As you are now the owner of this document which should have come to you for free, please consider making a donation of $£ 1$ or more for the upkeep of the (Radar) website which holds this document. I give my time for free, but it costs me money to bring this document to you. You can donate here https://blunham.com/Misc/Texas

Many thanks.
Please do not upload this copyright pdf document to any other website. Breach of copyright may result in a criminal conviction.

This Acrobat document was generated by me, Colin Hinson, from a document held by me. I requested permission to publish this from Texas Instruments (twice) but received no reply. It is presented here (for free) and this pdf version of the document is my copyright in much the same way as a photograph would be. If you believe the document to be under other copyright, please contact me.

The document should have been downloaded from my website https://blunham.com/, or any mirror site named on that site. If you downloaded it from elsewhere, please let me know (particularly if you were charged for it). You can contact me via my Genuki email page: https://www.genuki.org.uk/big/eng/YKS/various?recipient=colin

You may not copy the file for onward transmission of the data nor attempt to make monetary gain by the use of these files. If you want someone else to have a copy of the file, point them at the website. (https://blunham.com/Misc/Texas). Please do not point them at the file itself as it may move or the site may be updated.

It should be noted that most of the pages are identifiable as having been processed by me.

I put a lot of time into producing these files which is why you are met with this page when you open the file.

If you find missing pages, pages in the wrong order, anything else wrong with the file or simply want to make a comment, please drop me a line (see above).

It is my hope that you find the file of use to you.
Colin Hinson
In the village of Blunham, Bedfordshire.

TM 990

TM 990/311 Buffered I/OModule

MICROPROCESSOR SERIES"

User's Guide

This printing incorporates the following revision level:			
Date	Revision Change \qquad (From - to)	ECN	Number
06/03/81	* to A		6475

IMPORTANT NOTICES

Texas Instruments reserves the right to make changes at any time in order to improve design and to supply the best product possible.

TI cannot assume any responsibility for any circuits shown or represent that they are free from patent infringement.

Copyright © 1981
TEXAS INSTRUMENTS 'INCORPORATED

PAGE

1. INTRODUCTION

1.3 Applicable Documents .. $1-2$
2. INSTALLATION AND OPERATION
2.1 General .. $2-1$
2.2 Unpacking and Inspection .. 2-1

2.4 Port and Output Disable Switches/Jumpers 2-4
2.5 Jumper Selections $2-5$
2.5.1 Jumper J1 .. 2-5

2.5.3 Jumper J3 .. $2-5$
2.5.4 Jumper J4 $2-5$
2.5.5 Jumpers J5 Through J10 ... 2-5
2.5.6 Jumpers J11 Through J16 .. 2-6
2.5.7 Jumper J17 .. 2-7
2.6 Edge Connectors P2, P3, P4 .. 2-7
2.7 Output Buffers ... 2-9
2.8 Output Resistors .. 2-9
2.8.1 Shunt Resistors ... 2-10
2.8.2 Series Resistors ... 2-10
2.9 Input Buffers .. 2-10
2.10 Flag Register ... 2-10
2.11 Reset Enable LEDs ... 2-10
2.12 Configuration As Shipped .. 2-11
2.13 Example Programs .. 2-11
3. PROGRAMMING
3.1 General .. 3-1
3.1.1 Programming Considerations 3-1
3.1.2 Example Program Assumptions 3-1
3.1.3 CRU Map $3-3$
3.2 Resetting Ports with Software ... 3-3
3.3 Setting and Writing to Output Ports 3-3
3.4 Echoing Output Data .. 3-4
3.5 Reading from Input Ports ... 3-4
3.6 Write to and Read from the Flag Register 3-4
3.7 Example Programs .. 3-5
4. THEORY OF OPERATION
4.1 General $4-1$
4.2 CRU Address Selection/Decode .. 4-2
4.3 Port Reset and Buffer Enable Logic 4-4
4.4 Input/Output Latches and Buffers 4-6
4.5 Flag Register ... 4-7
4.6 Voltage Regulator ... 4-8

2-1 Port Address Switch Assignments 2-2

2-4 Edge Connector Assignments .. $2-7$
2-5 Port/Connector Assignments .. 2-8
2-6
Port Address Switch/Jumper Settings as Shipped 2-11
2-7 Port And Output Disable Switch/Jumper Settings As Shipped .. 2-11
3-1 Wiring Connections for Example 3.7.2 3-7
4-1 TM 990/311 Block Diagram .. 4-1
4-2 TM 990/311 CRU Address Selection/Decode Circuits 4-3
4-3 Reset Logic Circuit ... 4-4
4-4
Uutput Buffer Enable Circuit
4-5
4-5
Input/Output Latches and Buffers
4-6
4-6
TM 990/311 Flag Register
4-7

LIST OF TABLES

2-1 Correlation Between Switch Banks, Ports, and Connectors 2-1
2-2 CRU Base Address Select Switches/Jumpers 2-3
2-3 Port and Output Disable Switches/Jumpers (Sx-7, Sx-8) 2-4

2-5 Output Resistor Jumpers .. 2-6
2-6 Output Resistor Packs and Associated Ports 2-9
2-7 Jumper Connections As Shipped ... 2-11
3-1 CRU MAP of Each Port ... 3-2

APPENDICES

APPENDIX A Schematics
APPENDIX B Parts List

INDEX

1.1 GENERAL

The TM 990/311 is an input/output module designed for use with a TM 990 CPU module. The module has $48 \mathrm{I} / 0$ bits. These bits are organized into 8 bit blocks. Each block is programmable as input or output. Two blocks (of 8 bits each) make up a port. Each port has its own unique switch-selectable CRU base address. There are three ports, each port occupying one of the three edge connectors.

Other features of the TM 990/311 are as follows:

- Software compatible with I/O and reset features of the TM 990/310 I/O module.
- Blocks programmed as outputs can be read (echoed) with a CRU input instruction.
- Output drivers can be exchanged to provide non-inverting or inverting outputs.
- User option of series, pull-up or pull-down resistors on outputs.
- +12 V, $-12 \mathrm{~V},+8 \mathrm{~V}$, and +5 V are available (at the user's option) at each port's edge connector.

Module dimensions are shown in Figure 1-1. Principal components of the TM g90/311 are shown in Figure 1-2. A block diagram is given in Figure 1-3.

1.2 SPECIFICATIONS

- Power Requirements:

Without +8 V regulator: $+5 \mathrm{~V}, \pm 3 \%, .65 \mathrm{~A}$ (typical), 1.8 A (maximum)
With 8 V Regulator driving 3 fully
loaded 5 MT I/O module racks: $+12 \mathrm{~V}, \pm 5 \%$, 1.2 A (typ.), 2.0 A (max.)

