As you are now the owner of this document which should have come to you for free, please

consider making a donation of £1 or more for the upkeep of the (Radar) website which holds
this document. | give my time for free, but it costs me money to bring this document to you.

You can donate here https://blunham.com/Misc/Texas

Many thanks.

Please do not upload this copyright pdf document to any other website. Breach of copyright
may result in a criminal conviction.

This Acrobat document was generated by me, Colin Hinson, from a document held by me. |
requested permission to publish this from Texas Instruments (twice) but received no reply. It
is presented here (for free) and this pdf version of the document is my copyright in much the
same way as a photograph would be. If you believe the document to be under other
copyright, please contact me.

The document should have been downloaded from my website https://blunham.com/, or any

mirror site named on that site. If you downloaded it from elsewhere, please let me know
(particularly if you were charged for it). You can contact me via my Genuki email page:
https://www.genuki.org.uk/big/eng/YKS/various?recipient=colin

You may not copy the file for onward transmission of the data nor attempt to make
monetary gain by the use of these files. If you want someone else to have a copy of the file,
point them at the website. (https://blunham.com/Misc/Texas). Please do not point them at

the file itself as it may move or the site may be updated.

It should be noted that most of the pages are identifiable as having been processed by me.

| put a lot of time into producing these files which is why you are met with this page when you
open the file.

If you find missing pages, pages in the wrong order, anything else wrong with the file or
simply want to make a comment, please drop me a line (see above).

It is my hope that you find the file of use to you.

Colin Hinson
In the village of Blunham, Bedfordshire.

SECTION TITLE

1. INTRODUCTION..... tceeessesassssaaane setssescsseassnssna cesrsecsans .o
Te1 General.ccceececesscscscscces cessrsserscasenes teeccsssscssnes
1.2 Manual Organization..eeee.. cosersene ccesesreses cesescsseses e
1.3 General SpecificationSeecececececcscroccsccsscscsscsnscssocnsnoss
1.4 Applicable DocumentS...eeeeseecessss tesecccncrracssas cesnea ces
2. INSTALLATION AND OPERATION.:ees.. Cecesecsssasscesreanctessnassnanes
2.1 General.veceeeeseces ceesen cssesessccssana ceesecassesenassraes
2.2 Unpacking and InsSpectioN.ccecececscsesssscscscscsscsssscsosnses
2.3 Processor Module OptionS..ceececcccces cesesssses seesecscscnss
2.3.1 External Interrupt Line (INT6. B-) Select (E1-E2).evens
2.3.2 TMS 9902 INT4Y~ Interrupt Option (EY-E6)..eeececeoscacs
2.4 Controller Module OptioNS..eeeeeeeeessecessccsscssasancnsancs
2.4.1 Controller Module JUmMPErS...ceeeeesss ceccttssenesanane
2.4.2 ROM Wiring Platform at Ul9...ceveeneenese ceeeneanss ces
2.4.3 Controller Module Wiring Platform for Memory Devices..
2.4.4 Controller Module DIP and Toggle SwitcheS...eee... cees
2.5 Required Equipment....ceceeescenssas ceesesenseses ceeesesecenne
2.6 Power Supply and Card Cage ConnectionS..ceeeesceccceconns cene

2.7 TM 990/1481 Processor/Controller Placement and
InterconnectionS.cececccccencces seesscesersenne cecesrrssesses
2.8 Typical Installation and Initialization Sequence.......eeo...
2.8.1 Example of TM 990/201 Board SetUD..cceecsccccceacoans .
2.8.2 Board Installation........ cevseeeeetenen cessesecasanee
3. TIBUG INTERACTIVE DEBUG MONITOR..eeeeceocose cecscssccans ceescesses
3.7 GeNEral.ceceesesescscscsasacssscesssosscesnsss ceccsvscases ceee
3.2 TIBUG CoMMANdS.ececeeesascssossssasescsscosnsossossoscssnnss seee
3.2.1 Execute Under Breakpoint (B).e.ceeecen cessean cecenssen
3.2.2 CRU Inspect/Change (C)eeecesen. cesecsacsserrsecsene ceen
3.2.3 Dump Memory to Cassette/Paper Tape (D).ceieececccocens
3.2.4 Execute Command (E).ceccececscccanacens Ceceerceasanane
3.2.5 Find Command (F)..... cteesassssseans Ceeeetsesssssnanee
3.2.6 Hexadecimal Arithmetic (H).eeeeeeeeoeooeecooeeannnnnnn
3.2.7 Load Memory from Cassette or Paper Tape (L)ieeeeesee..
3.2.8 Memory Inspect/Change, Memory Dump...... csssessencns .
3.2.9 Inspect/Change User WP, PC, and ST Registers (R)......
3.2.10 Execute In Single Step Mode (S).ieeiecvecerconcanscanes
3.2.11 TI 733 ASR Baud Rate (T)..... Ceeersescstetesersesneens
3.2.12 Inspect/Change User Workspace (W)....... crecsssasasans
3.2.13 Move ALU Test to RAM and Execute (X).evoee.. cecancsana
3.2.14 Start Execution at Address 10001 (G)........ ceeeees .o
3.3 User Accessible UtilitieS.eeeevevneeseenn seectscesesennssssnen
3.3.1 Time Delay Via TMS 9901 Clock cesen
3.3.2 Write One Hexadecimal Character to Termlnal (XoP 8)...
3.3.3 Read Hexadecimal Word from Terminal (XOP 9).ceevvcecen.

TABLE OF CONTENTS

iii

PAGE

—— awd e eh b
[
I -~ I N

NNNNNI’\.)T'\)NNNNNN

n
| I
a] YOO EMNMNN = =3 s s

—_

N NN
[|
AN
-_ -

[T T |
—
o

WWK»WLA’WL:JWWWU’LU
I
—_ WWOOOU &£W et e
—t

TABLE OF CONTENTS

SECTION TITLE PAGE
3.3.4 Write Four Hexadecimal Characters to Terminal (XOP 10) 3-16
3.3.5 Echo Character (XOP 11)iiiceeessssscsicosococscoancona 3-18
3.3.6 Write One Character to Terminal (XOP 12)¢.eceeeececees 3-18
3.3.7 Read One Character from Terminal (XOP 13)..... seseacas 3-18
3.3.8 Write Message to Terminal (XOP T4)..eeeeeeeennenanonnn 3-18

3.4 TIBUG Error MesSsSageS.eececscesnscaess csessessene tessasssssasss 3=19
4, TM 990/1487 INSTRUCTION SET.uveeeevenennn cecsseas ceesessessensansne 41
4.1 General...eees.. cerectsssns seseccasssetneesnnasnnas cesessanne 41
4,2 User Memory...cece.. creeeseanens cerean ceceerennnan cetecesanas 4-1
4.3 Workspace CONCEPt.eeeeeeesceaeas ceececsesceasansens cessesasees 41
4.4 Status Register...c.eeeeeeececass ceeeens Ceececsasaanannannans 4-3
4.4,1 Logical Greater ThaN...eeeseeeeens seessacans ceecsscans -y
4.4.2 Arithmetic Greater Than......eeeevreeenencsnes cerecnen h-4
J.4.3 EQUalececeescencccccaccsnnnnna ceseseaes ceeseecececennas by
L N 6 2 4y
B, U5 OverfloW..eeeseessesnssssosens teesssssenae ceesesecaans y-y
B.U.6 Odd Parity.eeeeceeessecaccenososscsnonns Cetressenesan by
§.4.7 Extended OperatioN....... veessesscans ceetessnasnas ceee Bl
4.4,8 Status Bit SUMMArY..iceeseceesscecsns ticecenesecees ess U4-5
4.5 Instruction Formats and Addressing ModeS.......... cerecsacsae 4.8
4,5.1 Direct Register AdAresSSing..eccecscceececccsceaoesaonss 4-10
4,5.2 1Indirect Register Addressing....... ceteseesssncnsennan =11
4.5.3 Indirect Register Autoincrement Addressing............ 412
4,5.4 Symbolic Memory Addressing, Not Indexed....eeeeeceoeoes §-13
4.5.5 Symbolic Memory Addressing, Indexed........ cesevsaanns 414
4.5.6 Immediate Addressing...... ceareseas Ceeesessesasensana -1y
4.5.7 Program Counter Relative Address1ng ceccveccscesascan .15
4,5.8 CRU Bit Addressing...ceeee.. Cecenes eettecessssseseenes 4-15
B.6 InstructionSeceeieessccccecscesnocsconns cesrcessssesccnsannae bh-19
4,6.1 Format 1 InstructionS......... ciessesesaesses cecessaes 24
4,6.2 Format 2 InStructionS.ceecececsceccceesoconcoenes creans 425
4,6.3 Format 3/9 InstructionS..ceecececceecenes cesasesssanss U428
4.6.4 Format 4 (CRU Multibit) Instructlons. 4-30
4,6.5 Format 5 (Shift) InStructionS..cceeeececescecsecceeces 4-31
4.6.6 Format 6 InstructionS...eeeeeeeececeeene N cerervas 4-.32
4.6.7 Format 7 RTWP/Control and Floating-Point Instructions. 4-35
4.6.8 Format 8 (Immediate, Internal Register Load/Store) Ins.4-38
4.,6.9 Format 9 (XOP) InsStructionS....eeeeceecess Ceeseasennes 4-ug
4.,6.10 Formats 10 Through 17 INStructionS.ceeeeeeeeeeeeeeeess 4-43
4.6.11 Format 18 Single Register Operand Instructions........ h-u3
4.7 Instruction ExecUtion TimeS..eeceeeecesceseensosceccosssocsans yny
4.8 TM 990/1481 Floating-Point ArithmetiCe..eceeee.. cestsscsaannan 4-53
4.8.1 Floating-Point Representation...ccceceecececccccncanens 4-.53
4.,8.2 Floating-Point Operations...... s cresseseccestencrnans 4-55
4.8.3 Internal Representation of TM 990/1481 Floating-Point
Numbers...eveeees teeeretenesacecerrasrans cetecans . h-57
4.8.4 TM 990/1481 Floating-Point Instruction Overview........ 4-62
4.8.5 Sample ProgramsS........ cesacrrennne chsseesieesessennans h-62

iv

TABLE OF CONTENTS
SECTION ' TITLE PAGE

4,9 Programming AidS.eeecceecesssscascsnssosssssccosssssssssscnsens 457

4 .10 INterruUptSeeeceeeeeencsccscssssssssssscsccssccnsccssssanssasss 4=653
4.10.1 General.ceeeeosss teesssessesntsracensatesseceneesnssens 4-65
4.10.2 Interrupt and XOP Linking Areas Using TM 990/403

TIBUG..I..l.......I‘....l...l........ oooooo LRI A BN I)

£
1

o

~

5. SOFTWARE APPLICATIONS...eeeecescccssssssaans seessrsssseevencccnene

5.1 Generalecessceeccscsoss sessesene Ceseccescesssscsreasssesoscennan

5.2 Developement of Software for the TM 990/1U87.ccveeccrcsccaccns
5.2.1 Using Floating Point Instruction Assemblers...ccceceecs.
5.2.2 Floating Point Support with Other Assemblers....ceeeecess
Installing Software Into the TM 990/1481 SystemMeceieconcsvenes
Debugging Software on the TM 990/148 1 veteetvencacecosocssnons
Characteristics of Floating Point Arithmetic....... teesencaanse
5.5.1 Accuracy ConsiderationS..ccccecscescscssccsscssccssessanss
5.5.2 Significant Decimal DigitS..ecveeeesecscccescocsconcccass
5.5.3 Range o0f ValuG.ueceeeccvecssosccessososcsscssossccnnsascsnes
5.5.4 Interrupt Considerations...... cesesrasas ceesessaneaas .o
6 Radix CONVErSioN..ccesccessccessscesascssessscsssnsssssosncnsss
.7 TM 990/433 Floating Point Demonstration Softwar€....ceeeeecess
5.7.1 Accessing Demo Routines From Applications Programs......
5.7.2 Machine to ASCII Conversion Routin€S.cceesevecscccereesos
5.7.3 Transcendentan FunctionS..eceeeeesccscscceccscassccsancss
5.7.4 Solution of Simultaneous EQuUationS...ececescecsccscensas

[S2 %, RS

. o
Ul & W
L L DL I |

[}
2 2 OO ONNTUITUN EEEFWW 2 o

W

I/0 PROGRAMMING v svveecvesescecanosvescassssssscanssssoossoanssnesnns
6.7 GeNeral.cceeessesssseersoasssssscanssssassascsnsssassssccsnssas
6.2 System Description..cccceeeeescecsacsscessssescssscsssscsnsccss
6.3 Communications Register Unit (CRU)...ceeveoecosscscsanscsncns
6.4 Loading the CRU Hardware Base AddreSS.c.cccccesecsscscssscans
6.5 UsSer WOrKSDACE.:esseesssseosssosssscssssssessssesassccnssssnsa .
6.6 Sample Program..ccecscecoccsescs teeeeseescearssesasassasaannene

(o e Ne Ne ey We) eyl U'lkﬂU1U1U1kiﬂU1\J'IU1U'lan1U1U1U1U1U1U‘I

!
—= =2 OO0 OUIUI £ZW a2 = -

7. THEORY OF OPERATION.:eccveccsscencesscssocsosccosonsocnssenses ceen

Tel GeNErale.ceccceccseccesoseescssssassoscnssssssssssssssasesssnoss

7.2 System Block Diagram....... Ceseecssesesresrsracns sescsnssanes

7.3 The Processor Board..ciecececsseesscsscecnssscnees ceseensanes
The 481 Bit-Slice ProCesSSOreececececececsoccseacaceess
Shift CoUunter.iseeecersescssssvseessssccoserssscesvesssnnes
The Swap MultiplexXer..cieeeesesscceeccasnns cesescssnse
Instruction Register (IR)..cceecvcessscccens certecnenns
Status Register and Status LogiC..ceeeecoceescasosscess
Register Fileceeeeseeven S .o
Constant Word...ceeceeeees cesessesccenas ceeseresscssens
A-Bus, B-Bus, and F-BuS.ieeeeececcesssrsrseasscscanaans
Address and Data OUbeeesececsrsessoossccreneccccnnones .
Interrupt Logic and Jump Control...... esseseccscrscsas
Special Control Decode LogiCeveeececssscens ceeseaesens 7-11

-3
w

L] L]

—_ PO OOV =W -

- O

.
L]

. .
WWwwwwwwwwuww

L] .

]

FRPFPFPFIIFFPFPT
I
o

NN NN NN 9=
L] [] [L]
. .

SECTION TITLE PAGE
7.4 Controller Board...cceses. Ceeececssasssssereanens ctssecesssnen 7-12
7.4.1 Control Memory..eceeeess cressesanesa cresnccssecassans oo T-12
7.4.2 Microinstruction Register............ teeaessesneceannns T7-13
7.4.3 Clock Control Logic...es. ceseecessea cestecnsenss ceneen 7-13
7.4.4 Clock Distribution....... cesescnsres eeecccssserncncnns 7-13
T7.4.5 Bus CloCK.eesessonassesasasnns cessacessnns ceseseneecss T=14
7.4.6 Memory Speed Delay Logic...eesee et essecssasenssannnn . 7-16
7.4.7 HOLD and HOLD Acknowledg@...ceceecessscascassanons eeeee 1-17
T.4.8 Source Select LOZiCicesvevssvononcosocns ceessccsnsanes 7-18
7.4.9 Branch Multiplexer....... cevens ceeeeresssneenna ceeores 7-18
7.4.10 Test MultipleXer..eceeeeoososssoocnvoncnnnns ceesecnens 7-18
T.4.171 Test FlagSeeeesseesanscasesssconsossonas ceeceens ceceenes 7-18
7.4.12 Return Address Register..iiieeeeeeessssosccassnsoncnses 7-19
7.4.13 Instruction Register and Entry Point Logic........ eese 1-19
7.4.14 RS-232 Serial Communication Controller....cceceeeessces 7-24
7.4.15 Reset/Preset/Load Controls..ccececscosnscccasss ceesesee =25
7.4.16 TM 990 Bus Memory Control LOgiCe.ceseesesss sieeeraaeas 7-25
7.4.17 Debug Clock OptioNS.eeeeeeescsssesssssscsasscnsonssssoes 7-26
7.4.18 Upper Memory Page BiftS.eeeeeessssccocesnannnncnns cenees 7-26
8. MICROPROGRAMMING...eceosessoccscscaonacsasss ceesscsscsascns esesesnes 8-1
8.1 Generalecieeeeecansss Cheteeesseceeeccnessscenesnnnnns ceresees 8-1
8.2 Microinstruction Word....... Cerretesseeescesesannns ceeess ee.. 8-1
8.3 Clock and Sequence Control...eeeeecescnccss cttcsceerssssanens 8§-2
8.3.1 Clock Control.eeeeessccconasns cesissesesecennanse ceeeses 8-2
8.3.2 Source SeleCt.ceeerenccensssosssssosnassnnes ceesesanes 8-3
8.3.3 Test SeleCt.ceeeeerencnccncescososcncconnens ceeeeanees 8-4
8.4 Data Routing and SelectiONe.eeececessssnecs ceeeens ceeecerenes 8-5
8.4.1 Register File AddreSS..ccceececccccccseesssssosans eees 8-5
8.4.2 A-BUS SeleCt A.vevcieenocsooscssoscanssssscssassonesss 8-6
8.4.3 B-Bus Select Bivevewnn. e eteacseceeceaeecassessssresens 8-7
8.4.4 Address output Select P.covevnnn. cesessesrsena ceeseses 8=T
8.4.5 F-Bus S€1€Ct Fueveeeeeereanncaasansesscsssnses ceesrases 8-7
8.4.6 Memory Control MC.ceiveeeeesoseasconososcccceasonsonce 8-8
8.U.7 Constant Word..ee.eeeeeeeccessseesscensssscssssassanssos 8-8
8.5 Operation CONtrol.iuesecceeeescsscssocesssssssanceassasnonnonsns 8-9
8.5.1 ALU Operation Control...c.cececececscscoscscnccns ceenan 8-9
8.5.2 Processor Register Control...eieeeeeeereeccecsscsnnnns 8-13
8.5.3 Instruction ACQUISItioN...eeiereeeeceeeseesecansssnans 8-13
8.5.4 Counter Control....ciceeiescccensoncessosccasasssnnonss 8-14
8.6 Status Control..eicececessocscscscsvsessancns ceeceranas ceseanas 8-14
8.7 Special Control Field.iuiesseeessoensessessocscssonsansassanns 8-15
9. INTERFACE DESCRIPTIONS..cceccscecsssssossssosscsssnscnssccses ceesnas 9-1
9.1 GeNEral..eceecesseescessosscesonsssoasssssesssssssssssssssssasnss 9-1
9.2 TM 990 Bus INLerfaCEeeesescescsescesososasenssosssssssssancsse 9-1
9.3 Processor/Controller InterfacCe..ceceesesssscascsvescassncoases 9-1
9.4 Terminal INterfacE.....ceceececeeccssssnnvessonnosssassaneonas 9-3

TABLE OF CONTENTS

vi

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS

FIGURE TITLE

1-1 Typical System Configuration With TM 990/1481..... sectcsvsasesns
1-2 TM 990/1481 Principal Processor Components....... S, cevens
1-3 TM 990/1481 Principal Controller ComponentS......c... cesscsnnes
1-4 TM 990/1481 Dimensions (in inches).....ee... Ceecercesscaces cenes
1-5 TM 990/1481 System Diagram..... cessasen Cesresesans cieseersssans
2-1 Rom Adapter Plug Wiring..ieeeeeesoseeeeoeeeesceonceesnannnnnans
2-2 Memory Device Wiring Platforms at Uug and U99.veveeecnveccnns .o
2-3 Power Supply CoNneCtioNS.eeeeeececesceccssssesseees cosnrsersone
2-4 TM 990/1481 Connector/Processor InterconnectionS....ceeeceeeess.
2-5 TM 990/1481 and RS-232-C Terminal ConneCtionS...ecevececececcss
2-6 TM 990/1481 and TI 743 or 745 Terminal ConnectionS......ceeeee.

2-7 TM 990/1481 and TI 733 ASR Data Terminale..ceeeeeceesecoconsene

3-1 Memory Requirements for TIBUG.....veeeecececcacaacanonansnn cees
3-2 CRU Bits Inspected By C COmMMANd.cceeeeoeecesccsssaccnsceacennas
3-3 733 ASR Module Assembly (Upper Unit) Switch Panel.....eeseeeees
3-4 Tape TabSeceseseeoscosaancescsscaseasensesssonssosonsonses ceees
4.1 TM 990/1481 With RAM/ROM MemOry..eeeeeesocesesenconene ceessenna
4-2 Status Register Bit Structure..ccececeeececesss secscesans csease
4-3 Instruction FormatS...ceeeeceeceeeneens ceecctsssencenans ceseens
4-4 Direct Register Addressing Example........ece... ceteceressnsans
4-5 Indirect Register Addressing EXample...ceeeeeecesses crcesa ceenn
4-6 Indirect Register Autoincrement Addressing Example.......eeee..
4-7 Symbolic Memory Addressing Example........ ceessesanse esecseanns
4-8 Immediate Addressing EXamPle T.o.eeeeeececeeesscesessesacsonoces
4-9 TImmediate Addressing Example 2.....cce... sessencrsnns cesservans
=10 CRU INLErfatl.eseeeseeeesecenenceseocaaasosassssansoseosasosesas
4-11 CRU Bit Addressing Developement...eeeeeececceoenes creveas ceeenns
4-12 Cru Bit Addressing EXample l...eececeeseceecssceseocossoansncss
4-13 CRU Bit Addressing Example 2.....ecee.. cerecsasensnan cesesenaas
U1l BLWP EXAMPlE4.scueeeeeenseeseesoencessensensansonncesesnses ceon
§_15 XOP EXamMpPle.eeeeeeenncasonnassnnss cececns cerecseecens cecesncsnne
4-16 Interrupt Sequence.......... Sececssssecesessstassaracnaannee .
4-17 Six-Word Interrupt Linking Ared....ceeeeeecesoeceocceones ceesns
4-18 Seven-Word XOP Interrupt Linking Ared.....eeeeeeeececeoscosess .
5-1 Source Listing of Assembler Using Floating Point Source.........
5-2 Source Listing of Assembler Using Data Statements....... ceesesan

vii

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS

FIGURE TITLE PAGE
6-1 TM 990/305 Port O I/0 Channel.ceeeeccescosasanss Cectecscnrannan 6-2
6-2 CRU Bit Address Development...eeceeeereesesasssccasossasanccssse 6-4
6-3 Monitor Control Program............ ctstecessseccasssseannasvnsns 6-5
7-1 TM 990/1481 System Block Diagrame..eceeeesececcccasccosscnnssns 7-2
7-2 SNT4SUB1 Functional Block Diagram..ceeeeececsecscssoscsacasnnsnas 7-3
7-3

Bus Clock and System Clock Timing (in NS).eeeeeeeencecessacenns 7-15

viii

| L T A T L T D T I T
W N

= SV OOIO0OU EWN =

Fgi g AN -2 I i i g i g www
- O

i
[l\)—l

@)

[L [
(G20 =R U I \ b P -

=t = s D OV W -

[B |
whh =0

Co Co GO0 Co o Q0 Co OO0 O G0 OO0 Co o NN NN

O WO O WO
|
W N

TABLE OF CONTENTS

LIST OF TABLES

TITLE PAGE
Memory Plug Wiring...eceeeceecccesecae cesessserscsssecannnae ceses 2=5
Cable Assemblies...... T csesesas ceescesssessans ess 2=-9
TIBUG ComMAandS.eeeeesscecssscsssssosssssccscecccesnccnsssssssonsse 3-1
Command Syntax ConventionS.isseceecescsscececccses cessesesssseases 3=3
User Accessible Utilities.ceeeevecese Geecesesssescssssssesesannnns 3-15
Workspace Registers...... cesena seeceesn cescenaans cescteesesnnennas 4.1
Status Register Bit Definitions.....cieeeeeeeccccssencnnnne cesss U-6
Instruction Description Terms...ceveveecos. ceesevseseesnesveesnns 4-19
Instruction Set, Alphabetical INndeX....eeeeseeoeeenceoenannn eee 4-20
Instruction Set, Numerical IndeX....eceeeeeceensees sreasecrnenns 422
Comparison of Jumps, Branches, XOP'S.ceveeeeecccvocnsoes eeseessss H=35
Data to Determine TM 990/1481 Execution TimMeS.ceeeeeceeeesss eee.. 4-U48
Address Modification Factors for Instruction Execution Times.... 4-52
Memory Access Times...... cececssenans cecesases . 452
Preprogrammed Interrupt and User XOP Trap VectorS...eeseeos eesee U-6T7
Interrupt and User XOP Linking Areas...cceessceces teesesranes ... 4-68
Demo ROULINES..ceereeesnrsoecccccavsosccononscsee sesessen cesesanes 5-7
Routine Entry Points and Arguments........ tecsescessessesens vve. 5-8
TM 990/305 CRU MapPeseesess e s
Status Control ROMS...cceeeevess cresens esesscane seeescessenae eee T-T7
Decode Control ROMS (Processor and Controller)....ceeeeeeeeseces T=11
SCAL PLA Entry Points....... cessenes eesesecssssscsessses eressenes 7-20
PLA 2A Entry Points: DCAL', DCAL, OPCAL...eeereseccncnoonnnsoces T=22
PLA 2B Entry Points: DCAL', DCAL, OPCAL...cceeeeecn. cesssscsecane 7-23
Clock Control....CMDO(1-3)ceeressss ctteseesesesencanannnesasanss 8-3
Source Select....CMDO(4=6).eeeeeecccecnnces cevees cerececane eeess 8-3
Test..e..CMDO(7-11)ceicnvennn ceeenee teseesssenennes ceteessacnsess 8-4
Register File Address....CMDO(38-41)..cccerrncnce. Ceereseeveas .. 8-6
A-Bus Select....CMDO(U2) v veeennnseonnasne cereenenna crecesescessss 8=-6
B-Bus Select....CMDO(43-U45).......... ceereens Cesececeaenean ceses 8=T7
Address Output Select....CMDO(U6).eeecereanvnncesnse cetesereaacnns 8-7
F-Bus Select....CMDO(47-49)...... eetececeesenann ceecenerieranen 8-8
Memory Control....CMDO(50-51)u.cceresncsss ctresesesssenee ceeesea 8-8
ALU Op Code....CMDO(52-62) ceervncenconnana csscane cessccens eeesces 8-9
Counter Countrol....CMDO(69-70)....... ceersseerseecncannes ceeenn 8-14
Status Control....CMDO(71-75)....... ceceseecanes cececanns ceeeene 8-15
Special (Decode) Control....CMDO(76-80)..eeereceesccnccscccnncons 8-16
Processor and Controller TM990 Bus Connector (P1)........ crcens g-2
Processor/Controller Interface Connector (P3)...eeeecceccan eeses 92
Processor/Controller Interface Connector (PU)....eeveeeenn cevene 9-3
Controller RS-232 Connector (P2)...... Ceeeessssnsssssccsccerecsen 9-3

ix

SECTION 1

INTRODUCTION
1.1 GENERAL

The TM 990/1481 is a high speed general purpose central processing unit
implemented on two multilayer printed circuit boards. Utilizing Schottky and
low-power Schottky TTL logic, including the 54/74S481 LSI Processor Bit-Slice,
it offers a performance improvement of up to 39 X over the TM 990/101MA single
board microcomputer. Appendix I contains benchmark data. Because the TM
990/1481 processor generates a bus clock of up to 5 MHz, it will interface
only to TM 990 modules designed for 5 MHz or higher operation. A typical
system configuration is shown in Figure 1-1. Figures 1-2 and 1-3 show the
principal components of the TM 990/1481 processor and controller boards,
respectively; Figure 1-4 gives the dimensions for the processor and controller
boards; and Figure 1-5 is a block diagram of a TM 990/1481 system.

Some important features of the TM 990/1481 include:
o Software compatible with the 990 family of computers
® Incorporates floating point arithmetic instructions, signed multiply
and divide, and single register LST and LWP instructions (floating
point numbers are truncated rather than rounded to be compatable with

other Texas Instruments computers)

® Meets TM 990 bus specification requirements for 5 MHz bus clock
operation

e Provides 15 levels of prioritized and maskable interrupts
® Provides 2 programmable interval timers

e Interfaces to RS-232 terminals such as the TI Microterminal or
Silent 700 terminals

e Provides special ARITHMETIC OVERFLOW interrupt
e Use of instruction "look ahead," a variable clock period, and a
high degree of parallelism in the architecture produces up to
39 X speed improvement over the TM 990/101MA (See benchmarks in
Appendix I).
1.2 MANUAL ORGANIZATION
This manual is organized as follows:
e Section 1 covers TM 990/1481 characteristics and specifications.

e Section 2 shows how to install, powerup, and operate the TM 990/1481.

e Section 3 explains the TM 990/403 TIBUG monitor. TIBUG commands,
XOPs, and error indicators are topics that are included.

SYSTEM POWER SUPPLY——\

/-CONTROLLER MODULE

/-PROCESSOR MODULE
MEMORY MODULE

/(TM 990/201-4 4
WITH FIRMWARE

IN EPROM)*

FORCED AIR FAN
(CONSTANT CIRCULATION)

/ SYSTEM TERMINAL

A

* Note, if a TM 990/203 dynamic RAM module is used, software could be loaded from
cassette using an ASR terminal such as the TI 733 ASR.

FIGURE 1-1. TYPICAL SYSTEM CONFUGURATION WITH TM 990/1481

1-2

e Section 4 covers the TM 990/1481 instruction set. Instruection for-
mats, addressing modes, instruction execution times, user-defined

instructions, use of floating point instructions, programming aids,
and interrupts are described in this section.

e Section 5 covers the software applications support for the TM
990/1481.

® Section 6 covers I/0 programming using the communication register
unit (CRU).

e Section 7 covers the theory of operation with circuit descriptions
keyed to schematic diagrams.

® Section 8 describes the microinstruction word format used in the TM
990/1481 .

~

e Section 9 provides a description of the TM 990/1481's three interfaces
including: (1) TM 990 bus interface, (2) processor/controller inter-
face, and (3) terminal interface.

1.3 GENERAL SPECIFICATIONS

o System Power Requirements:

Current (Amps)
Voltage Regulation Typ _Max

+5V +3% 9.00 12.00
+12V +3% .02 .03
~-12V +3% .02 .03

e Operating Temperature: 0°C to 70°C ambient at the board
e Module Dimensions: The processor and controller dimensions are given
in Figure 1-4.
1.4 APPLICABLE DOCUMENTS

The following is a list of documents that provide supplementary information
for the TM 990/1481 user.

e SN74SU81, SNSLLS/THLSH81 4-Bit-Slice Schottky Processor Elements Data
Manual

e TMS 9901 Programmable Systems Interface Data Manual
e TMS 9902 Asynchronous Communication Controller Data Manual

e Model 990 Computer, TMS 9900 Microprocessor Assembly Language Prog-
rammer's Guide (P/N 943441-9701)

1-3

Model 990/12 Computer Assembly Language Programmer's Guide (P/N
2250077-9701 *A)

TM 990/201 and TM 990/206 Expansion Memory Boards Data Manual
(includes TM 990/201-44)

TM 990/203 Dynamic RAM Memory Expansion Module.

1-4

-1

|

|

—1(— < I e
|| ORI, + o D'D”HEM . DT -
O (1o 201]] e L el ol
[W] sl fel 2l MU W W]
‘Q#uluﬁgﬂﬂu Q]§L=£Qu ., ‘5[]5}5& = L, uﬂiiéﬂ ""ﬁg
00 ST R R A g e e
0w W a0 wlw:w LQNT 10y B aFeals w al
SN745481 e ERTrRET) Sy T —AL i
MICROPROCESSORS D .gr U - D rg .&T .sg
P W)] B Tl W0]
il DWU RN IR TR
2 + uio B’: tjj uzs UM u LLUW use uﬂ? J!'v . us2 us U3
< "/ il _F O

\J e

|

INT6.B JUMPER——/// LTMS 9901 ~ TMS 9901 INT4- INTERRUPT
E1-E2 INTERRUPT 6 FROM SYSTEM BUS PROGRAMMABLE E5-E6 = TO TMS 9902 INTERRUPT
E1/E2 REMOVED (OPEN TO BUS) INTERFACE E5-E4 = TO SYSTEM BUS

FIGURE 1-2. TM 990/1481 PRINCIPAL PROCESSOR COMPONENTS

9-1

TERMINAL USED JUMPER — MICROTERMINAL POWER JUMPERS
(INSTALL FOR TTY, REMOVE FOR (INSTALL FOR POWER USE)
RSZ32/MICROTERMINAL)

| 'S5 —

[47]
c26

C46

‘
e =
C45

Ccal_Jcad __JcaX el I [[Jcarl oW

ues

TEN 745478

=
-
=

L g uee F!,
MICROCODE NE= 1 - 1 = || k
PROM'S g
ﬂi A un Uf u

B
]
—C37

U7s c3s o) cad ke [

»

o) co Dod T V' el ks

____Jij
fb
Eij
I3
i
i
&

P
] _ue

€20

=

1 —
156=
> I 1 N - -

l

4 PLAs (74S330s)

FIGURE 1-3. TM 990/1481 PRINCIPAL CONTROLLER COMPONENTS

L-1.85 2.1 2.1 1.55 fe—

PROCESSOR ‘ 7.5
BOARD

J
ar‘—— 6.355 e 411 ——
i [T

CONTROLLER 7
BOARD

-350

4.11

{
.535 |
o
v
v
AL_EH

11.0

FIGURE 1-4. TM 990/1481 DIMENSIONS (IN INCHES)

1-7

8-1

Eiutaiaieittele et i H sai B ittt 1
[TTY/RS-232-C/MICROTERMINAL INTERFACE J2 Ji
[}
1
™S 9902 :
1/0 CONTROLLER i
:
[CONTROL MEMORY ADDRESS BUS CONTROL |
+ EMORY : EPROM RAM
T |
P
SCAL DCAL 1 DCAL 2 RETURN CONTROL MICROINSTRUCTION b
PLA PLA PLA ADDRESS || MEMORY REGISTER i
sl | = REGISTER ADDRESS MUX T !
w w i
I | cLoCK !
wl | e PERIOD !
| | = y COUNTER '
g :
|
! — TESTO ! 7Z
' 1 L > S ENBRN- hest) | ZP‘ \
] -
' ENRTN rest [TESTR) |
! ENSCAL-] SOURCE MUX fresTs) i
! CONTROLLER ENDCAL— SELECT HesT) 1
i BOARD . DEMUX |
: INSTRUCTION ENIRS 4 ~N ; MEMORY BOARD
) REGISTER ENIRD- !
'
) |
L _______________ S - - = = e ——popd bmceae——— cm————— -————--—- [V I NP S
[DATA BUS {
| [¥ T i ™ 9%
[CRU AND CONTROLLER BUS 1} system
! | | 1 ! [|8t
I ADDRESS BUS]
T T ooRESS | | pATA B - - TTTETmmTTTTTTT 7
BUFFERS BUFFERS PROCESSOR
~ '\ BOARD
{ f BUS
! |
SHIFT y -
: COUNTER PARITY RFO i
: i f Ty 1 RE1 15
STATUS S
———{/ A8 \/ b8 \}+— INSTRUCTION ™S 9901 nux/ — |5
REGISTER =
-
- pcImc [xwr[wR o STATUS RF15 (uP)ﬁ
! BIT-SLICE REGISTER
PROCESSORS L
ALY ZHDISE 24D S [CoNTROL 2¥INTERRUPT CONSTANT
Bl ¢c A W DECODE [* VECTORS WORD
C A_BUS)]
| [¥ y L v 1 ¥] ! 1 3 [¥ L ¥ P
| B BUS
L L { L {) 1 J])] D)|
[CONTROL_BUS]
b ewc e rem—————————— - ————————— - e o 1 e A e T e B . R o —————————— [——

FIGURE 1-5.

TM 9741481 SYSTEM DIAGRAM

SECTION 2

INSTALLATION AND OPERATION
2.1 GENERAL

The procedures for unpacking and setting up the TM 990/1481 for operation are
given in this section along with a test routine that can be used to check out
the system.

2.2 UNPACKING AND INSPECTION

Remove the TM 990/1481 processor and controller boards and cables from their
cartons and discard any protective wrapping.

Inspect both boards for any damage that could have occurred in shipping.
Report any damage to your TI supplier.

2.3 PROCESSOR MODULE OPTIONS

The TM 990/1481 processor module provides jumper selection for the following
functions:

° External interrupt line (INT6.B-)
° TMS 9901 INT4- interrupt input option

2.3.1 External Interrupt Line (INT6.B-) Select (E1-E2). This option is for
factory use. Installing a jumper at E1-E2 connects INT6- at the TMS 9901 to
the system bus, signal INT6.B- at P1-20. Removing this jumper opens this line.

2.3.2 TMS 9901 INTY4- Interrupt Option (EU-E6). A jumper allows the user to
connect the INT4- input to the TMS 9901 from either the interrupt output
(TINT-) of the TMS 9902 on the Controller Module or from INT4.B- of the system
bus at pin P1-18.

. E5-E4: TMS 9901 INT4- input connects to system bus at P1-18.
'Y E5-E6: TMS 9901 INTU4- input connects to TINT- from TMS 9902.
° Unjumpered: No input to TMS 9901 INTY4-

NOTE

The TMS 9901 and TMS 9902, both of which contain programmable
clocks, are addressable through the CRU. The TMS 9902 is located
at software base address 00801 and the TMS 9901 is located at
software base address 0100¢g. A CRU map is shown in Appendix B.

2.4 CONTROLLER MODULE OPTIONS
The TM 990/1481 controller module provides'options via:

) Three jumper settings
- TTY or RS232C terminal select
- Microterminal voltages
- Map mode memory timing

[Memory configuration using wiring platform
2.4.1 Controller Module Jumpers

There are three jumper selectéble options on the controller module:
the terminal select option, the TM 990/301 microterminal supply voltage
option, and the map mode memory timing option.

2.4.1.1 Terminal Select Option (E1-E2). The terminal select option allows
the user to configure the TM 990/1481 so that either a TTY or RS-232-C/TM
990/301 terminal can be used. This jumper should be connected between E1 and
E2 for operation with a TTY terminal; it should be removed for operation with
either an RS-232-C terminal or a TM 990/301 microterminal.

2.4.1.2 TM 990/301 Microterminal Supply Voltage Option (E6-E7, E13-E16).
Jumpers can be used to provide +12V, +5V, and -5V for the TM 990/301
microterminal. Install jumpers between:

° E6 and E7
° E13 and E14
. E15 and E16

Installing these jumpers will couple the necessary supply voltage to the
microterminal. These jumpers should be removed if a terminal other than the
microterminal is used.

2.4.1.3 Map Mode Memory Timing Option (E11-E12). The normal position for
this jumper is from E12 to E11. Removal of this jumper is currently reserved
for future use.

2.4.2 ROM Wiring Platform at UL49

The ROM wiring platform is wired for operation with the SNT4SUT8N Schottky
Bipolar PROM that is supplied with the . TM 990/1481 controller board. Figure
2-1 shows the wiring of this platform as shipped from the factory.

2=2

Gnp 1]e — e|14 ROMP18
H2 2] e o] 13 CMAX
+12V 3] e o| 12 ROMP19
H2 4] e of 11 GND
CMAP 51 e e| 10 ROMP20
GND 6| ol 9 45V
sV 7]e o]/ 8 ROMP21

(a) Pin nomenclature for ROM wiring platform at U49

12 ROMP19 (CE3)

1 :ﬂ;;;,. 14 ROMP18 (CEY4)
H2 2 o] 13
:«////.

H2 4

I 1" GND
10 ROMP20 (/CE2)

GND 6 o\\\\\: 9
7 1e 8 ROMP21 (/CE1)

(%21
®

(b) Wiring of U49 for ROM SNTUS478N 1K x 8 Schottky bipolar PROM

FIGURE 2-1. ROM ADAPTER PLUG WIRING

2-3

2.4.3 Controller Module Wiring Platforms for Memory Devices

There are two memory plugs located on the controller board which selects the
proper waits states required for different memories and memory modules. These
plugs are configured (wired) depending on the type of memory device and memory
module used. Figure 2-2 identifies the various pin definitions of the plugs
as well as how the plugs are wired at the factory. Plug 1 at U94 is used to
program the first eight blocks of memory and plug 2 at U99 is used to program
the second eight blocks of memory. MDSEL1 (pin 16 of plug 1) identifies the
first 1K block of memory and MDSEL16 (pin 9 of plug 2) identifies the block of
memory from F00041g through FFFFqig. SHFTN (N = 1 to 7 or X) selects the number

SHFT1 1[e ¢ |16 MDSEL1 (>0000 - >QFFF)
SHFT2 2| e ¢ | 15 MDSEL2 (>1000 - >1FFF)
SHFT3 3] e ¢ | 14 MDSEL3 (>2000 - >2FFF)
SHFT4 4| e ¢ | 13 MDSELY4 (>3000 - >3FFF)
SHFTS 51| e ¢ | 12 MDSEL5 (>4000 - >UFFF)
SHFT6 61| e ¢ | 11 MDSELb6 (>5000 - >5FFF)
SHFTT 71 e ¢ | 10 MDSEL7 (>6000 - >6FFF)
SHFTX 8| @==———& | 9 MDSEL8 (>7000 - >TFFF)

(a) Plug 1 (U94/W5A) Top View

SHFT1 1} e ¢ | 16 MDSEL9 (>8000 - >8FFF)
SHFT2 21| e ¢ | 15 MDSEL10 (>9000 - >9FFF)
SHFT3 3] e ¢ | 14 MDSEL11 (>A000 -~ >AFFF)
SHFT4 Ll e ¢ | 13 MDSEL12 (>BO00 - >BFFF)
SHFTS5 51 e ¢ | 12 MDSEL13 (>C000 - >CFFF)
SHFT6 6] e ¢ |11 MDSEL1Y4 (>D00Q - >DFFF)
SHFTT T 1{e ¢ | 10 MDSEL15 (>E000 - >EFFF)
SHFTX 8} ¢=———4 | 9 MDSEL16 (>F000 - >FFFF)

(b) Plug 2 (U99/X5A) Top View

NOTE: Wiring is as shipped from the factory

FIGURE 2-2. MEMORY DEVICE WIRING PLATFORMS AT U49 AND U99

2-4

of delays per access required for a particular board and memory device as
shown in Table 2-1. A jumper wire is connected from the proper SHFTN pin to
the applicable memory pin(s). Memory speed delay logic is further explained in
detail in section 7.4.6.

TABLE 2-1. MEMORY PLUG WIRING

MEMORY MEMORY MEMORY PLUG WIRING
BOARD DEVICE TYPE FROM T0
TM 990/H201-44 ™S 2716 EPROM SHFT7 See Note
TMS 4045-15 RAM SHFT3 ~ See Note
TMS 4045-20 RAM SHFTH See Note
TMS u4045-30 RAM SHFT5 See Note
TMS H045-45 RAM SHFT7 See Note
™ 990/H203-13 ™S 4115 RAM SHFTX See Note

NOTE: As shown in Figure 2-2, connect the SHFTN pin of platforms
U94 and U99 to to MDSELN pins on the opposite side of the
platform that reflect the memory configuration. Note in the
figure that as shipped from the factory, SHFTX is wired to
all sixteen 4K byte memory combinations that make up the
entire 32 K word addressing.

2-5

2.4.4 Controller Module DIP and Toggle Switches

2.4.4.1 RESET Toggle Switch. The RESET switch can be toggled by the user from
the front edge of the controller module. When toggled, the RESET switch
produces the RESET- signal which forces the TM 990/1481 to perform a context
switch to the WP and PC vectors at interrupt trap zero (vectors at 00004¢ and
000215). This action also causes IORST- on the system bus (via pin J1-88) to
be active a minimum of two REFLCK periods.

2.4.4.2 Fixed Period (Slow Clock) Mode DIP Switch (S3, VAR/FIX). One half of
switch S3 is the fixed period mode switch. In the FIX position, the user
selects a fixed period of 666.6 nanoseconds for the microinstruction clock
cycle that is independent of the clock control field. In the VAR position, the
user selects a variable period (200 ns - 666.6 ns) high-speed clock with
period controlled by the clock control field of the microinstruction. The
normal position of the VAR/FIX DIP switch is the VAR position.

2.4.4,3 SINGLE STEP Mode DIP Switch (S3, CONT/SINGLE STEP). The single step
mode switch is the second half of switch S3. In the SINGLE STEP position, the
microinstruction clock is turned off allowing single-step through microcode
using the SINGLE STEP toggle switch. For normal operation, the CONT/SINGLE
STEP switch should be in the CONT position.

2.4.4.4 SINGLE STEP Toggle Switch. The SINGLE STEP toggle switch is
accessible at the front edge of the Controller Module; however, it is used
for factory test purposes only. When used for test, LEDs (e.g., Dialight
547-2007) are populated in sockets XU11, XU16, and XU19 on the controller
module and in sockets XU19, XU25, XU36, XU75, XU81, XU86, and XU92 on the
processor module. These lights show test status.

