT6.B-) Select (E1-E2) 2-1
2.3.2 TMS 9902 INTO- Interrupt Option (E4-E6) 2-1

2.4 Controller Module Options 2-2
2.4.1 Controller Module Jumpers 2-2
2.4.2 ROM Wiring Platform at U49 2-2
2.4.3 Controller Module Wiring Platform for Memory Devices 2-4
2.4.4 Controller Module DIP and Toggle Switches 2-6

2.5 Required Equipment 2-6
2.6 Power Supply and Card Cage Connections 2-7
2.7 TM 990/1481 Processor/Controller Placement and

Interconnections 2-7
2.8 Typical Installation and Initialization Sequence 2-11

2.8.1 Example of TM 990/201 Board Setup 2-11
2.8.2 Board Installation 2-11

3. TIBUG INTERACTIVE DEBUG MONITOR 3-1
3.1 General 3-1
3.2 TIBUG Commands 3-1

3.2.1 Execute Under Breakpoint (B) 3-3
3.2.2 CRU Inspect/Change (C) 3-4
3.2.3 Dump Memory to Cassette/Paper Tape (D) 3-5
3.2.4 Execute Command (E) 3-8
3.2.5 Find Command (F) 3-8
3.2.6 Hexadecimal Arithmetic (H) 3-9
3.2.7 Load Memory from Cassette or Paper Tape (L) 3-9
3.2.8 Memory Inspect/Change, Memory Dump 3-10
3.2.9 Inspect/Change User WP, PC, and ST Registers (R) 3-11
3.2.10 Execute In Single Step Mode (S) 3-12
3.2.11 TI 733 ASR Baud Rate (T) 3-13
3.2.12 Inspect/Change User Workspace (W) 3-13
3.2.13 Move ALU Test to RAM and Execute (X) 3-14
3.2.14 Start Execution at Address 100016 (G) 3-14

3.3 User Accessible Utilities 3-15
3.3.1 Time Delay Via TMS 9901 Clock 3-15
3.3.2 Write One Hexadecimal Character to Terminal (XOP 8) 3-16
3.3.3 Read Hexadecimal Word from Terminal (XOP 9) 3-16

iii

TABLE OF CONTENTS

SECTION TITLE PAGE

3.3.4 Write Four Hexadecimal Characters to Terminal (XOP 10) 3-16
3.3.5 Echo Character (XOP 11) 3-18
3.3.6 Write One Character to Terminal (XOP 12) 3-18
3.3.7 Read One Character from Terminal (XOP 13) 3-18
3.3.8 Write Message to Terminal (XOP 14) 3-18

3.4 TIBUG Error Messages 3-19

4. TM 990/1481 INSTRUCTION SET 4-1
4.1 General 4-1
4.2 User Memory 4-1
4.3 Workspace Concept 4-1
4.4 Status Register 4-3

4.4.1 Logical Greater Than 4-4
4.4.2 Arithmetic Greater Than 4-4
4.4.3 Equal 4-4
4.4.4 Carry 4-4
4.4.5 Overflow 4-4
4.4.6 Odd Parity 4-4
4.4.7 Extended Operation 4-4
4.4.8 Status Bit Summary 4-5

4.5 Instruction Formats and Addressing Modes 4-8
4.5.1 Direct Register Addressing 4-10
4.5.2 Indirect Register Addressing 4-11
4.5.3 Indirect Register Autoincrement Addressing 4-12
4.5.4 Symbolic Memory Addressing, Not Indexed 4-13
4.5.5 Symbolic Memory Addressing, Indexed 4-14
4.5.6 Immediate Addressing 4-14
4.5.7 Program Counter Relative Addressing 4-15
4.5.8 CRU Bit Addressing 4-15

4.6 Instructions 4-19
4.6.1 Format 1 Instructions 4-24
4.6.2 Format 2 Instructions 4-25
4.6.3 Format 3/9 Instructions 4-28
4.6.4 Format 4 (CRU Multibit) Instructions 4-30
4.6.5 Format 5 (Shift) Instructions 4-31
4.6.6 Format 6 Instructions 4-32
4.6.7 Format 7 RTWP/Control and Floating-Point Instructions 4-35
4.6.8 Format 8 (Immediate, Internal Register Load/Store) Ins.4-38
4.6.9 Format 9 (XOP) Instructions 4-40
4.6.10 Formats 10 Through 17 Instructions 4-43
4.6.11 Format 18 Single Register Operand Instructions 4-43

4.7 Instruction Execution Times 4-44
4.8 TM 990/1481 Floating-Point Arithmetic 4-53

4.8.1 Floating-Point Representation 4-53
4.8.2 Floating-Point Operations 4-55
4.8.3 Internal Representation of TM 990/1481 Floating-Point

Numbers 4-57
4.8.4 TM 990/1481 Floating-Point Instruction Overview 4-62
4.8.5 Sample Programs 4-62

iv

TABLE OF CONTENTS

SECTION TITLE PAGE

4.9 Programming Aids 4-57
4.10 Interrupts 4-63

4.10.1 General 4-65
4.10.2 Interrupt and XOP Linking Areas Using TM 990/403

TIBUG 4-67

5. SOFTWARE APPLICATIONS 5-1
5.1 General 5-1
5.2 Developement of Software for the TM 990/1481 5-1

5.2.1 Using Floating Point Instruction Assemblers 5-1
5.2.2 Floating Point Support with Other Assemblers 5-3

5.3 Installing Software Into the TM 990/1481 System 5-3
5.4 Debugging Software on the TM 990/1481 5-4
5.5 Characteristics of Floating Point Arithmetic 5-4

5.5.1 Accuracy Considerations 5-4
5.5.2 Significant Decimal Digits 5-5
5.5.3 Range of Value 5-5
5.5.4 Interrupt Considerations 5-5

5.6 Radix Conversion 5-6
5.7 TM 990/433 Floating Point Demonstration Software 5-6

5.7.1 Accessing Demo Routines From Applications Programs 5-7
5.7.2 Machine to ASCII Conversion Routines 5-9
5.7.3 Transcendentan Functions 5-13
5.7.4 Solution of Simultaneous Equations 5-16

6. I/O PROGRAMMING 6-1
6.1 General 6-1
6.2 System Description 6-1
6.3 Communications Register Unit (CRU) 6-1
6.4 Loading the CRU Hardware Base Address 6-2
6.5 User Workspace 6-5
6.6 Sample Program 6-5

7. THEORY OF OPERATION 7-1
7.1 General 7-1
7.2 System Block Diagram 7-1
7.3 The Processor Board 7-1

7.3.1 The 481 Bit-Slice Processor 7-1
7.3.2 Shift Counter 7-3
7.3.3 The Swap Multiplexer 7-4
7.3.4 Instruction Register (IR) 7-5
7.3.5 Status Register and Status Logic 7-5
7.3.6 Register File 7-8
7.3.7 Constant Word 7-8
7.3.8 A-Bus, B-Bus, and F-Bus 7-8
7.3.9 Address and Data Out 7-10
7.3.10 Interrupt Logic and Jump Control 7-10
7.3.11 Special Control Decode Logic 7-11

TABLE OF CONTENTS

SECTION

7.4

TITLE

Controller Board

PAGE

7-12
7.4.1 Control Memory 7-12
7.4.2 Microinstruction Register 7-13
7.4.3 Clock Control Logic 7-13
7.4.4 Clock Distribution 7-13
7.4.5 Bus Clock 7-14
7.4.6 Memory Speed Delay Logic 7-16
7.4.7 HOLD and HOLD Acknowledge 7-17
7.4.8 Source Select Logic 7-18
7.4.9 Branch Multiplexer 7-18
7.4.10 Test Multiplexer 7-18
7.4.11 Test Flags 7-18
7.4.12 Return Address Register 7-19
7.4.13 Instruction Register and Entry Point Logic 7-19
7.4.14 RS-232 Serial Communication Controller 7-24
7.4.15 Reset/Preset/Load Controls 7-25
7.4.16 TM 990 Bus Memory Control Logic 7-25
7.4.17 Debug Clock Options 7-26
7.4.18 Upper Memory Page Bits 7-26

8. MICROPROGRAMMING 8-1
8.1 General 8-1
8.2 Microinstruction Word 8-1
8.3 Clock and Sequence Control 8-2

8.3.1 Clock Control 8-2
8.3.2 Source Select 8-3
8.3.3 Test Select 8-4

8.4 Data Routing and Selection 8-5
8.4.1 Register File Address 8-5
8.4.2 A-Bus Select A 8-6
8.4.3 B-Bus Select B 8-7
8.4.4 Address output Select P 8-7
8.4.5 F-Bus Select F 8-7
8.4.6 Memory Control MC 8-8
8.4.7 Constant Word 8-8

8.5 Operation Control 8-9
8.5.1 ALU Operation Control 8-9
8.5.2 Processor Register Control 8-13
8.5.3 Instruction Acquisition 8-13
8.5.4 Counter Control 8-14

8.6 Status Control 8-14
8.7 Special Control Field 8-15

9. INTERFACE DESCRIPTIONS 9-1
9.1 General 9-1
9.2 TM 990 Bus Interface 9-1
9.3 Processor/Controller Interface 9-1
9.4 Terminal Interface 9-3

vi

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS

FIGURE TITLE PAGE

1-1 Typical System Configuration With TM 990/1481 1-3
1-2 TM 990/1481 Principal Processor Components 1-6
1-3 TM 990/1481 Principal Controller Components 1-7
1-4 TM 990/1481 Dimensions (in inches) 1-8
1-5 TM 990/1481 System Diagram 1-9

2-1 Rom Adapter Plug Wiring 2-3
2-2 Memory Device Wiring Platforms at U49 and U99 2-4
2-3 Power Supply Connections 2-8
2-4 TM 990/1481 Connector/Processor Interconnections 2-8
2-5 TM 990/1481 and RS-232-C Terminal Connections 2-9
2-6 TM 990/1481 and TI 743 or 745 Terminal Connections 2-10
2-7 TM 990/1481 and TI 733 ASR Data Terminal 2-10

3-1 Memory Requirements for TIBUG 3-2
3-2 CRU Bits Inspected By C Command 3-4
3-3 733 ASR Module Assembly (Upper Unit) Switch Panel 3-7
3-4 Tape Tabs 3-7

4-1 TM 990/1481 With RAM/ROM Memory 4-2
4-2 Status Register Bit Structure 4-3
4-3 Instruction Formats 4-8
4-4 Direct Register Addressing Example 4-10
4-5 Indirect Register Addressing Example 4-11
4-6 Indirect Register Autoincrement Addressing Example 4-12
4-7 Symbolic Memory Addressing Example 4-13
4-8 Immediate Addressing Example 1 4-14
4-9 Immediate Addressing Example 2 4-15
4-10 CRU Interface 4-16
4-11 CRU Bit Addressing Developement 4-16
4-12 Cru Bit Addressing Example 1 4-17
4-13 CRU Bit Addressing Example 2 4-18
4-14 BLWP Example 4-37
4-15 XOP Example 4-42
4-16 Interrupt Sequence 4-69
4-17 Six-Word Interrupt Linking Area 4-70
4-18 Seven-Word XOP Interrupt Linking Area 4-72

5-1 Source Listing of Assembler Using Floating Point Source 5-2
5-2 Source Listing of Assembler Using Data Statements 5-2

vii

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS

FIGURE TITLE PAGE

6-1 TM 990/305 Port 0 I/O Channel 6-2
6-2 CRU Bit Address Development 6-4
6-3 Monitor Control Program 6-5

7-1 TM 990/1481 System Block Diagram 7-2
7-2 SN74S481 Functional Block Diagram 7-3
7-3 Bus Clock and System Clock Timing (in ns) 7-15

viii

TABLE OF CONTENTS

LIST OF TABLES

TABLE TITLE PAGE

2-1 Memory Plug Wiring 2-5
2-2 Cable Assemblies 2-9

3-1 TIBUG Commands 3-1
3-2 Command Syntax Conventions 3-3
3-3 User Accessible Utilities 3-15

4-1 Workspace Registers 4-1
4-2 Status Register Bit Definitions 4-6
4-3 Instruction Description Terms 4-19
4-4 Instruction Set, Alphabetical Index 4-20
4-5 Instruction Set, Numerical Index 4-22
4-6 Comparison of Jumps, Branches, XOP's 4-35
4-7 Data to Determine TM 990/1481 Execution Times 4-48
4-8 Address Modification Factors for Instruction Execution Times 4-52
4-9 Memory Access Times 4-52
4-10 Preprogrammed Interrupt and User XOP Trap Vectors 4-67
4-11 Interrupt and User XOP Linking Areas 4-68

5-1 Demo Routines 5-7
5-2 Routine Entry Points and Arguments 5-8

6-1 TM 990/305 CRU Map 6-3

7-1 Status Control ROMS 7-7
7-2 Decode Control ROMS (Processor and Controller) 7-11
7-3 SCAL PLA Entry Points 7-20
7-4 PLA 2A Entry Points: DCAL', DCAL, OPCAL 7-22
7-5 PLA 2B Entry Points: DCAL', DCAL, OPCAL 7-23

8-1 Clock Control....CMD0(1-3) 8-3
8-2 Source Select....CMD0(4-6) 8-3
8-3 Test....CMDO(7-11) 8-4
8-4 Register File Address....CMD0(38-41) 8-6
8-5 A-Bus Select....CMD0(42) 8-6
8-6 B-Bus Select....CMD0(43-45) 8-7
8-7 Address Output Select....CMD0(46) 8-7
8-8 F-Bus Select....CMD0(47-49) 8-8
8-9 Memory Control....CMD0(50-51) 8-8
8-10 ALU Op Code....CMD0(52-62) 8-9
8-11 Counter Countrol....CMD0(69-70) 8-14
8-12 Status Control....CMD0(71-75) 8-15
8-13 Special (Decode) Control....CMD0(76-80) 8-16

9-1 Processor and Controller TM990 Bus Connector (P1) 9-2
9-2 Processor/Controller Interface Connector (P3) 9-2
9-3 Processor/Controller Interface Connector (P4) 9-3
9-4 Controller RS-232 Connector (P2) 9-3

ix

SECTION 1

INTRODUCTION

1.1 GENERAL

The TM 990/1481 is a high speed general purpose central processing unit
implemented on two multilayer printed circuit boards. Utilizing Schottky and
low-power Schottky TTL logic, including the 54/74S481 LSI Processor Bit-Slice,
it offers a performance improvement of up to 39 X over the TM 990/101MA single
board microcomputer. Appendix I contains benchmark data. Because the TM
990/1481 processor generates a bus clock of up to 5 MHz, it will interface
only to TM 990 modules designed for 5 MHz or higher operation. A typical
system configuration is shown in Figure 1-1. Figures 1-2 and 1-3 show the
principal components of the TM 990/1481 processor and controller boards,
respectively; Figure 1-4 gives the dimensions for the processor and controller
boards; and Figure 1-5 is a block diagram of a TM 990/1481 system.

Some important features of the TM 990/1481 include:

• Software compatible with the 990 family of computers

• Incorporates floating point arithmetic instructions, signed multiply
and divide, and single register LST and LWP instructions (floating
point numbers are truncated rather than rounded to be compatable with
other Texas Instruments computers)

• Meets TM 990 bus specification requirements for 5 MHz bus clock
operation

• Provides 15 levels of prioritized and maskable interrupts

• Provides 2 programmable interval timers

• Interfaces to RS-232 terminals such as the TI Microterminal or
Silent 700 terminals

• Provides special ARITHMETIC OVERFLOW interrupt

• Use of instruction "look ahead," a variable clock period, and a
high degree of parallelism in the architecture produces up to
39 X speed improvement over the TM 990/101MA (See benchmarks in
Appendix I).

1.2 MANUAL ORGANIZATION

This manual is organized as follows:

• Section 1 covers TM 990/1481 characteristics and specifications.

• Section 2 shows how to install, powerup, and operate the TM 990/1481.

• Section 3 explains the TM 990/403 TIBUG monitor. TIBUG commands,
XOPs, and error indicators are topics that are included.

GND
—12V

TM 990/510A CARD CAGE +12V
+5V

CONTROLLER MODULE

PROCESSOR MODULE

MEMORY MODULE
(TM 990/201-44
WITH FIRMWARE
IN EPROM)*

FORCED AIR FAN
(CONSTANT CIRCULATION)

=WM

SYSTEM POWER SUPPLY

SYSTEM TERMINAL

* Note, if a TM 990/203 dynamic RAM module is used, software could be loaded from
cassette using an ASR terminal such as the TI 733 ASR.

FIGURE 1-1. TYPICAL SYSTEM CONFUGURATION WITH TM 990/1481

1-2

• Section 4 covers the TM 990/1481 instruction set. Instruction for-
mats, addressing modes, instruction execution times, user-defined
instructions, use of floating point instructions, programming aids,
and interrupts are described in this section.

• Section 5 covers the software applications support for the TM
990/1481.

• Section 6 covers I/O programming using the communication register
unit (CRU).

• Section 7 covers the theory of operation with circuit descriptions
keyed to schematic diagrams.

• Section 8 describes the microinstruction word format used in the TM
990/1481

• Section 9 provides a description of the TM 990/1481's three interfaces
including: (1) TM 990 bus interface, (2) processor/controller inter-
face, and (3) terminal interface.

1.3 GENERAL SPECIFICATIONS

• System Power Requirements:

Current (Amps)
Voltage Regulation Typ Max

+5V +3% 9.00 12.00
+12V +3% .02 .03
-12V 73% .02 .03

• Operating Temperature: 0°C to 70°C ambient at the board

• Module Dimensions: The processor and controller dimensions are given
in Figure 1-4.

1.4 APPLICABLE DOCUMENTS

The following is a list of documents that provide supplementary information
for the TM 990/1481 user.

• SN74S481, SN54LS/74LS481 4-Bit-Slice Schottky Processor Elements Data
Manual

• TMS 9901 Programmable Systems Interface Data Manual

• TMS 9902 Asynchronous Communication Controller Data Manual

• Model 990 Computer, TMS 9900 Microprocessor Assembly Language Prog-
rammer's Guide (P/N 943441-9701)

1-3

• Model 990/12 Computer Assembly Language Programmer's Guide (P/N
2250077-9701 *A)

• TM 990/201 and TM 990/206 Expansion Memory Boards Data Manual
(includes TM 990/201-44)

• TM 990/203 Dynamic RAM Memory Expansion Module.

1-4

UEE

LI

I c
s
i=

 c
s4

3

er-
is FS

U 50 111r1
E SU

-IL
U70 U77

4 4 =
US

6 4"

U 9

I-CED-
c2

U12 U!7 U 3

-1=}
II 12

076

N M

3

-L -L
U119 U13

U 74

U72

w.

U79

U71 U71

(1
.
71.1.:4 U K49 u55

3

U [4
nn

F
.

7

Ar U57
-L

U63 U67

w

-L

3

-L

WO

U62

----1

INT6.B JUMPER TMS 9901 TMS 9901 INT4- INTERRUPT
E1-E2 INTERRUPT 6 FROM SYSTEM BUS PROGRAMMABLE E5-E6 = TO TMS 9902 INTERRUPT

E1/E2 REMOVED (OPEN TO BUS) INTERFACE E5-E4 = TO SYSTEM BUS

FIGURE 1-2. TM 990/1481 PRINCIPAL PROCESSOR COMPONENTS

7 3

U2 U11
U16

SN74S481 4 015 U21
MICROPROCESSORS

A
U4 U9

3

3

-L

U32

U26 US

TERMINAL USED JUMPER MICROTERMINAL POWER JUMPERS
(INSTALL FOR TTY, REMOVE FOR (INSTALL FOR POWER USE)

RS232/MICROTERMINAL)

7

-L

TEN 74S478
MICROCODE
PROM'S

4 PLAs (74S330s)

4.
I

FIGURE 1-3. TM 990/1481 PRINCIPAL CONTROLLER COMPONENTS

2.1 1.55
1.0

6.355

•--- 2.1---a-
1.0

1.4

.40

7.5

.35

4.11 t

•

11.0

+-2.1
1.2 1.0

.40

CONTROLLER
BOARD

7.5

.350
t • 4.11 6.355

11.0

FIGURE 1-4. TM 990/1481 DIMENSIONS (IN INCHES)

1-7

p_,1 INSTRUCTION
REGISTER

2*DISP 2*D
,A7

TMS 9901

2*INTERRUP:7
VECTORS

NTATUS

,

//
MUX

STATUS
REGISTER

al7/
7 CONSTANT

WORD

R 0
R 1

RF15 (WP)
rn

SHIFT
COUNTER

PARITY

JPr1\'

CONTROL
DECODE

*S4*C

Ni AO ND0 Ns;
PC MC XWR WR

481
BIT-SLICE

PROCESSORS

t
1

ALU 1
B C i/

SWAP
MUX

r
TTY/RS-232-C/ ICROTERMINAL INTERFACE J2

TMS 9902
I/O CONTROLLER

CONTROL MEMORY ADDRESS BUS CONTROL
MEMORY

EPROM RAM

SCAL
D-- PLA

DCAL 1
PLA

DCAL 2
PLA

RETURN
ADDRESS

REGISTER / CON. ROL
MEMORY

ADDRESS MUX
A

ICROINSTRUCTION
REGISTER

re

 ENBRN-

CLOCK
PERIOD

COUNTER

TESTO

TES T1
TEST2'

MUX TESTS
THU.'

LY7L,

INSTRUCTION
REGISTER

CONTROLLER
BOARD

,ENRTN-
,ENSCAL- C SOURCE
,ENDCAL- SELECT

,ENIRS- C DEMUX

,ENIRD-
MEMORY BOARD

DATA BUS

CRU AND CONTROLLER BUS

ADDRESS BUS

J L. I*.

TM 990
SYSTEM
BUS J1

r ADDRESS
BUFFERS

DATA
BUFFERS PROCESSOR

BOARD

F BUS

A BUS

I
B BUS

i i J J J JJ J
CONTROL BUS

L

FIGURE 1-5. TM 9''1481 SYSTEM DIAGRAM

SECTION 2

INSTALLATION AND OPERATION

2.1 GENERAL

The procedures for unpacking and setting up the TM 990/1481 for operation are
given in this section along with a test routine that can be used to check out
the system.

2.2 UNPACKING AND INSPECTION

Remove the TM 990/1481 processor and controller boards and cables from their
cartons and discard any protective wrapping.

Inspect both boards for any damage that could have occurred in shipping.
Report any damage to your TI supplier.

2.3 PROCESSOR MODULE OPTIONS

The TM 990/1481 processor module provides jumper selection for the following
functions:

• External interrupt line (INT6.B-)

• TMS 9901 INTO- interrupt input option

2.3.1 External Interrupt Line (INT6.B-) Select (E1-E2). This option is for
factory use. Installing a jumper at E1-E2 connects INT6- at the TMS 9901 to
the system bus, signal INT6.B- at P1-20. Removing this jumper opens this line.

2.3.2 TMS 9901 INTO- Interrupt Option (E4-E6). A jumper allows the user to
connect the INTO- input to the TMS 9901 from either the interrupt output
(TINT-) of the TMS 9902 on the Controller Module or from INT4.B- of the system
bus at pin P1-18.

• E5-E4: TMS 9901 INTO- input connects to system bus at P1-18.
• E5-E6: TMS 9901 INTO- input connects to TINT- from TMS 9902.
• Unjumpered: No input to TMS 9901 INT4-

NOTE

The TMS 9901 and TMS 9902, both
clocks, are addressable through
at software base address 008016
software base address 010016. A

of which contain programmable
the CRU. The TMS 9902 is located
and the TMS 9901 is located at
CRU map is shown in Appendix B.

2-1

2.4 CONTROLLER MODULE OPTIONS

The TM 990/1481 controller module provides options via:

• Three jumper settings
- TTY or RS232C terminal select
- Microterminal voltages
- Map mode memory timing

• Memory configuration using wiring platform

2.4.1 Controller Module Jumpers

There are three jumper selectable options on the controller module:
the terminal select option, the TM 990/301 microterminal supply voltage
option, and the map mode memory timing option.

2.4.1.1 Terminal Select Option (E1-E2). The terminal select option allows
the user to configure the TM 990/1481 so that either a TTY or RS-232-C/TM
990/301 terminal can be used. This jumper should be connected between El and
E2 for operation with a TTY terminal; it should be removed for operation with
either an RS-232-C terminal or a TM 990/301 microterminal.

2.4.1.2 TM 990/301 Microterminal Supply Voltage Option (E6-E7, E13-E16).
Jumpers can be used to provide +12V, +5V, and -5V for the TM 990/301
microterminal. Install jumpers between:

• E6 and E7
• E13 and E14
• E15 and E16

Installing these jumpers will couple the necessary supply voltage to the
microterminal. These jumpers should be removed if a terminal other than the
microterminal is used.

2.4.1.3 Map Mode Memory Timing Option (E11-E12). The normal position for
this jumper is from E12 to Ell. Removal of this jumper is currently reserved
for future use.

2.4.2 ROM Wiring Platform at U49

The ROM wiring platform is wired for operation with the SN74S478N Schottky
Bipolar PROM that is supplied with the,TM 990/1481 controller board. Figure
2-1 shows the wiring of this platform as shipped from the factory.

2-2

°Zs

•

es\---ea•

1

H2 2

3

H2 4

5

GND 6

7

GND 1 • • 14

H2 2 • • 13

+12V 3 • • 12

H2 4 • • 11

CHAP 5 • • 10

GND 6 • • 9

-5V 7 • • 8

ROMP18

CMAX

ROMP19

GND

ROMP20

+51I

ROMP21

(a) Pin nomenclature for ROM wiring platform at U49

14 ROMP18 (CE4)

13

12 ROMP19 (CE3)

11 GND

10 ROMP20 (/CE2)

9

8 ROMP21 (/CE1)

(b) Wiring of U49 for ROM SN74S478N 1K x 8 Schottky bipolar PROM

FIGURE 2-1. ROM ADAPTER PLUG WIRING

2-3

2.4.3 Controller Module Wiring Platforms for Memory Devices

There are two memory plugs located on the controller board which selects the
proper waits states required for different memories and memory modules. These
plugs are configured (wired) depending on the type of memory device and memory
module used. Figure 2-2 identifies the various pin definitions of the plugs
as well as how the plugs are wired at the factory. Plug 1 at U94 is used to
program the first eight blocks of memory and plug 2 at U99 is used to program
the second eight blocks
first 1K block of memory
memory from F00016 through

SHFT1 1

SHFT2 2

of memory.
and MDSEL16

FFFF16.

16

15

MDSEL1 (pin 16 of plug 1) identifies the
(pin 9 of plug 2) identifies the block of
SHFTN (N = 1 to 7 or X) selects the number

MDSEL1 (>0000 - >OFFF)

MDSEL2 (>1000 - >1FFF)

•

•

•

•

SHFT3 3 • • 14 MDSEL3 (>2000 - >2FFF)

SHFT4 4 • • 13 MDSEL4 (>3000 - >3FFF)

SHFT5 5 • • 12 MDSELS (>4000 - >4FFF)

SHFT6 6 • • 11 MDSEL6 (>5000 - >5FFF)

SHFT7 7 • 10 MDSEL7 (>6000 - >6FFF)

SHFTX 8 • • 9 MDSEL8 (>7000 - >7FFF)

(a) Plug 1 (U94/W5A) Top View

SHFT1 1 • • 16 MDSEL9 (>8000 - >8FFF)

SHFT2 2 • • 15 MDSEL10 (>9000 - >9FFF)

SHFT3 3 • • 14 MDSEL11 (>A000 - >AFFF)

SHFT4 4 • • 13 MDSEL12 (>B000 - >BFFF)

SHFT5 5 • • 12 MDSEL13 (>C000 - >CFFF)

SHFT6 6 • • 11 MDSEL14 (>D000 - >DFFF)

SHFT7 7 • • 10 MDSEL15 (>E000 - >EFFF)

SHFTX 8 • 9 MDSEL16 (>F000 - >FFFF) •

(b) Plug 2 (U99/X5A) Top View

NOTE: Wiring is as shipped from the factory

FIGURE 2-2. MEMORY DEVICE WIRING PLATFORMS AT U49 AND U99

2-4

of delays per access required for a particular board and memory device as
shown in Table 2-1. A jumper wire is connected from the proper SHFTN pin to
the applicable memory pin(s). Memory speed delay logic is further explained in
detail in section 7.4.6.

TABLE 2-1. MEMORY PLUG WIRING

MEMORY

BOARD

MEMORY

DEVICE

MEMORY

TYPE

PLUG WIRING

FROM TO

TM 990/H201-44 TMS 2716 EPROM SHFT7 See Note
TMS 4045-15 RAM SHFT3 See Note
TMS 4045-20 RAM SHFT4 See Note
TMS 4045-30 RAM SHFTS See Note
TMS 4045-45 RAM SHFT7 See Note

TM 990/H203-13 TMS 4115 RAM SHFTX See Note

NOTE: As shown in Figure 2-2, connect the SHFTN pin of platforms
U94 and U99 to to MDSELN pins on the opposite side of the
platform that reflect the memory configuration. Note in the
figure that as shipped from the factory, SHFTX is wired to
all sixteen 4K byte memory combinations that make up the
entire 32 K word addressing.

2-5

2.4.4 Controller Module DIP and Toggle Switches

2.4.4.1 RESET Toggle Switch. The RESET switch can be toggled by the user from
the front edge of the controller module. When toggled, the RESET switch
produces the RESET- signal which forces the TM 990/1481 to perform a context
switch to the WP and PC vectors at interrupt trap zero (vectors at 000016 and
000216). This action also causes IORST- on the system bus (via pin J1-88) to
be active a minimum of two REFLCK periods.

2.4.4.2 Fixed Period (Slow Clock) Mode DIP Switch (S3, VAR/FIX). One half of
switch S3 is the fixed period mode switch. In the FIX position, the user
selects a fixed period of 666.6 nanoseconds for the microinstruction clock
cycle that is independent of the clock control field. In the VAR position, the
user selects a variable period (200 ns - 666.6 ns) high-speed clock with
period controlled by the clock control field of the microinstruction. The
normal position of the VAR/FIX DIP switch is the VAR position.

2.4.4.3 SINGLE STEP Mode DIP Switch (S3, CONT/SINGLE STEP). The single step
mode switch is the second half of switch S3. In the SINGLE STEP position, the
microinstruction clock is turned off allowing single-step through microcode
using the SINGLE STEP toggle switch. For normal operation, the CONT/SINGLE
STEP switch should be in the CONT position.

2.4.4.4 SINGLE STEP Toggle Switch. The SINGLE STEP toggle switch is
accessible at the front edge of the Controller Module; however, it is used
for factory test purposes only. When used for test, LEDs (e.g., Dialight
547-2007) are populated in sockets XU11, XU16, and XU19 on the controller
module and in sockets XU19, XU25, XU36, XU75, XU81, XU86, and XU92 on the
processor module. These lights show test status.

NOTE

The SINGLE STEP toggle switch is for factory test purposes
only. When toggled, the TM 990/1481 executes one micro-
instruction step, if in the single step mode.

2.5 REQUIRED EQUIPMENT

The following items are required for a system using the TM 990/1481:

1) TM 990/510A, TM 990/520A, or TM 990/530 card cage

2) DC power supply capable of meeting the power requirements given
in section 1.3

3) Suitable terminal (and cable assembly) such as either a TI Silent
700 Terminal or a TM 990/301 Microterminal.

4) Memory module such as the TM 990/201-44 or TM 990/203

5) Adequate fan forced cooling (NOTE: The TM 990/1481 dissipates 45
watts, typical. Appendix E of the TM 990/530 manual covers criteria
to determine cooling requirements.)

2-6

2.6 POWER SUPPLY AND CARD CAGE CONNECTIONS

Figure 2-3 shows the necessary connections between a suitable dc power supply
and a TM 990/510A card cage. Either a TM 990/520A or a TM 990/530 card cage
could be used in lieu of the TM 990/510A. Power requirements are listed in
section 1.3.

2.7 TM 990/1481 PROCESSOR/CONTROLLER PLACEMENT AND INTERCONNECTIONS

Adequate ventilation is a necessity for the TM 990/1481. If possible, the card
cage should be placed in the vertical plane. Fan forced cooling will probably
be mandatory to maintain the ambient air temperature at less than or equal
to 70 degrees centigrade at the hottest point above the boards.

The 40-pin edge connector cables are provided for interconnections between the
processor and controller modules. Figure 2-4 shows the proper positions for
these connectors (processor J3 to controller J3 and processor J4 to controller
J4).

The J2 connector on the controller allows connection to a TTY or any RS-232-C
device such as the TI Silent 700 Terminal or the TM 990/301 Microterminal.

2-7

FIGURE 2-3. POWER SUPPLY CONNECTIONS

CABLE TO
TERMINAL
CONNECTS
HERE

40 PIN
EDGE
CONNECTOR4
CABLES
INCLUDED

,411

WITH
TM 990/1481

141

W414:414

TM 990/510
CARD CAGE

PROCESSOR

CONTROLLER

FIGURE 2-4. TM 990/1481 CONTROLLER/PROCESSOR INTERCONNECTIONS

2-8

MODEL NUMBER DESCRIPTION

TM 990/502

TM 990/503A
TM 990/504A

TM 990/505

Connects TM 990/1481 to an RS-232-C terminal except
for those mentioned below

Connects TM 990/1481 to a TI 743 or 745
Connects TM 990/1481 to a Model ASR 33 teletype
modified for 20 mA current loop operation
Connects TM 990/1481 to a TI 733 ASR data terminal

TM 990/1481
CONTROLLER
MODULE

RS23IE TERMINAL

2 TRANSMITTED DATA

RECEIVED DATA

REQUEST TO SEND

:SPIN EIA
STYLE PLUG

25-PIN EIA
STYLE ►LUG

PIM

1"~47FLllY_4uno —1,
►I

CLEAR TO SEND

DATA SET READY

SIGNAL GROUND

RECEIVED LINE SIGNAL DETECTOR

TRANSMISSION SIGNAL ELEMENT TIMING

RECEIVER SIGNALELEMENT TIMING

DATA TERMINAL READY

There are several cable assemblies that can be used to provide the necessary
interface between various terminals and the TM 990/1481. Table 2-2 provides a
listing of these cables.

TABLE 2-2. CABLE ASSEMBLIES

A cable can be fabricated using a 25-pin RS-232-C plug, type DB25P, and a
suitable plug for the terminal. Figure 2-5 shows the necessary connections
between the TM 990/1481 and a RS-232-C terminal. Figure 2-6 shows the
connections between a TM 990/1481 and a TI 743 or 745. Figure 2-7 shows the
connections between a TM 990/1481 and a TI 733 ASR data terminal.

NOTE SIGNAL NAME ASSIGNMENT
PER (IA RS232C
INTERFACE CONVENTIONS

FIGURE 2-5. TM 990/1481 AND RS-232-C TERMINAL CONNECTIONS

2-9

J2

TM 990/1481
CONTROLLER

MODULE

RS232RCV P2 2

25-PIN EIA

STYLE PLUG 10 DUAL POSITION PC CONNECTOR

1

TRANSMITTED DATA

RECEIVED DATA

TM 990/1481
CONTROLLER

MODULE

733 ASR TERMINAL

J2 P1 P2

DCD 11

RS232XMT

GROUND

25-PIN 15-PIN
EIA STYLE EIA STYLE

PLUG SOCKET

IN PIN

2

TEXAS INSTRUMENTS
743/746 TERMINAL

P1

20 15 DTR

FIGURE 2-6. TM 990/1481 AND TI 743 OR 745 TERMINAL CONNECTIONS

A PIN PIN

1 PROTECTIVE GROUND

2.8 TYPICAL INSTALLATION AND INITIALIZATION SEQUENCE

2.8.1 Example of TM 990/201 Board Setup

Install the TM 990/403 TIBUG monitor on a TM 990/201-44 memory board in
sockets U56 and U64. Set the switches on the TM 990/201 as follows:

EPROM at RAM at
0000-7FFF C000-FFFF

/010.001111ftwon"\qm.1011=1111.,,,

S1 S2 S3 S4 S5 S6 S7 S8
ON ON ON ON ON OFF OFF ON

Set the jumpers on the TM990/201 board according to the TM990/201 manual.

Install EPROMs containing user firmware on the board. If available, the TM
990/433 Floating Point Demonstration Software could be installed in sockets
U57 and U65 on the TM 990/201 board. Switch settings are explained in your
memory board user's manual for EPROM and in 403 TIBUG for the new RAM maps.

2.8.2 Board Installation

CAUTION

Always disconnect power before inserting or removing a board
from the card cage.

Install the TM 990/1481 Processor and Controller cards in the chassis with
connectors J3 and J4 cabled to the corresponding connectors on each card
(using the supplied cables). Connect a terminal to J2 of the controller. Check
that the TM 990/201 card (or other memory board) is correctly populated and
installed.

Verify that adaquate cooling is provided, optimally by forced air means.

Apply power to the boards and press the RESET toggle switch on the controller
board. Now press the RETURN key on your terminal; the TIBUG banner should be
printed, along with a prompt.

The TIBUG monitor is now executing, and all of the monitor commands may be
executed. Commands for the TM 990/403 TIBUG are explained in the next
section, Section 3.

2-11

SECTION 3

TM 990/403 TIBUG INTERACTIVE DEBUG MONITOR

3.1 GENERAL

The TM 990/403 TIBUG is debug monitor which provides an interactive interface
between the user and the TM 990/1481. It is available as an option, supplied
on two TMS 2716 EPROMs.

TIBUG occupies EPROM memory space from memory address (M.A.) 000016 to OFFF16
as shown in Figure 3-1. TIBUG uses four workspaces in 40 words of RAM
memory. Also in this reserved RAM area are the restart vectors which
initialize the monitor following single step execution of instructions.

The TIBUG monitor provides eight software routines that accomplish special
tasks. These routines, called in user programs by the XOP machine
instruction, perform tasks such as writing characters to a terminal. XOP
utility instructions are discussed in detail in paragraph 4.6.9.

All communications with TIBUG is through a 20 mA current loop or RS-232-C
device. TIBUG is initialized as follows:

• Press the RESET pushbutton (Figure 1-2). The monitor is called up
through interrupt trap O.

• Press carriage return on the terminal keyboard. TIBUG uses this input
to measure the width of the start bit and set the TMS 9902
Asynchronous Communication Controller (ACC) to the correct baud rate.

• TIBUG prints an initialization message on the terminal. On the next
line it prints a question mark indicating that the command scanner is
available to interpret terminal inputs.

• Enter one of the commands as explained in paragraph 3.2.

3.2 TIBUG COMMANDS

TIBUG commands are listed in Table 3-1.

TABLE 3-1. TIBUG COMMANDS

INPUT RESULTS PARAGRAPH

B Execute under Breakpoint 3.2.1
C CRU Inspect/Change 3.2.2
D Dump Memory to Cassett/Paper Tape 3.2.3
E Execute 3.2.4
F Find Word/Byte in Memory 3.2.5
H Hex Arithmetic 3.2.6
L Load Memory from Cassette/Paper Tape 3.2.7
M Memory Inspect/Change 3.2.8
R Inspect/Change User WP, PC, and ST Registers 3.2.9
S Execute in Step Mode 3.2.10
T 1200 Baud Terminal 3.2.11
W Inspect/Change Current User Workspaces 3.2.12
X Move ALU test to RAM and Execute 3.2.13
G Start Execution At Location >1000 3.2.14

3-1

0000
INTERRUPT VECTORS 0-15

0040 XOP VECTORS 0 AND 1
0048

0056
XOP VECTORS 7 TO 15

007F
MONITOR UTILITIES

0080

TIBUG MONITOR

OFFF

0.TIBUG EPROM AREA

} TIBUG EPR011 AREA

MEMORY
ADDRESS

} TIBUG RAM AREA

FE5O

FFFC
RESTART VECTORS

FFFE

FIGURE 3-1. MEMORY REQUIREMENTS FOR TIBUG

3-2

Conventions used to define command syntax in this paragraph are listed in
Table 3-2.

TABLE 3-2. COMMAND SYNTAX CONVENTIONS

CONVENTION

SYMBOL EXPLANATION

<> Items to be supplied by the user. The term within the angle brackets is a generic term.

II Optional Item — May be included or omitted at the user's discretion. Items not included in brackets

are required.

One of several optional items must be chosen.

ICR) Carriage Return

Space Bar

LF Line Feed

R or Rn Register (n = 0 to 15)

WP Current User Workspace Pointer contents

PC Current User Program Counter contents

ST Current User Status Register contents

NOTE

Except where otherwise indicated, no space is necessary
between the parts of these commands. All numeric input
is assumed to be hexadecimal;the last four digits input
will be the value used. Thus a mistaken numerical input
can be corrected by merely making the last four digits
the correct value. If fewer than four digits are input
they are right justified.

3.2.1 Execute Under Breakpoint (B)

3.2.1.1 Syntax

B <address > <(CR)>

3.2.1.2 Description. This command is used to execute instructions from one
memory address to another (the stopping address is the breakpoint). When
execution is complete, WP, PC, and ST register contents are displayed and
control is returned back to the monitor command scanner. Program execution
begins at the address in the PC (set by using the R command). Execution
terminates at the address specified in the B command, and a banner is output
showing the contents of the hardware WP, PC, and ST registers in that order.

The address specified must be in RAM and must be the address of the
instruction. The breakpoint is controlled by a software interrupt, XOP 15.

If no address is specified, the B command defaults to an E command, where
execution continues with no halting point specified.

3-3

EXAMPLE:

DP 0 14 :11)

3.2.2 CRU Inspect/Change (C)

3.2.2.1 Syntax

A

C <CRU Software Base Address>{ 1kCount> <(CR)>

3.2.2.2 Description. The Communication Register Unit (CRU) input bits from
"CRU software base address" to ("CRU software base address" + 2("count") -2)
are displayed right justified in a 16-bit hexadecimal representation. "CRU
software base address" is a 16-bit value in R12 bits 0 to 15; this is the same
as the contents of register 12 as used by CRU instructions (Section 5). Up to
16 CRU bits may be displayed. The corresponding CRU output bits may be
altered following input bit display by keying in desired hexadecimal data,
right justified. A carriage return following data output forces a return to
the command scanner. A minus sign (-) or a space causes the same CRU input
bits to be displayed again. Defaults for "base address" and "count" are 0
(M.A. 0000) and 0 (count of 16) respectively. "Count" is a hexadecimal value
of 0 to F16 with 0 indicating 1610.

The CRU inspect/change monitor command displays from 1 to 16 CRU bits, right
justified. The command syntax includes the CRU address and the number of CRU
bits to be displayed. The CRU address is the 16-bit contents of R12 as
explained in Section 5 (vs. the CRU bit address ("base address") in bits 4 to
14 of R12); thus the user must use 2 X CRU bit address. This is shown in
Figure 3-2 where 10016 is specified in the command to display values beginning
with CRU bit 8016.