- Temperature Requirements:

Operation Temperature: $.00^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature:....-650 C to $150^{\circ} \mathrm{C}$

- Physical Characteristics:

Width: $28 \mathrm{~cm} .(11$ inches)
Height: $19 \mathrm{~cm} .(7.5$ inches)
Thickness: $0.16 \mathrm{~cm} .(0.062$ inch)
Component height: 12.7 mm (0.50 inch) maximum

- Programmed Inputs:

High-level input voltage: 2.0 V minimum
Low-level input voltage: 0.8 V maximum
Allowed voltage range: 0.0 V to 7.0 V
Input current (with no pull-up resistors): 20 uA at 2.7 V

- Programmed Outputs:

High-level output voltage: 2.4 V minimum © 15 mA maximum
Low-level output voltage : 0.50 V maximum © 24 mA
Maximum user current sink: 24 mA
1.3 Applicable Documents

- TMS 9900 Microprocessor Data Manual
- TMS 990/401 TIBUG Monitor Listing
- TM 990 CPU User's Manual

Dimensions in inches (top numbers) and in centimeters (in parenthesis).

FIGURE 1-1. TM 990/311 MODULE DIMENSIONS

FIGURE 1-3. TM 990/311 BLOCK DIAGRAM

INSTALLATION AND OPERATION

2.1 GENERAL

The procedures for unpacking and setting up the TM 990/311 module for operation are given in this section. The switch and jumper configurations as shipped are given in section 2.12.

2.2 UNPACKING AND INSPECTION

Remove the TM $990 / 311$ from its carton and discard any protective wrapping. Inspect the module for any damage that might have occurred in shipping. Report any damage to your TI supplier.

2.3 PORT ADDRESS SELECTION

Each of the three TM 990/311 ports can be assigned a unique CRU base address (see your CPU Module User's Guide for a complete discussion of CRU hardware and CRU software addressing). Either an 8-position socket platform or an 8-position DIP switch (S1, S2, and S3) is provided for the CRU base address selection for each port. If S1, S2, and S3 are socket platforms, the user has the option of using jumpers or inserting a DIP switch in the socket.

If the socket platform is used, jumpers at $\mathrm{S} 1-1$ to $\mathrm{S} 1-8$ are inserted to indicate a logical one; sockets left unjumpered will be set to a logical zero. If a DIP switch is used, switch settings are $O N=1$, $O F F=0$. Comparator circuitry compares the jumper/switch values with values found on bus address lines A3 $(S x-1)$ to A8 ($\mathrm{Sx}-6$).

The ports selected by each switch/jumper bank and the connector associated with each port are shown in Figure 2-1 and Figure 2-2. Figure 2-1 shows a DIP switch configuration. Figure $2-2$ shows the socket platform and jumper method.

TABLE 2-1. CORKELATION BETWEEN SWITCH BANKS, PORTS AND CONNECTORS

Port Designation	Switch/Jumper Number	Connector Designation
A	S3	P2
B	S2	P3
C	S1	P4

Since each port occupies 64 CRU bits, and since there are only 12 bits of address (A3 - A14) which are used for CRU addressing, there are six positions in the address selection switch/jumper bank which determine the address of the port as shown in Figures 2-1 and 2-2.

FIGURE 2-1. PORT ADDRESS SWITCH ASSIGNMENTS

FIGURE 2-2. PORT ADDRESS JUMPER ASSIGNMENTS

NOTE
Switch/jumper numbers 7 and 8 of each switch/jumper bank are used for other purposes which are described in section 2.4.

Each port can be placed anywhere in the CRU address space with the following restrictions:

1) Do not select a CRU software base address (full R12 contents) between 000016 and 020016 . This CRU space is reserved for CPU functions.
2) Do not select the same address for more than one port on the same TM $990 / 311$ module. The TM $990 / 311$ has protection circuitry which prevents accessing two ports with the same address. If the user accidently sets the same address on more than one switch/jumper bank, the ports with the duplicate addresses will be disabled.

Table 2-2 shows the switch/jumper settings for a few example CRU base addresses.

TABLE 2-2. CRU BASE ADDRESS SELECT SWITCHES/JUMPERS

Switch Positions						Hardware Base Addr.		Software Base Addr. (Hex)
$\begin{aligned} & \text { MSB } \\ & \text { A3 } \end{aligned}$	A 4	A5	A6	A7	$\begin{aligned} & \text { LSB } \\ & \text { A8 } \end{aligned}$			
						(Dec)	(Hex)	
Sx-1	Sx-2	Sx-3	Sx-4	Sx-5	Sx-6			
0	0	0	0	0	0			
0	0	0	0	0	1			
0	0	0	0	1	0		Not Used	
0	0	0	0	1	1			
0	0	0	1	0	0			
0	0	0	1	0	1	320	0140	0280
0	0	0	1	1	0	384	0180	0300
0	0	0	1	1	1	448	01 CO	0380
0	0	1	0	0	0	512	0200	0400
0	0	1	0	0	1	576	0240	0480
0	0	1	0	1	0	640	0280	0500
0	0	1	0	1	1	704	02 CO	0580
0	0	1	1	0	0	768	0300	0600
			-			-	-	-
			-			.	-	-
1	1	1	1	1	1	4032	OFCO	1 F 80

Note: For DIP switches- $1=0 N ; 0=O F F$
For Jumper Platform-1 $=$ Jumpered; $0=$ Unjumpered

The port address switch/jumper settings for a CRU base address not shown in Table 2-2 may be determined by the following method:

1) Convert the CRU hardware base address into its binary equivalents.
2) Strip off the first four bits; the CRU hardware base address is a 12 -bit value using only the 12 LSBs applied to address lines A3 to A14; since only address lines A3 to A8 are compared on the board, use the first six bits of these remaining 12 bits.
3) Convert the six MSBs of the remaining 12 bits (obtained in step 2) into ON/OFF equivalents to determine the switch settings. The following definitions apply: $1=0 N$ (or jumpered) ; $0=0 F F$ (or unjumpered).

Example: Determine the switch settings required to select CRU hardware base address 014016 (software base address 028016) for Port A.

2.4 PORT AND OUTPUT DISABLE SWITCHES/JUMPERS

Switch/jumper number 7 of each switch bank (S1, S2 or S3) disables the corresponding port when left open (OFF or unjumpered). Switch/jumper 7 must be set $0 N / J u m p e r e d$ for each port in use.

Switch/jumper number 8 of each switch bank (S1, S2, or S3) acts as a output disable when closed (ON/Jumpered). When switch/jumper 8 is ON/Jumpered, the corresponding port is set as an input-only port.

The settings of switch/jumper number 7 and 8 are summarized in Table 2-3.

TABLE 2-3. PORT AND OUTPUT DISABLE SWITCHES/JUMPERS (SX-7, SX-8)

Switch No.	Setting	Function
-7	ON/Jumpered OFF/Unjumpered	Enable Port Disable Port
-8	ON/Jumpered OFF/Unjumpered	Set Port as input only Set Port as input and output

2.5 JUMPER SELECTIONS

This subsection describes the jumper options on the TM 990/311.

