As you are now the owner of this document which should have come to you for free, please consider making a donation of $£ 1$ or more for the upkeep of the (Radar) website which holds this document. I give my time for free, but it costs me money to bring this document to you. You can donate here https://blunham.com/Misc/Texas

Many thanks.
Please do not upload this copyright pdf document to any other website. Breach of copyright may result in a criminal conviction.

This Acrobat document was generated by me, Colin Hinson, from a document held by me. I requested permission to publish this from Texas Instruments (twice) but received no reply. It is presented here (for free) and this pdf version of the document is my copyright in much the same way as a photograph would be. If you believe the document to be under other copyright, please contact me.

The document should have been downloaded from my website https://blunham.com/, or any mirror site named on that site. If you downloaded it from elsewhere, please let me know (particularly if you were charged for it). You can contact me via my Genuki email page: https://www.genuki.org.uk/big/eng/YKS/various?recipient=colin

You may not copy the file for onward transmission of the data nor attempt to make monetary gain by the use of these files. If you want someone else to have a copy of the file, point them at the website. (https://blunham.com/Misc/Texas). Please do not point them at the file itself as it may move or the site may be updated.

It should be noted that most of the pages are identifiable as having been processed by me.

I put a lot of time into producing these files which is why you are met with this page when you open the file.

If you find missing pages, pages in the wrong order, anything else wrong with the file or simply want to make a comment, please drop me a line (see above).

It is my hope that you find the file of use to you.
Colin Hinson
In the village of Blunham, Bedfordshire.

Texas Instruments

TM 990

TM 990/310 I/O Expansion Module

MICROPROCESSOR SERIES"

User's Guide

SECTIONPAGE

1. INTRODUCTION
1.1 General 1-1
1.2 Specifications 1-1
1.3 Applicable Documents 1-3
2. INSTALLATION AND OPERATION
2.1 General 2-1
2.2 Required Equipment 2-1
2.3 Board Switches, Jumpers, Connectors 2-2
2.3.1 CRU Address Selection and Switch Array S1 2-2
2.3.2 Interrupt Level Selection on Jumper Plugs U1 and U6 2-2
2.3.3 Edge Connectors P1, P2, P3, and P4 2-5
2.4 Installation 2-7
2.5 Board Checkout 2-7
3. THEORY OF OPERATION
3.1 General 3-1
3.2 CRU Address Decoding 3-1
3.3 TMS 9901 Logic. 3-1
3.4 Data Echo Logic 3-5
3.5 Interrupt Buffer Logic. 3-6
3.6 Interrupt Priority Logic 3-7
3.7 Hardware Interface 3-7
3.7.1 TMS 9901 I/O Lines 3-7
3.7.2 Edge-Triggered Interrupts 3-9
3.7.3 Power Outlets at Connectors 3-9
4. APPLICATIONS
4.1 General 4-1
4.2 Output Signal Conditioning, Medium Power 4-1
4.3 Output Signal Conditioning, High Power 4-2
4.4 Output Signal Conditioning, Optical Isolation 4-2
4.5 Logic Testing 4-3
4.6 5MT Input/Output System 4-4
5. TM 990/310 PROGRAMMING
5.1 General 5-1
5.2 Programming Considerations 5-1
5.2.1 Input/Output 5-1
5.2.2 Interrupts 5-1
5.3 Example Programs 5-2
5.3.1 Input/Output Example Program 5-5
5.3.2 Clock Example Program (Polling) 5-8
5.3.3 Example Using Interrupts 5-11

A LOGIC DIAGRAMS
B PARTS LIST
C TMS 9901 PROGRAMMABLE SYSTEMS INTERFACE DATA MANUAL

LIST OF ILLUSTRATIONS

FIGURE PAGE
Figure 1-1 TM 990/310 48 I/O Module 1-2
Figure 2-1 Use of Switch S1 to Set CRU Address Map 2-3
Figure 2-2 Interrupt Priority Jumper Wiring at U1 and U6. 2-4
Figure 3-1 TM 990/310, 48-Bit I/O Board Simplified Block Diagram. 3-2
Figure 3-2 CRU Address Decoding. 3-3
Figure 3-3 TMS 9901 Logic (Typical of 3) 3-4
Figure 3-4 Echo Logic (Typical of 3 Circuits) 3-5
Figure 3-5 Interrupt Storage Logic 3-6
Figure 3-6 Interrupt Priority Logic 3-7
Figure 3-7 TM 990/310 Output Timing for LDCR with 16 Bits of One's. 3-8
Figure 3-8 TM 990/310 Input Timing for STCR Reading 16 Bits of One's 3-8
Figure 4-1 Medium Power Output Signal Conditioning Circuit 4-1
Figure 4-2 High Power Output Signal Conditioning Circuit 4-2
Figure 4-3 Medium Power Optical Isolator Circuit 4-3
Figure 4-4 High Power Optical Isolator Circuit 4-3
Figure 4-5 Typical Testing Configuration 4-4
Figure 4-6 5MT Circuitry 4-5
Figure 5-1 Cable for Example Programs 5-5
Figure 5-2 Interrupt Path for Example 5.3.3 5-11
LIST OF TABLES
TABLE PAGE
Table 2-1 Edge Connector (P2, P3, P4) Pin Assignments 2-5
Table 2-2 Chassis Interface Connector (P1) Signal Assignments 2-6
Table 4-1 5MT Connector Wiring 4-6
Table 5-1 CRU Map 5-3

SECTION 1

INTRODUCTION

1.1 GENERAL

The TM 990/310 is a 48-bit input/output board designed for use with the TM 990/1XX series of Texas Instruments microcomputers. Figure 1-1 is a photograph of the board identifying the edge connectors and principle components of the board.

The TM $990 / 310$ board offers the following features:

- 48 bits individually programmable as inputs or outputs; 27 of these bits may be programmed as logic-zero-sensitive interrupts, rather than inputs or outputs.
- Three negative edge-triggered interrupts and three positive edgetriggered interrupts; each of the six interrupts are edge-detected, stored, and have unique software resets. The edge inputs are pulse shaped by Schmitt trigger circuits.
- Backplane interrupt priority is determined by wires installed on two 16-pin platforms.
- Board CRU base address is changed by altering the contents of S 1 , a four-switch DIP.
- All 48 input/output signals may be echoed back into the CRU via STCR instructions.
- Compatible with TM 990 CRU bus.
- CRU addressing provided for up to 14 cards per system.
- In multiple card I/O systems, CRU addressing can be switch selected such that all CRU addresses are consecutive.
- Contains three programable interval timers.
- Plugs into TM 990/510 or equivalent* chassis.
- Inputs and outputs are TTL compatible.
- May be used with wire-wrap, solder, or ribbon cable edge connectors.

1.2 SPECIFICATIONS

Power requirements: $+5 \mathrm{~V}, \pm 5 \%, 800 \mathrm{~mA}$.
Temperature Requirements:
Operating Temperature 00 C to $70^{\circ} \mathrm{C}$ Storage Temperature $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

* Equivalent chassis include the TM 990/520, /530, /510A, and /520A.

FIGURE 1-1. TM 990/310 48-I/O MODULE

Physical Characteristics:

```
Width: 28 cm (11 inches)
Height:
19 cm (7.5 inches)
Thickness:
0.16 cm (0.062 inch)
Component height:
12.7 mm (0.50 inch) maximum
```

Edge Triggered Interrupt Inputs:

Positive-going threshold voltage: 1.9 V max.
Negative-going threshold voltage: 0.5 V min.
Hysteresis: 0.4 V max.
Allowed voltage range: -0.3 V to 7.0 V
Input current: $-2.72 \mathrm{~mA} @ \mathrm{~V}_{\text {IN }}=0.4 \mathrm{~V}$ -1.22 mA @ $\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$

Programmed Inputs:

High-level input voltage: 2.0 V , minimum
Low-level input voltage: 0.8 V , maximum Allowed voltage range: -0.3 V to 7 V
Input current: -1.01 mA maximum @ 0.4 V

Programmed Outputs:

High-level output voltage: 2.4 V , minimum e -300 uA 2.0 V , minimum -460 uA

Low-level output voltage: 0.56 V , maximum e 2.3 mA
Maximum user current sink: 2.2 mA

1.3 APPLICABLE DOCUMENTS

- TMS 9900 Microprocessor Data Manual
- TMS 9901 Programmable Systems Interface Data Manual (provided in Appendix E).
- TM 990/401 TIBUG Monitor Listing
- TM 990/100MA User's Manual
- Model 990 Computer, TMS 9900 Microprocessor Assembly Language Programmer's Guide (P/N 943441-9701)
- TM 990/507 Cable and 5MT System User's Guide

2.1 GENERAL

This section describes:

- Equipment required for $\mathrm{TM} 990 / 310$ board operation.
- Switch array S1 on the TM 990/310 board used to select TMS 9901 CRU base address.
- Jumper platforms $\mathbb{U 1}$ and $\mathbb{U} 6$ used to select interrupt level when an interrupt occurs at one of the three TMS 9901's on the board.
- Installation of the board into a microcomputer system.
- Programs to check out board operation.

It is presumed that the user is familiar with the TMS 9901 as well as the hardware and programming aspects of the host microcomputer. This data is available in the following manuals:

- TMS 990/1XX Microcomputer User's Guide
- TMS 9901 Programmable Systems Interface Data Manual

A copy of the latter manual can be found in Appendix D.

2.2 REQUIRED EQUIPMENT

To use the TM 990/310 effectively, the user must also supply the following equipment:

- Power Supplies:

$$
+5 \mathrm{~V} \pm 5 \%, 3 \mathrm{~A}
$$

$+12 \mathrm{~V} \pm 5 \%, 0.5 \mathrm{~A}$
$-12 \mathrm{~V} \pm 5 \%, 0.5 \mathrm{~A}$

- Host Microcomputer: One of the TM 990/1XX series; in the following examples, the TM 990/100MA-1.
- Chassis: TM 990/510 card cage (or equivalent)
- Edge Connectors: Three 40 -pin (0.1 inch centers) PCB edge connectors. Will mate to TI H421111-20 (wire-wrap), Viking 3VH20/1JN5 (solder), 3M 3464-0001 (ribbon cable), or equivalent. A three-connector kit TM $990 / 521$, is available from Texas Instruments.
- Terminal Device: Any RS-232-C device operable at a baud rate of 110 , 300 , 1200 , or 9600 baud or an ASR33 Teletype modified for 20 mA current loop operation.

2.3 BOARD SWITCHES, JUMPERS, CONNECTORS

2.3.1 CRU Address Selection and Switch Array S1

The three TMS 9901's on the TM 990/310 board are addressed through the system's address bus when a CRU instruction is executed (LDCR, STCR, TB, SBO, and SBZ). Before execution, a CRU software base address is placed into register 12; the resulting bits 3 to 14 (4 to 14 on the $T M 990 / 180 \mathrm{M}$) contain the CRU hardware base address as further explained in your microcomputer user's guide.

Switch S1 allows you to select the CRU hardware base address in increments of CO_{16} that you can use to address a particular TMS 9901. Figure 2-1 shows the switch S 1 settings and the resulting CRU hardware (B) and software base addresses. The resulting CRU base address is the one that addresses the no. 1 TMS 9901 (accessed through edge connector J2). As shown at the bottom of Figure 2-1, the other TMS 9901's are addressed using the base address plus a designated displacement.