? C 100,7
0100=007F

0 1 1 2 4 I 5 1 6 1 7 1 8 1 9 1 10 11 12
13 I 14 15

„.
....-VALUE DISPLAYED

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 > 007E

ZERO FILLED
7 BITS REQUESTED

W CRU 8a
81
82
83
84
85
86

FIGURE 3-2. CRU BITS INSPECTED BY C COMMAND

3-14

EXAMPLES:

(1) Examine eight CRU input bits. CRU address is 2016.

0020=-0UFF-4--- CARRIAGE RETURN ENTERED

(2) Set value of eight CRU output bits at CRU address 2016; new value is
0216.

CHANGE 00FF TO 0002

2 FOLLOWED BY CARRIAGE RETURN

C 2
0 0 ri= 0 F -

(3) Check changes in CRU input bit 0.

1:: 0 1
0 0 00= 0 0 0 1
0 0 0 0= 0 001 —
0 0 0 0= 0001 — MINUS SIGN ENTERED

0 0 0 o= [I 0 11 1 _1

I) 0 0 0= 0 OF F
0 0 0 0= 0 0 0 1

(4) Check to see if the TMS 9901 is in the interrupt mode (zero) or
clock mode (one).

TL 100
0 1.0 0=FF-FE

ZERO INDICATES INTERRUPT MODE

(5) Check the contents of the clock register on the TMS 9901 (bits 1 to
14)

C 1 0 2
0 1 0,2= 0 0 F
*7.

3.2.3 Dump Memory To Cassette/Paper Tape (D)

3.2.3.1 Syntax

MONITOR PROMPT

D <start address > < stop address > i, :< entry address > IDT < name > <

3-5

CARRIAGE RETURN ENTERED

3.2.3.2 Description. Memory is dumped from "start address" to "stop
address." "Entry address" is the address in memory where it is desired to
begin program execution. After entering a space or comma following the entry
address, the monitor responds with an "IDT=" prompt asking for an input of up
to eight characters that will identify the program. This program ID will be
output when the program is loaded into memory using the TIBUG loader, code
will be dumped as non-relocatable data in 990 object record format with
absolute load ("start address") and entry addresses specified. Object record
format is explained in Appendix G.

After entering the D command, the monitor will respond with "READY Y/N" and
wait for a Y keyboard entry indicating that the receiving device is ready.
This allows the user to verify switch settings, etc., before proceeding with
the dump.

3.2.3.3 Dump To Cassette Example. The terminal is assumed to be a Texas
Instruments 733 ASR or equivalent. The terminal must have automatic device
control (ADC). This means that the terminal recognizes the four tape control
characters DC1, DC2, DC3, and DC4.

The following procedure is carried out prior to answering the "READY Y/N"
query (Figure 3-3):

(1) Load a cassette in the left (No. 1) transport on the 733 ASR.

(2) Place the transport in the "RECORD" mode.

(3) Rewind the cassette.

(4) Load the cassette. If the cassette does not load it may be write
protected. The write protect hole is on the bottom right side of
the cassette (Figure 3-4). Cover it with the tab provided with the
cassette. Now repeat steps 1 through 4.

(5) The KEYBOARD, PLAYBACK, RECORD, and PRINTER LOCAL/OFF/LINE switches
must be in the LINE position.

(6) Place the TAPE FORMAT switch inthe LINE position.

(7) Answer the "READY Y/N" query with a "Y"; the "Y" will not be echoed.

3-6

 CASSETTE 1 CASSETTE 2 I t

O
RECORD

O READY

O END

REWIND LOAD, F PLAYBACK

READY
0

END 0

RECORD

LOAD'FF r-- REWIND

STOP STOP STOP STOP PLAYBACK —.I

0
RECORD CONTROL

LOCAL

R CORD PRINTER

BIT 9

CHARACTER PRINT ON

:
N

0
N

TAPE FORMAT ERASE OFF

LINE

OFF

PLAYBACK CONTROL

11••••••M

REV

,•••••••••••

ON

0

ERROR

0

BLOCK CHAR
FWD FWD

LINE

OFF

LOCAL

KEYBOARD

BIT 1

CONT
START

STOP

oym00000.

TAPE SInE UP

/

Side I

WRITE TAB FOR SIDE 2

WRITE TAB FOR SIDE 1

FIGURE 3-3. 733 ASR MODULE ASSEMBLY (UPPER UNIT) SWITCH PANEL

FIGURE 3-4. TAPE TABS

3-7

3.2.3.4 Dump To Paper Tape

The terminal is assumed to be an ASR 33 teletypwriter. The following steps
should be completed carefully to avoid punching stray characters:

(1) Enter the command as described in paragraph 3.2.3.1. Do not answer
the "READY Y/N" query yet.

(2) Change the teletype mode from ON LINE to LOCAL.

(3) Turn on the paper tape punch and press the RUBOUT key several times,
placing RUBOUTS at the beginning of the tape for
correct-reading/program-loading.

(4) Turn off the paper tape punch, and reset the teletype mode to LINE.
(This is necessary to prevent punching stray characters.)

(5) Turn on the punch and answer the "READY Y?N" query with "Y". The Y
will not be echoed.

(6) Punching will begin. Each file is followed by 60 rubout characters.
When these characters appear (identified by the constant punching of
all holes) the punch must be turned off.

3.2.4 Execute Command (E)

3.2.4.1 Syntax

E

3.2.4.2 Description. The E command causes program execution to begin at
current values in the Workspace Pointer and Program Counter.

EXAMPLE: E

3.2.5 Find Command (F)

3.2.5.1 Syntax

F < start address > < stop address > t - l< value > (CR)

3.2.5.2 Description. The contents of memory locations from "start adddress"
to "stop address" are compared to "value". The memory addresses whose
contents equal "value" are printed out. Default value for start address is O.
The default for "stop address" is O. The default for "value" is O.

If the termination character of "value" is a minus sign, the search will be
from "start address" to "stop address" for the right byte in "value". If the
termination character is a carriage return, the search will be a word mode
search.

3-8

EXAMPLE:

•TF 11!,20 FFFF 4 CARRIAGE RETURN ENTERED
000e,

0001::

11012
0016
F 0 20 FF MINUS SIGN ENTERED

0006

0007

000i1

0012

001?

Li 016
0017

3.2.6 Hexadecimal Arithmetic (H)

3.2.6.1 Syntax

H < number 1> ;< number 2 >< (CR) >

3.2.6.2 Description. The Sum and difference of two hexadecimal numbers are
output.

EXAMPLE:

'7.11 1:1 1111)
CARRIAGE RETURN ENTERED

H1 .::00 H1 -Fic:= Ii ii
-7"

3.2.7 Load Memory From Cassette Or Paper Tape (L)

3.2.7.1 Syntax

L< bias> < (CR) >

3.2.7.2 Description. Data in 990 object record format (defined in Appendix G)
is loaded from paper tape or cassette into memory. Bias is the relocation
bias (starting address in RAM). Its default is 016. Both relocatable and
absolute data may be loaded into memory with the L command. After the data is
loaded, the module identifier (see tage 0 in Appendix G) is printed on
the next line.

3.2.7.3 Loading From Texas Instruments 733 ASR Terminal Cassette. The 733
ASR must be equipped with automatic device control (ADC). The following
procedure is carried out prior to executing the L command:

(1) Insert the cassette in one of the two transports on the 733 ASR
(cassette 1 in Figure 3-2).

(2) Place the transport in the playback mode.

3-9

(3) Rewind the cassette.

(4) Load the cassette.

(5) Set the KEYBOARD, PLAYBACK, RECORD, and PRINTER LOCAL/LINE switches
to LINE.

(6) Set the TAPE FORMAT switch to LINE.

(7) Loading will be at 1200 baud.

Execute the L command.

3.2.7.4 Loading From Paper Tape (ASR33 Teletype). Prior to executing the L
command, place the paper tape in the reader and position the tape so the
reader mechanism is in the null field prior to the file to be loaded. Enter
the load command. If the ASR33 has ADC (automatic device control), the reader
will begin to read from the tape. If the ASR does not have ADC, turn on the
reader and loading will begin.

Each file is terminated with 60 rubouts. When.the reader reaches this area of
the tape, turn it off. The loader will then pass control to the command
scanner.

The user program counter (P) is loaded with the entry address if a 1 tag or 2
tag is found on the tape.

EXAMPLE:

TL 00004 CARRIAGE RETURN ENTERED

FRD'5PAM PROGRAM ID FROM TAPE

3.2.8 Memory Inspect/Change, Memory Dump

3.2.8.1 Syntax

• Memory Inspect/Change Syntax

M < address > < (CR) >

• Memory Dump Syntax

M < start address > :< stop address> < (CR) >

3.2.8.2 Description. Memory inspect/change "opens" a memory location,
displays it, and gives the option of changing the data in the location. The
termination character causes the following:

• If a carriage return, control is returned to the command scanner.

• If a space, the next memory location is opened and displayed.

• If a minus sign, the previous memory location is opened and displayed.

If a hexadecimal value is entered before the termination character, the
displayed memory location is updated to the value entered.

3-10

Memory dump address directs a display of memory contents from "start address"
to "stop address". Each line of output consists of the address of the first
data word output followed by eight data words. Memory dump can be terminated
at any time by typing any character on the keyboard.

EXAMPLES:

(1)

=E00

CARRIAGE RETURN ENTERED

0= F F OF
--•:P• 02= 0012 FFFF NEW CONTENTS ENTERED

=:F04=0311 MINUS SIGN ENTERED

02=FFFF -4

NEW CONTENTS

0 4= 0 11
Of; = 0 :7:2 EERH -'

NEW CONTENTS AND
CARRIAGE RETURN ENTERED

(2)

•T'm o o
co:1•2 0= 0 0-2 0 u IIIIIIII III i u::: ijuuu 0 II &J 4
LI I _I I=iiLIiI1

3.2.9 Inspect/Change User WP, PC, and ST Registers (R)

3.2.9.1 Syntax

R <(CR)>

3.2.9.2 Description. The user workspace pointer (WP), program counter (PC),
and status register (ST) are inspected and changed with the R command. The
output letters W, P, and S identify the values of the three principal hardware
registers passed to the processor when a B, E, or S command is entered. WP
points to the workspace register area, PC points to the next instruction to be
executed (Program Counter), and ST is the Status Register contents.

The termination character causes the following:

• A carriage return causes control to return to the command scanner.

• A space causes the next register to be opened.

Order of display is W, P, S.

3-11

5
P =F F45

-7*

3F 0 0
3E 0 0 ‘.
0 0 0 0 PROGRAM COUNTER

3F 00 02 UI 0 0 -4- STATUS REGISTER
3F 0 0 7:E04 0 0 0 0
3F 0 =E06 0 0 0 0
3F 00 =E08 0000
3F 1111 =E OR 0 0 0 0

SPACES ENTERED
WORKSPACE POINTER

EXAMPLES:

100 SPACE ENTERED
0 0 CARRIAGE RETURN ENTERED

(2)

IA= 0 1 0 ii / SPACE ENTERED

= I:1 CI I

::= i I 1:11_1 I:1 SPACE OR CARRIAGE RETURN ENTERED

3.2.10 Execute In Single Step Mode (S)

3.2.10.1 Syntax

S

3.2.10.2 Description. Each time the S command is entered, a single
instruction is executed at the address in the Program Counter, then the
contents of the Program Counter, Workspace Pointer, and Status Register (after
execution) are printed out. Successive instructions can be executed by
repeated S commands. Essentially, this command executes one instruction then
returns control to the monitor.

EXAMPLE:

NOTE

Incorrect results are obtained when the S instruction
causes execution of an XOP instruction (see paragraph
4.6.9) in a user program. To avoid these problems the
B command should be used to execute any XOP's in a pro-
gram (rather than the S command).

3.2.11 TI 733 ASR Baud Rate (T)

3.2.11.1 Syntax

T

3.2.11.2 Description. The T command is used to alert TIBUG that the terminal
being used is a 1200 baud terminal which is not a Texas Instruments' 733 ASR
(e.g., a 1200 baud CRT). To revoke the T command, enter it again.

3.2.11.3 Use. T is used only when operating with a true 1200 baud peripheral
device. Note that T is never used when operating at other baud rates.

In TIBUG the baud rate is set by measuring the width of the character "A"
input from a terminal. When an "A" of 1200 baud width is measured, TIBUG is
set up to automatically insert three nulls for every character output to the
terminal. These nulls are inserted to allow correct operation of the TM
990/1481 with Texas Instruments 733ASR data terminals.

3.2.12 Inspect/Change User Workspace (W)

3.2.12.1 Syntax

W [register number) < (CR) >

3.2.12.2 Description. The W command is used to display the contents of all
workspace registers or display one register at a time while allowing the user
to change the register contents. The workspace begins at the address given by
the Workspace Pointer.

The W command, followed by a carriage return, causes the contents of the
entire workspace to be printed. Control is then passed to the command
scanner.

The W command followed by a register number in hexadecimal and a carriage
return causes the display of the specified register's contents. The user may
then enter a new value into the register by entering a hexadecimal value. The
following are termination characters whether or not a new value is entered:

• A space causes display of the next register.

• A minus sign causes display of the previous register.

• A carriage return gives control to the command scanner.

EXAMPLES:

?kJ 4 CARRIAGE RETURN ENTERED

R 0=F942 R1=00:4 P. 2 =F Fi2Fi P.?= 02 4 =F E5E P5= 0 098 F! 6 = 1 3 0 0 F'7=iti1R4
RF:=FFIFt 0 P.9=:=:A 0 0 RA= OE FiE, RE= 0 000 PC.= RD= 0 084 F'E =F 0 P.F f; 0 (I

3-13

(2)

ICI 2 CARRIAGE RETURN ENTERED

R2=0284 34561
R3 = 0 0 1B 1 00 11 SPACE ENTERED
R4=1508
R5=0450
RS=F8 0 0 0 RETURN ENTERED CARRIAGE

CAUTION

The following commands, X and G, are for factory test purposes
only. Do not enter these commands to the monitor.

3.2.13 Move ALU Test to RAM and Execute (X)

3.2.13.1 Syntax

X <CR>

3.2.13.2 Description

This command is for factory test purposes only. It moves the ALU test from
EPROM locations to RAM, then executes the test.

3.2.14 Start Execution at Address 100016 (G)

3.2.14.1 Syntax

G <CR>

3.2.14.2 Description

This command is for factory test purposes only. It causes the start of
execution at memory address 100016.

3-114

XOP PARAGRAPH FUNCTION

7 Time Delay Via TMS 9901 Clock 3.3.1
8 Write 1 Hexadecimal Character to Terminal 3.3.2
9 Read Hexadecimal Word from Terminal 3.3.3

10. Write 1 Hexadecimal Characters to Terminal 3.3.4
11 Echo Character 3.3.5
12 Write 1 Character to Terminal 3.3.6
13 Read 1 Character from Terminal 3.3.7
14 Write Message to Terminal 3.3.8

3.3 USER ACCESSIBLE UTILITIES

TIBUG contains seven utility subroutines that perform I/O functions as listed
in Table 3-3. These subroutines are called through the XOP (extended
operation) assembly language instruction. This instruction is covered in
detail in paragraph 5.6.9. In addition, locations for XOP's 0 and 1 contain
vectors for utilities that drive the TM 990/301 microterminal, and XOP 15 is
used by the monitor for the breakpoint facility.

TABLE 3-3. USER ACCESSIBLE UTILITIES

NOTE

All characters are in ASCII code.

NOTE

Most of the XOP format examples herein use a
register for the source address, however, all XOP's
can also use a symbolic memory address or any of the
addressing forms available for the XOP instruction.

3.3.1 Time Delay Via TMS 9901 Clock

Format: XOP Rn,7

The value in Rn represents the increments of 21.33 us delays desired. The
delay range is from 106.6 us to 349.525 ms. The clock interrupt (3) is
utilized by this XOP. Control returns to the instruction following the
extended operation.

EXAMPLE: For a delay of 25 ms, the count of 1172 (25ms/21.35 us 7: 1172) will
be used.

LI R1,1172 Set Up Delay Count
XOP R1,7 Do Extended Operation
(Next Instruction) Execution Continued Here

NOTE

TIBUG uses XOP Rn,7 when determining Baud rates and
when communicating with a terminal.

3-15

3.3.2 Write One Hexadecimal Character to Terminal (XOP 8)

Format: XOP Rn,8

The least significant four bits of user register Rn are converted to their
ASCII coded equivalent (0 to F) and output on a terminal. Control returns to
the instruction following the extended operation.

EXAMPLE:

Assume user register 5 contains 203C16. The assembly language (A.L.) and
machine language (M.L.) values follow.

XOP R5,8 SEND 4 LSB'S OF R5 TO TERMINAL

0 2 3 4 5 6 7 8 9 10 1: 12 13 14 15

M.L. O 0 1 0 1 1 a 0 of° O 1 0 1 > 2E05

Terminal Output: C

3.3.3 Read Hexadecimal Word From Terminal (XOP 9)

Format: XOP Rn,9
DATA NULL ADDRESS OF CONTINUED EXECUTION IF

NULL IS ENTERED
DATA ERROR ADDRESS OF CONTINUED EXECUTION IF

NON-HEX NO. IS ENTERED
(NEXT INSTRUCTION) EXECUTION CONTINUED HERE IF VALID HEX

NUMBER AND TERMINATOR ENTERED

Binary representation of the last four hexadecimal digits input from the
terminal is accumulated in user register Rn. The termination character is
returned in register Rn + 1. Valid termination characters are space, minus,
comma, and a carriage return. Return to the calling task is as follows:

• If a valid termination character is the only input, return is to the
memory address contained in the next word following the XOP
instruction (NULL above).

• If a non-hexadecimal character or an invalid termination character is
input, control returns to the memory address contained in the second
word following the XOP instruction (ERROR in previous example).

• If a hexadecimal string followed by a valid termination character is
input, control returns to the word following the DATA ERROR statement
in the previous example.

3-16

0 0 1 0 1 1 1 0 1 0 1 0 0 1 0 0 0 1 1 M.L. > 2E81

EXAMPLE:

A.L. XOP R6,9. READ HEXADECIMAL WORD INTO R6

DATA > 3F80 RETURN ADDRESS, IF NO NUMBER

DATA > 3F86 RETURN ADDRESS, IF ERROR

M.L. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
M.A. 3F00 0 0 1 0 1 1 1 1 0 0 1 1 0 0 1 0 1 1 0 > 2E46

3F02 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 > 3F80

3F04 0 0 1 1 1 1 1 1 1 0 0 0 0 1 1 0 > 3F86

If the valid hexadecimal character string 12C is input from the terminal
followed by a carriage return, control returns to memory address (M.A.) FFB616
with register 6 containing 012C16 and register 7 containing OD0016.

If the hexadecimal character string 12C is input from the terminal followed by
an ASCII plus (+) sign, control returns to location FFC616. Registers 6 and 7
are returned to the calling program without being altered. The plus sign (+)
is an invalid termination character.

If the only input from the terminal is a carriage return, register 6 is
returned unaltered while register 7 contains OD0016• Control is returned to
address FFC016•

3.3.4 Write Four Hexadecimal Characters To Terminal (XOP 10)

Format: XOP Rn,10

The four-digit hexadecimal representation of the contents of user register Rn
is output to the terminal. Control returns to the instruction following the
XOP call.

EXAMPLE:

Assume register 1 contains 2C4616•

A. L. XOP R1,10 WRITE HEXNUMBER

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Terminal Output: 2C46

3-17

3.3.5 Echo Character (XOP 11)

Format: XOP Rn,11

This is a combination of XOP's 13 (read character) and 12 (write character).
A charcter in ASCII code is read from the terminal, placed in the left byte of
Rn, then written (echoed back) to the terminal. Control returns to the
instruction following the XOP after a character is read and written. By using
a code to determine a character string termination, a series of characters can
be echoed and stored at .a particular address:

CLR R2 CLEAR R2
LI R1,> 3E00 SET STORAGE ADDRESS
XOP R2, 11 ECHO USING R2
CI R2, > 0000 WAS CHARACTER A CR?
JEQ $+6 YES, EXIT ROUTINE
MOVB R2,*R1 NO, MOVE CHAR TO STORAGE
JMP S-10 REPEAT XOP

3.3.6 Write One Character To Terminal (XOP 12)

Format: XOP Rn,12

The ASCII character in the left byte of user register Rn is output to the
terminal. The right byte of Rn is ignored. Control is returned to the
instruction following the call.

3.3.7 Read One Character From Terminal (XOP 13)

Format: XOP Rn,13

The ASCII representation of the character input from the terminal is placed in
the left byte of user register Rn. The right byte of register Rn is zeroed.
When this utility is called, control is returned to the instruction following
the call only after a character is input.

3.3.8 Write Message To Terminal (XOP 14)

Format: XOP MESSAGE,14

MESSAGE is the symbolic address of the first character of the ASCII character
string to be output. The string must be terminated with a byte containing
binary zeroes. After the character string is output, control is returned to
the first instruction following the call.

3-18

Assuming the following program:

MEMORY
ADDRESS OP CODE A.L. MNEMONIC

(Hex) (Hex)

3E00 2FAO XOP @> 3EE0,14
3E02 3EE0

3E04

3EE0 5445 TEXT 'TEST'
3EE2 5354
3EE4 00 BYTE 0

During the execution of this XOP, the character string "TEST" is output on the
terminal and control is then returned to the instruction at location FE0416.
TEXT is an assembler directive to transcribe characters into ASCII code.

3.4 TIBUG ERROR MESSAGES

Several error messages have been included in the TIBUG monitor to alert the
user to incorrect operation. In the event of an error, the word "ERROR" is
output followed by a single digit representing the error number.

Table 3-4 outlines the possible error conditions.

TABLE 3-4. TIRUG ERROR MESSAGES

ERROR CONDITION

0 Invalid tag detected by the loader.
1 Checksum error detected by the loader.
2 Invalid termination character detected.
3 Null input field detected by the dump routine.
4 invalid command entered.

In the event of errors 0 or 1, the program load process is terminated. If the
program is being input from a 733ASR, possible causes of the errors are a
faulty cassette tape or dirty read heads in the tape transport. If the
terminal device is an ASR33, chad may be caught in a punched hole in the paper
tape. In either case repeat the load procedure.

In the event of error 2, the command is terminated. Reissue the command and
parameters with a valid termination character.

Error 3 is the result of the user inputting a null field for either the start
address, stop address, or the entry address to the dump routine. It also
occurs if the ending address is less than the beginning address. The dump
command is terminated. To correct the error, reissue the dump command and
input all necessary parameters.

3-19

SECTION 4

TM 990/1481 INSTRUCTION SET

4.1 GENERAL

This section covers the instruction set used with the TM 990/148 1 including
machine and assembly language. This instruction set includes the standard TM
990 instruction set plus twenty-two floating point instructions. These latter
include signed multiply and divide, double-precision multiply and divide, and
real/integer conversions. Other topics covered in this section include:

• User memory

• Workspace concept

• Status register

• Instruction formats and addressing modes

• Instructions

• Comparison of jumps, branches, and XOPs

• Instruction execution times

• User defined instructions

• Use of floating point instructions

• Programming aids

• Interrupts.

Further information on the 990 assembly language is provided in the Model 990
Computer/TMS 9900 Microprocessor Assembly Language Programmer's Guide (P/N
943441-9701) and the Model 990/12 Computer Assembly Language Programmer's
Guide (P/N 2250077-9701*A).

4.2 USER MEMORY

The amount of available user RAM space in memory for program execution depends
on the memory module used and how it is configured. This information can be
found in the user's guide for the memory module that is used.

4.3 WORKSPACE CONCEPT

Figure 4-1 shows the TM 990/1481 with RAM and EPROM memory. The RAM memory
section will be used for user workspaces. Workspaces are blocks of memory
that are used as data registers. The location of the starting address of a
workspace is defined by a single hardware register called the workspace
pointer. The workspace consists of sixteen 16-bit registers in memory. The
LWPI (load workspace pointer immediate) instruction is used to define the
starting address for the user workspace; if additional registers are needed,
the program simply reloads the workspace pointer with the starting address of
the new workspace. The number of 16-register workspaces is limited only by
the amount of memory in the system.

4-1

CONTROLLER
BOARD

CRU & CONTROL BUN

(

PROCESSOR
BOARD

TM 990/1481

EXTERNAL DATA BUS EXTERNAL ADDRESS BUS

E

RAM

I

EPROM

L

L
MEMORY BOARD

I

FIGURE 4-1. TM 990/1481 WITH RAM/ROM MEMORY

The uses of the workspace registers are shown in Table 4-1. All 16 registers
(RO-R15) may be used for storage of addresses, temporary data, and accumulated
results. R1-R15 may be used as index registers to specify a bias from a
fixed-memory location to address an instruction operand. Register 0 may
contain the number of bit positions an operand is shifted by the shift
instructions (SLA, SRA, SRC, and SRL). R11 will contain one of the following:

1. the return address when the branch and link (BL) instruction is
executed or,

2. the address parameter of an XOP instruction.

Bits 3-14 of R12 contain the CRU base address for CRU instructions. R13-R15
will contain the internal register values which are reloaded when the return
to workspace (RTWP) instruction is executed.

4-2

REGISTER USE 1

MEMORY

ADDRESS REGISTER

TABLE 4-1. WORKSPACE REGISTERS

WP + 00

WP + 02

WP + 04

WP + 06

WP + 08

WP + OA

WP + GC

WP + OE

WP + 10

VW + 12

WP + 14

WP + 16

VVP + 18

WP + 1A

VW + 1C

WP + 1E

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

WORKSPACE POINTER I 0 - OPTIONAL SHIFT

COUNT

DATA

OR
INDEX

CAPABILITY
ADDRESSES

- BL RETURN ADDRESS

- CRU BASE ADDRESS

- SAVED WP

- SAVED PC

- SAVED ST

4.4 STATUS REGISTER

The status register is similar to that of other microprocessors in that it
contains flag bits which indicate results of the most recent arithmetic or
logical operation performed. It also contains a 4-bit interrupt mask which
defines the lowest-priority level interrupt which will be recognized by the
microprocessor. The bit structure of the status register is shown in Figure
4-2. A description of the information conveyed by the bits in the status
register follows.

0 1 3 5 6 7 8 9 10 11 12 13 14 15

L> A> EQ C OV OP X 1\\\I MF N\N OI N\N INTERRUPT MASK

LOGICALLY GREATER THAN
ARITHMETICALLY GREATER THAN
EQUAL
CARRY
OVREFLOW
RESERVED

OP ODD PARITY
X XOP BEING EXECUTED
MF MAP FILE SELECT
OI OVERFLOW INTERRUPT ENABLE

(ALLOW INTERRUPT ON OVERFLOW)

L>
A>
EQ
C
OV

FIGURE 4-2. STATUS REGISTER BIT STRUCTURE

11-3

4.4.1 Logical Greater Than

This bit contains the result of a comparison of words or bytes as unsigned
binary numbers. The most significant bit (MSB) of words being logically
compared represents 215 (32,768), and the MSB of bytes being logically
compared represents 27 (128).

4.4.2 Arithmetic Greater Than

The arithmetic greater than bit contains the result of a comparison of words
or bytes as two's complement numbers. In this comparison, the MSB of words or
bytes being compared represents the sign of the number, zero for positive, or
one for negative.

4.4.3 Equal

The equal bit is set when the words or bytes being compared are equal.

4.4.4 Carry

The carry bit is set by a carry out of the MSB of a word or byte (sign bit)
during arithmetic operations. The carry bit is used by the shift instructions
to store the value of the last bit shifted out of the workspace register being
shifted.

4.4.5 Overflow

The overflow bit is set when the result of an arithmetic operation is too
large or too small to be correctly represented in two's complement
(arithmetic) representation. In addition operations, overflow is set when the
MSB's of the operands are equal and the MSB of the result is not equal to the
MSB of the destination operand. In subtraction operations, the overflow bit
is set when the MSB's of the operands are not equal, and the MSB of the result
is not equal to the MSB of the destination operand. For a divide operation,
the overflow bit is set when the most significant sixteen bits of the dividend
(a 32-bit value) are greater than or equal to the divisor. For an arithmetic
left shift, the overflow bit is set if the MSB of the workspace register being
shifted changes value. For the absolute value and negate instructions, the
overflow bit is set when the source operand is the maximum negative value,
800016 (See Section 4.10).

4.4.6 Odd Parity

The odd parity bit is set in byte operations when the parity of the result is
odd, and is reset when the parity is even. The parity of a byte is odd when
the number of bits having a value of one is odd; when the number of bits
having a value of one is even, the parity of the byte is even.

4.4.7 Extended Operation

The extended operation bit of the status register is set to one when a
software implemented extended operation (XOP) is initiated.

4-4

4.4.8 Status Bit Summary

Table 4-2 describes each of the status bits individually and lists those
instructions which can alter each status bit.

Section 4.6 describes each instruction and identifies which status bits are
affected by each instruction. Those bits that are not indicated as affected by
an instruction will remain unchanged after execution of that instruction.

All status register bits are physically implemented on the TM 990/1481 . ST7,
ST8, and ST9 are, however, not functionally implemented; instead they are
routed to connector J2 of the Processor board to allow implementation of their
associated functions external to the TM 990/1481. ST11 is not accessible
external to the TM 990/1481 Processor board.

14-5

TABLE i4-2. STATUS REGISTER BIT DEFINITIONS

BIT NAME INSTRUCTION

CONDITION TO SET BIT TO 1

OTHERWISE SET BIT TO ZERO *NOTE 1

STO LOGICAL C,CB

GREATER

THAN

(LGT)

CI

ABS

all others except

DIV,MPY,X0P,CZC,C0C,LIMI,CLR,

SBZ, SBO. TB. JOP. J1.4, JL, LWP I, X, B,

JNO, JOC , JNC, JNE, JOT, STST. LWP.

JHE. JEG, JLE, JLT, JMP, STI,SP, SWPB,

BLWP, LREX, SETO, CKOF, CRON. RSET,

IDLE. SWPB, BL, LST. RTWP and NOP

If MSB(SA) = 1 and MSB(DA) = 0 ,

or if MSB(SA) = MSB(DA) and

MSBE(DA)—(SA)) = 1

If MSB(W) = 1 and MSB(IDP) = 0 ,

or if MSB(W) = MSB(IOP) and

MSBEI0P—(W)1 = 1

If (SA) <> 0

If RESULT <> 0

5T1 ARITHMETIC C. CB

GREATER

THAN

(ACT)

CI

ABS

all others except

DIV,MPY,X0P,CZC,C0C,BL,BLWP,

TB,SBZ,SBO,J0P,JH,JL.X.IDLE,

JNO,JOC.JNC.JNE.JGT,CLR,LREX,

JHE.JEQ,JLE,JLT,JMP,STWP,LWP,

SETO,SWPB,B,CKOF,CKON,RSET.

LIMI.LWPI.STST,LST,RTWP and NOP

If MSB(SA) = 0 and MSB(DA) = 1 .

or if MSB(SA) = MSB(DA) and

MSBC(DA)—(SA)) = 1

If MSB(W) = 0 and MSB(IOP) =

or if MSB(W) = MSB(IOP) and

MSBEIDP—(W)) = 1

If MSB(SA) = 0 and (SA) <> 0

If MSB(RESULT) = 0 and RESULT <> 0

ST2 EQUAL C,CB

(E0)

CI

COC

CZC

TB

ABS

all others except

DIV, MPY. XOP, SBZ, SBO, JOP, JH, JL.

JNO, JOC, JNC, JNE, JOT. JHE, JEG.

JLE, JLT, JMP, SETO. SWPB. BL. CLR,

X. B, BLWP, LREX, CKOF, CKON, RSET,

IDLE.LIMI,LWPI,STST,STWP.LWP,

LST, RTWP, and NOP

If (SA) = (DA)

If (W) = 101.

If (SA)AND(/DA) = 0

If (SA)AND(DA) = 0

If CRUIN = 1

If (SA) = 0

If RESULT = 0

ST3 CARRY A, AB, ABS, AI.

(CO) DEC,DECT.INC,

INCT.NEG,S,SB

SLA,SRA,SRC,

SRL

AR.SR,MR,DR,

AD,SD,MD,DD

CDE.CRE,

CDI,CRI

If CARRY OUT = 1

If the last bit shifted out is a 1

Set to 1 on OVERFLOW and set to 0

on UNDERFLOW (only valid if ST4 = 1)

If number too big to represent as an

integer (only valid if ST4 = 1)

4-6

TABLE 4-2. STATUS REGISTER BIT DEFINITIONS (continued)

BIT NAME INSTRUCTION

CONDITION TO SET BIT TO 1

OTHERWISE SET BIT TI ZERO

ST4 OVERFLOW

(0V)

A,AB

AI

S,SB

DEC.DECT

INC,INCT

SLA

DIV

DIVS '

ABS,NEG

AR. SR. MR. DR.

AD.SD,MD,DD,

CDE,CRE,

CDI. CRI

If MSB(SA) = MSB(DA) and

MSB(RESULT) <> MSB(DA)

If MSB(W) = MSB(I0P) and

MSB(RESULT) <> MSB(W)

If MSB(SA) <> MSB(DA) and

MSB(RESULT) <> MSB(DA)

If MSB(SA) = 1 and MSB(RESULT) = 0

If MSB(SA) = 0 and MSB(RESULT) = 1

If MSB changes during shift

If MSB(SA) =0 and MSB(DA) = 1 , or

if MSB(SA) = MSB(DA) and

MSBC(DA)—(SA)3 = 0

If (SA) = 0, or if overflow occurs

IF (SA) = >S000

If floating point overflow or

underflow or conversion

overflow occurs

ST5 PARITY

(OP)

CB,MOVB

LDCR,STCR

AB.SB.

SOCB,SZCB

If (SA) has an odd number of l's

If 0 < C < 9 and (SA) has an

odd number of l's

of RESULT has an odd number of l's

ST6 XOP XOP If XOP instruction is executed via

the software trap

ST10 OVERFLOW

INTERRUPT

ENABLE

(DI)

*NOTE 2

ST12—

ST15

INTERRUPT

MASK

LIMI

RSET

INTERRUPTS

If corresponding bit of IDP is 1

Resets ST12, ST13, ST14, and ST15

*NOTE 3

STO—

ST15

LST

RTWP

RESET

INTERRUPT

If corresponding bit of WR(S) is 1

If corresponding bit of WR(15) is 1

All status bits are cleared

*NOTE 1: When floating point operations and the signed divide instruction result in an
overflow condition, only ST3 and ST4 are affected; all other status bits will
reflect the value present previous to the execution of the instruction which
resulted in the overflow.

*NOTE 2: When an interrupt or XOP occurs, status register bits seven through eleven are
reset during the context switch. However, their original values are stored in WR
(15) and can be restored to the status register with an RTWP. Status bits seven
through eleven can only be set using the LST and RTWP instructions as directed
above.

*NOTE 3: When a maskable (level one through fifteen) interrupt occurs, status register bits
12 through 15 are set so that the interrupt mask's contents are equal to the next
higher priority interrupt level than the interrupt currently being executed. The
LOAD interrupt dose not affect these status bits.

4-7

4.5 INSTRUCTION FORMATS AND ADDRESSING MODES

There are 95 instructions in the TM 990/1481 instruction set. In order to
implement this instruction set nine instruction formats are used. The various
instructions require from one to three words for full definition. The first
word will contain the op code (operation code). The op code is the operation
specified by the instruction converted into binary code. Other information
that might be included in the bit fields of the first word include:

• T field - this field identifies what type of addressing mode is used.

• R field - this field identifies the workspace register number that is
being affected.

• C field - this field specifies the number of bits affected by a CRU
instruction or the number of bits to be shifted in a shift
instruction.

• B field - this field identifies an instruction as either byte or word
oriented. A one indicates that a byte will be addressed, while a zero
indicates that a word will be affected.

Figure 4-3 shows the format for the first word of an instruction.

FORMAT 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 GENERAL USE

OPCODE B TD DR Ts SR

OPCODE SIGNED DISPLACEMENT

OPCODE R Ts SR

OPCODE C Ts SR

OPCODE C R

OPCODE TS SR

OPCODE NOT USED

OPCODE

OPCODE N R

OPCODE DR Ts SR
OPCODE R

KEY

B BYTE INDICATOR (1 = BYTE)

TD DESTINATION ADDRESS TYPE*

DR DESTINATION REGISTER

Ts SOURCEADDRESSTYPE*

SR SOURCE REGISTER

C CRU TRANSFER COUNT OR SHIFT COUNT

R REGISTER

N NOT USED

1

2

3

4

5

6

7

7

8

9

18

ARITHMETIC

JUMP

LOGICAL

CRU

SHIFT
PROGRAM/
FLOATING POINT*
CONTROL

FLOATING POINT*

IMMEDIATE

MPY. DIV. XOP

SINGLE REGISTER*

TD OR Ts ADDRESS MODE TYPE

00 DIRECT REGISTER

01 INDIRECT REGISTER

10
PROGRAM COUNTER RELATIVE, NOT INDEXED (SR OR DR = 0)

PROGRAM COUNTER RELATIVE + INDEX REGISTER (SR OR DR > 0)

11 INDIRECT REGISTER, AUTOINCREMENT REGISTER

• Floating point. signed multiply and divide, and single register operand instructions

are only implemented on the TM 990/1481 CPU module

FIGURE 4-3. INSTRUCTION FORMATS

24-8

In computers that operate on the stored program concept, the program
consisting of instructions and data is first stored in memory prior to
executing it. In order to retrieve the instructions and data for processing
and manipulation some means of generating the addresses needed for locating
the instructions/data is needed. The ways that addresses can be generated
during program execution are called addressing modes. The TM 990/1481 provides
8 addressing modes as listed below:

1) Direct register addressing
2) Indirect register addressing
3) Indirect register autoincrement addressing
4) Symbolic memory addressing, not indexed
5) Symbolic memory addressing, indexed
6) Immediate addressing
7) Program counter relative addressing
8) CRU bit addressing.

The first three modes (direct register, indirect register, indirect register
autoincrement) involve the workspace registers. In direct register addressing
a workspace register contains the operand while in indirect register
addressing the workspace register contains the address where the operand is
located. Indirect register autoincrement is the same as indirect register
except that the register contents are automatically incremented after the
address (contents) has been obtained. The increment is one for byte
instructions and two for word instructions.

Symbolic memory addressing specifies a memory address that contains the
operand. Symbolic memory addressing can be indexed. In indexed symbolic
memory addressing, the address where the operand is located is the sum of the
contents of the workspace register and a symbolic address. Symbolic memory
addressing allows direct access to instructions and data located in user RAM
memory.

The immediate addressing mode use the contents of the word following the
instruction word as an operand of the instruction. This mode is used to
define the starting address for the workspace registers or when an absolute
value is to be specified as an operand.

Program counter relative addressing is used by the jump instructions. This
mode allows a change in program counter contents, either an unconditional
change or a change conditional on status register contents.

CRU bit addressing is used with the five CRU instructions (SBO, SBZ, TB, STCR,
and LDCR). This mode allows for the setting of a specific CRU bit to either a
one or zero, testing a specific bit and setting the equal status bit (status
register) to the logic value read, loading or storing various bit patterns.
This mode is especially useful in industrial control applications.

It should be noted that the first 5 addressing modes can be used by formats
having a T field (Formats 1, 3, 4, 6, and 9). The immediate addressing mode
is used with Format 8 and the program counter relative addressing mode is used
with Format 2. CRU bit addressing is used with Formats 2 and 4.

Now that the TM 990/1481 addressing modes have been listed and briefly
described, additional information regarding each mode with specific examples
will be given.

14-9

MACHINE LANGUAGE:

0 1 2 3

1 0 1 0

> A

12 13 14 15

0 0 0 1

1

4 5 6 7 8 9 10 11

0 0 0 0 0 0

0 0 1

0

4.5.1 Direct Register Addressing

The direct register addressing mode specifies a workspace register that
contains the operand. A workspace register is written as a term having a
value of 0 through 15. In the example given in Figure 4-4, both the source
and destination operands are registers. The T fields contain 002 to denote
direct register addressing and their associated registers contain the binary
value of the number of the register affected. The op code for add words (A)
is 1012. B = 02, because words are involved instead of bytes. As seen in
Figure 4-5, the instruction A 1, 0 when coded is A001.

ASSEMBLY LANGUAGE:

A 1,0 Add a copy of the source operand (word) to the destination
operand (word) and replace the destination operand with the
sum (i.e., add contents of register 1 to register 0, place
the sum in register 0).

FORMAT 1:

0 1 2 3 4 5 6 7 10 11 12 13 14 15

OP Code B TD. DR Ts SR

B = 1 for bytes and B = 0 for words.

FIGURE 4-4. DIRECT REGISTER ADDRESSING EXAMPLE

4-10

4.5.2 Indirect Register Addressing

Indirect register addressing specifies a workspace register that contains the
address of the operand. An indirect workspace register is written as a term
preceded by an asterisk (*). In the example given in Figure 4-6, both source
and destination registers contain addresses specifying where the operands are
located. The T fields contain 012 to denote indirect register addressing and
their associated register fields contain the binary value of the number of the
register affected. The op code for subtract bytes (SB) is 0112. B = 12,
because bytes are involved instead of words (it should be noted that the bytes
involved are the leftmost or most significant bytes). As seen in Figure 4-5,
the instruction SB *2,*3 when coded equals 74D2.

ASSEMBLY LANGUAGE:

SB *2,*3 Subtract a copy of the source operand (byte) from the dest-
ination operand (byte) and replace the destination operand
with the difference (i.e., subtract the byte value at the
address held in register 2 from the byte value at the
address held in register 3; place the result in the byte
at the address held in register 3).

FORMAT 1:

0 1 2 3 14 5 6 7 8 9 10 11 12 13 114 15

Op Code B TD DR Ts SR

B = 1 for bytes and B = 0 for words.

MACHINE LANGUAGE:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 1 1 0 1 0 0 1 1 0 1 0 0 1 0

7 14 D 2

FIGURE 4-5. INDIRECT REGISTER ADDRESSING EXAMPLE

4.5.3 Indirect Register Autoincrement Addressing

The indirect register autoincrement addressing mode specifies a workspace
register that contains the address of the operand. After the address is
obtained from the workspace register, the workspace register is incremented.
The workspace register increment is one for byte operations and two for word
operations. An indirect register autoincrement is written as a term preceded
by an asterisk (*) and followed by a plus (+) sign. In the example given in
Figure 4-6, the source register contains an operand (direct register
addressing) while the destination register contains the address where the
other operand is located. Therefore the value of Ts = 002 (direct register
addressing) while TD = 112 (indirect register autoincrement addressing). The
associated register fields contain the binary values of the numbers of the
registers affected. The op code for add words (A) is 1012. B = 02, because
words are used instead of bytes. As seen in Figure 4-6, the instruction A
1,*0+ when coded equals AC01.