2.5.1 Jumper J 1

Jumper J1 enables or disables the Flag register on the TM 990/311. Section 2.10 describes the use of the Flag register. The connections for this jumper are as follows:

J1 Pin No.	
2 to 1	
2 to 3	
Flag Register Selected enabled	
Flag Register disabled	

2.5.2 Jumper J2

Jumper J2 couples +8 volts to pin No. 4 on all three port connectors ($\mathrm{P} 2-4$, P3-4 and P4-4). The connections for this jumper are as follows:

J2 Pin No.	$\frac{\text { Function Selected }}{}$
2 to 1	+8 V to P2-4, P3-4, P4-4
2 to 3	$\mathrm{P} 2-4, \mathrm{P} 3-4, \mathrm{P} 4-4$ are open circuit

2.5.3 Jumper J3

Jumper J3 couples +12 volts to pin No. 1 on all three port connectors (P2-1, P3-1 and P4-1). The connections for this jumper are as follows:

| J3 Pin No. | \quadFunction Selected
 2 to 1
 2 to 3 |
| :--- | :--- | | +12 V to P2-1, P3-1, P4-1 |
| :--- |
| $\mathrm{P} 2-1, \mathrm{P} 3-1, \mathrm{P} 4-1$ are open circuit |

2.5.4 Jumper J4

Jumper J 4 couples - 12 volts to pin No. 2 on all three port connectors ($\mathrm{P} 2-2$, P3-2 and P4-2). The connections for this jumper are as follows:

| J4 Pin No. | \quadFunction Selected
 2 to 1
 2 to 3 |
| :---: | :---: | | -12 V to P2-2, P3-2, P4-2 |
| :--- |
| P2-2, P3-2, P4-2 are open circuit |

2.5.5 Jumper J5 Through J 10

These jumpers allow the user to select one of three output buffers (74LS240, 74 LS 241 or 74 LS 244) for each output block (8 bits). The factors in the decision of which buffer to use is given in section 2.7. Table 2-4 gives the jumper pin connections for each jumper, which block is affected by that jumper the type of buffer selected, and the socket containing the chip. Section 2.6 describes the port connectors and their nomenclature.

TABLE 2-4. OUTPUT BUFFER JUMPERS (J5 - J10)

Jumper No.	Block Affected	Pin Connections for 74L 2241	Pin Connections for 74 LS 240 or 74LS244	Socket No.
Port A				
J 10	'L' Block	1 to 2	2 to 3	U37
J 9	'H' Block	1 to 2	2 to 3	U35
Port B				
J 8	'L' Block	1 to 2	2 to 3	U33
J 7	'H' Block	1 to 2	2 to 3	U31
Port C				
J 6	'L' Block	1 to 2	2 to 3	U29
J 5	'H' Block	1 to 2	2 to 3	U27

2.5.6 Jumpers J11 through J16

Jumpers J11 through J16 allow the user to set the output shunt resistors of each block as pull-up or pull-down resistors. The factors involved in the use of these resistors is covered in section 2.8. Table 2-5 shows the connections of each jumper and the block affected. Figure 2-3 shows the layout of each jumper.

FIGURE 2-3. LAYOUT OF JUMPERS J 11 THROUGH J16

TABLE 2-5. OUTPUT RESISTOR JUMPERS

Jumper No.	Block Affected	Connection to Set Resistors as Pull-ups	Connection to set Resistors as Pull-downs
Port A			
J 16	'L' Block	1 to 2	2 to 3
J15	'H' Block	1 to 2	2 to 3
Port B			
J 14	'L' Block	1 to 2	2 to 3
J13	'H' Block	1 to 2	2 to 3
Port C			
J 12	'L' Block	1 to 2	2 to 3
J11	'H' Block	1 to 2	2 to 3

2.5.7 Jumper J 17

Jumper J17 couples +5 volts to pin No. 3 on all three port connectors (P2-3, P3-3 and P4-3). The connections for this jumper are as follows:

J17 Pin No.	Function Selected
2 to 1	+5 V to P2-3, P3-3, P4-3
2 to 3	$\mathrm{P} 2-3, \mathrm{P} 3-3, \mathrm{P} 4-3$ are open circuit

2.6 EDGE CONNECTORS P2, P3, P4

The 48 I/O bits of the TM 990/311 are organized into 3 ports. Each port has its own edge connector (marked A, B and C on the component side of the board).

Each port is divided into 2 blocks. Each block contains 8 I/O bits. The assignments for each pin of the board edge connectors are shown in Figure 2-4. The assignments are the same for all three ports.

The top view in Figure $2-4$ shows the board edge connector as seen from the component side. The number ' 2 ' is marked on the component side of the board to index the connector pin numbers.

CAUTION

The numbers marked on a given cable connector may not correspond to the numbers assigned to the board edge connector pins. The cable connector should be wired according the board edge connector numbers.

Figure 2-5 shows the connector assignments arranged by port and I/O bits for convenience in keeping track of the I/O bits.

FIGURE 2-4. EDGE CONNECTOR ASSIGNMENTS

PORT	BLOCK	$\begin{aligned} & I / 0 \\ & \text { No. } \end{aligned}$	CONNECTOR PIN No.	ASSIGNMENTS
		0	20	
		1	22	
		2	14	
	Low	3	16	
	Block	4	18	
		5	10	
		6	12	
Port A		7	24	
Connector P2		8	26	
		9	28	
		10	30	
	High	11	32	
		12	34	
		13	36	
		14	38	
		15	40	
		0	20	
		1	22	
		2	14	
	Low	3	16	
	Block	4	18	
		5	10	
		6	12	
Port B		7	24	
Connector P3		8	26	
		9	28	
		10	30	
	High	11	32	
	Block	12	34	
		13	36	
		14	38	
		15	40	
Port C Connector P4		0	20	
		1	22	
		2	14	
	Low	3	16	
	Block	4	18	
		5	10	
		6	12	
		7	24	
	High Block	8	26	
		9	28	
		10.	30	
		11	32	
		12	34	
		13	36	
		14	38	
		15	40	

FIGURE 2-4. PORT/CONNECTOR ASSIGNMENTS

2.7 OUTPUT BUFFERS

The TM 990/311 is shipped with 74LS244 non-inverting output socketed buffers on each block of 8 bits. This part may be replaced with either 74 LS 241 noninverted buffers or 74 LS 240 inverting buffers if needed. When this replacement is made the appropriate jumper connections will have to made as described in section 2.5.5. Table $2-4$ includes the socket number for each port buffer.

When the 74 LS 244 buffer is used for a given block, a reset operation sets all zeroes on the block outputs (if enabled). Writing a one to a bit results in a one on the corresponding edge connector.