NOTE
The SINGLE STEP toggle switch is for factory test purposes
only. When toggled, the TM 990/1481 executes one micro-
instruction step, 1if in the single step mode.
2.5 REQUIRED EQUIPMENT
The following items are required for a system using the TM 990/1481:

1) TM 990/510A, TM 990/520A, or TM 990/530 card cage

2) DC power supply capable of meeting the power requirements given
in section 1.3

3) Suitable terminal (and cable assembly) such as either a TI Silent
700 Terminal or a TM 990/301 Microterminal.

4) Memory module such as the TM 990/201-44 or TM 990/203
5) Adequate fan forced cooling (NOTE: The TM 990/1481 dissipates 45

watts, typical. Appendix E of the TM 990/530 manual covers criteria
to determine cooling requirements.)

2.6 POWER SUPPLY AND CARD CAGE CONNECTIONS

Figure 2-3 shows the necessary connections between a suitable dc¢ power supply
and a TM 990/510A card cage. Either a TM 990/520A4 or a TM 990/530 card cage
could be used in lieu of the TM 990/510A. Power requirements are listed in
section 1.3.

2.7 TM 990/1481 PROCESSOR/CONTROLLER PLACEMENT AND INTERCONNECTIONS

Adequate ventilation is a necessity for the TM 990/1481. If possible, the card
cage should be placed in the vertical plane. Fan forced cooling will probably
be mandatory to maintain the ambient air temperature at less than or equal
to 70 degrees centigrade at the hottest point above the boards.

The 40-pin edge connector cables are provided for interconnections between the
processor and controller modules. Figure 2-4 shows the proper positions for
these connectors (processor J3 to controller J3 and processor J4 to controller
Juy.

The J2 connector on the controller allows connection to a TTY or any RS-232-C
device such as the TI Silent 700 Terminal or the TM 990/301 Microterminal.

2-7

FIGURE 2-4.

TM 990/510 CARD CAGE

>

DC POWER SUPPLY

FIGURE 2-3. POWER SUPPLY CONNECTIONS

CABLE T0
TERMINAL
CONNECTS
HERE

40 PIN
EDGE

CONNECTOR
CABLES
INCLUDED

WITH
T™ 99071481

PROCESSOR

: : ™ 990/510
. CARD CAGE
("
/

TM 990/1481 CONTROLLER/PROCESSOR INTERCONNECTIONS

CONTROLLER

2-8

There are several cable assemblies that can be used to provide the necessary
interface between various terminals and the TM 990/1481. Table 2-2 provides a
listing of these cables.

TABLE 2-2. CABLE ASSEMBLIES

MODEL NUMBER DESCRIPTION
T™M 990/502 Connects TM 990/1481 to an RS-232-C terminal except
for those mentioned below
TM 990/503A Connects TM 990/1481 to a TI 743 or TU5
TM 990/504A Connects TM 990/1481 to a Model ASR 33 teletype
modified for 20 mA current loop operation
™ 990/505 Connects TM 990/1481 to a TI 733 ASR data terminal

A cable can be fabricated using a 25-pin RS-232-C plug, type DB25P, and a
suitable plug for the terminal. Figure 2-5 shows the necessary connections
between the TM 990/1481 and a RS-232-C terminal. Figure 2-6 shows the
connections between a TM 990/1481 and a TI 743 or 745. Figure 2-7 shows the
connections between a TM 990/1481 and a TI 733 ASR data terminal.

1 25-PIN EIA 25.PIN EIA
™ 990/1481 STYLE PLUG STYLE PLUG H5232C TE HMINAL
CONTROLLER
MODULE

PIN PIN
————] o _FROTECTIVEGHOUND 0 1} .
J2 |, } "
.] 2 TRANSMITTED DATA 2] e
3 RECEIVED DATA B 3 o
I 4 ____ REQUESTTOSENO === 4 S
} CLEAR YO SEND .
[6 . DATASETREADY = 6 -
o 7 o SIGNAL GROUND 1] o
] s RECEIVED LINE SIGNAL DETECTOR B o
15 TRANSMISSION SIGNAL ELEMENT TIMING. 15
— 17 RECEIVER SIGNAL EL(fM(NT TIMING 17
— 20 . _DATA TERMINAL READY 20] P

NOTE' SIGNAL NAME ASSIGNMENT
PER E1A RS232C
INTERFACE CONVENTIONS

FIGURE 2-5. TM 990/1481 AND RS-232-C TERMINAL CONNECTIONS

2-9

™ 990/1481 2551 ‘ TEXAS INSTRUHENTS
N 15PIN
CONTROLLER EIA STYLE EIA STYLE 743/745 TERMINAL
MODULE PLUG SOCKET
IN PIN

RS23ZRCV 2l iz 1 r

RS232XMT 3 12

GROUND 7 1

DCD 8 11

DIR 20 15

FIGURE 2-6. TM 990/1481 AND TI 743 OR 745 TERMINAL CONNECTIONS

™ 990/1481 25-PIN EIA 733 ASR TERMINAL
CONTROLLER STYLE PLUG 10 DUAL POSITION PC CONNECTOR
MODULE
5 PIN PIN
J2 e Pt
] Y . PHOTECTIVE GROUND A
[2 TRANSMITTED DATA _H .
—_— 3 _RECEIVED DATA 10 B
] a4 REQUEST TO SEND c B
e] 5 __CLEARTOSEND 8 _
] (6 DATA SET READY 9 b
P 7 SIGNAL GROUND 7] N
o 8 DATA CARRIER DETECT K
e 20 DATA TERMINAL READY [

NOTE: SIGNAL NAME ASSIGNMENT
PER EfA RS232C
INTERFACE CONVENTIONS

FIGURE 2-T. TM 990/1481 AND TI 733 ASR DATA TERMINAL

2-10

2.8 TYPICAL INSTALLATION AND INITIALIZATION SEQUENCE
2.8.1 Example of TM 990/201 Board Setup

Install the TM 990/403 TIBUG monitor on a TM 990/201-44 memory board in
sockets U56 and Ub4. Set the switches on the TM 990/201 as follows:

EPROM at RAM at
0000-T7FFF COO0-FFFF

S —— | —~g—
S1 S2 S3 S4 S5 S6 ST S8

ON ON ON ON ON OFF OFF ON

Set the jumpers on the TM990/201 board according to the TM990/201 manual.

Install EPROMs containing user firmware on the board. If available, the TM
990/U433 Floating Point Demonstration Software could be installed in sockets
U57 and Ub5 on the TM 990/201 board. Switch settings are explained in your
memory board user's manual for EPROM and in 403 TIBUG for the new RAM maps.

2.8.2 Board Installation
CAUTION

Always disconnect power before inserting or removing a board
from the card cage.

Install the TM 990/1481 Processor and Controller cards in the chassis with
connectors J3 and J4 cabled to the corresponding connectors on each card
(using the supplied cables). Connect a terminal to J2 of the controller. Check
that the TM 990/201 card (or other memory board) is correctly populated and
installed.

Verify that adaquate cooling is provided, optimally by forced air means.

Apply power to the boards and press the RESET toggle switch on the controller

board. Now press the RETURN key on your terminal; the TIBUG banner should be
printed, along with a prompt.

The TIBUG monitor is now executing, and all of the monitor commands may be
executed. Commands for the TM 990/403 TIBUG are explained in the next
section, Section 3.

2-11

SECTION 3
TM 990/403 TIBUG INTERACTIVE DEBUG MONITOR
3.1 GENERAL

The TM 990/403 TIBUG is debug monitor which provides an interactive interface
between the user and the TM 990/1481. It is available as an option, supplied
on two TMS 2716 EPROMs.

TIBUG occupies EPROM memory space from memory address (M.A.) 000041¢ to OFFF4¢
as shown in Figure 3-1. TIBUG wuses four workspaces in 40 words of RAM
memory. Also in this reserved RAM area are the restart vectors which
initialize the monitor following single step execution of instructions.

The TIBUG monitor provides eight software routines that accomplish special
tasks. These routines, called in user programs by the XOP machine

instruction, perform tasks such as writing characters to a terminal. XOP
utility instructions are discussed in detail in paragraph 4.6.9.

All communications with TIBUG is through a 20 mA current loop or RS-232-C
device. TIBUG is initialized as follows:

® Press the RESET pushbutton (Figure 1-2). The monitor is called up
through interrupt trap O.

® Press carriage return on the terminal keyboard. TIBUG uses this input
to measure the width of the start bit and set the TMS 99302
Asynchronous Communication Controller (ACC) to the correct baud rate.
e TIBUG prints an initialization message on the terminal. On the next
line it prints a question mark indicating that the command scanner is
available to interpret terminal inputs.
e Enter one of the commands as explained in paragraph 3.2.
3.2 TIBUG COMMANDS
TIBUG commands are listed in Table 3-1.

TABLE 3-1., TIBUG COMMANDS

INPUT RESULTS PARAGRAPH
B Execute under Breakpoint 3.2.1
C CRU Inspect/Change 3.2.2
D Dump Memory to Cassett/Paper Tape 3.2.3
E Execute 3.2.4
F Find Word/Byte in Memory 3.2.5
H Hex Arithmetic 3.2.6
L Load Memory from Cassette/Paper Tape 3.2.7
M Memory Inspect/Change 3.2.8
R Inspect/Change User WP, PC, and ST Registers 3.2.9
S Execute in Step Mode 3.2.10
T 1200 Baud Terminal 3.2.11
W Inspect/Change Current User Workspaces 3.2.12
X Move ALU test to RAM and Execute 3.2.13
G Start Execution At Location >1000 3.2.14

3-1

MEMORY

ADDRESS
0000
INTERRUPT VECTORS 0-15 TIBUG EPROM AREA
0040 XOP_VECTORS O AND 1
0048
z
0056 XOP VECTORS 7 TO 15
007F MONITOR UTILITIES
0080
> TIBUG EPRO,1 ARE
TIBUG MONITOR
OFFF
P

;
IS
FESO S MONITOR P
WORKSPACES

FFEC " ¥ TIBUG RAM AREA
RESTART VECTORS

FFFE "

oo

FIGURE 3-1. MEMORY REQUIREMENTS FOR TIBUG

Conventions used to define command syntax in this paragraph are listed in
Tablie 3-2.

TABLE 3-2, COMMAND SYNTAX CONVENTIONS

CONVENTION
SYMBOL EXPLANATION
<> Items to be supplied by the user. The term within the angle brackets is a generic term.
{1 Optional ltem — May be included or omitted at the user’s discretion. ltems not included in brackets
are required.
One of several optional items must be chosen.
{CR) Carriage Return
Space Bar
LF Line Feed
Ror Rn Register (n = 0 to 15)
WP Current User Workspace Pointer contents
PC Current User Program Counter contents
ST Current User Status Register contents

NOTE

Except where otherwise indicated, no space is necessary
between the parts of these commands. All numeric input
is assumed to be hexadecimal;the last four digits input
will be the value used. Thus a mistaken numerical input
can be corrected by merely making the last four digits
the correct value. If fewer than four digits are input
they are right justified.

3.2.1 Execute Under Breakpoint (B)
3.2.1.1 Syntax
B <address > <(CR)>

3.2.1.2 Description. This command is used to execute instructions from one
memory address to another (the stopping address is the breakpoint). When
execution 1s complete, WP, PC, and ST register contents are displayed and
control is returned back to the monitor command scanner. Program execution
begins at the address in the PC (set by using the R command). Execution
terminates at the address specified in the B command, and a banner is output
showing the contents of the hardware WP, PC, and ST registers in that order.

The address specified must be in RAM and must be the address of the
instruction. The breakpoint is controlled by a software interrupt, XOP 15.

If no address is specified, the B command defaults to an E command, where
execution continues with no halting point specified.

3-3

EXAMPLE:

e

SE

521

ST SEDL 144an

f

s i

i,

3.2.2 CRU Inspect/Change (C)

3.2.2.1 Syntax

A
C <CRU Software Base Address>{"}<Count> <(CR)>

3.2.2.2 Description. The Communication Register Unit (CRU) input bits from
"CRU software base address" to ("CRU software base address" + 2("count") -2)
are displayed right justified in a 16-bit hexadecimal representation. "CRU
software base address" is a 16-bit value in R12 bits 0 to 15; this is the same
as the contents of register 12 as used by CRU instructions (Section 5). Up to
16 CRU bits may be displayed. The corresponding CRU output bits may be
altered following input bit display by keying in desired hexadecimal data,
right justified. A carriage return following data output forces a return to
the command scanner. A minus sign (-) or a space causes the same CRU input
bits to be displayed again. Defaults for "base address™ and "count" are 0
(M.A. 0000) and O (count of 16) respectively. "Count" is a hexadecimal value
of 0 to F1g with 0 indicating 1619

The CRU inspect/change monitor command displays from 1 to 16 CRU bits, right
Jjustified. The command syntax includes the CRU address and the number of CRU
bits to be displayed. The CRU address is the 16-bit contents of R12 as
explained in Section 5 (vs. the CRU bit address ("base address") in bits 4 to
14 of R12); thus the user must use 2 X CRU bit address. This is shown in
Figure 3-2 where 10014 is specified in the command to display values beginning
with CRU bit 804¢.

? € 100,7
0100=007F

011121314151517l819lwln112l13[x4115/VALUED'SPLAYED
0 0 0 o © 0 0 0 ©° 1 t 1 1t 1 1 1}|>00F

AN 7
v [~ 78iTS REQUESTED "'1
ZERC FILLED 80 CRU BIT

FIGURE 3-2. CRU BITS INSPECTED BY C COMMAND

EXAMPLES:

(1) Examine eight CRU input bits. CRU address is 2046

P I Y

02 0={1FF «+— CARRIAGE RETURN ENTERED

(2) Set value of eight CRU output bits at CRU address 204g; new value is
0216.

CHANGE 00FF TO 0002

=]

D 0=00FF - Z-<— 2FOLLOWED B8Y CARRIAGE RETURN

(3) Check changes in CRU input bit 0.

AT |

Ooiti=nool -

Donu=ounl —)

OOOO=000i — , MINUS SIGN ENTERED
DOoo=0001 —‘

DOOO=GoFF -

OO00=0111] «——— CARRIAGE RETURN ENTERED

(4) Check to see if the TMS 9901 is in the interrupt mode (zero) or
clock mode (one).

Fooo10w0
D10isk-FFE «————— ZERO INDICATES INTERRUPT MODE

(5) Check the contents of the clock register on the TMS 9901 (bits 1 to
14)

Foolnge =
Gl 0Z=000UE

3.2.3 Dump Memory To Cassette/Paper Tape (D)

3.2.3.1 Syntax

MONITOR PROMPT

D <start address > - +<stop address > ¢ ~<entry address > { . IDT = <<pame > < ' >

3.2.3.2 Description. Memory is dumped from "start address™ to "stop
address." "MEntry address" is the address in memory where it is desired to
begin program execution. After entering a space or comma following the entry
address, the monitor responds with an "IDT=" prompt asking for an input of up
to eight characters that will identify the program. This program ID will be
output when the program is loaded into memory using the TIBUG loader, code
will be dumped as non-relocatable data in 990 object record format with
absolute load ("start address") and entry addresses specified. Object record
format is explained in Appendix G.

After entering the D command, the monitor will respond with "READY Y/N" and
wait for a Y keyboard entry indicating that the receiving device is ready.
This alliows the user to verify switch settings, etc., before proceeding with
the dump.

3.2.3.3 Dump To Cassette Example. The terminal is assumed to be a Texas
Instruments 733 ASR or equivalent. The terminal must have automatic device
control (ADC). This means that the terminal recognizes the four tape control
characters DC1, DC2, DC3, and DCi.

The following procedure is carried out prior to answering the "READY Y/N"
query (Figure 3-3):

(1) Load a cassette in the left (No. 1) transport on the 733 ASR.

(2) Place the transport in the "RECORD" mode.

(3) Rewind the cassette.

(4) Load the cassette. If the cassette does not load it may be write
protected. The write protect hole is on the bottom right side of
the cassette (Figure 3-4). Cover it with the tab provided with the

cassette. Now repeat steps 1 through 4.

(5) The KEYBOARD, PLAYBACK, RECORD, and PRINTER LOCAL/OFF/LINE switches
must be in the LINE position.

(6) Place the TAPE FORMAT switch inthe LINE position.

(7) Answer the "READY Y/N" query with a "Y"; the "Y" will not be echoed.

3-6

CASSETTE 1 CASSETTE 2
—

- r e |
REWIND LOAD/FF @ RECORD ——y === PLAYBACK © REWIND LOAD/FF
S

@ READY READY @
T—
@ END 2 END ©

STOP STOP O PLAYBACK =—J b RECORD @ sTOP STOP
PLAYBACK CONTROL RECORD CONTROL @
CONT BLOCK CHAR
START FWD FWD ON CHARACTER PRINT ON

MQQW}'@

e |
ERROR c
@) ;
N
T E
sTOP REV TAPE FORMAT ERASE OFF
— —— LINE / / LINE
— """
— -
OFF OFF
LOCAL > LOCAL
KEYBOARD PLAYBACK RECORD PRINTER

BIT1J BIT 8 —/

FIGURE 3-3. 733 ASR MODULE ASSEMBLY (UPPER UNIT) SWITCH PANEL

[TAPE SINE UP

Side 1
-4 J——
] [}
L]] {__[»]
\— WRITE TAB FOR SIDE 2 /
WRITE TAB FOR SIDE 1

FIGURE 3-4. TAPE TABS

3.2.3.4 Dump To Paper Tape

The terminal is assumed to be an ASR 33 teletypwriter. The following steps
should be completed carefully to avoid punching stray characters:

(1) Enter the command as described in paragraph 3.2.3.1. Do not answer
the "READY Y/N" query yet.

(2) Change the teletype mode from ON LINE to LOCAL.

(3) Turn on the paper tape punch and press the RUBOUT key several times,

placing RUBOUTS at the beginning of the tape for
correct-reading/program-loading.

(4) Turn off the paper tape punch, and reset the teletype mode to LINE.
(This is necessary to prevent punching stray characters.)

(5) Turn on the punch and answer the "READY Y?N" query with "Y". The Y
will not be echoed.

(6) Punching will begin. Each file is followed by 60 rubout characters.
When these characters appear (identified by the constant punching of
all holes) the punch must be turned off.
3.2.4 Execute Command (E)
3.2.4.1 Syntax

E

3.2.4.2 Description. The E command causes program execution to begin at
current values in the Workspace Pointer and Program Counter.

EXAMPLE: E
3.2.5 Find Command (F)
3.2.5.1 Syntax
F < start address > { < stop address > | - *<value> { gy '

3.2.5.2 Description. The contents of memory locations from "start adddress"
to "stop address" are compared to "value". The memory addresses whose
contents equal "value" are printed out. Default value for start address is 0.
The default for "stop address" is 0. The default for "value" is 0.

If the termination character of "value" is a minus sign, the search will be
from "start address" to "stop address" for the right byte in "value". If the
termination character is a carriage return, the search will be a word mode
search.

EXAMPLE:

TF Us2 FFFF «—— CARRIAGE RETURN ENTERED
I

oo

aale

ale

FF i &1 FF— «——— MINUS SIGN ENTERED
L 0e

anay

I

Ooon

gtz

o0t

Oole

ooty

3.2.6 Hexadecimal Arithmetic (H)
3.2.6.1 Syntax

H < number 1> { - < number 2> < (CR) >

3.2.6.2 Description. The Sum and difference of two hexadecimal numbers are
output.

EXAMPLE:

TH SO0 100 - CARRIAGE RETURN ENTERED
HI+HZ=0200 HI-Hzs=u100

3.2.7 Load Memory From Cassette Or Paper Tape (L)
3.2.7.1 Syntax

L < bias > < (CR) >

3.2.7.2 Description. Data in 990 object record format (defined in Appendix G)
is loaded from paper tape or cassette into memory. Bias is the relocation
bias (starting address in RAM). Its default is 016' Both relocatable and
absolute data may be loaded into memory with the L command. After the data is

loaded, the module identifier (see tage 0 in Appendix G) is printed on
the next line.

3.2.7.3 Loading From Texas Instruments 733 ASR Terminal Cassette. The 733
ASR must be equipped with automatic device control (ADC). The following
procedure is carried out prior to executing the L command:

(1) Insert the cassette in one of the two transports on the 733 ASR
(cassette 1 in Figure 3-2).

(2) Place the transport in the playback mode.

3-9

(3) Rewind the cassette.
(4) Load the cassette.

(5) Set the KEYBOARD, PLAYBACK, RECORD, and PRINTER LOCAL/LINE switches
to LINE.

(6) Set the TAPE FORMAT switch to LINE.
(7) Loading will be at 1200 baud.
Execute the L command.

3.2.7.4 Loading From Paper Tape (ASR33 Teletype). Prior to executing the L
command, place the paper tape in the reader and position the tape so the
reader mechanism is in the null field prior to the file to be loaded. Enter
the load command. If the ASR33 has ADC (automatic device control), the reader

will begin to read from the tape. If the ASR does not have ADC, turn on the
reader and loading will begin.

Each file is terminated with 60 rubouts. When.the reader reaches this area of

the tape, turn it off. The loader will then pass control to the command
scanner.

The user program counter (P) is loaded with the entry address if a 1 tag or 2
tag is found on the tape.

EXAMPLE:

VL (1131l «———————— CARRIAGE RETURN ENTERED
FFROGFAM <«——— PROGRAM ID FROM TAPE

3.2.8 Memory Inspect/Change, Memory Dump
3.2.8.1 Syntax
o Memory Inspect/Change Syntax
M < address > < (CR) >
e Memory Dump Syntax
M <start address > { ;<stop address > < (CR) >
3.2.8.2 Description. Memory inspect/change "opens" a memory location,
displays it, and gives the option of changing the data in the location. The
termination character causes the following:
e If a carriage return, control is returned to the command scanner.
e If a space, the next memory location is opened and displayed.
e If a minus sign, the previous memory location is opened and displayed.
If a hexadecimal value is entered before the termination character, the

displayed memory location is updated to the value entered.

3-10

Memory dump address directs a display of memory contents from "start address"
to "stop address". Each line of output consists of the address of the first
data word output followed by eight data words. Memory dump can be terminated
at any time by typing any character on the keyboard.

EXAMPLES:

(1)
it ZEO0D CARRIAGE RETURN ENTERED
FEOO=FFOF
TEaE=0012 FFFF <—— NEWCONTENTS ENTERED
ZEOY=0311 — <«———— MINUS SIGN ENTERED
SEUZ=FFFF <«———— NEW CONTENTS
IENd=03211
TEQE=00322 EEHH<—— NEW CONTENTS AND
- CARRIAGE RETURN ENTERED

(2)
THo2n 30
OOz o=00zn0 s [NEXRARY] S H S anon RAENEN} R 3

Gt =o=annd

3.2.9 Inspect/Change User WP, PC, and ST Registers (R)
3.2.9.1 Syntax

R <(CR)>
3.2.9.2 Description. The user workspace pointer (WP), program counter (PC),
and status register (ST) are inspected and changed with the R command. The
output letters W, P, and S identify the values of the three principal hardware
registers passed toc the processor when a B, E, or S command is entered. WP
points to the workspace register area, PC points to the next instruction to be
executed (Program Counter), and ST is the Status Register contents.
The termination character causes the following:

® A carriage return causes control to return to the command scanner.

® A space causes the next register to be opened.

Order of display is W, P, S.

EXAMPLES:

(1)
TE

W= 100 — SPACE ENTERED
F=00oan C 11} <+——CARRIAGE RETURN ENTERED

(2)
TR

=111 U:j_ SPACE ENTERED
F=020n0

Z=0111«———— SPACE OR CARRIAGE RETURN ENTERED

3.2.10 Execute In Single Step Mode (S)
3.2.10.1 Syntax

S

3.2.10.2 Description. Each time the S command is entered, a single
instruction is executed at the address in the Program Counter, then the
contents of the Program Counter, Workspace Pointer, and Status Register (after
execution) are printed out. Successive instructions can be executed by

repeated S commands. Essentially, this command executes one instruction then
returns control to the monitor.

EXAMPLE:

SFO0) SPACES ENTERED
EEDU,‘///—
_———— PROGRAM COUNTER
30z Q010 < STATUS REGISTER

WORKSPACE POINTER

g

IF00

SFEO0 ZE04 0000

ZF g ZE0S DOnn
= SFOn SEOS aoon
= SF00 SE0R ooon

NOTE

Incorrect results are obtained when the S instruction

causes execution of an XOP instruction (see paragraph

4.6.9) in a user program. To avoid these problems the

B command should be used to execute any XOP's in a pro-
gram (rather than the S command).

3.2.11 TI 733 ASR Baud Rate (T)
3.2.11.1 Syntax
T

3.2.11.2 Description. The T command is used to alert TIBUG that the terminal
being used is a 1200 baud terminal which is not a Texas Instruments' 733 ASR
(e.g., a 1200 baud CRT). To revoke the T command, enter it again.

3.2.11.3 Use. T is used only when operating with a true 1200 baud peripheral
device. Note that T is never used when operating at other baud rates.

In TIBUG the baud rate is set by measuring the width of the character "A"
input from a terminal. When an "A" of 1200 baud width is measured, TIBUG is
set up to automatically insert three nulls for every character output to the
terminal. These nulls are inserted to allow correct operation of the TM
990/1481 with Texas Instruments 733ASR data terminals.

3.2.12 Inspect/Change User Workspace (W)
3.2.12.1 Syntax

W [register number} < (CR) >
3.2.12.2 Description. The W command is used to display the contents of all
workspace registers or display one register at a time while allowing the user
to change the register contents. The workspace begins at the address given by
the Workspace Pointer.
The W command, followed by a carriage return, causes the contents of the

entire workspace to be printed. Control is then passed to the command
scanner.

The W command followed by a register number in hexadecimal and a carriage
return causes the display of the specified register's contents. The user may
then enter a new value into the register by entering a hexadecimal value. The
following are termination characters whether or not a new value is entered:

® A space causes display of the next register.

e A minus signh causes display of the previous register.

® A carriage return gives control to the command scanner.

EXAMPLES:

Tl - CARRIAGE RETURN ENTERED

FO=F342 Fl1=00234 R2=FAZA FE3=0020 RISFESE RS=0032 RE=1300 0 RF=0054
FS=FAHRD RI=Z500 FA=0EA:s FE=0O00 RFC=0100 0 RI=O0Ed4 RE=FARZ0 RE=CE00

DU

3-13

(2)

Thi 2 - CARRIAGE RETURN ENTERED

Fe=0284 3455

FI3=001E 100 I

Ra=16 05 ‘ SPACE ENTERED

RS=0450 S0F

FE=FZ00 {} «———— CARRIAGE RETURN ENTERED
CAUTION

The following commands, X and G, are for factory test purposes
only. Do not‘enter these commands to the monitor.

3.2.13 Move ALU Test to RAM and Execute (X)
3.2.13.1 Syntax

X <CR>
3.2.13.2 Description

This command is for factory test purposes only. It moves the ALU test from
EPROM locations to RAM, then executes the test.

3.2.14 Start Execution at Address 10004¢ (G)
3.2.14.1 Syntax

G <CR>
3.2.14.2 Description

This command is for factory test purposes only. It causes the start of
execution at memory address 100014

3.3 USER ACCESSIBLE UTILITIES

TIBUG contains seven utility subroutines that perform I/0 functions as listed
in Table 3-3. These subroutines are called through the XOP (extended
operation) assembly language instruction. This instruction is covered in
detail in paragraph 5.6.9. In addition, locations for XOP's 0 and 1 contain
vectors for utilities that drive the TM 990/301 microterminal, and XOP 15 is
used by the monitor for the breakpoint facility.

TABLE 3-3. USER ACCESSIBLE UTILITIES

XOP FUNCTION PARAGRAPH
T Time Delay Via TMS 9901 Clock 3.3.1
8 Write 1 Hexadecimal Character to Terminal 3.3.2
9 Read Hexadecimal Word from Terminal 3.3.3
10. . Write U4 Hexadecimal Characters to Terminal 3.3.4
11 Echo Character 3.3.5
12 Write 1 Character to Terminal 3.3.6
13 Read 1 Character from Terminal 3.3.7
14 Write Message to Terminal 3.3.8
NOTE

All characters are in ASCII code.

NOTE

Most of the XOP format examples herein use a
register for the source address, however, all XOP's
can also use a symbolic memory address or any of the
addressing forms available for the XOP instruction.

3.3.1 Time Delay Via TMS 9901 Clock

Format: XOP Rn,7
The value in Rn represents the increments of 21.33 us delays desired. The
delay range is from 106.6 us to 349.525 ms. The clock interrupt (3) is
utilized by this XOP. Control returns to the instruction following the

extended operation.

EXAMPLE: For a delay of 25 ms, the count of 1172 (25ms/21.35 us = 1172) will
be used.

LI R1,1172 Set Up Delay Count

XOP R1,7 Do Extended Operation

(Next Instruction) Execution Continued Here
NOTE

TIBUG uses XOP Rn,7 when determining Baud rates and
when communicating with a terminal.

3-15

3.3.2 Write One Hexadecimal Character to Terminal (XOP 8)
Format: XOP Rn,8

The least significant four bits of user register Rn are converted to their
ASCII coded equivalent (0 to F) and output on a terminal. Control returns to
the instruction following the extended operation.

EXAMPLE:

Assume user register 5 contains 203C4¢. The assembly language (A.L.) and
machine language (M.L.) values follow.

AL. XOpP R5.,8 SEND 4 LSB'S OF R5 TO TERMINAL

6 1 2 3 4 5 6 7 8 9 10 1. 12 13 MW 15
ML.[O o 1 o 1 1 l 1 0o o o l ¢ o ! o 1 o 11 > 2€05

- Terminal Qutput: C

3.3.3 Read Hexadecimal Word From Terminal (XOP 9)

Format: Xop Rn,9
DATA NULL ADDRESS OF CONTINUED EXECUTION IF
NULL IS ENTERED
DATA ERROR ADDRESS OF CONTINUED EXECUTION IF

NON-HEX NO. IS ENTERED
(NEXT INSTRUCTION) EXECUTION CONTINUED HERE IF VALID HEX
NUMBER AND TERMINATOR ENTERED

Binary representation of the last four hexadecimal digits input from the
terminal is accumulated in user register Rn. The termination character is
returned in register Rn + 1. Valid termination characters are space, minus,
comma, and a carriage return. Return to the calling task is as follows:

e If a valid termination character is the only input, return is to the
memory address contained in the next word following the XOP
instruction (NULL above).

e If a non-hexadecimal character or an invalid termination character is
input, control returns to the memory address contained in the second
word following the XOP instruction (ERROR in previous example).

e If a hexadecimal string followed by a valid termination character is
input, control returns to the word following the DATA ERROR statement
in the previous example.

EXAMPLE:

AL. XOP R6,9. READ HEXADECIMAL WORD INTO R6
DATA > 3F80 RETURN ADDRESS, IF NO NUMBER
DATA > 3F86 RETURN ADDRESS, IF ERROR
M.L. 0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
M.A. 3F00[0 0 1 0 1 T [1 0 0 1] 0 o] o 1 1 0 > 2E46
3F02{0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 > 3F80
3F04|0 0 1 1 1 1 1 1 1 0o 1] 0 1] 1 1 0 > 3F86

If the valid hexadecimal character string 12C is input from the terminal
followed by a carriage return, control returns to memory address (M.A.) FFB61g
with register 6 containing 012C4¢ and register 7 containing 0D00 ¢ -

If the hexadecimal character string 12C is input from the terminal followed by
an ASCII plus (+) sign, control returns to location FFC616. Registers 6 and 7

are returned to the calling program without being altered. The plus sign (+)
is an invalid termination character.

If the only input from the terminal is a carriage return, register 6 is
returned unaltered while register 7 contains 0D00¢g. Control is returned to
address FFCO16.
3.3.4 Write Four Hexadecimal Characters To Terminal (XOP 10)

Format: XOP Rn,10
The four-digit hexadecimal representation of the contents of user register Rn
is output to the terminal. Control returns to the instruction following the
XOP call.
EXAMPLE:

Assume register 1 contains 2CU64.

A. L. XOP R1,10 WRITE HEXNUMBER

0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
ML{0O o 1 o t+ 1]1 o 1+ oJo oJo o o 1] >zes

Terminal Output: 2Cu6

3.3.5 Echo Character (XOP 11)
Format: XOP Rn, 11

This is a combination of XOP's 13 (read character) and 12 (write character).
A charcter in ASCII code is read from the terminal, placed in the left byte of
Rn, then written (echoed back) to the terminal. Control returns to the
instruction following the XOP after a character is read and written. By using
a code to determine a character string termination, a series of characters can
be echoed and stored at.a particular address:

CLR R2 CLEAR R2

LI R1,> 3E00 SET STORAGE ADDRESS

XOP R2, 11 ECHO USING R2

cl ' R2,> 0D0O WAS CHARACTER A CR?

JEQ $+6 ' YES, EXIT ROUTINE

MOVB R2,*R1+] NO, MOVE CHAR TO STORAGE
JMP $—10 REPEAT XOP

3.3.6 Write One Character To Terminal (XOP 12)
Format: XOP Rn,12

The ASCII character in the left byte of user register Rn is output to the
terminal. The right byte of Rn is ignored. Control is returned to the
instruction following the call.

3.3.7 Read One Character From Terminal (XOP 13)

Format: XOP Rn,13.
The ASCII representation of the character input from the terminal is placed in
the left byte of user register Rn. The right byte of register Rn is zeroed.
When this utility is called, control is returned to the instruction following
the call only after a character is input.
3.3.8 Write Message To Terminal (XOP 14)

Format: XOP @MESSAGE, 14
MESSAGE is the symbolic address of the first character of the ASCII character
string to be output. The string must be terminated with a byte containing

binary zeroes. After the character string is output, control is returned to
the first instruction following the call.

Assuming the following program:

MEMORY

ADDRESS OP CODE A.L. MNEMONIC
{Hex) {Hex)
3E00 2FAQ XOP @ > 3EEQD,14
3E02 . 3EEOQ
3E04
3EEOD 5445 TEXT 'TEST
3EE2 5354
3EE4 [04] BYTE O

During the execution of this XOP, the character string "TEST" is output on the
terminal and control is then returned to the instruction at location FEOHqg-.
TEXT is an assembler directive to transcribe characters into ASCII code.

3.4 TIBUG ERROR MESSAGES

Several error messages have been included in the TIBUG monitor to alert the
user to incorrect operation. In the event of an error, the word "ERROR" is
output followed by a single digit representing the error number.

Table 3-4 outlines the possible error conditions.

TABLE 3-4. TIRUG ERROR MESSAGES

ERROR CONDITION
0 Invalid tag detected by the loader.
1 Checksum error detected by the loader.
2 Invalid termination character detected.
3 Null input field detected by the dump routine.
4 invalid command entered.

In the event of errors 0 or 1, the program load process is terminated. If the
program is being input from a 733ASR, possible causes of the errors are a
faulty cassette tape or dirty read heads in the tape transport. If the
terminal device is an ASR33, chad may be caught in a punched hole in the paper
tape. In either case repeat the load procedure.

In the event of error 2, the command is terminated. Reissue the command and
parameters with a valid termination character.

Error 3 is the result of the user inputting a null field for either the start
address, stop address, or the entry address to the dump routine. It also
occurs if the ending address is less than the beginning address. The dump
command is terminated. To correct the error, reissue the dump command and
input all necessary parameters.

3-19

SECTION 4
TM 990/1481 INSTRUCTION SET

4,1 GENERAL
This section covers the instruction set used with the TM 990/1481 including
machine and assembly language. This instruction set includes the standard TM
990 instruction set plus twenty-two floating point instructions. These latter
ineclude signed multiply and divide, double-precision multiply and divide, and
real/integer conversions. Other topics covered in this section include:

¢ User memory

e Workspace concept

e Status register

o Instruetion formats and addressing modes

e Instructions

¢ Comparison of jumps, branches, and XOPs

¢ Instruetion execution times

e User defined instructions

e Use of floating point instructions

e Programming aids

e Interrupts.
Further information on the 990 assembly language is provided in the Model 990
Computer/TMS 9900 Microprocessor Assembly Language Programmer's Guide (P/N
943441-9701) and the Model 990/12 Computer Assembly Language Programmer's
Guide (P/N 2250077-9701%4).
4.2 USER MEMORY
The amount of available user RAM space in memory for program execution depends
on the memory module used and how it is configured. This information can be

found in the user's guide for the memory module that is used.

4.3 WORKSPACE CONCEPT

Figure 4-1 shows the TM 990/1481 with RAM and EPROM memory. The RAM memory
section will be used for user workspaces. Workspaces are blocks of memory
that are used as data registers. The location of the starting address of a
workspace is defined by a single hardware register called the workspace
pointer. The workspace consists of sixteen 16-bit registers in memory. The
LWPI (load workspace pointer immediate) instruction is used to define the
starting address for the user workspace; if additional registers are needed,
the program simply reloads the workspace pointer with the starting address of
the new workspace. The number of 16-register workspaces is limited only by
the amount of memory in the system.

~} CONTROLLER |~

r 1
| |
| |
|) & |
| BOARD ‘ I
I CRU & CONTROL BUS\ i
: 2 — PROCESSOR g 2 :
| N BOARD '
| |
N | Mmoo _
EXTERNAL DATA BUS EXTERNAL ADDRESS BUS
v N
I" 1
| |
= — RAM G
| |
| |
l) |
<, ; EPROM -
| |
L_____ MEMORY BOARD _ _ __ _

FIGURE 4-1. TM 990/1481 WITH RAM/ROM MEMORY

The uses of the workspace registers are shown in Table 4-1. All 16 registers
(RO-R15) may be used for storage of addresses, temporary data, and accumulated
results. R1-R15 may be used as index registers to specify a bias from a
fixed-memory location to address an instruction operand. Register 0 may
contain the number of bit positions an operand is shifted by the shift
instructions (SLA, SRA, SRC, and SRL). R11 will contain one of the following:

1. the return address when the branch and link (BL) instruction is

executed or,
2. the address parameter of an XOP instruction.

Bits 3-14 of R12 contain the CRU base address for CRU instructions. R13-R15
will contain the internal register values which are reloaded when the return
to workspace (RTWP) instruction is executed.

MORKSPACE POINTER—I D

TABLE 4-t.

MEMORY
ADDRESS

WP + 00
WP + 02
WP + 04
WP + 06
WP + 08
WP + 0A
WP +0C
WP + OE
WP + 10
WP + 12
WP + 14
WP+ 16
wWe + 18
WP + 1A
WP +1C
WP + 1E

4.4 STATUS REGISTER

REGISTER

-]

@ (O~ | |d|W|N =

-
(-]

—h
L]

Y

-
w

-
»

b
1]

WORKSPACE REGISTERS

REGISTER USE
-
~ OPTIONAL SHIFT
T
COUNT
DATA INDEX
OR i
CAPABILITY
ADDRESSES

— BL RETURN ADDRESS
— CRU BASE ADDRESS
— SAVED WP

— SAVED PC

— SAVED ST

The status register is similar to that of other microprocessors in that it
contains flag bits which indicate results of the most recent arithmetic or
It also contains a U-bit interrupt mask which
defines the lowest-priority level interrupt which will be recognized by the

logical operation performed.

microprocessor.

4-2,

register follows.

The bit structure of the status register is shown in Figure

A description of the information conveyed by the bits in the status

0o 1 2 4 5 7 8 9 10 11 12 13 1 15
L> | A> | Ea ov | op \\ MF \\ 01 \\ INTERRUPT MASK
L> LOGICALLY GREATER THAN OP ODD PARITY
A> ARITHMETICALLY GREATER THAN | X XOP BEING EXECUTED
EQ EQUAL MF MAP FILE SELECT
C CARRY OI OVERFLOW INTERRUPT ENABLE
OV OVREFLOW (ALLOW INTERRUPT ON OVERFLOW)
RESERVED

FIGURE 4-2.

STATUS REGISTER BIT STRUCTURE

4-3

4.4.1 Logical Greater Than

This bit contains the result of a comparison of words or bytes as unsigned
binary numbers. The most significant bit (MSB) of words being logically
compared represents 215 (32,768), and the MSB of bytes being logically
compared represents 27 (128).

4,4,2 Arithmetic Greater Than

The arithmetic greater than bit contains the result -of a comparison of words
or bytes as two's complement numbers. In this comparison, the MSB of words or

bytes being compared represents the sign of the number, zero for positive, or
one for negative.

b.4.3 Equal
The equal bit is set when the words or bytes being compared are equal.
. 4.4 Carry

The carry bit is set by a carry out of the MSB of a word or byte (sign bit)
during arithmetic operations. The carry bit is used by the shift instructions
to store the value of the last bit shifted out of the workspace register being
shifted. o

4.4,5 Overflow

The overflow bit is set when the result of an arithmetic operation is too
large or too small to be correctly represented in two's complement
(arithmetic) representation. In addition operations, overflow is set when the
MSB's of the operands are equal and the MSB of the result is not equal to the
MSB of the destination operand. In subtraction operations, the overflow bit
is set when the MSB's of the operands are not equal, and the MSB of the result
is not equal to the MSB of the destination operand. For a divide operation,
the overflow bit is set when the most significant sixteen bits of the dividend
(a 32-bit value) are greater than or equal to the divisor. For an arithmetic
left shift, the overflow bit is set if the MSB of the workspace register being
shifted changes value. For the absolute value and negate instructions, the
overflow bit is set when the source operand is the maximum negative value,
800015 (See Section 4.10). ‘

4.4,6 0dd Parity

The odd parity bit is set in byte operations when the parity of the result is
odd, and is reset when the parity is even. The parity of a byte is odd when
the number of bits having a value of one is odd; when the number of bits
having a value of one is even, the parity of the byte is even.

4.,4,7 Extended Operation

The extended operation bit of the status register is set to one when a
software implemented extended operation (XOP) is initiated.

4=y

4.4,8 Status Bit Summary

Table 4-2 describes each of the status bits individually and lists those
instructions which can alter each status bit.

Section 4.6 describes each instruction and identifies which status bits are
affected by each instruction. Those bits that are not indicated as affected by
an instruction will remain unchanged after execution of that instruction.

All status register bits are physically implemented on the TM 990/1481 . ST7,
ST8, and ST9 are, however, not functionally implemented; instead they are
routed to connector J2 of the Processor board to allow implementation of their

associated functions external to the TM 990/1481. ST11 is not accessible
external to the TM 990/1481 Processor board.