ASSEMBLY LANGUAGE:

A 1,*0+ Add a copy of the source operand (word) to the destination
operand (word) and replace the destination operand with the
sum. After the addition is completed, the value in RO will
be incremented by 2 (i.e., add the contents of register 1
to the contents at the address found in register 0 and
replace the contents of the address in register 0 with
the sum; then increment by two the address in register 0).

FORMAT 1:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Op code B TD DR Ts SR

B = 1 for bytes and B = 0 for words.

MACHINE LANGUAGE:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 114 15

1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1

> A c 1

FIGURE 4-6. INDIRECT REGISTER AUTOINCREMENT ADDRESSING EXAMPLE

/4-12

1 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0

1st
Word
2nd
Word
3rd
Word

> C820

>0200

>0202

Address of
Source Operand
Address of
Dest. Operand

4.5.4 Symbolic Memory Addressing, Not Indexed

Symbolic memory addressing specifies a memory address that contains the
operand. A symbolic memory address is written as an expression preceded by an
at (@) sign. In the example given in Figure 4-7, both DR and SR are set to 02
as memory locations are being used instead of workspace registers. Both T
fields contain 102 to denote symbolic memory addressing. The second word of
the instruction contains the memory address for the source operand and the
third word of the instruction contains the memory address for the destination
operand. The op code for move words (MOV) is 1102. B = 02, because words are
involved instead of bytes. As seen in Figure 4-7, the instruction MOV @ 0200,
@ 0202 when coded is:

>C820 (1st word)
>0200 (2nd word)
>0202 (3rd word)

ASSEMBLY LANGUAGE:

MOV @>200,@>202 Replace the destination operand with a copy of the source
operand (i.e., add the contents of memory address 020016
to the contents of memory address 020216 and replace the
contents of memory address 020216 with the sum).

FORMAT 1:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Op Code B TD DR Ts SR

B = 1 for bytes and B = 0 for words.

MACHINE LANGUAGE:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FIGURE 4-7. SYMBOLIC MEMORY ADDRESSING EXAMPLE

4-13

0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

1st
Word
2nd
Word

> 02E0

> 0200

4.5.5 Symbolic Memory Addressing, Indexed

Symbolic memory addressing can be indexed. This mode of addressing specifies
a memory address that contains the operand. The memory address is determined
by summing the contents of a workspace register and a symbolic address. An
indexed memory address is written as an expression preceded by an at (@) sign
and followed by a term enclosed in parenthesis. The term within the
parenthesis is the index register. An example illustrating this addressing
mode follows:

A @>0200(7),6

This instruction will sum the operand determined by indexed memory addressing
with the operand in a direct workspace register. The first operand address is
obtained by summing symbolic address 020016 and the contents of workspace
register R7. Assuming that R7 = 4, then the contents of >0204 (020016 plus
the contents (4) of R7) is added to the contents of R6 and then the sum is
placed in R6. Indexing utilizes the contents of a workspace register to modify
a symbolic address.

4.5.6 Immediate Addressing

Immediate addressing is used by the immediate instructions. Immediate
instructions use the contents of the word following the instruction word as an
operand of the instruction. This mode allows an absolute value to be
specified as an operand. It can be used to load the workspace pointer,
workspace registers, or the status register interrupt mask. Examples using
this addressing mode are given in Figures 4-8 and 4-9. The first example uses
this mode to define the starting address for the workspace registers at M.A.
020016. The value of R is set to 0 as no workspace register is involved. The
resulting code is given in the figure. The second example uses this mode to
load workspace register R5 with 1510 (Note: 1510 = F16). As this instruction
involves a workspace register (R5), a value for R (01012) is given.

ASSEMBLY LANGUAGE:

LWPI >0200 Load the workspace pointer with >0200.

FORMAT 8:

0 1 2 3 6 7 8 9 10 11 12 13 14 15

OP Code N R

Immediate Operand (I0P)

MACHINE LANGUAGE:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FIGURE 4-8. IMMEDIATE ADDRESSING EXAMPLE 1

4-14

ASSEMBLY LANGUAGE:

LI 5,15 Load workspace register (R5) with 1510.

FORMAT 8:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Op Code N R

Immediate operand (TOP)

MACHINE LANGUAGE:

2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

> 0205

> 000F

FIGURE 4-9. IMMEDIATE ADDRESSING EXAMPLE 2

4.5.7 Program Counter Relative Addressing

Program counter relative addressing is used by the jump instructions. This
mode allows a change in program counter contents, either an unconditional
change or a change conditional on status register contents. Examples using
this mode follow:

JMP $ 6 Jump to location, 6 bytes forward

JEQ $ + 4 If status register's equal bit = 1, jump 4 bytes
(MA + 4)

JEQ $ If status register's equal bit = 1, stay in loop

4.5.6 CRU Bit Addressing

CRU bit addressing is used with the five CRU instructions (SBO, SBZ, TB, LDCR,
STCR) to control I/O operations. There are two CRU bit addressing forms: CRU
single-bit and CRU multibit. The CRU instructions SBO, SBZ, and TB use the
single-bit form while CRU instructions LDCR and STCR use the multibit form.
Prior to describing CRU bit addressing, the CRU interface will be reviewed.

The CRU interface uses three dedicated lines (CRUIN, CRUOUT, and CRUCLK) and
the address bus. CRUIN and CRUOUT are used for serial data input and output,
respectively. CRUCLK provides data timing strobes and is used in conjunction
with CRUOUT. These lines are used in accordance with the address bus to
transfer data to and from the microprocessor or to test the logic level of an
addressed CRU input bit. Possibly the best way to envision the CRU is in
terms of an addressable latch. The outputs from the latch are a function of
the signal on the address lines and the logic level fed to the data input
line. The output lines could be thought of as CRU bits and the address lines
could be thought of as address lines emanating from the microprocessor.
Depending on the address on the address bus and the level of the logic input
signal, various outputs could be obtained. The CRUOUT line is similar to the

4-15

data input line for the latch and uses the SBO (set bit to one) and SBZ (set
bit to zero) instructions to control the level on the output line (CRU bit).

The CRU interface is actually much more sophisticated than the simple concepts
presented in the previous discussion. The CRU can not only set a specific
line (CRU bit) to a one or a zero, it can also test the logic level of these
lines (CRU bits). The CRU can also be used to transfer a bit pattern from a
memory location to a specific output device or it can store a bit pattern
presented to it by an input device. CRU I/O operations are implemented by a
TMS 9901 Programmable Systems Interface located on the processor board.

Figure 4-10 shows the signals and lines used in CRU bit addressing.

CRUCLK XTAL • • •

CRU
CLOCK

CLOCK FLIP-FLOP

CRUOUT INPUT/OUTPUT
INTERFACES

CRUIN 1

16-BIT PROCESSOR USING S481S 1
ADDRESS BUS A3-A14)

L TM 990/1481

FIGURE 4-10. CRU INTERFACE

The CRU bit selected by single-bit instructions is determined by the value in
bits 3-14 of workspace register 12 (R12) plus the value of the signed
dispacement from the single-bit instruction (See Figure 4-11).

SOFTWARE BASE ADDRESS
A

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

x

DON'T CARE
ti

HARDWARE BASE ADDRESS

x x R12

8 9 10 11 12 13 14 15
I I ADD SIGNED

1 DISPLACEMENT

BIT SIGN 13

.

EXTENDED

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 0 0 ADDRESS BUS

1

SET TO ZERO EFFECTIVE CRU BIT ADDRESS
FOR ALL CRU ON ADDRESS LINES A3 TO A14
OPERATIONS

HARDWARE BIT ADDRESS

FIGURE 4-11. CRU BIT ADDRESS DEVELOPMENT

14-16

In order to determine the required CRU bit address, consult the CRU map for
the TM 990/1481 located in Appendix B. The CRU address for output PO of the
TMS 9901 is 90 and P4 is displaced from PO by four bits. The required code
would be:

LI 12,>120 NOTE: 2 X >90 = >120
SBO

It should be noted that R12 was loaded with 2 X the desired value (90). This
is necessary because bit 15 of R12 is not used in CRU base address
determination. In order to place the correct CRU base address in R12, either
a value equal to 2 X the required value may be loaded into R12 (as in the
previous case) or the desired value may be loaded into R12 and then shifted
left one bit using the following code:

LI 12,>90
SLA 12,1

Figure 4-12 shows the machine and assembly language for the instruction SBO 4.

ASSEMBLY LANGUAGE:

SBO 4

FORMAT

MACHINE

Set the digital output bit to a logic one
address derived by adding 4 to the hardware

:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

on the CRU at the
base address.

Op Code Displacement

LANGUAGE:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 1 1 1 0 1 0 0 0 0 0 1 0 0

> 1 D 0 14

FIGURE 4-12. CRU BIT ADDRESSING EXAMPLE 1

14-17

CRU multibit instructions (LDCR and STCR) are used to transfer a specific
number of bits from memory to the CRU at the address contained in bits 3-14 of
workspace register 12 (R12) or to transfer a specified number of CRU bits from
the CRU to the memory location supplied by the user as the source operand.
The format for CRU multibit instructions is given in Figure 4-13. The C field
specifies the number of bits to be transferred. If C = 0, 16 bits will be
transferred. The CRU base register (R12, bits 3-14) defines the starting CRU
bit address. Figure 4-13 shows the LDCR instruction being used to transfer 16
bits from MA >0200 to the CRU.

ASSEMBLY LANGUAGE:

LDCR @>0200,0 Transfer the number of bits specified in the C field from
the source operand to the CRU; note, If C = 0, 16 bits
will be transferred (i.e., place the CRU hardware base
address on the address bus, place the LSB value of memory
address 020016 on the CRUOUT line, increment the CRU
hardware base address by one, and repeat this process until
all 16 bits at M.A. 020016 are transferred using the next
bit to the left each time).

FORMAT 4:

0 1 2 3 14 5 6 9 10 11 12 13 14 15

Op Code C TS SR

MACHINE LANGUAGE:

0 1 2 3 14 5 6 7 8 9 10 11 12 13 114 15

0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

>3020

>0200

FIGURE 4-13. CRU BIT ADDRESSING EXAMPLE 2

4-18

4.6 INSTRUCTIONS

Table 4-3 lists terms used in describing the instructions of the TM 990/1481.
Table 4-4 is an alphabetical list of instructions. Table 4-5 is a numerical
list of instructions by op code. Examples are shown in both assembly language
(A.L.) and machine language (M.L.). The greater-than sign (>) indicates
hexadecimal.

TABLE 4-3. INSTRUCTION DESCRIPTION TERMS

TERM DEFINITION

B Byte indicator (1 = byte, 0= word)

C Bit count

DR Destination address register

DA Destination address

10P Immediate operand

LSB(n) Least significant (right most) bit of (n)

M.A. Memory Address

MSB(n) Most significant (left most) bit of (n)

N Don't care

PC Program counter

Result Result of operation performed by instruction

SR Source address register

SA Source address

ST Status register

Sin Bit n of status register

To Destination address modifier

TS Source address modifier

WR or Ft Workspace register

WRn or Rn Workspace register n

(n) Contents of n

a —).b a is transferred to b

(a) -->b Contents of a is transferred to be

in] Absolute value of n

Arithmetic addition

Arithmetic subtraction

AND Logical AND

OR Logical OR

Logical exclusive OR

n Logical complement of n

Hexadecimal value

4-19

TABLE 4-4. INSTRUCTION SET, ALPHABETICAL INDEX

ASSEMBLY

LANGUAGE

MNEMONIC

MACHINE

LANGUAGE

OP CODE

FORMAT

STATUS REG.

BITS

AFFECTED

RESULT

COMPARED

TO ZERO

INSTRUCTION

A A000

CD
 C

D
 C

O
 C

O
 C

D
 C

D
 C

D
 C

D

I' s
 n
 c-

c
o
 CD

 C
D

c-

n

 co
c
- C

.) C
D

 C
D

 C
D

 0
)
 C

D
 C

D
 c

••• C
D

 C
D

 C
D

 N
N

N
N

N
N

N
N

N
 N

 N

N

0-4 X Add (Word)

AB 8000 0-5 X Add (Byte)

ABS 0740 0-2 X Absolute Value

AD 0E40 0-4 X Add Double Precision Real

Al 0220 0-4 X Add Immediate

ANDI 0240 0-2 X And Immediate

AR 0C40 0-4 X Add Real

B 0440 — — Branch

BL 0680 — Branch and Link (R11)

BLWP 0400 — Branch; New Workspace Pointer

C 8000 0-2 — Compare (Word)

CB 9000 0-2,5 — Compare (Byte)

CDE 0005 0-4 X Convert Double Precision Real to Extended Integer
CDI 0001 0-4 X Convert Double Precision Real to Integer

CED 0007 0-4 X Convert Extended Integer to Double Precision Real
CER 0006 0-4 X Convert Extended Integer to Real

CI 0280 0-2 — Compare Immediate

CID 0E80 0-4 X Convert Integer to Double Precision Real

CIR 0080 0-4 X Convert Integer to Real

CKOF 03C0 User Defined

CKON 03A0 User Defined

CLR 04C0 Clear Operand

COC 2000 2 Compare Ones Corresponding

CRE 0004 0-4 X Convert Real to Extended Integer

CRI OCOO 0-4 X Convert Real to Integer

CZC 2400 2 Compare Zeroes Corresponding

DD OF40 0-4 X Divide Double Precision Real

DEC 0600 0-4 X Decrement (by one)

DECT 0640 0-4 X Decrement (by two)

DIV 3C00 4 Divide

DIVS 0180 0-2,4 X Divide Signed

DR OD40 0-4 X Divide Real

IDLE 0340 — Computer Idle

INC 0580 0-4 X Increment (by one)

INCT 05C0 0-4 X Increment (by two)

INV 0540 0-2 X Invert (One's Complement)

JEQ 1300 — — Jump Equal (ST2 = 1)

JGT 1500 — — Jump Greater Than (ST1 = 1), Arithmetic

JH 11300 Jump High (STO = 1 and ST2 = 0), Logical

JHE 1400 — Jump High or Equal (STO or ST2 = 1), Logical
JL 1A00 — — Jump Low (STO and ST2 = 0), Logical

JLE 1200 — — Jump Low or Equal (STO = 0 or ST2 = 1), Logical
JLT 1100 — Jump Less Than (ST1 and ST2 = 0), Arithmetic

JMP 1000 — — Jump Unconditional

JNC 1700 — Jump No Carry (ST3 = 0)

JNE 1600 — — Jump Not Equal (ST2 = 0)

JNO 1900 — Jump No Overflow (ST4 = 0)

JOC 1800 — — Jump On Carry (ST 3 = 1)

4-20

TABLE 4-4. INSTRUCTION SET, ALPHABETICAL INDEX (CONCLUDED)

ASSEMBLY

LANGUAGE

MNEMONIC

MACHINE

LANGUAGE

OP CODE

FORMAT

STATUS REG.

BITS

AFFECTED

RESULT

COMPARED

TO ZERO

INSTRUCTION

JOP 1C00 2 — Jump Odd Parity (ST5 = 1)

LD OF80 6 0-2 X Load Double Precision Real

LDCR 3000 4 0-2,5 X Load CRU

LI 0200 8 — X Load Immediate

LIMI 0300 8 12-15 — Load Interrupt Mask Immediate

LR OD80 6 0-2 X Load Real

LREX 03E0 7 12-15 Load and Execute

LST 0080 18 0-15 Load Status Register

LWP 0090 18 — Load Workspace Pointer Register

LWPI 02E0 8 — Load Immediate to Workspace Pointer

MD OF00 6 0-4 X Multiply Double Precision Real

MOV C000 1 0-2 X Move (Word)

MOVB D000 1 0-2,5 X Move (Byte)

MPY 3800 9 — — Multiply

MPYS 01C0 6 0-2 X Multiply Signed

MR ODOO 6 0-4 X Multiply Real

NEG 0500 6 0-2 X Negate (Two's Complement)

NEGD 00O3 7 0-2 X Negate Double Precision Real

NEGR 00O2 7 0-2 X Negate Real

OR I 0260 8 0-2 X OR Immediate

RSET 0360 7 12-15 Reset AU

RTWP 0380 7 0-15 Return From Context Switch

S 6000 1 0-4 X Subtract (Word)

SB 7000 1 0-5 X Subtract (Byte)

SBO 1D00 2 — Set CRU Bit to One

SBZ 1 E00 2 — Set CRU Bit to Zero

SD OECO 6 0-4 X Subtract Double Precision Real

SETO 0700 6 Set Ones

SLA 0A00 5 0-4 X Shift Left Arithmetic

SOC E000 1 0-2 X Set Ones Corresponding (Word)

SOCB F000 1 0-2,5 X Set Ones Corresponding (Byte)

SR OCCO 6 0-4 X Subtract Real

SRA 0800 5 0-3 X Shift Right (sign extended)

SRC OBOO 5 0-3 X Shift Right Circular

SR L 0900 5 0-3 X Shift Right Logical

STCR 3400 4 0-2,5 X Store From CRU

STD OFCO 6 0-2 X Store Double Precision Real

STR ODCO 6 0-2 X Store Real

STST 02C0 8 — Store Status Register

STWP 02A0 8 — Store Workspace Pointer

SWPB 06C0 6 Swap Bytes

SZC 4000 1 0-2 X Set Zeroes Corresponding (Word)

SZCB 5000 1 0-2,5 X Set Zeroes Corresponding (Byte)

TB 1F00 2 2 Test CRU Bit

X 0480 6 — Execute

XOP 2C00 9 6 Extended Operation

XOR 2800 3 0-2 X Exclusive OR

4-21

TABLE 4-5. INSTRUCTION SET, NUMERICAL INDEX

MACHINE

LANGUAGE

OP CODE

(HEXADECIMAL)

ASSEMBLY

LANGUAGE

MNEMONIC

INSTRUCTION

0080 LST Load Status Register

0090 LWP Load Workspace Pointer

0180 DIVS Divide Signed

0160 MPYS Multiply Signed

0200 LI Load Immediate

0220 Al Add Immediate

0240 ANDI And Immediate

0260 OR I Or Immediate

0280 CI Compare Immediate

02A0 STWP Store WP

02C0 STST Store ST

02E0 LWPI Load WP Immediate

0300 LIMI Load Int. Mask

0340 IDLE Idle

0360 RSET Reset AU

0380 RTWP Return from Context Sw.

03A0 CKON User Defined

03C0 CKOF User Defined

03E0 LREX Load & Execute

0400 BLWP Branch; New WP

0440 Branch

0480 B Execute

04C0 CLR Clear to Zeroes

0500 NEG Negate to Ones

0540 INV Invert

0580 INC Increment by 1

05C0 INCT Increment by 2

0600 DEC Decrement by 1

0640 DECT Decrement by 2

0680 BL Branch and Link

06C0 SWPB Swap Bytes

0700 SETO Set to Ones

0740 ABS Absolute Value

0800 SRA Shift Right Arithmetic

0900 SRL Shift Right Logical

0A00 SLA Shift Left Arithmetic

0600 SRC Shift Right Circular

OCOO CR I Convert Real to Integer

0001 CDI Convert Double Precision Real to Integer

00O2 NEGR Negate Real

00O3 NEGD Negate Double Precision R eal

0004 CR E Convert Real to Extended Integer

0005 CDE Convert Double Precision Real to Extended Integer

0006 CER Convert Extended Integer to Real

0007 CED Convert Extended Integer to Double Precision Real

OCCO SR Subtract Real

0C40 AR Add Real

0080 CIR Convert Integer to Real

ODOO MR Multiply Real

4-22

TABLE 4-5. INSTRUCTION SET, NUMERICAL INDEX (CONCLUDED)

MACHINE

LANGUAGE

OP CODE

(HEXADECIMAL)

ASSEMBLY

LANGUAGE

MNEMONIC

INSTRUCTION

OD40 DR Divide Real

OD80 LR Load Real

ODCO STR Store Real

0E40 AD Add Double Precision Real

0E80 CID Convert Integer to Double Precision Real

OECO SD Subtract Double Precision Real

OF00 MD Multiply Double Precision Real

OF40 DD Divide Double Precision Real

OF80 LD Load Double Precision Real

OFCO STD Store Double Precision Real

1000 JMP Unconditional Jump

1100 JLT Jump on Less Than

1200 JLE Jump on Less Than or Equal

1300 JEQ Jump on Equal

1400 JHE Jump on High or Equal

1500 JGT Jump on Greater Than

1600 JNE Jump on Not Equal

1700 JNC Jump on No Carry

1800 JOC Jump on Carry

1900 JNO Jump on No Overflow

1A00 JL Jump on Low

1600 JH Jump on High

1C00 JOP Jump on Odd Parity

1D00 SBO Set CRU Bits to Ones

1 E00 SBZ Set CRU Bits to Zeroes

1 FOO TB Test CRU Bit

2000 COC Compare Ones Corresponding

2400 CZC Compare Zeroes Corresponding

2800 XOR Exclusive Or

2C00 XOP Extended Operation

3000 LDCR Load CRU

3400 STCR Store CRU

3800 MPY Multiply

3C00 DIV Divide

4000 SZC Set Zeroes Corresponding (Word)

5000 SZCB Set Zeroes Corresponding (Byte)

6000 S Subtract Word

7000 SB Subtract Byte

8000 C Compare Word

9000 CB Compare Byte

A000 A Add Word

6000 AB Add Byte

C000 MOV Move Word

D000 MOVB Move Byte

E000 SOC Set Ones Corresponding (Word)

F000 SOCB Set Ones Corresponding (Byte)

23

4.6.1 Format 1 Instructions

These are dual operand instructions with multiple addressing modes for source
and destination operands.

GENERAL FORMAT:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

OP CODE B TD DR TS SR

If B = 1, the operands are bytes and the operand addresses are byte addresses.
If B = 0, the operands are words and the operand addresses are word addresses.

MNEMONIC
OP CODE B

3
MEANING

RESULT

COMPARED

TO 0

STATUS

BITS

AFFECTED

DESCRIPTION
0 1 2

A 1 0 1 0 Add Yes 0-4 ISA)-(DA) -HDA)

AB 1 0 1 1 Add bytes Yes 0-5 (SA1-,-(DA) -> IDA)

C 1 0 0 0 Compare No 0-2 Compare ISA) to IDA) and set

appropriate status bits

CB 1 0 0 1 Compare bytes No 0-2,5 Compare (SA) to (DA) and set

appropriate status bits

MOV 1 1 0 0 Move Yes 0-2 (SA) ->(DA)

MOVB 1 1 0 1 Move bytes Yes 0-2,5 (SA) -). IDA)

S 0 1 1 - 0 Subtract Yes 0-4 IDA) - ISA) -*-(DA)

SB 0 1 1 . 1 Subtract bytes Yes 0-5 IDA) - (SA) -)* (DA)

SOC 1 1 1 0 Set ones corresponding Yes 0-2 (DA) OR (SA) -tot IDA)

SOCB 1 1 1 1 Se; ones corresponding bytes Yes 0-2,5 (DA) OR (SA) --*(DA)

SZC 0 1 0 0 Set zeroes corresponding Yes 0-2 (DA) AND ISA) -> IDA)

SZCB 0 1 0 1 Set zeroes corresponding bytes Yes 0-2,5 IDA) AND ISA) -0' IDA)

EXAMPLES

(1) ASSEMBLY LANGUAGE

A @>100,R2 ADD CONTENTS OF MA > 100 & R2, SUM IN R2

MACHINE LANGUAGE:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 0 0 0 0 1 0 I 1 0 I- 0 0 0 0 >A0A0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 >0100

4-24

(2) ASSEMBLY LANGUAGE:
CB R1,112 COMPARE BYTE R1 TO R2, SET ST

MACHINE LANGUAGE

O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0 0 I 1 O 0

O 0 1 0 0 0 O 0 0 1

NOTE
In byte instruction designating a register, the left
byte is used. In the above example, the left byte (8
MSB's) of R1 is compared to the left byte of R2, and the
ST set to the results.

4.6.2 Format 2 Instructions

4.6.2.1 Jump Instructions. Jump instructions cause the PC to be loaded with
the value PC+2 (signed displacement) if bits of the Status Register are at
specified values. Otherwise, no operation occurs and the next instruction is
executed since the PC was incremented by two and now points to the next
instruction. The signed displacement field is a word (not byte) count to be
added to PC. Thus, the jump instruction has a range of -128 to 127 words (-256
to 254 bytes) from the memory address following the jump instruction. No ST
bits are affected by a jump instruction.

GENERAL FORMAT:

O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

OP CODE SIGNED DISPLACEMENT (WORDS)

' MNEMONIC
OP CODE

- MEANING ST CONDITION TO CHANGE PC
0 1 2 3 4 5 6 7

JEQ 0 0 0 1 0 0 1 1 Jump equal ST2 = 1

JGT 0 0 0 1 0 1 0 1 Jump greater than ST1 = 1

JH 0 0 0 1 1 0 1 1 Jump high STO = 1 and ST2 = 0

JHE 0 0 0 1 0 1 0 0 Jump high or equal STO = 1 or ST2 = 1

JL 0 0 0 1 1 0 1 0 Jump low STO = 0 and ST2 = 0

JLE 0 0 0 1 0 0 1 0 Jump low or equal STO = 0 or ST2 = 1

JLT 0 0 0 1 0 0 0 1 Jump less than ST1 = 0 and ST2 = 0

JMP 0 0 0 1 0 0 0 0 Jump unconditional unconditional

JNC 0 0 0 1 0 1 1 1 Jump no carry ST3 = 0

JNE 0 0 0 1 0 1 1 0 Jump not equal ST2 = 0

JI\10 0 0 0 1 1 0 0 1 Jump no overflow ST4 = 0

JOC 0 0 0 1 1 0 0 0 Jump on carry ST3 = 1

JOP 0 0 0 1 1 1 0 0 Jump odd parity ST5 = 1

4-25

>9081

O 0 0 1 0 0 1 1 O 0 0 0 0 0 0 1

In assembly language, $ in the operand indicates "at this instruction".
Essentially JMP $ causes an unconditional loop to the same instruction
location, and JMP $+2 is essentially a no-op ($+2 means "here plus two
bytes"). Note that the number following the $ is a byte count while
displacement in machine language is in words.

EXAMPLES

(II ASSEMBLY LANGUAGE:
JEQ $+4 IF EQ BIT SET, SKIP 1 INSTRUCTION

MACHINE LANGUAGE:

O 1 2 6 7 10 11 12 13 14 15

>1301

PC POINTS TO

IF STATUS REGISTER BIT 2 = 1

SKIP NEXT INSTRUCTION

The above instruction continues execution 4 bytes (2 words) from the
instruction location or, in other words, two bytes (one word) from the Program
Counter value (incremented by 2 and now pointing to next instruction while JEQ
executes). Thus, the signed displacement of 1 word (2 bytes) is the value to
be added to the PC.

(21 ASSEMBLY LANGUAGE:
JMP $ REMAIN AT THIS LOCATION

MACHINE LANGUAGE:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 1 1 1 1 >10FF

PC -1 WORD JMP S CONTINUOUS LOOP

TO JMP S (), FF = -1 WORD) PC POINTS TO

This causes an unconditional loop back to one word less than the Program
Counter value (PC + FF = PC-1 word). The Status Register is not checked. A
JMP $+2 means "go to the next. instruction" and has a displacement of zero (a
no-op). No-ops can substitute for deleted code or can be used for timing
purposes.

4-26

4.6.2.2 CRU Single-Bit Instructions. These instructions test or set values
at the Communications Register Unit (CRU). The CRU bit is selected by the CRU
address in bits 3 to 14 of register 12 plus the signed displacement value. The
selected bit is set to a one or zero, or it is tested and the bit value placed
in equal bit (2) of the Status Register. The signed displacement has a value
of -128 to 127.

0. 1 2 4 5 7 10 11 12 13 14 15

General Format: OP CODE SIGNED DISPLACEMENT

MNEMONIC
OP CODE

MEANING

STATUS

 BITS DESCRIPTION 0 1 2 3 4 5 6 7
AFFECTED

SBO 0 0 0 1 1 1 0 1 Set bit to one Set the selected CRU output bit to 1.

SBZ 0 0 0 1 1 1 1 0 Set bit to zero Set the selected CRU output bit to O.

TB 0 0 0 1 1 1 1 1 Test bit 2 If the selected CHU input bit = 1, set ST2.

EXAMPLE

R12, BITS 3 TO 14 = >100

ASSEMBLY LANGUAGE:

SBO 4 SET CRU ADDRESS >104 TO ONE

MACHINE LANGUAGE:

O 1 2 4 5 6 7 8 9 10 11 12 13 14 15

O 0 0 1 1 1 0 1 O 0 0 0 0 1 0 0 >1D04

14-27

4.6.3 Format 3/9 Instructions

These are dual operand instructions with multiple addressing modes for the
source operand, and workspace register addressing for the destination. The MPY
and DIV instructions are termed format 9 but both use the same format as
format 3. The XOP instruction is covered in paragraph 4.6.9.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Gomel Format: OP CODE OR (REGISTER ONLY) Ts SR

MNEMONIC

OP CODE

MEANING

RESULT

COMPAREO-

TO 0

STATUS

BITS

AFFECTED DESCRIPTION 0 1 2 3 4 5

COC 0 0 1 0 0 0 Compare ones No 2 Test (OR) to determine if 0's are in each
corresponding - bit position where l's are in (SA). If so,

set ST2.

CZC 0 0 1 0 0 1 Compare zeros
corresponding

No 2 Test (DR) to determine if 0's are in each
bit position where is are in (SA). If so,
set ST2.

XOR 0 0 1 0 1 0 Exclusive OR Yes 0-2 (OR) ED (SA) --)' (DR)

MPY 0 0 1 1 1 0 Multiply No Multiply unsigned (DR) by unsigned
(SA) and place unsigned 32-bit product
in DR (mast significant) and DR + 1

(least significant). If WR15 is DR, the
next word in memory after WR15 will

be used for the least significant half of
the product.

DIV 0 0 1 1 1 1 Divide No 4 If unsigned (SA) is less than or equal to

unsigned (DK perform no operation

and set ST4. Otherwise divide unsigned

(DR) and (DR) by unsigned (SA).
Quotient -' IDRI, remainder -. (DR* 11.
If DR 15, the nem word in memory
after WR 1- 5 will be used for the
remainder_

Exclusive OR Logic 100
000 o
iCri 0

EXAMPLES

(7) ASSEMBLY LANGUAGE:

MPY R2,R3

MACHINE LANGUAGE:

MULTIPLY CONTENTS OF R2 AND R3, RESULT IN R3 AND R4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 1 1 0 1 1 0 0 0 0 1 0 >38C2

BEFORE AFTER

R2 0002 0002

R3 0003 0000 32-BIT

R4 N 0006 RESULT

14-28

0 0 1 1 1 1 0 1 0 1

0 1 1 1 1 0 0 0

10 11 12 13 14 15

>3D60

>3E00

1 0 0 0 0 0

0 0 0 0 0 0

MACHINE LANGUAGE:

0 1 2 3 4 5 6 7 8 9

The destination operand is always a register, and the values multiplied are
16-bits, unsigned. The 32-bit result is placed in the destination register and
destination register +1, zero filled on the left.

(2) ASSEMBLY LANGUAGE:
DIV @> 3E00, R5 DIVIDE CONTENTS OF R5 AND R6 BY VALUE AT M.A. > 3E00

M.A. > 3E00

R5

R6 -- REMAINDER

The unsigned 32-bit value in the destination register and destination register
+1 is divided by the source operand value. The result is placed in the
destination register. The remainder is placed in the destination register +1.

(31 ASSEMBLY LANGUAGE:
COC R10,R11 ONES IN R10 ALSO IN R11?

MACHINE LANGUAGE:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 1 0 0 0 I 1 0 1 1 0 0 1 0 1 0 I >22CA

Locate all binary ones in the source operand. If the destination operand also
has ones in these positions, set the equal flag in the Status Register;
otherwise, reset this flag. The following sets the equal flag:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R10 1 0 1 0 1 0 1 0 0 0 0 0 1 1 0 0 >AAOC

R11 1 1 1 0 1 1 1 1 1 1 0 0 1 0 1 >EFCD

Set EQ bit in Status Register to 1.

)4-29

4.6.4 Format 4 (CRU Multibit) Instructions

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

General Format: OP CODE C TS SR

The C field specifies the number of bits to be transferred. If C = 0, 16
bits will be transferred. The CRU base register (WR 12, bits 3 through 14)
defines the starting CRU bit address. The bits are transferred serially and
the CRU address is incremented with each bit transfer, although the contents
of R12 are not affected. Ts and SA provide multiple mode addressing capability
for the source operand. If 8 or fewer bits are transferred (C = 1 through 8),
the source address is a byte address. If 9 or more bits are transferred (C =
0, 9 through 15), the source address is a word (even number) address. If the
source is addressed in the workspace register indirect autoincrement mode, the
workspace register is incremented by 1 if C = 1 through 8, and is incremented
by 2 otherwise.

OP CODE
RESULT STATUS

MNEMONIC MEANING COMPARED

TO 0

BITS

AFFECTED

DESCRIPTION
0 1 2 3 4 5

LDCR 0 0 1 1 0 0 Load communcation

register

Yes 0-2,51 Beginning with LSB of (SA), transfer the

specified number of bits from (SA) to

the CRU.

STCR 0 0 1 1 0 1 Store communcation

register

Yes 0-2,51 Beginning with LSB of ISA), transfer the

specified number of bits from the CRU to

(SA1. Load unfilled bit positions with 0.

tST5 is affected only if 1 f. C 8.

EXAMPLE

ASSEMBLY LANGUAGE:
LDCR @>FE00,8 LOAD 8 BITS ON CRU FROM M.A. >FE00

MACHINE LANGUAGE:

0 1 2 3 4 5 6_ 7 8 9 10 11 12 13 14 15

0 0 1 1 0 0 1 0 0 0 1 0 0 0 0 0 >3220

1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 >FE00

4-30

4.6.5 Format 5 (SHIFT) Instructions

These instructions shift (left, right, or circular) the bit patterns in a
workspace register. The C field contains the number of bits to shift. The last
bit value shifted out lis placed in the carry bit (3) of the Status Register.
If the SLA instruction causes a one to be shifted into the sign bit, the ST
overflow bit (4) is set. For example:

SLA

BEFORE

AFTER

General Format:

If C = 0, bits
12 through 15

R1,3

0

,—Sign Bit

OV BIT = 0

OV BIT = 1

10 11 12 13 14 15

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 2 3 4 5 6 7 8 9

OP CODE C R

12 through 15 of RO contain
of WRO = 0, the shift count is

the
16.

shift count. If C = 0 and bits

I RESULT STATUS

MEANING COMPARED BITS DESCRIPTION

TOO AFFECTED

] MNEMONIC
OP CODE

0 1 2 3 4 5 6 7

SLA 0 0 0 0 1 0 1 0 Shift ief1 anthmetic Yes 0-4 Shift (R/ left. Fill vacated bit

positions with 0.

SRA 0 0 0 0 1 0 0 0 Shift right arithmetic Yes 0-3 Shift (RI right. Fill vacated bit

positions with original MSB of (Ri.

SRC 0 0 0 0 1 0 1 1 Shif, ,fight circula- Yes Shift (13/ right. Shift previous LSB

into MSB.

SRL 0 0 0 0 1 0 0 1 Shift right logical Yes 0-3 Shift (131 right. Fill vacated bit

positions with Us.

EXAMPLES

(0 ASSEMBLY LANGUAGE:
SRA R1,2 SHIFT R1 RIGHT 2 POSITIONS, CARRY SIGN

R1 BEFORE

R1 AFTER

MACHINE LANGUAGE:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

>0841

:.-8FOF

--E3C3

0 0 0 0 1 0 0 0 j 0 0 1 0 0 0 0 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0 0 0 1 1 1 1
1

0 0 0 0
I

1 1 1 1

N
N

...

-N—
..
.. .

N
..

.

1 1 1
r

0 0 0 1 1 1 1 0 0 0 0 1 1

BIT CARRIED IN SIGN

4-31

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

>0845

>090F

-?F090

0 0 0 1 0 0 0 L0 1 0 0 0 1 0 1

1 2 3 4 5 6 8 9 10 11 12 13 14 15

0 0 0 1 0 0 1 0 0 0 0 1 1 1 1

1 1 0 0 0 0 I 1 0 0 1 0 0 0 0

0

L0

0

R5 BEFORE

R5 AFTER

0

(2) ASSEMBLY LANGUAGE:

SRC R5,4 CIRCULAR SHIFT R5 4 POSITIONS

MACHINE LANGUAGE:

(3) ASSEMBLY LANGUAGE:

SLA

0 I 1

R1,0 SHIFT COUNT IN RO

7 I 4
I 5 I 6 I

8 1 9 1 10 I 11

SHIFT COUNT

/0"mmInee,\••••\
12 I 13 I 14 I 15

-CCC3 1 1 1 1 0 0 1 1 0 0 0 0 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 0 0 0

RO

R1 (BEFORE)

R1 (AFTER)

VACATED BITS ZERO FILLED

4.6.6 Format 6 Instructions

These are single operand instructions. Examples illustrating the use of the
floating point instructions and signed multiply and divide can be found in
Appendix H.

0 1 2 3 5 6 7 8 9 10 11 12 13 14 15

General Format: OP CODE Ts L SR

The T and SR fields provide multiple mode addressing capability for the

source operand.

4-32

MNEMONIC
OP CODE

MEANING

RESULT

COMPARED

TO 0

STATUS

BITS

AFFECTED

DESCRIPTION
0 1 2 3 4 5 6 7 8 9

B 0 0 0 0 0 1 0 0 0 1 Branch No SA —. (PC)

BL 0 0 0 0 0 1 1 0 1 0 Branch and link No (PC) —, (R11); SA —> (PC)

BLWP 0 0 0 0 0 1 0 0 0 0 Branch and load

workspace pointer

No (SA) —. (WP); (SA+2) —> PC);

(old WP) — (new WR13(;

(old PC) —> (new WR14);

(old ST) --,- (new WR15);

the interrupt input (INTREG) is

not tested upon completion of

the BLWP instruction.

CLR 0 0 0 0 0 1 0 0 1 1 Clear operand No 0000 —, (SA)

SETO 0 0 0 0 0 1 1 1 0 0 Set to ones No FFFF16 . (SA)

INV 0 0 0 0 0 1 0 1 0 1 Invert Yes 0-2 (SA) — (SA) (ONE'S complement)

NEG 0 0 0 0 0 1 0 1 0 0 Negate Yes 0-4 --(SA) —> (SA)(TWO'S complement)

ABS 0 0 0 0 0 1 1 1 0 1 Absolute value* No 0-4 [(SA)1 —, (SA)

SWPB 0 0 0 0 0 1 1 0 1 1 Swap bytes No (SA), bits 0 thru 7 —, (SA), bits

8 thru 15; (SA), bits 8 thru 15—>

(SA), bits 0 thru 7.

INC 0 0 0 0 0 1 0 1 1 0 Increment Yes 0-4 (SA) + 1—> (SA)

INCT 0 0 0 0 0 1 0 1 1 1 Increment by two Yes 0-4 (SA) + 2— (SA)

DEC 0 0 0 0 0 1 1 0 0 0 Decrement Yes 0-4 (SA) — 1 —, (SA)

DECT 0 0 0 0 0 1 1 0 0 1 Decrement by two Yes 0-4 (SA) — 2 --, (SA)

Xt 0 0 0 0 0 1 0 0 1 0 Execute No Execute the instruction at SA.

STD 0 0 0 0 0 1 1 1 1 1 Start DP real Yes 0-2 FPA —. (SA)

LD 0 0 0 0 1 1 1 1 1 0 Load DP real Yes 0-2 (SA) —, FPA

DD 0 0 0 0 1 1 1 1 0 1 Divide DP real Yes 0-4 FPA -:- (SA) — FPA

MD 0 0 0 0 1 1 1 1 0 0 MPY DP real Yes 0-4 PFA X ISA) — FPA

SD 0 0 0 0 1 1 1 0 1 1 Sub DP real Yes 0-4 (FPA) — (SA) FPA

CID 0 0 0 0 1 1 1 0 1 0 Convert integer

to DP real

Yes 0-4 (SA) -- FPA

AD 0 0 0 0 1 1 1 0 0 1 Add DP real Yes 0-4 (SA) + FPA — FPA

STR 0 0 0 0 1 1 0 1 1 1 Store real Yes 0-2 FPA — (SA)

LR 0 0 0 0 1 1 0 1 1 0 Load real Yes 0-2 (SA) — FPA

DR 0 0 0 0 1 1 0 1 0 1 Divide real Yes 0-4 FPA : (SA) — FPA

MR 0 0 0 0 1 1 0 1 0 0 Multiply real Yes 0-4 FPA X (SA) — FPA

SR 0 0 0 0 1 1 0 0 1 1 Subtract real Yes 0-4 FPA — (SA) --, FPA

CIR 0 0 0 0 1 1 0 0 1 0 Convert integer

to real

Yes O-4 (SA) — FPA

AR 0 0 0 0 1 1 0 0 0 1 Add real Yes 0-4 FPA + (SA) — FPA

DIVS 0 0 0 0 0 0 0 0 1 1 Divide signed Yes 0-2,4 RO, R1 2.- ISA) = reminder in R1

= quotient in RO

MPYS 0 0 0 0 0 0 0 1 1 1 Multiply signed Yes 0-2 (RO) X (SA) — (RO and R1)

NOTE

Jumps, branches, and XOP's are compared in Table 4-6.

4-33

PC F 0 0

OLD PC VALUE R11

M.A. >FC00

--FCO2

-FC04

>FFOO

TO RETURN
EXECUTE
Et *R11

(AFTER)

O 0 0 0 0 1 1 0 1 0 O 0 0 0 1 0

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

F C 0 4

BL @ >FFOO

F F 00

NEXT INSTR.

B *R11

O 0 0 0 0 1 0 0 0 O 0 0 0 1 0

1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0

EXAMPLES

(1) ASSEMBLY LANGUAGE:

B *R2 BRANCH TO M.A. IN R2

MACHINE LANGUAGE:

O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

O 0 0 0 0 1 0 0 0 1 O 1 O 0 1 0

R2 I F D D 0

> 0452

B *R2 PC F D D 0 (AFTER)

M.A. >FDDO NEXT INSTR.

(2) ASSEMBLY LANGUAGE:

BL @>FFOO BRANCH TO M.A. >FFOO, SAVE OLD PC VALUE (AFTER EXECUTION) IN

MACHINE LANGUAGE:

O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(3) ASSEMBLY LANGUAGE:

BLWP @>F000 BRANCH, GET NEW WORKSPACE AREA

MACHINE LANGUAGE:

O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

14-34

>04A0

>FFOO

>0420

>F000

TABLE 4-6. COMPARISON OF JUMPS, BRANCHES, XOP'S

MNEMONIC PARAGRAPH DEFINITION SUMMARY

JMP 4.6.2 One-word instruction, destination restricted to +127,
-128 words from program counter.