When 74LS240 buffer is used for a given block, a reset operation sets all ones (if enabled). Writing a one to a bit results in a zero on the corresponding edge connector pin. This configuration might be useful if an external device under control also inverts the control signal (such as the TM 990/5MT I/O system).

Upon I/O reset, all block outputs on the TM 990/311 are disabled (i.e., all blocks are reset as inputs). When the output buffers are disabled, the voltage and current levels at the edge connector pins are determined by the cable, receiving devices and the Pull-up/Pull-down output resistors.

Writing to any bit of a block sets that entire block (all eight bits) to the output enabled condition (output buffers enabled). In order to avoid confusion, the user should always output 8-bit or 16 -bit wide fields when first initializing the output mode of a port (this sets all the bits of a block to a known state). After initialization, the value of individual bits may be changed with any single-bit or multi-bit CRU instruction. Once enabled, the block will remain in the output mode until reset via hardware (I/O reset; e.g., actuate RESET switch at microcomputer) or software (write a one first to CRU bit 0 , then bit 15).

2.8 OUTPUT RESISTOKS

The TM 990/311 user has several output resistor configurations available. The output resistors are included in DIP resistor packs. These resistor packs are shown on schematic sheet 4 (Appendix A-5) and schematic sheet 5 (Appendix A-6). Tabie 2-6 shows the resistor pack, sockets (U designations), and the associated port and block.

TABLE 2-6. OUTPUT RESISTOR PACKS AND ASSOCIATED PORTS

		Socket Locations	
Port	Block	Shunt Resistors	Series Resistors
Port A	'L' Block	U55	U44
	'H' Block	U53	U43
Port B	'L' Block	U51	U42
	'H' Block	U49	U41
Port C	'L' Block	U47	U40
	'H' Block	U45	U39

These resistors may be set by jumper (see section 2.5 .6 and Table 2-5) as Pull-ups (to +5 V), Pull-downs (to ground) or disabled. In normal TTL operation, these resistors would be set as Pull-up resistors with a value between 1 K ohms and 10 K ohms. The TM $990 / 311$ module is shipped with 4.7 K ohm resistor packs installed. The user may substitute other values as required by the loading conditions of a specific application.

The use of the shunt resistors as Pull-downs is less common; this option should be adopted only after careful calculation of currents and voltages between the user's circuitry and the buffers of the TM 990/311.

2.8.2 Series Resistors

The TM 990/311 is shipped with a short-circuit jumper arrangement providing zero ohms of series resistance between the output buffer and the user circuitry. The pin arrangement of the jumper sockets is compatible with commonly available resistor packs, which may be substituted as the application requires. This substitution is made if special isolation requirements arise because of the nature of the circuitry attached to the TM 990/311 ports.

2.9 INPUT BUFFERS

The input buffers on the TM 990/311 are connected directly to the edge connector. This arrangement allows the user to do the following:

1) read values on the edge connector when in the input mode.
2) read the values on the edge connector when in the output mode as an echo-back check of proper output buffer operation.

2.10 FLAG REGISTER

The Flag register gives 32 bits of user-defined information for each port base address (96 bits in all). The register is accessed via the CRU as indicated in Figure 3-1 (see section 3.6). Each bit is unique, and can be set, reset, or tested individually or in a group by the CRU instructions.

2.11 RESET ENABLE LEDS

Each port on the TM 990/311 has one LED associated with it. The LED lights when the software RESET ENABLE is active for the appropriate port. When RESET ENABLE is inactive the LED is off (see section 3.2).

Flag bit 0 is at the same CRU address as the RESET ENABLE circuitry (see Table 3-1); thus the LED also reflects the state of Flag bit 0 ($1=0 N$, $0=O F F)$. Flag bit 0 can be tested by software to determine whether the LED is ON or OFF.

The TM 990/311 is shipped with switch/jumpers set as shown in Figure 2-6 and Figure 2-7. Table 2-7 shows the jumper configurations as shipped. The TM $990 / 311$ is shipped with 4.7 Kilohms shunt resistors, 0 ohm (jumper shorted) series resistors and 74LS244 output buffers.

FIGURE 2-6. PORT ADDRESS SWITCH/JUMPER SETTINGS AS SHIPPED

FIGURE 2-7. PORT AND OUTPUT DISABLE SWITCH/JUMPER SETTINGS AS SHIPPED

TABLE 2-7. JUMPER CONNECTIONS AS SHIPPED

JUMPER	PIN CONNECTION	FUNCTION SELECTED
J1	$2-1$	Flags enabled
J2	$2-1$	Edge +8 volts deselected
J3	$2-1$	Edge +12 volts deselected
J4	$2-1$	Edge -12 volts deselected
J5-J10	$2-3$	$74 L S 244$ Buffers
J11-J 16	$2-1$	Pull-up resistors
J17	$2-1$	Edge +5 volts deselected

2.13 EXAMPLE PROGRAMS

The programs in section 3.8 can be loaded and executed as an initial board checkout. Use the TIBUG memory inspect/change command (M) to enter the object code beginning at memory address $\mathrm{FCO}{ }_{16}$. Then set the program counter to FC2O 16 and execute using the E command.

SECTION 3

PROGRAMMING

3.1 GENERAL

This section describes how to use the CRU to access the TM 990/311 and do the following:

- Reset the ports with software
- Set and write to output ports
- Echo output data
- Read from input ports
- Write to and read from the flag register

3.1.1 Programming Considerations

The following points should be kept in mind while writing software for the TM 990/311 or studying the examples:

- The value written to an output port remains latched until reset or changed by the program.
- Once written to, an 8 -bit block remains set as output, but it can be read (echoed) via the CRU.
- To read off-board data at a port, first RESET the port to the input mode by software. RESET can be tested because a software RESET also sets flag bit 15 to zero.