4-5

~ TABLE 4-2. STATUS REGISTER BIT DEFINITIONS

CONDITION TO SET BIT 7O 1

BIT NAME INSTRUCTION OTHERWISE SET BIT TO ZERO *NOTE 1
8§70 LOGICAL C,CB 1§ MSB(SA) = 1 and MSB(DA) = O,
GREATER or if MSB(SA) = MSB{(DA) and
THAN MSBIL(DA)-(SA)] = 1
(LeT
CcI I# MSB(W) =1 and MSB(IOP) = O,

or if MSB(W) = MSB(IOP) and
MSBLIOP—(W)]1 = 1

ABS 1f (5A) <O 0O

all others except 1§ RESULT <> 0
DIV, MPY, XOP, CZC, COC, LIMI, CLR,
SBZ, SBO, TB: JOP, JH, UL, LWPI. X, B,
JNG, JOC, JNC, JUNE, JGT, STST, LWP,
JHE, JEQ, JLE, JLT, JMP, STWP, SWPB,
BLWP, LREX, SETO, CKOF, CKON, RSET,
IDLE, SWPB, BL, LST. RTWP and NOP

ST1 ARITHMETIC C.CB I¢# MSB(SA) = 0 and MSB(DA) =1 ,
CGREATER or i MSB(SA) = MSB(DA) and
THAN MSBL(DA)-(5A)) = 1
(ACT)
(o4 If MSB(W) = 0 and MSB(IOP) =1,

or if MSB(W) = MSB(IOF) and
MSBLIOP—(W)] = 1

ABS If MSB(SA) = 0O and (SA) <O O

all others except I# MSB(RESULT) = 0 and RESULT <> O
D1V, MPY, XOP, CZC, COC, BL, BLWP,
TB, SBZ, SBO, JOP, JH, JL., X, IDLE,
JNQ, JOC, JNC, JNE, JGT, CLR, LREX,
JHE, JEG, JLE, JLT, JMP, STWP, LWP,
SETO, SWPB, B, CKOF, CKON; RSET,
LIMI, LWPI, STST, LST. RTWP and NOP

sT2 EGUAL C.CB I¢# {(8A) = (DA)
(EQ)

CcI I£ (W) = 1DP
coc If (SA)AND(/DA) = 0
CzC I# (SA)AND(DA) = O
TB If CRUIN =1
ABS If (SA) =0

all others except If RESULT = O

DIV, MPY, XOP, SBZ, SBO, JOP, JH, JL.
JNO, JOC, UNC, JUNE, JET. JHE, VEQ,
JLE, JLT. JMP, SETO. SWPB, BL, CLR,
X, B, BLWP, LREX, CKOF, CKON, RSET,
IDLE, LIMI, LWPI, STST, STWP, LWP,
LST, RTWP, and NOP

sT3 CARRY A, AB, ABS, AL, I# CARRY OUT = 1
(ca DEC, DECT, INC,
INCT. NEG, S, SB

SLA, SRA, SRC, If the last bit shifted cut is a 1
SRL
AR, SR, MR, DR, Set to 1 on OVERFLOW and set to O

AD, §D, MD, DD on UNDERFLOW (only valid if ST4 = 1)

CDE, CRE, If number too big to represent as an
CDI, CRI integer (oﬁlg valid if ST4 =1)

u._6

TABLE 4-2. STATUS REGISTER BIT DEFINITIONS (continued)

CONDITION TO SET BIT TO 1
BIT NAME INSTRUCTION OTHERWISE SET BIT TI ZERO
ST4 OVERFLOW A, AB I¢ MSB(SA) = MSB{(DA) and
(ov) MSB(RESULT) <> MSB(DA)
Al I¢ MSB(W) = MSB(IOP) and
MSB(RESULT) <> MSB(W)
S, SB If MSB(SA) <> MSB(DA) and
MSB(RESULT) <> MSB(DA)
DEC, DECT If MSB(SA) = 1 and MSB(RESULT) = O
INC, INCT If MSB(S5A) = 0 and MSB(RESULT) =1
SLA If MSB changes during shift
DIV If MSB(SA) =0 and MSB(DA) =1, or
if MSB(SA) = MSB(DA) and
MSBL(DA)—(SA)] = O
DIVS ¢ If (SA) = 0, or if overflow occurs
ABS, NEG I¢ (SA) = >B000
AR, SR, MR, DR, If floating point overflow or
AD, SD, MD. DD, underflow or conversion
CDE, CRE. overflow occurs
CDI, CRI
STS PARITY CB, MOVB If (SA) has an odd number of 1°‘s
(OP)
L.DCR; STCR If 0<CC <9 and (SA) has an
odd number of 1‘s
AB, SB. +f RESULT has an odd number of 1’s
SOCB, SZCB
8Té6 XOP xop If XOP instruction is executed via
the software trap
ST10 OVERFLOW *NOTE 2
INTERRUPT
ENABLE
(0I)
ST12~ INTERRUPT LIMI 1f corresponding bit of IDOP is 1
ST1S MASK
RSET Resets ST12, ST13, ST14, and ST15
INTERRUPTS *NOTE 3
STO— LST If corresponding bit of WR(S) is i
ST15
RTWP If corresponding bit of WR(15) is 1
RESET All status bits are cleared
INTERRUPT
*NOTE 1: When floating point operations and the signed divide instruction result in an
overflow condition, only ST3 and ST4 are affected; all other status bits will
reflect the value present previous to the execution of the instruction which
resuited in the overfliow.
“NOTE 2: When an interrupt or XOP occurs, status register bits seven through eleven are
reset during the context switch. However, their original values are stored in WR
(15) and can be restored to the status register with an RTWP. Status bits seven
through eleven can only be set using the LST and RTWP instructions as directed
above.
*NOTE 3: When a maskable (level one through fifteen) interrupt occurs, status register bits

12 through 15 are set so that the interrupt mask's contents are equal to the next
higher priority interrupt level than the interrupt currently being executed. The
LOAD interrupt dose not affect these status bits.

4-7

FORMAT

W W0 NN A WN

-
--]

4,5 INSTRUCTION FORMATS- AND ADDRESSING MODES

There are 95 instructions in the TM 990/1481 instruction set. In order to
implement this instruction set nine instruction formats are used. The various
instructions require from one to three words for full definition. The first
word will contain the op code (operation code). The op code is the operation
specified by the instruction converted into binary code. Other information
that might be included in the bit fields of the first word include:

e T field - this field identifies what type of addressing mode is used.

e R field - this field identifies the workspace register number that is

being affected.

@ (C field - this field specifies the number of bits affected by a CRU
instruction or the number of bits to be shifted in a shift

instruction.

e B field - this field identifies an instruction as either byte or word
oriented. A one indicates that a byte will be addressed, while a zero
indicates that a word will be affected.

Figure U4-3 shows the format for the first word of an instruction.

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 GENERALUSE
OPCODE [B | Tp | DR | s | SR ARITHMETIC
OP CODE B SIGNED DISPLACEMENT Jump
OP CODE R Ts SR LOGICAL
OP CODE c Ts SR CRU
OP CODE [c R SHIFT
OP CODE I s SR FLOATING POINT*
OP CODE NOT USED CONTROL
OP CODE FLOATING POINT*
OP CODE | N R IMMEDIATE
OP CODE] DR Ts SR MPY. DIV. XOP
OP CODE I R SINGLE REGISTER*
KEY
B BYTE INDICATOR (1 = BYTE)
Tp DESTINATION ADDRESS TYPE*
DR DESTINATION REGISTER
Ts SOURCE ADDRESS TYPE*
SR SOURCE REGISTER
c CRU TRANSFER COUNT OR SHIFT COUNT
R REGISTER
N NOT USED
TpOR Tg ADDRESS MODE TYPE
00 DIRECT REGISTER

o1

10

1

INDIRECT REGISTER

PROGRAM COUNTER RELATIVE, NOT INDEXED {SR OR DR =0)
PROGRAM COUNTER RELATIVE + INDEX REGISTER (SR OR DR > 0}
INDIRECT REGISTER, AUTOINCREMENT REGISTER

* Floating point, signed mulitiply and divide, and single register operand instructions
are only implemented on the TM 990/1481 CPU module

FIGURE 4-3. INSTRUCTION FORMATS

4-8

In computers that operate on the stored program concept, the program
consisting of instructions and data is first stored in memory prior to
executing it. In order to retrieve .the instructions and data for processing
and manipulation some means of generating the addresses needed for locating
the instructions/data is needed. The ways that addresses can be generated
during program execution are called addressing modes. The TM 990/1481 provides
8 addressing modes as listed below:

1) Direct register addressing

2) Indirect register addressing

3) Indirect register autoincrement addressing
4) Symbolic memory addressing, not indexed

5) Symbolic memory addressing, indexed

6) Immediate addressing

7) Program counter relative addressing

8) CRU bit addressing.

The first three modes (direct register, indirect register, indirect register
autoincrement) involve the workspace registers. In direct register addressing
a workspace register contains the operand while in indirect register
addressing the workspace register contains the address where the operand is
located. Indirect register autoincrement is the same as indirect register
except that the register contents are automatically incremented after the
address (contents) has been obtained. The increment is one for byte
instructions and two for word instructions.

Symbolic memory addressing specifies a memory address that contains the
operand. Symbolic memory addressing can be indexed. In indexed symbolic
memory addressing, the address where the operand is located is the sum of the
contents of the workspace register and a symbolic address. Symbolic memory
addressing allows direct access to instructions and data located in user RAM
memory.

The immediate addressing mode use the contents of the word following the
instruction word as an operand of the instruction. This mode is used to
define the starting address for the workspace registers or when an absolute
value is to be specified as an operand.

Program counter relative addressing is used by the jump instructions. This
mode allows a change in program counter contents, either an unconditional
change or a change conditional on status register contents.

CRU bit addressing is used with the five CRU instructions (SBO, SBZ, TB, STCR,
and LDCR). This mode allows for the setting of a specific CRU bit to either a
one or zero, testing a specific bit and setting the equal status bit (status
register) to the logic value read, loading or storing various bit patterns.
This mode is especially useful in industrial control applications.

It should be noted that the first 5 addressing modes can be used by formats
having a T field (Formats 1, 3, 4, 6, and 9). The immediate addressing mode
is used with Format 8 and the program counter relative addressing mode is used
with Format 2. CRU bit addressing is used with Formats 2 and 4.

Now that the TM 930/1481 addressing modes have been listed and briefly

described, additional information regarding each mode with specific examples
will be given.

4.5.1 Direct Register Addressing

The direct register addressing mode specifies a workspace register that
contains the operand. A workspace register is written as a term having a
value of 0 through 15. 1In the example given in Figure 4-4, both the source
and destination operands are registers. The T fields contain 00, to denote
direct register addressing and their associated registers contain the binary
value of the number of the register affected. The op code for add words (A)
is 101,. B = 05, because words are involved instead of bytes. As seen in

Figure 4-5, the instruction A 1, 0 when coded is AO0O1.

ASSEMBLY LANGUAGE:

A 1,0 Add a copy of the source operand (word) to the destination
operand (word) and replace the destination operand with the

sum (i.e., add contents of register 1 to register 0, place
the sum in register 0).

FORMAT 1:

01 2 3 45 6 7 8 9 10 11 12 13 14 15

OP Code [B| Tp DR Tg SR

B = 1 for bytes and B = 0 for words.

MACHINE LANGUAGE:

0 12 3 45 6 7 8 9 10 11 12 13 14 15

1.0 1]/0jo 0fo 0 0 0[O0 00 0 o0 1]

i
> A : 0] 0] 1
I i

FIGURE 4-4. DIRECT REGISTER ADDRESSING EXAMPLE

4,5.2 Indirect Register Addressing

Indirect register addressing specifies a workspace register that contains the
address of the operand. An indirect workspace register is written as a term
preceded by an asterisk (*). In the example given in Figure U4-6, both source
and destination registers contain addresses specifying where the operands are
located. The T fields contain 01, to denote indirect register addressing and
their associated register fields contain the binary value of the number of the
register affected. The op code for subtract bytes (SB) is 0115, B = 1y,
because bytes are involved instead of words (it should be noted that the bytes
involved are the leftmost or most significant bytes). As seen in Figure U4-5,
the instruction SB ¥2,%3 when coded equals TUiD2.

ASSEMBLY LANGUAGE:

SB ¥2 ¥3 Subtract a copy of the source operand (byte) from the dest-
ination operand (byte) and replace the destination operand
with the difference (i.e., subtract the byte value at the
address held in register 2 from the byte value at the
address held in register 3; place the result in the byte
at the address held in register 3).

FORMAT 1:

0 1 2 3 45 6 7 8 9 10 11 12 13 14 15

Op Code |B| Tp DR TS SR

B = 1 for bytes and B = 0 for words.
MACHINE LANGUAGE:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0]

—_

o 1 1]1]o 1Jo 0o 1 1o 1]0 o0

l l
> 7 : y : D | 2

FIGURE 4-5. INDIRECT REGISTER ADDRESSING EXAMPLE

4.5.3 Indirect Register Autoincrement Addressing

The indirect register autoincrement addressing mode specifies a workspace
register that contains the address of the operand. After the address is
obtained from the workspace register, the workspace register is incremented.
The workspace register increment is one for byte operations and two for word
operations. An indirect register autoincrement is written as a term preceded
by an asterisk (*) and followed by a plus (+) sign. In the example given in
Figure 4-6, the source register contains an operand (direct register
addressing) while the destination register contains the address where the
other operand is located. Therefore the value of Tg = 00p (direct register
addressing) while Tp = 11, (indirect register autoincrement addressing). The

associated register fields contain the binary values of the numbers of the
registers affected. The op code for add words (A) is 101,. B = 0p, because
words are used instead of bytes. As seen in Figure 4-6, the instruction A
1,%0+ when coded equals ACO1.

ASSEMBLY LANGUAGE:

A 1,%0+ Add a copy of the source operand (word) to the destination
operand (word) and replace the destination operand with the
sum. After the addition is completed, the value in RO will
be incremented by 2 (i.e., add the contents of register 1
to the contents at the address found in register 0 and
replace the contents of the address in register 0 with
the sum; then increment by two the address in register 0).

FORMAT 1:

01 2 3 45 6 7 8 9 10 11 12 13 14 15

Op code | B | Tp DR TS SR

B = 1 for bytes and B = 0 for words.
MACHINE LANGUAGE:

01 2 3 45 6 7T 8 9 10 11 12 13 14 15

[1 o 1/of1 1]o 0o 0 oJ0o o0 o o 1]

|
i |

C | 0 | 1
l I

> A

FIGURE 4-6. INDIRECT REGISTER AUTOINCREMENT ADDRESSING EXAMPLE

4.5.4 Symbolic Memory Addressing, Not Indexed

Symbolic memory addressing specifies a memory address that contains the
operand. A symbolic memory address is written as an expression preceded by an
at (@) sign. In the example given in Figure 4-7, both DR and SR are set to 02
as memory locations are being used instead of workspace registers. Both T
fields contain 10, to denote symbolic memory addressing. The second word of
the instruction contains the memory address for the source operand and the
third word of the instruction contains the memory address for the destination
operand. The op code for move words (MOV) is 110,. B = 0p, because words are
involved instead of bytes. As seen in Figure 4-7, the instruction MOV @ 0200,
@ 0202 when coded is:

>C820 (1st word)
>0200 (2nd word)
>0202 (3rd word)

ASSEMBLY LANGUAGE:
MOV @>200,8>202 Replace the destination operand with a copy of the source
operand (i.e., add the contents of memory address 020016

to the contents of memory address 0202.¢ and replace the
contents of memory address 02024¢ with the sum).

FORMAT 1:

01 2 3 45 6 7T 8 9 10 1t 12 13 14 15

Op Code | B Tp DR Tsg SR

B = 1 for bytes and B = 0 for words.

MACHINE LANGUAGE:

0 12 3 45 6 7 8 9 10 11 12 13 14 15

1st |1 1 0{0|1 0/0O 0 O O|1 0|0 0 O O >C820

Word

2nd [0 0 0 0{0 0 1 0{0 0 0 0]0 0 0 of >o0200 2ddress of
Word Source Operand
3rd 10 0 0 0/0 0 10/00 0 0|0 0 1 0| >o202 Addressof
Word Dest. Operand

FIGURE 4-7. SYMBOLIC MEMORY ADDRESSING EXAMPLE

4,5.5 Symbolic Memory Addressing, Indexed

Symbolic memory addressing can be indexed. This mode of addressing specifies
a memory address that contains the operand. The memory address is determined
by summing the contents of a workspace register and a symbolic address. An
indexed memory address is written as an expression preceded by an at (@) sign
and followed by a term enclosed in parenthesis. The term within the
parenthesis is the index register. An example illustrating this addressing
mode follows:

A €>0200(T7),6

This instruction will sum the operand determined by indexed memory addressing
with the operand in a direct workspace register. The first operand address is
obtained by summing symbolic address 02001¢ and the contents of workspace
register R7. Assuming that R7 = 4, then the contents of >0204 (02004¢ plus
the contents (4) of R7) is added to the contents of R6 and then the sum is
placed in R6. Indexing utilizes the contents of a workspace register to modify
a symbolic address.

4,5.6 Immediate Addressing

Immediate addressing is used by the immediate instructions. Immediate
instructions use the contents of the word following the instruction word as an
operand of the instruction. This mode allows an absolute value to be
specified as an operand. It can be used to load the workspace pointer,
workspace registers, or the status register interrupt mask. Examples using
this addressing mode are given in Figures U4-8 and 4-9. The first example uses
this mode to define the starting address for the workspace registers at M.A.
02001¢6- The value of R is set to 0 as no workspace register is involved. The
resulting code is given in the figure. The second example uses this mode to
load workspace register R5 with 1549 (Note: 1549 = Fq6). As this instruction
involves a workspace register (R5), a value for R (0101,) is given.

ASSEMBLY LANGUAGE:
LWPI >0200 Load the workspace pointer with >0200.
FORMAT 8:

01 2 3 4 5 6 7 8 9 10 11 12 13 14 15

OP Code N R

Immediate Operand (IOP)

MACHINE LANGUAGE:

01 2 3 45 6 7 8 9 10 11 12 13 14 15

1st 0O 0 0O 000 1T 0 11 1 0 0 0 0 0 > 02E0
Word
2nd 0 0 0 0{0 0O 1 0|0 O 0 0 0 0 0 0] > 0200
Word

FIGURE 4-8. IMMEDIATE ADDRESSING EXAMPLE 1

ASSEMBLY LANGUAGE:
LI 5,15 Load workspace register (R5) with 15,4.
FORMAT 8:

01 2 3 4 5 6 7 8 9 1 11 12 13 14 15

Op Code N R

Immediate operand (IOP)

MACHINE LANGUAGE:

0t 2 3 ¥ 5 6 7 8 9 10 11 12 13 14 15

0 0 000 010 0 0 OjO]O0 1 o 1 > 0205

o 0 0 0j0O OOO|0OO O O}1Y 1 1 1| >000F

FIGURE 4-9. IMMEDIATE ADDRESSING EXAMPLE 2
4.,5.7 Program Counter Relative Addressing
Program counter relative addressing is used by the jump instructions. This
mode allows a change in program counter contents, either an unconditional
change or a change conditional on status register contents. Examples using
this mode follow:

JMP $ + 6 Jump to location, 6 bytes forward

JEQ $ + U If status register's equal bit = 1, jump 4 bytes
(MA + B)

JEQ $ If status register's equal bit 1, stay in loop

4.,5.8 CRU Bit Addressing

CRU bit addressing is used with the five CRU instructions (SBO, SBZ, TB, LDCR,
STCR) to control 1/0 operations. There are two CRU bit addressing forms: CRU
single-bit and CRU multibit. The CRU instructions SBO, SBZ, and TB use the
single-bit form while CRU instructions LDCR and STCR use the multibit form.
Prior to describing CRU bit addressing, the CRU interface will be reviewed.

The CRU interface uses three dedicated lines (CRUIN, CRUOUT, and CRUCLK) and
the address bus. CRUIN and CRUOUT are used for serial data input and output,
respectively. CRUCLK provides data timing strobes and is used in conjunction
with CRUOUT. These lines are used in accordance with the address bus to
transfer data to and from the microprocessor or to test the logic level of an
addressed CRU input bit. Possibly the best way to envision the CRU is in
terms of an addressable latch. The outputs from the latch are a function of
the signal on the address lines and the logic level fed to the data input
line. The output lines could be thought of as CRU bits and the address lines
could be thought of as address lines emanating from the microprocessor.
Depending on the address on the address bus and the level of the logic input
signal, various outputs could be obtained. The CRUOUT line is similar to the

4-15

data input line for the latch and uses the SBO (set bit to one) and SBZ (set
bit to zero) instructions to control the level on the output line (CRU bit).

The CRU interface is actually much more sophisticated than the simple concepts
presented in the previous discussion. The CRU can not only set a specific
line (CRU bit) to a one or a zero, it can also test the logic level of these
lines (CRU bits). The CRU can also be used to transfer a bit pattern from a
memory location to a specific output device or it can store a bit pattern
presented to it by an input device. CRU I/0 operations are implemented by a
TMS 9901 Programmable Systems Interface located on the processor board.

Figure 4-10 shows the signals and lines used in CRU bit addressing.

| CRU i

I XTAL .o o cLocK CRUCLK:W'

| [_CLOCtK FLIP-FLOP |

| |

| | INPUT/OUTPUT
| nggg;;,*, INTERFACES
I - |

| 16-BIT PROCESSOR USING S481S |

| ADDRESS BUS A3- |

| A
e ___Im990/1481 J

FIGURE 4-10. CRU INTERFACE

The CRU bit selected by single-bit instructions is determined by the value in
bits 3-14 of workspace register 12 (R12) plus the value of the signed
dispacement from the single-bit instruction (See Figure 4-11).

SOFTWARE BASE ADDRESS

A
4 Al

3 4 8 9 10 N 13 14 15

CL=I-T T T T T T T LT T 1T [[~

HARDWARE BASE ADDRESS

8 9 10 11 12 13 14 15
ADD SIGNED

oy LT LT T T T T Sigetacement

BIT SIGN
EXTENDED J::L

0 1 2 3 4 5 6 7 8 9 10 11 12 13 1
loJoJof | T } T T 1 § T § [|] aooresseus
____~w,___Jk ~ Y

SET T0 ZERO EFFECTIVE CRU BIT ADDRESS

FOR ALL CRU ON ADDRESS LINES A3 TO A14
\?PERATIONS

Y
HARDWARE BIT ADDRESS

FIGURE 4-11. CRU BIT ADDRESS DEVELOPMENT

In order to determine the required CRU bit address, consult the CRU map for
the TM 990/1481 located in Appendix B. The CRU address for output PO of the
TMS 9901 is 90 and P4 is displaced from PO by four bits. The required code
would be:

LI 12,>120 NOTE: 2 X>90 = >120
SBO 4

It should be noted that R12 was loaded with 2 X the desired value (90). This
is necessary because bit 15 of R12 is not used in CRU base address
determination. In order to place the correct CRU base address in R12, either
a value equal to 2 X the required value may be loaded into R12 (as in the
previous case) or the desired value may be loaded into R12 and then shifted
left one bit using the following code:

LI 12,>90
SLA 12,1

Figure 4-12 shows the machine and assembly language for the instruction SBO 4.

ASSEMBLY LANGUAGE:

SBO 4 Set the digital output bit to a logic one on the CRU at the
address derived by adding 4 to the hardware base address.

FORMAT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Op Code Displacement

MACHINE LANGUAGE:

012 3 45 6 7 8 9 10 11 12 13 14 15

6 0o o111 0 10 0 O O0 O 1 0 0

[| |

FIGURE 4-12. CRU BIT ADDRESSING EXAMPLE 1

CRU multibit instructions (LDCR and STCR) are used to transfer a specific
number of bits from memory to the CRU at the address contained in bits 3-14 of
workspace register 12 (R12) or to transfer a specified number of CRU bits from
the CRU to the memory location supplied by the user as the source operand.
The format for CRU multibit instructions is given in Figure 4-13. The C field
specifies the number of bits to be transferred. If C = 0, 16 bits will be
transferred. The CRU base register (R12, bits 3-14) defines the starting CRU
bit address. Figure 4-13 shows the LDCR instruction being used to transfer 16
bits from MA >0200 to the CRU.

ASSEMBLY LANGUAGE:

LDCR @>0200,0 Transfer the number of bits specified in the C field from
the source operand to the CRU; note, If C = 0, 16 bits
will be transferred (i.e., place the CRU hardware base
address on the address bus, place the LSB value of memory
address 020044 on the CRUOUT line, increment the CRU
hardware base address by one, and repeat this process until

all 16 bits at M.A. 020046 are transferred using the next
bit to the left each time).

FORMAT 4:

0O 1t 2 3 45 6 7T 8 9 10 1 12 13 14 15

Op Code c Tg SR

MACHINE LANGUAGE:

01 2 3 45 6 7 8 9 10 11 12 13 14 15

0 011 0 0|0 O O O 1 0jlo 0 0 o) >3020

0 00 0j0 0 1 60 0 0 0|0 O O 0] >0200

FIGURE 4-13. CRU BIT ADDRESSING EXAMPLE 2

4-.18

4.6 INSTRUCTIONS

Table 4~3 lists terms used in describing the instructions of the TM 990/1481.
Table 4-4 is an alphabetical list of instructions. Table 4-5 is a numerical
list of instructions by op code. Examples are shown in both assembly language
(A.L.) and machine language (M.L.). The greater-than sign (>) indicates

hexadecimal.
TABLE 4-3, INSTRUCTION DESCRIPTION TERMS
TERM DEFINITION
8 Byte indicator (1 = byte, 0 = word)
C Bit count ‘
DR Destination address register
DA Destination address
10P {mmediate operand
LSB(n) Least significant (right most) bit of (n)
M.A. Memory Address
MSB(n) Most significant {left most) bit of (n)
N Don’t care
PC Program counter
Result Result of operation performed by instruction
SR Source address register
SA Source address
ST Status register
STn Bit n of status register
Tp Destination qddress modifier
Tg Source address modifier
WR or R Workspace register
WRn or Rn Workspace register n
(n) Contents of n
a—b ais transferred to b
(a) >b Contents of a is transferred to be
[n] Absolute value of n
+ Arithmetic addition
_ Arithmetic subtraction
AND Logical AND
OR Logical OR
® Logical exclusive OR
n Logical complement of n
> Hexadecimal value

TABLE 4-4,

INSTRUCTION SET, ALPHABETICAL INDEX

ASSEMBLY MACHINE STATUS REG. RESULT
LANGUAGE LANGUAGE FORMAT BITS COMPARED INSTRUCTION
MNEMONIC OP CODE AFFECTED TO ZERO
A A000 1 0-4 X Add (Word)
AB B00OO 1 0-5 X Add (Byte}
ABS 0740 6 0-2 X Absolute Value
AD OE40 6 0-4 X Add Double Precision Real
Al 0220 8 0—4 X Add Immediate
ANDI 0240 8 0-2 X And Immediate
AR 0C40 6 04 X Add Real
B 0440 6 — - Branch
BL 0680 6 — - Branch and Link {(R11)
BLWP 0400 6 — — Branch; New Workspace Pointer
(o} 8000 1 0-2 — Compare (Word)
cB 9000 1 0-25 - Compare (Byte)
CDE 0CO05 7 04 X Convert Double Precision Real to Extended Integer
CDI 0Co1 7 04 X Convert Double Precision Real to Integer
CED 0C07 7 0—4 X Convert Extended Integer to Double Precision Real
CER 0C06 7 04 X Convert Extended Integer to Real
Cl 0280 8 0-2 — Compare Immediate
CiD OES80 6 04 X Convert Integer to Double Precision Real
CiR 0C80 6 04 X Convert integer to Real
CKOF 03C0 7 — — User Defined
CKON 03A0 7 — - User Defined
CLR 04CO 6 — — Clear Operand
cocC 2000 3 2 — Compare Ones Corresponding
CRE 0co4 7 04 X Convert Real to Extended Integer
CRI 0C00 7 0—4 X Convert Real to Integer
czCc 2400 3 2 — Compare Zeroes Corresponding
DD OF40 6 0—-4 X Divide Double Precision Real
DEC 0600 6 04 X Decrement (by one}
DECT 0640 6 04 X Decrement (by two)
DiIv 3C00 9 4 — Divide
DIVS 0180 6 0-24 X Divide Signed
DR 0D40 6 04 X Divide Real
IDLE 0340 7 — - Computer tdie
INC 0580 6 0—4 X Increment (by one)
INCT 05C0 6 0-4 X Increment (by two)
INV 0540 6 0-2 X Invert {One’s Complement)
JEQ 1300 2 - - Jump Equal {ST2 =1)
JGT 1500 2 - - Jump Greater Than (ST1 = 1), Arithmetic
JH 1800 2 — — Jump High (STO = 1 and ST2 = 0), Logical
JHE 1400 2 — — Jump High or Equat (STO or ST2 = 1), Logical
JL 1A00 2 - - Jump Low (STO and ST2 = 0), Logical
JLE 1200 2 — - Jump Low or Equal {STO = 0 or ST2 = 1), Logical
JLT 1100 2 — - Jump Less Than (ST1 and ST2 = 0), Arithmetic
JMP 1000 2 - - Jump Unconditional
INC 1700 2 — — Jump No Carry {ST3 =0)
INE 1600 2 — — Jump Not Equal (ST2 = 0)
JNO 1900 2 — - Jump No Overflow {ST4 = 0}
JOocC 1800 2 - — Jump On Carry (ST 3 = 1)

4-20

TABLE 4-4. INSTRUCTION SET, ALPHABETICAL INDEX (CONCLUDED)

ASSEMBLY MACHINE] STATUS REG. RESULT
LANGUAGE LANGUAGE FORMAT BITS COMPARED INSTRUCTION
MNEMONIC OP CODE AFFECTED TO ZERO
JOP 1C00 2 — - Jump Odd Parity (ST5 = 1)
LD 0F80 6 0-2 X Load Double Precision Real
LDCR 3000 4 0-2,5 X Load CRU
Ll 0200 8 — X Load Immediate
LIV 0300 8 12-15 — Load Interrupt Mask Immediate
LR 0D80 6 0-2 X L.oad Real
LREX 03E0 7 12-15 — Load and Execute
LST 0080 18 0-15 — Load Status Register
LWP 0090 18 — - Load Workspace Pointer Register
LWPI 02EQ 8 - — Load Immediate to Workspace Pointer
MD 0F00 6 04 X Multipty Doubie Precision Real
MOV C000 1 0-2 X Move {Word)
MOV8B D000 1 0-25 X Move {Byte)
MPY 3800 9 - - Muitiply
MPYS 01Co 6 0-2 X Muitiply Signed
MR 0DO00 6 04 X Muttiply Real
NEG 0500 6 0-2 X Negate (Two’s Complement)
NEGD 0Ca3 7 0-2 X Negate Double Precision Real
NEGR 0C02 7 0-2 X Negate Real
ORI 0260 8 0-2 X OR Immediate
RSET 0360 7 12-15 — Reset AU
RTWP 0380 7 0-15 — Return From Context Switch
S 6000 1 04 X Subtract {(Word}
SB 7000 1 0-5 X Subtract (Byte)
SBO 1D00 2 — — Set CRU Bit to One
S8z 1E00 2 — - Set CRU Bit to Zero
SD 0ECO 6 0—4 X Subtract Double Precision Real
SETO 0700 6 - - Set Ones
SLA 0A00 5 04 X Shift Left Arithmetic
SOC E0Q0 1 0-2 X Set Ones Corresponding (Word)
sS0CB FOO00 1 0-25 X Set Ones Corresponding (Byte)
SR 0CCOo 6 04 X Subtract Real
SRA 0800 5 0-3 X Shift Right (sign extended)
SRC 0B0O 5 0-3 X Shift Right Circutar
SRL 0900 5 0-3 X Shift Right Logical
STCR 3400 4 0-25 X Store From CRU
STD OFCO 6 0-2 X Store Double Precision Real
STR 0DCo 6 0-2 X Store Real
STST 02C0 8 - — Store Status Register
STWP 02A0 8 — - Store Workspace Pointer
SWPB 06C0O 6 — — Swap Bytes
SZC 4000 1 0-2 X Set Zeroes Corresponding (Word)
SZCB 5000 1 0-2,5 X Set Zeroes Corresponding {Byte)
TB 1F00 2 2 — Test CRU Bit
X 0480 6 — — Execute
XOP 2C00 9 6 - Extended Operation
XOR 2800 3 0-2 X Exclusive OR

TABLE 4-5. LINSTRUCTION SET, NUMERICAL INDEX

MACHINE
LANGUAGE ASSEMBLY
INSTRUCTION
OP CODE LANGUAGE
(HEXADECIMAL) MNEMONIC
0080 LST ' Load Status Register
0090 Lwp Load Workspace Pointer
0180 DIVS Divide Signed
0160 MPYS Multiply Signed
0200 L1 Load immediate
0220 Al Add Immediate
0240 ANDI And Immediate
0260 ORI Or Immediate
0280 Cl Compare Immediate
02A0 STWP Store WP
02C0 STST Store ST
02E0 LWPI Load WP Immediate
0300 LiIMI Load Int. Mask
0340 IDLE Idle
0360 RSET Reset AU
0380 RTWP Return from Context Sw.
03A0 CKON User Defined
03C0o CKOF User Defined
03EQ LREX Load & Execute
0400 BLWP Branch; New WP
0440 B Branch
0480 X Execute
04C0 CLR Clear to Zeroes
0500 NEG Negate to Ones
0540 INV Invert
0580 INC Increment by 1
05C0 INCT increment by 2
0600 DEC Decrement by 1
0640 DECT Decrement by 2
0680 BL Branch and Link
06C0 SWPB Swap Bytes
0700 SETO Set to Ones
0740 ABS Absolute Value
0800 SRA Shift Right Arithmetic
0900 SRL Shift Right Logical
0AO00 SLA Shift Left Arithmetic
0BOO SRC Shift Right Circular
0C00 ~ CRI Convert Real to Integer
0CO1 CDI Convert Double Precision Real to Integer
0C02 NEGR Negate Reai
0Co03 NEGD Negate Double Precision Real
0Co4 CRE Convert Real to Extended Integer
0C05 CDE Convert Double Precision Real to Extended Integer
0C06 CER Convert Extended integer to Real
0Co7 CED Convert Extended Integer to Double Precision Real
0CCo SR Subtract Real
0c40 AR Add Real
0C80 CIR Convert Integer to Real
0DO0 MR Multiply Real

422

TABLE 4-5. INSTRUCTION SET, NUMERICAL INDEX (CONCLUDED)

MACHINE
LANGUAGE ASSEMBLY
INSTRUCTION
OP CODE LANGUAGE
(HEXADECIMAL) MNEMONIC
0D40 DR Divide Real
0D80 LR Load Real
oDco STR Store Real
0E40 AD Add Double Precision Real
OES80 [o]b] Convert Integer to Double Precision Real
0ECO SD Subtract Double Precision Real
OF00 MD Multiply Double Precision Real
0F40 DD Divide Double Precision Real
OF80 LD Load Double Precision Real
OFCO STD Store Double Precision Real
1000 JMP Unconditional Jump
1100 JLT Jump on Less Than
1200 JLE Jump on Less Than or Equal
1300 JEQ Jump on Equal
1400 JHE Jump on High or Equal
1500 JGT Jump on Greater Than
1600 JNE Jump on Not Equal
1700 INC Jump on No Carry
1800 JOC Jump on Carry
1900 JNO Jump on No Overflow
1AQ0 JL Jump on Low
1B0OO JH Jump on High
1C00 JOP Jump on Odd Parity
1D00 SBO Set CRU Bits to Ones
1E00 SBZ Set CRU Bits to Zeroes
1F00 : TB Test CRU Bit
2000 coC Compare Ones Corresponding
2400 czcC Compare Zeroes Corresponding
2800 XOR Exclusive Or
2C00 XOP Extended Operation
3000 LDCR Load CRU
3400 STCR Store CRU
3800 MPY Multiply
3Coe Div Divide
4000 SzC Set Zeroes Corresponding (Word)
5000 SZCB Set Zeroes Corresponding (Byte)
6000 S Subtract Word
7000 SB Subtract Byte
8000 C Compare Word
9000 CB Compare Byte
AQ00 A Add Word
B0O0O AB Add Byte
€000 MOV Move Word
D000 MOvB8 Move Byte
EQOC SOC Set Ones Corresponding (Word)
FOQO sSOoCB Set Ones Corresponding (Byte)

4.6.1

These are dual
and destination

GENERAL FORMAT:

o 1 2 3

Format 1 Instructions

1 12

13

operand 1nstructions with multiple addressing modes for source
operands.

14 15

OP CODE B8

Tp DR

Ts

SR

If B = 1, the operands are bytes and the operand addresses are byte addresses.
If B = 0, the operands are words and the operand addresses are word addresses.
RESULT STATUS
OP CODE
MNEMONIC 0 1 2 3 MEANING COMPARED BITS DESCRIPTION
TO0 AFFECTED

A 1 0 1 0 Add Yes 0-4 {SA-(DA)Y = (DA)

AB 1 1 Add bytes Yes 0-5 (SAI+IDA}Y > (DA}

C 1 0 0 Compare No 6-2 Compare (SA} 10 {DA) and set
3ppropriate status bits

CB 10 0 |1 Compare bytes No 0-2,5 Compare (SA) 10 (DA) and set
appropriate status bits

MOV 11 0] 0 Move Yes 0-2 (SA} > DA)

MOVB 110 1 Move bytes Yes 0-2.5 (SA) = (DA}

S o 1t 1 0 Subtract Yes 0-4 (DA) — (SA} > (DA)

SB 01 v 1 Subtract bytes Yes 0-5 {BA) — {SA) > (DA)

SOC LI B 0] Set ones corresponding Yes 0-2 (DA) OR (SA} —~ (DA}

sOCB 11 1 Set anes corresponding bytes Yes 0-2.5 (DA} OR (SA) > (DA}

szc 10 0 Se1 zeroes corresponding Yes 02 DA} AND (§A) = (DA)

sZCB 1 0 1 Set zeroes corresponding bytes Yes 0-2.5 (DA) AND (SA) = (DA}

EXAMPLES

(1) ASSEMBLY LANGUAGE.

A

@>100,R2

ADD CONTENTS OF MA >100 & R2, SUM IN R2

MACHINE LANGUAGE:

0 1 2 a 5 6 7 9 10 11 12 13 14 15
1 0 1 J 0 o 0 0 0 0 1 0 l o 0 0 0 >A0A0
0 0 0 0 0 0 1 0 [0 0 0 0 0 >0100

h-24

f2) ASSEMBLY LANGUAGE:
CB R1,R2 COMPARE BYTE R1 TO R2, SET ST

MACHINE LANGUAGE:

1 0 1] 1 (1} 0 0 0 1 0 0 0 (1] 0 0 1 >9081

NOTE
In byte instruction designating a register, the left
byte is used. In the above example, the left byte (8
MSB's) of R1 is compared to the left byte of R2, and the
ST set to the results.

4,6.2 Format 2 Instructions

4.6.2.1 Jump Instructions. Jump instructions cause the PC to be loaded with
the value PC+2 (signed displacement) if bits of the Status Register are at
specified values. Otherwise, no operation occurs and the next instruction is
executed since the PC was incremented by two and now points to the next
instruction. The signed displacement field is a word (not byte) count to be
added to PC. Thus, the jump instruction has a range of -128 to 127 words (-256
to 254 bytes) from the memory address following the jump instruction. No ST
bits are affected by a jump instruction.

GENERAL FORMAT:
[} 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15

OP CODE SIGNED DISPLACEMENT (WORDS) J
MNEMONIC OF CODE MEANING ST CONDITION TO CHANGE PC
01234567
JEQ 00010011 Jump equal ST2=1
JGT 0001t 0101 Jump greater than ST1=1
JH 0001101 1 Jump high STO=1and ST2-0
JHE 0001 0 1Y OO Jump high or equal STO=10rST2=1
JL 00011010 Jump low STO0=0and ST2=0
JLE 0001Y OO0OT11TO Jump iow or equal STO=0o0rST2=1
JLT 0061t 0001 Jump less than ST1=0andST2=0
JMP 0 00 1 v 0000 Jump unconditional unconditional
INC 00010111 Jump no carry ST3=0
JNE 000G1O0 1T 1TO Jump not equal ST2=0
JNO 00011001 Jump no overflow ST4=0
- JOC 0001 t0O0O Jump on carry ST3=1
JOP 006011t 100 Jump odd parity §T5 =1

4-25

In assembly language, $ in the operand indicates "at this instruction".
Essentially JMP § causes an unconditional loop to the same instruction
location, and JMP $+2 is essentially a no-op ($+2 means "here plus two
bytes"). Note that the number following the $ is a byte count while
displacement in machine language is in words.

EXAMPLES

(1) ASSEMBLY LANGUAGE:
JEQ $H4 IF EQ BIT SET, SKIP 1 INSTRUCTION

MACHINE LANGUAGE:

o 0 0 1 e . o 1 1 1] o o 4] L] 1] (1] 1 >1301

PC POINTS TO —™ SKIP NEXT INSTRUCTION

JEQ $+4 D IF STATUS REGISTER BIT 2=1

The above instruction continues execution U4 bytes (2 words) from the
instruction location or, in other words, two bytes (one word) from the Program
Counter value (incremented by 2 and now pointing to next instruction while JEQ
executes). Thus, the signed displacement of 1 word (2 bytes) is the value to
be added to the PC.

(2) ASSEMBLY LANGUAGE: ;
JMP $ REMAIN AT THIS LOCATION

MACHINE LANGUAGE:

0 1 "2 3 4 5 6 7 8 9 10 1 12 13 14 15

[0 0 1] 1 o 0 0] I T 1 1 1 1 1 1 1] >10FF

PC—1WORD—» = JMP $:> CONTINUOUS LOOP

PC POINTS TO —»

TO JMP $ (>FF =—1WORD)

This causes an unconditional loop back to one word less than the Program
Counter value (PC + FF = PC-1 word). The Status Register is not checked. A
JMP $+2 means "go to the next.instruction" and has a displacement of zero (a

no-op). No-ops can substitute for deleted code or can be used for timing
purposes.

4-26

4.6.2.2 CRU Single-Bit Instructions. These instructions test or set values
at the Communications Register Unit (CRU). The CRU bit is selected by the CRU
address in bits 3 to 14 of register 12 plus the signed displacement value. The
selected bit is set to a one or zero, or it is tested and the bit value placed
in equal bit (2) of the Status Register. The signed displacement has a value
of -128 to 127.

0. 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15

General Format: OP CODE SIGNED DISPLACEMENT

] STATUS
OP CODE ;
MNEMONIC MEANING | BITS DESCRIPTION
01234567 .
] AFFECTED
SBO 00011101 Set bit to one - Set the setected CRU output bitto 1.
SBZ 006011110 Set bit to zero - Set the selected CRU output bit t0 0.
TB 00011111 Test bit 2 Hf the selected CRU input bit = 1, set ST2.

EXAMPLE
R12,BITS3TO 14 = >100

ASSEMBLY LANGUAGE:
SBO 4 SET CRU ADORESS >104 TO ONE

MACHINE LANGUAGE:

0 0 0 1 1 1 1] 1 0] o 0 0 1 0 0 >1D04

4-27

4.6.3 Format 3/9 Instructions

These are dual operand instructions with multiple addressing modes for the
source operand, and workspace register addressing for the destination. The MPY
and DIV instructions are termed format 9 but both use the same format as
format 3. The XOP instruction is covered in paragraph 4.6.9.

0 1 2 3 4 5 6 7 ‘ 8 9 10 1 12 13 14 15
Genevul Formet: OP CODE DR (REGISTER ONLY) Ts SR
RESULT | STATUS
OP CODE COMPARED) BITS
MNEMONIC 012345 MEANING TOO AFFECTED DESCRIPTION
CoC 001000 |Compare ones No 2 Test (DR) to determine if 0’s are in each
corresponding N bit position where 1's are in {SA}. H so,
set ST2.
czc 001001 |Compare zeros No 2 Test (DR} to determine if 0's are in sach
corresponding bit position where 1's are in (SA). If so,
set ST2.

X0OR 001010 |Exclusive OR Yes 02 (DR} @ (SA) > (DR}

MPY 001110 |Multiply No Multiply unsigned (DR} by unsigned
{SA)} and place unsigned 32-bit product
in DR (most significant) and DR + 1
{teast significantl. If WR15 is DR, the
next word in memory after WR15 will
be used for the least significant half of
the product.

DIV 001111 |Divide ~No 4 if unsigned (SA) is less than or equal to
unsigned (DR}, perform no operation
and set ST4. Otherwise divide unsigned
(DR} and (DR} by unsigned (SAJ.
Quotient ~> (DR), remainder = (DR+1).
It DR 15, the next word in memory
after WR15 will be used for the
remainder .

Exclusive OR Logic 1®o0 1
o®o o
™ o
EXAMPLES
(1) ASSEMBLY LANGUAGE:
MPY R2,R3 MULTIPLY CONTENTS OF R2 AND R3, RESULT IN R3 AND R4

MACHINE LANGUAGE:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
o o 1 1 1 o | o o 1 1 0] o (] 1 (]
BEFORE AFTER

R2 0002 0002
R3 0003 0000 32817
R4 N 0006 RESULT

4-28

>38C2

The destination operand is always a register, and the values multiplied are

16-bits, unsigned. The 32-bit result is placed in the destination register and
destination register +1, zero filled on the left.

(2) ASSEMBLY LANGUAGE:
DIV @>3E00, RS DIVIDE CONTENTS OF R5 AND R6 BY VALUE AT M.A. > 3E00

MACHINE LANGUAGE:

0 0 1 1 1 1 0 1 0 1 1 0 0 0 0 0 >3D60

0 1] 1 1 1 1 1 0 0 o 0 0 0 o 0 0 >3E00

BEFQGRE AFTER.

M.A. > 3E00 0005 0005

L,

/

R5 0000 0003

R6 0011 0002 |-=———— REMAINDER

The unsigned 32-bit value in the destination register and destination register
+1 1is divided by the source operand value. The result is placed in the
destination register. The remainder is placed in the destination register +t.

(3} ASSEMBLY LANGUAGE:
€oc R10,R11 ONES IN R10 ALSC IN R171?

MACHINE LANGUAGE:

0 1 2 3 4 5 6 7 8 9 10 n 12 13 14 15

r 1
L 0 0 1 0 0 0 1 0 1 1 0 0 1 0 1 o | -22ca

Locate all binary ones in the source operand. If the destination operand also
has ones in these positions, set the equal flag in the Status Register;
otherwise, reset this flag. The following sets the equal flag:

R10 1 0 1 0 1 1] 1 0 0 0 0 0 1 1 0 0 >AAOC

R11 1 1 1 0 1 1 1 1 1 1 0 0 1 1] 1 >EFCD

Set EQ bit in Status Register to 1.