B 4.6.6 Two-word instruction, branch to any memory location.
BL 4.6.6 Same as B with PC return address in R11.
BLWP 4.6.7 Same as B with new workspace; old WP, PC, and ST con-

tents (return vectors) are in new R13, R14, R15•
XOP 4.6.9 Same as BLWP with address of parameter (source oper-

and) in new R11. Sixteen XOP vectors outside program
in M. A. 4016 to 7E16; can be called by any program.

4.6.7 Format 7 RTWP/Control and Floating Point Instructions

Format 7 is used for 6 RTWP/control and a floating point instructions. The op
code for RTWP/control instructions occupies bits 0-10 with bits 11-15 not used
while the opcode for floating point instructions occupies all 16 bits. The
formats for RTWP/control and floating point instructions are given below.
Examples illustrating the use of the floating point instructions can be found
in Appendix H.

CONTROURTWP INSTRUCTIONS

O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

General Format: OP CODE N

FLOATING POINT INSTRUCTIONS

O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

General Format: OP CODE

MNEMONIC OP CODE MEANING

STATUS

BITS

AFFECTED

DESCRIPTION

0 1 2 3 4 5 6 7 8 910

IDLE 0 0 0 0 0 0 1 1 0 1 0 Idle Suspend

instruction execution until

an interrupt, LOAD, or

RESET occurs

RSET 0 0 0 0 0 0 1 1 01 1 Reset I/0 & SR 12-15 0 -ST12 thru ST15

CKOF 0 0 0 0 0 0 1 1 1 1 0 User defined

CKON 0 0 0 0 0 0 1 1 1 01 User defined --

LREX 0 0 0 0 0 0 1 1 1 1 1 Load interrupt Control to TIBUG

RTWP 0 0 0 0 0 0 1 1 1 00 Peturn from 0-15 (R13} -.(INP)

Subroutine (R14) -,IPC)

(R151 —(ST)

4-35

MNEMONIC
OP CODE

MEANING

RESULT

COMPARED

STATUS

BITS DESCRIPTION
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

TO 0 AFFECTED

CED 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 1 Convert extended

integer to DP real

Yes 0-4 FPA —> FPA

CER 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 Convert extended

integer to real

Yes 0-4 FPA —> FPA

CDE 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 Convert DP real

to extended

integer

Yes 0-4 FFA—>FPA

CRE 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 Convert real to

extended integer

Yes 0-4 FPA —> FPA

NEGD 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 Negate DP real Yes 0-2 —FPA —> FPA

NEGR 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 Negate real Yes 0-2 —(FPPO—> FPA

CDI 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 Convert DP real

to integer

Yes 0-4 FPA—> FPA

CR I 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 Convert real to

integer

Yes 0-4 FPA —> FPA

The RSET instruction resets the I/O lines on the TMS 9901 to input lines;
the TMS 9902 is not affected. RSET also clears the interrupt mask in the
Status Register. The LREX instruction causes a delayed load interrupt, delayed
by two IAQ cycles after LREX execution. The load operation gives control to
the monitor by causing a context switch using the LOAD (NMI) vectors in the
last two words of upper memory.

Essentially, the RTWP instruction is a return to the next instruction that
follows the BLWP instruction (i.e., RTWP is a return from a BLWP context
switch, similar to the B *R11 return from a BL instruction). BLWP provides the
necessary values in registers 13, 14, and 15 (see Figure 4-14). This context
switch provides a new workspace register file and stores return values in the
new workspace (See Figure 4-14). The operand (>FD00 above) is the M.A. of a
two-word transfer vector, where the first word is the new WP value and the
second word is the new PC value.

4-36

BLWP @>FDOO BRANCH WITH NEW WORKSPACE

F C 00

ICALLING PROGRAM

BEFORE BLWP OCCURS

WP

WP

F F 0 0 (NEW WP)

F F 2 0 (NEW PC)

F 0 0 = (OLD WP)

RO

R13

F C 8 4

N

AFTER BLWP

OCCURS

F C 8 4 = (OLD PC)

OLD ST CONTENTS

NEXT INSTR.

RTWP

R14

R15 }- NEW EXECUTION AREA

BLWP @ >FD00

PC

ST

FFOO

FF 2 0 PC

ST

M.A.>FC00

>FC80

TRANSFER >F1300

VECTORS

>FFOO

RETURN

VALUES

>FF20

NRTWP RETURNS EXECUTION TO CALLING

PROGRAM STARTING AT M.A. >FC84

FIGURE 4-14. BLWP EXAMPLE

4- 37

WP FC00

R13

R14

R15 NEW EXECUTION AREA

TRANSFER >FD00

VECTORS

>FFOO

F F 00 (NEW WP)

F F 2 0 (NEW PC)

RO WP

FF 20 PC

ST

RETURN

VALUES

>FF20

F C 0 0 = (OLD WP)

F C 8 4 = (OLD PC)

OLD ST CONTENTS

NEXT INSTR.

RTWP

F C 8 4

N

PC

ST

AFTER BLWP

OCCURS

FFOO

BLWP 0>FD00 BRANCH WITH NEW WORKSPACE

PA.A.>FC00

>FC80

N

BLWP @ >FD00

RO

CALLING PROGRAM

BEFORE BLWP OCCURS

NRTWP RETURNS EXECUTION TO CALLING

PROGRAM STARTING AT M.A. >FC84

FIGURE 4-14. BLWP EXAMPLE

14- 37

O 0 0 0 0 1 0 1 0 0 1 0 0

O 0 0 f 0 0 0 1 O 0 0 1 1 1

4.6.8.2 Internal Register Load Immediate Instructions

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

General format: OP CODE NI

10P

OP CODE
MNEMONIC MEANING DESCRIPTION

0 1 2 3 4 5 6 7 8 9 10

LWPI 0 0 0 0 0 0 1 0 1 1 1 Load workspace pointer immediate 10P -' (WP), no ST bits affected

LIMI 0 0 0 0 0 0 1 1 0 0 0 Load interrupt mask 10P, bits 12 thru 15 —"ST12

thru ST15

4.6.8.3 Internal Register Store Instructions

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

General format: OP CODE N R

No ST bits are affected.

MNEMONIC I
OP CODE

MEANING DESCRIPTION
0 1 2 3 4 5 6 7 8 9 10

STST 0 0 0 0 0 0 1 0 1 1 0 Store status register 1ST) — (R)

STWP 0 0 0 0 0 0 1 0 1 0 1 Store workspace pointer IWP) — (R)

EXAMPLES

(1) ASSEMBLY LANGUAGE:
Al R2,>FF ADD >FF TO CONTENTS OF R2

MACHINE LANGUAGE:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 >0222

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 >00F F

R2

BEFORE

0 0 0 F

AFTER

0 1 0 E

(2) ASSEMBLY LANGUAGE:
CI R2,>10E COMPARE R2 TO >10E

MACHINE LANGUAGE:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R2 contains "after" results I >10E/ of instruction in Example CO above; thus the ST equal bit becomes set.

14-39

>0282

>010E

(3) ASSEMBLY LANGUAGE:
LWPI > 3E00 WP SET AT > 3E00 (M.A. OF RO)

MACHINE LANGUAGE:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0

1 1
I

1 1 1 0
I

0 0 0 0 0 0 0 0

This is used to define the workspace area in a task, usually placed at the beginning

of a task.

(4) ASSEMBLY LANGUAGE:
STWP R2 STORE WP CONTENTS IN R2

MACHINE LANGUAGE:

O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

O 0 0 0 0 0 1 0 1 0 1 0 0 0 1

This places the M.A. of RO in a workspace register.

4.6.9 Format 9 (XOP) Instructions

Other format 9 instructions (MPY, DIV) are explained in paragraph 4.6.3
(format 3).

O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

>02E0

>3E00

>02A2

General Format: O 0 1 0 1 1 D (XOP NUMBER) Ts SR

The T sand SR fields provide multiple mode addressing capability for the
source operand. When the XOP is executed, ST6 is set and the following
transfers occur:

(4016 + 4D) (WP)

(4216 ± 4D) — (PC)

SA -- (new R11)

(old WP) — (new WR13)

(old PC) — (new WR14)

(old ST) — (new WR15)

First vector at 40 i „

Each vector uses 4 bytes (2 words)

4-40

An XOP is a means of calling one of 16 subtasks available for use by any
executing task. The EPROM memory area between M.A. 4016 and 7F16 is reserved
for the transfer vectors of XOP's 0 to 15 (see Figure 3-1). Each XOP vector
consists of two words, the first a WP value, the second a PC value, defining
the workspace pointer and entry point for a new subtask. These values are
placed in their respective hardware registers when the XOP is executed.

The old WP, PC, and ST values (of the XOP calling task) are stored (like the
BLWP instruction) in the new workspace, registers 13, 14, and 15. Return to
the calling routine is through the RTWP instruction. Also stored, in the new
R11, is the M.A. of the source operand. This allows passing a parameter to the
new subtask, such as the memory address of a string of values to be
processed by the XOP-called routine. Figure 4-15 depicts calling an XOP to
process a table of data; the data begins at M.A. FF0016.

XOP's 0, 1 and 7 to 15 are used by the TM 990/403 TIBUG monitor, calling
software routines (supervisor calls) as requested by tasks. This
user-accessible software performs tasks such as write to terminal, convert
binary to hex ASCII, etc. These monitor XOP's are discussed in Section 3.

4-41

>0040

>0042

>0050

>0052

XOP

VECTORS

>007E

CALLING INSTR.

AFTER

RTWP

TABLE OF
VALUES TO

BE PROCESSED

>FFOO

ASSEMBLY LANGUAGE:

MACHINE

XOP @>FF00,4

LANGUAGE:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

>2D20

>FFOO

0 0 1 0 1 1 0 1 0 0 1 0 0 0 0 0

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

M.A.

WP

PC

ST

>FC00 RO

PASSED PARAMETER OPERAND) R11 (SOURCE FFOO

R12

XOP 4 OLD WP R13 RETURN VECTORS

PROGRAM OLD PC R14 TO CALLING TASK

OLD SR R15

>FC20 1ST INSTR.

NOTE

THIS XOP EXAMPLE PRESUMES THE XOP
VECTORS HAVE BEEN PROGRAMMED INTO
MEMORY (MA. 0050

16
AND 005216) BY THE

USER.

FIGURE 4-15• XOP EXAMPLE

4-42

4.6.10 Formats 10 Through 17 Instructions

Instructions using formats 10 through 17 are not implemented on the TM
990/1481.

4.6.11 Format 18 Single Register Operand Instructions

The operand field for format 18 instructions contains a workspace register
address. Load status register (LST) and load workspace pointer (LWP)
instructions comprise format 18 instructions that are implemented by the TM
990/1481. Examples illustrating the use of these instructions can be found in
Appendix H.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

General Format: OP CODE R

MNEMONIC
OP CODE

MEANING

RESULT

COMPARED

TO 0

STATUS

BITS

AFFECTED

DESCRIPTION
0 1 2 3 4 5 6 7 8 9 10 11

LST 0 0 0 0 0 0 0 0 1 0 0 0 Load status

register

No 0-15 (121.-,ST

LWP 0 0 0 0 0 0 0 0 1 0 0 1 Load workspace No None I IR } —, WP

4-43

4.7 INSTRUCTION EXECUTION TIMES

Tables 4-7, 4-8, and 4-9 list data to derive execution times for TM990/1431
instructions under a variety of system memory configurations. Since the
TM990/1481 'las a variable period clock and the microinstruction cycles are not
all the same length, the execution time must be determined as a multiple of
the master clock period of 66.6 ns. In the examples in this presentation,
actual execution time in nanoseconds will be computed (number of multiples
times master clock period). Under the BASIC CYCLES column of Table 4-7 is
the multiple for the basic execution time of the instruction exclusive of the
standard operand derivation. (If the instruction requires special operand
derivation, that time is included in the basic instruction execution time).
Table 4-8 is used to derive the standard operand derivation.

Instruction execution time is determined in the following steps:

Step 1: Determine the number of base cycles from
the BASE CYCLES column in Table 4-7 Base Cycles:

Step 2: a) Determine the memory delays per access
from Table 4-9. Memory Delays per Access:

b) Determine the amount of memory accesses
from the MEMORY FETCH CYCLES and MEMORY
STORE CYCLES columns in Table 4-7.
Memory Accesses:

c) Multiply Memory Accesses by
Memory Delays per Access to find total
Memory Delays (this must be done
for each memory type in the system,
if different): P Memory: MA x MD/A

W Memory: MA x MD/A
G Memory: MA x MD/A

Step 3: Determine the extra base cycles from
the BASE CYCLES of Table 4-8 Extra Base Cycles:

Step 4: a) Determine the Extra memory accesses from
the MEMORY FETCH CYCLES, MEMORY STORE CYCLES
of Table 4-8. Extra Memory Accesses:

b) Multiply Extra Memory Accesses by the
number of Memory Delays per Access in
Step 2a to find Extra Memory Delays
(this must be done for each memory type
in the system, if different): P Memory: EMA x MD/A

W Memory: EMA x MD/A
G Memory: EMA x MD/A

Step 5: a) Add up the far-right column results of
steps 1 through 4 above. Add results of steps 1 to 4

b) Multiply the sum in a) above
by master clock period of 66.67 ns
to determine instruction execution
time: Instruction Execution Time:

Following the BASIC CYCLES column in Table 4-7 are columns listing the number
of memory fetches and stores for each instruction. This is broken down into
Program Memory (P), Workspace Memory (W), and General Memory (G). If slower
memories are used, times must be added equal to the number of delays added to
each fetch or store. Table 4-9 should be used to determine how many delays to
use based on the type of memory used. The cycles are divided into P, W, and G

14-414

to allow for the fact that different speed memories might be used for each of
these three, and the program and workspace areas might be separated to
optimize the resulting ROM/RAM mix or the low cost vs. high speed
cost/performance tradeoff. If applicable, this factor is used in steps 2 and
4. The General Memory (G) category indicates that the fetch or store may
address any memory location or memory type (i.e., program, workspace or
general data) for the purpose of accessing instruction operand data.

EXAMPLE 1

INSTRUCTION: A R1,@TABLE

MEMORY: TMS990/203-13 with TMS 4116 RAMs

STEP 1:

STEP 2:

Base Cycles
Find the basic execution time for an add instruction
(A) from Table 4-7.
Base Cycles = 7 cycles

Memory Delays
Check Table 4-9 to determine how much delay
to add due to memory speed.
DELAY = 3 delays/access x 2 accesses = 6 delays

STEP 3: Extra Base Cycles
Check columns SA, SO, and DO in Table 4-7 to
see if other processing is required ("X" or note present).
Other processing required for SO and DO.
SO = R1 = REGISTER = 4 cycles
DO = @TABLE = DIRECT = 11 cycles

STEP 4: Extra Memory Delays
SO = R1 = REGISTER

= 1 access x 3 delays/access = 3 delays
DO = @TABLE = DIRECT

= 2 accesses x 3 delays/access = 6 delays

STEP 5: Total Cycles
Total = 7+6+4+11+3+6 = 37

Execution Time = 37 x 66.67 ns = 2.47 us

4-45

EXAMPLE 2

INSTRUCTION: SRA R1,4

MEMORY: TMS990/201-43A with TMS 4045-45 RAMs

STEP 1:

STEP 2:

STEP 3:

Base Cycles
Find the basic execution time for a shift right arithmetic
instruction (SRA) from Table 4-7.
Base Cycles = 14 cycles

Memory Delays
Check Table 4-9 to determine how much delay
to add due to memory speed.
DELAY = 6 delays/access x 3 accesses = 18 delays

Extra Cycles
Check columns SA, SO, and DO in Table 4-7
see if other processing is required ("X" or note present).
Other processing required as specified in Table 4-7, Note 4.
Add C x 3 where C (the shift count) = 4
4 x 3 = 12 cycles

STEP 4: Extra Memory Delays
None

STEP 5: Total Cycles
Total = 14+18+12 = 44 cycles

Execution Time = 44 x 66.67 ns = 2.93 us

14-146

EXAMPLE 3

INSTRUCTION: DIV *R1+,R2

MEMORIES: Program Memory (P)
TM 990/201-43A with TMS 2708 EPROMs

Workspace Memory (W)
TM 990/203-13 with TMS 2147 RAMs

General Memory (G)
TM 990/201-43A with TMS 4045-45 RAMs

STEP 1: Base Cycles
Find the basic execution time for a divide instruction
(DIV) from Table 4-7.
BASE = 80 cycles

STEP 2: Memory Delays
Check Table 4-9 to determine
to add due to memory speed.
Program Memory (P)

Delay = 6 delays/access x
Workspace Memory (W)

Delay = 3 delays/access x
General Memory

Delay = 3 delays/access x

how much delay

1 access = 6 delays

4 accesses = 12 delays

0 accesses = 0 delays

STEP 3:

STEP 4:

Extra Base Cycles
Check columns SA, SO, and DO in Table 4-7 to
see if other processing is required ("X" or note present).
Other processing require for SO.
SO = *R1+ = AUTO INC = 14 cycles

Extra Memory Delayx
SO = *R1+ = AUTO INC
Program Memory (P)

= 0 accesses x 6 delays/access = 0 delays
Workspace Memory (W)

= 2 accesses x 3 delays/access = 6 delays
*General Memory (G)

= 1 access x 6 delays/access = 6 delays
*NOTE: The (G) catagory means that it is not

known wheter the memory access will involve
the workspace area or the program area without
further information. Here we assume the
programmer will address the TM 990/201 for
anything other that workspace or program.

STEP 5: Total Cycles
Total = 80+6+12+0+14+0+6+6 = 124 cycles

Execution Time = 124 x 66.67 ns = 8.27 us

4-47

TABLE 4-7. DATA TO DETERMINE TM990/1481 EXECUTION TIMES

INSTRUCTION
MNEMONIC CONDITION

BASE
CYCLES

MEMORY MEMORY
FETCH STORE
CYCLES CYCLES
PWG WG

SA SO DO OTHER

A 7 1 - - - 1 - X X
AB 10 1 - - - 1 - X X
ABS SOURCE POS 16 1 - 1 - - X - -

SOURCE NEG 23 1 - 1 - 1 X - -

AD MIN 416 1 4 4 4 - X - - *NOTE 1
MAX 1328 1 4 4 4 - X - -

AI 15 2 1 - I - - - -
ANDI 15 2 1 - I - - -

AR MIN 211 1 2 2 2- X - - *NOTE 1
MAX 367 1 2 2 2- X - -

B 6 1 - - X - -
BL 9 1 - - 1 - X - -

BLWP 29 1 - 2 3 - X
C 7 1 - - - X X
CB 7 1 - - - X X
CDE MAX 153 1 3 - 2 - - - *NOTE 1

CDI MAX 153 1 3 - 1 - - - - *NOTE 1
CED MAX 201 1 - 2 4 - - - - *NOTE 1
CER MAX 195 1 - 2 2 - - - - *NOTE 1
CI 15 2 1 - - - -

CID MAX 200 1 - 1 4 - X - - *NOTE 1
CIR MAX 194 1 - 1 2 - X - - *NQTE 1
CKOF 9 1 - - - - -
CKON 9 1 - - - - -

CLR 6 1 - - - 1 X - -
COC 11 1 - - 1 - - X -
CRE MAX 146 1 2 - 2 - - - - *NOTE 1
CRI MAX 146 1 2 - 1 - - - - *NOTE I

CZC 11 I - - 1 - - X -
DD 2036 1 4 4 4- X - - 'NOTE 1
DEC 7 1 - - - 1 - X -
DECT 10 1 - - - I - X -

DIV 80 1 2 - 2- - X -
DIVS MAX 124 1 2 - 2 -. - X -
DR 440 I 2 2 2- X - - *NOTE I
IDLE MIN 5 1 - - - -

4-148

TABLE 4-7. DATA TO DETERMINE TM990/1481 EXECUTION TIMES (CONTINUED)

INSTRUCTION
MNEMONIC CONDITION

BASE
CYCLES

MEMORY MEMORY
FETCH STORE
CYCLES CYCLES
PWG WG

SA SO DO OTHER

INC 7 1 - - - 1 - X
INCT 10 1 - - - 1 - X
INV 7 1 - - - 1 - X
JEQ 9 1 - - -
JGT 9 1 - - -

JH 9 1 - -
JHE 9 1 - -
JL 9 1 - -
JLE 9 1 - -

JLT 9 1 - -
JMP 9 1 - - - _
JNC 9 1 - -
JNE 9 1 - -

JNO 9 1 - - -
JOC 9 1 - - -
JO? 9 1 - - -
LD 60 1 - 4 4- X

LDCR 15* 1 1 - - X - *NOTE 2
LI 11 2 - - 1 - - -
LIMI 10 2 - - - - -
LR 40 1 - 2 2 - X - - *NOTE 1

LREX 9 1 - - - -
LST 17 1 1 - - - -
LWP 21 1 1 - - - -
LWPI 10 2 - - • - - - - -
MD 892 1 4 4 4- X - - *NOTE 1

MOV 7 1 - - - 1 - X X* *NOTE 3
MOVB 10 1 - - - 1 - X X
MPY 67 1 1 - 2 - - X -
MPYS MAX 82 1 1 - 2 - - X -

MR 305 1 2 2 2- X - - *NOTE 1
NEG 7 1 - - - 1 - X -
NEGD 42 1 4 - 1 - - - *NOTE 1
NEGR 28 1 2 - 1 - - - - *NOTE 1

ORI 15 2 1 - 1 - - - -
RSET 9 1 - - - -
RTWP 21 1 3 - - - -
S 7 1 - - - 1 - X X

4-49

TABLE 4-7. DATA TO DETERMINE TM990/1481 EXECUTION TIMES (CONTINUED)

INSTRUCTION
MNEMONIC CONDITION

BASE
CYCLES

MEMORY MEMORY
FETCH STORE
CYCLES CYCLES
PWG WG

SA SO DO OTHER

SB 10 1 - - - 1 - X X
SBO 23 1 1 - - - -
SBZ 23 1 1 - - - - -
SD MIN 416 1 4 4 4- X *NOTE 1

MAX 1328 1 4 4 4- X -

SETO 6 1 - - - 1 X - -
SLA C <> 0 14* 1 1 - 1 - - - - *NOTE 4

C = 0 69 1 2 - 1 - - - -

SOC 7 1 - - - 1 - X X
SOCB 10 1 - - - 1 - X X
SR MIN 211 1 2 2 2- X - *NOTE 1

MAX 367 1 2 2 2- X -

SRA C <> 0 14* 1 1 - 1 - - - *NOTE 4
C = 0 69 1 2 - 1- - -

SRC C <> 0 14* 1 1 - 1 - - - - *NOTE 4
C = 0 69 1 2 - 1- - -

SRL C <> 0 14* 1 1 - 1 - - - *NOTE 4
C =0 69 1 2 - 1 - - - -

STCR C =0 184 1 2 - - X -
0 < C < 9 81* 1 2 - - X - *NOTE 5
8 < C < 16 72* 1 2 - - X - *NOTE 5

STD 60 1 4 - - 4 X - - *NOTE 1

STR 40 1 2 - - 2 X - - *NOTE 1
STST 6 1 - - 1 - - - -
STWP 6 1 - - 1 - - -
SWPB 10 1 - 1 - 1 X

SZC 7 1 - - - 1 - X X
SZCB 10 1 - - - 1 - X X
TB 23 1 1 - - - -
X 6 1 - X

14-50

TABLE 4-7. DATA TO DETERMINE TM990/1481 EXECUTION TIMES (CONCLUDED)

MEMORY MEMORY
INSTRUCTION BASE FETCH STORE
MNEMONIC CONDITION CYCLES CYCLES CYCLES SA SO DO OTHER

PWG WG
XOP 41 1 - 2 4 - X
XOR 11 1 1 - 1 - X

*NOTE 1 : Because the floating point instructions may fetch multiple words for
each source and destination operand, the delays required for these
fetches have been included the calculation of the base cycles for
these instructions.

*NOTE 2 : For LDCR add 24 x C cycles, where C is the bit count.

*NOTE 3 : For the MOV instruction do only destination address calculation.
MOV does not fetch the destination operand (MOVB does). Use the
special DESTINATION MOV time in the calculation for the MOV.

*NOTE 4 : For SLA, SRA, SRC, and SRL add 3 x C cycles, where C is the shift
count.

*NOTE 5 : For STCR if 0 4 4 7 then add 4 x C cycles, and if 8 4 C 4 15
then add 14*C cycles, where C is the number of bits to be
transferred.

14-51

MEMORY
FETCH
CYCLES

G

MEMORY
STORE
CYCLES
W

OPERATION
TYPE SYMBOLIC NAME CODE

BASE
CYCLES

P

SOURCE ADDRESS Rn (register) TS = 0 0
SOURCE ADDRESS *Rn (indirect) TS = 1 1
SOURCE ADDRESS @LOC (direct) TS = 2, S=0 7 1
SOURCE ADDRESS @LOC(Rn) (indexed) TS = 2, S4 0 11 1
SOURCE ADDRESS *Rn+ (auto inc) TS = 3 1 0 1

SOURCE OPERAND Rn (register) TS = 0 4 - 1 -
SOURCE OPERAND *Rn (indirect) TS = 1 8 - 1 1
SOURCE OPERAND @LOC (direct) TS = 2, S=0 11 1 - 1
SOURCE OPERAND @LOC(Rn)(indexed) TS = 2, S4 0 15 1 1 1
SOURCE OPERAND *Rn+ (auto inc) TS = 3 14 - 1 1 1

DESTINATION OPERAND Rn (register) TD = 0 4 - 1 -
DESTINATION OPERAND *Rn (indirect) TD = 1 8 - 1 1
DESTINATION OPERAND @LOC (direct) TD = 2, D=0 11 1 - 1
DESTINATION OPERAND @LOC(Rn) (indexed) TD = 2, D4 0 15 1 1 1
DESTINATION OPERAND *Rn+ (auto inc) TD = 3 14 - 1 1 1

DESTINATION MOV Rn (register) TD = 0 0
DESTINATION MOV *Rn (indirect) TD = 1 4 - 1 -
DESTINATION MOV @LOC (direct) TD = 2, D=0 7 1 - -
DESTINATION MOV @LOC(Rn)(indexed) TD = 2, D4-0 11 1 1 -
DESTINATION MOV *Rn+ (auto inc) TD = 3 10 - 1 - 1

DEVICE
MEMORY

TYPE
ACCESS

TIME
WAIT
STATES

PLUG
PROGRAM

DELAYS/
ACCESS NOTE

TMS 2716 EPROM 486 SLOW SHFT7 6
2114-15 RAM 186 SLOW SHFTX 2
2114-20 RAM 236 SLOW SHFTX 3
2114-30 RAM 336 SLOW SHFTX 4
2114-45 RAM 486 SLOW SHFT7 6

TMS 4116 RAM * * * 0 SHFTX 3 2

BOARD

TM990/201-44

TM990/203-13

TABLE 4-8. ADDRESS MODIFICATION FACTORS FOR INSTRUCTION EXECUTION TIMES

TABLE 4-9. MEMORY ACCESS TIMES

NOTES:
1.
2.

The plug programming (wiring) options are described in section 2.4.3.
The dynamic memory has refresh operations which can occur during a
memory access and this prevents assigning a fixed delay and forces
the use of the READY line (i.e., SHIFTX).

/4-52

4.8 TM 990/1481 FLOATING-POINT ARITHMETIC

The TM 990/1481 CPU provides the user with a more accurate method of doing
numerical calculations than many other processors that are available today.
As an example, the arithmetic instructions of the TMS 9900 microprocessor
allow the user to do calculations with integers only. When working with only
integers, the position of the decimal point is always known and the range of
the numbers is usually small (-32768 to +32767). However, there is a large
class of problems which involve calculations that require a greater range and
more accuracy. These problems can be solved by using multiple precision
programming techniques and the correct algorithm with enough memory and
processor time.

The TM 990/1481 provides a unique set of instructions that use floating-point
numbers to address the range and accuracy problems. These instructions can be
divided into three groups of operations as follows:

1) Arithmetic/Logic Operations
2) Load/Store Operations
3) Conversion Operations.

Floating-point representation is similar to scientific notation. In
scientific notation a number is expressed as a numeric value times a power of
ten (eg., 4700 = 4.7 X 103 in scientific notation). Floating-point
representation separates a number into two distinct parts: a mantissa and an
exponent. The mantissa consists of the digits of the number and the exponent
is a quantity that denotes the power to which the base is to be raised. This
type of number is also called a real number.

The TM 990/1481 provides two types of floating-point or real numbers: single-
precision real (real) and double-precision real (Note: single-precision real
numbers are usually referred to as simply "real numbers"). The difference
between the two types of floating-point numbers is the number of bits that
make up the mantissa; double-precision numbers use 56 bits for the mantissa
while single-precision numbers use 24 bits for the mantissa. The accuracy of
a value is determined by the number of bits that make up the mantissa.

Prior to discussing the internal machine representation of floating-point
instructions, several examples involving floating-point representation and
floating-point operations will be presented. These examples will be
illustrated using base ten for readability.

4.8.1 Floating-Point Representation

4.8.1.1 Mantissa. The mantissa or digits of a number will always be
represented with its decimal point placed to the left of the most significant
non zero digit. This process is called normalization. For example the
following two numbers will look the same normalized.

UN-NORMALIZED NORMALIZED

27.342 .27342

.027342 .27342

14-53

4.8.1.2 Exponent. The exponent determines the position of the decimal
point when going from the normalized to the un-normalized representation. The
sign of the exponent indicates which way the decimal should be moved when
converting to the un-normalized form. A positive exponent means the decimal
should be moved right the specified number of positions. A negative exponent
means the decimal should be moved left the specified number of positions by
inserting zeros between the decimal and the most significant non-zero digit.
For example the same two numbers are again shown with their exponents:

UN-NORMALIZED FLOATING POINT REPRESENTATION

27.342

.027342

2
.27342 X 10

-1
.27342 X 10

positive exponent

negative exponent

mantissa exponent

It is possible to tell which of the two normalized floating point numbers is
larger by comparing the exponent parts first; and then testing the mantissas
only if the exponents are equal.

Another consideration involves the signing of numbers. Shown below is a
positive and a negative number and their corresponding floating point
representation.

UN-NORMALIZED FLOATING POINT REPRESENTATION

-2
-.006134 -.6134 X 10

3
613.4 .6134 X 10

Now it can be seen there are two signs (exponent and mantissa) to keep track
of. To reduce the number of signs, the exponents are biased by a positive
value so as to eliminate its sign. For example, if the exponents are biased by
64, we would say we are using excess-64 notation. The same two numbers used
above are shown below using excess-64 notation.

UN-NORMALIZED FLOATING POINT EXCESS-64 REPRESENTATION

62
-.006134 -.6134 X 10

67
613.4 .6134 X 10

It is obvious that the correct exponent (movement of the decimal) can be
determined by subtracting the bias factor 64. All negative biased exponents
will have values less than 64 and all positive exponents will have values
greater than 64. In cases where the exponent is equal to 64, the mantissa is
also the un-normalized representation of the number.

4-514

Example:

NORMALIZED FLOATING POINT EXCESS-64 REPRESENTATION

64
.6134 .6134 X 10

4.8.2 Floating-Point Operations

When using floating point operations it is sometimes helpful to understand
what takes place when a prescribed operation is performed. For example when
adding or subtracting two floating point numbers the exponents are first
compared and the decimal point is moved left in the mantissa with the smaller
exponent until the exponents are equal. The mantissas are then added. Consider
the addition of 54321.09 and 12.34 in floating point.

UN-NORMALIZED FLOATING POINT EXCESS-64 REPRESENTATION

69 69
54321.09 .5432109 X 10 = .5432109 X 10

66 69
12.345 .12345 X 10 = .0001234 X 10

69
54333.435 .5433343 X 10

An interesting point here is that the low order digit(5) of 12.345 has been
lost in the movement of the decimal point because the mantissa countained only
seven digits. In extreme cases if one number is a great deal smaller than the
other it could be lost completely and the sum would not reflect any change.
The user should be aware of the differen2e in magnitude of the numbers in use.
As a general rule, a number that is several orders of magnitude smaller than
another will be lost during floating-point operations.

In some addition and subtraction operations the operation itself will cause
the exponent to be different than that of the two operators. In the first
example shown below an overflow occurs and the exponent is incremented by one.

UN-NORMALIZED FLOATING POINT EXCESS-64 REPRESENTATION

66
71 .71 X 10

66
+ 83 + .83 X 10

66
154 1.54 X 10

67
.154 X 10

14-55

The example below shows the exponent being decremented two after the subtract
operation.

UN-NORMALIZED FLOATING POINT EXCESS-64 REPRESENTATION

68
12314 .1234 X 10

68
- 1200 - .1200 X 10

34 68
.0034 X 10

66
.34 X 10

This process of normalization after the operation is called post-normaliza-
tion.

By subtracting two numbers which are nearly equal the number of significant
digits will be very small even though the number of digits in the mantissa is
several times greater. For this reason blind subtraction of floating point
numbers which are almost equal is undesirable if the original operands were
very hard to obtain.

Multiplication and division of floating point numbers is accomplished by first
adding and subtracting the exponents and then subtracting the bias. Secondly
the desired operation is performed on the mantissas. Shown below is an example
of floating point multiply.

UN-NORMALIZED FLOATING POINT EXCESS-64 REPRESENTATION

67
565 .565 X 10

66
X 15 X .15 X 10

67+66
8475 = .565 X .15 X 10

133-64
= .565 X .15 X 10 (subtract bias)

69
= .565 X .15 X 10

69
= .08475 X 10

68
.8475 X 10 (post normalization)

4-56

Shown below is an example of a floating point divide operation:

UN-NORMALIZED FLOATING POINT EXCESS-64 REPRESENTATION

67 65
555 / 4 = 138.75 .555 X 10 / .4 X 10

67-65
= (.555 / .4) X 10

2+64
= (.555 / .4) X 10 (add bias)

66
= 1.3875 X 10

67
= .13875 X 10 (post normalization)

4.8.3 Internal Representation of TM 990/1481 Floating-Point Numbers

Floating point arithmetic executing on the TM 990/1481 is done in a slightly
different manner than the previous examples have shown. Instead of using base
ten as the basis for arithmetic the TM 990/1481 does all floating point
arithmetic in base sixteen (hexadecimal). The reason for this is that digital
computers can perform operations much quicker when they use a multiple of base
two. Therefore, in order to understand the floating-point formats, the user
must be able to convert decimal quantities to hexadecimal.

The following procedure can be used to convert a number from base 10 to base
16. In order to illustrate this procedure, an example showing the
conversion of 458.76562510 to its hexadecimal equivalent will be included.

1. Divide the number into integer and fractional parts.

2. Convert the integer and fractional parts of the decimal number to their
hexadecimal equivalents.

3. Conversion of the integer part.

(1) Divide the integer part by 16 and note the remainders in a separate
column (See Example 1).

(2) Continue the division process until the quotient is zero.

(3) Convert any remainders greater than 9 to hex value (eg. 10 = A, 11
= B, etc.).

(4) Read the hexadecimal equivalent from bottom (MSB) to top (LSB).

14-57

Example 1: Convert

Solution:

28

integer part (458) to

Remainder Remainder
Base 10 Base 16

its'

(LSB)

hexadecimal equivalent.

10 A

16) 458

1 12

16) 28

0 1 1 (MSB) Read Value

16) 1

145810 = 1CA16

4. Conversion of the fractional part.

(1) Multiply the fractional part by 16 and note the integer overflow in a
separate column (See Example 2).

(2) Continue the multiplication process until an overflow with no frac-
tion occurs.

(3) Convert any overflow values greater than 9 into hex values.

(4) Read the hexadecimal equivalent from top (MSB) to bottom (LSB).

Example 2: Convert fractional part

Solution: Overflow

(.765625)

Overflow

to its' hexadecimal equivalent.

Base 16 Base 10
.765625

X16
Read Value (MSB) C 12 .250000

.250000
X16

(LSB) 4 4 .000000

.% .76562510 = .C416

Therefore, the hexadecimal equivalent of 458.76562510 = 1CA.C416•

NOTE

There are mathematical tables that are available to obtain the desired
base conversions - the previous method was given only as an aid in the
absense of such tables.

14-58

4.8.3.1 TM 990/1481 Single Precision Floating-Point Numbers. Single precision
floating point numbers represent any value within the approximate range 10
to 10 , including zero. Single precision floating point numbers are stored in
memory in two consecutive numbers 16 bit words as shown below.

SINGLE PRECISION FLOATING POINT NUMBER

Radix
point

Sign Bit 0 1 7 8 15

Word 1 IS Exponent
I

Mantissa (MSBs)

0 15

Word 2 I Mantissa (LSBs)

Word 1 contains the sign bit, the hexadecimal exponent, and the 8 most
significant bits of the hexadecimal mantissa. The second word contains the
sixteen least significant bits of the mantissa. The mantissa is normalized by
hexadecimal characters with the assumption the radix point is between bits 7
and 8 of Word 1.

The hexadecimal exponent is biased by >40 (excess-64). Exponents of zero are
represented by >40, except for the number zero. The number zero is represented
with the exponent and mantissa both as zero. The exponent may be any value
from >00 to >7F. Using >40 as the bia. these numbers represent exponent
values from ->40 to >3F (16-64to 16-63). The seven exponent bits are stored
in bits one thru seven of Word 1.

Bit 0 of the first word is used for a sign bit. When this bit is 0, the number
is positive; when this bit is a 1, the number is negative.

The following procedure will illustrate the use of the single precision
floating-point format. This example will represent 528010 in this format.

Procedure:

1. Convert 528010 to hexadecimal.

528010 = 14A016

2. Normalize the hexadecimal equivalent.

14A016 = .14A0 X 164 Normalized floating-point representation

3. Bias the exponent using Excess-64 representation.

.14A0 X 104 = .14A0 X 164 X 1640 = .14A0 X 1044-Excess 4016 Rep.

14-59

4. Convert exponent to binary.

4416 = 10001002

5. Assign values to two-word format as indicated below.
Radix
Point

Sign Bit

Exponent = 68
26 20

0 1 7 8

14

15

First Word 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0

0 15
Second Word 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

A 0

Additional examples of single precision numbers are given below.

HEXADECIMAL CONTENTS
OF MEMORY WORDS

BASE 10 NUMBER WORD 1 WORD 2

1.0 4110 0000
0.5 4080 0000

5280.0 4414 A000
.0000067353 3C71 0000

-.1210976839 401F 0042

The following procedure can be used to convert the two-word contents into its
decimal value.

1. Subtract the bias (64) from the exponent.

2. Move the radix point to the right four places for each power of 16
remaining in the exponent after the bias was removed.

3. Convert the binary value to decimal.

To illustrate this procedure, the two word example given above will be
re-converted to its decimal equivalent.

1. 6810 - 6410 = 410 (Exponent with bias removed)
Radix
Point

2. Word 1 XXXXXXXXO 0 0 1 0 1 00

Word 2 1 0 1 0 0 0 0 0
A
0 0 0 0 0 0 0 0

(Radix Point Moved 16 Places
3. 10100101000002 = 528010

14-6c

Another method to convert from hexadecimal to decimal is illustrated by the
following example.

HEXADECIMAL TO DECIMAL CONVERSION

-2
4 X 16 = 4 / 256 = .015625

-1
12 X 16 = 12 / 16 = .75

0
10 X 16 = 10 X 1 = 10.

1

12 X 16 = 12 X 16 = 192.
2

1 X lb = 1 X 256 = 256.

458.765625

4.8.3.2 Double Precision Floating-Point Numbers. Double precision floating
point numbers are similar to single precision floating point numbers, except
that they occupy two more memory words and provide a 56 bit mantisa instead of
the 24 bits available with single precision floating point numbers. Double
precision floating point numbers have values from 10-78 to 107' , including
zero. Double precision floating point numbers are stored in four 16 bit words
as shown below.

DOUBLE PRECISION FLOATING POINT NUMBER

Radix
point

0 1 718 15

Word 1 S Exponent
1

Mantissa (MSBs)

0 15

Word 2 L

0 15

Word 3

0 15

Word 4 1 Mantissa (LSBs)

Word 1 of the double precision floating point number is exactly like Word 1 of
the single precision floating point number. Words 2, 3, and 4 contain the
remainder of the mantissa with Word 4 containing the 16 least significant
bits. The mantissa is normalized by hexadecimal characters with the assumption
the radix point is between bit 7 and 8 of Word 1.

4-61

4.8.3.3 TM 990/1481 Floating Point Accumulator (FPA). Many microprocessors
contain an hardware accumulator; this accumulator may be used for intermediate
storage, to form sums, or other intermediate operations. TMS 9900 series
microprocessors do no contain an accumulator inherent to the processor;
storage for sums and the like is provided by workspace registers that reside
in RAM memory external to the processor.

Arithmetic floating-point operations involve two operands; one of these exists
in an implicit "accumulator" register created by the results of a load
instruction or a previous calculation. The implicit accumulator acts as a
single register that participates in all floating point operations as either
an operand or result, or both. The outcome of all floating point operations
(except the store operations), is placed in the implicit accumulator. Single
precision floating point instructions use RO and R1 of the current workspace
as the FPA, leaving R2 and R3 unaltered. Double precision floating point
instructions use RO, R1, R2, ans R3 of the current workspace as the FPA.

4.8.4 TM 990/1481 Floating-Point Instruction Overview

As mentioned previously, the TM 990/1481 floating-point instructions can be
divided into three functional groups; the instructions that comprise these
groups are given below.

Arithmetic/Logic Conversion

1. Add (AD, AR) 1. Convert Floating-Point To Integer (CDI, CRI)
2. Divide (DD, DR) 2. Convert Floating-Point To Extended Integer
3. Multiply (MD, MR) (CDE, CRE)
4. Subtract (SD, SR) 3. Convert Integer To Floating-Point (CID, CIR)
5. Negate (NEGD, NEGR) 4. Convert Extended Integer To Floating-Point

(CED, CER)

Load/Store

1. Load (LD, LR)
2. Store (STD, STR)

It should be noted that there are two types of instructions for each function
(eg., there are two ADD instructions: AD and AR). The AD instruction is used
for adding double precision floating-point numbers while the AR instruction is
used with single precision floating-point numbers. All eleven pairs of these
instructions exhibit this same type of duality. It should be noted that the
execution time for double precision floating-point numbers exceeds that for
single precision floating-point numbers.

Detailed descriptions of these instructions that illustrate their format and
application are given in Appendix H.

4.8.5 Sample Programs

Two sample programs will be included to demonstrate some of the uses of
floating-point instructions. The first program adds two numbers, then
converts the floating-point sum to an integer. In other words, after two
numbers are summed, the integer part of the sum is placed in the FPA. The
second example also illustrates the addition process; however, double
precision floating-point numbers are used.

14-62

Problem: Add the numbers 458.76562510 and -256.76562510 using single
precision floating-point arithmetic. Place the integer part of
the sum in the FPA (RO,R1).