3.1.2 Example Program Assumptions

The following switch settings are assumed for all of the following examples:

$$
\begin{aligned}
& \text { Sx-7 (ON) }=\text { Enable Port } \\
& \text { Sx-8 (OFF) }=\text { Output enabled }
\end{aligned}
$$

The following jumper settings are assumed for all of the following examples:

Jumper \#	Connection	Function Selected
J1	Pin 1 to Pin 2	
Enable Flag Register		
J2-J4	Pin 2 to Pin 3	No Power Out
J5-J10	Pin 2 to Pin 3	Output buffer = 74LS244
J11-J16	Pin 1 to Pin 2	Output resistors set as pull-ups
J17	Pin 2 to Pin 3	No Power Out

TABLE 3-1. CRU MAP OF EACH PORT (A, B OR C)

Swftwr ${ }^{1}$ Displ. 16	$\begin{aligned} & \mathrm{CRU}{ }^{2} \\ & \mathrm{Bit} \end{aligned}$	$\begin{gathered} \text { Bit } \\ \text { Description } \end{gathered}$	$\begin{array}{r} \text { Conn. } 3 \\ \text { Assign. } \end{array}$	Swftwr $\text { Displ. } 16$	CRU	$\begin{gathered} \text { Bit } \\ \text { Description } \end{gathered}$	Conn. Assign.
0	0	Reset Enable/ LED/Flag 0		40	33	Flag 16	-
2	1	Flag	-	42	34	Flag 17	-
4	2	Flag 2	-	44	35	Flag 18	-
6	3	Flag 3	-	46	36	Flag 19	-
8	4	Flag 4	-	48	37	Flag 20	-
A	5	Flag 5	-	4A	38	Flag 21	-
C	6	Flag 6	-	4 C	39	Flag 22	-
E	7	Flag 7	-	4E	40	Flag 23	-
10	8	Flag 8	-	50	41	Flag 24	-
12	9	Flag 9	-	52	42	Flag 25	-
14	10	Flag 10	-	54	43	Flag 26	-
16	11	Flag 11	-	56	44	Flag 27	-
18	12	Flag 12	-	58	45	Flag 28	-
1 A	13	Flag 13	-	5A	46	Flag 29	-
1 C	14	Flag 14	-	5 C	47	Flag 30	-
1 E	15	Reset/Flag 15	-	5 E	48	Flag 31	-
'L' Block							
20	16	I/O 0	Px-20	60	49	I/O 0	Px-20
22	17	I/O 1	Px-22	62	50	I/O 1	Px-22
24	18	I/O 2	Px-14	64	51	I/O 2	Px-14
26	19	I/O 3	Px-16	66	52	I/0 3	Px-16
28	20	I/O 4	Px-18	68	53	1/0 4	Px-18
2 A	21	I/O 5	Px-10	6 A	54	1/0 5	Px-10
2 C	22	I/O 6	Px-12	6 C	55	I/0 6	Px-12
2 E	23	I/O 7	Px-24	6 E	56	I/O 7	Px-24
'H' Block							
30	24	I/O 8	Px-26	70	57	I/O 8	Px-26
32	25	I/0 9	Px-28	72	58	I/O 9	Px-28
34	26	I/O 10	Px-30	74	59	I/O 10	Px-30
36	27	I/O 11	Px-32	76	60	I/O 11	Px-32
38	28	I/O 12	Px-34	78	61	I/O 12	Px-34
3 A	29	I/O 13	Px-36	7A	62	I/O 13	Px-36
3 C	30	I/O 14	Px-38	7 C	63	I/ 14	Px-38
3E	31	I/O 15	Px-40	7 E	64	I/O 15	Px-40

${ }^{1}$ This column represents the value to be added to the software base address to access a given bit or block.
${ }^{2}$ This column represents the displacement to be used with a CRU single bit instruction (e.g., SBO, SBZ, TB) with no displacement added to the base address.
3 This column gives the pin assignments for the appropriate I/O bit for each CRU address.

Table 3-1 shows the CRU map for each of the three ports ($A, B O R C$) on the TM 990/311. The first and third block of 16 bits in the CRU map access the Flag register or reset functions. There are 32 unique bits in the Flag register for each port base address.

The second and fourth block of 16 bits access the I/O bits. Notice that each I/O bit (I/O 0 through I/O 15) have duplicate addresses. For example, if the CRU base address is 0300 16, I/O 0 can be accessed with a CRU address of 032016 or 0360_{16}. This duplicate addressing provides sof tware compatibility with the the addressing scheme of the TM 990/310. In the CRU map for the TM 990/310, the second address (i.e., 0360 16) is the echo address of an output port with an address of 032016 .

3.2 RESETTING PORTS WITH SOFTWARE

The TM $990 / 311$ was designed to be as software compatible as possible with the TM $990 / 310$. Software Reset is accomplished via the CRU as if the user were writing to a TMS 9901 PSI. This example assumes that Port A had previously been set as an output port (e.g., had been written to via the CRU). Now, the user wishes to reset the port for some other use. Since switch S3 is set to a software base address of $0300{ }_{16}$, register R12 is loaded with $0300{ }_{16}$. CRU bits 0 and 15 are the 'RESET ENABLE' and 'RESET' signals respectively (see Table 3-1).

```
START LI R12,>0300 LOAD BASE ADDRESS FOR PORT A
    SBO 0 ENABLE HESET FOR PORT A
    SBZ 15 RESET PORT A
    SBZ 0 DISABLE RESET FOR PORT A
```


NOTES

1. Writing a one to CRU bit 0 also lights the port LED, writing a zero to CRU bit 0 turns off the port LED.
2. Because writing to bit 15 also sets the flag bit accordingly, a port can be checked for having been reset by reading bit 15 for a known logic one condition.

3.3 SETTING AND WRITING TO OUTPUT PORTS

The first time a port (or block) is written to, it is set as an output until reset by hardware (e.g., RESET switch actuated on the microcomputer board) or software (see section 3.2). This example code sets all 16 bits of Port B as output; therefore, both blocks of Port B are set as output.

START LI R12,>0420
MOV QDATA,R2 LDCR R2,0

LOAD BASE ADDRESS OF PORT B PLUS I/O DISPLACEMENT LOAD DATA TO BE OUTPUT INTO R2 OUTPUT 16 BITS

The following code demonstrates two ways to echo. The first method uses the same address as the output ports after data has been written to the port (as in section 3.3).

START LI R12,>0420 LOAD BASE ADDRESS OF PORT B PLUS I/O DISPLACEMENT MOV CDATA,R2 LOAD DATA TO BE OUTPUT INTO R2
LDCR R2,0 OUTPUT 16 BITS
STCR R3,0 ECHO 16 OUTPUT BITS
C R2,R3 COMPARE DATA SENT, DATA RECEIVED JNE ERROR IF NOT THE SAME, CHECK

The second method uses the duplicate address for echoing.

START LI	R12,>0420	LOAD BASE ADDRESS OF PORT B PLUS I/O DISPLACEMENT
MOV EDATA,R2	LOAD DATA TO BE OUTPUT INTO R2	
LDCR R2,0	OUTPUT 16 BITS	
LI R12,>0460	LOAD 'ECHO' ADDRESS FOR PORT B	
STCR R3,0	ECHO 16 OUTPUT BITS	
C R2,R3	COMPARE DATA SENT, DATA RECEIVED	
JNE ERROR	IF NOT THE SAME, CHECK	

3.5 READING FROM INPUT PORTS

Any port not set as an output can be used as an input-only port. This code reads the 'H' block of Port C.

| START LI R12,>0530 | LOAD BASE ADDRESS OF PORT C PLUS I/O DISPLACEMENT | |
| :--- | :--- | :--- | :--- |
| $*$ | | FOR THE 'H' BLOCK |
| | STCR R2,8 | READ 8 BITS OF THE 'H' BLOCK OF PORT C |

3.6 WRITE TO AND READ FROM THE FLAG REGISTER

This code writes to Flag bit 3 of Port A and reads Flag bit 5 of Port B.