4-29

4.6.4 Format 4 (CRU Multibit) Instructions

] 1 2 3 4 5 6 7 8 9 10 n 12 13 14 15

General Format: OP CODE Cc Ts SR

The C field specifies the number of bits to be transferred. If C = 0, 16
bits will be transferred. The CRU base register (WR 12, bits 3 through 14)
defines the starting CRU bit address. The bits are transferred serially and
the CRU address is incremented with each bit transfer, although the contents
of R12 are not affected. Ts and SA provide multiple mode addressing capability
for the source operand. If 8 or fewer bits are transferred (C = 1 through 8),
the source address is a byte address. If 9 or more bits are transferred (C =
0, 9 through 15), the source address is a word (even number) address. If the
source is addressed in the workspace register indirect autoincrement mode, the
workspace register is incremented by 1 if C = 1 through 8, and is incremented
by 2 otherwise. ' '

RESULT STATUS
MNEMONIC —0‘%— MEANING COMPARED BITS DESCRIPTION
23 5 TO O AFFECTED
LDCR 001100 |Loadcommuncation Yes 0-25f Beginning with LSB of (SA), transfer the
register specified number of biyts from (SA) to
the CRU.
STCR 001101 |Store communcation Yes 0-257 Beginning with LSB of {SA), transfer the
register ' specified number of bits from the CRU to
l {SA). Load unfilled bit pesitions with 0.
tST5 is affected only if 1 € C € 8,
EXAMPLE
ASSEMBLY LANGUAGE:
LDCR @>FE00,8 LOAD 8 BITS ON CRU FROM M.A. >FEOO

MACHINE LANGUAGE:

0 0 1 1 o 1] 1 o 0 0 1 0 0 0 0 0 >3220

1 1 1 1 1 1 1 o 1] 0 0 0 0 0 0 0 >FEOO

4,6.5 Format 5 (SHIFT) Instructions

These instructions shift (left, right, or circular) the bit patterns in a
workspace register. The C field contains the number of bits to shift. The last
bit value shifted out 1lis placed in the carry bit (3) of the Status Register.
If the SLA instruction causes a one to be shifted into the sign bit, the ST
overflow bit (U4) is set. For example:

SLA R1,3
/—Sien Bit
[L L
BEFORE{0 100 0000 0000 0000 OV BIT = 0
¥ ¥ ¥
AFTER {0000 0000 0000 0000 OV BIT = 1

General Format: OP CODE [R

If C = 0, bits 12 through 15 of RO contain the shift count. If C = 0 and bits
12 through 15 of WRO = 0, the shift count is 16.

o ’ | ResuLT STATUS
‘ OP CODE
. MNEMONIC - s MEANING | COMPARED BITS DESCRIPTION
; 01 2 3 456 7!
' e L TOO0 AFFECTED
SLA 00 00 1 0 1 0 ' Shiftleftarnthmetic Yes ! 0-4 ! Shift (R} teft. Fill vacated bit
: | | positions with 0.
SRA 0 0001 00 0 Shiftrightanithmetic : Yes 0-3 I Shift {R) right. Fill vacated bit
i positions with original MSB of (R}
SRC 00001013 Shif1 right circuiar Yes 0-3 | Shift {R) right. Shift previous LSB
! into MSB.
SRL O 6 0 o0 10 0 1 Shift nght logicat ‘ Yes 0-3 Shift (R) right. Fill vacated bit
L i ~ I 1] |_Positions with 0's.
EXAMPLES
(1) ASSEMBLY LANGUAGE:
SRA R1,2 SHIFT R1 RIGHT 2 POSITIONS, CARRY SIGN
MACHINE LANGUAGE:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 0 1] 1 4] 1] 0 o 0 1 V] 0 Q 0 1 0841

T T T }
R1 BEFORE 1] 4] 0 1 1 1 1 o 0 0 0 1 1 1 1 i 8FQF
- — S - 3
Ny f\\ \\\ .
r T T - R S
R1 AFTER 1 1 1 1] 4] 0 1 1 1 1 0 0 (1] Q 1 1 »E3C3

‘L————-mGN BIT CARRIED IN

4-31

(2) ASSEMBLY LANGUAGE:
SRC R54 CIRCULAR SHIFT R54 POSITIONS

MACHINE LANGUAGE:
0 1 2 3 4 5 6 7 8 g 10 11 12 13 14 15

0 0 0 0 1 0 0 0 0 1 0 0 0 1 4] 1 >0845

R5 BEFORE 0 0 o 0 1 0 0 1 0 0 0 0 1 1 1 1 >090F

R5 AFTER AT 1 1 1 1 0 0 o] 1 0 0 1 0 0 0 0 \>F090

(3) ASSEMBLY LANGUAGE:

SLA R1,0 SHIFT COUNT IN RO
SHIFT COUNT

Ol1|2[3l41516l71819110111 12113114115

L]
RO 1 1 (¢} 0 1 1 0 0 1 1 0 1} (4]] 1 1 -CCC3
T T
R1 (BEFORE) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
T T —
R1 (AFTER) 1 1 1 1 1 1 1 1 1 1 1 1 1 0 [¢] 0
m—— o’

VACATED BITS ZERO FILLED

4.6.6 Format 6 Instructions

These are single operand instructions. Examples illustrating the use of the
floating point instructions and signed multiply and divide can be found in
Appendix H.

General Format: OP CODE Ts L SR

The TS and SR fields provide multiple mode addressing capability for the

source operand.

4-32

OP CODE RESULT STATUS
MNEMONIC MEANING COMPARED BITS DESCRIPTION
0 123456 7 89
TO O AFFECTED
B 0 00O0O0OT1TO0GO0OO0I1 Branch No — SA — (PC)
BL 00000 11T 1T 0 1 0 | Branchandlink No - (PC) — (R11); SA — (PC)
BLWP 0 0000 1T OO0 0 O | Branchandload No — (SA) — (WP}; (SA+2) — PC);
workspace pointer {old WP} — (new WR13);
(old PC) — (new WR14);
(old ST} — (new WR15};
the interrupt input (INTREQ) is
. not tested upon completion of
the BLWP instruction.
CLR 0 00O0O0OT11TOOT1T 1 Ciear operand No — 0000 — (SA)
SETO 60 00 O0O0 1T 1T 1t O 0 | Settoones No - FFFFqg ° (SA}
INV 0000O0T1TOT1TGQ 1 Invert Yes 0-2 (SA) — {SA) (ONE’S complement)
NEG 0 00 00O 1 0 1 0 O | Negate Yes 0-4 —(SA) — (SAH{TWO'S complement)
ABS 000O0O0OT11T1 101 Absolute vatue* No 04 [{SA)] — (SA}
SWPB 000 O0O0T1T 10 11 Swap bytes No — (SA), bits O thru 7 — {SA}, bits
8 thru 15; (SA), bits 8 thru 15—
(SA}, bits 0 thru 7.
INC 0 00 O0CO0 1T 0 1 1 0| Increment Yes 0-4 {SA) + 1 — (SA)
INCT 0 00O0O0OT1TO0 1 1 1 Increment by two Yes 0-4 (SA) +2 — (SA)
DEC 00 000 1 1 0 0 0 | Decrement Yes 0-4 (SA) — 1 — (SA)
DECT 000O0O0OT1T 1001 Decrement by two Yes 04 (SA) — 2 — (SA)
x¥ 000O0O0CT1TO0O0OCI1TO Execute No — Execute the instruction at SA.
STD 000060 1T 1T 111 Start DP real Yes g--2 FPA — (SA)
LD 0000 TTI1T 1110 Load DP real Yes 0-2 (SA) — FPA
bb 00 0O01T1T 1T 1T 01 Divide DP real Yes 0-4 FPA -+ (SA) — FPA
MD 000O0C1T 1T 11 0O MPY DP real Yes 0-4 PFA X (SA) — FPA
SD 000O0T11T 1T 1 01 1 Sub DP real Yes 04 (FPA) — (SA) — FPA
CID 000G 1T1 1t 010 Convert integer Yes 04 (SA) — FPA
to DP real
AD 0 000111 0G0 1 Add DP real Yes 04 (SA) + FPA — FPA
STR 0000110111 Store real Yes 0-2 FPA — (SA)
LR 0000110110 Load real Yes 0-2 (SA) — FPA
DR 000O01T 1T 01 01 Divide reaf Yes 0-4 FPA : (SA) — FPA
MR 0000110100 Multiply real Yes 04 FPA X (SA) — FPA
SR 000O0CT11T 1T OO0 11 Subtract real Yes 0-4 FPA — (SA) — FPA
CIR 0000110010 Convert integer Yes 04 {SA} — FPA
to real
AR 0000110001 Add reat Yes 0-4 FPA + {SA) — FPA
DIVS 00 0 00 0 01 Divide signed Yes 0-24 RO, R1 < (SA) = reminder in R1
= quotient in RO
MPYS 00 0O0O0O0COT1T 11 Muttiply signed Yes 0-2 (RO} X (SA) — (RO and R1}

NOTE

Jumps, branches, and XOP's are compared in Table 4-6.

[}

4-133

EXAMPLES

(1) ASSEMBLY LANGUAGE:
B *R2 BRANCH TO M.A. IN R2
MACHINE LANGUAGE:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 0 0 0 1 0 0 0 1 0 1 i 0 1 o | > 0452
R2 F D P O
8 *R2 PC (AFTER)
M.A. >FDDO | NEXT INSTR. |
(2) ASSEMBLY LANGUAGE:
. BL @>FFO0 BRANCH TO M.A. >FF00, SAVEOLD PC VALUE (AFTER EXECUTION) IN R11
MACHINE LANGUAGE:
0 1 2 3 a4 5 6 7 8 9 10 11 12 13 14 15
0 0 0 0 0 1 1 0 1 0 1 0 0 0 0 0 >04A0
1 1 1 1 1 1 1 o 0 0 0 0 0 0 0 >FFO0
R11 F €C 0 4 |«—— OLDPCVALUE
M.A. >FCO0 BL @ >FF00 PC (AFTER)
~FC02 F F 0 O
~FCO4
>FF00 NEXT INSTR.
.
TO RETURN
EXECUTE =\ :
B*R11 \ :
—T
\ 8 "R11
(3) ASSEMBLY LANGUAGE:
BLWP @>FDOO BRANCH, GET NEWWORKSPACE AREA
MACHINE LANGUAGE:
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
) 0 o o o 1 0 o 0 o 1] o 0 0 0 >0420
T — ¥ .
1 1 1 1 1 1 Q 1 o o 0 0 0 0 0 0 >FDOD

4-34

TABLE 4-6.

MNEMONIC PARAGRAPH
JMP 4.6.2
B 4.6.6
BL 4.6.6
BLWP h.6.7
XOP 4.6.9

COMPARISON OF JUMPS, BRANCHES, XOP'S

DEFINITION SUMMARY

One-word instruction, destination restricted to +127,
-128 words from program counter.
Two-word instruction, branch to any memory location.
Same as B with PC return address in R11.
Same as B with new workspace; old WP, PC, and ST con-
tents (return vectors) are in new R13, R14, R15.
Same as BLWP with address of parameter (source oper-

Sixteen XOP vectors outside program
in M. A. 8046 to TE4g; can be called by any program.

and) in new Rt1.

4.6.7 Format 7 RTWP/Control and Floating Point Instructions

Format 7 is used for 6 RTWP/control and 8 floating point instructions.

CONTROL/RTWP INSTRUCTIONS

The op
code for RTWP/control instructions occupies bits 0-10 with bits 11-15 not used
while the opcode for floating point instructions occupies all 16 bits. The
formats for RTWP/control and floating point instructions are given below.

Examples illustrating the use of the floating point instructions can be found
in Appendix H.

(V] 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
General Format: OP CODE N
FLOATING POINT INSTRUCTIONS
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
General Format: OP CODE
STATUS
MNEMONIC OP CODE MEANING BITS DESCRIPTION
012345678910 AFFECTED
IDLE 00000011010 Idie — Suspend
instruction execution unti
an interrupt, LOAD, or
RESET occurs
RSET 00000011011 | Reset 1/0 & SR 12-15 0 —>ST12 thru ST15
CKOF 000060011110 User defined —
CKON 000000611101 - User defined - -
LREX 0000C0OTTT 11 l.oad interrupt Control to T/BUG
RTWP 00000011100 Feturn from 0-15 (R13) = (WP}
Subroutine (R14) - (PC)
(R15) — (ST}

OP CODE RESULT STATUS {
MNEMONIC MEANING COMPARED BITS DESCRIPTION
012 3456 7 8 9101112131415
TOO0 AFFECTED
CED 000011 000O0OGO0OT™1TI1 1 Convert extended Yes 04 FPA — FPA
A integer to DP real
CER 0 00O0T1TT1TO0O0O0O0OO0OOT1T 1 6 | Convertextended Yes 04 FPA — FPA
integer to real
CDE) 000O0T1T1YT00O0O0COOO0OT1O01 Convert DP real Yes 04 FFA - FPA
to extended
integer
CRE 00001 1T O0O0O0O0UOO0OUOCT1TO O | Convertrealto Yes 0-4 FPA — FPA
extended integer
NEGD 000011 0060O0OO0COGOCOT 1 Negate DP real Yes 0-2 —FPA — FPA
NEGR 00001 1 O0O0O0O0O0OO0O0O0 1T 0 | Negatereal Yes 0-2 —(FPA) — FPA
CDI 0000011 0060O0OO0OO0OO0O0OI1 Convert DP real Yes 0-4 FPA — FPA
to integer
CRI 000011 000UO0OGOOOQG 0 | Convertrealto Yes 04 FPA — FPA
integer

The RSET instruction resets the I/0 lines on the TMS 9901 to input lines;
the TMS 9902 is not affected. RSET alsoc clears the interrupt mask in the
Status Register. The LREX instruction causes a delayed load interrupt, delayed
by two IAQ cycles after LREX execution. The load operation gives control to
the monitor by causing a context switeh using the LOAD (NMI) vectors in the
last two words of upper memory.

Essentially, the RTWP instruction is a return to the next instruction that
follows the BLWP instruction (i.e., RTWP is a return from a BLWP context
switch, similar to the B ¥R11 return from a BL instruction). BLWP provides the
necessary values in registers 13, 14, and 15 (see Figure U4-14), This context
switeh provides a new workspace register file and stores return values in the
new workspace (See Figure U-14). The operand (>FDOO above) is the M.A. of a
two-word transfer vector, where the first word is the new WP value and the
second word is the new PC value.

4-36

BLWP @ >FD00 BRANCH WITH NEW WORKSPACE

M.A.>FC00 N RO

> CALLING PROGRAM

>FC80 Z[BLWP @ >FDOO { BEFORE BLWP OCCURS
‘ { 7 Fcool| w
TRANSFER (>FD0O F F 00 (NEW WP) FCsa| pc
VECTORS t FF20(NEWPC) | N ST
AFTER BLWP
‘ OCCURS
>FF00 RO < FFOO | wp
FF20 | PC
N ST
RETURN FCOO = (OLDWP) | R13
VALUES FC84 = (OLD PC) R14
OLD ST CONTENTS R15 }- NEW EXECUTION AREA
>FF20 NEXT INSTR.
RTWP B

"RTWP RETURNS EXECUTION TO CALLING
PROGRAM STARTING AT M.A. >FC84

FIGURE 4-14. BLWP EXAMPLE

4-137

BLWP @ >FDO0 BRANCH WITH NEW WORKSPACE

M.A.>FCO0 N RO

> CALLING PROGRAM

>FC80 [F BLWP @ >FDO0 { BEFORE BLWP OCCURS

| { 7 Fcoo| w

TRANSFER (>FD0O F F 00 (NEW WP FC84 | PC
VECTORS N FF20(NEWPC) | N ST

AFTER BLWP
‘ OCCURS

>FF00 RO < FFOO | wp

FF20 | PC

N st

RETURN FCo0 = (OLDWP) | RI3

{OLD PC) R14

VALUES FC8a

OLD ST CONTENTS R15 > NEW EXECUTION AREA

>FF20 NEXT INSTR.

RTWP \ .
"\\RTWP RETURNS EXECUTION TO CALLING
PROGRAM STARTING AT M.A. >FC84

FIGURE 4-14. BLWP EXAMPLE

4- 37

4.6.8.2 Internal Register Load Immediate Instructions

0. 1 2 3 5 6 7 8 9 10

Genera! format: OP CODE N
10P
OP CODE
MNEMONIC MEANING DESCRIPTION
01234567829 10

LWP! 0000O0O0CTTYTOTT 1T 1 Load workspace pointer immediate 1OP —> (WP}, no ST bits atfected
LiMi 0000O0CO0OT1 1086 0 Load interrupt mask 10P, bits 12 thru 15 =~ ST12

thru ST15

4.6.8.3 Internal Register Store Instructions

1 12 13 14 15

0 1 2 3 5 6 7 8 9 10
General format: r OP CODE I N l R T
No ST bits are affected.
OP CODE {
MNEMONIC MEANING DESCRIPTION
01234546 789 10 |
STST 000O00CO0OT1TOT1TI1T O Store status register (ST) —~ (R)
STWP | 0000 061010 1 Store workspace pointer twp) ~(R)
EXAMPLES
(1) ASSEMBLY LANGUAGE:

Al R2,>FF

ADD >FF TO CONTENTS OF R2

MACHINE LANGUAGE:

o 1 2 3 4 s 7 8 9 10 11 12 13 14 15
6 6 o o o0 o© o o o 1 ol o o 1 0 >0222
T T
o o o o o0 o0 0 0 1 1 1 1 1 1 1 1 >00FF
BEFORE AFTER
R2 CO00F G10E
{2) ASSEMBLY LANGUAGE:
Ct R2>10E COMPARE R2 TO >10E
MACHINE LANGUAGE:

0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

©6 o o o o o 1 0 1 o o oj{o0 o 1 o >0282
©o o o o0 ' ©o o © 1 0o o0 o o0 1 1 1 0 >010E

R2 contains “after” results { > 10E) of instruction in Example (1) above; thus the ST equal bit becomes set.

4-39

(3) ASSEMBLY LANGUAGE:
LWPI > 3E00 WP SET AT > 3E00 (M.A. OF RO)

MACHINE LANGUAGE:

0 0 0 0 0 o 1 0 1 1 1 0 0 0 0 0 >02E0

o 0 1 1 1 1 1 0 0 o o 0 43 L] (4] 0 >3E00

This is used to define the workspace area in a task, usually placed at the beginning
of a task.

(4) ASSEMBLY LANGUAGE:
STWP R2 STORE WP CONTENTS IN R2

MACHINE LANGUAGE:

0 0 0 [0 0 1 0 1 0 1 0 0 0 1 0 >02A2

This places the M.A. of RO in a workspace register.

4.6.9 Format 9 (XOP) Instructions

Other format 9 instructions (MPY, DIV) are explained in paragraph 4.6.3
(format 3).

0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15

General Format: | 0 0 1 0 1 1 D {XOP NUMBER) Ts SR

The Tgand SR fields provide multiple mode addressing capability for the
source operand. When the XOP is executed, ST6 is set and the following
transfers occur:

(40, + 4D) —~ (WP) First vector at 40, ,,
{42,, + 4D) — (PC) Each vector uses 4 bytes (2 words)
SA — (new R11)

(old WP} — (new WR13)
{old PC) — {new WR14)
{old ST} — {new WR15)

4-40

An XOP is a means of calling one of 16 subtasks available for use by any
executing task. The EPROM memory area between M.A. 4016 and 7Fqg is reserved
for the transfer vectors of XOP's 0 to 15 (see Figure 3-1). Each XOP vector
consists of two words, the first a WP value, the second a PC value, defining
the workspace pointer and entry point for a new subtask. These values are
placed in their respective hardware registers when the XOP is executed.

The old WP, PC, and ST values (of the XOP calling task) are stored (like the
BLWP instruction) in the new workspace, registers 13, 14, and 15. Return to
the calling routine is through the RTWP instruction. Also stored, in the new
R11, is the M.A. of the source operand. This allows passing a parameter to the
new subtask, such as the memory address of a string of values to be
processed by the XOP-called routine. Figure U4-15 depicts calling an XOP to
process a table of data; the data begins at M.A. FF004¢4.

XOP's 0, 1 and 7 to 15 are used by the TM 990/403 TIBUG monitor, calling
software routines (supervisor calls) as requested by tasks. This
user-accessible software performs tasks such as write to terminal, convert
binary to hex ASCII, etc. These monitor XOP's are discussed in Section 3.

-4t

ASSEMBLY LANGUAGE:
xopP @>FF00,4

MACHINE LANGUAGE:

0 1 2 3 4 5 6 7 8 9 10 " 12 13 14 15

o 1] 1 o 1 1 0 1 0 0 1 0 0 0 0 0 >2020

1 1 1 1 1 1 1 1 o 0 0 0 0 0 0 0 >FFO00

M.A
(>o0040 XOP 0 WP . AFTER
>0042 XOP 0 PC FCO0O wP
XOP) \ : \ Fcz2o PC
VECTORS >0050 FCOO N ST
>0052 FC20
L >007E
CALLING INSTR. XOP @>FF00,4
(C >Fcoo RO
FFOO R11-e—— PASSED PARAMETER (SOURCE OPERAND)
R12
Xop 4 OLD we R13 RETURN VECTORS
PROGRAM OLD PC R14 10 CALLING TASK
OLD SR R15
| >Fc20 1ST INSTR.
\ : \ NOTE
RTWP
. THIS XOP EXAMPLE PRESUMES THE XOP
\ : \ VECTORS HAVE BEEN PROGRAMMED INTO
: MEMORY (M.A. 0050, . AND 0052,) BY THE
16 16
TABLE OF >FF00 USER.
VALUES TO

BE PROCESSED

FIGURE 4-15. XOP EXAMPLE

4-42

4.6.10 Formats 10 Through 17 Instructions

Instructions using formats 10 through 17 are not implemented on the TM
990/1481.

4.6.11 Format 18 Single Register Operand Instructions

The operand field for format 18 instructions contains a workspace register
address. Load status register (LST) and load workspace pointer (LWP)
instructions comprise format 18 instructions that are implemented by the TM
990/1481. Examples illustrating the use of these instructions can be found in
Appendix H.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

General Format: [OP CODE ‘ R
RESULT STATUS
OP CODE
MNEMONIC MEANING COMPARED BITS DESCRIPTION
0123454678 91011
TOO AFFECTED
LST 0 0 00 O0CO0O0O0C 1 0 0 0 | Loadstatus No 0-15 (R}~ ST
register
Lwp 0 00O0GCO0OOOCT1T OO 1 Load workspace No None (R} — WP

4-43

4.7 INSTRUCTION EXECUTION TIMES

Tables 4-7, 4-8, and 4-9 list data to derive execution times for TM990/1431
instructions under a variety of system memory configurations. Since the
TM990/1481 nas a variable period clock and the microinstruction cycles are not
all the same length, the execution time must be determined as a multiple of
the master clock period of 66.6 ns. In the examples in this presentation,
actual execution time in nanoseconds will be computed (number of multiples
times master clock period). Under the BASIC CYCLES column of Table U4-7 is
the multiple for the basic execution time of the instruction exclusive of the
standard operand derivation. (If the instruction requires special operand
derivation, that time is included in the basic instruction execution time).
Table 4-8 is used to derive the standard operand derivation.

Instruction execution time is determined in the following steps:

Step 1: Determine the number of base cycles from
the BASE CYCLES column in Table 4-7 Base Cycles:
Step 2: a) Determine the memory delays per access
from Table 4-9. Memory Delays per Access:
b) Determine the amount of memory accesses
from the MEMORY FETCH CYCLES and MEMORY
STORE CYCLES columns in Table 4-7.
Memory Accesses:
¢) Multiply Memory Accesses by
Memory Delays per Access to find total
Memory Delays {(this must be done
for each memory type in the system,
if different): P Memory: MA x MD/A
W Memory: MA x MD/A
G Memory: MA x MD/A
Step 3: Determine the extra base cycles from
the BASE CYCLES of Table 4-8 Extra Base Cycles:
Step U4: a) Determine the Extra memory accesses from
the MEMORY FETCH CYCLES, MEMORY STORE CYCLES
of Table 4-8. Extra Memory Accesses:
b) Multiply Extra Memory Accesses by the
number of Memory Delays per Access in
Step 2a to find Extra Memory Delays
(this must be done for each memory type
in the system, if different): P Memory: EMA x MD/A
W Memory: EMA x MD/A
G Memory: EMA x MD/A
Step 5: a) Add up the far-right column results of
steps 1 through U4 above. Add results of steps 1 to U
b) Multiply the sum in a) above
by master clock period of 66.67 ns
to determine instruction execution
time: Instruction Execution Time:

Following the BASIC CYCLES column in Table 4-7 are columns listing the number
of memory fetches and stores for each instruction. This is broken down into
Program Memory (P), Workspace Memory (W), and General Memory (G). If slower
memories are used, times must be added equal to the number of delays added to
each fetch or store. Table 4-9 should be used to determine how many delays to
use based on the type of memory used. The cycles are divided into P, W, and G

Gny

to allow for the fact that different speed memories might be used for each of
these three, and the program and workspace areas might be separated to
optimize the resulting ROM/RAM mix or the low cost vs. high speed
cost/performance tradeoff. If applicable, this factor is used in steps 2 and
4, The General Memory (G) category indicates that the fetch or store may
address any memory location or memory type (i.e., program, workspace or
general data) for the purpose of accessing instruction operand data.

EXAMPLE 1
INSTRUCTION: A R1,@TABLE
MEMORY : TMS990/203~-13 with TMS 4116 RAMs
STEP t: Base Cycles
Find the basic execution time for an add instruction
(A) from Table 4-7.
Base Cycles = 7 cycles
STEP 2: Memory Delays
Check Table U4-9 to determine how much delay
to add due to memory speed.
DELAY = 3 delays/access x 2 accesses = 6 delays
STEP 3 Extra Base Cycles
Check columns SA, SO, and DO in Table U-T to
see if other processing is required ("X" or note present).
Other processing required for SO and DO.
S0 = R1 = REGISTER = 4 cycles
DO = @TABLE = DIRECT = 11 cycles
STEP 4: Extra Memory Delays
SO = R1 = REGISTER
= 1 access x 3 delays/access = 3 delays
DO = @TABLE = DIRECT
= 2 accesses X 3 delays/access = 6 delays
STEP 5: Total Cycles

Total = 7+6+4+11+3+6 = 37

Execution Time = 37 x 66.67 ns = 2.47 us

Y-45

EXAMPLE 2

INSTRUCTION: SRA R1,4
MEMORY: TMS990/201-43A with TMS 40U45-45 RAMs
STEP 1: Base Cycles

Find the basic execution time for a shift right arithmetic
instruction (SRA) from Table 4-T.

Base Cycles = 14 cycles

STEP 2: Memory Delays
Check Table U4-9 to determine how much delay
to add due to memory speed.
DELAY = 6 delays/access X 3 accesses = 18 delays

STEP 3: Extra Cycles ~
Check columns SA, SO, and DO in Table 4-7
see if other processing is required ("X" or note present).
Other processing required as specified in Table U4-7, Note 4.
Add C x 3 where € (the shift count) = 4

b x 3 = 12 cyeles

STEP 4: Extra Memory Delays
None
STEP 5: Total Cycles

Total = 14+18+12 = U4 cyecles

Execution Time = 44 x €6.67 ns = 2.93 us

4-46

EXAMPLE 3
INSTRUCTION: DIV ¥R1+,R2

MEMORIES: Program Memory (P)
™ 990/201-43A with TMS 2708 EPROMs
Workspace Memory (W)
T™M 990/203-13 with TMS 2147 RAMs
General Memory (G)
T™ 990/201-U43A with TMS 4045-L45 RAMs

STEP 1: Base Cycles

Find the basic execution time for a divide instruction
(DIV) from Table 4-7.

BASE = 80 cycles

STEP 2: Memory Delays
Check Table 4-9 to determine how much delay
to add due to memory speed.
Program Memory (P) ‘
Delay = 6 delays/access x 1 access = 6 delays
Workspace Memory (W)
Delay = 3 delays/access x 4 accesses = 12 delays
General Memory

Delay = 3 delays/access x 0 accesses = 0 delays

STEP 3: Extra Base Cycles
Check columns SA, SO, and DO in Table 4-7 to 4
see if other processing is required ("X" or note present).
Other processing require: for SO.
SO = ¥R1+ = AUTO INC = 14 cycles

STEP 4: Extra Memory Delayx

SO = ¥R1+ = AUTO INC

Program Memory (P)
= 0 accesses x 6 delays/access

Workspace Memory (W)
= 2 accesses x 3 delays/access = 6 delays

*¥General Memory (G)
= 1 access x 6 delays/access = 6 delays

¥NOTE: The (G) catagory means that it is not
known wheter the memory access will involve
the workspace area or the program area without
further information. Here we assume the
programmer will address the TM 990/201%1 for
anything other that workspace or program.

0 delays

STEP 5: Total Cycles
Total = 80+6+12+0+14+0+6+6 = 12U cycles

Execution Time = 124 x 66.67 ns = 8.27 us

4-47

TABLE 4-7. DATA TO DETERMINE TM990/1481 EXECUTION TIMES

MEMORY MEMORY

INSTRUCTION BASE FEICH STORE
MNEMONIC CONDITION CYCLES CYCLES CYCLES SA SO DO OTHER
PWG WG
A 7 1-- -1 - X X
AB 7% 1-- -1 - X X
ABS SOURCE POS % 1-1 -= X - -
SOURCE NEG 23 1-1 -1 X - -
AD MIN 416 144 4 - X - _ - *NOTE 1
MAX 1328 144 4 - X - -
AI 5 21- 1= - = -
ANDI 15 21- 1= - = =
AR MIN 211 122 2- X - = *NOTE 1
MAX 367 122 2- X - -
B 6 1-- -- X - -
BL 9 1-- 1- X - -
BLWP 29 1-2 - X - -
C 7 1-- -- - X X
CB 7 1== == X X
CDE MAX 153 13- 2- - - - *NOTE 1 |
CDI MAX 153 13- 1- - - - ¥NOTE 1
CED MAX 201 1-2 W- - - - ENOTE 1
CER MAX 195 1 -2 2- - - - *NOTE
cI 15 21- -—= = - -
cID MAX 200 1 - Y- X - - %NOTE 1
CIR MAX 194 1-1 2~ X - = *NOTE
CKOF 9 1-= == - - =
CKON 9 1-= == - - -
___ -
CLR 6 1-- - X - -
coc 11 1 e 1= = -
CRE MAX 16 12- 2- - - - *NOTE 1
CRI MAX 146 12- 1- = = - RNOTE 1
czc 11 1-= 1- = X =
DD 2036 14 - - - *NOTE 1
DEC 7 1 -1 - X -
DECT 0 1-- -1 - X -
DIV 80 12- 2- - X -
DIVS MAX 126 12- 2- - X -
DR y50 122 2- X - *NOTE 1
IDLE MIN 5 fe= == - - -

4-u8

TABLE 4-7. DATA TO DETERMINE TM990/1481 EXECUTION TIMES (CONTINUED)

MEMORY MEMORY
INSTRUCTION BASE FETCH STORE
MNEMONIC CONDITION CYCLES CYCLES CYCLES SA SO DO OTHER
PWG WG
INC 7 1 - - -1 - X
INCT 10 1 - - -1 - X -
INV 7 1 - - -1 - X -
JEQ 9 1 - - -- - - -
JGT 9 1 - - - - - - -
JH 9 1 - - - - - - -
JHE 9 - = - - -
JL 9 1 - - - - - - -
JLE g 1 - - - - - - -
JLT 9 1 - - - - - - -
JMP 9 1 - - - - - - -
JNC 9 1 - - - - - - -
JNE 9 1- - - - - - -
JNO 9 1- - - - - - -
Joc 9 1 - - - - - - -
JOP g 1 - - - - - - -
LD 60 1 -U 4y - X - -
LDCR 5% 11 - -- - - %NOTE 2
LI 11 2 - - 1 - = - -
LIMI 10 2 - - - - - - -
LR 40 1 -2 2 - X - - *NOTE 1
LREX 9 1 - - - - - - -
LST 17 11 - - - - - -
LWP 21 11 - - - - - -
LWPI 10 2 - - -- - - -
MD 892 14y y - X - - *NOTE 1
MOV 7 1T - - - - X X* ¥NOTE 3
MOVB 10 1 - - -1 - X X
MPY 67 11 - 2 - - X -
MPYS MAX 82 11 - 2 - - X -
MR 305 122 2 - - - *NOTE 1
NEG 7 1 - - - - -
NEGD 42 14 - 1 - - - - ®NOTE 1
NEGR 28 t2- 1t - - - - *NOTE 1
ORI 15 21 - 1 - - - -
RSET 9 1 - - - - - - -
RTWP 21 13- - - - - -
S 7 1 - - -1 - X X

3-149

TABLE 4-7. DATA TO DETERMINE TM990/1481 EXECUTION TIMES (CONTINUED)

MEMORY MEMORY
INSTRUCTION BASE FETCH STORE
MNEMONIC CONDITION CYCLES CYCLES CYCLES SA SO DO OTHER
, PWG WG
SB 10 1-- - - X X
SBO 23 11- -—= - - -
SBZ 23 11- == - - -
SD MIN 416 144 4.~ X - - #NOTE 1
MAX 1328 144 4 - X - -
SETO 6 1-- -1 X - -
SLA C<>0 4% 11- 1. - - - #NOTE 4
C =0 69 12 - - - - -
soc 7 1-- -1 - X X
SOCB 10 1-- = - X X
SR MIN 211 122 2- X - - #NOTE 1
MAX 367 122 2- X - =
SRA C <0 4% 11 - 1- - - - *NOTE 4
C =0 69 12 - 1- - - -
SRC C <>0 % 11- 1- - - - NOTE 4
C =0 69 12 - 1- - - -
SRL C <>0 4% 11 - 1 - - = - NOTE 4
C =0 69 12- - - - -
STCR C =0 181 12- =-= - X -
0<C<9 81* 12- -- - X - %NOTES5
8 <C <16 2% 12~ - - - X - *NOTE 5
STD 60 14- -4 X - - *NOTE 1
STR 40 12- -2 X - - ®NOTE 1
STST 6 1 - - 1- - - =
STWP 6 1-- 1 - - -
SWPB 10 1 -1 -1 X - -
SZC 7 1-- -1 - X X
SZCB 10 1-- -1 - X X
TB 23 11- == - - -
X 6 1=-= = X - -

4-50

TABLE 4-7. DATA TO DETERMINE TM990/1481 EXECUTION TIMES (CONCLUDED)

MEMORY MEMORY

INSTRUCTION ' BASE FETCH STORE
MNEMONIC CONDITION CYCLES CYCLES CYCLES SA SO DO OTHER
PWG WG
Xop 41 1 -2 y - - X
XOR 1 11- 1 - = X -
¥NOTE 1 : Because the floating point instructions may fetch multiple words for

*NOTE 2 :

%¥NOTE 3 :

*NOTE 4 :

*NOTE 5

each source and destination operand, the delays required for these
fetches have been included the calculation of the base cycles for
these instructions. ’

For LDCR add 24 x C cycles, where C is the bit count.

For the MOV instruction do only destination address calculation.
MOV does not fetch the destination operand (MOVB does). Use the
special DESTINATION MOV time in the calculation for the MOV.

For SLA, SRA, SRC, and SRL add 3 x C cycles, where C is the shift
count.

For STCR if 0 2 C 3 7 then add 4 x C cycles, and if 8 £ C £ 15

then add 14%¥C cycles, where C is the number of bits to be
transferred.

4-51

TABLE 4-8. ADDRESS MODIFICATION FACTORS FOR INSTRUCTION EXECUTION TIMES

MEMORY {MEMORY
OPERATION BASE |FETCH |STORE
TYPE SYMBOLIC NAME CODE CYCLES {CYCLES }CYCLES

PIWIG W
SOURCE ADDRESS Rn (register) TS = 0 0 - - - -
SOURCE ADDRESS *¥Rn (indirect) TS = 1 Y -1 - -
SOURCE ADDRESS @LoC (direct) TS = 2, 3=0 7 1 - - -
SOURCE ADDRESS @LOC(Rn) (indexed) TS = 2, S O 11 11 - -
SOURCE ADDRESS *¥Rn+ (auto ine) TS = 3 10 -1 - 1
SOURCE OPERAND Rn (register) TS = 0 y -1 - -
SOURCE OPERAND *¥Rn (indirect) TS = 1 8 -11 -
SOURCE OPERAND @LoC (direct) TS = 2, S=0 11 1 -1 -
SOURCE OPERAND @LOC(Rn)(indexed) TS = 2, S 0O 15 111 -
SOURCE OPERAND ¥Rn+ {(auto ine) TS = 3 14 -1 1 1
DESTINATION OPERAND Rn (register) TD = O L -1 - -
DESTINATION OPERAND #*Rn (indirect) TD = 1 8 - 11 -
DESTINATION OPERAND €LOC (direct) TD = 2, D=0 11 1 -1 -
DESTINATION OPERAND €LOC(Rn)({indexed) TD = 2, Di O 15 111 -
DESTINATION OPERAND *Rn+ (auto inc) TD = 3 14 - 11 1
DESTINATION MOV Rn (register) TD = 0 0 - - - -
DESTINATION MOV *Rn (indireect) TD = 1 N -
DESTINATION MOV @LOoC (direct) TD = 2, D=0 7 1T - = -
DESTINATION MOV * @LOC(Rn)(indexed) TD = 2, D& O " 11 - -
DESTINATION MOV *Rn+ (auto inc) TD = 3 10 -1 - 1

TABLE 4-9. MEMORY ACCESS TIMES

MEMORY ACCESS | WAIT PLUG DELAYS/

BOARD DEVICE TYPE TIME | STATES { PROGRAM| ACCESS | NOTE
TM990/201-44 TMS 2716 EPROM 486 SLOW SHFT7 6

2114-15 RAM 186 SLOW SHFTX 2

2114-20 RAM 236 SLOW SHFTX 3

2114-30 RAM 336 SLOW SHFTX y

2114-45 RAM 486 SLOW SHFT7 6
TM990/203-13 TMS 4116 RAM el 0 SHFTX 3 2

NOTES:
1. The plug programming (wiring) options are described in section 2.4.3.
2. The dynamic memory has refresh operations which can occur during a
memory access and this prevents assigning a fixed delay and forces
the use of the READY line (i.e., SHIFTX).

452

4,8 TM 990/1481 FLOATING-POINT ARITHMETIC

The TM 990/1481 CPU provides the user with a more accurate method of doing
numerical calculations than many other processors that are available today.
As an example, the arithmetic instructions of the TMS 9900 microprocessor
allow the user to do calculations with integers only. When working with only
integers, the position of the decimal point is always known and the range of
the numbers is usually small (-32768 to +32767). However, there is a large
class of problems which involve calculations that require a greater range and
more accuracy. These problems can be solved by using multiple precision
programming techniques and the correct algorithm with enough memory and
processor time.

The TM 990/1481 provides a unique set of instructions that use floating-point
numbers to address the range and accuracy problems. These instructions can be
divided into three groups of operations as follows:

1) Arithmetic/Logic Operations
2) Load/Store Operations
3) Conversion Operations.

Floating-point representation is similar to scientific notation. 1In
scientific notation a number is expressed as a numeric value times a power of
ten (eg., 4700 = 4.7 X 103 in scientific notation). Floating-point
representation separates a number into two distinect parts: a mantissa and an
exponent. The mantissa consists of the digits of the number and the exponent
is a quantity that denotes the power to which the base is to be raised. This
type of number is also called a real number.

The TM 990/1481 provides two types of floating-point or real numbers: single-
precision real (real) and double-precision real (Note: single-precision real
numbers are usually referred to as simply "real numbers"). The difference
between the two types of floating-point numbers is the number of bits that
make up the mantissa; double-precision numbers use 56 bits for the mantissa
while single-precision numbers use 24 bits for the mantissa. The accuracy of
a value is determined by the number of bits that make up the mantissa.

Prior to discussing the internal machine representation of floating-point
instructions, several examples involving floating-point representation and
floating-point operations will be presented. These examples will be
illustrated using base ten for readability.

4.8.1 Floating-Point Representation

4.8.1.1 Mantissa. The mantissa or digits of a number will always be
represented with its decimal point placed to the left of the most significant
non zero digit. This process is called normalization. For example the
following two numbers will look the same normalized.

UN-NORMALIZED NORMALIZED
27.342 27342
.027342 27342

4-53

4.8.1.2 Exponent. The exponent determines the position of the decimal
point when going from the normalized to the un-normalized representation. The
sign of the exponent indicates which way the decimal should be moved when
converting to the un-normalized form. A positive exponent means the decimal
should be moved right the specified number of positions. A negative exponent
means the decimal should be moved left the specified number of positions by
inserting zeros between the decimal and the most significant non-zero digit.
For example the same two numbers are again shown with their exponents:

UN-NORMALIZED FLOATING POINT REPRESENTATION
2
27.342 27342 X 10 --- positive exponent
-1
.027342 27342 X 10 --- negative exponent

mantissa exponent

It is possible to tell which of the two normalized floating point numbers is
larger by comparing the exponent parts first; and then testing the mantissas
only if the exponents are equal.

Another consideration involves the signing of numbers. Shown below is a
positive and a negative number and their corresponding floating point
representation.

UN-NORMALIZED FLOATING POINT REPRESENTATION
-2
-.006134 -.6134 X 10
3
613.4 .6134 X 10

Now it can be seen there are two signs (exponent and mantissa) to keep track
of. To reduce the number of signs, the exponents are biased by a positive
value so as to eliminate its sign. For example, if the exponents are biased by
64, we would say we are using excess-64 notation. The same two numbers used
above are shown below using excess-6# notation.

UN-NORMALIZED FLOATING POINT EXCESS-64 REPRESENTATION

-.006134 -.6134 X 10
67
613.4 L6134 X 10

It is obvious that the correct exponent (movement of the decimal) can be
determined by subtracting the bias factor 64. All negative biased exponents
will have values less than 64 and all positive exponents will have values
greater than 64. In cases where the exponent is equal to 64, the mantissa is
also the un-ncrmalized representation of the number.

454

Example:

NORMALIZED FLOATING POINT EXCESS-64 REPRESENTATION

.6134 .6134 X 10

4,8.2 Floating-Point Operations

When using floating point operations it is sometimes helpful to understand
what takes place when a prescribed operation is performed. For example when
adding or subtracting two floating point numbers the exponents are first
compared and the decimal point is moved left in the mantissa with the smaller
exponent until the exponents are equal. The mantissas are then added. Consider
the addition of 54321.09 and 12.34 in floating point.

UN-NORMALIZED FLOATING POINT EXCESS-64 REPRESENTATION

69 69

54321.09 .5432109 X 10 = .5432109 X 10
66 69

+ 12.345 .12345 X 10 = .0001234 X 10
69

54333.435 .5433343 X 10

An interesting point here is that the low order digit(5) of 12.3U45 has been
lost in the movement of the decimal point because the mantissa countained only
seven digits. In extreme cases if one number is a great deal smaller than the
other it could be lost completely and the sum would not reflect any change.
The user should be aware of the difference in magnitude of the numbers in use.
As a general rule, a number that is several orders of magnitude smaller than
another will be lost during floating-point operations.

In some addition and subtraction operations the operation itself will cause
the exponent to be different than that of the two operators. In the first
example shown below an overflow occurs and the exponent is incremented by one.

UN-NORMALIZED FLOATING POINT EXCESS-64 REPRESENTATION

66

71 .71 X 10
66

+ 83 + .83 X 10
66

154 1.54 X 10
67

= .154 X 10

4-55

The example below shows the exponent being decremented two after the subtract
operation.

UN-NORMALIZED FLOATING POINT EXCESS-64 REPRESENTATION

58

1234 .1234 X 10
68

- 1200 - .1200 X 10
34 68

.0034 X 10

66

= .34 X 10

This process of normalization after the operation is called post-normaliza-
tion.

By subtracting two numbers which are nearly equal the number of significant
digits will be very small even though the number of digits in the mantissa is
several times greater. For this reason blind subtraction of floating point
numbers which are almost equal is undesirable if the original operands were
very hard to obtain.

Multiplication and division of floating point numbers is accomplished by first
adding and subtracting the exponents and then subtracting the bias. Secondly
the desired operation is performed on the mantissas. Shown below is an example
of floating point multiply.

UN-NORMALIZED FLOATING POINT EXCESS-64 REPRESENTATION

66

6T7+66
8U75 = .565 X .15 X 10
133-64
= .565 X .15 X 10 (subtract bias)
69
= .565 X .15 X 10
69
= .08475 X 10
68
= 8475 X 10 (post normalization)

4-56

Shown below is an example of a floating point divide operation:

UN-NORMALIZED FLOATING POINT EXCESS-64 REPRESENTATION

, 67 65
555 / 4 = 138.75 .555 X 10 / .4 X 10
67-65
= (.555 / .4) X 10
2+64
= (.555 / .4) X 10 (add bias)
66
= 1.3875 X 10
67
= .13875 X 10 (post normalization)

4.8.3 Internal Representation of TM 990/1481 Floating-Point Numbers

Floating point arithmetic executing on the TM 990/1481 is done in a slightly
different manner than the previous examples have shown. Instead of using base
ten as the basis for arithmetic the TM 990/1481 does all floating point
arithmetic in base sixteen (hexadecimal). The reason for this is that digital

computers can perform operations much quicker when they use a multiple of base
two. Therefore, in order to understand the floating-point formats, the user
must be able to convert decimal quantities to hexadecimal.

The following procedure can be used to convert a number from base 10 to base
16. In order to illustrate this procedure, an example showing the
conversion of 458.76562510 to its hexadecimal equivalent will be included.

1. Divide the number into integer and fractional parts.

2. Convert the integer and fractional parts of the decimal number to their
hexadecimal equivalents.

3. Conversion of the integer part.

(1) Divide the integer part by 16 and note the remainders in a separate
column (See Example 1).

(2) Continue the division process until the quotient is zero.

(3) Convert any remainders greater than 9 to hex value (eg. 10 = A, 11
= B, ete.).