Solution:

I. One operand (458.76562510) will be placed in the FPA. The first step is
to determine the contents for registers RO and R1 which constitute the FPA
for single precision floating-point numbers.

Procedure:

A. Convert the decimal value of the operand into its hexadecimal
equivalent, normalize, and express using Excess-64 representation.

(1) 458.76562510 = 1CA.C416

(2) 1CA.C416 = .1CAC4 X 103

(3) .1CAC4 X 103 = .1CAC4 X 10 67

B. Place the sign bit for the number and the values from the Excess-64
represented value in the two word single precision floating-point
format as shown below.

Radix
Point

Sign 0 78 15
Bit

0 1 0 0 0 0 1 1 0 0 0 1 1 1 C. 0

1 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0

Word 1

Word 2

>431C Contents for RO

>AC40 Contents for R1

It should be apparent that Word 1 (>431C) constitutes the contents for RO and
Word 2 (>AC40) constitutes the contents for R1.

II. The second operand (-256.76562510) will be placed in registers R2 and R3.
The procedure for determining the contents for these registers is
identical to that previously used for the FPA (RO,R1) and will not be
repeated here. The two word content representing the second operand is
given below.

Radix
Point

Sign 0 7Y8 15
Bit

1 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0

0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0

Word 1 >C310 Contents for R2

Word 2 >0C40 Contents for R3

Word 1 (>C310) will be placed in R2 and Word 2 (>0C40) will be placed in R3.

4-63

The following code will implement the addition process called for and place
the integer part of the sum in the FPA (RO, R1).

LWPI > FE00 Load Workspace Pointer
LI RO,>431C
LI R1,>AC40
LI R2,>C310
LI R3,>0C40
AR R2
CRI
END

Load FPA (RO,R1) with >431CAC40

Load R2,R3 with >C3100C40

Add Single Precision Real, Place Sum in FPA
Convert Single Precision Real Sum to Integer

The second sample program will illustrate the use of double precision
floating-point numbers. As the procedure is similar to that used with single
precision floating-point numbers, only an abbreviated explanation will be
given.

The FPA consists of registers RO through R3 when working with double precision
floating-point numbers. Therefore, four registers will be used for each
operand.

In the sample of code given below, two double precision floating-point numbers
will be added. One operand is loaded into the FPA (RO-R3) and the other
operand is loaded into registers R4-R7. The sum will be placed in the FPA
(RO-R3).

LWPI >FE00 Load Workspace Pointer
LI RO,>Value of Word 1 of Operand 1 Load the 4-Word Value
LI R1,>Value of Word 2 of Operand 1 Representing Operand 1
LI R2,>Value of Word 3 of Operand 1 Into the FPA (RO-R3)
LI R3,>Value of Word 4 of Operand 1
LI R4,>Value of Word 1 of Operand 2 Load the 4-Word Value
LI R5,>Value of Word 2 of Operand 2 Representing Operand 2
LI R6,>Value of Word 3 of Operand 2 Into Registers R4-R7
LI R7,>Value of Word 4 of Operand 2
AD R4 Add DP Real, Place Sum in FPA
END

/4-6/4

4.9 PROGRAMMING AIDS

The TM990/1481 provides a number of features to aid the programmer in software
development.

1) The compatibility of TM990/1481 software with the 990 family of computers
means that a large amount of software can be used with little modification.

2) The TM 990/403 version of the TIBUG monitor can be installed on a
TM 990/201-44 card. This EPROM resident software monitor allows the
programmer to load, edit, debug, and run programs right from power-up.

3) A single step clock allows stepping thru microcode and examination of the
result at every step using the optional user supplied LED displays.
Recommended LED's are Dialight #547-2007. See paragraphs 2.4.4.3 and 2.4.4.4.

4.10 INTERRUPTS

4.10.1 General. The interrupt logic provides 18 levels (i.e. 18 different
trap locations) of interrupt, 16 of which are maskable and two of which are
not maskable. The standard set of interrupts consists of 15 interrupt lines on
the TM 990 BUS with levels 1 thru 15. The levels are prioritized with level 0
being the highest priority interrupt. Interrupts 1 to 15 and XOPS.

All of the 15 interrupts are individually enabled by setting a bit in a mask
register (in the TM 9901) via the CRU. They are also group maskable via the
four-bit interrupt mask in the Status Register (ST12-ST15). If the value of
the Interrupt Vector (IV) is less than or equal to the value of the mask then
the interrupt is allowed (i.e. the IV is higher in priority). The IV
represents the level of the highest priority interrupt that is pending. When
an interrupt occurs the TM 990/1481 completes the current instruction, fetches
a pair of words (WP and PC) called a Transfer Vector from locations 4*IV and
(4*IV)+2, then executes the equivalent of a BLWP instruction using the
Transfer Vector.

In addition to the general set of 15 interrupts there are three special
interrupts; RESET, LOAD, and ARITHMETIC OVERFLOW. The RESET is a level 0
interrupt and it is normally used to initialize the TM 990/1481 following a
power-up. The RESET interrupt is initiated via the RESET SWITCH. When the
RESET SWITCH is activated the RESET LOGIC forces the TM 990/1481 to start the
microprogram execution at location 000 in CONTROL MEMORY when the switch is
released. This causes the TM 990/1481 to fetch the interrupt Transfer Vector
at memory locations 0000 and 0002 and then execute the equivalent of a BLWP
using the Transfer Vector. Since the RESET is a level 0 interrupt it is not
maskable.

4-65

The RESET interrupt does not wait until the current instruction completes
execution and therefore should not be used as a normal program interrupt.

The LOAD interrupt is non-maskable and is initiated by a pulse on the RESTART
line on the TM 990 BUS or by the execution of an LREX instruction. The LOAD
interrupt on the 990/1481 is designed to allow exactly two instructions to
be executed before the interrupt trap occurs. The LOAD interrupt fetches the
Transfer Vector from the upper two words of logical memory at locations FFFC
and FFFE and executes the equivalent of a BLWP. The TIBUG software monitor
uses the LOAD interrupt to implement the single instruction step mode of
operation. The monitor executes an LREX and then executes an RTWP to the
user's program. The user's program can then execute one instruction before the
LOAD interrupt occurs and traps back to the monitor.

The other use of the LOAD interrupt is as an alternate to the RESET operation.
The RESET switch causes the equivalent of a level 0 interrupt which fetches
the Transfer Vector from 0000 and 0002. This is suitable if lower memory is
ROM and has valid data when power is turned on, but if this is the case, it
also implies that all of the other Transfer Vectors are fixed by the ROM. In
some cases it is desirable to have the Transfer Vectors in RAM so that they
may be altered by the software. In order to accomplish this, the ROM is placed
in upper memory and the RESTART signal is used rather than the RESET to
initialize the ii1 930/1481. Notice that there must be valid Transfer Vector
data either in lower memory at the 0 level interrupt trap location or in upper
memory at the LOAD interrupt trap location in order to correctly initialize
the 1M 990/1481. This can be satisfied by placing ROM in either upper or lower
memory or by providing some special hardware to load the trap locations via
the DMA interface.

The third special interrupt is the ARITHMETIC OVERFLOW (AO) interrupt or
simply the overflow interrupt (On which can be enabled by setting bit 10 of
the STATUS REGISTER. When enabled the AO interrupt will cause an interrupt
trap whenever the OVERFLOW (OV=ST4) bit of the STATUS REGISTER is set. The AO
interrupt is assigned to the level 2 interrupt. The AO interrupt trap will
occur prior to the execution of the instruction following the one which caused
the overflow condition to be generated.

* NOTE : XOP 12 (Write Character) and XOP 7 (Delay Timer) in TIBUG uses a
level three interrupt, generated by the TMS 9901 programmable
timer, when writing to a 733 ASR. It is therefore recommended that
caution be taken by the user when using interrupt level three in
software implementation.

4-66

4.10.2 Interrupt and XOP Linking Areas Using TM 990/403 TIBUG

This writeup applies to the interrupt and XOP scheme used by the TM 990/403
TIBUG. This scheme allows the user to define service routines for the
following:

• Interrupts 1 to 15
• XOPs 2 to 6 (X0Ps 1, and 7 to 15 are used by the TM 990/403

monitor)

When an interrupt or XOP instruction is executed, program control is passed to
WP and PC vectors located in lower memory. Interrupt vectors are contained in
M.A. 000016 to 003F16; and XOP vectors are contained in M.A. 004016 to 007F16.
User-available interrupt and XOP vectors are preprogrammed in the TM 990/403
TIBUG EPROM chip with WP and PC values that allow the user to implement
interrupt service routines (ISR's) and XOP service routines (XSR's). This
includes programming an intermediate linking area as well as the ISR or XSR
code.

When an interrupt or XOP is executed, it first passes program control to the
vectors which point to a linking area. The linking area directs execution to
the actual ISR or XSR. The linking areas are shown in Table 4-10. The linking
area is designed to leave as much RAM space free as possible when not using
all the interrupts. That is, the most frequently used areas are butted up
against the TIBUG RAM area, the least frequently used areas extend downward
into RAM.

Return from the ISR or XSR is through return vectors in R13, R14, and R15 at
the ISR or XSR workspace as well as at the linking area workspace.

How to program these linking areas is explained in the following paragraphs.

TABLE 4-10. PREPROGRAMMED INTERRUPT AND USER XOP TRAP VECTORS

M.A. INT.

VECTORS
(HEX)

M.A. XOP

VECTORS
(HEX)

WP PC WP PC

0000 INTO TIBUG TIBUG 0048 XOP2 FF48 FFSA
0004 INT1 FFSA FF7A 0040 X0P3 FFSA FF4C
0008 INT2 FF4E FF6E 0050 X0P4 FF2C FF3E
000C INT3 FFSA FFAA 0054 XOPS FF1E FF30
0010 INTO FF7E FF9E 0058 XOP6 FF10 FF22
0014 INT5 FF72 FF92
0018 INT6 FF66 FF86
001C INT7 FEEE FFOE
0020 INT8 FEE2 FF02
0024 INT9 FED6 FEF6
0028 INT10 FECA FEEA
002C iNT11 FEBE FEDE
0030 INT12 FEB2 FED2
0034 INT13 FEA6 FEC6
0038 INT14 FE9A FEBA
003C INT15 FE8E FEAE

4-67

BYTE
M.A. 0-1 2-3 14-5 6-7 8-9 A-B C-D E-F

USER RAM AREA
FE90
FEAO INT15 INT15 INT15 INT15
FEBO INT15 INT15 INT14 INT14 INT14 INT14 INT14 INT14
FECO INT13 INT13 INT13 INT13 INT13 INT13 INT12 INT12
FEDO INT12 INT12 INT12 INT12 INT11 INT11 INT11 INT11
FEED INT11 INT11 INT10 INT10 INT10 INT10 INT10 INT10
FEFO INT9 INT9 INT9 INT9 INT9 INT9 INT8 INT8
FF00 INT8 INT8 INT8 INT8 INT7 INT7 INT7 INT7
FE10 INT7 INT7
FE20 X0P6 XOP6 XOP6 XOP6 XOP6 XOP6 XOP6
FE30 XOP5 XOP5 XOP5 XOP5 XOP5 XOP5 XOP5 X0P4
FE40 X0P4 X0P4 X0P4 X0P4 X0P4 XOP4 XOP3 XOP3
FE50 XOP3 XOP3 XOP3 XOP3 XOP3 XOP2 XOP2 XOP2
FE60 XOP2 XOP2 XOP2 XOP2 INT2 INT2 INT2 INT2
FE70 INT2 INT2 INT1 INT1 INT1 INT1 INT1 INT1
FE80 INT6 INT6 INT6 INT6 INT6 INT6 INT5 INT5
FE90 INT5 INT5 INT5 INT5 INT4 INTO INT4 INTO
FEAO INT4 INT4 INT3 INT3 INT3 INT3 INT3 INT3
FFBO to FFFE = TIBUG workspace and LOAD (NMI) vectors

TABLE 4-11. INTERRUPT AND USER XOP LINKING AREAS

4.10.2.1 Interrupt Linking Areas. When one of the programmable interrupts
(INT1 to INT15) is executed, it traps to an interrupt linking area in RAM.
Each linking area consists of six words (12 bytes) as shown in Figures 4-16
and 4-17. The first three words contain the last three registers of the
called interrupt vector workspace (R13, R14, and R15), and the second three
words, located at the interrupt vector PC address, are intended to be
programmed by the user to contain code for a BLWP instruction, a second word
for the BLWP destination address, and a RTWP instruction code (all three words
to be entered by the user). When the ISR is completed, control returns to
the RTWP instruction in this this linking area after the return values (to the
interrupted program) are loaded into the linking area's three registers (R13
to R15). When the interrupt occurs, control is given to the program at the
interrupt vectors. The PC vector points to the BLWP instruction (at the PC
vector address) which is executed using the destination address provided by
the user. (The BLWP instruction consists of two words, the BLWP operator and
the destination address; the destination address points to a two-word area
also programmed by the user.)

In returning from the interrupt service routine, the RTWP instruction
(routine's last instruction) places the (previous) WP and PC values at the
time of the BLWP instruction (in the six-word linking area) into the WP and PC
registers. Thus, the RTWP code that follows the BLWP instruction will now be
executed, causing a second return routine to occur, this time to the
interrupted program using the return values in R13, R14, and R15 of the
interrupt link area. This area is shown graphically in Figure 4-17.

14-68

0
INTERRUPT NO. 1

RECOGNIZED
FF5A

RO YYYY

XXXX

R13 FF5A

R14 FF7E

R15 (OLD ST)

RO FIRST REGISTER
IN WORKSPACE

M.A. 0000 WP

0002 PC

0004 FF5A
0006 FF7A

R13 (OLD WP)

I

f
6-WORD INTERRUPT LINK AREA

O

III ZZZZ

R14 (OLD PC)

R15 (OLD ST)

/ BLWP

XXXX /

z
.,

 RTWP
,

INTERRUPT
VECTORS IN
EPROM

R TWP

INTERRUPT SERVICE ROUTINE

INTERRUPTED
PROGRAM

1,2 INTERRUPT EXECUTION TRAPS TO 6-WORD INTERRUPT LINK AREA.
3,4 BLWP EXECUTED TO 2-WORD VECTORS TO INTERRUPT SERVICE ROUTINE (ISR)

5 RTWP FROM ISR TRAPS BACK TO 6-WORD LINK AREA.

6 RTWP FROM LINK AREA RETURNS BACK TO INTERRUPTED PROGRAM.

= LINKAGE PROGRAMMED BY USER

FIGURE 4-16. INTERRUPT SEQUENCE

14-69

NOTE

DO NOT USE RO-R12 OF THE LINKING AREA WORKSPACE,
BECAUSE THE OVERLAPPING STRUCTURE WILL DESTROY
THE CONTENTS OF A LINKING AREA FOR ANOTHER INTER-
RUPT OR XOP.

EXAMPLE USING INT1 LINKING AREA (WP = FF5A, PC = FF7A)

(ACTUAL ADDRESS OF RO OF INTERRUPT VECTOR

WP)

USED TO SAVE RETURN VALUES (TO
INTERRUPTED PROGRAM)

INT1 VECTOR PC ADDRESS (CONTAINS BLWP)

ADDRESS OF 2 - WORD VECTOR POINTING TO
WP AND PC VALUES OF ISR

RETURN PC VALUE IN ISR POINTS TO THIS
RTWP INSTR.

TO BE
PROGRAMMED
BY USER

FF74

FF76

FF78

FF7A

FF7C

FF7E

Each interrupt linking area is set up so that it can be programmed in this
manner. In summary, each six-word linking area can be programmed as follows:

• Determine the location of the linking area as shown by the WP and PC
vectors in Table 4-10.

• The PC vector will point to the last three words of the six-word area.
The user must program these three words respectively with 042016 for a
BLWP instruction, the address (BLWP operand) of the 2-word vector
pointing to the interrupt service routine, and 038016 for an RTWP
instruction as shown in Figure 4-17.

• At the vector address for the BLWP operand, place the WP and PC values
respectively of the interrupt service routine.

FIGURE 4-17. SIX-WORD INTERRUPT LINKING AREA

4-70

Example coding to program the linkage to the interrupt service routine for
INT1 is as follows:

*PROGRAM POINTER TO INT1 SERVICE ROUTINE FOLLOWING BLWP INSTRUCTION
AORG > FF7A INT1 PC VECTOR ADDRESS
DATA >01420 HEX VALUE OF BLWP OP CODE
DATA >FA00 LOCATION OF 2-WORD VECTORS TO ISR (EXAMPLE)
DATA >0380 HEX VALUE OF RTWP OP CODE

*PROGRAM POINTER TO 2-WORD VECTORS TO INTERRUPT SERVICE ROUTINE (EXAMPLE)
AORG >FA00
DATA >FBOO WP OF INTERRUPT SERVICE ROUTINE (EXAMPLE)
DATA >FA04 PC OF INTERRUPT SERVICE ROUTINE (EXAMPLE)

*INT1 ISR FOLLOWS (BEGINS AT M.A. FA04)

The interrupt service routine which begins at M.A. FA0416 will terminate with
an RTWP instruction.

4.10.2.2 XOP Linking Area. The XOP linking area contains seven words (14
bytes), of which the first two and the fourth words must be programmed by the
user. Each XOP vector pair contains the pointer to the new WP (in the first
word) and a pointer to the new PC (in the second word) which points to the
first instruction to be executed.

In the seven-word XOP linking area, the first word is the destination of the
XOP PC vector. The last three words are the final three registers (R13, R14,
and R15) of the linking area workspace which will contain the return vectors
back to the program that called the XOP. The third word of the seven-word
area is R11, which contains the parameter being passed to the XOP service
routine. This is shown in Figure 4-18.

For example, when XOP 2 is executed, the PC vector points to the BLWP
instruction shown at M.A. FF5A16 in Figure 4-18. This executes, transferring
control to the preprogrammed WP and PC values at the address in the next word
(YYYY as shown in Figure 4-18). To obtain the parameter passed to R11 of the
vector WP (M.A. FF5E16 in Figure 4-18), use the following code in the XOP
service routine:

MOV *R14+,R1 MOVE PARAMETER TO R1

This moves the parameter to R1 from the old R11 (the old PC value in R14 was
pointing to this address following the BLWP instruction immediately above it,
effectively to R11), and increments the XOP service routine PC value in its
R14 to the RTWP instruction at M.A. FF6016. Thus an RTWP return from the XOP
service routine will branch back to the RTWP instruction at FF6016 which
returns control back to the instruction following the XOP.

14-71

EXAMPLE USING XOP 2 LINKING AREA)WP FF48, PC FF5A)

M A

FF48

(ACTUAL ADDRESS OF RO OF XOP2

VECTOR WP)

•

FF5A

•

•

VECTOR 0420 (BLWP) XOP2 PC POINTS TO HERE
TO BE

PROGRAMMED

BY USER

FF5C

FF5E

YYYY POINTS TO XSR WP & PC VECTORS

XOP SOURCE ADDR. PARAMETER R11 (PARAMETER)

FF60 0380 (RTWP) RTWP BACK TO CALLING PROGRAM

FF62 R13 (OLD WP)

FF64

FF66

R14 (OLD PC) USED TO SAVE RETURN VALUES

(TO INTERRUPTED PROGRAM)
R15 (OLD ST)

FIGURE 4-18. SEVEN-WORD XOP INTERRUPT LINKING AREA

In summary, the seven-word XOP linking area can be programmed as follows:

• Determine the value of the PC vector for the XOP as shown in Table
4-10.

• The PC value will point to the first word of the seven-word linkage
area. The user must program three of the first four words of this
area respectively with 042016 for a BLWP instruction, the address of
the two-word vector that points to the XOP service routine, ignore the
third word, and insert 038016 for an RTWP instruction in the fourth
word.

• At the address of the BLWP destination in the second word, place the
WP and PC values respectively to the XOP service routine.

4-72

An example of coding to program the XOP linkage for XOP 2 as shown in Figure
4-18 is as follows:

*PROGRAM POINTER TO XOP SERVICE ROUTINE AT XOP2 LINK AREA
AORG >FF5A XOP2 PC VECTOR ADDRESS
DATA >0420 HEX VALUE OF BLWP CODE
DATA >FA00 LOCATION OF 2-WORD VECTORS TO XSR (EXAMPLE)
DATA 0 IGNORE
DATA >0380 HEX VALUE OF RTWP CODE

*PROGRAM POINTER TO 2-WORD VECTORS TO XOP2 SERVICE ROUTINE (EXAMPLE)
AORG >FA00 LOCATION OF VECTORS
DATA >FBOO WP OF XOP SERVICE ROUTINE (EXAMPLE)
DATA >FA04 PC OF XOP SERVICE ROUTINE (EXAMPLE)

*XSR CODE FOLLOWS (BEGINS AT M.A. >FA04)

At the XOP service routine, the following code uses the PC return value (in
R14 of the XOP service routine workspace) to obtain the parameter in R11 (in
the link area) as well as set the return PC value in R14 (in the XOP service
routine workspace) to the RTWP in the link area:

MOV *R14+,R1 MOVE OLD R11 CONTENTS TO R1 OF XOP SERVICE ROUTINE

Now R14 has been incremented to point to the RTWP instruction in the link
area. The last instruction in the XOP service routine is RTWP. RTWP
execution causes a return to the link area where a second RTWP executes,
returning control to the next instruction following the XOP.

4-73

SECTION 5

SOFTWARE DEVELOPMENT AND APPLICATIONS

5.1 GENERAL

This section covers the various means for developing user software on
different software development systems (section 5.2) and the means to install
user software on to a TM 990/1481 system using EPROM, cassette, tape, and
floppy disk (section 5.3). Also included are debugging hints (section 5.4) and
various aspects of floating point operations including the TM 990/433
Demonstration Software (sections 5.5 to 5.7).

5.2 DEVELOPMENT OF SOFTWARE FOR THE TM 990/1481

Floating point instructions can be assembled on Texas Instruments
minicomputers which operate under the DX10 disk based operating system. These
instructions can be assembled on the following assembler:

• SDSMAC, release 3.3

All but four instructions (listed next) used on the TM 990/1481 can be
assembled on the following assemblers:

• SDSMAC, release 3.2
• TXMIRA, release 2.4
• AMPLUS, release 1.0

The four instructions not assembled on the above three systems are:

• LST, load status register
• LWP, load workspace
• SDIV, signed divide
• SMUL, signed multiply

In addition, the user can employ DATA statements in order to create floating
point object and source statements. The method of doing this is explained in
paragraph 5.2.2.

NOTES

1. The AMPL system does not provide in-circuit emulation of
the SN74S481 chips.

2. All memory spaces can be defined by the user. If the TM 990/403
TIBUG is resident, it occupies memory spaces (in EPROM) from
000016 to 100016 and requires RAM from FE50 16 to FFFF16•

5.2.1 Using Floating Point Instruction Assemblers

Figure 5-1 is an example of code generated on one of the systems that assemble
floating point instructions.

5-1

0002 IDT 'SAMPLE'
0003 FABC Li EC!U >FABC
0004
0009 > SHOW OPCODES FOR FLOATING POINT INSTRUCTIONS
000A
0007 0000 0044 AR R4 ADD REAL R4, R5 TO RO,R1
0008 000*, OrF0 SR @LOC SUBTRACT CONTENTS OF LOC

0004 FABC
0009 AND LOC+2 FROM R0, R1
0010 0006 ODCA STR R10 STORE REAL NUMBER IN R0, R1
0011 IN R10, R11
0012 0008 OD96 LR *RA LOAD 2 WORDS POINTED TO BY
0013 R6 INTO R0,R1
0014 000A 0E4A AD R6 ADD DOUBLE PRECISION REAL
0015 R6-R9 TO RO-R3
0016 END

FIGURE 5-1. SOURCE LISTING OF ASSEMBLER USING FLOATING POINT SOURCE

0002 IDT ‚SAMPLE1'
0003 0004 R4 EQU 4
0004 000A RA EQU 6
0005 000A R10 FOU
000A Or40 ARCODE EQU >0r40 BASIC AR nproDE
0007 OrCO RRCnDP FOU >OrCO BASIC SR OPrODE
00OR ODCO STRCOD EQU >0D00 BASIC CSR n!,rnDl=
0009 0080 LRCODE EQIJ >ODSO BASIC LR nPCnDE
0010 0E40 ADrnDF EQU >0E40 BASIC AD OPCODE
0011 0010 INDErT EQU >0010 INDIRECT CODE
0012 00'7,0 INDEX EQU >0020 INDEX CODE
001R FABC LOC LOU >FABC DUMMY LOCATION
0014
0015 .HOW FLOATING POINT INSTRUCTIONS
0014
0017 0000 0044 DATA ARCODF+R4 AR R4
001R 0002 OCO DATA SRCOOR+TNDEX SR @Inc
0019 0004 FABC _DATA LOC
00-7.0 000A ODCA DATA := T' SIR R10
00,1 00OR 0D96 DATA LRrODE+INDECT4R6 LR *RA
0022 000A OF46 DATA ADCODF+R6 AD R6
0023 END

FIGURE 5-2. SOURCE LISTING OF ASSEMBLER USING DATA STATEMENTS

5-2

5.2.2 Floating Point Support with Other Assemblers

Assemblers that do not assemble floating point instructions can still be
used to generate floating point code using the DATA assembler directive. Prior
to entering the DATA statement, the user must first hand assemble the desired
floating point instruction to determine the correct opcode. Figure 5-2 shows
the same program assembled in Figure 5-1 only it is assembled without using
floating point source statements. As can be seen, the opcodes and pertinent
data are first identified in EQU directives, then the assembler is used to
combine the opcode with values such as index bit, indirect bit, and register
value. After assembling, the user should scrutinize code for correctness.

Assembling using DATA statements must be used if assembling with the TM
990/302 software development module or the Cross Support Package.

5.3 INSTALLING SOFTWARE INTO THE TM 990/1481 SYSTEM

The TM 990/1431 module does not have user memory onboard; thus, the system
must utilize a memory expansion board to contain user software, either in
EPROM or RAM. Memory boards available include the TM 990/203 dynamic RAM board
and the TM 990/201-44 EPROM/static RAM board.

User-written software may be installed and executed on a TM 990/1481 system in
one of the following ways:

1) Burn software into EPROM firmware and install the EPROMs on a memory
board. A RESET or LOAD can be used to start the system. The user will
be responsible for placing the correct RESET vectors at 000016 and
000216 or LOAD vectors at FFFC16 and FFFE16 for the WP and PC. A RESET
will be issued by actuating the RESET switch. A LOAD can be initiated
by enabling the RESTART- signal at connector pin J1-93.

2) Install a loader EPROM. This is similar to the EPROM in 1) above
except that it does a load function upon initialization. Loading could
be from media such as digital cassette, paper tape, audio cassette,
floppy disk, or communication link. An applicable device service
routine must be included in the firmware.

3) Install a TIBUG monitor (e.g., TM 990/403) on a memory board and load
user software from cassette or paper tape using the TIBUG "L" command.
Then, use other interactive TIBUG commands to execute the user programs.

4) The system may be bootloaded from floppy disk using the TM 990/303A disc
controller board. This bootload feature will occur upon powerup. The
disk controller will read a command from a preformatted diskette,
execute the command (such as read user software from diskette to
user memory), then give control to the microcomputer board which goes
through a level zero (powerup) interrupt. It is important that the
diskette be formatted with the desired command at the proper diskette
location and also contain the necessary data required by the user. Also,
the level zero interrupt handler must be cognizant of the bootstrap
command features such as location of data loaded from diskette, etc.
Note that only a TM 990/303A system can be used to format the disk as
required for the TM 990/303A bootload feature (other systems will use
the bootload area in diskette formatting). Format requirements for the
diskette are explained in the TM 990/303A Floppy Disk Controller User's
Guide.

5-3

5.4 DEBUGGING SOFTWARE ON THE TM 990/1481

When debugging software to run on the T•1 290/1481, several approaches should
be considered. The approach used depends greatly upon the application.

When considering the application, the user should know if the floating point
instructions are utilized or whether the operating environment is real time.
The floating point instructions may only be debugged two ways on the TM
990/1481 or a TI 990/12 minicomputer. These are the only processors which
currently execute the floating point instructions.

The floating point instructions can be debugged on the TM 990/1481 by using a
debug package such as the TIBUG monitor. These instructions can be debugged on
the TI 990/12 by using its interactive debugger.

Real-time applications can only be debugged by having it loaded and run in the
target environment, the TM 990/1481. This is because the application software
is reacting to external events and controlling them. Real-time debugging
cannot be done on the TI 990/12 because the debugger is one of the many tasks
under the operating system.

In applications where real-time control is not used and floating point
instructions are not utilized, many debug tools are available. These include:

• Debugger software resident in the TM 990/1481 system

Interactive debugger software on TI 990 minicomputer
systems such as the /4, /5, /10, or /12.

A great deal of debugging can be performed on other machines which execute the
same instruction set; however, the user must be aware that certain items such
as instruction timing and interrupts vary from processor to processor.

5.5 CHARACTERISTICS OF FLOATING POINT ARITHMETIC

5.5.1 Accuracy Considerations

Floating point algorithms must be written with the goal of minimizing errors
rather than eliminating them. Some errors will remain in all floating point
calculations due to the finite bit length of the floating point
representation. An acceptable solution is to ensure that the small error which
can occur on any given floating point operation does not "snowball" so that
the final result is not obscured by noise.

An inherent consequence of digital floating point arithmetic is that the
associative law does not hold:

(A + B) + C is not equal to A + (B + C) for all values of A, B, and C.

As a result, summing operations concerning elements diverse in magnitude
should be arranged so that the smallest elements are added first. This is so
the information contained in the least significant bits of the smallest
elements are properly accumulated and have the proper impact on the the
result.

5-14

The associative property does hold for floating point multiplication. The
order in which divisors are used on a dividend is not important. However,
seemingly equivalent combinations of multiplications and divisions will not
yield equal results in all cases. For example:

A * (B / C) is not equal to (A * B) / C for all values of A ,B, and C.

Hence the order of multiplication and division operations should be
judiciously chosen to simultaneously minimize error and prevent overflow or
underflow.

In general, a small loss of accuracy is to be expected from multiplication or
division operations while a substantial loss of accuracy may occur from
addition or subtraction operations.

5.5.2 Significant Decimal Digits

The number of significant decimal digits which can be represented by a
floating point format is governed by the length of the mantissa. The single
precision mantissa is 24 bits long. The largest decimal number which can be
represented in 24 bits is 224_1 or 16,777,215 which would infer 8 digits of
accuracy. The eighth digit will carry very little information. Therefore, it
is more realistic to assume 7 digits of accuracy. The largest number which can
be represented in the 56 bit double precision mantissa is 256-1 or
72,057,594,037,927,935. Again, because of partial information in the least
significant digit, 16 digits of accuracy should be assumed.

5.5.3 Range of Value

The range of possible values for both single and double precision is
approximately 5.398 X 10-79 to 7.237 X 10+75 respectively.

5.5.4 Interrupt Considerations

Hardware floating point operations may interfere with real time sampling
functions in certain cases because of their length compared to other
instructions. The divide double precision instruction (DD) requires
approximately 140 microseconds for execution. In contrast, the unconditional
jump instruction (JMP) is executed in under 1 microsecond. Since an
interrupt is not acknowledged until completion of the current instruction, an
external interrupt may not be serviced for up to 140 microseconds during the
execution of the DD instruction.

5-5

5.6 RADIX CONVERSION

The conversion between floating point machine representation and ASCII decimal
notation is not a straight forward process since the exponent of the machine
representation is of a hexadecimal base rather than a decimal base. The
machine representation is of the form:

A * 16B

while the desired ASCII representation is of the form:

C * 10D

There are essentially two ways to perform the conversion:

1) Convert 16B to F 10D. A * F is then C.

2) Multiply B by log 16 and round to the nearest integer D. Then divide
A* 16B by 10D to get C.

The hexadecimal quantities C and ➢ can be converted to decimal by the methods
discussed in section 4.8.3. The machine-representation-to-ASCII conversion
routines which are described in section 5.6 use method 1, above.

5.7 TM 990/433 FLOATING POINT DEMONSTRATION SOFTWARE

The TM 990/433 floating point demo package is available to illustrate the use
of the hardware floating point instructions. It must be used in conjunction
with the TM 990/403 TIBUG. It resides in two 2716 EPROMs which must be
installed at hex address 1000. The demo software is not intended to be a user
utility library; however, user written programs may access the various
routines by linking to the appropriate entry point.

The floating point demo monitor may be initialized by a special TIBUG command,
the G command, which requires no arguments. Alternatively, the monitor may be
initialized by executing a simple branch to address hex 1000. Once
initialized, the TM 990/433 requests a command at the system terminal
connected to the controller module. The monitor allows the individual demo
routines to be run interactively. The various demo routines and their
interactive command mnemonics are described in Table 5-1. Included are the two
commands HELP and QUIT. The HELP command lists the demo commands and the
QUIT command which causes a branch back to the TIBUG monitor.

The demo software package requires 136 bytes of RAM beginning at memory
address F00016.

5-6

FPTMON
COMMAND

ROUTINE
NAME

DESCRIPTION

AD ADPFP ASCII decimal to double precision machine
representation

AI AINT ASCII decimal to integer machine representation

AR AREAL ASCII decimal to single precision machine
representation

COS COS Single precision cosine function

DA DASCII Double precision machine representation to
ASCII decimal

DCOS DCOS Double precision cosine function

DEX DEX Double precision exponential function

DSIN DSIN Double precision sine function

EX EX Single precision exponential function

HELP Prints a list of demo software commands

IA IASCII Integer machine representation to ASCII decimal
notation

MINV MINV Single precision simultaneous equations

QUIT Branch back to TIBUG

RA RASCII Single precision machine representation to ASCII
decimal

SIN SIN Single precision sine function

TABLE 5-1. DEMO ROUTINES

5.7.1 Accessing Demo Routines From Applications Programs

The assembly language listings for all of the demo routines are available in
"TM 990/433 Demonstration Software for the TM 970/1481 Board". The calling
sequences required by each routine are described in the listing. In general,
it is of the following form:

BLWP @entry point
DATA <one argument>
<normal return>

All routines except MINV receive and/or return a floating point argument. This
is taken or replaced in the caller's floating point accumulator. The SINE and
COSINE routines require radian arguments.

5-7

Table 5-2 describes the arguments required by the respective routines and
lists the entry points.

TABLE 5-2 ROUTINE ENTRY POINTS AND ARGUMENTS

ROUTINE ENTRY
POINT
(Hex)

ARGUMENT

ADPFP 1CBE Address of user buffer for ASCII input

AINT 1DB4 Address of user buffer for ASCII input

AREAL 1B76 Address of user buffer for ASCII input

COS 1972 None

DASCII 1BF8 Address of user buffer for ASCII result

DCOS 19A6 None

DEX 1A90 None

DSIN 192C None

EX 1A6A None

IASCII 1D50 Address of user buffer for ASCII result

MINV 1E12 None

RASCII 1ABA Address of user buffer for ASCII result

SIN 18FA None

5-8

5.7.2 MAchine to ASCII Conversion Routines

Six demo routines provide conversion to and from the three important machine
representations:

1) Integer

2) Real (single precision floating point)

3} Double precision floating point

The output of the machine- representation- to-ASCII routines can be read by the
ASCII-to-machine-representation routines.

Example 5-1:

EMTER COMMAND (BR ^HELP^):IR
ENTER THE NUMBER IM INTEGER MACHINE REPRESENTATION

FFFF
-1
ENTER COMMAND (OR ^HELP^):IR
ENTER THE NUMBER IM INTEGER MACHINE REPRESENTATION
~XXX
000A
+10
ENTER COi/MHMD /OR ^HELP^):IH
ENTER THE NUMBER IN INTEGER MACHINE REPRECENTRTIOM
~0XX~
7PFF
+32767
ENTER COMMAND (OR ^HELP^):IH
ENTER THE HUMBER IM INTEGER MACHINE REPRESENTATION,
XyXX
8000
-32768
ENTER COMMRhD (OR - HELP"):

5-9

Example 5-2:

ENTER COMMAND (OR ^HELP^):HI
ENTER THE INTEGER ASCII NUMBER (FREE FORMAT)
-1
FFFF
ENTER COMMAND (OR ^HELP^):HI
ENTER THE INTEGER ASCII NUMBER (FREE FORMAT)
100
0064
ENTER COMMAND (OR "HELP-):HI
ENTER THE INTEGER ASCII NUMBER (FREE FORMAT)
-256
FF00
ENTER COMMAND (OR ^HELP^):HI
ENTER THE INTEGER ASCII NUMBER (FREE FORMAT)
-32767
8001
ENTER COMMHMD (OR "HELP"):

Example 5-3:

ENTER COMMAND (OR ^HELP^):RR
ENTER THE REAL NUMBER IM ASCII
C.XXXXXXXX ESYY
+.1 +01
40FF FFFH
ENTER COMMAND (OR -HELP-):AR
ENTER THE REAL NUMBER IM ASCII
S.XXXXXXXX ESYY
-.1 +01
C0FF FFFH
ENTER COMMAND (OR "HELP-):AR
ENTER THE REAL NUMBER IM ASCII
C.XXXXXXXX ECYY
+.625 -01
4010 0000
ENTER COMMAND (OR "HELP-):RP
ENTER THE REAL NUMBER IM ASCII
2.XXXXXXXX ECYY
+'128 +03
427F FFF8
ENTER COMMAND (OR -HELP"):

5-10

Example 5-4:

ENTER COMMAND (OR "HELP -):RR
ENTER THE NUMBER IM REAL MACHINE REFpECEMTRTIOH
XXXX XXXX
4110 0000
+,09999996 E+01
ENTER COMMAND (OR ^HELP^):RH
ENTER THE NUMBER IM REAL MACHINE REPRECEMTRTION
XXXX XXXX
41R0 0000
+'09999996 E+02
ENTER COMMAND (OR - HELP -):RR
ENTER THE HUMBER IN REAL MACHINE PEPRECEMTRTIOM
XXXX XXXX
FFFF FFFF
-'72369260 E+76
ENTER COMMAND (OR ^HELP^):RR
ENTER THE NUMBER IM REAL MACHINE REPRESENTATION
XXXX XXX~
0010 0000
-'53975610 E-78
ENTER COMMAND (OP - HELP -):

Example 5-5:

ENTER COMMAND (OR ''HELP^):RD
ENTER THE DOUBLE PRECISION NUMBER IM ASCII
C.XXXXXXXXXXXXXXXXX ECYY
-.1 +01
C0FF FFFF FFFF FFFH
ENTER COMMAND (OR ^HELP^):HD
ENTER THE DOUBLE PRECISION NUMBER IM ASCII
~.XXXXXXXXXXXXXXXXX EXYY
+.00 +00
0000 0000 0000 0000
ENTER COMMAND (OR ^HELP^):Rrl
ENTER THE DOUBLE PRECISION NUMBER IM ASCII
C.XXXXXXXXXXXXXXXXX ECYY
+.1 +03
4263 FFFF FFFF FFFD
ENTER COMMAND (OR ^HELP^):HD
ENTER THE DOUBLE PRECISION NUMBER IM ASCII
~.XXXXXXXXXXXXXXXXX ECYY
-.5 +01
C150 0000 0000 0000
ENTER COMMAND (OP "HELP"):

5-11

Example 5-6:

ENTER COMMAND .::OR "HELP")-:DA
ENTER THE NUMBER IN DOUBLE PRECISION MACHINE REPRESENTATION
XXXX XXXX XXXX XXXX
CIAO 000A 0000 0000
-.099999999q9q 1199 E+02
ENTER COMMAND (OR "HELP-):DA
ENTER THE NUMBER IN DOUBLE PRECISION MACHINE REPRESENTATION
XXXX XXXX XXXX XXXX
0000 On00 0000 0000
+.0000-00A0000000000 E+00
ENTER COMMAND (OR -HELP"):DA
ENTER THE NUMBER IN DOUBLE PRECISION MACHINE REPRESENTATION
XXXX XXXX XXXX XXXX
FFFF FFFF FFFF FFFF
-.72370055773:322430 E+76
ENTER COMMAND (OR "HELP "):DA
ENTER THE NUMBER IN DOUBLE PRECISION MACHINE. REPRESENTATION
XXXX XXXX XXXX XXXX
0010 A000 On00 0000
+.53976053469340183 E-78
ENTER COMMAND (OR -HELP"):

Several enhancements could be made to improve the accuracy and utility of
these routines:

1) AINT, AREAL, and ADPFP could include error detection logic to flag
invalid ASCII input strings.

2) RASCII and DASCII could include an algorithm to round to 6 or 14
significant digits respectively.

3) RASCII and DASCII implement method 1 of section 5-3 by multiplying or
dividing the input quantity by 10 until the exponent is zero. The
routines could be made to execute faster on the average by converting
from 16B to F*10D via a table. This would require 128 entries or 512
bytes of memory for single precision or 1 Kilobyte for double precision.
Accuracy could also be improved if the proper table entries were used.

4) AREAL and ADPFP could be made to parse the input string so that a free
format input could be used.