START LI	$\mathrm{R} 12,>0300$	LOAD BASE ADDRESS FOR PORT A
SBO	3	SET FLAG BIT 3 TO ONE
LI	R12,>0400	LOAD BASE ADDRESS FOR PORT B
TB 5		

The following example programs were tested with a TM 990/101M CPU module. All switches and jumpers on the TM 990/311 were set as described in section 3.1. These programs can be entered and run on a TM 990 CPU system with TIBUG as follows:

1) Use the memory inspect and change command (M) to enter the code in the corresponding memory addresses.
2) Use the hardware register inspect and change command (R) to set the program counter to FC20 16 -
3) Use the execute command (E) to start the program.
3.7.1 Example Program to Flash LEDS 1, 2 and 3.

This program turns each RESET ENABLE LED on and off in sequence, 16 times.

* FLASH PORT B LED
0200

```FC3A 0400
FC3C 1D00
FC3E 06AO
FC40 FC60
FC42 1E00
FC44 06AO
FC46 FC60
FC48 020C
FC4A 0500
FC4C 1D00
FC4E 06AO
FC50 FC60
FC52 1E00
FC54 06AO
FC56 FC60
FC58 0603
FC5A 16E6
FC5C 0460
FC5E 0080
FC60 0202
FC62 }800
FC64 0602
FC66 16FE
FC68 045B
```



```
* FLASH PORT C LED
    LI R12,PORTC LOAD CRU ADDRESS OF PORT C
    SBO 0 LIGHT LED
    BL eDELAY
    SBZ 0 TURN OFF LED
    BL eDELAY
```



```
* CYClE COUNTER
*
    DEC R3 HAS THE CYCLE GONE 16 TIMES?
    JNE START IF NOT, DO IT AGAIN
    B e>80 GO TO MONITOR IF FINISHED
* DELAY LOOP SUBROUTINE
DELAY LI R2, 8000 SET DELAY COUNTER
LOOP DEC R2 IS THE COUNTER FINISHED
    JNE LOOP IF NOT, DECREMENT COUNTER
    .B *R11 IF FINISHED, RETURN TO CALLING PROG. SEGMENT
```


3.7.2 Example Program to Write, Echo and Read to a Port

This example sets the 'L' block of Port A as output and the 'H' block of Port A as input. This example requires wiring a connector as shown in Figure 3-1. The wiring connects the 'L' block to the corresponding bits of the 'H' block.

The connector is attached to P2 (Port A) for this example. It could be attached to Ports B or C if the CRU base address is changed in the program to the appropriate value for the port used (i.e., 040016 for Port B or 050016 for Port C).

This example could serve as a simple test of a port. A test pattern (AA16) is loaded into the 'L' block output. The 'L' block is echoed and compared with the test pattern. An error message is sent if the bits echoed do not match the bits output. Then, the 'H' block is read as input and compared to the original test pattern. If the inputs do not match the original test pattern an error message is generated.

FIGURE 3-1. WIRING CONNECTIONS FOR EXAMPLE 3.7.2

Addr Code		Label	tement Comment				
FC00			AORG $>$ FCOO				
		*	DEFINITIONS				
		*					
	0300	FLAGA	EQU	>0300	CRU ADDRESS OF FLAG REGISTER/RESET OF PORT A		
	0320	PORTA	EQU	>0320	CRU ADDRESS OF I/O BITS OF PORT A		
FCOO		WSP	BSS	32	RESERVE WORKSPACE		
		*	ENTRY POINT - INITIALIZATION				
FC20	O2EO		LWPI WSP		LOAD WORKSPACE POINTER		
FC22	FCOO						
FC24	020C		LI	R12, FLAGA	LOAD CRU ADDRESS OF FLAG/RESET		
FC26	0300						
FC28	1 100		SBO	0	ENABLE RESET		
FC2A	1E0F		SBZ	15	RESET PORT A		
		*					
		*	SET 'L' BLOCK OF		PORT A AS OUTPUT - OUTPUT TEST PATTERN		
FC2C	020C		LI	R12, PORTA	LOAD CRU ADDRESS OF PORT A I/O BITS		
FC2E	0320						
FC30	0202		LI	R2, >AA00	LOAD BIT PATTERN ' 10101010 '		
FC32	AA00						
FC34	3202		LDCR R2,8		SETS 'L' BLOCK=OUTPUT, OUTPUTS PATTERN		
FC36	3603		STCR R3, 8		ECHOS 'L' BLOCK OUTPUT BACK TO R3		
FC38	90062		CB 2,3		IS ECHO SAME AS OUTPUT?		
FC3A	1606		JNE ERR1		IF NOT, OUTPUT ERROR MESSAGE		
FC3C	022C		AI	R12, >10	SET CRU BASE ADDRESS TO 'H' BLOCK		
FC3E	0010						
FC40	3604		STCR	R4,8	READ 'H' BLOCK INPUTS		
FC42	9102		CB	2,4	ARE 'H' INPUTS EQUAL TO 'L' OUTPUTS		
FC44	160F		JNE	ERR2	IF NOT, OUTPUT ERROR MESSAGE		
FC46	101D		JMP FIN		TESTS PASSED, GO TO FINISH		
		*					
		*	ERROR MESSAGE ISSUED IF THE ECHO DOES NOT MATCH THE TEST PATTERN				
		*					
FC48	2 FAO	ERR 1	XOP	emess 1,14	OUTPUT ERROR MESSAGE 1		
FC4A	FC50						
FC4C	0460		B	e>80	BRANCH TO MONITOR		
FC4E	0080						

Addr Code FC50 ODOA FC52 45 FC53 52 FC54 52 FC55 4F FC56 52 FC57 2D FC58 20 FC59 4E FC5A 4F FC5B 20 FC5C 45 FC5D 43 FC5E 48 FC5F 4F FC60 ODOA FC62 0000

FC64. 2FAO FC66 FC6C FC68 0460 FC6A 0080 FC6C ODOA FC6E 45 FC6F 52 FC70 52 FC71 4F FC72 52 FC73 2D FC74 20 FC75 4E FC76 4F FC77 20 FC78 49 FC79 4E
FC7A 50
FC7B 55
FC7C 54
FC7D 53
FC7E ODOA
FC80 0000