The first 32 CRU bits addressed are bits 0 to 31 (0 to 1 F 16) at the TMS 9901 which select:

- Interrupt or clock mode (bit 0 select)
- Interrupt mask or clock interval (bits 1 to 15)
- Data output or input (bits 16 to 31)

Further data is available in the TMS 9901 data manual (Appendix E).
As shown in Figure 2-1, two of the next 16 bits addressed will reset edge-triggered interrupts (INT5- and INT6-) that have been triggered at the TMS 9901. INT5- is a negative edge-triggered interrupt, and INT6- a positive edge-triggered interrupt. Edge-triggered interrupts will remain active until reset by an LDCR instruction of prescribed address (e.g., a pulse at CRU base address $B+002416$ resets interrupt 5 at no. 1 TMS 9901 and $B+002516$ resets interrupt 6 at the same TMS 9901).

As shown in Figure 2-1, the next 16 bits can be read (echoed) in order to test a bit pattern output from the TMS 9901. The bit pattern output is stored in a buffer that can be read (using the STCR instruction) and compared to the bit pattern sent. For example, the following code will read the value output at no. 1 TMS 9901 location at CRU software base address 020016 (as selected at switch S1):

$$
\begin{array}{lll}
\text { LI } & \text { R12, >0260 } & \text { Set CRU address } \\
\text { STCR } & \text { R1,0 } & \text { Store 16-bits output in R1 }
\end{array}
$$

2.3.2 Interrupt Level Selection on Jumper Plugs $U 1$ and U6

When any interrupt is recognized at a TMS 9901 on the TM 990/310, a signal (INTREQ-) is issued from the TMS 9901 on the I/O board to the backplane and then to the TMS 9901 on the microcomputer board. There it is monitored for priority, and, if enabled, a signal is issued to the microprocessor to obtain Workspace Pointer (WP) and Program Counter (PC) values from interrupt traps in lower memory.

The user can select the interrupt level or levels (up to 3 are possible) by wiring jumpers at platforms U1 and U6, shown in Figure 1-1 in the lower left corner of the board. Note that each TMS 9901 may be jumpered to unique backplane priority levels, or all three may be jumpered to the same backplane priority level (the TM 990/310 is initially jumpered for all three TMS 9901's dedicated to backplane priority interrupt 4).

$\left.\begin{array}{lllllll} & & & & \begin{array}{c}\text { CORRESPONDING } \\ \text { REGISTER }\end{array} \\ \text { 12 CONTENTS }\end{array}\right]$

ADDRESSED USING
 CRU HARDWARE BASE ADDRESS (B)
 AND DISPLACEMENT

$$
\begin{aligned}
& * B+0000 \text { to } B+001 F \\
& B+0024 \\
& B+0025 \\
& B+0030 \text { to } B+003 F \\
& B+0040 \text { to } B+005 F \\
& B+0065 \\
& B+0066 \\
& B+0070 \text { to } B+007 F \\
& B+0080 \text { to } B+009 F \\
& B+00 A 4 \\
& B+00 A 5 \\
& B+00 B 0 \text { to } B+00 B F
\end{aligned}
$$

CORRESPONDING CRU SOFTWARE BASE ADDRESS R12 CONTENTS (BASE 16)

R12 + 0000 to R12 + 003E	32
$R 12+0048$	1
$R 12+004 A$	1
$R 12+0060$ to $R 12+007 E$	16
$R 12+0080$ to $R 12+009 E$	32
$R 12+00 C A$	1
R12 + 00CC	1
R12 + 00E0 to $R 12+00 F F$	16
R12 + 0100 to R12 + 013F	32
R12 + 0148	2
R12 + 014A	1
R12 + 0160 to R12 + 017E	16

[^0]

EXAMPLE 1

Select interrupt level 4 for TMS 9901 no. 1; level 2 for TMS 9901 no. 2 and 3.

EXAMPLE 2

Select interrupt level 4 for all three TMS 9901's on I/O board.

NOTE: TM 990/310 is factory wired to priority 4 for all three TMS 9901 's.

FIGURE 2-2. INTERRUPT PRIORITY JUMPER WIRING AT U1 AND U6

As shown in Figure 2-2, a wire is attached to pins 16,15 , and 14 to respectively select the interrupt level sent by the no. 1, and no. 2, and no. 3 TMS 9901's on the I/O board. Note that pins 14, 15, and 16 of U1 are connected to pins 14,15 , and 16 of U6. Thus the configuration in the second example of Figure 2-2 will cause interrupts at all three I/O board TMS 9901's to go to INT4 at the TMS 9901 on the microcomputer board. This is the configuration as wired at the factory.

As explained in the microcomputer user's guide, vector addresses have been programmed into TIBUG EPROM for interrupt traps 3 and 4 on the TM 990/100MA. The user can program these RAM locations for use as an interrupt handler as described in the microcomputer user's guide. On the TM 990/180M, vector addresses have been programmed into EPROM for interrupts 1 and 2.

2.3.3 Edge Connectors P1, P2, P3, and P4

Edge connectors P2, P3, and P4 interface directly to the I/O board TMS 9901's through onboard series resistors. TMS 9901 signatures at these connectors are listed in Table 2-1.

TABLE 2-1. EDGE CONNECTOR (P2, P3, P4) PIN ASSIGNMENTS

PIN NUMBER SIGNATURE

P2, P3, P4-20 22	
14	P2
16	P3
18	P4
10	P5
12	P6
24	INT15/P7 ${ }^{\text {NTM }}$ (MS 9901
26	
28	INT13/P9
30	NT12/P10
32	INT11/P11
34	INT10/P12
36	NTT9/P13
38	NT8/P14
40	INT7/P15
6	Negative edge-triggered INT5
8	Positive edge-triggered INT6
1	+12V
2	-12V
3	+5V
4	Spare
All Remaining Pins	Ground

NOTES

1. Connector $P 2$ connects to the lowest addressed TMS 9901, P3 connects to the next addressed TMMS 9901, and P4 connects to the highest addressed TMS 9901.
2. If you want to make your own cable, be aware that the connector plugs of various vendors, including $T I$, do not necessarily use the numbering schemes on the board edge connector. ALWAYS refer to the board edge when wiring a connector.

TMS 9901 pins PO to P5 act as data out or data in lines, depending on how the TMS 9901 is programmed (input or output mode).

If programmed to the interrupt mode, an active low signal to even-numbered pins 24 to 40 will cause activation of signal INTREQ- to the TMS 9901 on the microcomputer board. The level to the microcomputer board is selected by the jumpers at U 1 and U 6 as described in paragraph 2.3.2.

A negative-going signal to pin 6 or positive-going signal to pin 8 will also cause INTREQ- to be active.

CAUTION

The voltage at pins 1,2 , and 3 goes through 2.2 ohm, 0.5 W series limiting resistors. Power in excess of this rating could destroy the resistors; thus caution should be taken to prevent excess current (250 mA maximum recommended).

Table 2-2 is a list of the signals at connector $P 1$ which interfaces to the backplane of the TM 990/510 chassis.

TABLE 2-2. TM 990/310 CHASSIS INTERFACE CONNECTOR (P1) SIGNAL ASSIGNMENTS

$\begin{aligned} & \text { P1 } \\ & \text { PIN } \end{aligned}$	SIGNAL		P1 PIN	SIGNAL
57	AO.B		13	INT2.B-
58	A1. B		15	INT3.B-
59	A2.B		18	INT4.B-
60	A3. B		17	INT5.B-
61	A4.B		20	INT6.B-
62	A5.B		6	INT7.B-
63	A6.B		5	INT8.B-
64	A7.B		8	INT9.B-
65	A8.B		7	INT 10.B-
66	A9.B		10	INT11.B-
67	A $10 . \mathrm{B}$		9	INT12.B-
68	A11. B		12	INT13.B-
69	A $12 . \mathrm{B}$		11	INT 14.B-
70	A13.B		14	INT15.B-
71	A14.B		3	$+5 \mathrm{~V}$
72	A $15 . \mathrm{B}$		4	+5V
24	¢3.B-		97	+5V
87	CRUCLK. ${ }^{\text {- }}$		98	$+5 \mathrm{~V}$
30	Ckuout. B		1	GND
29	CRUIN. ${ }^{\text {B }}$		2	GND
88	IORST. B-		99	GND
16	INT 1.B-		100	GND

2.4 INSTALLATION

The following procedure is for a TM 990/310 module used with a TM 990/100MA-1 CPU (with TIBUG installed on EPROM):
a. Attach jumper J1 to the P1-18 position on the TM 990/100MA board. This provides interrupt level 4 from the backplane to the TM 990/310.
b. Wire the voltages into the terminal strip in the chassis, switch on the power supplies, and check the voltages. Switch off power. Set all switches on S1, the dual in line package (DIP) on the TM 990/310 board, to the ON positions (CRU software base address of 020016).
c. Install the TM 990/100MA-1 and TM 990/310 circuit boards in the chassis. Attach the terminal connector to J2 on the TM 990/100MA-1. Note that the TM $990 / 310$ board has only one ejector in order to accomodate three external connectors.
d. Power up the terminal device and switch on the power supplies.
e. Actuate the RESET switch on the TM 990/100MA-1 board and press the letter A key or a carriage return (CR) on the terminal device. TIBUG, the debug monitor program, will output an initialization message.

2.5 BOARD CHECKOUT

Software routines that can be loaded and executed by the user, using the TIBUG monitor, are provided in Section 5.

SECTION 3

THEORY OF OPERATION

3.1 GENERAL

This section describes the theory of operation for the TM 990/310 I/O board. The block diagram in Figure 3-1 defines the basic blocks that comprise the TM 990/310.

3.2 CRU ADDRESS DECODING

Figure 3-2 is a schematic of CRU address decoding. The following terms are generated by the CRU address coding

MUXENOMUXEN $1-$ MUXEN2-	Echo multiplexer enables
MUXEN3-	
MUXEN4-	
MUXEN5-	
990 1SEL.0-	TMS 9901 enables
990 1SEL.1-	
990 1SEL.2-	
IR.00-	
IR.01-	
IR.02-	
IR.03-	Buffered interrupt resets
IR.04-	
IR.05-	

These terms are combinational functions of the address lines, and vary with the settings of switch S1. Three 74S287's generate the terms SEL1, SEL2, and SEL3 which provide enable inputs to the combinational logic that generates the device enables.

The address lines to the 74S287's are provided by the four switch outputs and backplane address lines A5 through A8. Individual 74S287's are enabled, depending on the state of address lines A3 and A4. Since each switch setting represents $192\left(\mathrm{CO}_{16}\right) \mathrm{CRU}$ addresses, the 74 S 287 's are programmed to generate three outputs (SEL1, SEL2, SEL3) which individually enable 64 different CRU addresses. Each group of 64 encompasses one TMS 9901, the I/O echo and interrupt resets.

3.3 TMS 9901 LOGIC

The three TMS 9901's are enabled by CRU address decoding logic outputs. As shown in Figure 3-3, the select inputs, $S 0$ through $S 4$, are connected to backplane address lines A10, A11, A12, A13, and A14. These TMS 9901 inputs select the individual data bits and control functions within the TMS 9901.