5-12

5.7.3 Transcendental Functions

The transcendental functions are included to illustrate the accuracy to be
expected from common implementation of floating point operations. The
functions are calculated from Taylor series expansions. 0

Example 5-7:

ENTER COMMAND (OR ^HELP ^):CIM
ENTER CIH5LE PRECICIOM It HRGUMEMT IM DEGREE:-.'
~.XXXXXXXX ECYY
+.0 +00
+.00000000 E+00
ENTER COMMHMD (OR ^HELP^):~_7 lM
ENTER :-__~IM6LE PREClCIOM CIME ARGUMENT IM DEGREEC
3.XXXXXXXX ECYY
-.30 +02
-.49999971 E+00
EMTER COMMHMD (OR HELP ̂):2lM
EMTER CIM5LE PRECIClOM Cl ME HR~UMEMT JM DEGREEC
~.XXXXXXXX ECYY
+.45 +02
+.70710668 E+00
DATER COMMHMD (OR ^HELP^):ClM
E~TE~ ~IM5LE P~ECI~IOM CIME HRGUMEMT IM DE5REEC
~.~XXXXXXX ECYY

+02
2544 E+00

EMTER [OMMRMD .OF ^HELP^):

Example 5-8

EHTE~ [~MMHM~ (OP ^HELP^):CO~
THE CI~5LE PRE[ICIOH CO~IME HRGUMEHT IM DE5REE~

X E:--
+ :-I A

-'09999996 E+01
EHTER /O~ ^HELF^):CO:7-
EMTER THE _~IM5LE RFECI~IOM CO~IME ~RGUMEMT IM DEGPEE~
~.XXXXXXXX E~YY

~,86602544 E+00
~N'TER 1:0111rHr- T ^HELP^):CC:.0
EnTEp THE ~I~~GLE PRECI~IOM CO~IME RR~UMEMT IM ~E5REE~
~.XXXXXXX~~ E~YY
+'45 +02
+.70710~68 E+0~
E- N TEE F [EM~~w~ -:r- F: U. -
EMTE~ T~E ~I~~~LE PRECICIO~ CO~IME ~~6UMEMT IM DEf;1REE::_7
~.XXXXX~yX E~YY

+.5000O02S E+00
EMTER 'OP ^HELP^):

5-13

Example 5-9:

ENTER COMMAND (OR ^HELP^):DCIM
ENTER THE DOUBLE PRECISION SINE ARGUMENT IM DEGREES
C.XXXXXXXXXXXXXXXXX ECYY
+.0 +00
+.00000000000000000 E+00
ENTER COMMAND (OR ^HELP^):DCIM
ENTER THE DOUBLE PRECISION SINE ARGUMENT IM DEGREES
C.XXXXXXXXXXXXXXXXX ESYY
+.30 +02
+.49999999999999988 E+00
ENTER COMMAND (OR ^HELP~):DCIM
ENTER THE DOUBLE PRECISION SINE ARGUMENT IM DEGREES
C.XXXXXXXXXXXXXXXXX ECYY
+.45 +02
+.70710678118654741 E+00
ENTER COMMHtD (OR ^HELF^):DCIM
ENTER THE DOUBLE PRECISION ClME ARGUMENT IM DEGREE.,---.:
C.XXXXXXXXXXXXXXXXX ESYY
+.60 +02

'

+.86602540378443855 E+00
ENTER COMMAND (OR ^HELP^):DCIM

Example 5-10:

ENTER COMMAND (UP ^HELP^):DCOC
ENTEp THE DOUPLE PRECISION COSINE ARGUMENT IM DEGREES
~.XXXXXXXXXXXXXXXXX E~YY
+.0 +00

E+01
ENTER COMMAND (OR ^HELP^):DCOC
ENTER THE DOUBLE PRECISION COSINE ARGUMENT IM DEGREE.---.*
C.XXXXXXXXXXXXXXXXX ESYY
+.30 +02
+'86602540378443864 E+00
ENTER COMMAND (OR "HELP^):DCO -_-:
ENTER THE DOUBLE PRECISION COSINE ARGUMENT IM DEGREE---.'
T.XXXXXXXXXXXXXXXXX ECYY
+'45 +02
+.70710678118654755 E+00
ENTER COMMAND (OR ^HELP^):DCO:_-.:
ENTER THE DOUBLE PRECISION COSINE ARGUMENT IM DEGREE:---.:
J.XXXXXXXXXXXXXXXXX ESYY
+.6O +02
+.50000000000000013 E+00
ENTER COMMAND (OR "HELP -):

5-14

Example 5-11;

EMTEF COMMHMD (OR ^HELP^):EX
EMTER THE CIM5LE PRECICIOM EXPONENTIAL HR-53UMEMT
~.XXXXXXXX ECYY

+.27182769 E+01
ENTER COMMHMD (OR ^ HELP ̂):EX
ENTER THE CIMGLE PRECICIOM EXPONENTIAL HR6UMEMT
C.XXXXXXXX ECYY
+.1 +02
+.22026262 E+05
ENTER COMMAND (OR ^HELP^):EX
ENTER THE CIMGLE PRECI'S'ION EXPONENTIAL ARGUMENT
C.XXXXXXXX ECYY

+.11051673 E+01
ENTER COMMAND (OR ^HELP^):EX
ENTER THE CIMGLE PRECICIOM EXPONENTIAL ARGUMENT
C.XXXXXXXX E.7YY
-.1 +01
+.36787939 E+00
ENTER COMMAND (OR "HELP")

Example 5-12:

ENTER COMMHMD (OR ^HELP^):DEX
EMTER THE DOUBLE PRECICIOM EXPOMEMTIHL HR6UMEMT
J.XXXXXXXXXXXXXXXXX ECYY

+.27182818284590426 E+01
EMTER COMMAND (OR ^HELP^):DEX
ENTER THE DOUBLE PRECICIOM EXPOMEMTIHL RRGUMEMT
~.XXXXXXXXXXXXXXXXX ECYY

+.36787944117144224 E+00
EMTER COMMHMD (OR HELP DE'..'
ENTER THE 11 01-IBLE PRECICIOM EXPOMEMTIHL ARGUMENT
C,XXXXXXXXXXXXXXXXX E~YY

+.22026465794806655 E+05
ENTER COMMHMD (DR ^HELP^):DEX
ENTER THE DOUBLE PRECICIOM EXPONENTIAL HR51_1'MEMT
~.XXXXXXXXXXXXXXXXX E_YY

+.110517~9180756463 E+01
EMTER COMMAMD (OR ^HELP^):

Several enhancements could be made to improve the versatility and accuracy of
these routines:

1) The arithmetic overflow interrrupt could be set up to detect an overflow
condition. At present, out of bounds arguments for all the
transcendental functions will simply return an erroneous result.

2) Logic could be added to map the sine and cosine into the first quadrant
for any input value. The Taylor series evaluation for sine and cosine
for a fixed number of terms becomes more inaccurate as the input value
becomes greater in magnitude.

3) The Taylor series terms are added as they are calculated; hence,
succeeding smaller terms are added to a sum. For slightly improved
accuracy, calculate all the terms first and then add them in the reverse
order in which they were calculated.

4) Separate sine and cosine routines are not necessary. The cosine could be
calculated using the sine routine and an appropriate mapping algorithm.
All the trigonometric functions can be derived from the tangent series.

5) EX and ORX become erroneous for large negative numbers because Taylor
series expansion for ex becomes an alternating series for x less than
zero. For large negative numbers, large magnitudes are added and
subtracted to the sum to eventually yield a small result. Accuracy can
be restored by the method described in 3). As an alternative, calculate
ex for x less than 0 by taking the reciprocal of e-x.

5.7.4 Solution of Simultaneous Equations

The matrix inversion algorithm is designed to operate on a system of
simultaneous equations expressed in the form of a matrix with N rows and N+1
columns where N is the number of unknowns. The row elements are in contiguous
memory locations. The matrix is inverted "in place" by the Gauss-Jordan matrix
inversion method. The original matrix is therefore destroyed and the results
appear in the N+1 column of the matrix. For example, given the matrix A with N
unknowns, x1 will appear in A(N,1), x2 in A(N,2),...,xN in A(N,N+1).

The FPDMON command MINV assumes that the matrix has been previously placed in
memory.

Example 5-13:

TM E000,E02E
E000=4110 00011 4120 0000 4130 0000 41E0 1111111'
E010=4110 000n 4110 nnOn 4110 0000 417-:0 0000
E020=4170 0000 4120 0000 4110 0000 41A0 0000
7G
FLOATING POINT DEMO MONITOR REV
COPYRIGHT 1930 BY TEXAS INSTRUMENTS

ENTER COMMAND (OR "HELP-):MINV
ENTER THE NUMBER OF UNKNOWNS =>3
ENTER THE ADDRESS OF THE MATRIX =>E000
X(+1)=+.0999';996 E+01
+2)=+.09999996 E+01
(+3)=+.0999996 E+01
ENTER COMMAND (OR "HELP"):OUIT

5-16

SECTION 6

I/O PROGRAMMING USING THE CRU

6.1 GENERAL

This section describes the fundamental aspects of I/O programming for a system
using a TM 990/1481. In this section, the I/O functions on the TM 990/305
module will be used (the 305's memory section is not covered). Additional
information on I/O programing can be found in the following manuals:

• Model 990 Computer, TMS 9900 Microprocessor Assembly Language
Programmer's Guide (P/N 943441-9701)

• Model 990/12 Computer Assembly Language Programmer's Guide
(P/N 2250077-9701 *A)

• TMS 9901 Programmable Systems Interface Data Manual

• TM 990/305 Memory and I/O Expansion Module User's Guide.

6.2 SYSTEM DESCRIPTION

A typical opto-coupled I/O system would consist of a TM 990/1481 and a TM
990/305. A brief description of the TM 990/305 I/O interface follows.

The TM 990/305 has 16 parallel input lines (port 1) and 16 parallel
input/output lines (port 0) that can be individually configured as either
inputs or outputs. All I/O lines are optically isolated and interface through
the communications register unit (CRU). Each input line of port 0 and port 1
has its own socketed series resistor to allow the user to easily reconfigure
the module for voltages up to 30 volts. Lines 0 through 3 and line 15 of port
1 can be configured as either inputs or interrupts by selecting the proper
jumper option. Line 15 could be used to wire-OR interrupts 0 through 3 if the
user desires a board interrupt. Interrupts are edge-triggered and latched.

Port 0 functions in much the same manner as port 1 with the exception that the
lines can be used as inputs or outputs. When a line is to be configured as a
latched output, its individual line resistor must be removed from its socket.
By using high current, open-collector devices in port 0, output currents of 30
mA are permitted. If a line is to be used as an input, the optical isolator
in its output section should be removed from its socket. A schematic of a
channel of I/O port 0 is shown in Figure 6-1.

As the CRU provides the interface between the TM 990/1481 and the TM 990/305
via the TM 990 system bus (see belwo).

6.3 COMMUNICATIONS REGISTER UNIT (CRU)

The CRU provides a dedicated serial interface for I/O operations. CRU
instructions permit transfer of from one to sixteen bits. CRU I/O provides
powerful bit manipulation capability, flexible field lengths, and a simple bus
structure (a description of CRU single-bit and multibit instructions can be
found in Section 4.5.8, entitled CRU Bit Addressing). Both the CRU and
address buses are used for this communication which involves 32 CRU bits. It
should be noted that the CRU does not use the data bus. A CRU map of the TM
990/1481 is in Appendix B.

6-1

E128 E130
+5VA

 A

+5V 0 0 0

+5V

CRUIN

Al2

Al3

A14

INSEL

74LS251

INPUT
SELECTOR

4.7K TIL117

7 INPUT 1
CHANNELS

L_

22011

REVERSE VOLTAGE
PROTECT DIODE

TIL117 OR TIL119
(TIL119 SHOWN)

22012 r- -1

CRUOUT

Al2

.A13

A14

OUTSEL

RESET

74LS259 +5V

7406

7 OUTPUT
CHANNELS

FIGURE 6-1. TM 990/305 PORT 0 I/O CHANNEL

TO I/O
EDGE
CONNECTOR

L

As an example of offboard CRU, the TM 990/305 can be assigned a unique CRU
hardware base addresss as explained in the TM 990/305 User's Guide. A sample
program using the TM 990/305 is provided in paragraph 6.6 herein. This
address is the "base address" for that module and is the reference point from
which displacements are taken when using CRU single-bit instructions. The CRU
map for the TM 990/305 is given in Table 6-1; this map gives the needed
information to address any of the I/O module's channels or interrupts. As an
example, after the CRU hardware base address for the I/O module is loaded into
R12, then the instruction SBO 5 would activate a load or relay connected to
output OUT5 on that module (Note: this high level signal is then inverted thus
producing the low signal that is required to activate the TIL 117/TIL 119
opto-coupler. Similarly, this bit could be tested with a test bit 5 (TB5)
instruction to verify that the low level that is required to activate the load
was actually present.

6.4 LOADING THE CRU HARDWARE BASE ADDRESS

There are two techniques that can be used to load the CRU hardware base
address into its designated workspace register (R12). In order to
best illustrate these techniques, a review of CRU bit address development will
be presented first.

The CRU bit selected by single-bit instructions is determined by the value in
bits 3-14 of workspace register R12 plus the value of the signed displacement
from the single-bit instruction (See Figure 6-2). The contents of R12 are
referred to as the "software base address" while bits 3-14 of R12 constitute
the "hardware base address." To properly load R12, a value equal to 2X the

6-2

TABLE 6-1. TM 990/305 CRU MAP

Definitions: A = CRU H/W Base Address (R12, Bits 3-14)
3/W Base Address = 2 X H/W Bit Address

CRU Bit H/W Bit Address Input Output

0
1
2
3
4
5
6
7
8
9

A + 0000
A + 0001
A + 0002
A + 0003
A + 0004
A + 0005
A + 0006
A + 0007
A + 0008
A + 0009

I/O Port 0 IN 0
" IN 1
" IN 2
" IN 3
" IN 4
" IN 5
" IN 6
" IN 7
" IN 8
" IN 9

I/O Port 0 OUT 0
" OUT 1
" OUT 2
" OUT 3
" OUT 4
" OUT 5
" OUT 6
" OUT 7
" OUT 8
" OUT 9

10 A + 000A " IN 10 " OUT 10
11 A + 000B n IN 11 " OUT 11
12 A + 000C " IN 12 " OUT 12
13 A + 000D " IN 13 " OUT 13

14 A + 000E " IN 14 n OUT 14

15 A + 000F II IN 15 It OUT 15

16 A + 0010 INPUT PORT1 INO/INTERRUPT 0 INTERRUPT RESET 0
17 A + 0011 " IN1/INTERRUPT 1 INTERRUPT RESET 1
18 A + 0012 " IN2/INTERRUPT 2 INTERRUPT RESET 2
19 A + 0013 " IN3/INTERRUPT 3 INTERRUPT RES& 3
20 A + 0014 " IN4
21 A + 0015 II IN5
22 A + 0016 II IN6
23 A + 0017 it IN7
24 A + 0018 " IN8 INTERRUPT MASK 0

25 A + 0019 " IN9 INTERRUPT MASK 1
26 A + 001A " IN10 INTERRUPT MASK 2

27 A + 001B it IN11 INTERRUPT MASK 3
28 A + 001C " IN12 STATUS LED #1
29 A + 001D " IN13 STATUS LED #2

30 A + 001E " IN14 BOARD I/O RESET
31 A + 001F " IN15/BOARD INTERRUPT BOARD INTER, RESET

6-3

desired CRU hardware base address can be loaded into R12 or a value equal to
the desired CRU hardware base address can be loaded into R12 and then shifted
one bit to the left.

SOFTWARE BASE ADDRESS

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

x x R12

DON'T CARE

HARDWARE BASE ADDRESS

8 9' 10 11 12 13 14 15

BIT SIGN
EXTENDED

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 0 0

SET TO ZERO EFFECTIVE CRU BIT ADDRESS
FOR ALL CRU ON ADDRESS LINES A3 TO A14
OPERATIONS

HARDWARE BIT ADDRESS

ADD SIGNED
DISPLACEMENT

ADDRESS BUS

FIGURE 6-2. CRU BIT ADDRESS DEVELOPMENT

As an example of loading the CRU hardware base address, assume that a CRU
hardware base address of 18016 (38410 is to be loaded into R12. As mentioned
previously, there are two ways to accomplish this loading: load a value into
R12 that is equal to twice the value of the CRU hardware base address or load
the value equal to the desired CRU hardware base address and then shift the
value one bit to the left. The following examples place CRU hardware base
address 38410 (18016) into R12.

EXAMPLE 1: LI R12,>300 Loads 18016 (38410) into bits 3-14 of R12

Notes: 1. 30016 = 2X 18016.
2. The greater than sign (>) is used to

indicate a hexadecimal value.

EXAMPLE 2: LI R12,>180 Loads 18016 (38410) into R12
SLA R12,1 Shifts R12 contents one bit to the left.

6-14

Now that the two techniques for loading the CRU hardware base address have
been described, an example illustrating the loading of a specific bit will be
given. Assume that the I/O module is assigned a CRU hardware base address of
18016 and it is desired to activate output 5 (OUT5). The displacement from
the base address is' 510 as given in Table 6-1. The required code that is
needed to select this output follows:

EXAMPLE 1: LI R12,>300
SBO 5

EXAMPLE 2: LI R12,>180
SLA R12,1
SBO 5

6.5 USER WORKSPACE

This technique loads R12 with 2X the CRU
hardware base address that is desired.
The SBO instruction activates the bit that
is displaced by 5 from the base address.

This technique loads R12 with the CRU hard
ware base address and then shifts this data
one bit to the left. The SBO instruction
carries out the same function as in the code
given above.

The high usage data registers for the TM 990/1481 are defined as blocks of
memory called workspaces; these workspaces are located on the memory module.
The starting location of a workspace is defined by a single internal register
called the workspace pointer. The workspace pointer contains the memory word
address of the first of sixteen consecutive memory words in the workspace,
thus the processor has access to sixteen 16-bit registers. When a differnet
set of registers is required, the program simply reloads the workspace pointer
with the new address.

The load workspace pointer immediate (LWPI) instruction is used to define the
starting address for the user workspace. As this workspace resides in RAM
(read/write memory), then the type of memory module used and how it is
configured will determine the available user workspace.

6.6 SAMPLE PROGRAM

A sample program that will monitor one input line and control one output line
on the TM 990/305 is given in Figure 6-3. This control system responds to
inputs from a transducer and activates a relay that controls some form of a
load. Output OUT1 of I/O port 0 is controlled as a result of constantly
reading the state of input INO of the same I/O port. Both the input and
output signals are active highs. When a one is read at INO, a one is output
to OUT1.

START LWPI >FF90 Define workspace just below TIBUG
OFF LI R12,>300 Load TM 990/305 CRU hardware base address

SBZ 1 Turn output (OUT1) off
LOOP TB 0 Look at input level

JNE OFF Read "0" = off
SBO 1 Turn output on
JMP LOOP Look at input level again
END

FIGURE 6-3. MONITOR CONTROL PROGRAM

6-5

SECTION 7

THEORY OF OPERATION

7.1 GENERAL

This section covers the theory of operation of the T!' 990/1481. Information
in the following manuals can be used to supplement material in this section:

• SN74S481, SN54LS/74LS481 4-Bit-Slice Schottky Processor Data Manual

• TMS 9902 Asynchronous Communications Controller Data Manual

• TMS 9901 Programmable Systems Interface Data Manual.

7.2 SYSTEM BLOCK DIAGRAM

Figure 7-1 shows a system using the TM 990/1481(processor and controller
boards) and a memory board. All boards interface with the TM990 BUS on the
motherboard via the common bottom edge connector J1. The PROCESSOR and the
CONTROLLER are also interconnected via the common top edge connectors J3 and
J4. Connector J2 on the CONTROLLER allows connection to any RS232 device such
as the TI Silent 700 terminal or the TM 990/301 Microterminal.

7.3 THE PROCESSOR BOARD

7.3.1 The 481 Bit-Slice Processor

The PROCESSOR board is designed around the TI SN74S481J bit-slice processor
integerated circuit. A functional block diagram of this processor is given in
Figure 7-2. The PROCESSOR's major operating registers are contained within
the 481 chips. These registers are the PROGRAM COUNTER (PC), the MEMORY
COUNTER(MC), the WORKING REGISTER (WR), and the EXTENDED WORKING REGISTER
(XWR). Detailed information on the 481 can be found in the data manual
entitled the "SN74S481, SN54LS/74LS481 4-Bit-Slice Schottky Processor Elements
Data Manual." The TM 990/1481 processor is shown on sheet 2 of the processor
board schematics in Appendix A. This processor uses four 481 chips to form a
16-bit processor.

The ALU OP CODE, OPO to OP10, is routed from the CONTROLLER board via the top
edge connector P3 shown on sheet 6 of the schematics. OP8 and OP9 go thru
open collector gates to allow the processor chips to drive these lines during
micro/macro-operations such as multiply and divide. OPO thru OP4 are OR'ed
with ALUSPLIT to the least significant two chips of the ALU to create a NOP
function in the lower byte during byte operations. OP10, which is typically
the carry-in function in the ALU OP CODE, goes thru a mux which allows a
previously saved carry-out to be substituted as the carry-in.

Two microinstruction commands of the STATUS CONTROL (STC) field, SAVCO and
USENSAV, allow the present carry-out of the ALU (CO-) to be saved in the
COSAV flip-flop until another SAVCO or USENSAV is executed. The saved
carry-out can then be substituted for OP10 as the carry-in to the ALU on any
subsequent microinstruction. Again two decodes of the STC field, USECOSAV and
USENSAV, allow the substitution of COSAV for OP10.

7-1

r 1

DCAL 2
PLA

DCAL 1
PLA

SC AL
PLA

RETURN
ADDRESS

REGISTER

a
6-1

•

CON ROL
MEMORY

7/ADDRESS MUX
,

\ ENBRN-

ENRTN-
ENSCAL-

,ENDCAL-
,ENIRS

ENIRD-

CONTROLLER
BOARD

INSTRUCTION
REGISTER

L J

TM 990
SYSTEM
BUS J1

EPROM RAM
CONTROL
MEMORY

MICROINSTRUCTION
REGISTER

MEMORY

TEST
MUX

CLOCK
PERIOD
COUNTER

BOARD

,LV6, TESTO

DE MUX

SOURCE
SELECT

TESTI
TEST2

TESTS C
TEST4

< •

DATA BUS

I CRU AND CONTROLLER BUS 1

OG

L.

TTY/RS-232-C/MICROTERMINAL INTERFACE J2

TMS 9902
I/O CONTROLLER

r

CONTROL MEMORY ADDRESS BUS

SHIFT
COUNTER RFO

RF1
•
•
•

PARITY

e--1* JP711;\ TMS 9901
STATUS

MUX

RF15 STATUS
REGISTER

481
BIT-SLICE

PROCESSORS
2*D 2 S 2*C

C A
SWAP
MUX

CONTROL
DECODE 4' 47 2*INTERRUPI:

4
5

r
141 CONSTANT

VECTORS WORD

H
INSTRUCTION

REGISTER

2 DISP

Ni Al)01 00
PC MC XWR WR,4

I I

ALU

B

ADDRESS BUS

r ADDRESS DATA
BUFFERS BUFFERS PROCESSOR

BOARD

F BUS

A BUS

4 1
B BUS

CONTROL BUS
L -J

FIGURE 7-1. TM 990/1481 SYSTEM BLOCK DIAGRAM

4 4

CI N CIN

WR MOH

WORKING

REGISTER

X WEI MUX

EXTENDED
WORKING
REGISTER

%WHIT T •-•.1

XN/HRT

4 4

\ L/0 *AUX/

kg. *FILET

DATA OUT
PORT

WRRT

PROGRAM

COUN ER

4

ME MOH Y

COUNTER

4

LG

AG

LOUT

EO

OV

ALU AND

COMP ARAN:Hi

OPEN.
SEE.

INPUTS

HARDWIRED
ALGORI TRW

MICRO DECODE
LOGIC AHRAY

11/0
IIXSP

2

TO PC INC PC

INC MC TO W;

LOAD WR TO WIT

AO MUX PGAI CTH

SELECT MEM CTH 4

STATE

DO MUX XINH BUS

SELECT S//IF T MUX
MZ

131, 0 SEL

LI
LATCH

A
LATCH

XINR WA II 1.
I MUX

4
a

X OUT
L OG> OUT IMSPI

OUT
ARITH > OUT 4MSP

 COOT

4 4

SHIFT
MUX

Bus

EQUAL

CCO
OVER I 1 OW 1M5PI

!.CI

\
Ao

mix)/
16,

ADDRESS OUT
PORT •

CLUCK

EE

MUM
OUTPUTS r

INPUTS

FIGURE 7-2. SN74S481 FUNCTIONAL BLOCK DIAGRAM

The flip-flop which saves the overflow bit functions in a different manner
from the COSAV flip-flop. The overflow bit out of the ALU (OV) is saved in
the OVSAV flip-flop only when the SAVOV microinstruction is executed, and is
reset after the next microinstruction. The OVSAV command is a decode of the
STC field. If a string of consecutive microinstructions are executed with
SAVCO, and an overflow occurs anywhere in the string, then the OVFL signal
will be held from that point to the end of the string and for one additional
microinstruction period.

This feature is used for example in the left arithmetic shift. The ALU can do
only a single bit shift so a multiple bit shift is performed by looping on a
shift and decrementing the counter to zero. The ALU produces an overflow (OV)
if the sign bit changes on any shift, but the OV goes away if the sign remains
the same on subsequent shifts. The OVSAV allows the overflow condition to be
saved and status recorded properly.

7.3.2 Shift Counter

The SHIFT COUNTER counts the microcycles for operations such as shifts,

7-3

divides, multiplies, and other iterative operations. The SHIFT COUNTER may be
decremented by one, loaded with a count value, or set to 15. The counter is
4 bits wide and is loaded from the F-BUS bits Fll thru F14 when the LDCNT bit
of the microinstruction is set. The count loaded is therefore actually F/2.
The COUNT=O signal from the counter goes to the BRANCH TEST MUX so the
microprogram may conditionally branch on the COUNT=0 condition.

The SHIFT COUNTER, shown on sheet 4 of the PROCESSOR schematics, is
implemented using an SN74LS163N FOUR BIT COUNTER chip. The counter is
actually implemented using complement logic, that is, it is loaded with the
complement of the F-BUS (F(11-14)-), counts down rather than up, is cleared
to zero rather than set to 15, and detects COUNT=15 rather than COUNT=0. All
of this is transparent to the microprogrammer however.

The counter is controlled by two bits of the microinstruction, LDCNT and
DECCNT. LDCNT causes the counter to be loaded with the complement of the
F-BUS value (F(11-14)-) on the next clock (CLKC3-). DECCNT causes the
counter to increment by one on the next clock (CLKC3-). If LDCNT and DECCNT
are both ONE then the counter is reset to ZERO via the SETCNT15 signal.

7.3.3 The Swap Multiplexer

The SWAP MUX allows the microprogrammer to swap the two bytes of the data on
the F-BUS, and the result is available on the A-BUS. The swap operation is
normally used to move the byte to be operated on to the most significant half
of the word since in byte microoperations the ALU only operates on the upper
byte. The normal state of the SWAP MUX allows data to pass to the A-BUS
unchanged, and therefore provides a path from F-BUS to A-BUS. There are three
swap commands available: FSWAP = swap unconditionally, CSWAPA = swap if bit 15
of the address is one, and CSWAPB = swap if bit 15 of the address is one and
the instruction is a byte related instruction. The swap commands are decodes
of the DECODE field of the microinstruction.

The SWAP MUX, shown on sheet 3 of the PROCESSOR schematics, is implemented
with four SN74S257N QUAD 2 TO 1 MULTIPLEXERS. The chip enables of the
multiplexer chips are controlled by the ENSM- signal which is the complement
of the A-BUS SELECT bit of the microinstruction bit ENRF- (CMD0(41)). The
A/B SELECT inputs of the multiplexer chips are controlled by the SWAP signal,
which is a function of FSWAP-, CSWAPA-, CSWAPB-, BYTEX, and A015. The
function is:

SWAP = FSWAP + A015 * (CSWAPA + CSWAPB * BYTEX)

where FSWAP, CSWAPA, and CSWAPB are decodes of the DECODE field of the
microinstruction word (DEC(0-4) = CMDO(76-80)), BYTEX is a decode of the
instruction register, and A015 is the least significant bit of the ADDRESS
BUS. The decoded signals are defined as follows:

DEC(0-4)=00010 (FORCE SWAP)

DEC(0-4)=00011 CSWAPA, (CONDITIONAL SWAP
on ADDRESS)

DEC(0-4)=00100 --0.-CSWAPB, (CONDITIONAL SWAP
on ADDRESS if BYTE)

The BYTEX signal indicates that the instruction register contains a BYTE
related instruction, and the least significant bit of the address, A015,
indicates which of the bytes was addressed, the upper byte or the lower byte.

7-4

7.3.4 Instruction Register (IR)

The principal INSTRUCTION REGISTER is on the CONTROLLER board where it is
decoded to get the microprogram entry points, but a second INSTRUCTION
REGISTER is located on the PROCESSOR board where it is used to save the
variable parts of the instruction such as the addressing parameters. The
fields of the IR which the microprogrammer can access are the C, S, D, and
DISP fields. All of these fields are presented to the ALU, via the B-BUS,
right justified to the second from the least significant bit. They are
therefore actually 2*C, 2*S, 2*D, and 2*DISP. The DISP field is sign extended,
and the C, Sand D fields are zero filled.

The INSTRUCTION REGISTER, shown on sheet 4 of the PROCESSOR schematics, is
implemented using an SN74S374N EIGHT BIT REGISTER and an SN74S175N FOUR BIT
REGISTER. The IR is divided in such a way that the least significant four
bits may be loaded independently of the rest of the word. Only 12 bits of the
IR are implemented on the PROCESSOR since the upper bits do not contain
variable data fields. The least significant four bit register is clocked by
the GCKIR- signal and the upper register is clocked by CKIR-. GCKIR is the
logical OR of CKIR and CKIRX so CKIR clocks the entire register and CKIRX
clocks only the least four bits.

The data fields of the IR are driven to the B-BUS using four SN74LS244N QUAD
BUS DRIVERS. One of the LS244's drives either the S-FIELD of the IR
(IR(12-15)) or the D-FIELD of the IR (IR(6-9)) to the B-BUS (B(11-14)).
A second LS244 drives either the upper 4 bits of the 8 bit displacement field
of the IR (IR(8-11)) or zeros to the B-BUS (B(7-10)). A third LS244, shown
on sheet 8 of the PROCESSOR schematics, drives the C-FIELD of the IR
(IR(8-11)) to the B-BUS (B(11-14)). When the C,S,or D fields are driven
to the B-BUS (B(11-14)) the remaining 12 bits (B(0-10) and B(15)) are
driven to zero to fill out the word by the other LS244 1 s. When the
DISPLACEMENT FIELD is driven to the B-BUS the upper bits are sign extended
(B(0-7) = B(8)) and the least siginificant bit is set to zero (B(15) = 0).

The control signals that determine which IR field drives the B-BUS are decoded
from the B-BUS SELECT field of the microinstruction
(BSEL(0-3).*--- CMD0(43-45)). The decoding is done using an SN74S138N THREE
TO EIGHT DEMULTIPLEXER, as shown on sheet 6 of the PROCESSOR schematics.

The decodes are as follows:
BSEL(0 -3)=001 -41.- ENS -
BSEL(0 -3)=010 -41.- END -
BSEL(0 -3)=011 -41.- ENDISP -
BSEL(0 -3)=111 ENC-

S FIELD
D FIELD
DISPLACEMENT FIELD
C FIELD

7.3.5 Status Register and Status Logic

The STATUS LOGIC allows the microcode to transfer the existing status
conditions at any time to the STATUS REGISTER. The microinstruction control
word allows either individual status bits to be enabled or certain logical
groups of bits to be enabled simultaneously. The STATUS REGISTER can be loaded
in three ways, bits 0-7 from current conditions selectively under
microinstruction command, bits 12-15 directly from the F-BUS (MASK load), or
all 16 bits at once loaded directly from the F-BUS.

The STATUS REGISTER is shown on sheet 7 of the PROCESSOR schematics. The
status logic can be logically divided into six parts; the STATUS REGISTER

7-5

itself, the STATUS MULTIPLEXER, the STATUS CONTROL section, the F-BUS buffer,
the B-BUS buffer, and the CARRY/SHIFT logic.

The STATUS REGISTER is implemented using four SN74LS379N FOUR BIT REGISTERS.
The register is divided in this manner to allow the upper 8 bits to be
controlled via the STATUS MUX and to allow the lower 4 bits to be loaded
independently for MASK LOAD. The register chips are clocked continuously by
the system clock CLKP3- . In the normal state the STATUS MUX circulates
present status back to the upper 8 bits in the upper two LS379's, and the
lower two LS379s have the LOAD line off (HIGH) so that STATUS remains
unchanged.

The STATUS MULTIPLEXER, which consists of four SN74LS253N DUAL 4 TO 1
MULTIPLEXERS, can individually select either NO CHANGE or UPDATE for each of
the upper 7 bits of the register. The control lines ENST(0-6) determine which
of the bits are to be updated and which are to remain the same(the 8th bit,
ST7, located in the STATUS MUX, cannot be updated via the STATUS MUX but can
be changed as described below).

The source of the new status conditions is the current output of the S481
processor. The LGT,AGT,EQ,and OVFL conditions come directly from the S481s.
The PARITY signal is generated from the upper bits of the word currently on
the F-BUS using an SN74LS280N PARITY GENERATOR. The COSH signal is either the
CARRY-OUT of the ALU or the SHIFT-OUT of the ALU depending on the state of the
SAVSH- signal.

The STATUS CONTROL logic decodes the STATUS CONTROL field of the
microinstruction to produce the necessary control signals for the status logic
and some additional control signals for the ALU section. The STATUS CONTROL
produces the individual status bit enable signals, ENST(0-6), the status load
signal, LDSR (and LDSR-), and the mask load signal, LDMASK-.

The F-BUS BUFFER allows the F-BUS to drive the upper status bits instead of
the STATUS MUX during the status load operation. The F-BUS BUFFER is
implemented using half of two SN74LS244N OCTAL BUS DRIVERS. The output enable
of the buffer is controlled by the LDSR- signal. When LDSR- is LOW the F-BUS
feeds the STATUS REGISTER, and when LDSR- is HIGH the STATUS MUX feeds the
STATUS REGISTER.

The B-BUS BUFFER, consisting of four SN74LS244 OCTAL BUS DRIVERS, allows the
STATUS REGISTER to be read to the B-BUS when selected via the B-BUS SELECT
field of the microinstruction. The signal ENSR which causes the buffer to
drive the B-BUS is decoded from the B-BUS SELECT (BSEL(0-2) = 011).

The CARRY/SHIFT logic, shown on sheet 11 of the PROCESSOR schematics, is used
to control the condition which sets ST3, either CARRY-OUT(CC) or
SHIFT-OUT(SH), and if SH then which bit should be used F(0) or F(15).

7-6

TABLE 7-1. STATUS CONTROL ROMS

PROCESSOR
PROM P1 (U17/D6)

PROCESSOR
PROM P2 (U23/E6)

1=ENCRUCLK 1=SAVSH-
2=ENST6 2=ENSAVCO
3=ENST5 3=SAVOV
4=ENST4 4=ALUSPLIT
5=ENST3 5=COSAVUSE-
6=ENST2 6=LDSR-
7=ENST1 7=LDSR
8=ENSTO 8=LDMASK-

P1 P2
DECODE MNEMONIC 87654321 87654321

00000 NOP 00000000 10110001
00001 COMP 11100000 10110001
00010 COMPB 11100100 10111001
00011 ARITH 11111000 10110001
00100 ARITHB 11111100 10111001
00101 SHIFT 11110000 10110000
00110 SHIFTL 11111000 10110100
00111 CRUCLK 00000001 10110001
01000 SHTEST 00000000 10110000
01001 USENSAV 00000000 10100011
01010 COMPOV 11101000 10110001
01011 NOP 00000000 00000000
01100 NOP 00000000 00000000
0110 1 NOP 00000000 00000000
01110 NOP 00000000 00000000
01111 NOP 00000000 00000000

P1 P2
DECODE MNEMONIC 87654321 87654321

10000 ENLGT 10000000 10110001
10001 ENAGT 01000000 10110001
10010 ENEQU 00100000 10110001
10011 ENCO 00010000 10110001
10100 ENOV 00001000 10110001
10101 ENOP 00000100 10110001
10110 ENXOP 00000010 10110001
10111 USECOSAV 00000000 10100001
11000 ALUSPLIT 00000000 10111001
11001 SAVOV 00001000 10110101
11010 SAVCO 00000000 10110011
11011 SAVSH 00010000 10110000
11100 SAVCOST 00010000 10110011
11101 LDSTATUS 00000000 11010001
11110 LDMASK 00000000 00110001
11111 LDSR 00000000 01010001

7-7

7.3.6 Register File

The REGISTER FILE contains 16 registers, 15 of which may be used by the
microprogrammer for general data storage. Register number 15 is dedicated to
holding the WORKSPACE POINTER. The primary use of the REGISTER FILE in the
1481 instruction set is in storing the intermediate results in the floating
point routines.

The REGISTER FILE, shown on sheet 5 of the PROCESSOR schematics, is
implemented using four SN74S189N 16X4 RAMS, and four SN74S240N OCTAL BUFFERS.
The input to the REGISTER FILE is TRUE data from the F-BUS (F(0-15)). The
output of the REGISTER FILE is COMPLEMENT data (RF(0-15)-) to the buffers.
The buffers are inverting so the data to the A-BUS and B-BUS is again TRUE
data. The address to the REGISTER FILE comes from the REGISTER FILE ADDRESS
field of the microinstruction (RFAD(O-3) CMD0(38-41)). The WRITE ENABLE
to the REGISTER FILE (CKRF-) is derived from the system clock (CLKP3-) and
the LOAD REGISTER FILE bit of the microinstruction (LDRF- -41,---CMD0(66)).
The output of the REGISTER FILE can go to the A-BUS or to the B-BUS or to
both. The signals which drive the buses are ENRFA- and ENRFB- which are
derived from the A-BUS and the B-BUS SELECT fields of the microinstruction.

When the REGISTER FILE is being loaded (CKRF- = 0) the outputs of the S189s
go to HIGH-Z which looks like ALL ZERO on the A-BUS or the B-BUS if RF is
selected. This is normally not a problem since the input latchs on the S481s
are simultaneously locking out the BUS data. This is NOT true for the DIRECT
A-BUS TO WR LOAD (LDWR-0--CMD0(65))! The implication of this is that if data
must be transferred from the RF to the WR at the same time the RF is loaded
from the F-BUS, the direct A-Bus to WR load should not be used; instead, the
data should be loaded thru the ALU section via the input latches using ALU
opcode A>WR (00000001011).

7.3.7 Constant Word

The CONSTANT WORD comes from the 16 bit BRANCH ADDRESS 1 (BA1) field of the
microinstruction. Normally this field contains one of the two branch
addresses for a conditional branch, but if an unconditional branch to the
BRANCH ADDRESS 0 (BAO) has been selected, then the contents of the BA1 field
is a "don't care" as far as the branch logic is concerned. The BA1 field may
then be used to introduce a CONSTANT WORD onto the B-BUS of the PROCESSOR.
This word might be a number to be added to the data being processed or a mask
word used to eliminate unwanted fields in the data.

The 16 bit BA1 field (BX(0-5),BA(10-19)) is routed from the CONTROLLER to the
PROCESSOR via the J4 top edge connector on pins J4-25 to J4-40 as shown on
sheet 6 of the PROCESSOR schematic. Four SN74LS244 OCTAL BUS DRIVERS allow the
CONSTANT WORD to drive the B-BUS when enabled by the ENCONST- signal as shown
on sheet 7 of the schematics.

7.3.8 A-Bus, B-Bus, and F-Bus

There are three tri-state buses in the PROCESSOR, the A-BUS, the B-BUS, and
the F-BUS. The A-BUS and B-BUS are connected to the AI and BI input ports of
the 481 processor, and the F-BUS is driven by the Data Output Port of the 481
processor. The F-BUS can also be driven by the Address Output Port of the 481
and by the Memory Data Input from the TM990 BUS.

The A-BUS can be thought of as the operand bus. Data fetched from memory is

7-8

normally brought into the Working Register (WR) via the SWAP MUX and the
A-BUS. Intermediate results stored in the REGISTER FILE are available to the
481 via the A-BUS. The AI input to the 481 differs from the BI input in that a
direct path exists from AI to WR which bypasses the ALU logic and therefore
requires less setup time. This is why the A-BUS was chosen as the data input
path.

The B-BUS can be thought of as the modifier bus. The words brought to the
B-BUS are typically used to modify addresses or data words. The BI input to
the 481 has a more extensive set of options available than the AI input and
therefore is used for modifier type data.

There are two sources which can drive the A-BUS, the SWAP MUX and the REGISTER
FILE. The ENRFA- bit of the microinstruction (CMD0(42)) determines which of
the two drives the A-BUS on each microinstruction (ENRFA- = 0 -40- REGISTER
FILE, ENRFA- = 1 -o- SWAP MUX). The SWAP MUX, which was described in Section
7.3.3, is implemented with multiplexer chips that have tri-state outputs, and
it is therefore connected directly to the A-BUS. The ENSM- signal controls the
OUTPUT ENABLES on the multiplexers, and when ENSM- is LOW the SWAP MUX drives
the A-BUS.

The REGISTER FILE, which is described in Section 7.3.6, is implemented with
RAM chips which have tri-state outputs, but an intermediate set of tri-state
buffers are used for two reasons. First the RAM chips complement the data and
an inverting buffer is needed to return true data, and secondly it was
necessary to have two sets of buffers to be able to drive both the A-BUS and
the B-BUS from the REGISTER FILE. The ENRFA- signal is connected to the
OUTPUT ENABLES on one pair of SN74S240N OCTAL BUS DRIVERS, and when ENRFA- is
LOW it enables the REGISTER FILE to drive the A-BUS with true data.

There are eight sources which can drive the B-BUS; the CONSTANT WORD, the S
field of the INSTRUCTION REGISTER (IR), the D field of the IR, the C field of
the IR, the DISP field of the IR, the INTERRUPT VECTOR (IV), the STATUS
REGISTER (SR), and the REGISTER FILE (RF).

The BSEL field of the microinstruction word (BSEL(0-2) f CMD0(43-45)) con-
trols which source drives the B-BUS on each microinstruction. The BSEL field
is decoded by an SN748138N 3-TO-8 DEMULTIPLEXER to produce eight control
signals, ENCONST-, ENS-, END-, ENDISP-, ENIV-, ENRFB-, ENSR-, and ENC-, which
are used to enable the tri-state buffers to drive the B-BUS.

The F-BUS can be thought of as the result or the function bus. The data which
results from ALU operations can be brought out to the F-BUS and then out to
memory or saved in the local REGISTER FILE. Data from memory is routed first
to the F-BUS from which it can be stored in the REGISTER FILE or routed thru
the SWAP MUX to the WR. The ADDRESS OUTPUT can also drive the F-BUS to allow
operations or modifications to be performed on the address. Also the COUNTER
and the STATUS REGISTER can be loaded with data from the F-BUS.

The F-BUS can be driven from five sources three of which are from the 481
Processor, the ALU SUM BUS, the WORKING REGISTER, and the EXTENDED WORKING
REGISTER, and the two other sources are MEMORY DATA IN and ADDRESS OUT.

The FSEL field of the microinstruction word (FSEL(0-2) CMD0(47-49))
determines which of these sources drives the F-BUS. Two of the lines, FSEL1
and FSEL2 go directly to the 481 Processor DO and D1 control inputs to select
one of the three 481 internal sources to drive the F-BUS.

7-9

FSEL1 MI, SOURCE
(D1) (DO)
0 0 ALU SUM BUS
0 1 XWR
1 0 WR
1 1 (HI-Z)

When FSEL1 and FSEL2 are both HIGH the 481 DATA OUTPUT lines go to HI-Z and
this allows the other sources to drive the F-BUS. The remaining control bit
FSELO determines which of the two other sources will drive the bus, MEMORY
DATA IN (MDI) or ADDRESS OUT. The FSEL(0-2) signals are used to generate
the enable signals, ENMDI- and ENATOF- as shown on sheet, 9 of the PROCESSOR
schematics. The MEMORY DATA IN buffer is implemented using four SN74S241N
OCTAL TRI-STATE BUFFERS, shown on sheet 3 of the schematics, which are enabled
by ENMDI-. The buffer which routes ADDRESS OUT to the F-BUS is implemented
using four SN74S241N OCTAL TRI-STATE BUFFERS, shown on sheet 3 of the
schematics, which are enabled by ENATOF-.