FC82 2FAO FC84 FC8A FC86 0460 FC88 0080

[^0]
地

5 4 3

Comment
MESS 1 DATA >ODOA CARRAGE RETURN/LINE FEED TEXT 'ERROR- NO ECHO'
DATA $>$ ODOA . CARRAGE RETURN/LINE FEED

DATA >0000 END OF MESSAGE TAG

* ERROR MESSAGE ISSUED IF THE 'H' INPUTS DO NOT MATCH THE TEST PATTERN
*

XOP EMESS2,14 OUTPUT ERROR MESSAGE 2 B \quad - $>80 \quad$ BRANCH TO MONITOR

MESS2 DATA >ODOA CARRAGE RETURN/LINE FEED
TEXT 'ERROR- NO INPUTS' ERROR MESSAGE
ERR2

\square
*

$$
\begin{array}{ll}
\text { DATA >0DOA } & \text { CARRAGE RETURN/LINE FEED } \\
\text { DATA }>0000 & \text { END OF MESSAGE TAG }
\end{array}
$$

MESSAGE ISSUED IF ALL TESTS PASSED
FIN XOP @MESS3,14 OUTPUT TEST PASSED MESSAGE
B © >80 BRANCH TO MONITOR

Addr	Code	Label	Statement		Comment
FC8A	ODOA	MESS3	DATA > ODOA		CARRAGE RETURN/LINE FEED
FC8C	54		TEXT 'TESTS	PASSED	
FC8D	45				
FC8E	53				
FC8F	54				
FC90	53				
FC9 1	20				
FC92	50				
FC93	41				
FC94	53				
FC95	53				
FC96	45				
FC97	44				
FC98	ODOA		DATA > ODOA		CARRAGE RETURN/LINE FEED
FC9A	0000		DATA >0000		end of message tag

4.1 GENERAL

This section describes the theory of operation for the TM 990/311 I/O module. A simplified block diagram of the TM 990/311 is shown in Figure 4-1.

The module can be divided into the following functional elements;

- CRU Address Selection and Decode
- Port Reset and Buffer Enable Logic
- Input/Output Latches and Buffers
- Flag Register
- Voltage Regulator

Address lines shown on figures and schematics with a suffix of '.B' are TM 990 system address bus lines. Address lines with no suffix indicate TM 990/311 address lines.

The following expressions are used in Boolean expressions in the circuit descriptions:

```
X- = NOT X
+ = Logical OR
* = Logical AND
```


FIGURE 4-1. TM 990/311 BLOCK DIAGRAM

The circuits described in this subsection decode a CRU address and generate unique signals which enable one of the six output latches or one of the six input latches. Each latch represents one eight bit block of one of the ports. Each block is designated with a 'H' or 'L' suffix. For example, the line labled 'ASELIN.L-' (in Figure 4-2) carries the select signal for the input latch of the 'L' block of Port A.

The switch select and comparator circuit for Port A is shown in Figure 4-2. The CRU address selection and decode circuits of the other two ports are identical to Figure 4-2. This circuitry can also be found on sheets 2 and 3 of the schematic diagrams (page A-3 and A-4).

Address lines A3.B to A8.B (Figure 4-2) carry the CRU base address. They are inverted and buffered onto the module by a 74 LS 240 Octal Buffer. The six MSB's of the CRU address (A3- through A8-) are compared to switches S3-1 through S3-6 by the cascaded comparators U 1 and U12.

Notice that switch S3-7 is compared to ground (logic 0) by U12; therefore, switch 7 must be closed (ON) in order to get a true comparison signal ($A=B$) out of U12 (labeled 'BAS' in Figure 4-2). Switch S3-7 acts as a port enable selector. When switch $53-7$ is open, port A is disabled, and does not appear at all in the CRU map.

The base address select signals (BAS) from all three port address decoders are routed to U15, a 1-of -8 Data Selector. When any BAS signal is true, the Y output of U 15 is high and the W output is low. If more than one BAS signal is true at once, the Y output of $U 15$ will not go active high; therefore, if the same CRU address is set on more than one of the port select switch banks (S1, S2 or S3), none of the ports will be selected when the address appears on the address lines. The active low W output enables CRUIN onto the system bus through U7. The Y output forms the VALID signal in Figure 4-2 and Figure 4-5.

The BAS signal is ANDed with the VALID signal (by U16 in Figure 4-2) to produce a signal labeled 'ASEL'. ASEL is one input to U26, a 2-to-4-line Data Selector (U26 in Figure 4-2 is from schematic sheet 3, page A-4). The signals labeled 'ASELIN.L-' and 'ASELIN.H-' in Figure $4-2$ are a Boolean function of ASEL, A11 and A10 as follows:

1) ASELIN.H- = ASEL * A11- * A10-
2) ASELIN.L- = ASEL * A11 * A10-

As can be seen from expressions 1 and 2, the status of $A 11$ determines which 8 bit block (H or L) of each port is selected.

The Boolean expressions for the signals labeled ASELOUT.L- and ASELOUT.H- in Figure 4-2 are as follows:
3) ASELOUT.H- = ASELIN.H- * CRUCLK-
4) ASELIN.L- = ASELIN.L- * CRUCLK-

Expressions 3 and 4 indicate that an 'ASELOUT' signal will be active (low) when the corresponding 'ASELIN' signal is active (low) and CRUCLK - is active (low).

FIGURE 4-2. TM 990/311 CRU ADDRESS SELECTION/DECODE CIRCUITS

4.3 PORT RESET AND BUFEER ENABLE LOGIC

The reset logic circuitry is shown in Figure 4-3. This figure shows only the reset logic for Port A. The other two ports have identical counterparts of this circuit which can be found on schematic sheet 4 (page A-5).

The reset logic was designed to simulate the TMS 9901 reset logic so that the TM 990/311 would be software compatible with the TM 990/310.

Logic gates U18 (2) and U9 decode a CRU address equal to the base address for Port A plus a displacement of 00_{16}. When this address occurs and CRUCLK- goes active low, the content of CRUOUT is clocked into U11 (in Figure 4-3). The Q output of U 11 is a reset enable signal (active high). This reset enable signal acts as a gating signal at U19; if active, it allows the port clear signal ADIRCLR-.

Logic gate U8 decodes a CRU address equal to the base address for Port A plus a displacement of \mathbb{E}_{16}. When this address occurs (ASEL is high), CRUCLK- is active low and CRUOUT is low, a reset signal (active high) is fed to the inputs of U19; thus, if the reset enable signal is high, ADIRCLR- is generated.

ADIRCLR- is also generated if a RESET- (hardware reset) occurs. Note that RESET- also clears U11, thus clearing the reset enable.

The output buffer enable circuitry is shown in Figure 4-4. This figure shows only the enable logic for Port A. The other two ports have identical counterparts of this circuit which can be found on schematic sheet 3 (page A-4).

The output buffer enable circuit was designed to simulate the programable outputs of the TMS 9901. A port is an input until it has been written to. Once written to, the port becomes an output until reset.

When one of the 8 bit blocks of port A has been addressed, the output enable signal (ASELOUT) clocks a logic 1 into one of the flip-flops in Figure 4-4.