FIGURE 3-1. TM 990/310, 48-BIT INPUT/OUTPUT BOARD SIMPLIFIED BLOCK DIAGRAM

FIGURE 3-2. CRU ADDRESS DECODING

FIGURE 3-3. TMS 9901 LOGIC (TYPICAL OF 3)

The CRU interface signals CRUOUT, CRUCLK, and CRUIN control input and output between the TMS 9901 and the CRU. The INTEQ- output of each TMS 9901 is an input to the 7407 open collector buffers. The backplane reset signal is connected to each TMS 9901 reset input, and the backplane phase-1 clock is connected to each TMS 9901 clock input.

Each of the 16 I/O bits of each TMS 9901 is connected to a 10 K ohm pullup resistor and an echo multiplexer input as well as a 68 -ohm series resistor connected to the appropriate pin of one of the three board edge connectors. The INT5- and INT6- inputs of each TMS 9901 are connected to latched interrupt lines.

It should be noted that since the TMS 9901 interfaces to the serial CRU, the TMS 9901 lines, when outputting data, will assume their output state one bit at a time.

3.4 DATA ECHO LOGIC

The data echo logic shown in Figure 3-4 is implemented with six 74LS251 multiplexers. Each multiplexer is enabled by a CRU address decoding output. The appropriate data bit is switched through the multiplexer onto the CRUIN line by the state of backplane address bits A14, A13, and A12.

FIGURE 3-4. ECHO LOGIC (TYPICAL OF 3 CIRCUITS)

3.5 INTERRUPT BUFFER LOGIC

The interrupt buffers are composed of 74 LS 74 D flip-flops as shown in Figure 3-5. Each interrupt input from the appropriate edge connector is pulse shaped through 74LS132 Schmitt trigger circuits. For the three negative-edge INT5inputs, the 74 LS 132 output provides the clock input to the 74 LS 74 . The D input is tied high and the CLEAR input is the logical NOR of the appropriate software reset bit and the backplane reset signal. The 74 LS 74 clock inputs for the positive-edge triggered IN'6- interrupts are 74LSO4 ouputs. The 74 LSO 4 input is provided by the Schmitt trigger output. Each TMS 9901 INT5and INT6- input is provided by the false 74LS74 outputs.

FIGURE 3-5. INTERRPUT STORAGE LOGIC

3.6 INTERRUPT PRIORITY LOGIC

The three 7407 open collector interrupt outputs are connected to two 16-pin platforms as shown in Figure 3-6. Wires installed on these platforms determine the backplane priority of the three TMS 9901 interrupts. All three TMS 9901 interrupts are initially jumpered to interrupt priority level 4.

FIGURE 3-6. INTERRUPT PRIORITY LOGIC

3.7 HARDWAKE INTERFACE

The TM 990/310 user interface is implemented through three identical 40-pin edge connectors. (See Section 1.2 for signal characteristics.) Each of these connectors provide data I/O, interrupt inputs, and power (Table 2-1 lists these functions).

3.7.1 TMS 9901 I/O Lines

Sixteen TMS 9901 lines are individually programmable as inputs or outputs. Nine of these lines (INT15/P7 to INT7/P15) may be programmed as either unbuffered, logic-zero-activated interrupts or as inputs or outputs. A TMS 9901 I/O line, when in output mode, buffers the data output from memory and this data remains stable until changed. Since the TMS 9901 interfaces through the serial CRU, the I/O lines programmed as outputs assume their programmed state in serial fashion if data is output via a LDCR instruction that addresses successive bits.

The timing diagram in Figure 3-7 illustrates the timing for an LDCR utilizing all 16 I/O lines as outputs. Data input via the TMS 9901 I/O lines is accepted serially, one bit at a time; therefore, since there is no input data storage, the system timing must ensure that the input data remains stable until the software has read the data via a TB or STCR instruction. Figure 3-8 illustrates the timing for a 16-bit STCR operation.

The entire LDCR instruction requires 17.33μ seconds (with $\mathbf{3} \mathbf{~ M H z}$ clock).

FIGURE 3-7. 'TM 990/310 OUTPUT TIMING FOR LDCR WITH 16 BITS OF ONE'S
 struction requires 20μ seconds (with 3 MHz clock).

FLGURE 3-8. TM 990/310 INPUT TIMING FOR STCR READING 16 BITS OF ONE'S

3.7.2 Edge-Triggered Interrupts

There is one positive edge-triggered (connector pin 8) interrupt and one negative-edge triggered (connector pin 6) interrupt. These interrupt lines pass through Schmitt trigger circuits.

3.7.3 Power Outlets at Connectors

5V, 12V, and -12 V are available at the connectors. Each voltage is in series with a 2.2 ohm, 0.5 watt resistor to limit maximum current drawn from these lines.

CAUTION

Excessive current drawn from any of these supplies will cause a significant voltage drop across the resistor or, if large enough, will destroy the resistor. If the user wishes to utilize current from these voltages, the required current must be added to the specified value for the appropriate backplane power supply. User circuits must allow for the resulting voltage drop across these resistors.

APPLICATIONS

4.1 GENERAL

For the user requiring high ouput power drive or input/output optical isolation, the TM 990/512 prototyping board may be utilized for the required circuitry.

4.2 OUTPUT SIGNAL CONDITIONING, MEDIUM POWER

This is shown in Figure $4-1$. For TM 990/310 outputs requiring current drive greater than 2.6 mA but less than 40 mA , the SN 7406 hex open collector inverting buffer is recommended. Note that this device will withstand a maximum pullup voltage of 30 volts. A typical application of the $\operatorname{SN} 7406$ is driving LED's.
'To condition TM 990/310 data bits 0 through 5 as buffered outputs, the circuitry shown in Figure 4-1 is recommended.

$V_{C C 2}$ max. $=+30 \mathrm{~V}$
I load max. $=40 \mathrm{~mA}$

4.3 OUTPUT SIGNAL CONDITIONING, HIGH POWER

For TM 990/310 outputs requiring more current drive than supplied by the SN 7400° but less than 300 mA , the $\operatorname{SN} 75460$ open collector power buffer is recommended. The device will withstand a pullup voltage of 30 volts.

To drive 24 -volt relays with TM $990 / 310$ data bits 0 and 1 , the circuitry shown in Figure $4-2$ is recommended. The 19 V Zenier diode prevents damage to the SN75460 if the 5 V supply is inactive while $\mathrm{V}_{\mathrm{cc} 2}$ is active.

FIGURE 4-2. HIGH POWER OUTPUT SIGNAL CONDITIONING CIRCUIT
4.4 OUTPUT SIGNAL CONDITIONING, OPTICAL ISOLATION

For the user who requires TM 990/310 output isolation, the TIL 111 optical coupler is recommended for current output drive up to 20 mA . If more current drive is required, the optical coupler output must drive a buffer circuit such as the SN75460 to provide the current drive. It should be noted that the optical coupler output breakdown voltage is 30 volts.

Figure 4-3 illustrates a 20 mA optically isolated circuit. To condition TM $990 / 310$ data bit 0 as an optically-coupled $300-\mathrm{mA}$ output, the circuitry illustrated in Figure $4-4$ is recommended.

FIGURE 4-3. MEDIUM POWER OPTICAL ISOLATOR CIRCUIT

ILOAD max. $=300 \mathrm{~mA}$
$V_{C C 2}$ max. $=40 \mathrm{~V}$
ILOAD max. $=20 \mathrm{~mA}$

FIGURE 4-4. HIGH POWER OPTICAL ISOLATOR CIRCUIT

4.5 LOGIC TESTING

The TM 990/310 provides an ideal method to check circuit boards and other logic networks. The diagram in Figure 4-5 illustrates a circuit board tester with the capability to generate and check a total of 96 bits. For example, the tester could be programmed to output patterns on 80 pins and check resulting signals on 16 pins. A typical software sequence would be as follows:
a. Set all 96 bits (all three TMS 9901's) to input mode (set bit 15, KST2, to zero at each TMS 9901).
b. Output a test pattern to the selected 80 bits (outputting data to a bit automatically switches the bit to output mode).
c. Echo the output data, and verify that no output bits are shorted on the board being tested.
d. Input the resulting output signals from the board being tested, and compare for valid operation.
e. Repeat steps b, c, and d for as many test patterns as required.

Note that this test configuration will provide 2.2 mA per bit to the board under test. If more current drive is required, high current amplifiers should be implemented on a TM 990/512 prototyping board.

FIGURE 4-5. TYPICAL TESTING CONFIGURATION

4.6 5MT INPUT/OUTPUT SYSTEM

For industrial automation applications involving programmable control of ac and de switches, solenoid valves, or pilot lights, the TM 990/310 will interface to $5 \mathrm{MT} \mathrm{I} / 0$ modules installed on a mounting baseplate. The 5 MT system features the following characteristics:

- 3.8 kVdc optical coupler isolator
- LED indicator lights
- Plug-in modules
- Terminal strip on mounting baseplate for field-wired devices
- Designated to meet UL50B spacing requirements
- Meets NEMA ICS2-230 noise immunity standard for industrial controls and MIL-STD-461A, conducted and radiated susceptibility
- Module-to-module isolation

The 5 MT uses a baseplate which may contain up to 16 plug-in modules. Connection between the TM 990/310 and 5MT is by a TM 990/507 cable as shown in Figure 4-6. Further information is available in the TM 990/507 and 5MT System User's Guide.

FIGURE 4-6. 5MT CIRCUITRY

- 5MT 14-30CL DC Output Module - enables the TM 990/310 to control high power dc outputs.
- 5MT 12-40AL AC Output Module - enables the TM 990/310 to control high power ac outputs.
- 5MT13-D03L DC Input Module - converts high voltage de inputs to voltage inputs compatible with the TM 990/310.
- 5MT11-A05L AC Input Module - converts high voltage ac inputs to voltage inputs compatible with the TM 990/310.

The following operational characteristics must be considered when using the 5MT module:
a. The reset signal (from the logical OR of power-up reset, the RESET switch on the microcomputer board, or the RSET external instruction) will force all $48 \mathrm{I} / 0$ bits to the high state; therefore, all 5MT outputs will be initially active. The user who finds this feature undesirable may use an output-data-clear instruction in the reset interrupt subroutine. This would require the user to modify TIBUG, the debug monitor, or replace the TIBUG entirely.

```
b. The user may supply a 7-9 volt V Vc2 voltage.
```

Table 4-1 indicates the requirements for the cable between the TM 990/310 and the 5MT baseplate. Further information on the 5MT series may be obtained from:

```
Texas Instruments Incorporated
Industrial Controls
34 Forest
Attleboro, MA. 02703
```

TABLE 4-1. 5MT CONNECTOR WIRING

SIGNAL		5MT D CONNECTOR	TM 990/310 EDGE CONNECTOR
Data Bit/Module	5	1	10
Data Bit/Module	4	2	18
Data Bit/Module	2	3	14
Data Bit/Module	0	4	20
Data Bit/Module	7	5	24
Data Bit/Module	9	6	28
Data Bit/Module	11	7	32
Data Bit/Module	13	8	36
Data Bit/Module	15	9	40
Ground/Module	2	10	13
Ground/Module	0	11	19
Ground/Module	5	12	9
Ground/Module	7	13	23
Ground/Module	9	14	27
Ground/Module	11	15	21
Ground/Module	13	16	35
Ground/Module	15	17	39
Ground/Module	NC	18	-
Ground/Module	NC	19	-
Ground/Module	NC	20	-
Data Bit/Module	3	21	16
Data Bit/Module	1	22	22
Data Bit/Module	6	23	12
Data Bit/Module	8	24	26
Data Bit/Module	10	25	30
Data Bit/Module	12	26	34
Data Bit/Module	14	27	38
Ground/Module	3	28	15
Ground/Module	1	29	21
Ground/Module	4	30	17
Ground/Module	6	31	11
Ground/Module	8	32	25
Ground/Module	10	33	29
Ground/Module	12	34	33
Ground/Module	14	35	37
VCC2		36	-
AC Common		37	-

NOTE: 5MT D CONNECTOR IS AMP 205713-1

SECTION 5

TM 990/310 PROGRAMMING

5.1 GENERAL

This section describes how to use the CRU to access the TM 990/310 and how to do the following:

- Set and use input and output
- Use the clock
- Use interrupts

5.2 PROGRAMMING CONSIDERATIONS

The following sections contain points which should be kept in mind while writing software for the TM 990/310 or while studying the examples.