7.3.9 Address and Data Out

The address and data lines are driven to the TM990 BUS using four SN74S241N
OCTAL TRI-STATE BUFFERS, as shown on sheet 3 of the PROCESSOR schematics. The
address lines come from the ADDRESS OUTPUT PORT of the 481 Processor. The
data lines come from the F-BUS which would typically be driven by the DATA
OUTPUT PORT of the 481 Processor when data is being output to the TM990 BUS.

The ADDRESS OUT buffer is enabled by HOLD ACKNOWLEDGE (HOLDA) so the address
is being driven to the bus at all times except when the TM990/1481 has
released bus access to some other device.

The DATA OUT buffer is enabled by the signal ENABLE DATA OUT (ENDO) which is
derived from the ENABLE MEMORY DATA OUT (ENMDO) bit of the microinstruction.

7.3.10 Interrupt Logic and Jump Control

The Interrupt Logic recognizes interrupt conditions, compares individual bit
masks, resolves interrupt priority, generates the Interrupt Vector, checks the
interrupt level mask, and controls the Pending Interrupt signal which
initiates the firmware interrupt trap routine.

The 15 Maskable Interrupts are controlled by the TMS9901 Programmable Systems
Interface integrated circuit shown on sheet 10 of the PROCESSOR schematics.
The TMS9901 is controlled via the CRU. It can selectively mask out any of the
15 interrupts, but whether masked or not any of the interrupt lines can be
tested via the CRU.

The TMS9901 resolves interrupt priority level and generates a 4-bit Interrupt
Vector (IVO-IV3) which represents the level of the highest priority unmasked
active interrupt. If any unmasked interrupt is active it generates an
Interrupt Request signal (INTREQX-).

7-10

The 15 interrupt lines on the TM990 BUS which are inputs to the TMS9901 are
pulled-up to +5V on the PROCESSOR using 4.7 Kohm resistors. INTO- can be
jumper selected as the normal bus interrupt or as an interrupt from the TM
9902.

The TMS9901 is controlled via the CRU interface and has a CRU address of >080
(i.e. (R12) = >0100). The upper most CRU address bits are decoded by a PROM
on the CONTROLLER board to produce the TMS9901 enable signal SEL9901-. The
lower five bits of the CRU address, A10-A14, are used by the TMS9901 to
address the individual control or data bits. The TMS9901 is clocked by the
3.0 MHz clock REFCLK from the TM990 BUS.

Based on the condition of the 15 interrupt lines on its inputs the TMS9901
produces an interrupt request signal INTREQ- when any unmasked interrupts are
pending and generates the 4-bit Interrupt Vector. Since the INTREQX- signal
is not synchronous to the TH990/1481 system clock it must be syschronized by
reclocking it on CLKP3- to produce the signal INTREQ-.

7.3.11 Special Control Decode Logic

The DECODE field of the microinstruction (DEC(0-4) CMDO(76-80)) goes
from the CONTROLLER to the PROCESSOR via the top edge connector J4 on pins
J4-6 to J4-10, as shown on sheet 6 of the PROCESSOR schematics.

The DECODE field is used as an address to a decode ROM on the PROCESSOR and
another on the CONTROLLER to produce some special control signals. The DECODE
CONTROL ROMs are implemented using three SN74S288N 32 x 8 PROMs, two on the
PROCESSOR and one on the CONTROLLER. Table 7-2 shows the contents of these
PROMs.

TABLE 7-2. DECODE CONTROL ROMS (PROCESSOR and CONTROLLER)

CONTROLLER
PROM C11 (U52/N5)

PROCESSOR
PROM P3 (U14/D2)

PROCESSOR
PROM P4 (U20/E2)

1=CKRTNEN 1=CRUEQU- 1=INCBY1-
2=CRUOP. 2=IR7CRU- 2=LDIRX-
3=RST- 3=F7CRU- 3=LREX-
4=FLAGSEN 4=F15CRU- 4=IDLE-
5=FLAGC 5=CRUWRO- 5=blank
6=FLAGB 6=SHXWR- 6=CSWAPB-
7=FLAGA 7=SHWR- 7=CSWAPA-
8=FLAGD 8=SHDATA 8=FSWAP-

C11 P3 P4
DECODE MNEMONIC 87654321 87654321 87654321

00000 NOP 11110100 11111111 11101111
00001 NOP 11110100 11111111 11101111
00010 FSWAP 11110100 11111111 01101111
00011 CSWAPA 11110100 11111111 10101111
00100 CSWAPB 11110100 11111111 11001111
00101 LDIRLSB 11110100 11111111 11101101
00110 CRUWRO 11110110 11101111 11101111
00111 CRUEQU 11110110 11111110 11101111
01000 WR15CRU 11110110 11110111 11101111
01001 WR7CRU 11110110 11111011 11101111

7-11

TABLE 7-2. DECODE CONTROL ROMS (PROCESSOR and CONTROLLER)

C11 P3 P4

DECODE MNEMONIC 87654321 87654321 87654321

01010 IR7CRU 11110110 11111101 11101111

01011 SHWRO 11110100 10111111 11101111

01100 SHWRZ 11110100 00111111 11101111

01101 SHXWRO 11110100 11011111 11101111

01110 SHXWRZ 11110100 01011111 11101111

01111 LREX 11110100 11111111 11101011

10000 NOP 11110100 11111111 11101111

10001 NOP 11110100 11111111 11101111

10010 LDRTN 11110101 11111111 11101111

10011 RESET 11110000 11111111 11101111
10100 SFLG1 10001100 11111111 11101111

10101 RFLG1 00001100 11111111 11101111

10110 SFLG2 11001100 11111111 11101111
10111 RFLG2 01001100 11111111 11101111

11000 SINTFLG 10101100 11111111 11101111

11001 RINTFLG 00101100 11111111 11101111
11010 SXOPFLG 11101100 11111111 11101111

11011 RXOPFLG 01101100 11111111 11101111

11100 SINTLOC 10011110 11111111 11101111

11101 RINTLOC 00011100 11111111 11101111

11110 IDLE 11110100 11111111 11100111

11111 INCBY1 11110100 11111111 11101110

7.4 CONTROLLER BOARD

7.4.1 Control Memory

The microinstructions are stored in CONTROL MEMORY which is implemented using
10 SN74S478N 1K x 8 Schottky PROMs as shown on sheet 2 of the CONTROLLER
schematics.

The CONTROL MEMORY ADDRESS lines (CMAX,CMAP,CMA(0-9)) access the next
microinstruction word, CONTROL MEMORY DATA OUT (CMDO(1-80)), which will be
loaded into the MICROINSTRUCTION REGISTER (MIR) on the rising edge of the next
system clock (CLKC3-). The MIR contains the microinstruction which is
currently being executed.

7-12

7.4.2 Microinstruction Register

The MICROINSTRUCTION REGISTER (MIR), shown on sheets 2 and 5 of the CONTROLLER
schematics, is implemented using five SN74S174N HEX D-TYPE FLIP-FLOPS WITH
CLEAR and six SN74S374N OCTAL D-TYPE FLIP-FLOPS. The CLEAR on the S174s is
connected to RESET- to cause the microprogram to start execution with address
0 when the RESET switch is activated. The input to the MIR is the CONTROL
MEMORY DATA OUT (CMD0(4-80)) word. The output of the MIR is the set of command
subfields which execute the microinstruction. The CLOCK CONTROL field of the
microinstruction (CMD0(1-3)) is not loaded into the MIR but is loaded directly
into the CLOCK PERIOD COUNTER. All of the microprogram sequence control
fields are loaded into the S174s so the RESET- signal will force the controls
to the conditional branch operation and both branch addresses will be zero
causing the microprogram to start at location 0 when the RESET- signal goes
away.

7.4.3 Clock Control Logic

The CLOCK CONTROL field of the microinstruction word specifies the period of
each microinstruction step from 200 ns to 666.6 ns in increments of 66.6 ns.
The CLOCK CONTROL bits of the microinstruction are not loaded into the MIR but
directly into the CLOCK PERIOD COUNTER shown on sheet 6 of the CONTROLLER
schematics. The counter is an SN74S163N SYNCHRONOUS 4-BIT BINARY COUNTER
which is clocked by the 15 MHZ MASTER CLOCK (MC). The counter is loaded with
a value from 0 to 7 from the microinstruction word (CMDO(1-3)) and counts up
to 8. When the count reaches 8 the signal ENCLK goes to ONE and enables a
SYSTEM CLOCK (CLKCO) to be produced on the next rising edge of MC. CLKCO
stays high for one MC period of 66.6 ns and is reset. CLKCO in turn enables
the counter to be loaded with the next count value. If the signal FIXMODE is
ZERO then CLKCO will enable the LOAD on the counter, and if FIXMODE is ONE
then CLKCO will enable the CLEAR on the counter. If the counter is loaded with
a 7 from the microinstruction word then the ENCLK signal will occur on the
next MC clock, and CLKCO will occur on the following MC clock. The system
clock period will then be 3 MC periods or 200 ns. If the counter is cleared
or loaded with 0 from the microinstruction word then the system clock period
will be 10 MC periods or 666 ns. If FIXMODE=1 then the system clock period
will be 666 ns regardless of the value of the CLOCK CONTROL field of the
microinstruction. When a LOAD INTERRUPT is about to occur the CLKSLW signal
is used to extend the clock to 666 ns for one time to allow the PENDING
INTERRUPT signal time to become stable before the next system clock.

7.4.4 Clock Distribution

The SYSTEM CLOCK must be distributed to many places on both the PROCESSOR and
the CONTROLLER. It must be buffered off the board and buffered for fan-out.
In order to minimize the clock skew problem the clock is routed through the
same number of levels of propagation on both the CONTROLLER and the PROCESSOR.
The clock is named to indicate which board it is on and what propagation level
it is. The clock starts on the CONTROLLER board with CLKCO for example, and
the final system clocks which are used on the CONTROLLER and the PROCESSOR are
CLKC3- and CLKP3-. The worst case clock skew between CLKC3- and CLKP3- is
estimated to be 9 nS. The level 2 clocks are used to produce gated clock
pulses for selectively clocking registers as shown on sheet 5 of the
CONTROLLER schematics and sheet 9 of the PROCESSOR schematics.

7-13

7.4.5 Bus Clock

The signal BUSCLK- on pin J1-22 of the TM990 BUS coincides with the internal
system clock of the TM990/1481 (CLKC3-) except when the system clock is
stopped for a memory access or a DMA HOLD. When the system clock is stopped
the BUSCLK- signal becomes a fixed period 5 MHz clock (200 ns period) with a
33.3% duty cycle. When the system clock resumes the BUSCLK- signal is
adjusted or the system clock is delayed so that they occur in synchronism and
in a manner that guarantees a BUSCLK period of no less then 200 ns. (See
Figure 7-3)

The BUSCLK circuitry is shown on sheet 9 of the CONTROLLER schematics. A
signal ENBCK indicates when a system clock is going to be produced and enables
the BUSCLK flip flop to track the system clock. A second flip flop BC2, also
clocked on MASTER CLOCK (MC), remembers the last state of the BUSCLK flip
flop. When the STOP- signal goes LOW indicating that the the system clock has
stopped, the circuitry looks at the state of the BUSCLK and BC2 flip flops,
and if they indicate that a BUSCLK has not been produced in the last two MC
periods then the BUSCLK flip flop is set.

When the STOP- signal goes HIGH the circuitry again tries to track the system
clock via the ENCBK signal. The INH signal which indicates that a BUSCLK
occurred two MC periods back inhibits ENBCK and system clock in order to
prevent a short 133 ns BUSCLK period.

7-14

BASE
CYCLES

3
b

4c

5
d

SIGNAL

MC-

BUSCLK-

CLKC3-

BUSCLK-

CLKC3-

BUSCLK-

CLKC3-

66.0—oi

200

266.6

400

b(3N CASE)

a
BASE CYCLES = MICROINSTRUCTION MASTER CLOCK CYCLES + MEMORY DELAYS

d(3N+1 CASE)
(3N+2 CASE)

FIGURE 7-3. BUS CLOCK AND SYSTEM CLOCK TIMING (in nS)

7-15

7.4.6 Memory Speed Delay Logic

The Memory Speed Delay logic is designed to allow the TM 990/1481 to
operate with several different types of memory boards. The memory expansion
boards which were designed to operate with TM 990 microcomputer modules are
based on the TMS 9900 microprocessor READY/WAIT handshake protocal. These
memory boards do not take the READY signal away fast enough to work with the
high speed TM 990/1481 in this asynchronous interface manner. To compensate
for this, the TM 990/1481 , when using the READY line, inhibits looking at the
READY line for the first 66.67 ns period. This allows the TM 990/1481 to use
the READY with the existing and future memory expansion boards but it imposes
a speed penalty when operating with the high speed memory boards. In order to
resolve this difficulty, the TM 990/1481 implements a synchronous high-speed
memory interface which uses the MEMORY SPEED wiring plugs at U94 and U99 to
specify the speed of each 2K-word block of the 32K-word logical address space.
The TM 990/1481 is thus told how fast a given block of memory is (i.e., what
kind of memory board and memory device is being used), and therefore knows how
long to wait before assuming the data is stable. (Dynamic RAM memory boards
must always used the external READY line because the access time depends upon
the refresh operation.)

At the beginning of each memory fetch, the TM 990/1481 stops its system clock
and waits for a period of time specified by the wiring plug (shown in Figure
2-2). After that time has expired, the TM 990/1481 assumes that the data is
stable on the TM 990 bus and proceeds to load it into the processor. Likewise,
on a memory store, the TM 990/1481 waits the specified amount of time and
assumes that the address and data have been decoded and enabled; thus, it ends
the write operation.

The Memory Speed Delay logic, shown on sheet 6 of the Controller schematics,
uses a SN74164N 8-bit shift register to create a set of signals delayed from
the system clock in 66.67 ns increments. The signal DCLK- which is delayed
from system clock by one 66.67 ns period is used to start the sequence by
clearing the shift register. All of the delay signals SHFT1 to SHFT7 go low on
the rising edge of SYSTEM CLOCK and each one in succession goes high in 66.67
ns increments (note, SHIFTN represents a delay of N-1 master clock cycles).
The SHFTX signal is the latched external READY signal which must be used with
dynamic memory boards because of the uncertainty of when the refresh cycles
may occur.

One side of each of the two 16-pin memory speed wiring plugs is the set of
delay signals SHFT1-SHFT7 and SHFTX, and the opposite side of the two plugs in
the set of 16 lines which represent the 16 2K-word blocks of memory whose
speed is to be preselected (MDSEL1-MDSEL16). The plugs are programmed by
connecting each of the MDSEL lines to one of the memory speed options on the
other side of the plug (see Figure 2-2).

The MDSEL lines are routed to a 16-to-1 multiplexer which is implemented using
two SN74S251N 8-to-1 mulitplexer chips. The most significant 4 bits of the
16-bit address are used by the multiplexer to decode which 2K-word block of
memory is being accessed and to select the appropriate MDSEL signal programmed
for that block of memory to drive the internal READY- line. This internal
READY- line is used to stop the system clock on a memory access and to release
the clock after the programmed delay.

The STOP- signal, which holds the clock off and inhibits the CLOCK PERIOD

7-16

COUNTER from advancing, is generated by the SN74S64N AND-NOR logic. The
ENABLE MEMORY ADDRESS OUT (ENMAO) signal indicates that a memory access is
in progress and is used to enable both the FETCH and STORE to stop the clock
via the STOP- signal. Some of the worst case propagation delays are so long,
however, that by the time all of the signals which may stop the clock are
valid, they may miss the first rising edge of MC after the system clock.
Therefore ENMAO is gated with DCLK- to produce the signal GENMAO which is
then used as the enable to stop the clock. This guarantees that the
STOPsignal will be stable (i.e. HIGH) at the first MC pulse and cannot go low
until after the first MC pulse at which time all of the other conditions
should be stable.

The memory delays and the microinstruction period control will either overlap
or be added together depending on whether the memory access is a STORE or a
FETCH. On a FETCH operation the microcode has added extra cycles to the
microinstruction period because it intends to do something with the data it
has fetched from memory. This extra time must therefore be added after the
memory delay circuit has indicated that the FETCH has been completed. On a
FETCH the clock is stopped and the CLOCK PERIOD COUNTER inhibited as soon as
possible and counting the period is resumed when the memory delay is over. On
a STORE operation it is assumed that all of the information for the store is
available from the start of the cycle and if the microinstruction period
happens to be longer than the memory delay time there is no need to add any
more time. On a STORE the CLOCK PERIOD COUNTER is incremented until it
reaches the maximum count of 8 and then the clock is stopped only if the
memory delay logic indicates that the memory access is not complete.

7.4.7 HOLD and HOLD ACKNOWLEDGE

The HOLD and HOLD ACKNOWLEDGE signals allow external devices to gain access to
the TM990 BUS. The HOLD signal on pin J1-92 is received on the CONTROLLER and
synchronized to the system clock. The synchronized HOLD signal is used to give
the HOLD ACKNOWLEDGE (HOLDA) signal immediately to the TM990 BUS on pin J1-86.
The PROCESSOR uses the HOLDA signal to release the data and address busses.
The TM 990/1481 then continues to execute microinstructions until the first
microinstruction which requires the TM990 BUS. The TM 990/1481 then stops
the system clocks (CLKPn and CLKCn) but not the BUSCLK signal. The BUSCLK
signal will continue at a fixed period of 200 ns until the system clocks
resume, at which time BUSCLK will again track the variable period system
clocks.

The INTERLOCK (INTLOC) signal inhibits the TM 990/1481 from responding to the
HOLD signal. Currently, the TM 990/1481 generates INTLOC only in the ABS
instruction and in all CRU operations. The INTLOC signal allows the ABS
instruction to be used to set and reset memory semaphores (flags) without
conflicts with other processors communicating with the TM 990/1481 through
common memory locations.

The HOLD logic is show on sheet 6 of the CONTROLLER schematics. The HOLD
signal is received by an SN74LS132N SCHMIDTT TRIGGER BUFFER to eliminate noise
and then clocked thru two flip flops on the 16 MHz MASTER CLOCK (MC) before
being synchronized to the system clock (CLKC2) in an SN748112N JK FLIP FLOP.
The synchronized signal is used to generate the HOLDA signal. The signals
CRUOP and ENMAO are ORed together to detect that the current microinstruction
requires the TM990 BUS and this enables the HOLDEN flip flop to be set to
inhibit the system clocks. When the HOLD signal goes away the system clocks
will resume with the execution of the pending microinstruction.

7-17

7.4.8 SoUrce Select LOgic

The SOURCE SELECT LOGIC decodes the SOURCE SELECT field of the
microinstruction (SS(0-2) CMD0(4-6)) to enable one of six possible
sources of addresses to drive the CONTROL MEMORY ADDRESS BUS; - the BRANCH
MULTIPLEXER, the RETURN ADDRESS REGISTER, the SCAL PLA, the DCAL PLA, the S
field of the IR, and the D field of the IR.

The SOURCE SELECT DEMULTIPLEXER, shown on sheet 3 of the CONTROLLER
schematics, is implemented using half of an SN74S139N DUAL 2-T0-4
DEMULTIPLEXER and two SN74LSOON 2-NAND gates. The SOURCE SELECT
DEMULTIPLEXER produces the six enable signals, ENBRN-, ENRTN-, ENSCAL-,
ENDCAL-, ENIRS-, and ENIRD-,

7.4.9 Branch Multiplexer

The BRANCH MULTIPLEXER provides the capability of a two way branch in CONTROL
MEMORY based on the status of the BRANCH- signal. The two branch addresses
are provided by the BRANCH ADDRESS 0 (BAO) field of the microinstruction and
the BRANCH ADDRESS 1 (BA1) field of the microinstruction. If the BRANCH-
signal is ONE (i.e. BRANCH = 0) then the BAO address is used, and if the
BRANCH- signal is ZERO (i.e. BRANCH = 1) then the BA1 address is used.

The BRANCH MULTIPLEXER, shown on sheet 3 of the CONTROLLER schematics, is
implemented using three SN74LS257N QUAD 2-T0-1 MULTIPLEXERS, The LS257s have
tri-state outputs and are connected directly to the CONTROL MEMORY ADDRESS BUS
(CMA(0-9)). The signal ENBRN- from the SOURCE SELECT LOGIC is used to enable
the BRANCH MULTIPLEXER to drive the CMA BUS when a conditional branch is
selected. The SELECT line on the multiplexers is connected to the BRANCH-
signal from the TEST MULTIPLEXER.

7.4.10 Test Multiplexer

The TEST MULTIPLEXER, shown on sheet 3 of the CONTROLLER schematics, selects
the test signal that is used to control the two way conditional branch
operation in the microcode. The TEST MULTIPLEXER is implemented using three
SN74S251N 8-T0-1 MULTIPLEXERS and half of an SN748139N DUAL 2-T0-4
DEMULTIPLEXER. The most significant two bits of the TEST field, TEST(0-1),
are used by the demultiplexer to produce three chip enable signals, TE(0-2)-,
which enable one of the three multiplexers. The enabled multiplexer selects
one of the eight test signals on its inputs to drive the BRANCH- output line.
The BRANCH- line is the signal that controls the SELECT on the BRANCH
MULTIPLEXER. If the selected test signal is ZERO then the BRANCH MUX will
select the BAO address, and if the selected signal is ONE then the BRANCH MUX
will select the BA1 address.

7.4.11 Test Flags

Four of the test signals into the TEST MULTIPLEXER are called TEST FLAGS. The
signals are FLAG1, FLAG2, INTFLG, and XOPFLG, and they come from the TEST FLAG
REGISTER shown on sheet 5 of the CONTROLLER schematics. The microprogrammer
can set and reset the TEST FLAGS and perform conditional branches based on
their condition. The setting and resetting of the TEST FLAGS is controlled
via the DECODE field (DEC(0-4)) of the microinstruction word.

The DECODE field is decoded by an SN748288N 32 X 8 PROM to generate the
control signals for the TEST FLAG REGISTER which is implemented using an

7-18

SN74LS259N 8 BIT ADDRESSABLE LATCH. The signal FLGSEN enables the FLAG
REGISTER to be changed, the signals FLAGA, FLAGB, and FLAGC address the FLAG
BIT in the 8 bit register that is to be changed, and the signal FLAGD
indicates what value the FLAG is to be set to. The other three decodes out of
the ROM are not associated with the FLAG REGISTER; they are the RST- signal
which is LOW when the RST instruction is executed, the CRUOP signal which
indicates that the address on the TM990 BUS is not a memory address but a CRU
address, and the CKRTNEN signal which causes the RETURN ADDRESS REGISTER to be
loaded from the BA1 field.

The TEST FLAG REGISTER is cleared by IAQ so the flags are valid only during
the execution of a single instruction, and care should be exercised by the
microprogrammer not to fetch the next instruction (IAQ) until use of the flags
is finished.

The TEST FLAG REGISTER also contains a bit called the INTERLOC bit (INTLOC)
which is set to lock out other devices from being given access to the TM990
BUS via the HOLD/HOLD ACKNOWLEDGE protocol. In the 990/9900 instruction set
this bit is set during the execution of the ABS instruction to insure that the
TM990/1481 will peform a read-modify-write without another DMA device being
able to access the unmodified value between the read and write operations.

7.4.12 Return Address Register

The RETURN ADDRESS REGISTER (RTN) is designed to provide one level of
microprogram subroutine linkage. The microprogrammer can load the RTN with a
12 bit address value from the BA1 field of the microinstruction at any time
when the BA1 field is not being used in a conditional branch or as a literal
constant. Also, since the DECODE field is used to enable the RTN load, no
other DECODE field function can be perfumed in the same microinstruction. On
any subsequent microinstruction the microprogrammer may branch to the location
specified by the RTN.

The RETURN ADDRESS REGISTER is implemented using two SN74LS374N OCTAL D-TYPE
FLIP FLOP devices, as shown on sheet 3 of the CONTROLLER schematics. The RTN
is enabled to drive the CMA BUS by the ENRTN- signal from the SOURCE SELECT
LOGIC, and the RTN is loaded (clocked) by the CKRTN- signal generated from
CLKC2 and ENCKRTN. ENCKRTN is decoded from the DECODE field by the ROM as
shown on sheet 5 of the schematics.

7.4.13 Instruction Register and Entry Point Logic

The INSTRUCTION REGISTER (IR) is duplicated on the PROCESSOR and the
CONTROLLER in order to avoid routing the 16 IR bits between the boards. The
IR on the CONTROLLER board, shown on sheet 4 of the schematics, is used in
conjunction with three PLAs and two buffers in order to generate instruction
related or address modification related entry points into CONTROL MEMORY.
Since the instruction remains in the IR until the next command to load the IR,
it is possible to use the IR multiple times to derive entry points. If
several instructions require the same processing for example it is possible
for all of these instructions to branch to the same initial entry point. At
the end of the common entry point processing it is necessary to again examine
the IR to determine a second level of IR derived entry point. The PLAs are
arranged to allow 4 different entry points called SCAL, DCAL', DCAL, and
OPCAL.

7-19

The IR is implemented using two SN74S373N OCTAL TRANSPARENT LATCHES which are
clocked on the CKIR signal derived from the LOAD IR (LDIR) bit of the
microinstruction word. The entry points are derived using three SN74S330N
PLAs and two SN74LS244N OCTAL TRI-STATE BUFFERS. The PLAs have 11 inputs plus
an enable compared to the 16 bit length of the IR; the 990/9900 instruction
set formats allow different parts of the IR to be used for the different entry
points. The source calculation (SCAL) entry point has the most extensive
requirements since it is the first entry point and hence all instructions have
an SCAL entry point. Some instructions have only the SCAL or first entry
point and this reduces the requirements on the remaining entry points.

The TM 990/1481 OP CODE information needed for SCAL does not extend beyond
the most significant 12 bits except for some of the floating point
instructions. These instructions are all mapped to the same initial entry
point and then are individually executed by performing a 16-way branch based
on the S field of the IR. The 16 way branch uses the two SN74LS244N OCTAL
TRI-STATE BUFFERS to drive least significant bits of the CMA-BUS with the
4-bit S field and two bits of zero fill. The most significant bits are
determined by the BAO MSBs. All of the instructions whose most significant two
bits are not both equal to zero are mapped into the same SCAL entry point.
ORing these two bits together permits an 11-bit input into the SCAL PLA.

The other two PLAs are used for the remaining three entry points. The least
significant two bits of the TEST field determine whether the entry is DCAL',
DCAL, or OPCAL and causes the PLAs to generate different entry points for
each. The instruction set is split between the two PLAs, one being enabled
when the most significant four bits of the IR are not all zero, and the other
enabled when they are all zero.

The PLAs only provide the least significant six bits of the entry point.
Without modification this would only give 64 unique entry points which is much
less than needed. Fortunately each entry point type does not require more
than 64 locations, so the four blocks of 64 locations are mapped to different
areas of memory by specifying different values for the four most significant
bits. This is done by using the most significant four bits of the BAO field
of the microinstruction to drive the most significant bits of the CMA-BUS via
one of the two SN74LS244N OCTAL TRI-STATE BUFFERS.

TABLE 7-3. SCAL PLA ENTRY POINTS

INSTRUCTION
REGISTER

* 23456789AB
ENTRY
POINT OPERATION INSTRUCTIONS

1 XXXXXXXX00 008 SO,TS=0 SOC,SOCB,MOVB,MOV,AB,A,CB,C,SB,S,SZCB,SZC
1 XXXXXXXX01 009 SA,SO,TS=1 SOC,SOCB,MOVB,MOV,AB,A,CB,C,SB,S,SZCB,SZC
1 XXXXXXXX10 OOA SA,SO,TS=2 SOC,SOCB,MOVB,MOV,AB,A,CB,C,SB,S,SZCB,SZC
1 XXXXXXXX11 OOB SA,SO,TS=3 SOC,SOCB,MOVB,MOV,AB,A,CB,C,SB,S,SZCB,SZC
0 1XXXXXXX00 008 SO,TS=0 DIV,MPY,LDCR,X0R,CZC,C0C
0 1XXXXXXX01 009 SA,SO,TS=1 DIV,MPY,LDCR,X0R,CZC,C0C
0 1XXXXXXX10 OOA SA,SO,TS=2 DIV,MPY,LDCR,X0R,CZC,C0C
0 1XXXXXXX11 OOB SA,SO,TS=3 DIV,MPY,LDCR,XOR,CZC,COC
0 1X10XXXX00 008 SO,TS=0 DIV,MPY,LDCR,X0R,CZC,C0C
0 1X01XXXX00 008 SO,TS=O DIV,MPY,LDCR,X0R,CZC,C0C
0 1X00XXXX00 008 SO,TS=O DIV,MPY,LDCR,X0R,CZC,C0C
0 1101XXXX00 028 SO,TS=0 STCR

7-20

TABLE7 -3. SCAL ENTRY POINTS (CONTINUED)

INSTRUCTION
REGISTER

* 23456789AB
ENTRY
POINT OPERATION INSTRUCTIONS

0 1011XXXX00 02E SA,TS=O XOP
0 011111XXXX 033 CRU TB
0 011110XXXX 003 CRU SBZ
0 011101XXXX 003 CRU SBO
0 011100XXXX 002 JUMP JOP
0 0110XXXXXX 002 JUMP JH,JL,JNO,JOC

002 JUMP JNC,JNE,JGT,JHE,JEQ,JLE,JLT,JMP 0 010XXXXXXX
0 0011XXXX00 00C SO,TS=0 STR,LR,DR,MR,SR,CIR,AR,

STD,LD,DD,MD,SD,CID,AD
0 0011XXXX01 009 SA,SO,TS=1 STR,LR,DR,MR,SR,CIR,AR

STD,LD,DD,MD,SD,CID,AD
0 0011XXXX10 OOA SA,SO,TS=2 STR,LR,DR,MR,SR,CIR,AR

STD,LD,DD,MD,SD,CID,AD
0 0011XXXX11 OOB SA,SO,TS=3 STR,LR,DR,MR,SR,CIR,AR

STD,LD,DD,DD,SD,CID,AD
0 0011100000 038 ILLEGAL OP CODES
0 0011X00001 039 ILLEGAL OP CODES
0 0011X00010 03A ILLEGAL OP CODES
0 0011X00011 03B ILLEGAL OP CODES
0 0011000000 03C Ex.Fl.Pt CED,CER,CDE,CRE,NEGD,NEGR,CDI,CRI
0 0010XX0000 006 SHOP,C=0 SRC,SLA,SRL,SRA
0 0010XX1XXX 004 SHOP,C<>0 SRC,SLA,SRL,SRA
0 0010XXX1XX 004 SHOP,C<>0 SRC,SLA,SRL,SRA
0 0010XXXX1X 004 SHOP,C<>0 SRC,SLA,SRL,SRA
0 0010XXXXX1 004 SHOP,C<>0 SRC,SLA,SRL,SRA
0 0001111X00 038 ILLEGAL OP CODES
0 0001111X01 039 ILLEGAL OP CODES
0 0001111X10 03A ILLEGAL OP CODES
0 0001111X11 03B ILLEGAL OP CODES
0 0001XXXX01 009 SA,SO,TS=1 GROUP 7 INSTRUCTIONS
0 0001XXXX10 OOA SA,SO,TS=2 GROUP 7 INSTRUCTIONS
0 0001XXXX11 OOB SA,SO,TS=3 GROUP 7 INSTRUCTIONS
0 0001100X00 028 SO,TS=0 DECT,DEC
0 000101XX00 028 SO,TS=0 INCT,INC,INV,NEG
0 0001110100 02D SO,TS=0 ABS
0 0001110000 02C SO,TS=O SETO
0 0001101100 02B SO,TS=0 SWPB
0 0001101000 02A SO,TS=0 BL
0 0001001100 023 SO,TS=0 CLR
0 0001001000 022 SO,TS=0 X
0 0001000100 021 SO,TS=0 B
0 0001000000 020 SO,TS=O BLWP
0 000011111X 01F LREX
0 000011110X 01E CKOF
0 000011101X 01D CKON
0 000011100X 01C RTWP

* NOTE: first column is the OR of IRO and IR1.

7-21

TABLE 7-3. SCAL PLA ENTRY POINTS (CONTINUED)

INSTRUCTION
REGISTER

* 23456789AB
ENTRY
POINT OPERATION INSTRUCTIONS

0 000011011X 01B RSET
o 000011010X 01A IDLE
0 000011001X 030 ILLEGAL OP CODES
0 000011000X 018 LIMI
0 000010111X 017 LWPI
0 0000101101 032 ILLEGAL OP CODE
0 0000101100 015 STST
0 0000101011 008 ILLEGAL OP CODE
0 0000101010 013 STWP
0 000010100X 005 IMMOP** CI
0 00001001XX 005 IMMOP** ORI,ANDI
0 0000100X1X 005 IMMOP** AI
0 000010000X 010 IMMOP** LI
0 0000011X00 008 SO,TS=0 MPYS,DIVS
0 0000011X01 009 SA,SO,TS=1 MPYS,DIVS
0 0000011X10 00A SA,SO,TS=2 MPYS,DIVS
0 0000011X11 00B SA,SO,TS=3 MPYS,DIVS
0 0000010XXX 034 ILLEGAL OP CODES
0 0000001001 036 LWP
0 0000001000 036 LST
0 0000000XXX 036 ILLEGAL OP CODES

* NOTE: first column is the OR of IRO and IR1.

** NOTE: immeditate operands

TABLE 7-4. PLA 2A ENTRY POINTS: DCAL', DCAL, OPCAL

INSTRUCTION
REGISTER

012345678
TEST
34

ENTRY
POINT TYPE OPERATION INSTRUCTION

1XXXXXXXX 10 008 DCAL' SO SOCB,SOC,MOVB,MOV,AB,A,CB,C
01XXXXXXX 10 008 DCAL' SO SB,S,SZCB,SZC
00111XXXX 10 008 DCAL' SO DIV,MPY
001101XXX 10 028 DCAL' SO STCR
001100XXX 10 008 DCAL' SO LDCR
001011XXX 10 02E DCAL' SO XOP
001010XXX 10 008 DCAL' SO XOR
00100XXXX 10 008 DCAL' SO CZC,COC
000001100 10 028 DCAL' SO DECT,DEC
00000101X 10 028 DCAL' SO INCT,INC,INV,NEG
000000011 10 008 DCAL' SO MPYS,DIVS
111X00XXX 01 090 DCAL DO,TD=0 SOCB,SOC
110100XXX 01 090 DCAL DO,TD=0 MOVB
110000XXX 01 095 DCAL DO,TD=O MOV
1OXXOOXXX 01 090 DCAL DO,TD=0 AB,A,CB,C
1XXX01XXX 01 091 DCAL DO,TD=1 SOCB,SOC,MOVB,MOV,AB,A,CB,C
1XXX10XXX 01 092 DCAL DO,TD=2 SOCB,SOC,MOVB,MOV,AB,A,CB,C

7-22

INSTRUCTION
REGISTER

012345678 INSTRUCTION
TEST
34

ENTRY
POINT TYPE

1XXX11XXX 01 093 DCAL DO,TD=3 SOCB,SOC,MOVB,MOV,AB,A,CB,C
01XX00XXX 01 090 DCAL DO,TD=O SB,S,SZCB,SZC
01XX01XXX 01 091 DCAL DO,TD=1 SB,S,SZCB,SZC
01XX10XXX 01 092 DCAL DO,TD=2 SB,S,SZCB,SZC
01XX11XXX 01 093 DCAL DO,TD=3 SB,S,SZCB,SZC
001111XXX 01 0A3 DCAL DO DIV
001110XXX 01 0A2 DCAL DO MPY
001101XXX 01 0A1 DCAL DO STCR
001100XXX 01 OAO DCAL DO LDCR
0010XXXXX 01 090 DCAL DO XOR,CZC,COC
1111XXXXX 11 OF7 OPCAL SOCB
1110XXXXX 11 OF6 OPCAL SOC

MOVB
AB
A
CB
C
SB
S
SZCB
SZC
XOR
CZC
COC
SRC
SLA
SRL
SRA

1101XXXXX 11 OF5 OPCAL
1011XXXXX 11 OF3 OPCAL
1010XXXXX 11 OF2 OPCAL
1001XXXXX 11 OF1 OPCAL
1000XXXXX 11 OFO OPCAL
0111XXXXX 11 0E7 OPCAL
0110XXXXX 11 0E6 OPCAL
0101XXXXX 11 0E5 OPCAL
0100XXXXX 11 0E4 OPCAL
00101XXXX 11 ODA OPCAL
001001XXX 11 OD9 OPCAL
001000XXX 11 OD8 OPCAL
00001011X 11 OCB OPCAL
00001010X 11 OCA OPCAL
00001001X 11 0C9 OPCAL
00001000X 11 008 OPCAL

TABLE 7-4. PLA 2A ENTRY POINTS: DCAL', DCAL, OPCAL (CONTINUED)

TABLE 7-5. PLA 2B ENTRY POINTS: DCAL', DCAL, OPCAL

INSTRUCTION
REGISTER

* 456789AB
TEST
34

ENTRY
POINT TYPE INSTRUCTION

0 111111XX 10 03F DCAL' STD
0 111110XX 10 03E DCAL' LD
0 111101XX 10 03D DCAL' DD
0 111100XX 10 027 DCAL' MD
0 111011XX 10 026 DCAL' SD
0 111010XX 10 025 DCAL' CID
0 111001XX 10 024 DCAL' AD
0 110111XX 10 -037 DCAL' STR
0 110110XX 10 016 DCAL' LR
0 110101XX 10 035 DCAL' DR
0 110100XX 10 014 DCAL' MR

7-23

TABLE 7-5. PLA 2B ENTRY POINTS: DCAL', DCAL, OPCAL (CONTINUED)

INSTRUCTION
REGISTER

* 456789AB
TEST
34

ENTRY
POINT TYPE INSTRUCTION

0 110011XX 10 011 DCAL' SR
0 110010XX 10 012 DCAL' CIR
0 110001XX 10 031 DCAL' AR
0 011101XX 10 02D DCAL' ABS
0 011100XX 10 02C DCAL' SETO
0 011011XX 10 02B DCAL' SWPB
0 011010XX 10 02A DCAL' BL
0 010011XX 10 023 DCAL' CLR
0 010010XX 10 022 DCAL' X
0 010001XX 10 021 DCAL'
0 010000XX 10 020 DCAL' BLWP
0 111111XX 01 OBF DCAL STD
0 111110XX 01 OBE DCAL LD
0 111010XX 01 OBA DCAL CID
0,110111XX 01 OB7 DCAL STR
0 110110XX 01 OB6 DCAL LR
0 110010XX 01 OB4 DCAL CIR
0 001000XX 01 0A4 DCAL LI
0 011001XX 01 OB2 DCAL DECT
0 011000XX 01 OBO DCAL DEC
0 010111XX 01 OAE DCAL INCT
0 010110XX 01 OAC DCAL INC
0 010101XX 01 OAA DCAL INV
0 010100XX 01 0A8 DCAL NEG
0 0011XXXX 01 098 DCAL LIMI
0 001011XX 01 096 DCAL LWPI
0 001010XX 01 094 DCAL ILLEGAL OP CODE
0 000111XX 01 08E DCAL MPYS
0 000110XX 01 08C DCAL DIVS
0 111111XX 11 OFF OPCAL STD
0 111110XX 11 OFE OPCAL LD
0 111010XX 11 OFA OPCAL CID
0 110111XX 11 007 OPCAL STR
0 110110XX 11 006 OPCAL LR
0 110010XX 11 0C4 OPCAL CIR
0 0010100X 11 ODC OPCAL CI
0 0010011X 11 ODB OPCAL ORI
0 0010010X 11 OEA OPCAL ANDI
0 0010001X 11 OEC OPCAL AI

* NOTE: first column is the OR of IRO--IR3.

7.4.14 RS232 Serial Communication Controller

The TMS9902 UNIVERSAL ASYNCHRONOUS COMMUNICATION CONTROLLER integrated circuit
is used to control the RS232 interface. The TMS9902 is addressed via the CRU
and has a CRU address of >40 (i.e. (R12) = >80).

7-214

The TMS9902 is shown on sheet 8 of the CONTROLLER schematics. The 9902 is
clocked using a 3.2 MHz clock generated from the 16 MHz master clock. The
RS232 inputs and outputs of the 9902 are buffered using SN75189N LINE
RECEIVERs and SN75188N LINE DRIVERs

7.4.15 Reset/Preset/Load Controls

Three methods are available for initializing the TM 990/1481, they are RESET,
PRESET, and LOAD. The RESET SWITCH, shown on sheet 9 of the CONTROLLER
schematics, is debounced by the SN74LS279N QUAD LATCH to produce the RS-
signal which is then synchronized to MASTER CLOCK (MC) as shown on sheet 7 of
the schematics to produce RESET-. The RESET- signal clears the Sequence
Control fields of the microinstruction to force the computer to start
executing microinstructions at CONTROL MEMORY ADDRESS 000 when the RESET
signal is removed. The starting sequence of microinstructions performs an
interrupt trap using the Transfer Vector at memory locations 0000 and
0002. The RESET also causes an I/O RESET (IORST- on J1-88) which is
synchronized to the 3.0 MHz REFCLK- on the TM990 BUS, and is a minimum of two
REFCLK periods in duration. The PRESET (PRES-) signal on the TM990 BUS, pin
J1-94, has the same effect as the RESET SWITCH.

The RESTART- signal on the TM990 BUS, pin J1-93, causes a LOAD INTERRUPT to
occur after two instructions have been allowed to execute. The LOAD INTERRUPT
causes an interrupt trap using the Transfer Vector at locations FFFC and
FFFE. Executing an LREX instruction has the same effect as the RESTART-
signal.

7.4.16 TM990 Bus Memory Control Logic

Three of the Memory Control lines for the TM990 BUS, MEMEN-, DBIN, and IAQ are
bits of the microinstruction word. The Memory Enable signal (MEMEN-) on pin
J1-80 is the Enable Memory Address Out (ENMAO) bit of the microinstruction
(CMD0(50)). The Data Bus In (DBIN) signal on pin J1-82 is the Enable Memory
Data Out (ENMDO) bit of the microinstruction (CMDO(51)). The Instruction
Acquisition (IAQ) signal on pin J1-19 is the IAQ bit of the microinstruction
(CMDO(68)).

MEMEN- = J1-80 = ENMAO = CMDO(50)

DBIN = J1-82 = ENMDO = CMDO(51)

IAQ = J1-19 = IAQ = CMDO(68)

The Write Enable signal (WE-) on pin J1-78 is derived from the ENMDO
microinstruction bit and a special Write Enable pulse designed to provide
adequate set-up and hold times for the memories. The WE- pulse goes LOW 94 nS
after the system clock goes HIGH and it goes HIGH 31 nS before the next
system clock goes HIGH. The Memory Cycle signal (MEMCYC-) on pin J1-84 is
normally HIGH and goes LOW (synchronously with BUSCLK-) only if the system
clock is stopped for a memory access and the time exceeds 266.6 ns.
Microinstructions which access memory and do not exceed 266.6 ns do not
generate a MEMCYC- signal. *

* In the variable clock mode, memory fetches where SHFT1 is selected
and memory store operations where SHFT1 through SHFT4 is selected
will not generate a MEMCYC- signal.