(4) Read the hexadecimal equivalent from bottom (MSB) to top (LSB).

4-57

Example 1: Convert integer part (458) to its' hexadecimal equivalent.

Solution: Remainder Remainder
Base 10 Base 16

28 10 A (LSB) 1
1 12 C
16/ 28

0 1 1 (MSB) Read Value
16) 1
... 145810 = 1CA16

4., Conversion of the fractional part.

(1) Multiply the fractional part by 16 and note the integer overflow in a
separate column (See Example 2).

(2) Continue the multiplication process until an overflow with no frac-
tion occurs.

(3) Convert any overflow values greater than 9 into hex values.
(4) Read the hexadecimal equivalent from top (MSB) to bottom (LSB).

Example 2: Convert fractional part (.765025) to its' hexadecimal equivalent.

Solution: Overflow Overflow
Base 16 Base 10

.765625

X16

Read Value (MSB) C 12 .250000

.250000

X16

(LSB) y i .000000

c.c .76562510 = .Cu16
Therefore, the hexadecimal equivalent of 458.76562515 = 1CA.Clqg-
NOTE

There are mathematical tables that are available to obtain the desired

base conversions - the previous method was given only as an aid in the
absense of such tables.

4-58

4.8.3.1 TM 990/1481 Single Precision Floating-Point Numbers. Single precision
floating point numbers represent any value within the approximate range 10
to 10 , including zero. Single precision floating point numbers are stored in
memory in two consecutive numbers 16 bit words as shown below.

SINGLE PRECISION FLOATING POINT NUMBER

Radix
point
Sign Bit 0 1 7 8 15
Word 1 lS Exponent I Mantissa (MSBs)
0 15
__ -
Word 2 | Mantissa (LSBs)
__ J

Word 1 contains the sign bit, the hexadecimal exponent, and the 8 most
significant bits of the hexadecimal mantissa. The second word contains the
sixteen least significant bits of the mantissa. The mantissa is normalized by
hexadecimal characters with the assumption the radix point is between bits 7
and 8 of Word 1.

The hexadecimal exponent is biased by >40 (excess-6U4). Exponents of zero are
represented by >40, except for the number zero. The number zero is represented
with the exponent and mantissa both as zero. The exponent may be any value

from >00 to >7F. Using >U40 as the bias. these numbers represent exponent

values from ->40 to >3F (16-6Y%to 16-63), The seven exponent bits are stored
in bits one thru seven of Word 1.

Bit O of the first word is used for a sign bit. When this bit is 0, the number
is positive; when this bit is a 1, the number is negative.

The following procedure will illustrate the use of the single precision
floating-point format. This example will represent 52801¢ in this format.

Procedure:
1. Convert 5280,y to hexadecimal.
528010 = 14A016
2. Normalize the hexadecimal equivalent.
148016 = .14A0 X 164 «<——Normalized floating~point representation
3. Bias the exponent using Excess-64 representation.

1440 X 10% = 1480 x 16% x 1640 = 1440 X 1044« Excess 4015 Rep.

4-59

L. Convert exponent to binary.
L4416 = 10001002

5. Assign values to two-word format as indicated below.
Radix
Point

Exponent = 68
26 ... 20 1 y

P " - | ————

01 7v8 15

First Word [0{1 0 0 O 1 0 00 0 0 1J0 1 0 0}

Sign Bit

0 15
Second Word[T 0 1 0]0 0 0 0J0 0 0 0]0 0 0 0]
W*~

A 0

Additional examples of single precision numbers are given below.

HEXADECIMAL CONTENTS
OF MEMORY WORDS

BASE 10 NUMBER WORD 1 WORD 2

1.0 4110 0000

0.5 4080 0000

5280.0 iy AQQO
.0000067353 3CT1 0000
-.1210976839 LOo1F oou2

The following procedure can be used to convert the two-word contents into its
decimal value.

1. Subtract the bias (64) from the exponent.

2. Move the radix point to the right four places for each power of 16
remaining in the exponent after the bias was removed.

3. Convert the binary value to decimal.

To illustrate this procedure, the two word example given above will be
re-converted to its decimal equivalent.

1. 6849 - 64419 = 44p9 (Exponent with bias removed)
Radix
Point

2. Word 1 XXXXXXXX00010100

Word 2 1010000 OAO 0000O0O0CO

Radix Point Moved 16 Places
3. 1010010100000, = 528019

4-6C

Another method to convert from hexadecimal to decimal is illustrated by the
following example.

- HEXADECIMAL TO DECIMAL CONVERSION

1CA.CM -2
l _________ T 16“1 = U4/ 25 = .015625
R 12%X16 = 12/ 16 = RE
____________ 10 X 160 = 10 X 1 = 10.
R 12 X 161 = 12 X 16 = 192.
e 1 X 162 = 1 X256 = 256.
458.765625

4.8.3.2 Double Precision Fiocating~Point Numbers. Double precision floating
point numbers are similar to single precision floating point numbers, except
that they occupy two more memory words and provide a 56 bit mantisa instead of
the 24 bits available with single precision floating point numbers. Double
precision floating point numbers have values from 107 to 107° , including
zero. Double precision floating point numbers are stored in four 16 bit words
as shown below.

DOUBLE PRECISION FLOATING POINT NUMBER

Radix
point
01 7 8 15
Word 1 E Exponent I Mantissa (MSBs)
0 15
Word 2
0 15
__ -
Word 3
0 15
Word U4 Mantissa (LSBs)

Word 1 of the double precision floating point number is exactly like Word 1 of
the single precision floating point number. Words 2, 3, and 4 contain the
remainder of the mantissa with Word 4 containing the 16 least significant
bits. The mantissa is normalized by hexadecimal characters with the assumption
the radix point is between bit 7 and 8 of Word 1.

4,8.3.3 TM 990/1481 Floating Point Accumulator (FPA). Many microprocessors

contain an hardware accumulator; this accumulator may be used for intermediate
storage, to form sums, or other intermediate operations. TMS 9900 series

microprocessors do no contain an accumulator inherent to the processor;
storage for sums and the like is provided by workspace registers that reside
in RAM memory external to the processor.

Arithmetic floating-point operations involve two operands; one of these exists
in an implicit "accumulator" register created by the results of a load
instruction or a previous calculation. The implicit accumulator acts as a
single register that participates in all floating point operations as either
an operand or result, or both. The outcome of all floating point operations
(except the store operations), is placed in the implicit accumulator. Single
precision floating point instructions use RO and R1 of the current workspace
as the FPA, leaving R2 and R3 unaltered. Double precision floating point
instructions use RO, R1, R2, ans R3 of the current workspace as the FPA.

4.8.4 TM 990/1481 Floating-Point Instruction Overview
As mentioned previously, the TM 990/1481 floating-point instructions can be

divided into three functional groups; the instructions that comprise these
groups are given below.

Arithmetic/Logic Conversion

1. Add (AD, AR) 1. Convert Floating-Point To Integer (CDI, CRI)
2. Divide (DD, DR) 2. Convert Floating-Point To Extended Integer
3. Multiply (MD, MR) (CDE, CRE)
4, Subtract (SD, SR) 3. Convert Integer To Floating-Point (CID, CIR)
5. Negate (NEGD, NEGR) 4. Convert Extended Integer To Floating-Point

(CED, CER)

Load/Store

1. Load (LD, LR)
2. Store (STD, STR)

It should be noted that there are two types of instructions for each function
(eg., there are two ADD instructions: AD and AR). The AD instruction is used
for adding double precision floating-point numbers while the AR instruction is
used with single precision floating-point numbers. All eleven pairs of these
instructions exhibit this same type of duality. It should be noted that the
execution time for double precision floating-point numbers exceeds that for
single precision floating-point numbers.

Detailed descriptions of these instructions that illustrate their format and
application are given in Appendix H.

4.8.5 Sample Programs

Two sample programs will be included to demonstrate some of the uses of
floating-point instructions. The first program adds two numbers, then
converts the floating-point sum to an integer. In other words, after two
numbers are summed, the integer part of the sum is placed in the FPA. The
second example also illustrates the addition process; however, double
precision floating-point numbers are used.

4-62

Problem:

Solution:

I.

One operand (458.76562510) will be placed in the FPA.

Add the numbers U458.7656253 and -256.7656251g using single
precision floating-point arithmetic. Place the integer part of
the sum in the FPA (RO,R1). '

The first step is

to determine the contents for registers RO and R1 which constitute the FPA
for single precision fiocating-point numbers.

Procedure:

A.

Sign
Bit

Word 1

Word 2

Convert the decimal value of the operand into its hexadecimal
equivaient, normalize, and express using Excess~-64 representation.
(1)

458.76562510 = 1CA.C“16

(2) 1CA.Chqg = .1CACH X 103

(3) .1CACY X 103 = .1cacy X 10 67

Place the sign bit for the number and the values from the Excess-64
represented value in the two word single precision floating-point
format as shown below.

Radix

Point
0 7 8 15
0|1 0000 1T 1000117 1C0O >431C Contents for RO
1010111 00{0100{0000 >ACUH0 Contents for RI1

It should be apparent that Wora 1 (>431C) constitutes the contents for RO and
Word 2 (>ACY40) constitutes the contents for R1.

II.

The second operand (-256.765625410) will be placed in registers R2 and R3.

The procedure for determining the contents for these registers is
identical to that previously used for the FPA (RO,R1) and will not be

repeated here.

The two word content representing the second operand is

given below.

Sign
Bit

Word 1

Word 2

Radix

Po%nt
0 78 15
1f1 0000111000 10000 >C310 Contents for R2
0000117100101 00j0000 >0CU40 Contents for R3

Word 1 (>C310) will be placed in R2 and Word 2 (>0C40) will be placed in R3.

4-63

The following code will implement the addition process called for and place
the integer part of the sum in the FPA (RO, R1).

LWPI » FEOO Load Workspace Pointer

LI RO,>lU31C Load FPA (RO,R1) with >431CACU0

LI R1,>ACLO

LI R2,>C310 Load R2,R3 with >C3100C40

LI R3, >0C40

AR R2 Add Single Precision Real, Place Sum in FPA
CRI Convert Single Precision Real Sum to Integer
END

The second sample program will illustrate the use of double precision
floating-point numbers. As the procedure is similar to that used with single

precision floating-point numbers, only an abbreviated explanation will be
given.

The FPA consists of registers RO through R3 when working with double precision
floating-point numbers. Therefore, four registers will be used for each
operand.

In the sample of code given below, two double precision floating-point numbers
will be added. One operand is loaded into the FPA (RO-R3) and the other

operand is loaded into registers R4-R7. The sum will be placed in the FPA
(RO-R3).

LWPI >FEQO Load Workspace Pointer

LT RO,>Value of Word 1 of Operand 1 Load the 4-Word Value

LT R1,>Value of Word 2 of Operand 1 Representing Operand 1

LI R2,>Value of Word 3 of Operand 1 Into the FPA (R0O-R3)

LI R3,>Value of Word U of Operand 1

LI R4 ,>Value of Word 1 of Operand 2 Load the L4-Word Value

LI R5,>Value of Word 2 of Operand 2 Representing Operand 2

LI R6,>Value of Word 3 of Operand 2 Into Registers RU-R7

LI R7,>Value of Word Y4 of Operand 2

AD RY Add DP Real, Place Sum in FPA

END

464

4.9 PROGRAMMING AIDS

The TM32n/1481 provides a number of features to aid the programmer in software
development.

1) The compatibility of TM290/1481 software with the 990 family of computers
means that a large amount of software can be used with little modification.

2) The TM 990/403 version of the TIBUG monitor can be installed on a
TM 990/201-44 card. This EPROM resident software monitor allows the
programmer to load, edit, debug, and run programs right from power-up.

3) A single step clock allows stepping thru microcode and examination of the
result at every step using the optional user supplied LED displays.
Recommended LED's are Dialight #547-2007. See paragraphs 2.4.4.3 and 2.4.4.4,

H.10 INTERRUPTS

4.10.1 General. The interrupt logic provides 18 levels (i.e. 18 different
trap locations) of interrupt, 16 of which are maskable and two of which are
not maskable. The standard set of interrupts consists of 15 interrupt lines on
the TM 990 BUS with levels 1 thru 15. The levels are prioritized with level O
being the highest priority interrupt. Interrupts 1 to 15 and XOPS.

All of the 15 interrupts are individually enabled by setting a bit in a mask
register (in the TM 9901) via the CRU. They are also group maskable via the
four-bit interrupt mask in the Status Register (ST12-3ST15). If the value of
the Interrupt Vector (IV) is less than or equal to the value of the mask then
the interrupt is allowed (i.e. the IV is higher in priority). The IV
represents the level of the highest priority interrupt that is pending. When
an interrupt occurs the TM 350/1481 completes the current instruction, fetches
a pair of words (WP and PC) called a Transfer Vector from locations U4*¥IV and
(L*TV)+2, then executes the equivalent of a BLWP instruction using the
Transfer Vector.

In addition to the general set of 15 interrupts there are three special
interrupts; RESET, LOAD, and ARITHMETIC OVERFLOW. The RESET is a level 0
interrupt and it is normally used to initialize the TM 020/1481 following a
power-up. The RESET interrupt is initiated via the RESET SWITCH. When the
RESET SWITCH is activated the RESET LOGIC forces the TM 920/1481 to start the
microprogram execution at location 000 in CONTROL MEMORY when the switch is
released. This causes the TM 950/1481 to fetch the interrupt Transfer Vector
at memory locations 0000 and 0002 and then execute the equivalent of a BLWP
using the Transfer Vector. Since the RESET is a level 0 interrupt it is not
maskable.

4-65

The RESET interrupt does not wait until the current instruction completes
execution and therefore should not be used as a normal program interrupt.

The LOAD interrupt is non-maskable and is initiated by a pulse on the RESTART
line on the TM 990 BUS or by the execution of an LREX instruction. The LOAD
interrupt on the il 990/1481 is designed to allow exactly two instructions to
be executed before the interrupt trap occurs. The LOAD interrupt fetches the
Transfer Vector from the upper two words of logical memory at locations FFFC
and FFFE and executes the equivalent of a BLWP. The TIBUG software monitor
uses the LOAD interrupt to implement the single instruction step mode of
operation. The monitor executes an LREX and then executes an RTWP to the
user's program. The user's program can then execute one instruction before the
LOAD interrupt occurs and traps back to the monitor.

The other use of the LOAD interrupt is as an alternate to the RESET operation.
The RESET switch causes the equivalent of a level 0 interrupt which fetches
the Transfer Vector from 0000 and 0002. This is suitable if lower memory is
ROM and has valid data when power is turned on, but if this is the case, it
also implies that all of the other Transfer Vectors are fixed by the ROM. In
some cases it is desirable to have the Transfer Vectors in RAM so that they
may be altered by the software. In order to accomplish this, the ROM is placed
in upper memory and the RESTART signal is used rather than the RESET to
initialize the TM 990/1481. Notice that there must be valid Transfer Vector
data either in lower memory at the 0 level interrupt trap location or in upper
memory at the LOAD interrupt trap location in order to correctly initialize
the 1M 990/1481. This can be satisfied by placing ROM in either upper or lower
memory or by providing some special hardware to load the trap locations via
the DMA interface.

The third special interrupt is the ARITHMETIC OVERFLOW (AO) interrupt or
simply the overflow interrupt (0I) which can be enabled by setting bit 10 of
the STATUS REGISTER. When enabled the AO interrupt will cause an interrupt
trap whenever the OVERFLOW (OV=STL4) bit of the STATUS REGISTER is set. The AO
interrupt is assigned to the level 2 interrupt. The AO interrupt trap will
occur prior to the execution of the instruction following the one which caused
the overflow condition to be generated.

¥ NOTE : XOP 12 (Write Character) and XOP 7 (Delay Timer) in TIBUG uses a
level three interrupt, generated by the TMS 9901 programmable
timer, when writing to a 733 ASR. It is therefore recommended that
caution be taken by the user when using interrupt level three in
software implementation.

4-66

4,10.2 Interrupt and XOP Linking Areas Using TM 990/403 TIBUG

This writeup applies to the interrupt and XOP scheme used by the TM 990/403
TIBUG. This scheme allows the user to define service routines for the
following: :

° Interrupts 1 to 15
° XOPs 2 to 6 (XOPs 1, and 7 to 15 are used by the TM 990/403
monitor)

When an interrupt or XOP instruction is executed, program control is passed to
WP and PC vectors located in lower memory. Interrupt vectors are contained in
M.A. 000044 to 003F44; and XOP vectors are contained in M.A. 0040415 to 007Fqg5.
User-available interrupt and XOP vectors are preprogrammed in the TM 990/403
TIBUG EPROM chip with WP and PC values that allow the user to implement
interrupt service routines (ISR's) and XOP service routines (XSR's). This
includes programming an intermediate linking area as well as the ISR or XSR
code. ‘

When an interrupt or XOP is executed, it first passes program control to the
vectors which point to a linking area. The linking area directs execution to
the actual ISR or XSR. The linking areas are shown in Table 4-10. The linking
area is designed to leave as much RAM space free as possible when not using
all the interrupts. That is, the most frequently used areas are butted up
against the TIBUG RAM area, the least frequently used areas extend downward
into RAM.

Return from the ISR or XSR is through return vectors in R13, R14, and R15 at
the ISR or XSR workspace as well as at the linking area workspace.

How to program these linking areas is explained in the following paragraphs.

TABLE 4-10. PREPROGRAMMED INTERRUPT AND USER XOP TRAP VECTORS

VECTORS VECTORS
(HEX) (HEX)
M.A. INT. WP PC M.A. XOP WP PC
0000 INTO TIBUG TIBUG 0048 X0p2 FFu48 FF5A
0004 INT1 FF5A FFTA 004C XO0P3 FF3A FF4C
0008 INT2 FFY4E FF6E 0050 XOP4 FF2€ FF3E
000C INT3 FFBA FFAA 0054 XOP5 FF1E FF30
0010 INTH FFTE FFQE 0058 XOP6 FF10 FF22
0014 INTS FFT72 FFg2
0018 -INT6 FF66 FF86
001C INT7 FEEE FFOE
0020 INT8 FEE2 FF02
0024 INT9 FED6 FEF6
0028 INT10 FECA FEEA
002C INT11 FEBE FEDE
0030 INT12 FEB2 FED2
0034 INT13 FEA6 FEC6
0038 INT14 FE9A FEBA
003C INT15 FESE FEAE

1-67

TABLE 4-11., INTERRUPT AND USER XOP LINKING AREAS

BYTE
M.A. 0-1 2-3 4-5 6-7 8-9 A-B C-D E-F
USER RAM AREA
FE90 ,
FEAO INT15 INT15 INT15 INT15

FEBO INT15 INT15 INT14 INT14 INT14 INT14 INT14 INT14
FECO INT13 INT13 INT13 INT13 INT13 INT13 INT12 INT12
FEDO INT12 INT12 INT12 INT12 INT1 INT11 INT11 INT11
FEEOQ INT11 INT11 INT10 INT10 INT10 INT10 INT10 INT10
FEFO INT9 INT9 INT9 INT9 INT9 INT9 INTS INT8

FFOO INT8 INT8 INT8 INT8 INT7 INT7 INTT INT7

FE10 INT7 INT7

FE20 XO0P6 XO0P6 XOP6 XOP6 XOP6 X0P6 XOP6

FE30 XOP5 X0P5 X0P5 X0P5 X0P5 XOP5 XO0P5 XOP4

FE40 XOPY XOP4 XOP4 XOP4 XOP4 XOP4 XO0P3 X0P3

FE50 XOP3 XO0P3 X0P3 - XOP3 X0P3 Xop2 X0Pp2 X0p2

FE60 XOP2 Xop2 XOop2 X0op2 INT2 INT2 INT2 INT2

FE70 INT2 INT2 INT1 INT?. INT1 INT1 INT1 INT1

FE80 INT6 INT6 INT6 INT6 INT6 INT6 INTS INT5

FEQO INT5 INT5 INT5 INT5 - INTH INTH INTY INTY

FEAO . INTY4 INTY INT3 INT3 INT3 INT3 INT3 INT3

FFBO to FFFE = TIBUG workspace and LOAD (NMI) vectors

4.10.2.1 Interrupt Linking Areas. When one of the programmable interrupts
(INT1 to INT15) is executed, it traps to an interrupt linking area in RAM.
Each linking area consists of six words (12 bytes) as shown in Figures 4-16
and 4-17. The first three words contain the last three registers of the
called interrupt vector workspace (R13, R14, and R15), and the second three
words, located at the interrupt vector PC address, are intended to be
programmed by the user to contain code for a BLWP instruction, a second word
for the BLWP destination address, and a RTWP instruction code (all three words
to be entered by the user). When the ISR is completed, control returns to
the RTWP instruction in this this linking area after the return values (to the
interrupted program) are loaded into the linking area's three registers (R13
to R15). When the interrupt occurs, control is given to the program at the
interrupt vectors. The PC vector points to the BLWP instruction (at the PC
vector address) which is executed using the destination address provided by
the user. (The BLWP instruction consists of two words, the BLWP operator and
the destination address; the destination address points to a two-word area
also programmed by the user.)

In returning from the interrupt service routine, the RTWP instruction
(routine's last instruction) places the (previous) WP and PC values at the
time of the BLWP instruction (in the six-word linking area) into the WP and PC
registers. Thus, the RTWP code that follows the BLWP instruction will now be
executed, causing a second return routine to occur, this time to the
interrupted program using the return values in R13, R14, and R15 of the
interrupt link area. This area is shown graphically in Figure U4-17.

4-68

@ INTERRUPT NO. 1 , FIRST REGISTER

A RO -—
RECOGNIZED FFS IN WORKSPACE
4 4 6-WORD INTERRUPT LINK AREA
M.A. 0000 WP
0004 [FFBA
1 P
0006 —Frox R13 (OLD WP)
V, Vi A
R14 (OLD PC) xxxx /] we xvyy %
Ll Ll L LLL ya
@ 7 ST
R15 (OLD ST) pC2222’ "
Yrcoss s 0 L7A
7 77 77777 .
INTERRUPT FE7A // BLWP]
VECTORS IN e /7 (
EPROM FF7C // XXXX /
I’ yyyyyy. A
0777777777,
FE7E / RTWP 7 Yyvy RO
LLLLZLL V.

@ R13 FF5A

R14 FF7E
R15 (OLD ST)
272z
.
INTERRUPTED .
PROGRAM 17 °
RTWP

INTERRUPT SERVICE ROUTINE

1,2 INTERRUPT EXECUTION TRAPS TO 6-WORD INTERRUPT LINK AREA,
3.4 BLWPEXECUTED TO 2-WORD VECTORS TO INTERRUPT SERVICE ROUTINE (ISR)

5 RTWP FROM ISR TRAPS BACK TO 6-WORD LINK AREA.
6 RTWP FROM LINK AREA RETURNS BACK TO INTERRUPTED PROGRAM.

V//////// = LINKAGE F;ROGRAMMED BY USER

FIGURE 4-16. INTERRUPT SEQUENCE

4-69

Each interrupt linking area is set up so that it can be programmed in this
manner. In summary, each six-word linking area can be programmed as follows:

e Determine the location of the linking area as shown by the WP and PC
vectors in Table 4-10.

e The PC vector will point to the last three words of the six-word area.

The user must program these three words respectively with 0420q¢ for a
BLWP instruction, the address (BLWP operand) of the 2-word vector

pointing to the interrupt service routine, and 03801 for an RTWP

instruction as shown in Figure 4-17.

e At the vector address for the BLWP operand, place the WP and PC values
respectively of the interrupt service routine.

EXAMPLE USING INT1 LINKING AREA (WP = FF5A, PC = FF7A)

M.A.

FFSA

FF74
FF76
FF78
TOBE FF7A
PROGRAMMED
BY USER FFIC
FF7E

R13 (OLD WP)

R14 (OLD PC}

R15 (OLD ST)

0420 (BLWP} .

XXX j-—————————

0380 (RTWP) N~

l@———— (ACTUAL ADDRESS OF RO OF INTERRUPT VECTOR
WP)

USED TO SAVE RETURN VALUES (TO
INTERRUPTED PROGRAM)

INT1 VECTOR PC ADDRESS (CONTAINS BLWP)

ADDRESS OF 2 - WORD VECTOR POINTING TO
WP AND PC VALUES OF ISR

RETURN PC VALUE IN ISR POINTS TO THIS
RTWP INSTR.

NOTE

-DO NOT USE RO—R12 OF THE LINKING AREA WORKSPACE,
BECAUSE THE OVERLAPPING STRUCTURE WILL DESTROY
THE CONTENTS OF A LINKING AREA FOR ANOTHER INTER-

RUPT OR XOP.

FIGURE 4-17.

4-70

SIX-WORD INTERRUPT LINKING AREA

Example coding to program the linkage to the interrupt service routine for
INT1 is as follows:

*PROGRAM POINTER TO INT1 SERVICE ROUTINE FOLLOWING BLWP INSTRUCTION
AORG >FFTA INT1 PC VECTOR ADDRESS

DATA >0420 HEX VALUE OF BLWP OP CODE

DATA >FA0O LOCATION OF 2-WORD VECTORS TO ISR (EXAMPLE)

DATA >0380 HEX VALUE OF RTWP OP CODE

*PROGRAM POINTER TO 2-WORD VECTORS TO INTERRUPT SERVICE ROUTINE (EXAMPLE)
AORG >FA00

DATA >FBO0O WP OF INTERRUPT SERVICE ROUTINE (EXAMPLE)

DATA >FAOY4 PC OF INTERRUPT SERVICE ROUTINE (EXAMPLE)

¥INT1 ISR FOLLOWS (BEGINS AT M.A. FAOL)

The interrupt service routine which begins at M.A. FAOYg will terminate with
an RTWP instruction.

4,10.2.2 XOP Linking Area. The XOP linking area contains seven words (14
bytes), of which the first two and the fourth words must be programmed by the
user. FEach XOP vector pair contains the pointer to the new WP (in the first
word) and a pointer to the new PC (in the second word) which points to the
first instruction to be executed.

In the seven-word XOP linking area, the first word is the destination of the
XOP PC vector. The last three words are the final three registers (R13, R14,
and R15) of the linking area workspace which will contain the return vectors
back to the program that called the XOP. The third word of the seven-word

area is R11, which contains the parameter being passed to the XOP service
routine. This is shown in Figure 4-18.

For example, when XOP 2 is executed, the PC vector points to the BLWP
instruction shown at M.A. FF5A4g in Figure 4-18. This executes, transferring
control to the preprogrammed WP and PC values at the address in the next word
(YYYY as shown in Figure 4-18). To obtain the parameter passed to R11 of the

vector WP (M.A. FF5Eg in Figure 4-18), use the following code in the XOP
service routine:

MOV *R14+,R1 MOVE PARAMETER TO R1

This moves the parameter to R1 from the old R11 (the old PC value in R14 was
pointing to this address following the BLWP instruction immediately above it,
effectively to R11), and increments the XOP service routine PC value in its
R14 to the RIWP instruction at M.A. FF6045. Thus an RTWP return from the XOP
service routine will branch back to the RTWP instruction at FF601g which
returns control back to the instruction following the XOP.

3-T1

EXAMPLE USING XOP 2 LINKING AREA (WP - FF48, PC - FF5A)

M.A. {ACTUAL ADDRESS OF RO OF XOP2
FFas VECTOR WP)
Z ’ Z
[
o
FEBA 0420 (BLWP) jt—————————— XQOP2 VECTOR PC POINTS TO HERE
TO BE
F ~ YYvYy | —————— POINTS TO XSR WP & PC VECTORS
PROGRAMMED Fsc
BY USER FESE R11 (PARAMETER) |#——— XOP SOURCE ADDR. PARAMETER
FFe0 | - 0380 (RTWP) 4—————— RTWP BACK TO CALLING PROGRAM
FE62 R13 {OLD WP)
Frea R14 (OLD PC) USED TO SAVE RETURN VALUES
(TO INTERRUPTED PROGRAM)
FF66 R15 (OLD ST)

FIGURE 4-18. SEVEN-WORD XOP INTERRUPT LINKING AREA

In summary, the seven-word XOP linking area can‘ be programmed as follows:

Determine the value of the PC vector for the XOP as shown in Table
L-10.

The PC value will point to the first word of the seven-word linkage
area. The user must program three of the first four words of this
area respectively with 04204 for a BLWP instruction, the address of
the two-word vector that points to the XOP service routine, ignore the
third word, and insert 03804¢ for an RTWP instruction in the fourth
word.

At the address of the BLWP destination in the second word, place the
WP and PC values respectively to the XOP service routine.

472

An example of coding to program the XOP linkage for XOP 2 as shown in Figure
4-18 is as follows:

*¥PROGRAM POINTER TO XOP SERVICE ROUTINE AT XOP2 LINK AREA
AORG >FF5A4 XOP2 PC VECTOR ADDRESS

DATA >0420 HEX VALUE OF BLWP CODE

DATA >FAO0O LOCATION OF 2-WORD VECTORS TO XSR (EXAMPLE)
DATA O IGNORE

DATA >0380 HEX VALUE OF RTWP CODE

¥*PROGRAM POINTER TO 2-WORD VECTORS TO XOP2 SERVICE ROUTINE (EXAMPLE)
AORG >FAO0 LOCATION OF VECTORS

DATA >FBOO WP OF XOP SERVICE ROUTINE (EXAMPLE)

DATA >FAOY PC OF XOP SERVICE ROUTINE (EXAMPLE)

¥XSR CODE FOLLOWS (BEGINS AT M.A. >FAOY4)

At the XOP service routine, the following code uses the PC return value (in
R14 of the XOP service routine workspace) to obtain the parameter in R11 (in
the link area) as well as set the return PC value in R14 (in the XOP service
routine workspace) to the RTWP in the link area:

MOV ¥R14+,R1 MOVE OLD R11 CONTENTS TO R1 OF XOP SERVICE ROUTINE

Now R14 has been incremented to point to the RTWP instruction in the link
area. The last instruction in the XOP service routine is RTWP. RTWP
execution causes a return to the link area where a second RTWP executes,
returning control to the next instruction following the XOP.

4-73

SECTION 5
SOFTWARE DEVELOPMENT AND APPLICATIONS
5.1 GENERAL

This section covers the various means for developing user software on
different software development systems (section 5.2) and the means to install
user software on to a TM 990/1481 system using EPROM, cassette, tape, and
floppy disk (section 5.3). Also included are debugging hints (section 5.4) and
various aspects of floating point operations including the TM 990/433
Demonstration Software (sections 5.5 to 5.7).

5.2 DEVELOPMENT OF SOFTWARE FOR THE TM 990/1481

Floating point instructions can be assembled on Texas Instruments
minicomputers which operate under the DX10 disk based operating system. These
instructions can be assembled on the following assembler:

) SDSMAC, release 3.3

A1l but four instructions (listed next) used on the Tk 990/1481 can be
assembled on the following assemblers:

° SDSMAC, release 3.2
. TXMIRA, release 2.4
o AMPLUS, release 1.0

The four instructions not assembled on the above three systems are:

LST, load status register
LWP, load workspace

SDIV, signed divide

SMUL, signed multiply

In addition, the user can employ DATA statements in order to create floating
point object and source statements. The method of doing this is explained in
paragraph 5.2.2.

NOTES

1. The AMPL system does not provide in-circuit emulation of
the SNTUSUB1 chips.

2. All memory spaces can be defined by the user. If the TM 990/403
TIBUG is resident, it occupies memory spaces (in EPROM) from
000045 to 100044 and requires RAM from FE50¢¢ to FFFF4g.

5.2.1 Using Floating Point Instruction Assemblers

Figure 5-1 is an example of code generated on one of the systems that assemble
floating point instructions.

0002
o003
o004
Q005
Q00L&

Q007 0000
0003 O00Z
0a04

0007

0010 0004

0011

Q012 0002

a0l

0014 Q00H

0015
0014

DT “SAMPLES

FARC LG Ecil FARC
*
#m=====2 SHOW OFPCODES FOR FLOATING FOINT INSTRUCTIONS
#*
o444 AR R4 ADDN REAL R4,.RS TO RO,R1
OCED SR eLoc SUBTRACT CONTENTS OF LQC
FABRLC
#* AND LiOZ+2 FROM ROS.R1
OnCA =ZTR R10 STORE REAL NIWMBER IN RO.R1
IN R10,R11
onzs LR #RE LOAD 2 WORDZ POINTED TO BY
R& INTO RO-R1
OE44 Al Ré& ADD DOUBRLE PRECISION REAL
R&—RY TO RO-R3
END

FIGURE 5-1. SOURCE LISTING OF ASSEMBLER USING FLOATING POINT SOURCE

QO0O2
000z
0004
QO0N0s
QOO
0007
OO0
Q009
0010
0011
0012
0013
0014
Q015
0014
Qo017
0013
QQ1e
0020
Q021
0022
00z3

Q000
0002
0004
0004
000
0O00A

FIGURE

IDT “SAMPLEY

0004 R4 Foir 4
0004 R& gt 4
000A R10 Eilr 10
QC40 ARCODE EGLL ZOC40 BASTC AR o=CcoDe
OCCO SRCODE FRU 0000 BASTC =R OFPCODE
opCo STRCOD EQLl >ONCO RASIC STR CoODE
OnN20 LRTODE EQ 0020 BASIC LR OPICODE
OE40 ADCODE Edll >0E40 BRAZIC AL OPCODE
0010 INDECT EQ 0010 INDIRECT CODE
0020 INDEX EGU 0020 TNDEX CONE
Fakp™ Lo Efil »FABTC DLIMMY LINTATION

#

#mmmm==y SHOW FLOATING POINT IMNSTRUCTIONS

3*
oC44 DATA ARCODE+R4 AR R4
OCEO DATA SRIODE+TIMDEX =R @LOC
FARC TATA LOC
oDpcA DATA STRCOD+1O STR R10O
onos DATA L RCODE+TMDECTYRA LR #RA
OF 44 NATA ADCODFE+RA AD R&

END

5-2. SOURCE LISTING OF ASSEMBLER USING DATA STATEMENTS

5-2

5.2.2 Floating Point Support with Other Assemblers

Assemblers that do not assemble floating point instructions can still be
used to generate floating point code using the DATA assembler directive. Prior
to entering the DATA statement, the user must first hand assemble the desired
floating point instruction to determine the correct opcode. Figure 5-2 shows
the same program assembled in Figure 5-1 only it is assembled without using
floating point source statements. As can be seen, the opcodes and pertinent
data are first identified in EQU directives, then the assembler is used to
combine the opcode with values such as 1index bit, indirect bit, and register
value. After assembling, the user should scrutinize code for correctness.

Assembling using DATA statements must be used if assembling with the TM
990/302 software development module or the Cross Support Package.

5.3 INSTALLING SOFTWARE INTO THE TM 990/1481 SYSTEM

The TM 990/1481 module does not have user memory onboard; thus, the system
must utilize a memory expansion board to contain user software, either in
EPROM or RAM. Memory boards available include the TM 990/203 dynamic RAM board
and the TM 990/201-44 EPROM/static RAM board.

User-written software may be installed and executed on a TM 990/1481 system in
one of the following ways:

1) Burn software into EPROM firmware and install the EPROMs on a memory
board. A RESET or LOAD can be used to start the system. The user will
be responsible for placing the correct RESET vectors at 000044 and
000241g or LOAD vectors at FFFCq1g and FFFEqg for the WP and PC. A RESET
will be issued by actuating the RESET switch. A LOAD can be initiated
by enabling the RESTART- signal at connector pin J1-93.

2) Install a loader EPROM. This is similar to the EPROM in 1) above
except that it does a load function upon initialization. Loading could
be from media such as digital cassette, paper tape, audio cassette,
floppy disk, or communication link. An applicable device service
routine must be included in the firmware.

3) Install a TIBUG monitor (e.g., TM 990/403) on a memory board and load
user software from cassette or paper tape using the TIBUG "L" command.
Then, use other interactive TIBUG commands to execute the user programs.

4) The system may be bootloaded from floppy disk using the TM 990/303A disc
controller board. This bootload feature will occur upon powerup. The
disk controller will read a command from a preformatted diskette,
execute the command (such as read user software from diskette to
user memory), then give control to the microcomputer board which goes
through a level zero (powerup) interrupt. It is important that the
diskette be formatted with the desired command at the proper diskette
location and also contain the necessary data required by the user. Also,
the 1level =zero interrupt handler must be cognizant of the bootstrap
command features such as location of data loaded from diskette, etc.
Note that only a TM 990/303A system can be used to format the disk as
required for the TM 990/303A bootload feature (other systems will use
the bootload area in diskette formatting). Format requirements for the
diskette are explained in the TM 990/303A Floppy Disk Controller User's
Guide.

5-3

5.4 DEBUGGING SOFTWARE ON THE TM 950/1481

When debugging software to run on the TiH 290/1481, several approaches should
be considered. The approach used depends greatly upon the application.

When considering the application, the user should know if the floating point
instructions are utilized or whether the operating environment is real time.
The floating point instructions may only be debugged two ways on the TM
960/1481 or a TI 990/12 minicomputer. These are the only processors which
currently execute the floating point instructions.

The floating point instructions can be debugged on the TM 960/1481 by using a
debug package such as the TIBUG monitor. These instructions can be debugged on
the TI 990/12 by using its interactive debugger.

Real-time applications can only be debugged by having it loaded and run in the
target environment, the TM 990/1481. This is because the application software
is reacting to external events and controlling them. Real-time debugging
cannot be done on the TI 990/12 because the debugger is one of the many tasks
under the operating system.

In applications where real-time control is not used and floating point
instructions are not utilized, many debug tools are available. These include:

° Debugger software resident in the TM 9230/1481 system

] Interactive debugger software on TI 990 mlnlcomputer
systems such as the /4, /5, /10, or /12.

A great deal of debugging can be performed on other machines which execute the
same instruction set; however, the user must be aware that certain items such
as instruction timing and interrupts vary from processor to processor.

5.5 CHARACTERISTICS OF FLOATING POINT ARITHMETIC
5.5.1 Accuracy Considerations

Floating point algorithms must be written with the goal of minimizing errors
rather than eliminating them. Some errors will remain in all floating point
calculations due to the finite bit length of the floating point
representation. An acceptable solution is to ensure that the small error which
can occur on any given floating point operation does not "snowball" so that
the final result is not obscured by noise.

An inherent consequence of digital floating point arithmetic is that the
associative law does not hold:

(A +B) + C is not equal to A + (B + C) for all values of A, B, and C.

As a result, summing operations ccncerning elements diverse in magnitude
should be arranged so that the smallest elements are added first. This is so
the information contained in the least significant bits of the smallest
elements are properly accumulated and have the proper impact on the the
result.

The associative property does hold for floating point multiplication. The
order in which divisors are used on a dividend is not important. However,
seemingly equivalent combinations of multiplications and divisions will not
yield equal results in all cases. For example:

A* (B/ C) is not equal to (A * B) / C for all values of A ,B, and C.

Hence the order of multiplication and division operations should be
judiciously chosen to simultaneously minimize error and prevent overflow or
unnderflow.

In general, a small loss of accuracy is to be expected from multiplication or
division operations while a substantial loss of accuracy may occur from
addition or subtraction operations.

5.5.2 Significant Decimal Digits

The number of significant decimal digits which can be represented by a
floating point format is governed by the length of the mantissa. The single
precision mantissa is 24 bits long. The largest decimal number which can be
represented in 24 bits is 22%-1 or 16,777,215 which would infer 8 digits of
accuracy. The eighth digit will carry very little information. Therefore, it
is more realistic to assume 7 digits of accuracy. The largest number which can
be represented in the 56 bit double precision mantissa is 256_1 or
72,057,594,037,927,935. Again, because of partial information in the least
significant digit, 16 digits of accuracy should be assumed.

5.5.3 Range of Value

The range of possible values for both single and double precision is
approximately 5.398 X 1079 to 7.237 X 10*75 respectively.

5.5.4 Interrupt Considerations

Hardware floating point operations may interfere with real time sampling
functions in certain cases because of their length compared to other
instructions. The divide double precision instruction (DD) requires
approximately 140 microseconds for execution. In contrast, the unconditional
jump instruction (JMP) is executed in under 1 microsecond. Since an
interrupt is not acknowledged until completion of the current instruction, an
external interrupt may not be serviced for up to 140 microseconds during the
execution of the DD instruction.

5.6 RADIX CONVERSION

The conversion between floating point machine representation and ASCII decimal
notation is not a straight forward process since the exponent of the machine
representation is of a hexadecimal base rather than a decimal base. The
machine representation is of the form:

A * 16B
while the desired ASCII representation is of the form:
c * 10D
There are essentially two ways to perform the conversion:
1) Convert 16B to F * 10D, A *# F is then C.

2) Multiply B by log 16 and round to the nearest integer D. Then divide
A * 16B py 10D to get cC.

The hexadecimal quantities C and D can be converted to decimal by the methods
discussed in section 4.8.3. The machine-representation-to-ASCII conversion
routines which are described in section 5.6 use method 1, above.

5.7 TM 990/433 FLOATING POINT DEMONSTRATION SOFTWARE

The TM 990/433 floating point demo package is available to illustrate the use
of the hardware floating point instructions. It must be used in conjunction
with the TM 990/403 TIBUG. It resides in two 2716 EPROMs which must be
installed at hex address 1000. The demo software is not intended to be a user
utility library; however, user written programs may access the various
routines by linking to the appropriate entry point.

The floating point demo monitor may be initialized by a special TIBUG command,
the G command, which requires no arguments. Alternatively, the monitor may be
initialized by executing a simple branch to address hex 1000. Once
initialized, the TM 9390/433 requests a command at the system terminal
connected to the controller module. The monitor allows the individual demo
routines to be run interactively. The various demo routines and their
interactive command mnemonics are described in Table 5-1. Included are the two
commands HELP and QUIT. The HELP command lists the demo commands and the
QUIT command which causes a branch back to the TIBUG monitor.

The demo software package requires 136 bytes of RAM beginning at memory
address F0004g.

TABLE 5-1. DEMO ROUTINES

FPTMON ROUTINE DESCRIPTION
COMMAND NAME

AD ADPFP ASCII decimal to double precision machine
representation

AT AINT ASCII decimal to integer machine representation

AR AREAL ASCII decimal to single precision machine
representation

C0s COoS Single precision cosine function

DA DASCII Double precision machine representation to

ASCII decimal

DCOS DCOS Double precision cosine function

DEX DEX Double precision exponential function

DSIN DSIN Double precision sine function

EX EX Single precision exponential function

HELP Prints a list of demo software commands

IA IASCII Integer machine representation to ASCII decimal
notation

MINV MINV Single precision simultaneous equations

QUIT Branch back to TIBUG

RA RASCII Single precision machine representation to ASCII
decimal

SIN SIN >Sing1e precision sine function

5.7.1 Accessing Demo Routines From Applications Programs

The assembly language listings for all of the demo routines are available in
"TM 990/433 Demonstration Software for the TM 950/1481 Board". The calling
sequences required by each routine are described in the listing. In general,
it is of the following form:

BLWP @entry point
DATA <one argument>
<normal return>

All routines except MINV receive and/or return a floating point argument. This

is taken or replaced in the caller's floating point accumulator. The SINE and
COSINE routines require radian arguments.

5-7

Table 5-2 describes the arguments required by the respective routines and
lists the entry points.