5.2.1 Input/Output

The 16 I/O pins of the TMS 9901 will be set to the input mode by any of the following:

1. Activating the RESET switch on the microcomputer board (TM 990/1XX).
2. Completion of a powerup reset.
3. Execution of the RESET external instruction.
4. Writing a zero to CRU bit 15 of a TMS 9901 while it is in the clock mode.

All 48 I/O bits on the $T M 990 / 310$ will be reset by 1,2 or 3 above. Only one specified TMS 9901 will be reset by number 4 above.

Bits are set as output bits by writing a value to them. Once addressed as outputs, bits remain outputs until reset.

Since all 48 I/O bits have pullup resistors, all bits wired as outputs (to relays, solenoids, LED's, etc.) will be put in the logic one state by any reset condition, until changed by user software.

CAUTION

Once a bit is set as an output, do not attempt to use it as an input before it is reset or the output buffers may be damaged.

5.2.2 Interrupts

At each P2, P3 and P4 connector, nine of the $16 \mathrm{I} / 0$ lines can be used as logic zero interrupts (active low). These are the INT7-/P15 through INT15-/P7 lines at the TMS 9901.

The TMS 9901 responds to a negative-edge-triggered interrupt at its INT5input and a positive-edge-triggered interrupt at its INT6- input. The edge-triggered interrupts, levels 5 and 6 of each TMS 9901, must be software reset with CRU output instructions (see Table 5-1).

NOTE

INT1-, INT2-, INT3-, and INT4- to each TMS 9901 are unused. (INT5- and INT6- are edge-triggered interrupts, and INT7- to IN'115- are shared with I/O ports P15 to P7 respectively.)

A backplane reset or execution of the RSET external instruction resets all edge-triggered interrupts and sets all three TilS 9901's to input mode.

Jumper platforms U1 and U6 are wired at the factory so that all interrupts at P2, P3 and P4 will result in a level 4 interrupt input to the TMS 9901 on the microcomputer board. It might be advantageous, from a software point of view, to have the individual TMS 9901's dedicated to three different interrupts. They can be changed as explained in paragraph 2.3.2.

The interrupt levels of the three TMS gyo1's should not be confused with backplane priority. Each TMS 9901 has a maximum of fifteen interrupt levels (four are always unused) which may be enabled or disabled by the TM 990/310 software. Backplane priority refers to the TMS 9900 priority levels. For example, all interrupt levels of the TM 990/310 are initially wired to backplane priority 4 (connect to bus pin INT4-).

5.3 EXAMPLe' Programs

The following switch S 1 settings are assumed for all of the following examples:

$$
\begin{array}{llllll}
\text { Switch No's }= & 1 & 2 & 3 & 4 & \\
& \text { ON } & \text { UN } & \text { OFF } & \text { ON } & \text { (Hexadecimal) }
\end{array}
$$

This setting corresponds to CKU base addresses (hexadecimal) as follows:

Port	TiMS 9901	Hardware Base Address	Software Base Address
P2	TMS 9901 No.1	0280	0500
P3	TMS 9901 No.2	0200	0580
P4	TMS 9901 No.3	0300	0600

A complete CRU map of the three ports is given in Table 5-1.

NOTE

Each port uses an address space of 64 CRU bits. As shown in Table 5-1, port addresses are contiguous with port P2 the lowest address followed by P3 which is followed by P4.

TABLE 5-1. CRU MAP (SHEET 1 OF 2)

Software Displacement 10^{1}			$\begin{aligned} & \text { P2/P3/P4 } \\ & \text { Pin No. } \end{aligned}$	$\begin{aligned} & \mathrm{CRU}^{2} \\ & \text { Bit } \end{aligned}$	$\begin{aligned} & \text { CRU3 } \\ & \text { Read } \end{aligned}$	$\begin{aligned} & \mathrm{CRU}^{5} \\ & \text { Write } \end{aligned}$
TMS 9901 No. 1 (P2)	TMS 9901 No.2 (P3)	TMS 9901 No. 3 (P4)				
0	80	100	-	0	Control	Control
					Bit	Bit
2	82	102	-	1	- /CLK1	MASK $1 / \mathrm{CLK} 1$
4	84	104	-	2	- /CLK2	MASK2/CLK2
6	86	106	-	3	- /CLK3	MASK3/CLK3
8	88	108	-	4	- /CLK4	MASK4/CLK4
A	8 A	10A	6	5	INT5/CLK5	MASK5/CLK5
C	8 C	10C	8	6	INT6/CLK6	MASK6/CLK6
E	8 E	10E	40	7	INT7/CLK7	MASK7/CLK7
10	90	110	38	8	INT8/CLK8	MASK8/CLK8
12	92	112	36	9	INT9/CLK9	MASK9/CLK9
14	94	114	34	10	INT 10/CLK 10	MASK $10 / \mathrm{CLK} 10$
16	96	116	32	11	INT11/CLK11	MASK $11 / \mathrm{CLK} 11$
18	98	118	30	12	INT 12/CLK 12	MASK 12/CLK 12
1A	9 A	11A	28	13	INT $13 /$ CLK 13	MASK $13 / \mathrm{CLK} 13$
1 C	9 C	11C	26	14	INT14/CLK 14	MASK 14/CLK 14
1E	9 E	11 E	24	15	INT15/INTREQ	MASK15/RST2-
20	A0	120	20	16	INO	OUT0
22	A2	122	22	17	IN 1	OUT 1
24	A4	124	14	18	IN2	OUT2
26	Аб	126	16	19	IN3	OUT3
28	A8	128	18	20	IN4	OUT4
2 A	AA	12A	10	21	IN5	OUT5
2 C	AC	12C	12	22	IN6	OUT6
2 E	AE	12E	24	23	IN7/INT 154	OUT7
30	B0	130	26	24	IN8/INT 14	OUT8
32	B2	132	28	25	IN9/INT 13	OUT9
34	B4	134	30	26	IN $10 /$ INT 12	OUT 10
36	B6	136	32	27	IN $11 /$ INT 11	OUT 11
38	B8	138	34	28	IN $12 /$ INT 10	OUT 12
3A	BA	13 A	36	29	IN 13/INT9	OUT 13
3 C	BC	13C	38	30	IN14/INT8	OUT 14
3 E	BE	13E	40	31	IN15/INT7	OU'T 15
40	CO	140	-	32	-	-
42	C 2	142	-	33	-	-
44	C4	144	-	34	-	-
46	C6	146	-	35	-	-
48	C8	148	-	36	-	INT5 Reset (P1, P3
						only)
4A	CA	14A	-	37	-	INT6 Reset(P1,P3) INT5 Reset (P2)
4 C	CC	14 C	-	38	-	INT6 Reset (P2
4E	CE	14E	-	39	-	_ only)

TABLE 5-1. CRU MAP (SHEET 2 OF 2)

Software Displacement $16{ }^{1}$			$\begin{aligned} & \mathrm{P} 2 / \mathrm{P} 3 / \mathrm{P} 4 \\ & \text { Pin No. } \end{aligned}$	$\begin{aligned} & \text { CRU2 } \\ & \text { Bit } \end{aligned}$	$\begin{aligned} & \text { CRU3 } \\ & \text { Read } \end{aligned}$	$\begin{aligned} & \text { CRU5 } \\ & \text { Write } \end{aligned}$
TMS 9901	TMS 9901	TMS 9901				
No. 1 (P2)	No. 2 (P3)	No. 3 (P4)				
50	D0	150	-	40	-	-
52	D2	152	-	41	-	-
54	D4	154	-	42	-	-
56	D6	156	-	43	-	-
58	D8	158	-	44	-	-
5A	DA	15A	-	45	-	-
50	DC	15C	-	46	-	-
5 E	DE	15E	-	47	-	-
60	EO	160	20	48	Echo OUTO	-
62	E2	162	22	49	Echo OUT 1	-
64	E4	164	14	50	Echo OUT2	-
66	E6	166	16	51	Echo OUT3	-
68	E8	168	18	52	Echo OUT4	-
6 A	EA	16A	10	53	Echo OUT5	-
6 C	EC	16C	12	54	Echo OUT6	-
6 E	EE	16 E	24	55	Echo OUT'7	-
70	F0	170	26	56	Echo OUT8	-
72	F2	172	28	57	Echo OUT9	-
74	F4	174	30	58	Echo OUT10	-
76	F6	176	32	59	Echo OUT 11	-
78	F8	178	34	60	Echo OUT 12	-
7 A	FA	17A	36	61	Echo OUT 13	-
7 C	FC	17 C	38	62	Echo OUT14	-
7E	FE	17 E	40	63	Echo OUT 15	-

${ }^{1}$ This column represents the value to be added to the software base address, as determined by switch S1, to access a given block of bits (e.g., add 2016 to the software base address to place values on OUTO through OUT 15 with a LDCR instruction loading 16 bits).
$2_{\text {This }}$ column represents the displacement to be used with a CRU single bit instruction (e.g., SBO, SBZ, TB) with no displacement added to the base address.
3^{W} When Control Bit $=1$, the top 16 bits of this column represent the CLK Read register or the INTREQ bit. When Control Bit $=0$, the top 16 bits of this column represents the incoming interrupts (if enabled).
${ }^{4}$ The following 9 bits represent I/O bits unless the interrupt mask is set (enable= 1) for the corresponding INTX.

5 When Control bit $=1$, writing to the CLK bits sets the clock and writing to RST2- causes a reset. When Control Bit $=0$, writing a 1 to a MASK bit enables the corresponding INTX.

5.3.1 Input/Output Example Program

This program demonstrates using the I/O and Echo bits. A cable as shown in Figure 5-1 will be needed for this program. The cable connects P2 (TMS 9901 no. 1) and P3 (TMS 9901 no. 2) so that the output bits of no. 1 TMS 9901 connect to the input bits of no. 2 TMS 9901.

- Reset the TMS 9901's.
- Set TMS 9901 no. 1 as output; output a test pattern.
- Kead TMS 9901 no. 1 Echo bits and compare with test pattern; output error message if not the same.
- Read TMS 9901 no. 2 input bits and compare with test pattern; output error message if not the same.
- If both tests pass, print message and branch to monitor.