7-25

7.4.17 Debug Clock Options

Two features have been provided to aid in hardware and firmware development
and in trouble-shooting hardware failures; these are the FIXED PERIOD SLOW
CLOCK and the SINGLE STEP modes of operation. The FIXED MODE causes the clock
to operate at a fixed period of 666.6 ns. This eliminates the complication of
the variable clock period, and the slow speed allows the operation with EPROMs
without recoding the clock control field of the microinstruction. The SINGLE
STEP MODE gives the user the ability to step through the microcode and examine
the results statically.

The FIXED MODE SWITCH, shown on sheet 9 of the CONTROLLER schematics, is
debounced using the SN74LS279N QUAD LATCH and then synchronized to BUSCLK
using an SN74LS175N QUAD D-TYPE FLIP FLOP to produce the signal FIXMODE.
The FIXMODE signal is used by the CLOCK PERIOD COUNTER to cause it to clear
the counter to zero every time and therefore count the longest period of 666.6
ns.

The SINGLE STEP MODE SWITCH, shown on sheet 9, is debounced and synchronized
to produce the signal SSMODE which is then used to inhibit the regular clock
circuitry via the INHCLK signal. The SINGLE STEP CLOCK momentary contact
switch is debounced and enabled with SINGLE STEP MODE (SSM) to produce a
single clock pulse identical to and synchronous with BUSCLK.

7.4.18 Upper Memory Page Bits

Two bits, CMAX and CMAP, have been provided to expand the CONTROL MEMORY
address space to 4K words. These two bits are stored in flip flops and define
the current 1K page of CONTROL MEMORY being accessed. A branch to BRANCH
ADDRESS 0 (BAO) will address a microinstruction within the current page of
CONTROL MEMORY. A branch to BRANCH ADDRESS 1 (BA1) can access a
microinstruction anywhere within the 4K address space and will cause the two
page bits to be loaded with the new page number. The RETURN ADDRESS REGISTER
(RTN) can be loaded with a 12 bit return address from the BA1 field, and a
branch to RTN can therefore also access a microinstruction anywhere within the
4K address space and will set the page bits. The ENTRY POINT LOGIC always
accesses the 0 page, so a branch to PLA1, PLA2, IRS, or IRD will zero the
page bits. To summarize:

1. All entry points are to page O.

2. The RETURN ADDRESS REGISTER can access anywhere in 4K memory.

3. BRANCH ADDRESS 1 can access anywhere in 4K memory.

4. BRANCH ADDRESS 0 always refers to the current page.

7-26

SECTION 8

MICROPROGRAMMING

8.1 GENERAL

This section describes the microinstruction word format used in the TM
990/1481. The microinstruction word controls the execution of the TM
990/1481. Other topics include the following:

• Clock and sequence control

• Data routing and selection

• Operation control

• Status control

• Special control.

8.2 MICROINSTRUCTION WORD

The microinstruction word is composed of control and data bits which perform
the following general functions: clock and microprogram sequence control,
data routing and selection, ALU operation control, status control, and some
special control functions. The microinstruction word is 80 bits wide and it
can be subdivided into functional groups as follows:

CLOCK AND SEQUENCE CONTROL

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2
1 2 3 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

[..TEST....] [...BRANCH ADDRESS 0

2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3
2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7

BRANCH ADDRESS 1 / CONSTANT

DATA ROUTING AND SELECTION

3 3 4 4 14 4 4 4 4 4 4 14 5 5
8 9 0 1 2 3 4 5 6 7 8 9 0 1

[..RF....] [A] [..B.] [P] [..F.] [.MC]

OPERATION CONTROL

5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 7
2 3 14 5 6 7 8 9 0 1 2 3 14 5 6 7 8 9 0

ALU OP CODE] [REG CONTR [IAQ][CNTR]

8-1

STATUS CONTROL

7 7 7 7 7
1 2 3 4 5

[....STC....]

SPECIAL DECODED CONTROL

7 7 7 7 8
6 7 8 9--- 0

[....DEC....]

8.3 CLOCK AND SEQUENCE CONTROL

The CLOCK AND SEQUENCE CONTROL fields control how the microprogram is entered,
and how it is sequenced thru conditional and unconditional branches and
subroutine linkages, and how long the clock period will be for each
microinstruction step.

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

[..CC.] [.SS..] [...TEST....] [...BRANCH ADDRESS 0

]

2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3
2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7

BRANCH ADDRESS 1 / CONSTANT

The CLOCK AND SEQUENCE CONTROL consists of the following
subfields:

CC = CLOCK CONTROL --defines the time to the next clock

SS = SOURCE SELECT --selects the source of the next Control
Memory address

TEST = TEST SELECT --selects the test condition for the
conditional branch and is also used
for entry point control

BAO = BRANCH ADDRESS 0 -- branch address if TEST=O

BA1/CONST = BRANCH ADDRESS 1 or CONSTANT word
-- branch address if TEST=1 or constant word to

be used by Processor or link address to be
loaded into Return Address Register

8.3.1 Clock Control

The CLOCK CONTROL field defines the time to the next clock. The TM990/1481
does not have a constant period microinstruction clock but rather allows the
microprogrammer to adjust the clock period to suit the microinstruction being

8-2

CODE MNEMONIC DESCRIPTION

000 CO 666.6 ns
001 C1 600.0 ns
010 C2 533.3 ns
011 C3 466.6 ns
100 C4 400.0 ns
101 C5 333.3 ns
110 C6 266.6 ns
111 C7 200.0 ns

CODE MNEMONIC DESCRIPTION

000 BRN BRANCH ADDRESS MULTIPLEXER
001 RTN RETURN ADDRESS REGISTER
010
011
100 PLA1 SCAL ENTRY POINT
101 PLA2 DCAL', DCAL, OR OPCAL ENTRY POINTS
110 IRS IR S FIELD (EXT F.P.) ENTRY POINTS
111 IRD IR D FIELD (XOP) ENTRY POINTS

executed. The clock period is counted from a 15 MHz master clock so the time
is in increments of 66.6 ns with a minimum period of 3 increments or 200 ns.

Since a high speed variable period clock presents some problems during
test and repair, two switch options have been provided. The first option
provides a constant period clock of the longest period, 666.6 ns. The second
option provides a single step microinstruction clock to allow the
technician to step thru the microprogram and examine the results.

TABLE 8-1. CLOCK CONTROL....CMD0(1 -3)

8.3.2 Source Select

The SOURCE SELECT field selects the source of the next Control Memory address.
The CONTROL MEMORY ADDRESS BUS is a tri-state bus to which are connected
several blocks of address generation logic. If a conditional or unconditional
branch is desired then the BRANCH ADDRESS MULTIPLEXER is specified as the
source. If a return from a subroutine is desired then the RETURN ADDRESS
REGISTER is specified as the source. If the INSTRUCTION REGISTER has just
been loaded with a new instruction, execution may be initiated by entering the
source operand derivation routine for that instruction, then selecting the
SCAL PLA as the source for CONTROL MEMORY ADDRESS. The further reentry points
of DCAL', DCAL, and OPCAL are obtained by selecting the DCAL PLA as the source
and identifying the specific reentry type in the TEST field.

The remaining two SOURCE SELECT options allow the microprogram to branch to an
address in CONTROL MEMORY specified partially by the microinstruction word and
partially by a field (S or D) in the INSTRUCTION REGISTER. This is used for
generating XOP entry points and for the two word (extended) floating point
instructions.

TABLE 8-2. SOURCE SELECT....CMD0(4-6)

8-3

MNEMONIC DESCRIPTION CODE

00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
10000
10001
10010
10011
10100
10101
10110
10111
11000

11111

UNCBAO
SEQZ
DEQZ
MOVW
BYTE
JUMP
CNTEQZ
UNCBA1
LGT
AGT *
EQ
COSH
OVFL
OP
PINT
POS
A015
FO
COSAV
FLG1
FLG2
INTFLG
XOPFLG
LOAD

unconditional branch to BAO
S field of IR equals 0
D field of IR equals 0
IR contains the MOV instruction
IR contains a byte instruction
the jump condition is TRUE
COUNTER = 0
unconditional branch to BA1
logical greater than
arithmetic greater than
equal
carry out or shift out
overflow
odd parity
pending interrupt
operand positive
ADDRESS LSB (even/odd byte)
F-BUS MSB (sign)
saved carry-out
general purpose flag 1
general purpose flag 2
interrupt flag or G.P. fig 3
XOP flag or G.P. flg 4
LOAD interrupt

8.3.3 Test Select

When the SOURCE SELECT field specifies the BRANCH MUX as the source for
CONTROL MEMORY ADDRESS then the TEST field specifies which test signal line to
use to determine which of the multiplexer's two inputs to use for the next
CONTROL MEMORY ADDRESS, BRANCH ADDRESS 0 or BRANCH ADDRESS 1. When the SOURCE
SELECT field specifies the DCAL PLA as the source for CONTROL MEMORY ADDRESS
then the TEST field specifies which type of reentry point decode is desired,
DCAL', DCAL, or OPCAL.

TABLE 8-3. TEST....CMDO(7-11)

* NOTE: If a conditional branch is executed using
clock period specified in the CLOCK CONTROL field

If the SOURCE SELECT field is PLA2 then the
follows:

00001 DCAL DCAL entry point
00010 DCALP DCAL' entry point
00011 OPCAL OPCAL entry point

these test signals, then the
must be 266.6 ns or greater.

TEST field is specified as

8-4

8.4 DATA ROUTING AND SELECTION

There are three tri-state buses in the PROCESSOR, the A-BUS, the B-BUS, and
the F-BUS. The A-BUS and B-BUS are connected to the AI and BI input ports of
the S481 processor, and the F-BUS can be driven by the Data Output Port of the
S481 processor. The F-BUS can also be driven by the Address Output Port of
the 5481 and by the Memory Data Input from the TM990 BUS. The DATA ROUTING
AND SELECTION subfields control the selection of data to the A-BUS, B-BUS, and
F-BUS within the PROCESSOR and controls the access to the TM990 BUS.

3 3 Li Li it 4 4 4 it 14 LI 4 5 5
8 9 0 1 2 3 it 5 6 7 8 9 0 1

[..RF....] [A]][F] [..F..] [. Mc .

RF = REGISTER FILE -- address of the register being used

A = A-BUS SELECT -- source of A-BUS data

B = B-BUS SELECT -- source of B-BUS data

P = PC/MC SELECT -- select either Program Counter (PC)
or Memory Counter (MC) to go to the
Address Output Port (AOP) of the
481 Processor

F = F-BUS SELECT -- source of F-BUS data

MC = MEMORY CONTROL-- specifies memory operation

8.4.1 Register File Address

The REGISTER FILE ADDRESS field selects one of 16 internal registers for data
storage or retrieval. The microcode can use any of these registers for
temporary storage, but the contents of register R15 must not be destroyed
since the processor uses R15 as the WORKSPACE POINTER storage register. The
microprogrammer may use R15 within his program as long as he saves and
restores the value. The microcode must also be aware that the contents of
these registers may be altered by some instructions so that while it can use
these registers within an instruction, it should not try to transfer data from
one instruction time to another.

Any value on the F-BUS may be loaded into a register in the file by selecting
the REGISTER ADDRESS and by setting the LOAD REGISTER FILE (LDRF) bit of the
microinstruction. Any register in the file may be brought to the A-BUS or the
B-BUS (or both) by selecting the REGISTER ADDRESS and selecting the RF option
in either case.

It is possible to read from a register and to write into that register in the
same microinstruction cycle, but there is one particular case in which this is
not permitted. If the register being used for the simultaneous read and write
is selected to drive the A-BUS and the LOAD WORKING REGISTER (LDWR)
option is selected, then selecting the LDRF will result in 0 being loaded into
WR rather than the register contents. In the case the code can still

8-5

CODE MNEMONIC DESCRIPTION

0000 RFO register file address 0
0001 RF1 register file address 1
0010 RF2 register file address 2
0011 RF3 register file address 3
0100 RF4 register file address 4
0101 RF5 register file address 5
0110 RF6 register file address 6
0111 RF7 register file address 7
1000 RF8 register file address 8
1001 RF9 register file address 9
1010 RF10 register file address 10
1011 RF11 register file address 11
1100 RF12 register file address 12
1101 RF13 register file address 13
1110 RF14 register file address 14
1111 RF15 WORKSPACE POINTER REGISTER

CODE MNEMONIC DESCRIPTION

0 A-RF REGISTER FILE to A-BUS
1 A-SM SWAP MUX to A-BUS

load the WR but he must do so via the ALU OP CODE that routes AI to WR rather
than via the LDWR command. See section 7.3.6 for a hardware explanation of how
the REGISTER FILE operates.

TABLE 8-4. REGISTER FILE ADDRESS....CMD0(38 -41)

8.4.2 A-BUS SELECT A

The A-BUS SELECT field selects the source to drive the A-BUS which goes to the
AI port of the 481 ALU. The two possible sources are the REGISTER FILE and
the SWAP MUX.

The A-BUS can be thought of as the operand bus. Data fetched from memory is
normally brought into the Working Register (WR) via the SWAP MUX and the
A-BUS. Intermediate results stored in the REGISTER FILE are brought back to
the 481 via the A-BUS. The AI input to the 481 differs from the BI input in
that a direct path exists from AI to WR which bypasses the ALU logic and
therefore requires less setup time. This is why the A-BUS was chosen as the
data input path.

The SWAP MUX allows the microcode to swap the two bytes of the data on the
F-BUS, and the result is available on the A-BUS. The swap operation is
normally used to move the byte to be operated on to the most significant half
of the word since in byte microoperations the ALU only operates on the upper
byte. The normal state of the SWAP MUX allows data to pass to the A-BUS
unchanged, and therefore provides a path from F-BUS to A-BUS. There are three
swap commands available: FSWAP = swap unconditionally, CSWAPA = swap if bit 15
of the address is one, and CSWAPB = swap if bit 15 of the address is one and
the instruction is a byte related instruction. The swap commands are decodes
of the DECODE field of the microinstruction.

TABLE 8-5. A-BUS SELECT....CMD0(42)

8-6

CODE MNEMONIC DESCRIPTION

0 AOP-MC MEMORY COUNTER to ADDRESS OUTPUT
1 AOP-MC PROGRAM COUNTER to ADDRESS OUTPUT

8.4.3 B-BUS SELECT B

The B-BUS SELECT field selects the source to drive the B-BUS which goes to
the BI port of the 481 ALU. There are 8 possible sources for the B-BUS; the
REGISTER FILE, the STATUS REGISTER, the CONSTANT word, two times the S field
of the IR, two times the D field of the IR, two times the DISPLACEMENT field
of the IR, two times the COUNT field of the IR, and two times the INTERRUPT
VECTOR.

The B-BUS can be thought of as the modifier bus. The words brought to the
B-BUS are typically used to modify addresses or data words. The BI input to
the 481 has a more extensive set of options available than the AI input and
that is why the B-BUS is used for modifier type data.

TABLE 8-6. B-BUS SELECT....CMD0(43-45)

CODE MNEMONIC DESCRIPTION

000 B-CON CONSTANT word to B-BUS
001 B-2S two times the S field of the IR to B-BUS
010 B-2D two times the D field of the IR to B-BUS
011 B-2H two times the DISPLACEMENT field of the

IR to B-BUS
100 B-2IV two times the INTERRUPT VECTOR to B-BUS
101 B-RF REGISTER FILE to B-BUS
110 B-SR STATUS REGISTER to B-BUS
111 B-2C two times the C field of the IR to B-BUS

8.4.4 Address Output Select P

The ADDRESS OUTPUT SELECT field determines whether the MEMORY COUNTER or the
PROGRAM COUNTER is output by the 481 ALU.

TABLE 8-7. ADDRESS OUTPUT SELECT....CMD0(46)

8.4.5 F-Bus Select F

The F-BUS SELECT field specifies the source of the F-Bus data. Three of the
sources, SUM, XWR, and WR, are sources internal to the 481 Processor which
come out to the Data Output Port (DOP) of the 481 to drive the F-BUS. The
Memory Data In (MDI) source connects the data lines on the TM 990 bus to the
F-Bus, and the A to F (ATF) source connects the address output port (AOP) of
the 745481 which could contain the output of the MC or PC registers to the
F-Bus.

8-7

TABLE 8-8. F -BUS SELECT....CMD0(47 -49)

CODE MNEMONIC DESCRIPTION

000 F-SUM ALU SUM BUS to F-BUS
001 F-XWR EXTENDED WORKING REGISTER to F-BUS
010 F-WR WORKING REGISTER to F-BUS
011 F-MDI MEMORY DATA IN to F-BUS
100
101
110
111 F-ATF ADDRESS OUT to F-BUS

8.4.6 Memory Control MC

The MEMORY CONTROL field determines what type of memory operation will be
performed FETCH, STORE or TRANSFER.

TABLE 8-9. MEMORY CONTROL....CMD0(50-51)

CODE MNEMONIC DESCRIPTION

00 NOP
01 MEMFTD F-BUS to DATA BUS (no memory operation)
10 MEMFET FETCH
11 MEMSTO STORE

8.4.7 CONSTANT WORD

The CONSTANT WORD comes from the 16 bit BRANCH ADDRESS 1 (BA1) field of the
microinstruction. Normally this field contains one of the two branch
addresses for a conditional branch, but if the microprogrammer knows that he
has selected an unconditional branch to the BRANCH ADDRESS 0 (BAO) word then
the contents of the BA1 field is a "don't care" as far as the branch logic is
concerned. The microprogrammer is then free to use the BA1 field to introduce
a CONSTANT WORD onto the B-BUS of the PROCESSOR. This word might be a number
to be added to the data being processed or a mask word used to eliminate
unwanted fields in the data.

8-8

8.5 OPERATION CONTROL

OPERATION CONTROL

5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 7
2 3 14 5 6 7 8 9 0 1 2 3 14 5 6 7 8 9 0

ALU OP CODE] [REG CONTR] [IAQ] [CNTR]

ALU OP CODE = OPERATION CONTROL LINES TO 481 ALU

REG CONTR = REGISTER LOADING AND INCREMENTING CONTROL LINES

IAQ = INSTRUCTION ACQUISITION SIGNAL

CNTR = COUNTER CONTROL LINES

8.5.1 ALU Operation Control

The ALU OP CODE controls the SN74S481N processor chips. The format of the op
code is explained in the device data manual for the 5481. Of all the possible
op codes the following are those used to implement the TM990/1481 instruction
set.

TABLE 8-10. ALU OP CODE....CMD0(52-62)

ALU CODE MNEMONIC OPERATION

11111000001 NOP NOP, 0 .41R.- SUM-BUS 1F04
10001001011 FFFF>SUM -1 ...40.- SUM-BUS 112C
00001001111 0>WR 0 -4. WR 013C
00001001011 -1>WR -1 -4. WR 012C

00000001011 A>WR AI ..40.- WR(THRU ALU) 002C
00000001111 /AI>WR /AI WR 003C •••4110.-
00001000101 B>WR BI411.- WR 0114
00011001111 WR/>WR /WR ...60.- WR 033C

00001101101 XWR>WR XWR •.41... WR 01B4
00011001010 WR+1>WR WR + 1 ,41..- WR 0328
00011001110 WR/+1>WR /WR 1 WR + -4. 0338
00011001001 WR-1>WR , WR 1 WR - ..4N..- 0324

00000000010 AI-BI>WR AI - BI --.. WR 0008
00000011001 AI+WR>WR WR + AI -4.- WR 0064
00000011011 AI+/W>WR /WR + AI -4. WR 006C
00011000001 WR+B>WR WR + BI11.- WR 0304

8-9

TABLE 8-10. ALU OP CODE....CMDO(52-62) (CONTINUED)

ALU CODE MNEMONIC OPERATION

00011000010 WR-BI>WR WR - BI -4. WR 0308
00000011010 AI-WR>WR AI - WR ...40- WR 0068
00011101001 WR+XWR>W WR + XWR40.- WR 03A4
00011101010 WR-XWR>W WR XWR WR -Ow' 03A8

10110001000 AIOWR>WR AI"OR"/WR .-4. WR 1620
10111010000 WROXWR>W WR"OR"XWR --4.10 1740
10111000000 BIOWR>WR BI"OR"WR --e.- WR 1700
10111000010 B/OWR>WR /BI"OR"WR -81. WR 1708

10100000110 AIABI>WR AI"AND"BI -41. WR 1418
11001000000 WR@BI>WR WR"XOR"BI --0. WR 1900
10101000110 BIAWR>WR WR"AND"BI -4 .WR 1518
10101000100 B/AWR>WR WR"AND"/BI WR -4. 1510

10101010110 WRAXWR>W WR"AND"XWR m.40- WR 1558
10101010100 WRAX/>WR WR"AND"/XWR ..111... WR 1550
11001010000 WREX>WR WR"XOR"XWR .4111.- WR 1940
11101101001 WR<SRL> SHIFT RT LOGICAL "411.- WR 1DA4

11101101011 WR<SRA> SHIFT RT ARITHMETIC4.WR 1DAC
11101101101 WR<SRC> SHIFT RT CIRCULAR-XWR 1DB4
11101101010 WR<SLA> SHIFT LF ARITHMETIC WR 1DA8
11101101100 WR<SLC> SHIFT LF CIRCULAR--4.WR 1DBO

01100001011 A>MC AI -4. MC OC2C
01101000101 B>MC BI -4. MC OD14
01101111101 PC>MC PC MC -al- ODF4
01111001011 WR>MC WR =.411.- MC OF2C

01110000001 B*2>MC BI * 2 ..4.-MC 0E04
11010011001 A*2>MC AI * 2 -4.MC 1A64
11010010101 4*XWR>MC XWR * 4 -.4.-MC 1A54
01100000001 A+B>MC AI BI MC + -4. 0004

01111000001 WR+B>MC WR + DI ...40.- MC OF04
01110111001 PC+B>MC PC + BI411.- MC OEE4
01110101001 XWR+B>MC XWR + BI -4. MC 0EA4
01100000010 A-B>MC AI - BI --4.MC 0008

11011011111 B/2>MC BI/2 -4. MC 1B7C
01111101001 WR+XR>MC WR XWR MC + --.. OFA4
00101001111 0>XWR 0 XWR -4. 053C
00101001110 1>XWR 140.- XWR 0538

00100001011 A>XWR AI XWR .01..- 042C
00101000101 B>XWR BI .-.41.- XWR 0514
00101000111 B/>XWR /BI XWR -0. 051C
00111001011 WR>XWR WR ...41.- XWR 072C

8-10

TABLE 8-10. ALU OP CODE....CMD0(52 -62) (CONTINUED)

ALU CODE I MNEMONIC OPERATION

00110000001 B*2>XWR BI*2 m.411.- XWR 0604
11011111111 B/2>XWR BI/2 -4. XWR 1BFC
00101000001 B-1>XWR BI - 1 -v. XWR 0504
00111001110 WR/+1>XR /WR + 1 •....110- XWR 0738

00101101100 /XR+1>XR /XWR + 1 ..110.. XWR 05B0
00100000001 A+B>XWR AI BI XWR + 4111.... 0404
01000101011 AI+/X>XR AI + /XWR41. XWR 08AC
00100101001 AI+XR>XR AI + XWR111.- XWR 04A4

00111101001 WR+XR>XR WR XWR XWR +10.- 07A4
11011110001 X+BI*2>X BI*2 + XWR ...40- XWR 1BC4
00100101010 AI -XR>XR AI - XWR1110- XWR 04A8
00111101010 WR-XWR>X WR XWR XWR - ...41.- 07A8

00111101100 XR-WR>XR XWR - WR — XWR 07B0
10100000111 AAB>XWR AI"AND"BI .•...10.- XWR 141C
10101000111 WRABI>XR WR"AND"BI -v. XWR 151C
10110010001 AIOXR>XR AI"OR"XWR XWR 1644 .1141111.-

10100010111 AIAXR>XR AI"AND"XWR -. XWR 145C
10111010001 WROXWR>X WR"OR"XWR ...gib- XWR 1744
10101010101 WRAX/>X WR"AND"/XWR ..•41.- XWR 1554
11011110101 B+XWRS>X (XWR BI)<SLA> XWR + ..•41.- 1BD4

11010111101 A*2>XWR A*2411.- XWR 1AF4
00010001110 AI/+1>XR 2'S COMP AI41.- XWR 0438
00010101100 XWR-AI>X XWR AI XWR - -4. 04B0
11000001001 WR@AI>XR WR"XOR"AIW. XWR 1824

00111100001 <BX>+W>X BI"AND"XWR + WR41. XWR 0784
11101110000 XRLS>XR XWR<SLL)>..4. XWR 1DC0
11010110001 X+AILS>X (XWR + AI)<SLL> ..110.. XWR 1AC4
11010101001 A+WRLS>X (AI + WR)<SLL> -4. XWR 1AA4

11010101000 A+W1LS>X (AI + WR + 1)<SL> . XWR MAO
01000001011 A>PC AI PC 082C .4110.-

01001011101 WR>PC WRb. PC 0974
01101001111 0>MC 0 •=4111.- MC OD3C

10001001111 0>S 0 -4. SUM 113C
10001001010 1 -1>SUM 1 - 1 411,'' SUM 1128
10000001011 A>S AI -v. SUM 102C
10001000101 B>S BI SUM -4. 1114

10011001011 WR>S WR -4. SUM 132C
10001101101 XWR>8 XWR SUM -4. 11B4
10001000001 B-1>S BI - 1 -0. SUM 1104
10011001110 WR/+1>S 2'S COMP WR -0. SUM 1338

8-11

TABLE 8-10. ALU OP CODE....CMDO(52-62) (CONTINUED)

ALU CODE I MNEMONIC I OPERATION

10011101001 WR+XR>S WR + XWR -11. SUM 13A4
10001101001 XWR-1>S XWR - 1 •...41.- SUM 11A4
10010101001 B+XWR>S BI + XWR -4. SUM 12A4
10010101010 B-XWR>S BI - XWR ..40.. SUM 12A8

10011000001 BI+WR>S BI + WR ...110.- SUM 1304
10000101001 AI+XR>S AI + XWR10' SUM 10A4
10000011001 AI+WR>S AI + WR •11*.. SUM 1064
10000001010 AI+CIN>S AI 1 SUM + ..411.- 1028

10000000010 AI-BI>S AI - BI -4. SUM 1008
10000101010 AI-XWR>S AI - XWR •1111..- SUM 10A8
10000101011 AI+/XR>S AI + /XWR ...411... SUM 10AC
10000011011 AI+/WR>S AI + /WR •.-41.- SUM 106C

10000001110 /AI+1>S 2'S COMP AI -4. SUM 1038
10000011100 /AI+WR>S /AI + WR -4. SUM 1070
10000101100 /AI+XR>S /AI + XWR ...40.- SUM 10B0
10001101100 XWR+1>S XWR + 1 ..-111... SUM 11B0

10011101100 XR-WR>S XWR - WR -4. SUM 13B0
11000100001 AI@BI>S AI"XOR"BI .40.- SUM 1884
11000110001 AI@XWR>S AI"XOR"XWR .41..- SUM 18C4
11000101001 AI@WR>S AI"XOR"WR .•410. SUM 18A4

10110101001 AIOWR>S AI"OR"WR -4. SUM 16A4
10100101111 AIAWR>S AI"AND"WR -4. SUM 14BC
10110110001 AIOXWR>S APOR"XWR411.- SUM 16C4
10100100111 AIABI>S AI"AND"BI41.- SUM 149C

10110100001 AORB>S AI"OR"BI -. SUM 1684
10111110001 WROXWR>S WR"OR"XWR -4. SUM 17C4
10101100111 BAWR>S BI"AND"WR ...111.- SUM 159C
10111100001 BIOWR>S BI"OR"WR SUM -. 1784

10011100001 <BX>+W>S BI"AND"XWR + WR -0. SUM 1384
10001100100 <BX>+1>S BI"AND"XWR + 1 i SUM 1190
10000010001 A+BAWR>S AI + B"AND"WR -4. SUM 1044
11101100001 AIRS>SUM AI<SRL> -810- SUM 1D84

11101100000 AILS>S AI<SLL> -4. SUM 1D80
10011001011 WR<0> WR COMPARED TO 0 132C
10001101101 XWR<O> XWR COMPARED TO 0 11B4
11100101111 XWR<WR> XWR COMPARED TO WR 1CBC

11100101101 WR<XWR> WR COMPARED TO XWR 1CB4
11100011001 AI<WR> AI COMPARED TO WR 1064
11100011011 <4R AI WR COMPARED TO AI 1C6C
11100101001 AI<XWR> AI COMPARED TO XWR 1CA4

8-12

TABLE 8-10. ALU OP CODE....CMDO(52-62) (CONCLUDED)

ALU CODE MNEMONIC OPERATION

11100101011 XWR<AI> XWR COMPARED TO AI 1CAC
10101110011 XAWR/<0> XWR"AND"/WR COMPARED TO 0 15CC
11010110111 XAWR<O> XWR"AND"WR COMPARED TO 0 15DC
10001001010 GENOV FORCE OVERFLOW 1128

11101111000 LDBLSHFT LEFT DOUBLE SHIFT LOGICAL 1DEO
11101111001 RDBLSHFT RIGHT DOUBLE SHIFT LOGICAL 1DE4
11101111100 LDBLSHCR LEFT DOUBLE SHIFT CIRCULAR 1DF0
11101111101 RDBLSHCR RIGHT DOUBLE SHIFT CIRCULAR 1DF4

11101011000 SUBLSDBL SUBTRACT AND SHIFT LEFT DOUBLE ' 1D60
11101001001 ADDLSDBL ADD AND SHIFT LEFT DOUBLE 1D24
11110010011 MPY MULTIPLY 1E4C
11110111111 SMPY SIGNED MULTIPLY 1EFC

11110000110 DIVA DIVIDE 1E18
11110001110 DIVB DIVIDE 1E38
11110001010 DIVC DIVIDE 1E28
11110010111 SDIVA SIGNED DIVIDE 1E5C

11110101111 SDIVB SIGNED DIVIDE 1EBC
11110110111 SDIVC SIGNED DIVIDE 1EDC
11110100111 SDIVD SIGNED DIVIDE 1E9C
11110011111 SDIVE SIGNED DIVIDE 1E7C

8.5.2 Processor Register Control

The REGISTER CONTROL bits allow the microcode to perform some frequently
occurring register operations in parallel with the operation specified by the
remainder of the microinstruction. The Program Counter (PC) for example can
be incremented at any time independent of the operations specified by the
other control fields. Note that INCMC and INCPC cannot both be executed in
the same microinstruction.

INCMC....CMD0(63)....Increment the Memory Counter

INCPC....CMD0(64)....Increment the Program Counter

LDWR CMDO(65)....Load the Working Register directly from the AI input port

LDRF CMDO(66)....Load the Register File register specified by the RF
subfield with the F-BUS data

LDIR.....CMD0(67)....Load the Instruction Register from the TM 990 bus

8.5.3 Instruction Acquisition

The instruction Acquisition (IAQ) bit is used to indicate, via the IAQ signal
on pin J1-19 of the TM990 BUS, that the current memory fetch operation is an
instruction fetch. The actual instruction fetch is programmed via the
commands AOP-PC, MEMFET, and LDIR.

8-13

CODE 1 MNEMONIC DESCRIPTION

00 NOP

01 DECCNT decrement the counter by one

10 LDCNT load the counter from the F-BUS

11 SETCNT15 set the counter to 15

8.5.4 Counter Control

The SHIFT COUNTER counts the clock times for operations such as shifts,
divides, multiplies, and other iterative operations. The SHIFT COUNTER may be
decremented by one, loaded with a count value, or set to 15. The counter is
4 bits wide and is loaded from the F-BUS bits F11 thru F14 when the LDCNT bit
of the microinstruction is set. The count loaded is therefore actually F/2.
The COUNT=0 (CNTEQZ) signal from the counter goes to the BRANCH TEST MUX so
the microprogrammer may do a conditional branch on the CNTEQZ condition.

In the normal loop structure the counter is loaded with a value N, an
operation is performed, the counter is decremented by one, and a conditional
branch is executed on CNTEQZ. If the loop is a small loop and the decrement
command and the conditional branch are in the same microinstruction, then the
loop will be executed N+1 times because the branch uses the current counter
status at the beginning of the microinstruction period and the decrement
does not occur until the end of the period. The SETCNT15 command therefore
allows a loop to be set up to execute 16 times.

TABLE 8-11. COUNTER CONTROL....CMDO(69-70)

8.6 STATUS CONTROL

The STATUS LOGIC allows the microcode to transfer the existing status
conditions at any time to the STATUS REGISTER. The microinstruction control
word allows either individual status bits to be enabled or certain logical
groups of bits to be enabled simultaneously. The STATUS REGISTER can be loaded
in three ways, bits 0-7 from current conditions selectively under
microinstruction command, bits 12-15 directly from the F-BUS (MASK load), or
all 16 bits at once loaded directly from the F-BUS.

8-14

CODE j MNEMONIC I DESCRIPTION

00000 NOP
00001 COMP COMPARE ENABLE=012XXXXX
00010 COMPB COMPARE BYTES ENABLE=012XX5XX
00011 ARITH ARITHMETIC ENABLE=01234XXX
00100 ARITHB ARITHMETIC BYTES ENABLE=012345XX
00101 SHIFT SHIFT ENABLE=0123XXXX
00110 SHIFTL SHIFT LEFT ARITHMETIC ENABLE=01234XXX
00111 CRUCLK ENABLE CRU CLOCK
01000 SHTEST SAVE SHIFT IN ST3 ENABLE=XXX3XXXX
01001 USENSAV USE SAVED CARRY AND SAVE NEW CARRY
01010 COMPOV COMPARE & OVERFLOW ENABLE=012X4XXX
01011
01100
01101
01110
01111
10000 ENLGT ENABLE=OXXXXXXX
10001 ENAGT ENABLE=X1XXXXXX
10010 ENEQU ENABLE=XX2XXXXX
10011 ENCO ENABLE=XXX3XXXX
10100 ENOV ENABLE=XXXX4XXX
10101 ENOP ENABLE=XXXXX5XX
10110 ENXOP ENABLE=XXXXXX6X
10111 USECOSAV USE SAVED CARRY
11000 ALUSPLIT OPERATE ON UPPER BYTE OF ALU ONLY
11001 SAVOY SAVE OVERFLOW
11010 SAVCO SAVE CARRY OUT IN COSAV FLIP FLOP
11011 SAVSH SAVE SHIFT OUT (IN STATUS BIT 3)
11100 SAVCOST SAVE CARRY OUT IN STATUS REGISTER BIT 3
11101 LDSTATUS LOAD STATUS FROM F-BUS BUT NOT MASK
11110 LDMASK LOAD MASK FROM F-BUS
11111 LDSR LOAD STATUS REGISTER FROM F-BUS

TABLE 8-12. STATUS CONTROL....CMDO(71-75)

8.7 SPECIAL CONTROL FIELD

The DECODE field is used to generate a number of different control signals
within the PROCESSOR and the CONTROLLER. These functions can be summarized as
follows:

1. control of the SWAP MUX
2. control of CRU input and output data
3. control of ALU serial shift lines during logical shifts
8. IDLE and LREX signals to the TM990 BUS
5. loading the Return Address Register (RTN) from the BA1 field
6. setting and resetting FLAGS
7. I/O RESET function
8. allow the MC or PC to be incremented by 1 rather than 2

8-15

TABLE 8-13. SPECIAL (DECODE) CONTROL....CMDO(76-80)

CODE I MNEMONIC I DESCRIPTION

00000
00001

NOP
NOP

00010 FSWAP FORCE SWAP BYTES
00011 CSWAPA CONDITIONAL SWAP BYTES (A015=1)
00100 CSWAPB CONDITIONAL SWAP BYTES (A015=1*BYTE=1)
00101 LDIRLSB LOAD LEAST SIGNIFICANT 4 BITS OF IR
00110 CRUWRO CRUIN TO WRO
00111 CRUEQU CRUIN TO ST3
01000 WR15CRU WR15 TO CRUOUT
01001 WR7CRU WR7 TO CRUOUT
01010 IR7CRU IR7 TO CRUOUT
01011 SHWRO SHIFT 1 WR
01100 SHWRZ SHIFT 0 WR
01101 SHXWRO SHIFT 1 -0.- XWR
01110 SHXWRZ SHIFT 0 XWR
01111 LREX LREX INSTRUCTION EXCUTING
10000
10001 NOP
10010 LDRTN LOAD RETURN ADDRESS REGISTER
10011 RESET EXECUTE I/O RESET
10100 SFLG1 SET FLAG 1
10101 RFLG1 RESET FLAG 1
10110 SFLG2 SET FLAG 2
10111 RFLG2 RESET FLAG 2
11000 SINTFLG SET INTERRUPT FLAG (SET FLAG 3)
11001 RINTFLG RESET INTERRUPT FLAG (RESET FLAG 3)
11010 SXOPFLG SET XOP FLAG (SET FLAG 4)
11011 RXOPFLG RESET XOP FLAG (RESET FLAG 4)
11100 SINTLOC SET PROCESSOR INTERLOCK (SET HOLD INHIBIT)
11101 RINTLOC RESET PROCESSOR INTERLOCK (RESET HOLD INHIBIT)
11110 IDLE IDLE INSTRUCTION EXECUTING
11111 INCBY1 INCREMENT MC OR PC BY 1 RATHER THAN 2

8-16

SECTION 9

INTERFACE DESCRIPTIONS

9.1 GENERAL

This section provides a description of the TM 990/1481 interfaces. Topics
include the following:

• TM 990 Bus Interface

• Processor/Controller Interface

• Terminal Interface.

9.2 TM 990 BUS INTERFACE

The TM 990 bus is specified in the TM 990 System Specification.

9.3 PROCESSOR/CONTROLLER INTERFACE

The Processor and Controller are connected via their common top edge
connectors J3 and J4. The cables are simple one to one connections and they
can be of the flat cable variety. Holes have been provided for
pin-and-socket connectors if a more secure connection is desired.

9-1

TABLE 9-1. PROCESSOR AND CONTROLLER TM990 BUS CONNECTOR (P1)

1 GND 26 (CLK.B-) 51 (VBATT) 76 +12V
2 GND 27 GND 52 (VBATT) 77 GND
3 VCC 28 (EXTCLK.B-) 53 (XAO.B) 78 WE.B-
4 VCC 29 CRUIN.B 54 (XA1.B) 79 GND
5 INT8.B- 30 CRUOUT.B 55 (XAO.B) 80 MEMEN.B-
6 INT7.B- 31 GND 56 (XAO.B) 81 GND
7 INT10.B- 32 BUSY.B- 57 AO.B 82 DBIN.B
8 INT9.B- 33 DO.B 58 A1.B 83 GND
9 INT12.B- 34 D1.B 59 A2.B 84 MEMCYC.B-
10 INT11.B- 35 D2.B 60 A3.B 85 GND
11 INT14.B- 36 D3.B 61 A4.B 86 HOLDA.B
12 INT13.B- 37 D4.B 62 A5.B 87 CRUCLK.B-
13 INT2.B- 38 D5.B 63 A6.B 88 IORST.B-
14 INT15.B- 39 D6.B 64 A7.B 89 GND
15 INT3.B- 40 D7.B 65 A8.B 90 READY.B
16 INT1.8- 41 D8.B 66 A9.B 91 GND
17 INT5.B- 42 D9.B 67 A10.B 92 HOLD.B-
18 INT4.B- 43 D10.B 68 A11.B 93 RESTART.B-
19 IAQ.B 44 D11.B 69 Al2.B 94 PRES.B-
20 INT6.B- 45 D12.8 70 A13.B 95 (GRANTOUT.B-)
21 GND 46 D13.B 71 A14.B 96 (GRANTIN.B-)
22 BUSCLK.B- 47 D14.B 72 A15.B 97 VCC
23 GND 48 D15.8 73 -12V 98 VCC
24 REFCLK.B- 49 (VAUX) 74 -12V 99 GND
25 GND 50 (VAUX) 75 +12V 100 GND

NOTE : Signals in parentheses are neither used by nor
generated by the TM990/1481

TABLE 9-2. PROCESSOR/CONTROLLER INTERFACE CONNECTOR (P3)

1 TC 21 /LOAD
2 TD 22 RFAD(3)
3 /SEL9901 23 RFAD(2)
4 /TINT 24 RFAD(1)
5 /MAP 25 RFAD(0)
6 /CLKP1 26 SELPC
7 BYTEX 27 DECCNT
8 COSAV 28 LDCCNT
9 CNTEQZ 29
10 /LREX 30 OP(10)
11 /IDLE 31 OP(9)
12 FO 32 OP(8)
13 PARITY 33 OP(7)
14 OVFL 34 OP(6)
15 COSH 35 OP(5)
16 EQ 36 OP(4)
17 LGT 37 OP(3)
18 AGT 38 OP(2)
19 JUMP 39 OP(1)
20 PINT 40 OP(0)

9-2

TABLE 9-3. PROCESSOR/CONTROLLER INTERFACE CONNECTOR (P4)

1 LDIR 21 STC(3)
2 LDRF 22 STC(2)
3 LDWR 23 STC(1)
4 INCPC 24 STC(0)
5 INCMC 25 BA(19)
6 DEC(4) 26 BA(18)
7 DEC(3) 27 BA(17)
8 DEC(2) 28 BA(16)
9 DEC(1) 29 BA(15)
10 DEC(0) 30 BA(14)
11 BSEL(2) 31 BA(13)
12 BSEL(1) 32 BA(12)
13 BSEL(0) 33 BA (11)
14 FSEL(2) 34 BA(10)
15 FSEL(1) 35 BX(5)
16 FSEL(0) 36 BX(4)
17 /ENRFA 37 BX(3)
18 ENMDOD 38 BX(2)
19 ENMDO 39 BX(1)
20 STC(4) 40 BX(0)

9.4 TERMINAL INTERFACE

The J2 connector on the CONTROLLER allows connection to any RS-232 device such
as the TI Silent 700 terminal or to the TM 990/301 Microterminal.

TABLE 9-4. CONTROLLER RS-232 CONNECTOR (P2)

1 GND
2 RS232 RCV
3 RS232 XMT
4
5 CTS
6 DSR
7 GND
8 DCD
9
10
11
12 +12V
13 -12V

14 +5V
15 XMT CLK
16 RESTART
17 RCV CLK
18 TTY RCV
19
20 DTR
21
22
23 TTY RCV RTN
24 TTY XMT RTN
25 TTY XMT

9-3

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185