TABLE 5-2 ROUTINE ENTRY POINTS AND ARGUMENTS

ROUTINE | ENTRY ARGUMENT

POINT

(Hex)
ADPFP 1CBE Address of user buffer for ASCII input
AINT 1DBY Address of user buffer for ASCII input
AREAL 1B76 Address of user puffer for ASCII input
Ccos 1972 None
DASCII 1BF8 Address of user buffer for ASCII result
DCOS _19A6 None
DEX 1490 ‘ None
DSIN 192C None
EX 1A6A None
IASCII 1D50 Address of user buffer for ASCII result
MINV 1E12 None
RASCII 1ABA Address of user buffer fof ASCII result
SIN 18FA None

5.7.2 Machine to ASCII Conversion Routines

Six demo routines provide conversion to and from the three important machine
representations:
1) Integer

2) Real (single precision floating point)

3) Double precision floating point

The output of the machine-representation-to-ASCII routines can be read by the
ASCII-to-machine-representation routines. V

Example 5-1:

EZHTER COMmEMD COR "HELF"2:1 IR
= THE HUMEBEF IN IMTEGER MRACHIME FEFREZENTRTIOH

EMTER COMMAMD COR "HELFT»:IA
EMTER THE RUMEER IN IMTEGER MACHIME REFREZENTRTIOGH

OO0H

+1 i

EMTER CCithAMEL (OF "HELF 3 : IR

EMTER THE HLMEER IM IMTEGER MRUOHIME REFREZEMTATION

NTER COMMAND COF "HELFT"r:IHA
THE HUMEER IN IMTEGER MACHIME REFREZEMTATIDH

T LBMMEND JOR CHELRT

Example 5-2:

Example 5-3:

ENTER COMMAMD COR "HELF"2

EMTER THE IMTEGER RICII
-1
FFFF

EMTER COMMAMD JOF "HELF"X
HUMEER

EHTER THE IHTEGER AICII
100
O0sg

EHMTER COmMMARMHD COF “"HELF">

EMTER THE INTESER RICII
—256

FFO0

EMTER COMMAND <OF "HELF™X

EHTEF’ THE IHTEGER HZCII

EMTER COMMAMD <OF "HELF”

EMTER COMMRMLI <OFR "HELF"

‘:HTEF THE FERL HUMEER IH
B L e B
+., 1 o+l

40FF FFFA
EMTER COMMRND <OF "HELF™
EHTEF THE FERL HUMEER IH
L NI EEYY

L1 +01

COFF FFFA
EWMTER COMMAEMD <OF "HELF™2
I:HTEF‘ THE FERL MUMEER IH
e BEENY
+.bd5 -1
Q10 000
ceHTER COMMRHD COFR “"HELF™:
EH EF THE FERL HLUMEER IM
s BEENY
+ ., 12= +0z

427F FFF&

||v

tHI

HIUMEEFR

sHI

tRI

HUMEEFR:
YiRI
HUMEER:
: BF
RICTT
AR

AZCTI

tHE
HICTIT

THE
R RANG

EHTER COMMREHIL COR "HELF"x:

5-10

YFREE FORMRETS

rFREE FORMAT:

tFREE FORMAT?

cFREE FORMATX

Example 5-4:

Example 5-5:

EHMTER COMMAMD <OFR "HELF"X:FA
EHTE i F.‘EHL MACHIMNE

F THE HUMEER

41‘
+, E+01

£l TEF LDM!HHD (OF "HELF I iFH
EHTER THE HUMEER IN FPEAL MACHIME

. B+
ZOMMEHT COF
T‘-1E HUMEER

EMTER
ENTER:

"HELF "
I FERL

tRH
MECHINE

E.'TTEF-.
EMTER

L-E!,HHhIf f.DFf
THE MLMEEFR

"HELF"YtER
IM FEAL MRCHIKE

ol o anoon
+ ‘%‘j?.n—ﬂx E-T=

EMTEFR COMMERND OF "HELF'?

EMTER
EHTEF

e BE

COMMANMI <OF "HELF "> tRID

Il
+i1

COFF FFFF FFFF FFFR

EMTER COMMRND <OFR “"HELF"»:RD

EHTEF THE DDHELE FFEI_I:IDH MIUMEER
; HE e EEYY

+ 1110

+. 00
QOO0 D000 o000 ooan

EMTER COMMARD <OF "HELF‘”?'
EH EFR THE "lDl!ELE FFEI

ISR

1 l 1
+ . 1 +!_L_
4ZEE

EMTEF

FFFF FFFF FFFI
COMMEMD ¢OF “HELF" AT

EZNY
. +111
C 1 S0 GO00 Gong onon

ENTER COMMARHD <OF "HELF"X

IHE DDUELE FRECIZION MUMEER

= I10M HUMEBER

EHTEF THE DDI ELE FFE' I=180M HUMEER

FEFFEZEHTATION

FEFREZEMTHRT ION

FEFFEZEMTATION

FEFREZEMTRTION

IM REZCII

IM AZCII
IH

AZCTI

IH AZCTII

Example 5-6:

EHTER COMMAHD <0OF “HELF"»:DA
EHTER THE HUMEER IH DOUELE FRECIZION MACHIME REFREZEHTRTION

T T T T
C1RO 0000 ooo0 0o

EHTEFR COMMANRD <OF "HELF "X : DA
EMTER THE HUMEER IM DOUELE FRECIZION MACHINE FEFREZEMTATION

noan

ENTER COMMAHD <O “"HELF™»:DA
EMTERE THE HUMEEE IM DOUELE FRECIZION MACHINE REFFEZEMTATION

FFFF FFFF FFFF FFFF

— e iy g
IR ONSS 4T T

e F Srra3ZSdIn E+T6

EHTER COMMAMD <OF “HELF">»:DA : _
EMTER THE HUMEER IM DOUELE FRECIZION MACHIMNE FEFFESEMTATION

ool n o oo0o0 aoon o000

+.

SEIVEOSISER3401E8: E-TR

EMTER COMMAMD <OR "HELP"2:

Several enhancements could be made to improve the accuracy and utility of

these

1)

2)

3)

4)

routines:

AINT, AREAL, and ADPFP could include error detection logic to flag
invalid ASCII input strings.

RASCII and DASCII could include an algorithm to round to 6 or 14
significant digits respectively.

RASCII and DASCII implement method 1 of section 5-3 by multiplying or
dividing the input quantity by 10 until the exponent is zero. The
routines could be made to execute faster on the average by converting
from 16B to F#10P via a table. This would require 128 entries or 512
bytes of memory for single precision or 1 Kilobyte for double precision.
Accuracy could also be improved if the proper table entries were used.

AREAL and ADPFP could be made to parse the input string so that a free
format input could be used. : ‘

5.7.3 Transcendental Functions

The transcendental functions are included to illustrate the accuracy to be
expected from common implementation of floating point operatlons. The
functions are calculated from Taylor series expansions.

Example 5-7:

EMTER COMMAMD <OF “HELF"»:3IN
ENTER ZINMGLE FRECIZION ZIME ARRGUMEMT IM DEGREES
Tt T, ,._- E - | I
+010
E+n0
EMTER COMMARMHD COR "HELF"»:ZIN
EMTEFR ZIHHLE FRECIZIOH ZIME ARGUMENT IN DEGREESX

T e B
— il + 0=
— . GFIIIEIVL]L E+00

EWTER COMMAMD COFR "HELFP"2:ZIH
;HTEF TIMGLE FRECIZIDON ZIME HEGUMENT I LEGREEE:
e e EEYY
+.45 + 1=
+,. 7071 0e8S E+0H0
ENMTER COMMEHD OF "HELF"»:3IN

ENTEF TIMGLE FRECIZION ZIME RREGUMEMNT IM DESFEES
R S

+. 50 +02

+. ZESN2S3Y E+ 00

ENTEF COMMANL ‘OF "HELF " :

Example 5-8

TER COMMAND <OF "HELFE"::C0%

EF THE ZIMGLE FRECIZION COZINE ARGUMENT I LEGREES
i L BT
+. + il
S, 0993393 E+0d

EMTER ZDMMAMD oCF "HELFPT"H :CZOT
EHTER THE ZTIMGLE FRECIZIOHM COIINE ARGUMEMT IM DESREES

‘OF "HELF"»:CCZ
FRECIZIDM CDOTIME RRGUMEMT 1M DESREES

“HELF £ 003
% ;:rhxg FRECIZION CDZ ARGUMENT IH DESFEES

Example 5-=9:

EMTER COMMAMD <OF "HELFP"3:DIIN
ARGLUMENT IM DEGREESE

+. 0 +111

EMTER COMMAND (OR “HELP"!:D3IM
EMTER THE DOUELE FRECIZION ZIME ARGUMEMT IN DEGREES
= BTV

+ 112

CIZION SINE ARGUMENT IN DESREES
L ETYY

+ s

+. TOTI067E116S4741 E+00

EMTER COMMAN D <OF "HELS"»:DIIN

EMTER THE DOUELE PRECISION TINE ARGUMENT IN DEGREES
3. BT

+102

E%%EE COMMAMD <OF "HELFP > :DZIH
Example 5-10:

EMTER COMMAMD <OF “HELF": :DCOT
EMTER THE DOUBLE FRECIZIOH COZINE ARGUMEMT IM DESREES

i e
+ .0l + 0

CIZIOH COZIME RREGUMEMT IH LDEGREEZ

EMTER CDOMMeHD COF "HELF"»:DCDE
EMTER THE DDCUEBELE FRECIZIOCH COZINME ARSUMENT IM DEGFEES
S 4 SeEae BEENY
+.45 + 0z
+, 71 0ETE11 3854755 E+ 00
ENMTEFR COMMAMD (OF "HELFE"» D203 :
EHMTEFR CIZIOM CO0ZIME ARGUMENMT IN DEGREES
R R S e AL D SO :
+.50 ' +0z
CGOONDoonoOnOn1s E+00
EMTER COMMAMD (CR "HELFR" 2 :

Example 5-11:

ENTEF

:HTEF THE

+.1
+. 27

EMTER

EHTEF THE

+.1

EMTER
ENTER

+.,1105
EMTEE
EHTEP THE
s EEYY

+.

Example 5-12:

EMHTEFR
EHTER THE

+. “LP4F

ENTEF

EHTER

S2Ves E+01

COMMENT

Ok

+01

- — -

COMMAMD

OF

+ 0z
+.,. oo rses E+0OS

COMMEHD

il

1672 E+01

COMMANT

COMMAMT

OF

fDF

"HELF ™"
JIHELE PRECIEIDH
TmmERE BEERYY

"HELF "3
ZIMGLE FRECIZION
GBSV

"HELF "3
THE ZIMGLE FRECIZION
®y ESYY

e

"HELF™

DDHELE FFE'I IDN

wOEEYY

+11

= Kt Sl 1= g 8 E+H1
COoMmAML COR “HELFR™

7944117194859

- COMMARMT
THE IOUERLE FRECIZION
bt SRS SR

IZETJTHHII

‘O

TEEAR 3

rOF

+11
E+ i

"HELF":

+HL

.:En

+ 00
E+1i1

"HELF ™"

5-15

B

“HELF"1:Ex
SIMELE FRECIZION

ExFOMEMTIAL

EXFOMENTIAL

ExFOMENTIAL

EXFOMENTIRL

:DE:

E

SFOMEHT IAL

tTiE

cHTEF THﬁ DDHELE FFEII IDH E
; R e BEENYY

-FOMEHTIAL

tTIE =

E

SFOMEMTIAL

ARGUMENT

REGUMERT

RREGUMENT

HEGLIMEHT

REGLUMENT

AFEUMENT

ARGLIMENT

FRGUMEMT

Several enhancements could be made to improve the versatility and accuracy of
these routines:

1)

2)

3)

L)

5)

5.7.4

The arithmetic overflow interrrupt could be set up to detect an overflow
condition. At present, out of bounds arguments for all the
transcendental functions will simply return an erroneous result.

Logic could be added to map the sine and cosine into the first quadrant
for any input value. The Taylor series evaluation for sine and cosine
for a fixed number of terms becomes more inaccurate as the input value
becomes greater in magnitude.

The Taylor series terms are added as they are calculated; hence,
succeeding smaller terms are added to a sum. For slightly improved
accuracy, calculate all the terms first and then add them in the reverse
order in which they were calculated.

Separate sine and cosine routines are not necessary. The cosine could be
calculated using the sine routine and an appropriate mapping algorithm.
All the trigonometric functions can be derived from the tangent series.

EX and ORX become erroneous for large negative numbers because Taylor
series expansion for eX becomes an alternating series for x less than
zero. For large negative numbers, large magnitudes are added and
subtracted to the sum to eventually yield a small result. Accuracy can
be restored by the method described in 3). As an alternative, calculate
eX for x less than 0 by taking the reciprocal of e~X,

Solution of Simultaneous Equations

The matrix inversion algorithm is designed to operate on a system of
simultaneous equations expressed in the form of a matrix with N rows and N+1
columns where N is the number of unknowns. The row elements are in contiguous
memory locations. The matrix is inverted "in place" by the Gauss-Jordan matrix
inversion method. The original matrix is therefore destroyed and the results
appear in the N+1 column of the matrix. For example, given the matrix A with N
unknowns, x1 will appear in A(N,1), x2 in A(N,2),...,xN in A(N,N+1).

The FPDMON command MINV assumes that the matrix has been previously placed in

memory.

Example 5-13:
TH OEOOOL.EOZE
Eoon=41110 oD 4120 aoan 4130 ooon F1F0 ooan
Edina=41110 oonn 41110 nogn 4110 oona 3120 aonn
EdGst=4170 00060 4is0 0000 4110 0000 SiR0 o000

#LDHTIHG FOIMT DEMO MOMITOR REY »
COPYRIGHT 1920 BEY TERAZ IMNZTREUMENTE

EWTER COMMAMD <“OF “"HELF72 sMINY -
EMTER THE HUMEER OF UMHENOWHE =>3

EMTER THE ADDRESS OF THE MATRIX =:E000
M1y =4, DFIIIIIE E+01
WS

R S
EMTER COMMANMDI <OFR “"HELF"2:QUIT

5-16

SECTION 6

I/0 PROGRAMMING USING THE CRU
6.1 GENERAL

This section describes the fundamental aspects of I/0 programming for a system
using a TM 990/1481. In this section, the I/0 functions on the TM 990/305
module will be used (the 305's memory section is not covered). Additional
information on 1/0 programing can be found in the following manuals:

® Model 990 Computer, TMS 9900 Microprocessor Assembly Language
Programmer's Guide (P/N 943441-9701)

e Model 990/12 Computer Assembly Language Programmer s Guide
(P/N 2250077-9701 *4)

e TMS 9901 Programmable Systems Interface Data Manual
e TM 990/305 Memory and I/0 Expansion Module User's Guide.
6.2 SYSTEM DESCRIPTION

A typical dpto—coupled I/0 system would consist of a TM 990/1481 and a T™
990/305. A brief description of the TM 990/305 I/0 interface follows.

The TM 990/305 has 16 parallel input lines (port 1) and 16 parallel
input/output lines (port 0) that can be individually configured as either
inputs or outputs. All I/0 lines are optically isolated and interface through
the communications register unit (CRU). Each input line of port 0 and port 1
has its own socketed series resistor to allow the user to easily reconfigure
the module for voltages up to 30 volts. Lines O through 3 and line 15 of port
1 can be configured as either inputs or interrupts by selecting the proper
Jumper option. Line 15 could be used to wire-OR interrupts 0 through 3 if the
user desires a board interrupt. Interrupts are edge-triggered and latched.

Port 0 functions in much the same manner as port 1 with the exception that the
lines can be used as inputs or outputs. When a line is to be configured as a
latched output, its individual line resistor must be removed from its socket.
By using high current, open-collector devices in port 0, output currents of 30
mA are permitted. If a line is to be used as an input, the optical isolator
in its output section should be removed from its socket. A schematic of a
channel of I/0 port 0 is shown in Figure 6-1.

As the CRU provides the interface between the TM 990/1481 and the TM 990/305
via the TM 990 system bus (see belwo).

6.3 COMMUNICATIONS REGISTER UNIT (CRU)

The CRU provides a dedicated serial interface for 1I/0 operations. CRU
instructions permit transfer of from one to sixteen bits. CRU I/0 provides
powerful bit manipulation capability, flexible field lengths, and a simple bus
structure (a description of CRU single-bit and multibit instructions can be
found in Section 4.5.8, entitled CRU Bit Addressing). Both the CRU and
address buses are used for this communication which involves 32 CRU bits. It

should be noted that the CRU does not use the data bus. A CRU map of the TM
990/1481 is in Appendix B.

+5V £128 E130 A B
+SVA
+sv—O—0-—-0——

7415251

4.7K TIL17
CRUIR --—
A12 INPUT > ot
A4 (7 InPUT
CHANNELS

I = REVERSE VOLTAGE
INSEL- ' PROTECT DIODE
TIL117 OR TIL119
(TIL119 SHOWN)

2200 CT T .
7415259 45V : |
™~ 1
|
e | e YT
A OUTPUT
A13 LATCH v _J
At — . T - --T-==
OUTSEL- ——) 7 OUTPUT
CHANNELS

RESET- ————j

FIGURE 6-1. TM 990/305 PORT 0 I/0 CHANNEL

As an example of offboard CRU, the TM 990/305 can be assigned a unique CRU
hardware base addresss as explained in the TM 990/305 User's Guide. A sample
program using the TM 990/305 is provided in paragraph 6.6 herein. This
address is the "base address" for that module and is the reference point from
which displacements are taken when using CRU single-bit instructions. The CRU
map for the TM 990/305 is given in Table 6-1; this map gives the needed
information to address any of the I/0 module's channels or interrupts. As an
example, after the CRU hardware base address for the I/0 module is loaded into
R12, then the instruction SBO 5 would activate a load or relay connected to
output OUTS5 on that module (Note: this high level signal is then inverted thus
producing the low signal that is required to activate the TIL 117/TIL 119
opto-coupler. Similarly, this bit could be tested with a test bit 5 (TB5)
instruction to verify that the low level that is required to activate the load
was actually present.

6.4 LOADING THE CRU HARDWARE BASE ADDRESS

There are two techniques that can be used to load the CRU hardware base
address into its designated workspace register (R12). 1In order to
best illustrate these techniques, a review of CRU bit address development will
be presented first.

The CRU bit selected by single~bit instructions is determined by the value in
bits 3-14 of workspace register R12 plus the value of the signed displacement
from the single-bit instruction (See Figure 6-2). The contents of R12 are
referred to as the "software base address™ while bits 3-14 of R12 constitute
the "hardware base address." To properly load R12, a value equal to 2X the

6-2

TABLE 6‘10

TM 990/305 CRU MAP

pefinitions: A = CRU H/W Base Address (R12, Bits 3-11)
- S/W Base Address = 2 X H/W Bit Address
CRU Bit H/W Bit Address Input Output
0 A + 0000 I/0 Port 0 IN O I/0 Port 0 OUT O
1 A + 0001 " IN 1 n OUT 1
2 A + 0002 n IN 2 " oUT 2
3 A + 0003 " IN 3 " OUT 3
y A + 0004 n IN 4 n OUT 4
5 A + 0005 " IN 5 " outT 5
6 A + 0006 n IN 6 " OUT 6
7 A + 0007 " INT n OUT 7
8 A + 0008 " IN 8 " OUT 8
9 A + 0009 " IN 9 " OuUT 9
10 A + 000A n IN 10 " ouT 10
1 A + 000B " IN 11 " ouT 1
12 A + 000C n IN 12 n OUT 12
13 A + 000D L IN 13 " oUT 13
14 A + O0OE n IN 14 n OUT 14
15 A + OOOF " IN 15 " ouUT 15
16 A + 0010 INPUT PORT1 INO/INTERRUPT 0 INTERRUPT RESET 0
17 A + 0011 IN1/INTERRUPT 1 INTERRUPT RESET 1
18 A + 0012 " IN2/INTERRUPT 2 INTERRUPT RESET 2
19 A + 0013 " IN3/INTERRUPT 3 INTERRUPT RESEr 3
20 A + 0014 " INU
21 A + 0015 " IN5
22 A + 0016 " IN6
23 A + 0017 " INT
24 A + 0018 " IN8 INTERRUPT MASK O
25 A + 0019 n IN9 INTERRUPT MASK 1
26 A + 001A " IN10 INTERRUPT MASK 2
27 A + 001B " IN11 INTERRUPT MASK 3
28 A + 001C n IN12 STATUS LED #1
29 A + 001D " IN13 STATUS LED #2
30 A + 001E n IN14 BOARD I/0 RESET
31 A + 001F n IN15/BOARD INTERRUPT BOARD INTER. RESET

desired CRU hardware base address can be loaded into R12 or a value equal to
the desired CRU hardware base address can be loaded into R12 and then shifted
one bit to the left.

SOFTWARE BASE ADDRESS

A

s IR
c 1 2 3 & 5 6 7 9 0 11 12 13 14 15

CIl-1-1 T T T I T 1T P T 1 [1 [xJre

DON'T CARE |)

g

HARDWARE BASE ADDRESS

8 9 10 11 12 13 1% 15
ADD SIGNED

% E E 5 [l l [I l l] "~ DISPLACEMENT

BIT SIGN
EXTENDED J::L

6 1 2 3 4 5 6 7 8 9 10 11 12 13 1 .
lelol T T T T T T T T T T T] seonessous
M— v v - -

SET TO ZERO EFFECTIVE CRU BIT ADDRESS
FOR ALL CRU ON ADDRESS LINES A3 TO A%4
\OPERATIONS Y

Y
HARDWARE BIT ADDRESS

FIGURE 6-2. CRU BIT ADDRESS DEVELOPMENT

As an example of loading the CRU hardware base address, assume that a CRU
hardware base address of 1804g (38443) is to be loaded into R12. As mentioned
previously, there are two ways to accomplish this loading: 1load a value into
R12 that is equal to twice the value of the CRU hardware base address or load
the value equal to the desired CRU hardware base address and then shift the
value one bit to the left. The following examples place CRU hardware base
address 38U44g (1804g) into R12.

EXAMPLE 1: LI R12,>300 Loads 1804¢ (38l413) into bits 3-14 of R12
Notes: 1. 300416 = 2X 18014-

2. The greater than sign (>) is used to
indicate a hexadecimal value.

EXAMPLE 2: LI R12,>180 Loads 1804¢ (38U44g) into R12
SLA R12,1 Shifts R12 contents one bit to the left.

6-4

Now that the two techniques for loading the CRU hardware base address have
been described, an example illustrating the loading of a specific bit will be
given. Assume that the I/0 module is assigned a CRU hardware base address of
18016 and it is desired to activate output 5 (OUT5). The displacement from

the base address is 51g as given in Table 6-1. The required code that is
needed to select this output follows:

EXAMPLE 1: LI R12,>300 This technique loads R12 with 2X the CRU
SBO 5 hardware base address that is desired.
The SBO instruction activates the bit that
is displaced by 5 from the base address.

EXAMPLE 2: LI R12,>180 This technique loads R12 with the CRU hard
SLA R12,1 ware base address and then shifts this data
SBO 5 one bit to the left. The SBO instruction

carries out the same function as in the code
given above.

6.5 USER WORKSPACE

The high usage data registers for the TM 990/1481 are defined as blocks of
memory called workspaces; these workspaces are located on the memory module.
The starting location of a workspace is defined by a single internal register
called the workspace pointer. The workspace pointer contains the memory word
address of the first of sixteen consecutive memory words in the workspace,
thus the processor has access to sixteen 16-bit registers. When a differnet
set of registers is required, the program simply reloads the workspace pointer
with the new address.

The load workspace pointer immediate (LWPI) instruction is used to define the
starting address for the user workspace. As this workspace resides in RAM
(read/write memory), then the type of memory module used and how it is
configured will determine the available user workspace.

6.6 SAMPLE PROGRAM

A sample program that will monitor one input line and control one output line
on the TM 990/305 is given in Figure 6-3. This control system responds to
inputs from a transducer and activates a relay that controls some form of a
load. Output OUT1 of I/0 port 0 is controlled as a result of constantly
reading the state of input INO of the same I/0 port. Both the input and
output signals are active highs. When a one is read at INO, a one is output
to OUT1.

START LWPI >FF90 Define workspace just below TIBUG
OFF LI R12,>300 Load TM 990/305 CRU hardware base address
SBZ 1 Turn output (OUT1) off
LOOP TB O Look at input level
JNE OFF Read "O" = off
SBO 1 Turn output on
JMP LOQP Look at input level again
END

FIGURE 6-3. MONITOR CONTROL PROGRAM

6-5

SECTION 7
THEORY OF OPERATION
7.1 GENERAL

This section covers the theory of operation of the T!" 990/1481. Information
in the following manuals can be used to supplement material in this section:

e SN74sSu81, SN5ULS/THULSU81 4-Bit-Slice Schottky Processor Data Manual
e TMS 9902 Asynchronous Communications Controller Data Manual
e TMS 9901 Programmable Systems Interface Data Manual.

7.2 SYSTEM BLOCK DIAGRAM

Figure 7-1 shows a system using the TM 990/1481(processor and controller
boards) and a memory board. All boards interface with the TM990 BUS on the
motherboard via the common bottom edge connector Ji1. The PROCESSOR and the
CONTROLLER are also interconnected via the common top edge connectors J3 and
J4. Connector J2 on the CONTROLLER allows connection to any RS232 device such
as the TI Silent 700 terminal or the TM 990/301 Microterminal.

7.3 THE PROCESSOR BOARD
7.3.1 The 481 Bit-Slice Processor

The PROCESSOR board is designed around the TI SN74SU81J bit-slice processor
integerated circuit. A functional block diagram of this processor is given in
Figure 7-2. The PROCESSOR's major operating registers are contained within
the 481 chips. These registers are the PROGRAM COUNTER (PC), the MEMORY
COUNTER(MC), the WORKING REGISTER (WR), and the EXTENDED WORKING REGISTER
(XWR). Detailed information on the 481 can be found in the data manual
entitled the "SNT74S481, SNSULS/TH4LSH81 4-Bit-Slice Schottky Processor Elements
Data Manual." The TM 990/1481 processor is shown on sheet 2 of the processor

board schematics in Appendix A. This processor uses four 481 chips to form a
16-bit processor.

The ALU OP CODE, OPO to OP10, is routed from the CONTROLLER board via the top
edge connector P3 shown on sheet 6 of the schematics. OP8 and OP9 go thru
open collector gates to allow the processor chips to drive these lines during
micro/macro-operations such as multiply and divide. OPO thru OPY4 are OR'ed
with ALUSPLIT to the least significant two chips of the ALU to create a NOP
function in the lower byte during byte operations. OP10, whiech is typically
the carry-in function in the ALU OP CODE, goes thru a mux whlch allows a
previously saved carry-out to be substituted as the carry-in.

Two microinstruction commands of the STATUS CONTROL (STC) field, SAVCO and
USENSAV, allow the present carry-out of the ALU (CO-) to be saved in the
COSAV flip-flop until another SAVCO or USENSAV is executed. The saved
carry-out can then be substituted for OP10 as the carry-in to the ALU on any

subsequent microinstruction. Again two decodes of the STC field, USECOSAV and
USENSAV, allow the substitution of COSAV for OP10.

[T S e e e e e e e s m oo 1 I A e 1
b TTY/RS-232-C/MICROTERMINAL INTERFACE J2 AR
]
! H '
: ™S 9902 i
! 1/0 CONTROLLER L
i P
L N :
CONTROL MEMORY ADDRESS BUS CONTROL
[l]
| y i | €PROM RAM
: r—“-‘—ﬁ' H
| ! H
| \or [A DCAL 1 DCAL 2 RETURN | CONTROL MICROINSTRUCTION b
! z: L PLA PLA PLA ADDRESS MEMORY REGISTER !
i al | e REGISTER ADDRESS MUK T i
- o i
T I i
A B cLoCK |
bowl | oa PERIOD .
- por A COUNTER ‘
1 . N \ W]
! L L [TESTO !
t \ AN _ 1
: ~_ENBRN 2 Tes) : JANVZAN
: ENRTN rest[iestz) | ||
| ENSCAL- | SOURCE wox [rests) | |
H CONTROLLER ENDCAL~- SELECT m L
hENDLAL”
X BOARD n DEMUX i
: INSTRUCTION ENIRS-] ~ : MEMORY BOARD :
' REGISTER CEntro-] | :
:]] 1
| - e e - et e e e i e om0 0 e b cn e man habd Lecercwcmmcecnmce—w - o o 2o NN U S . -
[DATA BUS)
[[4 T| ™ 990
(CRU AND CONTROLLER BUS 1} sysTem
1]]] t [|eus
[ADDRESS BUS]
__ N
- ADDRESS 1
BUFFERS PROCESSOR !
BOARD
L F BUS]
CONTER -) 2
RFO_ |
PAR &
- Y ¢ ¢ I RE1]
STATUS T L
——/ 18 \/ b8 \<— INSTRUCTION ™S 9901 HUX/ — R
JEN—— REGISTER . o
o Pc [Mc {xwr] wr I STATUS RF15_(WP)IF
: REGISTER
t | err-sirce -
! |PRocESSORS g
' MY g v s Ll vy T¥INTERRUPT CONSTANT
| Bl ¢ A W DECODE [VECTORS WORD
]
(]
: .
' { A BUS]]
: | K 2 [¥ | [) R ¥ 11
' [‘ B BUS |l
i 14 L 1 { { L Y Y))] 1))|
i L CONTROL_BUS]
]]
e s ot e e e 20 e 2 2 e o 2 e e e e e o e e ————— J

FIGURE 7-1.

TM 990/1481 SYSTEM BLOCK DIAGRAM

CLOCK —§. .
-
—
-
HARDWIRED
ALGORITHME
wol(C b=~ — = — 4
mSP
OPER. o
meruLis MICRO-DECODE
LOGIC AHRAY
—
POS ——————if
cin
e x out
INCPC —» TOPC el LOG > OUT IMSP)
INC ME —— ToMe COWAL::::’ON M }—. Y ouY
LOADWR ————— TOWR - AG ARITH.> OUT (MSP'
PGM CTR Cout p—————e cout
AOMUX o
SELECT MEM CTR U €Q f——————= EouaL
. w 3ISIATE] > Ovjp—
—— -
DO MUX XWH 8US
SELECT SHIF T MUX A
w2z)
B0 SEL m 4 H >
] S V) —
e —~ 1 HHEmE
4 H H cco
L 0 M | Jo OVER FLOW (MSP!
h .
XWR MUX wamun / l Iyt L L
EXTENOED 4 WORKING PROGRAM
MEMORY
XWHLET WORK) |]
e REGISTER P Recisten P counten T counten
XWRH T —4 AL 4] J o

| _
R I T <IN~
e o,
‘4’14 l l - e} |a
\ vomox / N/
WRLFY WRRT 4}

DATA QUT ' ADDRESS OUT
PORT PORTY -

FIGURE 7-2. SN74S481 FUNCTIONAL BLOCK DIAGRAM

The flip-flop which saves the overflow bit functions in a different manner
from the COSAV flip-flop. The overflow bit out of the ALU (OV) is saved in
the OVSAV flip-flop only when the SAVOV microinstruction is executed, and is
reset after the next microinstruction. The OVSAV command is a decode of the
STC field. If a string of consecutive microinstructions are executed with
SAVCO, and an overflow occurs anywhere in the string, then the OVFL signal
will be held from that point to the end of the string and for one additional
microinstruction period.

This feature is used for example in the left arithmetic shift. The ALU can do
only a single bit shift so a multiple bit shift is performed by looping on a
shift and decrementing the counter to zero. The ALU produces an overflow (0V)
if the sign bit changes on any shift, but the OV goes away if the sign remains

the same on subsequent shifts. The OVSAV allows the overflow condition to be
saved and status recorded properly.

T.3.2 Shift Counter

The SHIFT COUNTER counts the microcycles for operations such as shifts,

7-3

divides, multiplies, and other iterative operations. The SHIFT COUNTER may be
decremented by one, loaded with a count value, or set to 15. The counter is
4 bits wide and is loaded from the F-BUS bits F11 thru F14 when the LDCNT bit
of the microinstruction is set. The count loaded is therefore actually F/2.
The COUNT=0 signal from the counter goes to the BRANCH TEST MUX so the
microprogram may conditionally branch on the COUNT=0 condition.

The SHIFT COUNTER, shown on sheet 4 of the PROCESSOR schematics, is
implemented using an SN7TULS163N FOUR BIT COUNTER chip. The counter is
actuaily implemented using complement logic, that is, it is loaded with the
complement of the F-BUS (F(11-14)-), counts down rather than up, is cleared
to zero rather than set to 15, and detects COUNT=15 rather than COUNT=0. All
of this is transparent to the microprogrammer however.

The counter is controlled by two bits of the microinstruction, LDCNT and
DECCNT. LDCNT causes the counter to be loaded with the complement of the
F-BUS value (F(11-14)-) on the next clock (CLKC3-). DECCNT causes the
counter to increment by one on the next clock (CLKC3-). If LDCNT and DECCNT
are both ONE then the counter is reset to ZERO via the SETCNT15 signal.

7+.3.3 The Swap Multiplexer

The SWAP MUX allows the microprogrammer to swap the two bytes of the data on
the F-BUS, and the result is available on the A-BUS. The swap operation is
normally used to move the byte to be operated on to the most significant half
of the word since in byte microoperations the ALU only operates on the upper
byte. The normal state of the SWAP MUX allows data to pass to the A-BUS
unchanged, and therefore provides a path from F-BUS to A-BUS. There are three
swap commands available: FSWAP = swap unconditionally, CSWAPA = swap if bit 15
of the address is one, and CSWAPB = swap if bit 15 of the address is one and
the instruction is a byte related instruction. The swap commands are decodes
of the DECODE field of the microinstruction.

The SWAP MUX, shown on sheet 3 of the PROCESSOR schematics, is implemented
with four SN7US257N QUAD 2 TO 1 MULTIPLEXERS. The chip enables of the
multiplexer chips are controlled by the ENSM- signal which is the complement
of the A-BUS SELECT bit of the microinstruction bit ENRF- (CMDO(41)). The
A/B SELECT inputs of the mulitiplexer chips are controlled by the SWAP signal,
which is a function of FSWAP-, CSWAPA-, CSWAPB-, BYTEX, and AO15. The
function is: '

SWAP = FSWAP + AO15 * (CSWAPA + CSWAPB * BYTEX)

where FSWAP, CSWAPA, and CSWAPB are decodes of the DECODE field of the
microinstruction word (DEC(0-4) = CMDO(76-80)), BYTEX is a decode of the
instruction register, and AO15 is the least significant bit of the ADDRESS
BUS. The decoded signals are defined as follows:

DEC(0-4)=00010 —» FSWAP, (FORCE SWAP)

DEC(0-4)=00011 —» CSWAPA, (CONDITIONAL SWAP
on ADDRESS)
DEC(0-4)=00100 —» CSWAPB, (CONDITIONAL SWAP
on ADDRESS if BYTE)
The BYTEX signal indicates that the instruction register contains a BYTE
related instruction, and the least significant bit of the address, A015,
indicates which of the bytes was addressed, the upper byte or the lower byte.

7-4

7.3.4 Instruction Register (IR)

The principal INSTRUCTION REGISTER is on the CONTROLLER board where it is
decoded to get the microprogram entry points, but a second INSTRUCTION
REGISTER is located on the PROCESSOR board where it is used to save the
variable parts of the instruction such as the addressing parameters. The
fields of the IR which the microprogrammer can access are the C, S, D, and
DISP fields. All of these fields are presented to the ALU, via the B-BUS,
right justified to the second from the least significant bit. They are
therefore actually 2%C, 2%S, 2%#D, and 2*DISP. The DISP field is sign extended,
and the C, S and D fields are zero filled.

The INSTRUCTION REGISTER, shown on sheet 4 of the PROCESSOR schematics, is
implemented using an SNT4S3TUN EIGHT BIT REGISTER and an SNT4S175N FOUR BIT
REGISTER. The IR is divided in such a way that the least .significant four
bits may be loaded independently of the rest of the word. Only 12 bits of the
IR are implemented on the PROCESSOR since the upper bits do not contain
variable data fields. The least significant four bit register is clocked by
the GCKIR- signal and the upper register is clocked by CKIR-. GCKIR is the
logical OR of CKIR and CKIRX so CKIR clocks the entire register and CKIRX
clocks only the least four bits.

The data fields of the IR are driven to the B-BUS using four SNT4LS2UL4N QUAD
BUS DRIVERS. One of the LS244's drives either the S-FIELD of the IR
(IR(12-15)) or the D-FIELD of the IR (IR(6-9)) to the B~-BUS (B(11-14)).
A second LS244 drives either the upper 4 bits of the 8 bit displacement field
of the IR (IR(8-11)) or zeros to the B-BUS (B(7-10)). A third LS244, shown
on sheet 8 of the PROCESSOR schematics, drives the C-FIELD of the IR
(IR(8-11)) to the B-BUS (B(11-14)). When the C,S,or D fields are driven
to the B-BUS (B(11-14)) the remaining 12 bits (B(0-10) and B(15)) are
driven to zero to fill out the word by the other LS244's. When the
DISPLACEMENT FIELD is driven to the B-BUS the upper bits are sign extended
(B(0-~7) = B(8)) and the least siginificant bit is set to zero (B(15) = 0).

The control signals that determine which IR field drives the B-BUS are decoded
from the B-BUS SELECT field of the microinstruction
(BSEL(0-3)<— CMDO(U43-45)). The decoding is done using an SN7T4S138N THREE
TO EIGHT DEMULTIPLEXER, as shown on sheet 6 of the PROCESSOR schematies.

The decodes are as follows:

BSEL(0-3)=001 —» ENS- S FIELD
BSEL(0-3)=010 — END- D FIELD
BSEL(0-3)=011 — ENDISP- DISPLACEMENT FIELD
BSEL(0-3)=111 - ENC~ C FIELD

7.3.5 Status Register and Status Logic

The STATUS LOGIC allows the microcode to transfer the existing status
conditions at any time to the STATUS REGISTER. The microinstruction control
word allows either individual status bits to be enabled or certain logical
groups of bits to be enabled simultaneously. The STATUS REGISTER can be loaded
in three ways, bits 0~-7 from current conditions selectively under
microinstruction command, bits 12-15 directly from the F-BUS (MASK load), or
all 16 bits at once loaded directly from the F-BUS.

The STATUS REGISTER is shown on sheet 7 of the PROCESSOR schematics. The
status logic can be logically divided into six parts; the STATUS REGISTER

7-5

itself, the STATUS MULTIPLEXER, the STATUS CONTROL section, the F-BUS buffer,
the B-BUS buffer, and the CARRY/SHIFT logic.

The STATUS REGISTER is implemented using four SN7T4LS379N FOUR BIT REGISTERS.
The register is divided in this manner to allow the upper 8 bits to be
controlled via the STATUS MUX and to allow the lower 4 bits to be loaded
independently for MASK LOAD. The register chips are clocked continuously by
the system clock CLKP3- . In the normal state the STATUS MUX circulates
present status back to the upper 8 bits in the upper two LS379's, and the

lower two LS379s have the LOAD line off (HIGH) so that STATUS remains
unchanged.

The STATUS MULTIPLEXER, which consists of four SN7ULS253N DUAL 4 TO 1
MULTIPLEXERS, can individually select either NO CHANGE or UPDATE for each of
the upper 7 bits of the register. The control lines ENST(0-6) determine which
of the bits are to be updated and which are to remain the same(the 8th bit,
ST7, located in the STATUS MUX, cannot be updated via the STATUS MUX but can
be changed as described below).

The source of the new status conditions is the current output of the S481
processor. The LGT,AGT,EQ,and OVFL conditions come direectly from the Si#81s.
The PARITY signal is generated from the upper bits of the word currently on
the F-BUS using an SNTULS280N PARITY GENERATOR. The COSH signal is either the
CARRY-OUT of the ALU or the SHIFT-OUT of the ALU depending on the state of the
SAVSH- signal.

The STATUS CONTROL logic decodes the STATUS CONTROL field of the
microinstruction to produce the necessary control signals for the status logic
and some additional control signals for the ALU section. The STATUS CONTROL
produces the individual status bit enable signals, ENST(0-6), the status load
signal, LDSR (and LDSR-), and the mask load signal, LDMASK-.

The F-BUS BUFFER allows the F-BUS to drive the upper status bits instead of
the STATUS MUX during the status load operation. The F-BUS BUFFER is
implemented using half of two SNTULS244N OCTAL BUS DRIVERS. The output enable
of the buffer is controlled by the LDSR- signal. When LDSR- is LOW the F-BUS
feeds the STATUS REGISTER, and when LDSR- is HIGH the STATUS MUX feeds the
STATUS REGISTER.

The B-BUS BUFFER, consisting of four SN74LS244 OCTAL BUS DRIVERS, allows the
STATUS REGISTER to be read to the B-BUS when selected via the B-BUS SELECT
field of the microinstruction. The signal ENSR which causes the buffer to
drive the B-BUS is decoded from the B-BUS SELECT (BSEL(0-2) = 011).

The CARRY/SHIFT logic, shown on sheet 11 of the PROCESSOR schematics, is used
to control the condition which sets ST3, either CARRY-OUT(CC) or
SHIFT-OUT(SH), and if SH then which bit should be used F(0) or F(15).

TABLE 7-1.

STATUS CONTROL ROMS

PROCESSOR PROCESSOR
PROM P1 (U17/D6) PROM P2 (U23/E6)
1=ENCRUCLK 1=SAVSH-
2=ENST6 2=ENSAVCO
3=ENST5 3=SAVOV
4=ENSTY4 4=ALUSPLIT
5=ENST3 5=COSAVUSE~-
6=ENST2 6=LDSR~
7=ENST1 7=LDSR
8=ENSTO 8=LDMASK-
P1 P2
DECODE MNEMONIC 87654321 8765u4321
00000 NOP 00000000 10110001
00001 COMP 11100000 10110001
00010 COMPB 11100100 10111001
00011 ARITH 11111000 10110001
00100 ARITHB 11111100 10111001
00101 SHIFT 11110000 10110000
00110 SHIFTL 11111000 10110100
00111 CRUCLK 00000001 10110001
01000 SHTEST 00000000 10110000
01001 USENSAV 00000000 10100011
01010 COMPOV 11101000 10110001
01011 NOP 00000000 00000000
01100 NOP 00000000 00000000
01101 NOP 00000000 00000000
01110 NOP 00000000 00000000
01111 NOP 00000000 00000000
P1 P2
DECODE MNEMONIC 87654321 87654321
10000 ENLGT 10000000 10110001
10001 ENAGT 01000000 10110001
10010 ENEQU 00100000 10110001
10011 ENCO 00010000 10110001
10100 ENOV 00001000 10110001
10101 ENOP 00000100 10110001
10110 ENXOP 00000010 10110001
10111 USECOSAV 00000000 10100001
11000 ALUSPLIT 00000000 10111001
11001 SAVOV 00001000 10110101
11010 SAVCO 00000000 10110011
11011 SAVSH 00010000 10110000
11100 SAVCOST 00010000 10110011
11101 LDSTATUS 00000000 11010001
11110 LDMASK 00000000 00110001
11111 LDSR 00000000 01010001

7.3.6 Register File

The REGISTER FILE contains 16 registers, 15 of which may be used by the
microprogrammer for general data storage. Register number 15 is dedicated to
holding the WORKSPACE POINTER. The primary use of the REGISTER FILE in the
1481 instruction set is in storing the intermediate results in the floating
point routines.

The REGISTER FILE, shown on sheet 5 of the PROCESSOR schematics, is
implemented using four SN74S189N 16X4 RAMS, and four SN74S24ON OCTAL BUFFERS.
The input to the REGISTER FILE is TRUE data from the F-BUS (F(0-15)). The
output of the REGISTER FILE is COMPLEMENT data (RF(0-15)-) to the buffers.
The buffers are inverting so the data to the A-BUS and B-BUS is again TRUE
data. The address to the REGISTER FILE comes from the REGISTER FILE ADDRESS
field of the microinstruction (RFAD(0-3) -«— CMDO(38-41)). The WRITE ENABLE
to the REGISTER FILE (CKRF-) is derived from the system clock (CLKP3-) and
the LOAD REGISTER FILE bit of the microinstruction (LDRF- -«— CMDO(66)).
The output of the REGISTER FILE can go to the A-BUS or to the B-BUS or to
both. The signals which drive the buses are ENRFA- and ENRFB- which are
derived from the A-BUS and the B-BUS SELECT fields of the microinstruction.

When the REGISTER FILE is being loaded (CKRF- = 0) the outputs of the S189s
go to HIGH-Z which looks like ALL ZERO on the A-BUS or the B-BUS if RF is
selected. This is normally not a problem since the input latchs on the S481s
are simultaneously locking out the BUS data. This is NOT true for the DIRECT
A-BUS TO WR LOAD (LDWR-«—CMDO(65))! The implication of this is that if data
must be transferred from the RF to the WR at the same time the RF is loaded
from the F-BUS, the direct A-Bus to WR load should not be used; instead, the
data should be loaded thru the ALU section via the input latches using ALU
opcode A>WR (00000001011).

T7.3.7 Constant Word

The CONSTANT WORD comes from the 16 bit BRANCH ADDRESS 1 (BA1) field of the
microinstruction. Normally this field contains one of the two branch
addresses for a conditional branch, but if an unconditional branch to the
BRANCH ADDRESS 0 (BAO) has been selected, then the contents of the BA1 field
is a "don't care" as far as the branch logic is concerned. The BA1 field may
then be used to introduce a CONSTANT WORD onto the B-BUS of the PROCESSOR,
This word might be a number to be added to the data being processed or a mask
word used to eliminate unwanted fields in the data.

The 16 bit BA1 field (BX(0-5),BA(10-19)) is routed from the CONTROLLER to the
PROCESSOR via the JU4 top edge connector on pins J&-25 to J4-40 as shown on
sheet 6 of the PROCESSOR schematic. Four SNTULS244 OCTAL BUS DRIVERS allow the
CONSTANT WORD to drive the B-BUS when enabled by the ENCONST- signal as shown
on sheet 7 of the schematies.

7.3.8 A-Bus, B-Bus, and F-Bus

There are three tri-state buses in the PROCESSOR, the A-BUS, the B-BUS, and
the F-BUS. The A-BUS and B-BUS are connected to the AI and BI input ports of
the U481 processor, and the F-BUS is driven by the Data Output Port of the 481
processor. The F-BUS can also be driven by the Address Output Port of the 481
and by the Memory Data Input from the TM390 BUS.

The A-BUS can be thought of as the operand bus. Data fetched from memory is

7-8

normally brought into the Working Register (WR) via the SWAP MUX and the
A-BUS. Intermediate results stored in the REGISTER FILE are available to the
481 via the A-BUS. The AI input to the 481 differs from the BI input in that a
direct path exists from AI to WR which bypasses the ALU logic and therefore

requires less setup time. This is why the A-BUS was chosen as the data input
path.