FIGURE 5-1. CABLE FOR EXAMPLE PROGRAMS

F04E 101D

F050 2FAO
F052 F058
F054 0460
F056 0080
F058 ODOA
F05A 45
F05B 52
F05C 52
F05D 4F
F05E 52
F05F 2D
F060 20
F061 4E
F062 4F
F063 20
F064 45
F065 43
F066 48
F067 4F
F068 ODOA F06A 0000

FO6C 2FAO
F06E F074
F070 0460
F072 0080
F074 ODOA
F076 45
F077 52
F078 52
F079 4F
F07A 52
F07B 2D
F07C 20
F07D 4E
F07E 4F
F07F 20
r080 49
F081 4E
F082 50
F083 55
F084 54
F085 53
F086 ODOA DATA >ODOA CARRAGE RETURN/LINE FEED
F088 0000

* IF BOTH TESTS PASS, GO TO FINISH

JMP FIN TESTS PASSED, GO TO FINISH

* ERROR MESSAGES
*

*

* ERROR MESSAGE 1 - ERROR- NO ECHO
*

ERR1 XOP @MESS1,14 OUTPUT ERROR MESSAGE 1

MESS1 DATA >ODOA CARRAGE RETURN/LINE FEED 'TEXI' 'ERROR- NO ECHO'

```
DATA \(>\) ODOA CARRAGE RETURN/LINE FEED DATA \(>0000 \quad\) END OF MESSAGE TAG
* ERROR MESSAGE 2 - ERROR- NO INPUTS
*
ERR2 XOP @MESS2,14 OUTPUT ERROR MESSAGE 2
B @ \(\quad\) B 0 BRANCH TO MONITOR
MESS2 DATA >ODOA CARRAGE RETURN/LINE FEED TEXT 'ERROR- NO INPUTS'
```


5.3.2 Clock Example Program (Polling)

This program demonstrates how to set and use the clock on no. 1 TMS 9901 on the TM 990/310 module. After a period of five seconds, a message is written. This example requires no TM $990 / 310$ cable or connectors. The steps of this program are as follows:

1. Reset the TMS 9901.
2. Go to the interrupt mode and enable INT3 (the clock issues INT3, and INTREQ goes high when finished counting down).
3. Go to the clock mode and set the clock to a 250 ms count (for 3 MHz system clock).
4. Poll the INTREQ bit (see Table 5-1) until the clock is finished (do not poll INT3 for a clock countdown).
5. Repeat countdown 20 times for a 5-second delay.
6. Output message after 5-second countdown.

NOTE
After the TMS 9901 clock register is decremented down to zero, it is reinitialized with the original count value automatically, and the countdown begins again. The clock is disabled by writing all zeroes to the 14 clock bits or by a hardware (external) reset (not a sof tware reset to bit 15 in the clock mode). Writing a one or a zero to the INT3 interrupt mask (bit 3) clears the interrupt; however, writing a one to this bit re-enables the clock interrupt.

F056 ODOA MESS DATA >ODOA CARRIAGE RETURN, LINE FEED F058 46 F059 49 F05A 56 F05B 45 FO5C 20 F05D 53 F05E 45 F05F 43 F060 $4 F$ F061 4E F062 44 F063 53 F064 20 Y065 44 F066 45 F067 4C F068 41 F069 59 F06A 0D0A F06C 0000

DATA $>$ ODOA
DATA >0000 END

CARRIAGE RETURN, LINE FEED END OF MESSAGE TAG

5.3.3 Example Using Interrupts

This example demonstrates how to enable and handle interrupts. Figure 5-2 shows the interrupt path from an external source through the TM 990/310 to the CPU. The numbered steps described below are keyed in Figure 5-2. For this example, the connector shown in Figure $5-1$ can be used, or a single wire connecting P2-40 to P3-40 can be substituted. This example performs the following steps:

1. Load the interrupt linking areas with the starting address of the interrupt service routine (see your TM 990/1XX Users Manual).
2. Reset all $9901^{\prime \prime}$. This places the I / O bits to the input mode and resets the interrupts on all four 9901s (three on the TM 990/310 and one on on the CPU module).
3. Enable interrupt 4 on the TMS 9901 on the CPU module.
4. Enable interrupt 7 on the TMS 9901 no. 1 (P2) on the TM $990 / 310$.
5. Enable interrupt levels 0 through 4 of interrupt mask on the TMS 9900 .
6. Set I/O bit 15 of TMS 9901 no. 2 on the TM $990 / 310$ as an output with a logic 0 level.
7. The interrupt service routine disables the interrupt, prints a message indicating that the interrupt has happened, and returns to the main program.
8. The main program prints a message that all steps have been successfully completed and returns control to the monitor.

FIGURE 5-2. IN'TERRUPT PATH FOR EXAMPLE 5.3.3


```
FO9E ODOA
MESS2
DATA >ODOA
CARKIAGE RETURN, LINE FEED
FOAO 50
HOA1 52
FOA2 4F
FOA3 47
FOA4 52
FOAS 41
FOA6 4D
HOA7 20
FOA8 40
FOAY 49
HOAA 4E
FOAB 49
FOAC 53
FOAD 48
FOAE 45
FOAF 44
FOBO ODOA
FOB2 0000
DATA >ODOA CARRIAGE RETURN, LINE FEED
DATA >0000 END UF MESSAGE TAG
FOB4 ODOA
rOB6 49
FOB7 4E
mOB8 54
FOB9 45
FOBA 52
FOBB }5
FOBC 55
FOBD 50
fOBE 54
FOBF 20
FOCO 46
FOC1 41
HOC2 49
HOC3 4C
HOC4 45
FOC5 44
FOC6 20
FOC7 54
FOC8}
FOC9 20
FOCA 4F
FOCB 43
FOCC 43
FOCD 55
FOCE 52
FODO ODOA DATA >ODOA CAKRIAGE RETURN, LINE FEED
FOD2 0000
END OF MESSAGE TAG
```

1. CAPACITAMCE UNISE SPECIFIED
values are in microfarad
2. RESISTANCE VALUES ARE IN OHMS
3. ALL RESISTORS ARE $1 / 4 \mathrm{~W}, \pm 5 \%$
4. CUSTOMER'S USE-NOTINSTALLED
5. ALL IG PIN CIRCUITS UTILIZE PINIGAS VCC(+5 V)
AND PIN $\&$ AS GND
an
6. ALL 14 PIN CIRCUITS UTILIZE PINI 14 AS VCC(+ +SV)
7. ALL 20 DIN CIRCUITS UTILIZE PIN 20 AS
B. NG DENOTES NO CONNECTION

SPARES
$5 \sqrt[4]{534}-N C$
74L500

$$
N C \cdot \frac{11}{1226} D_{741504}^{10} N C
$$

$\prod_{=}^{3 / 3} \int_{74 \mathrm{LSO}}^{013} \mathrm{NC}$
UI2
$\Gamma_{7407}^{3} D 0^{4} N C$

SYMBOL

DESCRIPTION
QTY.

C1, C3 to C12
C2
R3, R6
R10,R11,R12,R21
R22,R23,R24
R7,R8,R9

S1

U1, U6
U2, U28, U34
U3, U4
U5, U19,U20,U34
U7,U13,U26,U36
U8, U22, U38
U9,U15, U23,
U29, U39, U45
U10, U24, U40
U11, U16, U25, U30,U41, U46
U12
U14, U33
U17, U21
U18, U31, U32
U37,U43, U44
U42
Capacitor, $0.047 \mu \mathrm{~F}$. 11
Capacitor, $22 \mu \mathrm{~F}$. 1
Resistor, 2.2K, 1/4 W 2
Resistor, 10K, 1/4 W 7
Resistor, 2.2 ohm, $1 / 2 \mathrm{~W}$
Switch, 4-position 1
Platform, 16 pin, prewired/sockets (separate items) 2
74LSOO 3
74LS139 2
10 K resistor pack 4
74LS04 5
74LS74 3
74LS251 6
TMS 9901/40-pin sockets (separate items) 3
68 ohm resistor pack 6
7407 1
74LS132 2
74LS241 2
74S287/16-pin sockets (separate items) 3
74LS10 3
74LS20 1

TMS 9901 PROGRAMMABLE SYSTEMS INTERFACE

DATA MANUAL

The Engineering Staff of TEXAS INSTRUMENTS INCORPORATED Semiconductor Group

JULY 1978

TEXAS Instruments
INCORPORATED

Information contained in this publication is believed to be accurate and reliable. However, responsibility is assumed neither for its use nor for any infringement of patents or rights of others that may result from its use. No license is granted by implication or otherwise under any patent or patent right of Texas Instruments or others.

Copyright (C) 1977
Texas Instruments Incorporated

TABLE OF CONTENTS

1. INTRODUCTION
1.1 Description 1
1.2 Key Features 1
1.3 Application Overview 1
2. ARCHITECTURE
2.1 CRU Interface 2
2.2 Interrupt Interface 5
2.3 Input/Output Interface 5
2.4 Programmable Ports 9
2.6 Power-Up Considerations 10
2.7 Pin Descriptions 11
3. APPLICATIONS
3.1 Hardware Interface 12
3.2 Software Interface 13
3.3 Interval Timer Application 15
4. TMS 9901 ELECTRICAL SPECIFICATIONS
4.1 Absolute Maximum Ratings Over Operating Free Air Temperature Range (Unless Otherwise Noted) 19
4.2 Recommended Operating Conditions 19
4.3 Electrical Characteristics Over Full Range of Recommended
Operating Conditions (Unless Otherwise Noted) 19
4.4 Timing Requirements Over Full Range of Operating Conditions 19
4.5 Switching Characteristics Over Full Range of Recommended Operating Conditions 20
5. MECHANICAL DATA
5.1 TMS 9901 - 40 Pin Ceramic Package 21
5.2 TMS 9901 - 40 Pin Plastic Package 22
LIST OF ILLUSTRATIONS
Figure 1 Typical TMS 9901 Programmable System Interface (PSI) Application 2
Figure $2 \quad$ TMS 9901 PSI Block Diagram 3
Figure 3 . TMS 9901 PSI Interrupt Control Block Diagram 6
Figure 4 TMS 9901 I/O Interface Section 8
Figure 5 Input and Output Equivalents 8
Figure 6 TMS 9901 Interval Timer Section 9
Figure 7 TMS 9900/TMS 9901 Interface 12
Figure $8 \quad$ TMS 9981/TMS 9901 Interface 13
Figure 9 TMS 9900 Sample Software To Control The TMS 9901 14
Figure 10 TMS 9901 Interval Timer Application Flowchart 16
Figure 11 Interval Timer 17
Figure 12 Switching Characteristics 20

LIST OF TABLES

Table 1 CRU Bit Assignments 4
Table 2 Interrupt Code Generation 4
Table 3 TMS 9980A or TMS 9981 Interrupt Level Data 7
Table 4 TMS 9901 Pin Assignments and Functions 11

1. INTRODUCTION

1.1 DESCRIPTION

The TMS 9901 Programmable Systems Interface (PSI) is a multifunctional component designed to provide low cost interrupt and I/O ports and an interval timer for TMS 9900-family microprocessor systems. The TMS 9901 is fabricated using N-channel silicon-gate MOS technology. The TMS 9901 is TTL-compatible on all inputs and outputs, including the power supply (+5 V) and single-phase clock.

1.2 KEY FEATURES

- Low Cost
- 9900-Family Peripheral
- Performs Interrupt and I/O Interface functions:
- Six Dedicated Interrupt Lines
- Seven Dedicated I/O Lines
- Nine Programmable Lines as I/O or Interrupt
- Up to 15 Interrupt Lines
- Up to 22 Input Lines
- Up to 16 Output Lines
- Easily Cascaded for Expansion
- Interval or Event Timer
- Single 5 V Power Supply
- All Inputs and Outputs TTL-Compatible
- Standard 40-Pin Plastic or Ceramic Package
- N-Channel Silicon-Gate MOS Technology.

1.3 APPLICATION OVERVIEW

The following example of a typical application may help introduce the user to the TMS 9901 PSI. Figure 1 is a block diagram of a typical application. Each of the ideas presented below is described in more detail in later sections of this manual.

The TMS 9901 PSI interfaces to the CPU through the Communications Register Unit (CRU) and the interrupt control lines as shown in Figure 1. The TMS 9901 occupies 32 bits of CRU input and output space. The five least significant bits of address bus are connected to the S lines of the PSI to address one of the 32 CRU bits of the TMS 9901. The most significant bits of the address bus are decoded on CRU cycles to select the PSI by taking its chip enable ($\overline{\mathrm{CE}}$) line active (LOW).

Interrupt inputs to the TMS 9901 PSI are synchronized with $\bar{\phi}$, inverted, and then ANDed with the appropriate mask bit. Once every $\bar{\phi}$ clock time, the prioritizer looks at the 15 interrupt input AND gates and generates the interrupt control code. The interrupt control code and the interrupt request line constitute the interrupt interface to the CPU.

After reset all I/O ports are programmed as inputs. By writing to any I/O port, that port will be programmed as an output port until another reset occurs, either software or hardware. Data at the input pins is buffered on to the TMS 9901. Data to the output ports is latched and then buffered off-chip by the PSI's MOS-to-TTL buffers.

The interval timer on the TMS 9901 is accessed by writing a ONE to select bit zero (control bit), which puts the PSI CRU interface in the clock mode. Once in the clock mode the 14-bit clock contents can be read or written. Writing to the clock register will reinitialize the clock and cause it to start decrementing.. When the clock counts to zero, it will cause an interrupt and reload to its initial value. Reading the clock contents permits the user to see the decrementer contents at that point in time just before entering the clock mode. The clock read register is not updated when the PSI is in the clock mode.

FIGURE 1- TYPICAL TMS 9901 PROGRAMMABLE SYSTEM INTERFACE (PSI) APPLICATION

2. ARCHITECTURE

The architecture of the TMS 9901 Programmable Systems interface (PSI) is designed to provide the user maximum flexibility when designating system I/O ports and interrupts. The TMS 9901 can be divided into four subsystems: CRU interface, interrupt interface, input/output interface, and interval timer. Figure 2 is a general block diagram of the TMS 9901 internal architecture. Each of the subsystems of the PSI is discussed in detail in subsequent paragraphs.

2.1 CRU Interface

The CPU communicates with the TMS 9901 PSI via the CRU. The TMS 9901 occupies 32 bits in CRU read space and 32 bits in CRU write space. Table 1 shows the mapping for CRU bit addresses to TMS 9901 functions

The CRU interface consists of five address select lines (SO-S4), chip enable ($\overline{C E}$), and the three CRU lines (CRUIN, CRUOUT, CRUCLK). The select lines (SO-S4) are connected to the five least significant bits of the address bus; for a TMS 9900 system S0-S4 are connected to A10-A14, respectively. Chip enable ($\overline{\mathrm{CE}}$) is generated by decoding the most significant bits of the address bus on CRU cycles; for a 9900 based system address bits $0-9$ would be decoded. When $\overline{C E}$ goes active (LOW), the five select lines point to the CRU bit being accessed When $\overline{\mathrm{CE}}$ is inactive (HIGH), the PSI's CRU interface is disabled.

NOTE

When $\overline{\mathrm{CE}}$ is inactive (HIGH) the 9901 sets its CRUIN pin to high impedance and disables CRUCLK from coming on chip. This means that CRUIN can be used as an OR tied bus. When $\overline{\mathrm{CE}}$ is high the 9901 will still see the select lines, but no command action is taken.

In the case of a write operation, the TMS 9901 strobes data off the CRUOUT line with CRUCLK. For a read operation, the data is sent to the CPU on the CRUIN line.

FIGURE 2-TMS 9901 PSI BLOCK DIAGRAM

Several TMS 9901 devices may be cascaded to expand I/O and interrupt handling capability simply by connecting all CRU and address select lines in parallel and providing each device with a unique chip enable signal: the chip enable $(\overline{\mathrm{CE}})$ is generated by decoding the high-order address bits ($A 0-A 9$) on CRU cycles.

For those unfamiliar with the CRU concept, the following is a discussion of how to build a CRU interface. The CRU is a bit addressable (4096 bits), synchronous, serial interface over which a single instruction can transfer between one and 16 bits serially. Each one of the 4096 bits of the CRU space has a unique address and can be read and written to. During multi-bit CRU transfers, the CRU address is incremented at the beginning of each CRU cycle to point to the next consecutive CRU bit.

TABLE 1
CRU SELECT Bit ASSIGNMENTS

CRU Bit	$S_{0} S_{1} S_{2} S_{3}$	S_{4}	CRU Read Data
0	0	0	0
1	0	0	
2	0	0	0

[^1]When a 99XX CPU executes a CRU Instruction, the processor uses the contents of workspace register 12 as a base address. (Refer to the 9900 Microprocessor Data Manual for a complete discussion on how CRU addresses are derived.) The CRU address is brought out on the 15 -bit address bus; this means that the least significant bit of R12 is not brought out of the CPU. During CRU cycles, the memory control lines (MEMEN, $\overline{\text { WE }}$, and DBIN) are all inactive; $\overline{M E M E N}$ being inactive (HIGH) indicates the address is not a memory address and therefore is a CRU address or external instruction code. Also, when MEMEN is inactive (HIGH) and a valid address is present, address bits A0-A2 must all be zero to constitute a valid CRU address; if address bits A0-A2 are other than all zeros, they are indicating an external instruction code. In summary, address bits A3-A14 contain the CRU address to be decoded, address bits AO-A2 must be zero and MEMEN must be inactive (HIGH) to indicate a CRU cycle.

2.2 Interrupt Interface

A block diagram of the interrupt control section is shown in Figure 3. The interrupt inputs (six dedicated,
 time by the SYNC LATCH, each $\bar{\phi}$ time. The output of the sync latch is inverted (interrupts are LOW active) and ANDed with its respective mask bit (MASK $=1$, INTERRUPT ENABLED). On the rising edge of $\bar{\phi}$, the prioritizer and encoder senses the masked interrupts and produces a four-bit encoding of the highest priority interrupt present (see Tables 2 and 3). The four-bit prioritized code and INTREQ are latched off-chip with a sync latch on the falling edge of the next $\bar{\phi}$, which ensures proper synchronization to the processor.

Once an interrupt goes active (LOW), it should stay active until the appropriate interrupt service routine explicitly turns off the interrupt. If an interrupt is allowed to go inactive before the interrupt service routine is entered, an erroneous interrupt code could be sent to the processor. A total of five clock cycles occur between the time the CPU samples the INTREQ line and the time it samples the IC0-IC3 lines. For example, if an interrupt is active and the CPU recognizes that an interrupt is pending, but before the CPU can sample the interrupt control lines the interrupt goes inactive, the interrupt control lines will contain an incorrect code.

The interrupt mask bits on the TMS 9901 PSI are individually set or reset under software control. Any unused interrupt line should have its associated mask disabled to avoid false interrupts: To do this, the control bit (CRU bit zero), is first set to a zero for interrupt mode operation. Writing to TMS 9901 CRU bits $1-15$ will enable or disable interrupts $1-15$, respectively. Writing a one to an interrupt mask will enable that interrupt; writing a zero will disable that interrupt. Upon application of RST1 (power-up reset), all mask bits are reset (LOW), the interrupt code is forced to all zeros, and INTREQ is held HIGH. Reading TMS 9901 CRU bits 1-15 indicates the status of the respective interrupt inputs; thus, the designer can employ the unused (disabled) interrupt input lines as data inputs (true data in).

2.3 Input/Output Interface

A block diagram of the TMS 9901 I/O interface is shown in Figure 4. Up to 16 individually controlled, I/O ports are available (seven dedicated, PO-P6, and nine programmable) and, as discussed above, the unused dedicated interrupt lines also can be used as input lines (true data in). Thus the 9901 can be configured to have more than 16 inputs. $\overline{\text { RST1 }}$ (power-up reset) will program all I/O ports to input mode. Writing data to a port will automatically switch that port to the output mode. Once programmed as an output, a port will remain in output mode until $\overline{\text { RST1 }}$ or $\overline{\text { RST2 (command bit) is executed. An output port can be read and indicates the }}$ present state of the pin. A pin programmed to the output mode cannot be used as an input pin: Applying an input current to an output pin may cause damage to the TMS 9901. The TMS 9901 outputs are latched and buffered off-chip, and inputs are buffered onto the chip. The output buffers are MOS-to-TTL buffers and can drive two standard TTL loads.

FIGURE 3- TMS 9901 PSI INTERRUPT CONTROL SECTION BLOCK DIAGRAM

TABLE 2
INTERRUPT CODE GENERATION

INTERRUPT/STATE	PRIORITY	${ }^{1} \mathrm{CO}$	${ }^{1} 1$	${ }^{1} \mathrm{C} 2$	${ }^{1} \mathrm{C} 3$	INTREO
$\overline{\text { RST } 1}$	-	0	0	0	0	1
$\overline{\text { \|NT } 1}$	1 (HIGHEST)	0	0	0	1	0
INT 2	2	0	0	1	0	0
INT 3/CLOCK	3	0	0	1	1	0
INT 4	4	0	1	0	0	0
$\overline{\text { INT } 5}$	5	0	1	0	1	0
INT 6	6	0	\uparrow	1	0	0
\|NT 7	7	0	1	1	1	0
$\overline{\text { INT }} 8$	8	1	0	0	0	0
INT 9	9	1	0	0	1	0
INT 10	10	1	0	\uparrow	0	0
INT 11	11	1	0	1	1	0
INT 12	12	1	1	0	0	0
INT 13	13	1	1	0	1	0
INT 14	14	1	1	1	0	0
INT 15	15 (LOWEST)	1	1	1	1	0
NO INTERRUPT	-	1	1	1	1	1

TABLE 3
TMS 9980A OR TMS 9981 INTERRUPT LEVEL DATA

INTERRUPT CODE ($1 \mathrm{CO}-\mathrm{IC} 2$)	FUNCTION	VECTOR LOCATION (MEMORY ADDRESS IN HEX)	DEVICE ASSIGNMENT	INTERRUPT MASK VALUES TO ENABLE (ST12 THROUGH ST15)
$\begin{array}{lll} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{array}$	Level 4 Level 3 Level 2 Level 1 Reset Load Reset No Op	$\begin{array}{llll} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & C \\ 0 & 0 & 0 & 8 \\ 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 \\ 3 & F & F & C \\ 0 & 0 & 0 & 0 \end{array}$	External Device Externa: Device External Device External Device Reset Stimulus Load Stimulus Reset Stimulus	4 Through F 3 Through F 2 Through F 1 Through F Don't Care Don't Care Don't Care

FIGURE 4-TMS 9901 I/O INTERFACE SECTION

FIGURE 5 - INPUT AND OUTPUT EQUIVALENTS

2.4 Programmable Ports

A total of nine pins ($\overline{\mathrm{NT} 7} /$ P15- $\overline{\mathrm{NT}} 15 / \mathrm{P} 7$) on the TMS 9901 are user-programmable as either I/O ports or interrupts. These pins will assume all characteristics of the type pin they are programmed to be (as described in Sections 2.2 and 2.3). Any pin which is not being used for interrupt should have the appropriate interrupt mask disabled (mask $=0$) to avoid erroneous interrupts to the CPU. To program one of the pins as an interrupt, its interrupt mask simply is enabled and the line may be used as if it were one of the dedicated interrupt lines. To program a pin as an I/O port, disable the interrupt mask and use that pin as if it were one of the dedicated I/O ports.