The B-BUS can be thought of as the modifier bus. The words brought to the
B-BUS are typically used to modify addresses or data words. The BI input to
the 481 has a more extensive set of options available than the AI input and
therefore is used for modifier type data.

There are two sources which can drive the A-BUS, the SWAP MUX and the REGISTER
FILE. The ENRFA- bit of the microinstruction (CMDO(42)) determines which of
the two drives the A-BUS on each microinstruction (ENRFA- = 0 — REGISTER
FILE, ENRFA- = 1 —= SWAP MUX). The SWAP MUX, which was described in Section
7.3.3, is implemented with multiplexer chips that have tri-state outputs, and
it is therefore connected directly to the A-BUS. The ENSM- signal controls the
OUTPUT ENABLEs on the multiplexers, and when ENSM- is LOW the SWAP MUX drives
the A-BUS.

The REGISTER FILE, which is described in Section 7.3.6, is implemented with
RAM chips which have tri-state outputs, but an intermediate set of tri-state
buffers are used for two reasons. First the RAM chips complement the data and
an inverting buffer is needed to return true data, and secondly it was
necessary to have two sets of buffers to be able to drive both the A-BUS and
the B-BUS from the REGISTER FILE. The ENRFA- signal is connected to the
OUTPUT ENABLES on one pair of SNT4S240N OCTAL BUS DRIVERS, and when ENRFA- is
LOW it enables the REGISTER FILE to drive the A-BUS with true data.

There are eight sources which can drive the B-BUS; the CONSTANT WORD, the S
field of the INSTRUCTION REGISTER (IR), the D field of the IR, the C field of

the IR, the DISP field of the IR, the INTERRUPT VECTOR (IV), the STATUS
REGISTER (SR), and the REGISTER FILE (RF).

The BSEL field of the microinstruction word (BSEL(0-2) -« CMDO(43-45)) con-
trols which source drives the B-BUS on each microinstruction. The BSEL field
is decoded by an SN74S138N 3-T0-8 DEMULTIPLEXER to produce eight control
signals, ENCONST-, ENS-, END-, ENDISP-, ENIV-, ENRFB-, ENSR-, and ENC-, which
are used to enable the tri-state buffers to drive the B-BUS.

The F-BUS can be thought of as the result or the function bus. The data which
results from ALU operations can be brought out to the F-BUS and then out to
memory or saved in the local REGISTER FILE. Data from memory is routed first
to the F-BUS from which it can be stored in the REGISTER FILE or routed thru
the SWAP MUX to the WR. The ADDRESS OUTPUT can also drive the F-BUS to allow
operations or modifications to be performed on the address. Also the COUNTER
and the STATUS REGISTER can be loaded with data from the F-BUS.

The F-BUS can be driven from five sources three of which are from the U481
Processor, the ALU SUM BUS, the WORKING REGISTER, and the EXTENDED WORKING
REGISTER, and the two other sources are MEMORY DATA IN and ADDRESS OUT.

The FSEL field of the microinstruction word (FSEL(0-2) --— CMDO(U47-49))
determines which of these sources drives the F-BUS. Two of the lines, FSEL1
and FSEL2 go directly to the 481 Processor DO and D1 control inputs to select
one of the three 481 internal sources to drive the F-BUS.

7-9

FSEL1 FSEL2 SOURCE

(p1) (DO)

0 0 ALU SUM BUS
0 1 XWR

1 0 WR

1 1 (HI-Z)

When FSEL1 and FSEL2 are both HIGH the 481 DATA OUTPUT lines go to HI-Z and
this allows the other sources to drive the F-BUS. The remaining control bit
FSELO determines which of the two other sources will drive the bus, MEMORY
DATA IN (MDI) or ADDRESS OUT. The FSEL(0-2) signals are used to generate
the enable signals, ENMDI- and ENATOF- as shown on sheet 9 of the PROCESSOR
schematies. The MEMORY DATA IN buffer is implemented using four SNT4S2U1N
OCTAL TRI-STATE BUFFERS, shown on sheet 3 of the schematics, which are enabled
by ENMDI-. The buffer which routes ADDRESS OUT to the F-BUS is implemented
using four SNTUS241N OCTAL TRI-STATE BUFFERS, shown on sheet 3 of the
schematics, which are enabled by ENATOF-.

7.3.9 Address and Data Out

The address and data lines are driven to the TM990 BUS using four SNT4S241N
OCTAL TRI-STATE BUFFERS, as shown on sheet 3 of the PROCESSOR schematics. The
address lines come from the ADDRESS OUTPUT PORT of the 481 Processor. The
data lines come from the F-BUS which would typiecally be driven by the DATA
OUTPUT PORT of the 481 Processor when data is being output to the TM990 BUS.

The ADDRESS OUT buffer is enabled by HOLD ACKNOWLEDGE (HOLDA) so the address

is being driven to the bus at all times except when the TM990/1481 has
released bus access to some other device.

The DATA OUT buffer is enabled by the signal ENABLE DATA OUT (ENDO) which is
derived from the ENABLE MEMORY DATA OUT (ENMDO) bit of the microinstruction.

7.3.10 Interrupt Logic and Jump Control

The Interrupt Logic recognizes interrupt conditions, compares individual bit
masks, resolves interrupt priority, generates the Interrupt Vector, checks the
interrupt level mask, and controls the Pending Interrupt signal which
initiates the firmware interrupt trap routine.

The 15 Maskable Interrupts are controlled by the TMS9901 Programmable Systems
Interface integrated circuit shown on sheet 10 of the PROCESSOR schematics.
The TMS9901 is controlled via the CRU. It can selectively mask out any of the
15 interrupts, but whether masked or not any of the interrupt lines can be
tested via the CRU.

The TMS9901 resolves interrupt priority level and generates a 4-bit Interrupt
Vector (IVO-IV3) which represents the level of the highest priority unmasked
active interrupt. If any unmasked interrupt is active it generates an
Interrupt Request signal (INTREQX-).

The 15 interrupt lines on the TM990 BUS which are inputs to the TMS9901 are
pulled-up to +5V on the PROCESSOR using 4.7 Kohm resistors. INT4- can be

jumper selected as the normal bus interrupt or as an interrupt from the TM
9902.

The TMS9901 is controlled via the CRU interface and has a CRU address of >080
(i.e. (R12) =>0100). The upper most CRU address bits are decoded by a PROM
on the CONTROLLER board to produce the TMS9901 enable signal SEL9901-. The
lower five bits of the CRU address, A10-A14, are used by the TMS9901 to
address the individual control or data bits. The TMS9901 is clocked by the
3.0 MHz clock REFCLK from the TM390 BUS.

Based on the condition of the 15 interrupt lines on its inputs the TMS9901
produces an interrupt request signal INTREQ- when any unmasked interrupts are
pending and generates the 4-bit Interrupt Vector. Since the INTREQX- signal
is not synchronous to the TM390/1481 system clock it must be syschronized by
reclocking it on CLKP3- to produce the signal INTREQ-.

7.3.11 Special Control Decode Logic

The DECODE field of the microinstruction (DEC(0-4) -e— CMDO(76-80)) goes
from the CONTROLLER to the PROCESSOR via the top edge connector J4 on pins
Ji-6 to JU-10, as shown on sheet 6 of the PROCESSOR schematics.

The DECODE field is used as an address to a decode ROM on the PROCESSOR and
another on the CONTROLLER to produce some special control signals. The DECODE
CONTROL ROMs are implemented using three SN7T4S288N 32 x 8 PROMs, two on the

PROCESSOR and one on the CONTROLLER. Table 7-2 shows the contents of these
PROMs.

TABLE 7-2. DECODE CONTROL ROMS

(PROCESSOR and CONTROLLER)

CONTROLLER PROCESSOR PROCESSOR
PROM C11 (U52/N5) PROM P3 (U14/D2) PROM P4 (U20/E2)
1=CKRTNEN 1=CRUEQU- 1=INCBY1-
2=CRUOP 2=IRTCRU- 2=LDIRX-
3=RST- 3=F7CRU-~ 3=LREX-
4=FLAGSEN 4=F15CRU- 4=IDLE-
5=FLAGC 5=CRUWRO- 5=blank
6=FLAGB 6=SHXWR- 6=CSWAPB-
T=FLAGA T=SHWR~ T=CSWAPA-
8=FLAGD 8=SHDATA 8=FSWAP-

c1 P3 Py
DECODE MNEMONIC 87654321 87654321 87654321
00000 NOP 11110100 IRRRRRRE! 11101111
00001 NOP 11110100 111111 11101111
00010 FSWAP 11110100 1111111 ARIORRRI
00011 CSWAPA 11110100 IARRRRRN 10101111
00100 CSWAPB 11110100 11111111 11001111
00101 LDIRLSB 11110100 1M1111 1 11101101
00110 CRUWRO 11110110 11101111 11101111
00111 CRUEQU 11110110 11111110 11101111
01000 WR15CRU 11110110 1111011 11101111
01001 WRTCRU 11110110 11111011 11101111

T7-11

TABLE 7-2. DECODE CONTROL ROMS (PROCESSOR and CONTROLLER)
Ci1 P3 Py
DECODE MNEMONIC 87654321 87654321 87654321
01010 IR7CRU 11110110 11111101 11101111
01011 SHWRO 11110100 10111111 11101111
01100 SHWRZ 11110100 00111111 1110111
01101 SHXWRO 11110100 1101111 11101111
01110 SHXWRZ 11110100 01011111 1110111
01111 LREX 11110100 MM n 11101011
10000 NOP 11110100 11111 n 1110111
10001 NOP 11110100 1MIn 11101111
10010 LDRTN 11110101 1111111 1110111
10011 RESET 11110000 11111111 11101111
10100 SFLG1 10001100 IRRRRRRRI 11101111
10101 RFLG1 00001100 IARRRRRRI 11101111
10110 SFLG2 11001100 1111111 11101111
10111 RFLG2 01001100 11111111 11101111
11000 SINTFLG 10101100 1M11In 1110111
11001 RINTFLG 00101100 1111111 11101111
11010 SXOPFLG 11101100 IRRRRREE 11101111
1101 RXOPFLG 01101100 11111111 11101111
11100 SINTLOC 10011110 IRRRRREN 11101111
11101 RINTLOC 00011100 11111111 11101111
11110 IDLE 11110100 11111111 11100111
11111 INCBY1 11110100 1111111 11101110

7.4 CONTROLLER BOARD
7.4.1 Control Memory

The microinstructions are stored in CONTROL MEMORY which is implemented using
10 SNTUSHT8N 1K x 8 Schottky PROMs as shown on sheet 2 of the CONTROLLER
schematics.

The CONTROL MEMORY ADDRESS lines (CMAX,CMAP,CMA(0-9)) access the next
microinstruction word, CONTROL MEMORY DATA OUT (CMDO(1-80)), which will be
loaded into the MICROINSTRUCTION REGISTER (MIR) on the rising edge of the next
system clock (CLKC3-). The MIR contains the microinstruction which is
currently being executed.)

7.4.2 Microinstruction Register

The MICROINSTRUCTION REGISTER (MIR), shown on sheets 2 and 5 of the CONTROLLER
schematics, is implemented using five SN7US174N HEX D-TYPE FLIP-FLOPS WITH
CLEAR and six SN74S374N OCTAL D-TYPE FLIP-FLOPS. The CLEAR on the S1Ti4s is
connected to RESET- to cause the microprogram to start execution with address
0 when the RESET switch is activated. The input to the MIR is the CONTROL
MEMORY DATA OUT (CMDO(4-80)) word. The output of the MIR is the set of command
subfields which execute the microinstruction. The CLOCK CONTROL field of the
microinstruction (CMDO(1-3)) is not loaded into the MIR but is loaded directly
into the CLOCK PERIOD COUNTER. All of the microprogram sequence control
fields are loaded into the S174s so the RESET- signal will force the controls
to the conditional branch operation and both branch addresses will be zero
causing the microprogram to start at location 0O when the RESET- signal goes
away.

7.4.3 Clock Control Logic

The CLOCK CONTROL field of the microinstruction word specifies the period of
each microinstruction step from 200 ns to 666.6 ns in increments of 66.6 ns.
The CLOCK CONTROL bits of the microinstruction are not loaded into the MIR but
directly into the CLOCK PERIOD COUNTER shown on sheet 6 of the CONTROLLER
schematics. The counter is an SN74S163N SYNCHRONOUS 4-BIT BINARY COUNTER
which is clocked by the 15 MHZ MASTER CLOCK (MC). The counter is loaded with
a value from 0 to 7 from the microinstruction word (CMDO(1-3)) and counts up
to 8. When the count reaches 8 the signal ENCLK goes to ONE and enables a
SYSTEM CLOCK (CLKCO) to be produced on the next rising edge of MC. CLKCO
stays high for one MC period of 66.6 ns and is reset. CLKCO in turn enables
the counter to be loaded with the next count value. If the signal FIXMODE is
ZERO then CLKCO will enable the LOAD on the counter, and if FIXMODE is ONE
then CLKCO will enable the CLEAR on the counter. If the counter is loaded with
a 7 from the microinstruction word then the ENCLK signal will occur on the
next MC clock, and CLKCO will occur on the following MC clock. The system
clock period will then be 3 MC periods or 200 ns. If the counter is cleared
or loaded with 0 from the microinstruction word then the system clock period
will be 10 MC periods or 666 ns. If FIXMODE=1 then the system clock period
Wwill be 666 ns regardless of the value of the CLOCK CONTROL field of the
microinstruction. When a LOAD INTERRUPT is about to occur the CLKSLW signal
is used to extend the clock to 666 ns for one time to allow the PENDING
INTERRUPT signal time to become stable before the next system clock.

7.4.4 Clock Distribution

The SYSTEM CLOCK must be distributed to many places on both the PROCESSOR and
the CONTROLLER. It must be buffered off the board and buffered for fan-out.
In order to minimize the clock skew problem the clock is routed through the
same number of levels of propagation on both the CONTROLLER and the PROCESSOR.
The clock is named to indicate which board it is on and what propagation level
it is. The clock starts on the CONTROLLER board with CLKCO for example, and
the final system clocks which are used on the CONTROLLER and the PROCESSOR are
CLKC3- and CLKP3-. The worst case clock skew between CLKC3- and CLKP3- is
estimated to be 9 nS. The level 2 clocks are used to produce gated clock
pulses for selectively clocking registers as shown on sheet 5 of the
CONTROLLER schematics and sheet 9 of the PROCESSOR schematics.

7.4.5 Bus Clock

The signal BUSCLK- on pin J1-22 of the TM990 BUS coincides with the internal
system clock of the TM390/1481 (CLKC3-) except when the system clock is
stopped for a memory access or a DMA HOLD. When the system clock is stopped
the BUSCLK- signal becomes a fixed period 5 MHz clock (200 ns period) with a
33.3% duty cycle. When the system clock resumes the BUSCLK~ signal is
adjusted or the system clock is delayed so that they occur in synchronism and
in a manner that guarantees a BUSCLK perlod of no less then 200 ns. (See
Figure 7-3)

The BUSCLK circuitry is shown on sheet 9 of the CONTROLLER schematiecs. A
signal ENBCK indicates when a system clock is going to be produced and enables
the BUSCLK flip flop to track the system clock. A second flip flop BC2, also
clocked on MASTER CLOCK (MC), remembers the last state of the BUSCLK flip
flop. When the STOP- signal goes LOW indicating that the the system clock ‘has
stopped, the circuitry looks at the state of the BUSCLK and BC2 flip flops,
and if they indicate that a BUSCLK has not been produced in the last two MC
periods then the BUSCLK flip flop is set.

When the STOP- signal goes HIGH the circuitry again tries to track the system
clock via the ENCBK signal. The INH signal which indicates that a BUSCLK
occurred two MC periods back inhibits ENBCK and system clock in order to
prevent a short 133 ns BUSCLK period.

BASE

CYCLES®| SIGNAL
MC-

3b
BUSCLK-
CLKC3-

4c
BUSCLK-
CLKC3-

5d
BUSCLK-

3BASE CYCLES =
(3N CASE)
(3N+1 CASE)

b

d

CLKC3-

_(3N+2 CASE)

FIGURE 7-3.

|l 66.0—>{

Je—— 200 ———>

|« 266.6

400 >

MICROINSTRUCTION MASTER CLOCK CYCLES + MEMORY DELAYS

BUS CLOCK AND SYSTEM CLOCK TIMING (in nS)

7.4.6 Memory Speed Delay Logic

The Memory Speed Delay logic is designed to allow the TM 990/1481 to
operate with several different types of memory boards. The memory expansion
boards which were designed to operate with TM 990 microcomputer modules are
based on the TMS 9900 microprocessor READY/WAIT handshake protocal. These
memory boards do not take the READY signal away fast enough to work with the
high speed TM 990/1481 in this asynchronous interface manner. To compensate
for this, the TM 990/1481 , when using the READY line, inhibits looking at the
READY line for the first 66.67 ns period. This allows the TM 990/1481 to use
the READY with the existing and future memory expansion boards but it imposes
a speed penalty when operating with the high speed memory boards. In order to
resolve this difficulty, the TM 990/14871 implements a synchronous high-speed
memory interface which uses the MEMORY SPEED wiring plugs at U94 and U99 to
specify the speed of each 2K-word block of the 32K-word logical address space.
The TM 990/1481 is thus told how fast a given block of memory is (i.e., what
kind of memory board and memory device is being used), and therefore knows how
long to wait before assuming the data is stable. (Dynamic RAM memory boards
must always used the external READY line because the access time depends upon
the refresh operation.)

At the beginning of each memory fetch, the TM 990/1481 stops its system clock
and waits for a period of time specified by the wiring plug (shown in Figure
2-2). After that time has expired, the TM 990/1481 assumes that the data is
stable on the TM 990 bus and proceeds to load it into the processor. Likewise,
on a memory store, the TM 990/1481 waits the specified amount of time and
assumes that the address and data have been decoded and enabled; thus, it ends
the write operation.

The Memory Speed Delay logic, shown on sheet 6 of the Controller schematics,
uses a SNT4164N 8-bit shift register to create a set of signals delayed from
the system clock in 66.67 ns increments. The signal DCLK- which is delayed
from system clock by one 66.67 ns period is used to start the sequence by
clearing the shift register. All of the delay signals SHFT1 to SHFT7 go low on
the rising edge of SYSTEM CLOCK and each one in succession goes high in 66.67
ns increments (note, SHIFTN represents a delay of N-1 master clock cycles).
The SHFTX signal is the latched external READY signal which must be used with

dynamic memory boards because of the uncertainty of when the refresh cycles
may occur,

One side of each of the two 16-pin memory speed wiring plugs is the set of
delay signals SHFT1-SHFTT and SHFTX, and the opposite side of the two plugs in
the set of 16 lines which represent the 16 2K-word blocks of memory whose
speed is to be preselected (MDSEL1-MDSEL16). The plugs are programmed by
connecting each of the MDSEL lines to one of the memory speed options on the
other side of the plug (see Figure 2-2).

The MDSEL lines are routed to a 16-to-1 multiplexer which is implemented using
two SN74S251N 8-to-1 mulitplexer chips. The most significant U4 bits of the
16-bit address are used by the multiplexer to decode which 2K-word block of
memory is being accessed and to select the appropriate MDSEL signal programmed
for that block of memory to drive the internal READY- line. This internal
READY- line is used to stop the system clock on a memory access and to release
the clock after the programmed delay.

The STOP- signal, which holds the clock off and inhibits the CLOCK PERIOD

COUNTER from advancing, is generated by the SNTUS64N AND-NOR logic. The
ENABLE MEMORY ADDRESS OUT (ENMAO) signal indicates that a memory access is
in progress and is used to enable both the FETCH and STORE to stop the clock
via the STOP- signal. Some of the worst case propagation delays are so long,
however, that by the time all of the signals which may stop the clock are
valid, they may miss the first rising edge of MC after the system clock.
Therefore ENMAO is gated with DCLK- to produce the signal GENMAO which is
then used as the enable to stop the clock. This guarantees that the
STOPsignal will be stable (i.e. HIGH) at the first MC pulse and cannot go low
until after the first MC pulse at which time all of the other conditions
should be stable.

The memory delays and the microinstruction period control will either overlap
or be added together depending on whether the memory access is a STORE or a
FETCH. On a FETCH operation the microcode has added extra cycles to the
microinstruction period because it intends to do something with the data it
has fetched from memory. This extra time must therefore be added after the
memory delay circuit has indicated that the FETCH has been completed. On a
FETCH the clock is stopped and the CLOCK PERIOD COUNTER inhibited as soon as
possible and counting the period is resumed when the memory delay is over. On
a STORE operation it is assumed that all of the information for the store is
available from the start of the cycle and if the microinstruction period
happens to be longer than the memory delay time there is no need to add any
more time. On a STORE the CLOCK PERIOD COUNTER is incremented until it
reaches the maximum count of 8 and then the clock is stopped only if the
memory delay logic indicates that the memory access is not complete.

7.4.7 HOLD and HOLD ACKNOWLEDGE

The HOLD and HOLD ACKNOWLEDGE signals allow external devices to gain access to
the TM990 BUS. The HOLD signal on pin J1-92 is received on the CONTROLLER and
synchronized to the system clock. The synchronized HOLD signal is used to give
the HOLD ACKNOWLEDGE (HOLDA) signal immediately to the TM990 BUS on pin J1-86.
The PROCESSOR uses the HOLDA signal to release the data and address busses.
The TM 990/1481 then continues to execute microinstructions until the first
microinstruction which requires the TM990 BUS. The TM 990/1481 then stops
the system clocks (CLKPn and CLKCn) but not the BUSCLK signal. The BUSCLK
signal will continue at a fixed period of 200 ns until the system clocks
resume, at which time BUSCLK will again track the variable period system
clocks.

The INTERLOCK (INTLOC) signal inhibits the TM 990/1481 from responding to the
HOLD signal. Currently, the TM 990/1481 generates INTLOC only in the ABS
instruction and in all CRU operations. The INTLOC signal allows the ABS
instruction to be used to set and reset memory semaphores (flags) without

conflicts with other processors communicating with the TM 990/1481 through
common memory locations.

The HOLD logic is show on sheet 6 of the CONTROLLER schematics. The HOLD
signal is received by an SN74LS132N SCHMIDTT TRIGGER BUFFER to eliminate noise
and then clocked thru two flip flops on the 16 MHz MASTER CLOCK (MC) before
being synchronized to the system clock (CLKC2) in an SNT4S112N JK FLIP FLOP.
The synchronized signal is used to generate the HOLDA signal. The signals
CRUOP and ENMAO are ORed together to detect that the current microinstruction
requires the TM990 BUS and this enables the HOLDEN flip flop to be set to
inhibit the system clocks. When the HOLD signal goes away the system clocks
will resume with the execution of the pending microinstruction.

7-17

7.4.8 Source Select Logic

The SOURCE SELECT LOGIC decodes the SOURCE SELECT field of the
microinstruction (SS(0-2) --— CMDO(U4-6)) to enable one of six possible
sources of addresses to drive the CONTROL MEMORY ADDRESS BUS; - the BRANCH
MULTIPLEXER, the RETURN ADDRESS REGISTER, the SCAL PLA, the DCAL PLA, the S
field of the IR, and the D field of the IR.

The SOURCE SELECT DEMULTIPLEXER, shown on sheet 3 of the CONTROLLER
schematics, is implemented using half of an SNT4S139N DUAL 2-TO-}4
DEMULTIPLEXER and two SNTULSOON 2-NAND gates. The SOURCE SELECT

DEMULTIPLEXER produces the six enable signals, ENBRN-, ENRTN-, ENSCAL-,
ENDCAL-, ENIRS-, and ENIRD-.

7.4.9 Branch Multiplexer

The BRANCH MULTIPLEXER provides the capability of a two way branch in CONTROL
MEMORY based on the status of the BRANCH- signal. The two branch addresses
are provided by the BRANCH ADDRESS 0 (BAQ) field of the microinstruction and
the BRANCH ADDRESS 1 (BA1) field of the microinstruction. If the BRANCH-
signal is ONE (i.e. BRANCH = 0) then the BAQO address is used, and if the
BRANCH- signal is ZERO (i.e. BRANCH = 1) then the BA1 address is used.

The BRANCH MULTIPLEXER, shown on sheet 3 of the CONTROLLER schematics, is
implemented using three SNT4YLS257N QUAD 2-TO-1 MULTIPLEXERS. The LS257s have
tri-state outputs and are connected directly to the CONTROL MEMORY ADDRESS BUS
(CMA(0-9)). The signal ENBRN- from the SOURCE SELECT LOGIC is used to enable
the BRANCH MULTIPLEXER to drive the CMA BUS when a conditional branch is
selected. The SELECT line on the multiplexers is connected to the BRANCH-
signal from the TEST MULTIPLEXER.

7.4.10 Test Multiplexer

The TEST MULTIPLEXER, shown on sheet 3 of the CONTROLLER schematics, selects
the test signal that is used to control the two way conditional branch
operation in the microcode. The TEST MULTIPLEXER is implemented using three
SNT4S251N 8-TO-1 MULTIPLEXERS and half of an SNT4S139N DUAL 2-TO-}
DEMULTIPLEXER. The most significant two bits of the TEST field, TEST(0-1),
are used by the demultiplexer to produce three chip enable signals, TE(0-2)-,
which enable one of the three multiplexers. The enabled multiplexer selects
one of the eight test signals on its inputs to drive the BRANCH- output 1line.
The BRANCH- line is the signal that controls the SELECT on the BRANCH
MULTIPLEXER. If the selected test signal is ZERO then the BRANCH MUX will

select the BAO address, and if the selected signal is ONE then the BRANCH MUX
will select the BA1 address.

7.4.11 Test Flags

Four of the test signals into the TEST MULTIPLEXER are called TEST FLAGS. The
signals are FLAG1, FLAG2, INTFLG, and XOPFLG, and they come from the TEST FLAG
REGISTER shown on sheet 5 of the CONTROLLER schematics. The microprogrammer
can set and reset the TEST FLAGS and perform conditional branches based on
their condition. The setting and resetting of the TEST FLAGS is controlled
via the DECODE field (DEC(0-4)) of the microinstruction word.

The DECODE field is decoded by an SN7T4S288N 32 X 8 PROM to generate the
control signals for the TEST FLAG REGISTER which. is implemented using an

7-18

SNTULS259N 8 BIT ADDRESSABLE LATCH. The signal FLGSEN enables the FLAG
REGISTER to be changed, the signals FLAGA, FLAGB, and FLAGC address the FLAG
BIT in the 8 bit register that is to be changed, and the signal FLAGD
indicates what value the FLAG is to be set to. The other three decodes out of
the ROM are not associated with the FLAG REGISTER; they are the RST- signal
which is LOW when the RST instruction is executed, the CRUOP signal which
indicates that the address on the TM990 BUS is not a memory address but a CRU
address, and the CKRTNEN signal which causes the RETURN ADDRESS REGISTER to be
loaded from the BA1 field.

The TEST FLAG REGISTER is cleared by IAQ so the flags are valid only during
the execution of a single instruction, and care should be exercised by the

microprogrammer not to fetch the next instruction (IAQ) until use of the flags
is finished.

The TEST FLAG REGISTER also contains a bit called the INTERLOC bit (INTLOC)
which is set to lock out other devices from being given access to the TM990
BUS via the HOLD/HOLD ACKNOWLEDGE protocol. In the 990/9900 instruction set
this bit is set during the execution of the ABS instruction to insure that the
TM990/1481 will peform a read-modify-write without another DMA device being
able to access the unmodified value between the read and write operations.

7.4.12 Return Address Register

The RETURN ADDRESS REGISTER (RTN) is designed to provide one level of
microprogram subroutine linkage. The microprogrammer can load the RTN with a
12 bit address value from the BA1 field of the microinstruction at any time
when the BA1 field is not being used in a conditional branch or as a literal
constant. Also, since the DECODE field is used to enable the RIN load, no
other DECODE field function can be perfomed in the same microinstruction. On

any subsequent microinstruction the microprogrammer may branch to the location
specified by the RTN. ’

The RETURN ADDRESS REGISTER is implemented using two SN74LS374N OCTAL D-TYPE
FLIP FLOP devices, as shown on sheet 3 of the CONTROLLER schematics. The RTN
is enabled to drive the CMA BUS by the ENRTN- signal from the SOURCE SELECT
LOGIC, and the RTN is loaded (clocked) by the CKRTN- signal generated from
CLKC2 and ENCKRTN. ENCKRTN is decoded from the DECODE field by the ROM as
shown on sheet 5 of the schematics.

7.4.13 Instruction Register and Entry Point Logic

The INSTRUCTION REGISTER (IR) is duplicated on the PROCESSOR and the
CONTROLLER in order to avoid routing the 16 IR bits between the boards. The
IR on the CONTROLLER board, shown on sheet 4 of the schematics, is used in
conjunction with three PLAs and two buffers in order to generate instruction
related or address modification related entry points into CONTROL MEMORY.
Since the instruction remains in the IR until the next command to load the IR,
it is possible to use the IR multiple times to derive entry points. If
several instructions require the same processing for example it is possible
for all of these instructions to branch to the same initial entry point. At
the end of the common entry point processing it is necessary to again examine
the IR to determine a second level of IR derived entry point. The PLAs are

arranged to allow 4 different entry points called SCAL, DCAL', DCAL, and
OPCAL.

The IR is implemented using two SNT4S373N OCTAL TRANSPARENT LATCHES which are
clocked on the CKIR signal derived from the LOAD IR (LDIR) bit of the
microinstruction word. The entry points are derived using three SNT4S330N
PLAs and two SNTULS244N OCTAL TRI-STATE BUFFERS. The PLAs have 11 inputs plus
an enable compared to the 16 bit length of the IR; the 990/9900 instruction
set formats allow different parts of the IR to be used for the different entry
points. The source calculation (SCAL) entry point has the most extensive
requirements since it is the first entry point and hence all instructions have
an SCAL entry point. Some instructions have only the SCAL or first entry
point and this reduces the requirements on the remaining entry points.

The TM 990/1481 OP CODE information needed for SCAL does not extend beyond
the most significant 12 bits except for some of the floating point
instructions. These instructions are all mapped to the same initial entry
point and then are individually executed by performing a 16-way branch based
on the S field of the IR. The 16 way branch uses the two SNT4ULS2U4N OCTAL
TRI-STATE BUFFERS to drive least significant bits of the CMA-BUS with the
4-bit S field and two bits of zero fill. The most significant bits are
determined by the BAO MSBs. All of the instructions whose most significant two
bits are not both equal to zero are mapped into the same SCAL entry point.
ORing these two bits together permits an 11-bit input into the SCAL PLA.

The other two PLAs are used for the remaining three entry points. The least
significant two bits of the TEST field determine whether the entry is DCAL',
DCAL, or OPCAL and causes the PLAs to generate different entry points for
each. The instruction set is split between the two PLAs, one being enabled

when the most significant four bits of the IR are not all zero, and the other
enabled when they are all zero.

The PLAs only provide the least significant six bits of the entry point.
Without modification this would only give 64 unique entry points whieh is much
less than needed. Fortunately each entry point type does not require more
than 64 locations, so the four blocks of 64 locations are mapped to different
areas of memory by specifying different values for the four most significant
bits. This is done by using the most significant four bits of the BAO field
of the microinstruction to drive the most significant bits of the CMA-BUS via
one of the two SNTULS24UN OCTAL TRI-STATE BUFFERS.

TABLE 7-3. SCAL PLA ENTRY POINTS

INSTRUCTION
REGISTER |ENTRY :
* 23456789AB | POINT | OPERATION INSTRUCTIONS
1 XXXXXXXX00 008 S0,TS=0 soc, SOCB,MOVB, MOV, AB,A,CB,C,SB, S, SZCB, SZC
1 XXXXXXXX01 009 SA,SO,TS=1 SOC,SOCB,MOVB,MOV,AB,A,CB,C,SB,S,SZCB,SZC
1 XXXXXXXX10 O0OA SA,SO,TS=2 SOC,SOCB,MOVB,MOV,AB,A,CB,C,SB,S,SZCB,SZC
1 XXXXXXXX11 00B SA,S0,TS=3 S0C,SOCB,MOVB,MOV,AB,A,CB,C,SB,S,SZCB,SZC
0 1XXXXXXX00 008 SO,TS=0 DIV,MPY,LDCR,XOR,CZC,COC
0 1XXXXXXX01 009 SA,S0,TS=1 DIV,MPY,LDCR,XOR,CZC,COC
0 1XXXXXXX10 O00A SA,SO,TS=2 DIV,MPY,LDCR,XOR,CZC,COC
0 1XXXXXXX11 00B SA,S0,TS=3 DIV,MPY,LDCR,XOR,CZC,COC
0 1X10XXXX00 008 SO,TS=0 DIV,MPY,LDCR,XOR,CZC,COC
0 1X01XXXX00 008 SO,TS=0 DIV,MPY,LDCR,XOR,CZC,COC
0 1X00XXXX00 008 SO,TS=0 DIV,MPY,LDCR,XOR,CZC,COC
0 1101XXXX00 028 SO,TS=0 STCR

7-20

TABLE 7-3. SCAL ENTRY POINTS (CONTINUED)

INSTRUCTION
REGISTER | ENTRY

% 23456789AB | POINT |OPERATION INSTRUCTIONS

0 1011XXXX00 O02E SA,TS=0 XOP

0 011111XXXX 033 CRU T8

0 011110XXXX 003 CRU SBZ

0 011101XXXX 003 CRU SBO

0 011100XXXX 002 JUMP JOP

0 0110XXXXXX 002 JUMP JH,JL,JNO,JOC

0 010XXXXXXX 002 JUMP JNC, JNE, JGT , JHE, JEQ, JLE, JLT, JMP

0 0011XXXX00 00C SO,TS=0 STR,LR,DR,MR, SR,CIR, AR,
STD,LD,DD,MD,SD,CID,AD

0 0011XXXX01 009 SA,SO,TS=1 STR,LR,DR,MR,SR,CIR,AR
STD,LD,DD,MD,SD, CID,AD

0 0011XXXX10 O00A SA,SO,TS=2 STR,LR,DR,MR,SR,CIR,AR

STD,LD,DD,MD,SD,CID,AD
0011XXXX11 00B SA,S0,TS=3 STR,LR,DR,MR,SR,CIR,AR
STD,LD,DD,DD,SD,CID,AD

o

0011100000 038 ILLEGAL OP CODES
0011X00001 039 ILLEGAL OP CODES
0011X00010 03A ILLEGAL OP CODES
0011X00011 03B ILLEGAL OP CODES

0011000000 03C Ex.F1.Pt CED,CER,CDE,CRE,NEGD,NEGR,CDI,CRI
0010XX0000 006 SHOP,C=0 SRC,SLA,SRL,SRA
0010XX1XXX 004 SHOP,C<>0 SRC,SLA,SRL,SRA
0010XXX1XX 004 SHOP,C<>0 SRC,SLA,SRL,SRA
0010XXXX1X 004 SHOP,C<>0 SRC,SLA,SRL,SRA
0010XXXXX1 004 SHOP,C<>0 SRC,SLA,SRL,SRA
0001111X00 038 : ILLEGAL OP CODES

0

0

0

0

0

0

0

0

0

0

0

0 0001111X01 039 ILLEGAL OP CODES
0 0001111X10 03A ILLEGAL OP CODES
0 0001111X11 03B ILLEGAL OP CODES
0 0001XXXX01 009 SA,S0,TS=1 GROUP 7 INSTRUCTIONS
0 0001XXXX10 O00OA SA,30,TS=2 GROUP 7 INSTRUCTIONS
0 0001XXXX11 O00B SA,S0,TS=3 GROUP 7 INSTRUCTIONS
0 0001100X00 028 SO,TS=0 DECT,DEC

0 000101XX00 028 S0,TS=0 INCT, INC,INV,NEG
0 0001110100 02D SO,TS=0 ABS

0 0001110000 02C SO,TS=0 SETO

0 0001101100 02B SO0,TS=0 SWPB

0 0001101000 02A SO,TS=0 BL

0 0001001100 023 SO,TS=0 CLR

0 0001001000 022 S0,TS=0 X

0 0001000100 021 S0,TS=0 B

0 0001000000 020 SO,TS=0 BLWP

0 000011111X O1F LREX

0 000011110X O1E CKOF

0 000011101X 01D CKON

0 000011100X 01C RTWP

NOTE: first column is the OR of IRO and IR1.

7-21

TABLE 7-3. SCAL PLA ENTRY POINTS (CONTINUED)
INSTRUCTION
REGISTER ENTRY
% 23456789AB | POINT | OPERATION INSTRUCTIONS
0 000011011X O01B RSET
0 000011010X O1A IDLE
0 000011001X 030 ILLEGAL OP CODES
0 000011000X 018 LIMI
0 000010111X 017 LWPI
0 0000101101 032 ILLEGAL OP CODE
0 0000101100 015 STST
0 0000101011 008 ILLEGAL OP CODE
0 0000101010 013 STWP
0 000010100X 005 IMMOp*# CI
0 00001001XX 005 IMMOP*#* ORI,ANDI
0 0000100X1X 005 IMMOp#*#* AI
0 000010000X 010 IMMOP*¥ LI
0 0000011X00 008 SO,TS=0 MPYS,DIVS
0 0000011X01 009 SA,S0,TS=1 MPYS,DIVS
0 0000011X10 OOA SA,S0,TS=2 MPYS,DIVS
0 0000011X11 O0OB SA,S0,TS=3 MPYS,DIVS
0 0000010XXX 034 ILLEGAL OP CODES
0 0000001001 036 LWP
0 0000001000 036 LST
0 0000000XXX 036 ILLEGAL OP CODES

NOTE: first column is the

NOTE: immeditate operands

OR of IR0 and IR1.

2A ENTRY POINTS: DCAL', DCAL, OPCAL

TABLE 7-4. PLA

INSTRUCTION

REGISTER |TEST| ENTRY
012345678 | 34 | POINT |TYPE | OPERATION | INSTRUCTION

1XXXXXXXX 10 008 DCAL' SO SOCB, SOC,MOVB, MOV, AB,A,CB,C
01XXXXXXX 10 008 DCAL' SO SB,S,SZCB, SZC
00111XXXX 10 008 DCAL' SO DIV,MPY
001101XXX 10 028 DCAL' SO STCR
001100XXX 10 008 DCAL' SO LDCR
001011XXX 10 O2E DCAL' SO XOP
001010XXX 10 008 DCAL' SO XOR
00100XXXX 10 008 DCAL' SO czc,Ccoc
000001100 10 028 DCAL' SO DECT, DEC
00000101X 10 028 DCAL' SO INCT, INC, INV,NEG
000000011 10 008 DCAL' SO MPYS,DIVS

111X00XXX 01 090 DCAL DO,TD=0 SOCB,SOC

110100XXX 01 090 DCAL DO,TD=0 MOVB

110000XXX 01 095 DCAL DO,TD=0 MOV

10XX00XXX 01 090 DCAL DO,TD=0 AB,A,CB,C

1XXX01XXX 01 091 DCAL DO,TD=1 SOCB,SOC,MOVB,MOV,AB,A,CB,C
1XXX10XXX 01 092 DCAL DO,TD=2 SOCB,SOC,MOVB,MOV,AB,A,CB,C

T7=-22

TABLE 7-4. PLA 2A ENTRY POINTS: DCAL', DCAL, OPCAL (CONTINUED)

INSTRUCTION

REGISTER |TEST JENTRY
012345678 |34 |POINT|TYPE INSTRUCTION
1XXX11XXX 01 093 DCAL DO,TD=3 SOCB,SOC,MOVB,MOV,AB,A,CB,C
01XX00XXX 01 090 DCAL DO,TD=0 SB,S,SZCB,SZC
01XX01XXX 01 091 DCAL DO,Tb=1 SB,S,SZCB,SZC
01XX10XXX 01 092 DCAL DO,TD=2 SB,S,SZCB,SZC
01XX11XXX 01 093 DCAL DO,TD=3 SB,S,SZCB,SZC
001111XXX 01 0A3 DCAL DO DIV
001110XXX 01 0A2 DCAL DO MPY
001101XXX 01 0A1 DCAL DO STCR
001100XXX 01 0A0 DCAL DO LDCR
0010XXXXX 01 090 DCAL DO XOR,CZC,COC
111 1XXXXX 11 OF7 OPCAL SOCB
1110XXXXX 11 OF6 OPCAL soc
1101XXXXX 11 OF5 OPCAL MOVB
1011XXXXX 11 OF3 OPCAL AB
1010XXXXX 11 OF2 OPCAL A
1001XXXXX 11 OF1 OPCAL CB
1000XXXXX 11 OF0 OPCAL C
0111XXXXX 11 OE7 OPCAL SB
0110XXXXX 11 OE6 OPCAL S
0101XXXXX 11 OE5 OPCAL SZCB
0100XXXXX 11 OE4 OPCAL SZC
00101XXXX 11 ODA OPCAL XOR
001001XXX 11 0D9 OPCAL czC
001000XXX 11 0D8 OPCAL coc
00001011X 11 0CB OPCAL SRC
00001010X 11 OCA OPCAL SLA
00001001X 11 0C9 OPCAL SRL
00001000X 11 0C8 OPCAL SRA

TABLE 7-5. PLA 2B ENTRY POINTS: DCAL', DCAL, OPCAL

INSTRUCTION

REGISTER |TEST|] ENTRY
*# 456789AB | 34 | POINT|TYPE INSTRUCTION
0 111111XX 10 03F DCAL' STD
0 111110XX 10 O03E DCAL' LD
0 111101XX 10 03D DCAL' DD
0 111100XX 10 027 DCAL! MD
0 111011XX 10 026 DCAL' SD
0 111010XX 10 025 DCAL' CID
0 111001XX 10 024 DCAL' AD
0 110111XX 10 -037 DCAL' STR
0 110110XX 10 016 DCAL' LR
0 110101XX 10 035 DCAL' DR
0 110100XX 10 014 DCAL' MR

7-23

TABLE 7-5. PLA 2B ENTRY POINTS: DCAL', DCAL, OPCAL (CONTINUED)

INSTRUCTION

REGISTER JTEST | ENTRY
® 456789AB | 34 POINT |TYPE INSTRUCTION
0 110011XX 10 011 DCAL! SR
0 110010XX 10 012 DCAL! CIR
0 110001XX 10 031 DCAL' AR
0 011101XX 10 02D DCAL' ABS
0 011100XX 10 02C DCAL' SETO
0 011011XX 10 02B DCAL® SWPB
0 011010XX 10 02A DCAL' BL
0 010011XX 10 023 DCAL! CLR
0 010010XX 10 022 DCAL' X
0 010001XX 10 021 DCAL® B
0 010000XX 10 020 DCAL' ' BLWP
0 111111XX 01 OBF DCAL STD
0 111110XX 01 0BE DCAL LD
0 111010XX 01 0BA DCAL CID
0.110111XX 01 0B7 DCAL STR
0 110110XX 01 0B6 DCAL LR
0 110010XX 01 0B4 DCAL CIR
0 001000XX 01 0A4 DCAL LI
0 011001XX 01 0B2 DCAL DECT
0 011000XX O 0BO DCAL DEC
0 010111XX 01 OAE DCAL INCT
0 010110XX 01 OAC DCAL INC
0 010101XX O1 OAA DCAL INV
0 010100XX 01 OA8 DCAL NEG
0 0011XXXX 01 098 DCAL LIMI
0 001011XX 01 096 DCAL LWPI
0 001010XX O1 094 DCAL ILLEGAL OP CODE
0 000111XX 01 08E DCAL MPYS
0 000110XX 01 08C DCAL DIVS
0 MIINMXx 11 OFF OPCAL STD
0 111110XX 11 OFE OPCAL LD
0 111010XX 11 OFA OPCAL CiD
0 110111XX 11 0C7T OPCAL STR
0 110110XX M 0C6 OPCAL LR
0 110010XX 11 0C4 OPCAL CIR
0 0010100X M1 0DC OPCAL CI
0 0010011X 11 ODB OPCAL ORI
0 0010010X 11 OEA OPCAL ANDI
0 0010001X 11 OEC OPCAL AL

®# NOTE: first column is the OR of IR0--IR3.
T.4.14 RS232 Serial Communication Controller
The TMS9902 UNIVERSAL ASYNCHRONOUS COMMUNICATION CONTROLLER integrated circuit

is used to control the RS232 interface. The TMS9902 is addressed via the CRU
and has a CRU address of >40 (i.e. (R12) = >80).

T-24

The TMS9902 is shown on sheet 8 of the CONTROLLER schematiecs. The 9902 is
clocked using a 3.2 MHz clock generated from the 16 MHz master clock. The
RS232 inputs and outputs of the 9902 are buffered using SN75189N LINE
RECEIVERs and SN75188N LINE DRIVERs

7.4.15 Reset/Preset/Load Controls

Three methods are available for initializing the TM 990/1481, they are RESET,
PRESET, and LOAD. The RESET SWITCH, shown on sheet 9 of the CONTROLLER
schematics, is debounced by the SNTULS279N QUAD LATCH to produce the RS-
signal which is then synchronized to MASTER CLOCK (MC) as shown on sheet 7 of
the schematics to produce RESET-. The RESET- signal clears the Sequence
Control fields of the microinstruction to force the computer to start
executing microinstructions at CONTROL MEMORY ADDRESS 000 when the RESET
signal is removed. The starting sequence of microinstructions performs an
interrupt trap using the Transfer Vector at memory locations 0000 and
0002. The RESET also causes an I/0 RESET (IORST- on J1-88) which is
synchronized to the 3.0 MHz REFCLK- on the TM990 BUS, and is a minimum of two
REFCLK periods in duration. The PRESET (PRES-) signal on the TM390 BUS, pin
J1-94, has the same effect as the RESET SWITCH.