2.5 Interval Timer

Figure 6 is a block diagram of the TMS 9901 interval timer section. The clock consists of a 14-bit counter that decrements at a rate of $f(\bar{\phi}) / 64$ (at 3 MHz this results in a maximum interval of 349 milliseconds with a resolution of 21.3 microseconds). The clock can be used as either an interval timer or an event timer. To access the clock, select bit zero (control bit) must be set to a one. The clock is enabled to cause interrupts by writing a nonzero value to it and is then disabled from interrupting by writing zero to it or by a RST1. The clock starts operating at no more than two $\bar{\phi}$ times after it is loaded. When the clock decrementer is running, it will decrement down to zero and issue a level-3 interrupt. The decrementer, when it becomes zero, will also be reloaded from the clock register and decrementing will start again. (The zero state is counted as any other decrementer state.) The decrementer always runs, but it will not issue interrupts unless enabled; of course, the contents of the unenabled clock read register are meaningless.

FIGURE 6-TMS 9901 INTERVAL TIMER SECTION

The clock is accessed by writing a one into the control bit (TMS 9901 CRU bit zero) to force CRU bits 1-15 to clock mode. Writing a nonzero value into the clock register then enables the clock and sets its time period. When the clock is enabled, it interrupts on level 3 and external level- 3 interrupts are disabled. The mask for level 3 in the PSI must be set to a one so that the processor will see the clock interrupt. When the clock interrupt is active, the clock mask (mask bit 3) must be written into with either a one or zero to clear the interrupt; writing a zero also disables further interrupts.

If a new clock value is required, a new 14 -bit clock start value can be programmed by executing a CRU write operation to the clock register. During programming, the decrementer is restarted with the current start value after each start value bit is written. A timer restart is easily implemented by writing a single bit to any of the clock bits. The clock is disabled by $\overline{\mathrm{RST}} 1$ (power up reset) or by writing a zero value into the clock register; $\overline{\mathrm{RST}} 2$ does not affect the clock.

The clock read register is updated every time the decrementer decrements when the TMS 9901 is not in clock mode. There are two methods to leave the clock mode : first, a zero is written to the control bit; or second, a TMS 9901 select bit greater than 15 is accessed. Note that when $\overline{\mathrm{CE}}$ is inactive(HIGH), the PSI is not disabled from seeing the select lines. As the CPU is addressing memory, A10-A14 could very easily have a value of 15 or greater - A10-A14 are connected to the select lines; therefore, the TMS 9901 interval timer section can "think" it is out of clock mode and update the clock read register. Very simply, this means that a value cannot be locked into the clock read register by writing a one to CRU select bit zero (the control bit). The 9901 must be out of clock mode for at least one timer period to ensure that the contents of the clock read register has been updated. This means that to read the most recent contents of the decrementer, just before reading, the TMS 9901 must not be in the clock mode. The only sure way to manipulate clock mode is to use the control bit (select bit zero). When clock mode is reentered to access the clock read register, updating of the read register will cease. This is done so that the contents of the clock read register will not change while it is being accessed.

Power-Up Considerations

During hardware reset, $\overline{\operatorname{RST}} 1$ must be active (LOW) for a minimum of two clock cycles to force the TMS 9901 into a known state. $\overline{\mathrm{RST}} 1$ will disable all interrupts, disable the clock, program all I/O ports to the input mode, and force ICO-IC3 to all zeros with INTREQ held HIGH. The system software must enable the appropriate interrupts, program the clock. and configure the I/O ports as required. After initial power-up the TMS 9901 is accessed only as needed to service the clock, enable (disable) interrupts, or read (write) data to the I/O ports. The I/O ports can be reconfigured by use of the $\overline{\mathrm{RST}} 2$ software reset command bit.

2.7 Pin Descriptions

Table 4 defines the TMS 9901 pin assignments and describes the function of each pin.
table 4
TMS 9901 PIN ASSIGNMENTS AND FUNCTIONS

3. APPLICATIONS

3.1 Hardware Interface

Figure 7 illustrates the use of a TMS 9901 PSI in a TMS 9900 system. The TIM 9904 clock generator/driver syncs the $\overline{\text { RESET }}$ for both the TMS 9901 and the CPU. The RC circuit on the TIM 9904 provides the power-up and pushbutton $\overline{\text { RESET input to the clock chip. Address lines AO-A9 are decoded on CRU cycles to select the }}$ TMS 9901. Address lines A10-A14 are sent directly to PSI select lines S0-S4, respectively, to select which TMS 9901 CRU bit is to be accessed.

Figure 8 illustrates the use of a TMS 9901 with a TMS 9981 CPU. No TIM 9904 is needed with the TMS 9981, so the reset circuitry is connected directly to the system reset line. The clock ($\bar{\phi}$) then comes from the TMS 9981. All other circuitry is identical to the TMS 9900 system.

FIGURE 7-TMS 9900/TMS 9901 INTERFACE

FIGURE 8-TMS 9981/TMS 9901 INTERFACE

3.2 Software Interface

Figure 9 lists the TMS 9900 code needed to control the TMS 9901 PSI . The code initializes the PSI to an eight-bit input port, an eight-bit output port, and enables interrupt levels $1-6$. The six dedicated interrupt pins are all used for interrupts; their mask bits are set ON . The nine programmable pins are all used as $1 / \mathrm{O}$ ports; mask bits $7-15$ remain reset. P0-P7 are programmed as an eight-bit output port, and P8-P15 are programmed as an eight-bit input port.

Some code is added to read the contents of the clock read-register. The SBZ instruction takes the TMS 9901 out of clock mode long enough for the clock read register to be updated with the most recent decrementer value. When clock mode is reentered, the decrementer will cease updating the clock read-register so that the contents of the register will not be changing during a read operation.

The second section of code is typical code found in a clock interrupt service routine. All interrupts initially are disabled by the routine. These functions are not necessary, but are usually done to ensure system integrity. The interrupt mask should be restored as soon as the sensitive processing is complete. The interrupt is counted in the variable COUNT and is then cleared by writing a one to mask bit 3 . If a zero is written to mask bit 3 to clear the interrupt, clock interrupt will be disabled from that point onward, but the clock will continue to run.

ASSUMPTION

- System uses clock at maximum interval (349 msec @ 3 MHz)
- Interrupts 16 are used
- Eight bits are used as an output port , PO -P7
- Eight bits are used as an input port , P8-P15
- $\overline{\text { RST }} 1$ (power-up reset) has been applied
- The most significant byte of R1 contains data to be output

	LI	R12, PSIBAS	Set up CRU base to point to 9901
	LDCR	@CLKSET, 0	16 -bit transfer, set clock to max interval
	LDCR	@NTSET. 7	Enter interrupt mode and enable interrupts $1-6$
	LI	R12, PSIBAS +32	Set CRU base to I/O ports - output
	LDCR	R1, 8	Output byte from R1, program ports $0-7$ as output
	LI	R12. PSIBAS +48	Set CRU base to $1 / O$ ports - input
	STCR	R2. 8	Store a byte from input port into MSBT of R2
	LI	R 12, PSIBAS	Set CRU base to 9901
	SBZ	0	Leave clock mode so decremented contents can be latched
	INCT	R12	Set CRU base to clock read register
	SBO	-1	Enter clock mode
	STCR	R3, 14	Read 14 bit clock read register contents into R3
CLKSET	DATA	>FFFF	
INTSET	BYTE	$>7 \mathrm{E}$	
CLKINT	S		Clock interrupt service routine - level 3
	LIMI	0	Disable interrupts at CPU
	INC	@COUNT	Count the clock interrupt
	LI	R12, PSIBAS	Set CRU base to point to 9901
	SBZ	0	Enter interrupt mode
	SBO	3	Clear clock interrupt

3.3 Interval Timer Application

A TM 990/100M microcomputer board application in which every 10 seconds a specific task must be performed is described below. The TMS 9901 clock is set to interrupt every 333.33 milliseconds. This is accomplished by programming the 14 -bit clock register to 3D09 $_{16}\left(15,625_{10}\right)$. The TM $990 / 100 \mathrm{M}$ microcomputer board system clock runs at 3 MHz , giving a clock resolution of 21.33 microseconds. A decrementer period of 21.33 microseconds multiplied by 15,625 periods until interrupt gives 333.33 milliseconds between interrupts. The interrupt service routine must count 30 interrupts before 10 seconds elapses:

$$
f(D E C)=\frac{f(O)}{64}, \quad T(D E C)=\frac{1}{f(D E C)}=\frac{64}{3,000,000}=21.3333 \mu \mathrm{~s}
$$

Figure 10 is a flowchart of the software required to perform the above application, and Figure 11 is a listing of the code. Following the flowchart, the main routine sets up all initial conditions for the 9901 and clock service routine. The interrupt service routine decrements a counter in R2 which was initialized to 30 . When the counter in R2 decrements to zero, 10 seconds have elapsed, and the work portion of the service routine is entered. Note carefully that the work portion of the service routine takes longer than 333.33 ms which is the time between clock interrupts from the 9901. Therefore, recursive interrupts are going to occur and some facility must be provided to handle them. Loading a new workspace pointer and transferring the saved WP, PC, and ST (R13-R15) from the interrupt workspace to the new workspace allows one level of recursion.

FIGURE 10-TMS 9901 INTERVAL TIMER APPLICATION FLOWCHART

DEVICE INITIALIZATION

```
FFOG OEEG LWFI SFFEO
FEOE FFEO
```



```
FEDE 0100
FE日S GEED LUFI YFFES IHTERFHFT % WDFKSFHCE
FEOH FFES
```



```
FEDE TH1S
FE10 0EUE LI FE,GO SO & 33S.3日M = 10SEC
FE1E MgIE
FE14 HEOL LI F1E,>10G FHO1 CRU EHE HLDPESS
FE1G 4100
FE1S 3G1 LICR P1,15 LDAD 9%01 GLGG
```



```
FEIC 1HOS SEL 3 BHIMASK INTEERUFT 3
```

MAIN PROGRAM

NOTE: This code was assembled using the TM 990/402 line-by-line assembler.

interrupt 3 SERVICE ROUTINE

 (W P = FF68)```
FIGG be|e [EL FE
=IGE 130E NEO FFIBG
FIE4 1HOS EED 3
FINGe QSE0 FTuF
FHGE HEOE LI FE,30
FISH MIE
FHSL U4OO E BFFGEO
FIBE FCSO
FIGG bene [EL FE
```



```
FIE4 1 InG EED 3 FISE 103B0 FTHF FHSH Mile FIBL U460 E iPFCEO FIBE FCSO
```

GDiANT MDOHH 30 IN FE
IF ZEEG THEIt JUAF
GLEFF GYOT ELDEK INTEFFILFT
FETUFN TI THTEFFUFTEI PDITIHE PELDAD FE FQR 10 SEi SOUNT LIDUN

EPAFHEH TO SLEFDUTIAE
routine to be performed every 10 SECONDS, it takes LONGER THAN 333.33 MS WHICH IS 9901 CLOCK PERIOD'

FGBE FFEO

FCBG FFEE
FEGS ESAG MUY OFFSA,F14 IHT 3 WDEKSFACE
FESH FFS4

FESE FFBG
FEGU 1 IUS GED 3 CLEAF GO01 ELDEK INTEFRIIFT
FEGE TSOO LIMI 3 ETHELE IHT O-Z
Fegt bons


配品
FTMF

FIGURE 11-(CONCLUDED)

## 4. TMS 9901 ELECTRICAL SPECIFICATIONS

### 4.1 Absolute Maximum Ratings Over Operating Free Air Temperature Range (Unless Otherwise Noted) *

| Supply voltage, VCC | -0.3 V to 10 V |
| :---: | :---: |
| All inputs and output voltages | -0.3V to 10 V |
| Continuous power dissipation | 0.85 W |
| Operating free-air temperature range | $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ |
| Storage temperature range | $65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ |

"Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions" section of this specification is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.

### 4.2 Recommended Operating Conditions*

| PARAMETER | MIN | NOM |
| :--- | :---: | :---: |
| Supply voltage, $\mathrm{V}_{\mathrm{CC}}$ |  | MAX |
| UNIT |  |  |
| Supply voltage, $\mathrm{V}_{\mathrm{SS}}$ | 4.75 | 5.0 |
| High-level input voltage, $\mathrm{V}_{\mathrm{IH}}$ | 5.25 | V |
| Low-level input voltage, $\mathrm{V}_{\text {IL }}$ |  | 0 |
| Operating free-air temperature, $\mathrm{T}_{\mathrm{A}}$ | $\mathrm{V}_{\mathrm{SS}}-.3$ | V |

### 4.3 Electrical Characteristics Over Full Range of Recommended Operating Conditions (Unless Otherwise Noted) *

|  | PARAMETER | TEST CONDITIONS | MIN | TYP MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | High level output voltage | ${ }^{\prime} \mathrm{OH}=-100 \mu \mathrm{~A}$ | 2.4 | $V_{\text {CC }}$ | V |
|  |  | $\mathrm{I}^{\mathrm{OH}}=-200 \mu \mathrm{~A}$ | 2.2 | $V_{\text {CC }}$ | V |
| $\mathrm{V}_{\mathrm{OL}}$ | Low level output voltage | $\mathrm{I}^{\mathrm{OL}}=3.2 \mathrm{~mA}$ | $\mathrm{V}_{\text {SS }}$ | 0.4 | $V$ |
| 1 | Input current (any input) | $\mathrm{V}_{1}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}$ |  | $\pm 100$ | $\mu \mathrm{A}$ |
| ICC(av) | Average supply current from $\mathrm{V}_{\text {CC }}$ | $\mathrm{t}_{\mathrm{c}(\mathrm{d})}=330 \mathrm{~ns}, \quad \mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$ |  | 150 | mA |
| $C_{1}$ | Small signal input capacitance, any input | $f=1 \mathrm{MHz}$ |  | 15 | pF |

### 4.4 Timing Requirements Over Full Range of Operating Conditions

| PARAMETER |  | MIN | TYP | MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }^{t} \mathrm{C}(\phi)$ | Clock cycle time | 300 | 333 | 2000 | ns |
| $\mathrm{t}_{\mathrm{r}}(\phi)$ | Clock rise time | 5 |  | 40 | ns |
| ${ }^{t_{f}(\phi)}$ | Clock fall time | 10 |  | 40 | ns |
| ${ }^{t} w(\phi H)$ | Clock pulse width (high level) | 225 |  |  | ns |
| ${ }^{\text {t }}$ W( $\phi \mathrm{L}$ ) | Clock pulse width (low level) | 45 |  | 300 | ns |
| ${ }_{\text {w }}$ (CC) | CRUCLK pulse width | 100 | 185 |  | ns |
| ${ }^{\text {t }}$ Sut | Setup time for CE, SO-S4, or CRUOUT before CRUCLK | 100 |  |  | ns |
| ${ }_{\text {tsu2 }}$ | Setup time for interrupt before $\bar{\phi}$ low | 60 |  |  | ns |
| ${ }^{\text {tsu3 }}$ | Setup time for inputs before valid CRUIN | 200 |  |  | ns |
| th | Hold time for CE, SO-S4, or CRUOUT after CRUCLK | 60 |  |  | ns |

*NOTE All voltage values are referenced to $\mathrm{V}_{\text {SS }}$.

### 4.5 Switching Characteristics Over Full Range of Recommended Operating Conditions

| PARAMETER |  | TEST CONDITION | MIN | TYP MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }^{\text {tpd } 1}$ | Propagation delay. $\overline{C E}$ to valid CRUIN | $C_{L}-100 \mathrm{pF}$ |  | 300 | ns |
| ${ }^{\text {tpd2 }}$ | Propagation delay. So-S4 to valid CRUIN | $C_{L}-100 \mathrm{pF}$ |  | 320 | ns |
| !pd3 | Propagation delay. $T$ iow to vald INTREQ, IC0-IC3 | $C_{L}-100 \mathrm{pF}$ |  | 110 | ns |
| $t^{\text {t }}$ d | Propagation delay. $\overline{\mathrm{CRUC}} \overline{\mathrm{K}}$ to valid data out (PO-P15) | $C_{L}=100 \mathrm{pF}$ |  | 300 | ns |


cRUOUT

## 5. MECHANICAL DATA

### 5.1 TMS 9901 JL - 40 Pin Ceramic Package

ceramic packages with side-brazed leads and metal or epoxy or glass lid seal


Other symbols may indicate any combination of up to 4 pins connected to the chip-mounting pad.

| DIM PINS | 16 | 18 | 20 | 22 | 24 | 28 | 40 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A $\cdot 0.010(0.26)$ | 0.300 (7.62) | 0.300 (7.62) | $0.30017 .62)$ | $0.400 ; 10.16\}$ | 0.600 (15.24 | $0600115.24)$ | 0.600 (15.24) |
| B MAX | 0.840 (21.4) | 0.910 (23.1) | 1.020 (25.9) | 1.100 28.01 | 1.290132 .81 | 1.415136 .01 | $2.020(51.3)$ |
| C NOM | $0.290 \cdot 17.41$ | 0.29017 .41 | 0.29017 .4 | 0.39019 .91 | 0.590115 .01 | 0.590115.0) | 0.590 115.01 |

### 5.2 TMS 9901 NL - 40 Pin Plastic Package

## plastic packages



> This index shows page numbers of different subjects. Numbers preceded by a $T$ indicate a table will be found on that page; those preceded by an $F$ indicate a figure will be found on that page.
5MT Circuitry ..... F4-5
5MT Connector Wiring ..... T4-6
5MT Input/Output System. ..... 4-4
Applicable Documents ..... 1-3
APPLICATIONS Section 4
Board Checkout ..... 2-7
Board Switches, Jumpers, Connectors ..... 2-2
Cable for Example Programs ..... F5-5
Clock Example Program (Polling) ..... 5-8
CRU Address Decoding ..... F3-3
CRU Address Decoding ..... 3-1
CRU Address Selection and Switch Array S1 ..... 2-2
CRU Map ..... T5-3
Data Echo Logic ..... 3-5
Echo Logic (Typical of 3 Circuits) ..... F3-5
Edge Connector (P2, P3, P4) Pin Assignments ..... T2-5
Edge Connectors P1, P2, P3, and P4 ..... 2-5
Edge-Triggered Interrupts ..... 3-9
Example Programs ..... 5-2
Example Using Interrupts ..... 5-11
General, Applications ..... 4-1
General, Installation and Operation ..... 2-1
General, Introduction ..... 1-1
General, Theory of Operation ..... 3-1
General, TM 990/310 Programming. ..... 5-1
Hardware Interface ..... 3-7
High Power Optical Isolator Circuit ..... F4-3
High Power Output Signal Conditioning Circuit. ..... F4-2
Input/Output Example Program. ..... 5-5
Input/Output ..... 5-1
INSTALLATIUN AND OPERATION ..... Section 2
Installation ..... 2-7
Interrupt Buffer Logic ..... 3-6
Interrupt Level Selection on Jumper Plugs U1 and U6 ..... 2-2
Interrupt Path for Example 5.3.3 ..... F5-11
Interrupt Priority Jumper Wiring at U1 and U6 ..... F2-4
Interrupt Priority Logic ..... F3-7
Interrupt Priority Logic ..... 3-7
Interrupt Storage Logic ..... F3-6
Interrupts ..... 5-1
INTRODUCTION Section 1

## INDEX

LOGIC DIAGRAMS Appendix A
Logic Testing ..... 4-3
Medium Power Optical Isolator Circuit ..... F4-3
Medium Power Output Signal Conditioning Circuit ..... F4-1
Output Signal Conditioning, High Power ..... 4-2
Output Signal Conditioning, Medium Power ..... 4-1
Output Signal Conditioning, Optical Isolation ..... 4-2
PARTS LIST Appendix B
Power Outlets at Connectors ..... 3-9
Programming Considerations ..... 5-1
Required Equipment ..... 2-1
Specifications ..... 1-1
THEORY OF OPERATION Section 3
TM 990/310 48 I/O Module ..... F1-2
TM 990/310 Chassis Interface Connector (P1) Signal Assignments ..... T2-6
TM 990/310 Input Timing for STCR Reading 16 Bits of One's ..... F3-8
TM 990/310 Output Iliming for LDCR with 16 Bits of One's ..... F3-8
TM 990/310 PROGRAMMING. Section 5
TM 990/310, 48-Bit I/O Board Simplified Block Diagram. ..... F3-2
TMS 9901 I/O Lines ..... 3-7
TMS 9901 Logic (Typical of 3) ..... F3-4
TMS 9901 Logic ..... 3-1
TMS 9901 PROGRAMMABLE SYSTEIMS INTERFACE DATA MANUAL Appendix C
Typical Testing Configuration ..... F4-4
Use of Switch S1 to Set CRU Address Map ..... F2-3


[^0]:    * $B$ is the hardware base address computed in the table in the middle of this figure.

[^1]:    NOTES:
    (1) $0=$ Interrupt Mode $1=$ Clock Mode
    (2) Data present on INT input pin (or clock value) will be read regardless of mask value

    While in the Interrupt Mode (Control Bit $=0$ ) writing a " 1 " into mask will enable interrupt; a " 0 " will disable.
    (4) Writing a zero to bit 15 while in the clock mode (Control Bit $=1$ ) executes a sof tware reset of the $I / O$ pins.
    (5) Data present on the pin will be read. Output data can be read without affecting the data.
    (6) Writing data to the port will program the port to the output mode and output the data.
    (7) INTREQ is the inverted status of the INTREO pin.