The RESTART- signal on the TM990 BUS, pin J1-93, causes a LOAD INTERRUPT to
occur after two instructions have been allowed to execute. The LOAD INTERRUPT
causes an interrupt trap using the Transfer Vector at locations FFFC and
FFFE. Executing an LREX instruction has the same effect as the RESTART-
signal.

7.4.16 TM990 Bus Memory Control Logic

Three of the Memory Control lines for the TM990 BUS, MEMEN-, DBIN, and IAQ are
bits of the microinstruction word. The Memory Enable signal (MEMEN-) on pin
J1-80 is the Enable Memory Address Out (ENMAO) bit of the microinstruction
(CMDO(50)). The Data Bus In (DBIN) signal on pin J1-82 is the Enable Memory
Data Out (ENMDO) bit of the microinstruction (CMDO(51)). The Instruction
Acquisition (IAQ) signal on pin J1-19 is the IAQ bit of the microinstruction
(CMDO(68)).

MEMEN- = J1-80 = ENMAO = CMDO(50)
DBIN = J1-82 = ENMDO = CMDO(51)
IAQ = J1-19 = IAQ = CMDO(68)

The Write Enable signal (WE-) on pin J1-78 is derived from the ENMDO
microinstruction bit and a special Write Enable pulse designed to provide
adequate set-up and hold times for the memories. The WE- pulse goes LOW 94 nS
after the system clock goes HIGH and it goes HIGH 31 nS before the next
system clock goes HIGH. The Memory Cycle signal (MEMCYC-) on pin J1-84 is
normally HIGH and goes LOW (synchronously with BUSCLK-) only if the system
clock is stopped for a memory access and the time exceeds 266.6 ns.

Microinstructions which access memory and do not exceed 266.6 ns do not
generate a MEMCYC~ signal. *

¥ In the variable clock mode, memory fetches where SHFT1 is selected

and memory store operations where SHFT1 through SHFTY is selected
will not generate a MEMCYC- signal.

T7-25

7.4.17 Debug Clock Options

Two features have been provided to aid in hardware and firmware development
and in trouble-shooting hardware failures; these are the FIXED PERIOD SLOW
CLOCK and the SINGLE STEP modes of operation. The FIXED MODE causes the clock
to operate at a fixed period of 666.6 ns. This eliminates the complication of
the variable clock period, and the slow speed allows the operation with EPROMs
without recoding the clock control field of the microinstruction. The SINGLE
STEP MODE gives the user the ability to step through the microcode and examine
the results statically.

The FIXED MODE SWITCH, shown on sheet 9 of the CONTROLLER schematics, is
debounced using the SN7TULS279N QUAD LATCH and then synchronized to BUSCLK
using an SN7THULS175N QUAD D~TYPE FLIP FLOP to produce the signal FIXMODE,
The FIXMODE signal is used by the CLOCK PERIOD COUNTER to cause it to clear

the counter to zero every time and therefore count the longest period of 666.6
ns. :

The SINGLE STEP MODE SWITCH, shown on sheet 9, is debounced and synchronized
to produce the signal SSMODE which is then used to inhibit the regular clock
circuitry via the INHCLK signal. The SINGLE STEP CLOCK momentary contact
switch is debounced and enabled with SINGLE STEP MODE (SSM) to produce a
single clock pulse identical to and synchronous with BUSCLK.

7.4.18 Upper Memory Page Bits

Two bits, CMAX and CMAP, have been provided to expand the CONTROL MEMORY
address space to UK words. These two bits are stored in flip flops and define
the current 1K page of CONTROL MEMORY being accessed. A branch to BRANCH
ADDRESS 0 (BAO) will address a microinstruction within the current page of
CONTROL MEMORY. A branch to BRANCH ADDRESS 1 (BA1) can access a
microinstruction anywhere within the 4K address space and will cause the two
page bits to be loaded with the new page number. The RETURN ADDRESS REGISTER
(RTN) can be loaded with a 12 bit return address from the BA1 field, and a
branch to RTN can therefore also access a microinstruction anywhere within the
LUK address space and will set the page bits. The ENTRY POINT LOGIC always
accesses the 0 page, so a branch to PLA1, PLA2, IRS, or IRD will zero the
page bits. To summarize:

1. All entry points are to page O.
2. The RETURN ADDRESS REGISTER can access anywhere in 4K memory.
3. BRANCH ADDRESS 1 can access anywhere in UK memory.

4, BRANCH ADDRESS O always refers to the current page.

7-26

SECTION 8
MICROPROGRAMMING

8.1 GENERAL

This section describes the microinstruction word format used in the TM
990/1481. The microinstruction word controls the execution of the TM
990/1481. Other topies include the following:

e Clock and sequence control
e Data routing and selection
e Operation control
e Status control
e Special control.

8.2 MICROINSTRUCTION WORD

The microinstruction word is composed of control and data bits which perform
the following general functions: clock and microprogram sequence control,
data routing and selection, ALU operation control, status control, and some
special control functions. The microinstruction word is 80 bits wide and it
can be subdivided into functional groups as follows:

CLOCK AND SEQUENCE CONTROL

0 60 000 0 O0OT1T 1T 1 11 111 2 2
1 2 3 45 6 7 8 9 0 1 2 3 4 6 7 8 9 0 1
]

Ul -

[..cc] [sS..] [..TEST....] [...BRANCH ADDRESS O.......]

2 2 2 2 2 2 2 2 3333 3333
2 3 45 6 7 8 9 01 2 3 4 5 6 7
[.....BRANCH ADDRESS 1 / CONSTANT.....cc0vued]

DATA ROUTING AND SELECTION

303 4 4 4 o4 4 oy o4 4 4 Y o5 5
8 901 2 3 4 56 7 8 9 0 1

[..RF...] [A] [..B.J [P] [..F.J [.MC]:

OPERATION CONTROL

555 55555 6 6 6 6 6 6 6 6 6 6 7T
2 3 456 7 89 0123145672890
[oeerns ALU OP CODE...........] [REG CONTR] [IAQ]J[CNTR]

8-1

STATUS CONTROL

T 77T 7T 17
12 3 4 5

[....sTC....]

SPECIAL DECODED CONTROL

T 7T 7T 8
7 8 9-0

7
6
[....DEC....]
8

.3 CLOCK AND SEQUENCE CONTROL

The CLOCK AND SEQUENCE CONTROL fields control how the microprogram is entered,
and how it is sequenced thru conditional and unconditional branches and

subroutine linkages, and how long the clock period will be for each
microinstruction step.

1

0 0 0 00 0 0 0 1 LI S R B
1 3456 7 8 9 012 3 456 7 8 9
[

N o

2 2
0 1

{..cc.}[.ss..][...TEST....] [...BRANCH ADDRESS O.......]

2 2 2222223333333
2 3456 78 90 12 3 456
L

3
7
<o+ .BRANCH ADDRESS 1 / CONSTANT...coveveses |

The CLOCK AND SEQUENCE CONTROL consists of the following
subfields:

CcC CLOCK CONTROL -~-defines the time to the next clock

SS SOURCE SELECT --selects the source of the next Control

Memory address

TEST = TEST SELECT --selects the test condition for the
conditional branch and is also used
for entry point control

BAO = BRANCH ADDRESS Q0 -- branch address if TEST=0

BA1/CONST = BRANCH ADDRESS 1 or CONSTANT word
-- branch address if TEST=1 or constant word to
be used by Processor or link address to be

loaded into Return Address Register
8.3.1 Clock Control

The CLOCK CONTROL field defines the time to the next clock. The TM990/1481

does not have a constant period microinstruction clock but rather allows the
microprogrammer to adjust the clock period to suit the microinstruction being

8-2

executed. The clock period is counted from a 15 MHz master clock so the time
is in increments of 66.6 ns with a minimum period of 3 increments or 200 ns.

Since a high speed variable period clock presents some problems during
test and repair, two switch options have been provided. The first option
provides a constant period clock of the longest period, 666.6 ns. The second
option provides a single step microinstruction clock to allow the
technician to step thru the microprogram and examine the results.

TABLE 8-1. CLOCK CONTROL....CMDO(1-3)

CODE MNEMONIC DESCRIPTION
000 co 666.6 ns
001 C1 600.0 ns
010 c2 533.3 ns
oM c3 466.6 ns
100 chu 400.0 ns
101 c5 333.3 ns
110 c6 266.6 ns
111 Cc7 200.0 ns

8.3.2 Source Select

The SOURCE SELECT field selects the source of the next Control Memory address.
The CONTROL MEMORY ADDRESS BUS is a tri-state bus to which are connected
several blocks of address generation logic. If a conditional or unconditional
branch is desired then the BRANCH ADDRESS MULTIPLEXER is specified as the
source. If a return from a subroutine is desired then the RETURN ADDRESS
REGISTER is specified as the source. If the INSTRUCTION REGISTER has just
been loaded with a new instruction, execution may be initiated by entering the
source operand derivation routine for that instruction, then selecting the
SCAL PLA as the source for CONTROL MEMORY ADDRESS. The further reentry points
of DCAL', DCAL, and OPCAL are obtained by selecting the DCAL PLA as the source
and identifying the specific reentry type in the TEST field.

The remaining two SOURCE SELECT options allow the microprogram to branch to an
address in CONTROL MEMORY specified partially by the microinstruetion word and
partially by a field (S or D) in the INSTRUCTION REGISTER. This is used for

generating XOP entry points and for the two word (extended) floating point
instructions.

TABLE 8-2. SOURCE SELECT....CMDO(4-6)

CODE MNEMONIC DESCRIPTION

000 BRN BRANCH ADDRESS MULTIPLEXER

001 RTN RETURN ADDRESS REGISTER

010 ——— -

011 -——- -——

100 PLA1 SCAL ENTRY POINT

101 PLA2 DCAL', DCAL, OR OPCAL ENTRY POINTS
110 IRS IR S FIELD (EXT F.P.) ENTRY POINTS
111 IRD IR D FIELD (XOP) ENTRY POINTS

8-3

8.3.3 Test Select

When the SOURCE SELECT field specifies the BRANCH MUX as the source for
CONTROL MEMORY ADDRESS then the TEST field specifies which test signal line to
use to determine which of the multiplexer's two inputs to use for the next
CONTROL MEMORY ADDRESS, BRANCH ADDRESS 0 or BRANCH ADDRESS 1.
SELECT field specifies the DCAL PLA as the source for CONTROL MEMORY ADDRESS
then the TEST field specifies which type of reentry point decode is desired,

DCAL', DCAL, or OPCAL.

TABLE 8-3. TEST....CMDO(7-11)

CODE MNEMONIC DESCRIPTION

00000 UNCBAO unconditional branch to BAO
00001 SEQZ S field of IR equals 0

00010 DEQZ D field of IR equals O

00011 MOVW IR contains the MOV instruction
00100 BYTE IR contains a byte instruction
00101 JUMP the jump condition is TRUE
00110 CNTEQZ COUNTER = 0
00111 UNCBA1 unconditional branch to BA1
01000 LGT # logical greater than

01001 AGT * arithmetic greater than
01010 EQ * equal

01011 COSH * carry out or shift out

01100 OVFL * overflow

01101 op odd parity

01110 PINT pending interrupt

01111 POS * operand positive

10000 A015 ADDRESS LSB (even/odd byte)
10001 FO F-BUS MSB (sign)

10010 COSAV saved carry-out

10011 FLG1 general purpose flag 1

10100 FLG2 general purpose flag 2

10101 INTFLG interrupt flag or G.P. flg 3
10110 XOPFLG XOP flag or G.P. flg U

10111 LOAD LOAD interrupt

11000 --- -—

11111 -— -——

¥ NOTE: If a conditional branch is executed using these test signals, then the
clock period specified in the CLOCK CONTROL field must be 266.6 ns or greater.

If the SOQURCE SELECT field is PLA2 then the TEST field is specified as

entry point

follows:

00001 DCAL DCAL

00010 DCALP DCAL' entry point
00011 OPCAL

OPCAL entry point

When the SOURCE

8.4 DATA ROUTING AND SELECTION

There are three tri-state buses in the PROCESSOR, the A-BUS, the B-BUS, and
the F-BUS. The A-BUS and B-BUS are connected to the AI and BI input ports of
the SU81 processor, and the F-BUS can be driven by the Data Output Port of the
Si81 processor. The F-BUS can also be driven by the Address Output Port of
the SU81 and by the Memory Data Input from the TM390 BUS. The DATA ROUTING
AND SELECTION subfields control the selection of data to the A-BUS, B-BUS, and
F-BUS within the PROCESSOR and controls the access to the TM990 BUS.

3 3 4 4 4 4 4y 4 4 ¥ 4 4 5 5

8 9 012 3 45 6 7 8 9 0 1

[..rF....][a] [..B..1[P] L..F..] [.Mc.]

RF = REGISTER FILE -- address of the register being used

A = A-BUS SELECT -- source of A-BUS data

B = B-BUS SELECT -- source of B-BUS data

P = PC/MC SELECT -- select either Program Counter (PC)
or Memory Counter (MC) to go to the
Address Output Port (AOP) of the
481 Processor -

F = F-BUS SELECT -- source of F-BUS data

MC = MEMORY CONTROL-~ specifies memory operation
8.4.1 Register File Address

The REGISTER FILE ADDRESS field selects one of 16 internal registers for data
storage or retrieval. The microcode can use any of these registers for
temporary storage, but the contents of register R15 must not be destroyed
since the processor uses R15 as the WORKSPACE POINTER storage register. The
microprogrammer may use R15 within his program as long as he saves and
restores the value. The microcode must also be aware that the contents of
these registers may be altered by some instructions so that while it can use
these registers within an instruction, it should not try to transfer data from
one instruction time to another.

Any value on the F-BUS may be loaded into a register in the file by selecting
the REGISTER ADDRESS and by setting the LOAD REGISTER FILE (LDRF) bit of the
microinstruction. Any register in the file may be brought to the A-BUS or the
B-BUS (or both) by selecting the REGISTER ADDRESS and selecting the RF option
in either case.

It is possible to read from a register and to write into that register in the
same microinstruction cycle, but there is one particular case in which this is
not permitted. If the register being used for the simultaneous read and write
is selected to drive the A-BUS and the LOAD WORKING REGISTER (LDWR)
option is selected, then selecting the LDRF will result in 0 being loaded into
WR rather than the register contents. In the case . the code can still

load the WR but he must do so via the ALU OP CODE that routes AI to WR rather

than via the LDWR command. See section 7.3.6 for a hardware explanation of how
the REGISTER FILE operates.

TABLE 8-4. REGISTER FILE ADDRESS....CMDO(38-41)

CODE MNEMONIC DESCRIPTION

0000 RFO register file address 0
0001 RF1 register file address 1
0010 RF2 register file address 2
0011 RF3 register file address 3
0100 RF4 register file address 4
0101 RF5S register file address 5
0110 RF6 register file address 6
o1 RF7 register file address 7
1000 RF8 register file address 8
1001 RF9 register file address 9
1010 RF10 register file address 10
1011 RF11 register file address 11
1100 RF12 register file address 12
1101 RF13 register file address 13
1110 RF14 register file address 14
1111 RF15 WORKSPACE POINTER REGISTER

8.4.2 A-BUS SELECT A

The A-BUS SELECT field selects the source to drive the A-BUS which goes to the
AI port of the 481 ALU. The two possible sources are the REGISTER FILE and
the SWAP MUX,

The A-BUS can be thought of as the operand bus. Data fetched from memory is
normally brought into the Working Register (WR) via the SWAP MUX and the
A-BUS. Intermediate results stored in the REGISTER FILE are brought back to
the 481 via the A-BUS. The AI input to the 481 differs from the BI input in
that a direct path exists from AI to WR which bypasses the ALU logic and
therefore requires less setup time. This is why the A-BUS was chosen as the
data input path.

The SWAP MUX allows the microcode to swap the two bytes of the data on the
F-BUS, and the result is available on the A-BUS. The swap operation is
normally used to move the byte to be operated on to the most significant half
of the word since in byte microoperations the ALU only operates on the upper
byte. The normal state of the SWAP MUX allows data to pass to the A-BUS
unchanged, and therefore provides a path from F-BUS to A-BUS. There are three
swap commands available: FSWAP = swap unconditionally, CSWAPA = swap if bit 15
of the address is one, and CSWAPB = swap if bit 15 of the address is one and
the instruction is a byte related instruction. The swap commands are decodes
of the DECODE field of the microinstruction.

TABLE 8-5. A-BUS SELECT....CMDO(L2)

CODE MNEMONIC DESCRIPTION
0 A-RF REGISTER FILE to A-BUS
1 A-SM SWAP MUX to A-BUS

8.4.3 B-BUS SELECT B

The B-BUS SELECT field selects the source to drive the B-BUS which goes to
the BI port of the 481 ALU. There are 8 possible sources for the B-BUS; the
REGISTER FILE, the STATUS REGISTER, the CONSTANT word, two times the S field
of the IR, two times the D field of the IR, two times the DISPLACEMENT field
of the IR, two times the COUNT field of the IR, and two times the INTERRUPT
VECTOR.

The B-BUS can be thought of as the modifier bus. The words brought to the
B-BUS are typically used to modify addresses or data words. The BI input to
the 481 has a more extensive set of options available than the AI input and
that is why the B-BUS is used for modifier type data.

TABLE 8-6. B-BUS SELECT....CMDO(43-45)

CODE MNEMONIC DESCRIPTION

000 B-CON CONSTANT word to B-BUS

001 B-2S two times the S field of the IR to B-BUS

010 B-2D two times the D field of the IR to B-BUS

011 B-2H two times the DISPLACEMENT field of the
IR to B-BUS

100 B-21IV two times the INTERRUPT VECTOR to B-BUS

101 B-RF REGISTER FILE to B-BUS

110 B-SR STATUS REGISTER to B-BUS

111 B-2C) two times the C field of the IR to B-BUS

8.4.4 Address Output Select P

The ADDRESS OUTPUT SELECT field determines whether the MEMORY COUNTER or the
PROGRAM COUNTER is output by the 481 ALU.

TABLE 8-7. ADDRESS OUTPUT SELECT....CMDO(46)

CODE MNEMONIC DESCRIPTION
0 AOP-MC MEMORY COUNTER to ADDRESS OUTPUT
1 AOP-MC PROGRAM COUNTER to ADDRESS OUTPUT

8.4.5 F-Bus Select F

The F-BUS SELECT field specifies the source of the F-Bus data. Three of the
sources, SUM, XWR, and WR, are sources internal to the 481 Processor which
come out to the Data Output Port (DOP) of the 481 to drive the F-BUS. The
Memory Data In (MDI) source connects the data lines on the TM 990 bus to the
F-Bus, and the A to F (ATF) source connects the address output port (AOP) of
the 74SU81 which could contain the output of the MC or PC registers to the
F-Bus.

TABLE 8-8. F-BUS SELECT....CMDO(47-49)

CODE | MNEMONIC " DESCRIPTION

000 F-SUM ALU SUM BUS to F-BUS

001 F-XWR EXTENDED WORKING REGISTER to F-BUS
010 F-WR WORKING REGISTER to F-BUS

011 F-MDI MEMORY DATA IN to F-BUS

100 -— -

101 -— -

110 — -

111 F-ATF ADDRESS OUT to F-BUS

8.4.6 Memory Control MC

The MEMORY CONTROL field determines what type of memory operation will be
performed FETCH, STORE or TRANSFER.

TABLE 8-9. MEMORY CONTROL....CMDO(50-51)

CODE MNEMONIC DESCRIPTION

00 NOP

01 MEMFTD F-BUS to DATA BUS (no memory operation)
10 MEMFET FETCH

11 MEMSTO STORE

8.4.7 CONSTANT WORD

The CONSTANT WORD comes from the 16 bit BRANCH ADDRESS 1 (BA1) field of the
microinstruction. Normally this field contains one of the two branch
addresses for a conditional branch, but if the microprogrammer knows that he
has selected an unconditional branch to the BRANCH ADDRESS 0 (BAO) word then
the contents of the BA1 field is a "don't care" as far as the branch logic is
concerned. The microprogrammer is then free to use the BA1 field to introduce
a CONSTANT WORD onto the B-BUS of the PROCESSOR. This word might be a number
to be added to the data being processed or a mask word used to eliminate
unwanted fields in the data.

8.5 OPERATION CONTROL

OPERATION CONTROL

5 55 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 7
2 345 6 7 8 9 012 3 456 78 90
[.cce.. «ALU OP CODE...eevennn .] [REG coNTR] [1aQ] [cNTR]

ALU OP CODE = OPERATION CONTROL LINES TO 481 ALU

REG CONTR = REGISTER LOADING AND INCREMENTING CONTROL LINES
iAQ = INSTRUCTION ACQUISITION SIGNAL
CNTR = COUNTER CONTROL LINES

8.5.1 ALU Operation Control

The ALU OP CODE controls the SN74SU481N processor chips. The format of the op
code is explained in the device data manual for the S#81. Of all the possible
op codes the following are those used to implement the TM990/1481 instruction
set.

TABLE 8-10. ALU OP CODE....CMDO(52-62)

ALU CODE MNEMONIC OPERATION

11111000001 NOP NOP, 0 —=» SUM-BUS 1FO4
10001001011 FFFF>SUM -1 === SUM-BUS 112C
00001001111 0>WR 0 == WR 013C
00001001011 -1>WR -1 = WR 012C
00000001011 A>WR Al —» WR(THRU ALU) o002C
00000001111 /AI>WR /Al -—s~ WR 003C
00001000101 B>WR BI ~=s= WR 0114
00011001111 WR/>WR /WR == WR 033C
00001101101 XWR>WR XWR — WR 01B4
00011001010 WR+1>WR WR + 1 —» WR 0328
00011001110 WR/+1>WR /WR + 1 — WR 0338
00011001001 WR-1>WR . WR - 1 = WR 0324
00000000010 AI-BI>WR AI - BI = WR 0008
00000011001 AI+WR>WR WR + AT ——» WR 0064
00000011011 AI+/W>WR /WR + AL ~—= WR 006C
00011000001 WR+B>WR WR + BI ~=s WR 0304

8-9

TABLE 8-10. ALU OP CODE....CMDO(52-62) (CONTINUED)
ALU CODE MNEMONIC OPERATION
00011000010 WR-BI>WR WR - BI = WR 0308
‘00000011010 AI-WR>WR AI - WR -~ WR 0068
00011101001 WR+XWR>W WR + XWR - WR 03AY4
00011101010 WR-XWR>W WR - XWR —» WR 0348
+ 10110001000 AIOWR>WR AI"OR"/WR e WR 1620
10111010000 WROXWR >W WRTOR"XWR «—=s= WR 1740
10111000000 BIOWR>WR BI"OR"WR —» WR 1700
10111000010 B/OWR>WR /BI"OR"WR ~= WR 1708
10100000110 AIABISWR AI"AND"BI - WR 1418
11001000000 WR@BI>WR WR"XOR"BI - WR 1900
10101000110 BIAWRSWR WR"AND"BI —a WR 1518
10101000100 B/AWRS>WR WR"AND"/BI s WR 1510
10101010110 WRAXWR>W WR"AND"XWR - WR 1558
10101010100 WRAX/>WR WR"AND"/XWR —» WR 1550
11001010000 WREX>WR WR"XOR"XWR —» WR 1940
11101101001 WR<SRL> SHIFT RT LOGICAL = WR 1DAY
11101101011 WR<SRA> SHIFT RT ARITHMETIC#=WR 1DAC
11101101101 WR<SRC> SHIFT RT CIRCULAR—"WR 1DBY
11101101010 WR<SLA> SHIFT LF ARITHMETIC#=WR 1DA8
11101101100 WR<SLC> SHIFT LF CIRCULAR=——+WR 1DBO
01100001011 A>MC Al =p MC ocac
01101000101 B>MC BI ~» MC 0D1Y4
01101111101 PC>MC PC == MC ODFy4
01111001011 WR>MC WR == MC OF2cC
01110000001 B*2>MC BI ¥ 2 s MC OEOY
11010011001 A*25MC AT ¥ 2 wp MC 1464
11010010101 4*XWR>MC XWR * 4 — MC 1A54
01100000001 A+B>MC Al + BI = MC 0co4
01111000001 WR+B>MC WR + BI = MC OFou
01110111001 PC+B>MC PC + BI —» MC OEEY
01110101001 XWR+B>MC XWR + BIL ~» MC OEAL
01100000010 A-B>MC ATl - BI = MC 0Co8
1101101111 B/2>MC BI/2 = MC 1B7C
01111101001 WR+XR>MC WR + XWR = MC QFAY
00101001111 0>XWR 0 ~—» XWR 053C
00101001110 1>XWR 1 — XWR 0538
00100001011 A>XWR Al s XWR ouzc
00101000101 B>XWR BI —» XWR 0514
00101000111 B/>XWR /BI = XWR 051C
00111001011 WR>XWR WR —»= XWR 072C

TABLE 8-10. ALU OP CODE....CMDO(52-62) (CONTINUED)

ALU CODE MNEMONIC OPERATION

00110000001 B¥2>XWR BI%¥2 - XWR 0604
11011111111 B/2>XWR BI/2 =+ XWR 1BFC
00101000001 B~-1>XWR BI - 1 = XWR o504
00111001110 WR/+1>XR /WR + 1 == XWR 0738
00101101100 /XR+1>XR /XWR + 1 - XWR 05B0
00100000001 A+B>XWR AI + BI —» XWR o404
01000101011 AI+/X>XR ATl + /XWR - XWR 08AC
00100101001 AI+XR>XR AI + XWR - XWR OuAL
00111101001 WR+XR>XR WR + XWR ~s XWR OTAY4
11011110001 X+BI*2>X BI*2 + XWR - XWR 1BCY
00100101010 AI-XR>XR AT - XWR = XWR oLA8
00111101010 WR-XWR>X WR - XWR == XWR 07A8
00111101100 XR-WR>XR XWR - WR = XWR 07BO
10100000111 AAB>XWR AI"AND"BI - XWR 141C
10101000111 WRABI>XR WR"AND"BI =— XWR 151C
10110010001 ATOXR>XR AI"OR"XWR - XWR 1644
10100010111 ATAXR>XR AI"AND"XWR ~» XWR 145C
10111010001 WROXWR>X WR"OR"XWR - XWR 1744
10101010101 WRAX/ >X WR"AND"/XWR - XWR 1554
11011110101 B+XWRS>X (XWR + BI)<SLA> = XWR 1BDY4
11010111101 A#2>XWR A%*2 —p XWR 1AFY4
00010001110 AI/+1>XR 2'S COMP AI = XWR 0438
00010101100 XWR-AI>X XWR - AL —» XWR 04BO
11000001001 WREAI>XR WR"XOR"AI - XWR 1824
00111100001 <BX>+W>X BI"AND"XWR + WR -=» XWR 0784
11101110000 XRLS>XR XWR<SLL) >==p XWR 1DCO
11010110001 X+AILS>X (XWR + AI)<SLL> —s XWR 1ACH
11010101001 A+WRLS>X (AI + WR)<SLL> «~ XWR 1AAY
11010101000 A+W1LS>X (AI + WR + 1)<SL> ~s XWR 1AAQ
01000001011 A>pPC ATl —» PC 082C
01001011101 WR>PC WR ~» PC 0974
01101001111 0>MC 0 — MC 0D3C
10001001111 0>S 0 = SUM 113C
10001001010 1-1>SUM 1 - 1 = SUM 1128
10000001011 A>S Al == SUM 102C
10001000101 B>3 BI =+ SUM 1114
10011001011 WR>S WR = SUM 132C
10001101101 XWR>S XWR —» SUM 11B4
10001000001 B-1>S BI - 1 — SUM 1104
10011001110 WR/+1>S 2'S COMP WR == 3SUM 1338

TABLE 8-10. ALU OP CODE....CMDO(52-62) (CONTINUED)

ALU CODE MNEMONIC OPERATION

10011101001 WR+XR>S WR + XWR ~=p SUM 13AY4
10001101001 XWR-1>S XWR - 1 = SUM 11A4
10010101001 B+XWR>S BI + XWR —» SUM 12A4
10010101010 B-XWR>S BI - XWR =~ SUM 12A8
10011000001 BI+WR>S BI + WR ~» SUM 1304
10000101001 AI+XR>S ATl + XWR - SUM 10AL
10000011001 AI+WR>S AL + WR = SUM 1064
10000001010 AI+CIN>S AL + 1 = SUM 1028
10000000010 AI-BI>S AI - BI —» SUM 1008
10000101010 AI-XWR>S ATl - XWR —» SUM 10A8
10000101011 AI+/XR>S ATl + /XWR = SUM 10AC
10000011011 AI+/WR>S AI + /WR —» SUM 106C
10000001110 /AI+1>S 2'S COMP AL —» SUM 1038
10000011100 /AI+WR>3 /AL + WR = SUM 1070
10000101100 /AI+XR>S /AL + XWR - SUM 10B0O
10001101100 XWR+1>S XWR + 1 —» SUM 11BO
10011101100 XR-WR>3 XWR - WR —s SUM 13B0
11000100001 AI@BI>S AI"XOR"BI «= SUM 1884
11000110001 AI@XWR>S AI"XOR"XWR ~— SUM 18CH
11000101001 AIEWR>S AI"XOR"WR ~—» SUM 18A4
10110101001 AIOWR>S AI"OR"WR —» SUM 16AY
10100101111 AIAWR>S AI"AND"WR = SUM 14BC
10110110001 AIOXWR>S AI"OR"XWR = SUM 16CY
10100100111 AIABI>S AI"AND"BI w=a SUM 149C
10110100001 AORB>S AI"OR"BI == SUM 1684
10111110001 WROXWR>S WR"OR"XWR « SUM 17CH
10101100111 BAWR>S BI"AND"WR —» SUM 159C
10111100001 BIOWR>S BI"OR"WR = SUM 1784
10011100001 <BX>+W>S BI"AND"XWR + WR —e SUM 1384
10001100100 <BX>+1>S BI"AND"XWR + 1 = SUM 1190
10000010001 A+BAWR>S AI + B"AND"WR = SUM 1044
11101100001 AIRS>SUM AI<SRL> ~a SUM 1D84
11101100000 AILS>S AI<SLL> =g SUM 1D80
10011001011 WR<0> WR COMPARED TO 0 132C
10001101101 XWR<0> XWR COMPARED TO O 11B4
11100101111 XWR<WR> XWR COMPARED TO WR 1CBC
11100101107 WR<XWR> WR COMPARED TO XWR 1CB4
11100011001 AI<WR> AT COMPARED TO WR 1C6H
111000711011 <WR>AI WR COMPARED TO AI 1C6C
11100101001 AI<XWR> AT COMPARED TO XWR 1CAY

TABLE 8-10. ALU OP CODE....CMDO(52-62) (CONCLUDED)

ALU CODE MNEMONIC OPERATION

11100101011 XWR<AI> XWR COMPARED TO AI 1CAC
10101110011 XAWR/<0> XWR"AND"/WR COMPARED TO 0 15CC
11010110111 XAWR<0> XWR"AND"WR COMPARED TO O 15DC
10001001010 GENOV FORCE OVERFLOW 1128
11101111000 LDBLSHFT LEFT DOUBLE SHIFT LOGICAL 1DEO
111011110017 RDBLSHFT RIGHT DOUBLE SHIFT LOGICAL 1DEY4
11101111100 LDBLSHCR LEFT DOUBLE SHIFT CIRCULAR 1DFO
11101111101 RDBLSHCR RIGHT DOUBLE SHIFT CIRCULAR 1DF4
11101011000 SUBLSDBL SUBTRACT AND SHIFT LEFT DOUBLE "~ 1D60
11101001001 ADDLSDBL ADD AND SHIFT LEFT DOUBLE 1D24
11110010011 MPY MULTIPLY 1EUC
11110111111 SMPY SIGNED MULTIPLY 1EFC
11110000110 DIVA DIVIDE 1E18
11110001110 DIVB DIVIDE 1E38
11110001010 DivC ' DIVIDE 1E28
11110010111 SDIVA SIGNED DIVIDE 1E5C
11110101111 SDIVB SIGNED DIVIDE 1EBC
11110110111 SDIVC SIGNED DIVIDE 1EDC
11110100111 SDIVD SIGNED DIVIDE 1E9C
11110011111 SDIVE SIGNED DIVIDE 1ETC

8.5.2 Processor Register Control

The REGISTER CONTROL bits allow the microcode to perform some frequently
occurring register operations in parallel with the operation specified by the
remainder of the microinstruction. The Program Counter (PC) for example can
be incremented at any time independent of the operations specified by the
other control fields. Note that INCMC and INCPC cannot both be executed in
the same microinstruction.

INCMC....CMDO(63)....Increment the Memory Counter
INCPC....CMDO(64)....Increment the Program Counter
LDWR.....CMDO(65)....Load the Working Register directly from the AI input port

LDRF.....CMDO(66)....Load the Register File register specified by the RF
subfield with the F-BUS data

LDIR.....CMDO(67)....Load the Instruction Register from the TM 990 bus
8.5.3 Instruction Acquisition
The Instruction Acquisition (IAQ) bit is used to indicate, via the IAQ signal

on pin J1-19 of the TM990 BUS, that the current memory fetch operation is an

instruction fetch. The actual instruction fetch is programmed via the
commands AOP-PC, MEMFET, and LDIR.

8-13

8.5.4 Counter Control

The SHIFT COUNTER counts the clock times for operations such as shifts,
divides, multiplies, and other iterative operations. The SHIFT COUNTER may be
decremented by one, loaded with a count value, or set to 15. The counter is
4 bits wide and is loaded from the F-BUS bits F11 thru F14 when the LDCNT bit
of the microinstruction is set. The count loaded is therefore actually F/2,
The COUNT=0 (CNTEQZ) signal from the counter goes to the BRANCH TEST MUX so
the microprogrammer may do a conditional branch on the CNTEQZ condition.

In the normal loop structure the counter is loaded with a value N, an
operation is performed, the counter is decremented by one, and a conditional
branch is executed on CNTEQZ. If the loop is a small loop and the decrement
command and the conditional branch are in the same microinstruction, then the
loop will be executed N+1 times because the branch uses the current counter
status at the beginning of the microinstruction period and the decrement
does not occur until the end of the period. The SETCNT15 command therefore
allows a loop to be set up to execute 16 times.

TABLE 8-11. COUNTER CONTROL....CMDO(69-70)

CODE MNEMONIC DESCRIPTION

00 NOP

01 DECCNT decrement the counter by one

10 LDCNT load the counter from the F-BUS
11 SETCNT15 set the counter to 15

8.6 STATUS CONTROL

The STATUS LOGIC allows the microcode to transfer the existing status
conditions at any time to the STATUS REGISTER. The microinstruction control
word allows either individual status bits to be enabled or certain logical
groups of bits to be enabled simultaneously. The STATUS REGISTER can be loaded
in three ways, bits 0-7 from current conditions selectively under
microinstruction command, bits 12-15 directly from the F-BUS (MASK load), or
all 16 bits at once loaded directly from the F-BUS.

TABLE 8-12. STATUS CONTROL....CMDO(71-75)

CODE MNEMONIC § DESCRIPTION

00000 NOP

00001 comp COMPARE ENABLE=012XXXXX
00010 COMPB COMPARE BYTES ENABLE=012XX5XX
00011 ARITH ARITHMETIC ENABLE=01234XXX
00100 ARITHB ARITHMETIC BYTES ENABLE=012345XX
00101 SHIFT SHIFT ENABLE=0123XXXX
00110 SHIFTL SHIFT LEFT ARITHMETIC ENABLE=01234XXX
00111 CRUCLK ENABLE CRU CLOCK

01000 SHTEST SAVE SHIFT IN ST3 ENABLE=XXX3XXXX
01001 USENSAV USE SAVED CARRY AND SAVE NEW CARRY
01010 COMPOV COMPARE & OVERFLOW ENABLE=012X4XXX -
01011 -—

01100 ----

01101 ————

01110 --~-

01111 —_——

10000 ENLGT ENABLE=0XXXXXXX
10001 ENAGT ENABLE=X 1XXXXXX
10010 ENEQU - ENABLE=XX2XXXXX
10011 ENCO ENABLE=XXX3XXXX
10100 ENOV ENABLE=XXXX4XXX
10101 ENOP ENABLE=XXXXX5XX
10110 ENXOP ENABLE=XXXXXX6X
10111 USECOSAV USE SAVED CARRY

11000 ALUSPLIT OPERATE ON UPPER BYTE OF ALU ONLY
11001 SAVOV SAVE OVERFLOW

11010 SAVCO SAVE CARRY OUT IN COSAV FLIP FLOP
11011 SAVSH SAVE SHIFT OUT (IN STATUS BIT 3)

11100 SAVCOST SAVE CARRY OUT IN STATUS REGISTER BIT 3
11101 LDSTATUS LOAD STATUS FROM F-BUS BUT NOT MASK
11110 LDMASK LOAD MASK FROM F-BUS

11111 LDSR LOAD STATUS REGISTER FROM F-BUS

8.7 SPECIAL CONTROL FIELD

The DECODE field is used to generate a number of different control signals
within the PROCESSOR and the CONTROLLER. These functions can be summarized as
follows:

1. control of the SWAP MUX

2. control of CRU input and output data

3. control of ALU serial shift lines during logical shifts

8. IDLE and LREX signals to the TM390 BUS

5. loading the Return Address Register (RTN) from the BA1 field
6. setting and resetting FLAGS

7. I/0 RESET function

8. allow the MC or PC to be incremented by 1 rather than 2

TABLE 8-13.

SPECIAL (DECODE) CONTROL....CMDO(76-80)

CODE | MNEMONIC DESCRIPTION

00000 NOP

00001 NOP

00010 FSWAP FORCE SWAP BYTES

00011 CSWAPA CONDITIONAL SWAP BYTES (A015=1)

00100 CSWAPB CONDITIONAL SWAP BYTES (AO15=1%#BYTE=1)
00101 LDIRLSB LOAD LEAST SIGNIFICANT 4 BITS OF IR
00110 CRUWRO CRUIN TO WRO

00111 CRUEQU CRUIN TO ST3

01000 WR15CRU WR15 TO CRUOUT

01001 WR7CRU WR7 TO CRUOUT

01010 IRTCRU IR7 TO CRUOUT

01011 SHWRO SHIFT 1 —~e WR

01100 SHWRZ SHIFT 0 —s WR

01101 SHXWRO SHIFT 1 —e= XWR

01110 SHXWRZ SHIFT 0 —s XWR

01111 LREX LREX INSTRUCTION EXCUTING

10000 ---—-

10001 NOP _

10010 LDRTN LOAD RETURN ADDRESS REGISTER

10011 RESET EXECUTE I/0 RESET

10100 SFLG1 SET FLAG 1

10101 RFLG1 RESET FLAG 1

10110 SFLG2 SET FLAG 2

10111 RFLG2 RESET FLAG 2

11000 SINTFLG SET INTERRUPT FLAG (SET FLAG 3)
11001 RINTFLG RESET INTERRUPT FLAG (RESET FLAG 3)
11010 SXOPFLG SET XOP FLAG (SET FLAG 4)

11011 RXOPFLG RESET XOP FLAG (RESET FLAG 4)

11100 SINTLOC SET PROCESSOR INTERLOCK (SET HOLD INHIBIT)
11101 RINTLOC RESET PROCESSOR INTERLOCK (RESET HOLD INHIBIT)
11110 IDLE IDLE INSTRUCTION EXECUTING

11111 INCBY1 INCREMENT MC OR PC BY 1 RATHER THAN 2

SECTION 9
INTERFACE DESCRIPTIONS
9.1 GENERAL

This section provides a description of the TM 990/1481 interfaces. Topics
include the following:

e TM 990 Bus Interface
® Processor/Controller Interface

e Terminal Interface.

9.2 TM 990 BUS INTERFACE

The TM 990 bus is specified in the ™ 990 System Specification.

9.3 PROCESSOR/CONTROLLER INTERFACE

The Processor and Controller are connected via their common top edge
connectors J3 and J4. The cables are simple one to one connections and they
can be of the flat cable variety. Holes have been provided for
pin-and-socket connectors if a more secure connection is desired.

TABLE 9-1. PROCESSOR AND CONTROLLER TM990 BUS CONNECTOR (P1)

1 GND 26 (CLK.B-) 51 (VBATT) 76 +12V

2 GND 27 GND 52 (VBATT) 77 GND

3 VCC 28 (EXTCLK.B-) | 53 (XA0.B) 78 WE.B-

4 vce 29 CRUIN.B 54 (XA1.B) 79 GND

5 INT8.B- 30 CRUOUT.B 55 (XA2.B) 80 MEMEN.B-

6 INT7.B- 31 GND 56 (XA3.B) 81 GND

7 INT10.B- 32 BUSY.B- 57 A0.B 82 DBIN.B

8 INT9.B- 33 DO.B 58 A1.B 83 GND

9 INT12.B- 34 D1.B 59 A2.B 84 MEMCYC.B-
10 INT11.B- 35 D2.B 60 A3.B 85 GND

11 INT14.B- 36 D3.B 61 A4.B 86 HOLDA.B

12 INT13.B- 37 Du4.B 62 A5.B 87 CRUCLK.B-
13 INT2.B- 38 D5.B 63 46.B 88 IORST.B-
14 INT15.B- 39 D6.B 64 A7.B 89 GND

15 INT3.B- 40 D7.B 65 A8.B 90 READY.B

16 INT1.B- 41 D8.B 66 A9.B 91 GND

17 INT5.B- 42 D9.B 67 A10.B 92 HOLD.B-

18 INT4.B- 43 D10.B 68 A11.B 93 RESTART.B-
19 IAQ.B 44 D11.B 69 A12.B 94 PRES.B-
20 INT6.B- 45 D12.B 70 A13.B 95 (GRANTOUT.B-)
21 GND 46 D13.B 71 A14.B 96 (GRANTIN.B-)
22 BUSCLK.B- 47 D14.B 72 A15.B 97 VCC
23 GND 48 D15.B 73 =12V 98 vcc
24 REFCLK.B- 49 (VAUX) T4 12V 99 GND
25 GND 50 (VAUX) 75 +12V 100 GND

NOTE : Signals in parentheses are neither used by nor
generated by the TM990/1481

TABLE 9-2. PROCESSOR/CONTROLLER INTERFACE CONNECTOR (P3)

1 TC 21 /LOAD
2 TD 22 RFAD(3)
3 /SEL9901 23 RFAD(2)
4 /TINT 24 RFAD(1)
5 /MAP 25 RFAD(0)
6 /CLKP1 26 SELPC
7 BYTEX 27 DECCNT
8 COsAV 28 LDCCNT
9 CNTEQZ 29

10 /LREX 30 OP(10)
11 /IDLE 31 OP(9)
12 FO 32 0OP(8)
13 PARITY 33 OP(T7)
14 OVFL 34 OP(6)
15 COSH , 35 OP(5)
16 EQ 36 OP(Y4)
17 LGT 37 OP(3)
18 AGT 38 OP(2)
19 JUMP 39 OP(1)
20 PINT 40 OP(0)

9-2

TABLE 9-3. PROCESSOR/CONTROLLER INTERFACE CONNECTOR (P4)

1 LDIR 21 STC(3)
2 LDRF 22 STC(2)
3 LDWR : 23 STC(1)
4 INCPC 24 STC(0)
5 INCMC 25 BA(19)
6 DEC(4) 26 BA(18)
7 DEC(3) 27 BA(17)
8 DEC(2) 28 BA(16)
9 DEC(1) 29 BA(15)
10 DEC(0) 30 BA(14)
11 BSEL(2) ; 31 BA(13)
12 BSEL(1) 32 BA(12)
13 BSEL(0) -~ 33 BA(11)
14 FSEL(2) 34 BA(10)
15 FSEL(1) 35 BX(5)

16 FSEL(0) 36 BX(4)

17 /ENRFA 37 BX(3)

18 ENMDOD 38 BX(2)

19 ENMDO 39 BX(1)
20 STC(U4) 40 BX(0)

9.4 TERMINAL INTERFACE

The J2 connector on the CONTROLLER allows connection to any RS-232 device such
as the TI Silent 700 terminal or to the TM 990/301 Microterminal.

TABLE 9-4. CONTROLLER RS-232 CONNECTOR (P2)

1 GND 14 +5V

2 RS232 RCV 15 XMT CLK

3 RS232 XMT 16 RESTART

h 17 RCV CLK

5 CIS 18 TTY RCV

6 DSR 19

7 GND 20 DIR

8 DCD 21

9 22

10 23 TTY RCV RTN
11 24 TTY XMT RIN
12 +12V 25 TTY XMT
13 =12V

9-3

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185