The outputs of the flip-flops make up the output buffer enable signals (ACTL). The value of these signals is determine by Jumper J 9 and J 10 . When a jumper is connected from pin 1 to pin 2 of either jumper, ACTL. 1 (or ACTL.3) will be active high. When a jumper is connected from pin 2 to pin 3 of either jumper, ACTL. 1 (or ACTL.3) will be active low. Thus, the user may select the buffer enable signals required for different buffers (see Section 2.5.5).

When ADIRCLR- occurs from either a software or hardware reset, the flip-flops are cleared and the output buffers are disabled until written to again.

Switch S1-8, when closed, disables the output buffers of Port A, making Port A an input only.

FIGURE 4-4. OUTPUT BUFFER ENABLE CIRCUIT

4.4 INPUT/OUTPUT LATCHES AND BUFFERS

The input and output buffers are shown in Figure 4-5. This figure shows only the circuit for Port A. The other two ports have identical counterparts of this circuit which can be found on schematic sheet 4 (page A-5).

The input selectors (U54 and U56 in Figure 4-5) have outputs (CRUIN) that are enabled by the appropriate ASELIN signal. The three least significant bits of the CRU address (A12, A13 and A14) select the input line that will be coupled to CRUIN.

The output latches (U36 and U38) are enabled by the appropriate ASELOUT signal. The three least significant bits of the CRU address select the output line (Q) that will be coupied to CRUOUT.

The output buffers (U35 and U37) are user selectable depending on the required output specifications (see Section 2.x). The buffers are enabled by the ACTL signals generated by the circuit in Figure 4-4.

The series resistors (U43 and U44) and the pull-up resistors (U53 and U55) are user selectable depending on the application (see section 2.8). Jumpers J 15 and J16 are provided to set the resistors in U53 or $U 55$ as pull-up or 'pull-down' resistors as needed.

FIGURE 4-5. INPUT/OUTPUT LATCHES AND BUFFERS

4.5 FLAG REGISTER

The flag register (U6 in Figure 4-6) is a 1 bit wide RAM memory accessable by the user via the CRU. This circuit can be found on schematic sheet 3 (page A-4). The use of this register is determined by the user.

The least significant address lines and three control lines are buffered onto the module by U5.

Logic gates U16 and U17 (in Figure 4-6) generate the active low select signal for the flag register. When A10 is low and the CRU base address (A3 through A8) is true, U6 is selected.

The inputs to U6 labeled ASEL, BSEL and CSEL determine which one of three blocks of flags is addressed; thus, the same CRU base address for each of the ports select a unique block of flags. Each block of flags contain 32 bits. The values on address lines A9 and A11 through A14 determine which 1 of 32 bits in a block is addressed. The address map for the flag register is shown in Table 3-1.

FIGURE 4-6. TM 990/311 FLAG REGISTER

4.6 VOLTAGE REGULATOR

The voltage regulator on the $T M 990 / 311$ is shown on schematic sheet 1 (page A-2). The primary purpose of the onboard regulator is to step the +12 V (derived from the backplane) down to +8 V for compatibility with the 5MT series. This gives the user a choice of four voltages available at each port connector ($+12 \mathrm{~V},+8 \mathrm{~V},+5 \mathrm{~V}$ and -12 V). The jumper settings required to select these voltages are described in section 2.5 .

APPENDIX A
SCHEMATICS
D

PARTS LIST

Symbol

C1-C2
C3-C4
C5
C5-C31
CR 1
DS1 - DS3
J1 - J17
Q1
R1 - R5
R6 - R8
R9 - R10
S1-S3
U04
U05
U06
U07
U08
U9
U1 - U3
U10 - U11
U12-U14
U. 15

U16
U17
U18
U19
U20
U21
U22
U23
U24
U25
U26
U27
U28
U29
U30
U3 1
U32
U33
U34
U35
U36
U37
U38
U39 - U44
U45
U46
U47

Description

Capacitor, Fixed, 68 MFD, 10 \%, 15 V
Capacitor, Fixed, 22 MFD, $10 \%, 35 \mathrm{~V}$
Capacitor, Fixed, 68 MFD, $10 \%, 15 \mathrm{~V}$
Capacitor, Fixed, . $047 \mathrm{uF},+80 \%,-20 \%$
Diode, $1 \mathrm{~N} 4002,1 \mathrm{Amp}, 100$ PIV Rectifier
Diode, LED
Jumper Plug, Connector
IC, Pos Volt Reg, UA7808C
Resistor, Fixed, 1.0 kilohm, .25 W
Resistor, Fixed, 330 ohm , 25 W
Resistor, Fixed, 1.0 kilohm, .25 W
Jumper Plug, 8-section, DIP
IC, SN74LS240N, Line Drivers
IC, SN74LS244N Line Driver
IC, TMS 4033, Static Ram Memory
IC, SN7 4LS 125 N
Network, SN74LS30N
Network, SN74LS08N
Network, SN74S85N
Network, SN74LS74N
Network, SN74S85N
Network, SN74LS 151N
Network, SN74LSO8N
Network, SN74LSO4N
Network, SN74S260N
Network, SN7 4LS10N
Network, SN74LS08N
Network, SN7 4LS74N
Network, SN74LS139N
Network, SN7 4LS74N
Network, SN74LS139N
Network, SN74LS74N
Network, SN74LS139N
IC, SN74LS244N Line Driver
IC, SN74LS259N
Jumper Plug, 8-section, DIP
Resistor, Fixed-Array, 4.7 kilohm
Network, SN74LS251N
Resistor, Fixed-Array, 4.7 kilohm

Symbol

Description

U48
U49
U50
U51
U52
U53
U54
U55
U56
U57 - U59

Network, SN74LS251N
Resistor, Fixed-Array, 4.7 kilohm
Network, SN74LS251N
Network Resistor, 4700 ohms

PAGE

ACTL Signal 4-5, 4-6
Address Lines 2-2, 4-1
ADIFCLR-Signal 4-4, 4-5
ASEL Signal 4-2
ASELIN- Signal 4-6
ASELIN.H- Signal 4-2
ASELIN.L- Signal 4-2
ASELOUT Signal 4-5, 4-6
ASELOUT.H- Signal 4-2
ASELOUT.L- Signal 4-2
BAS Signal 4-2
Block $1-1,2-7,2-8,2-9,3-3$
Block Diagram 1-1, 1-5, 4-1
Boolean Expressions 4-1
Buffer 2-9
Cable Connector 2-7
Configuration as Shipped 2-11
Connectors 2-8CRU
Address 4-6
Address Selection/ Decode $4-1,4-2,4-3$
Address Space 2-2
Base Address 2-1, 2-2, 3-3, 4-2
Base Address Select Jumper/Switches 2-3
Base Address Selection 2-1
Hardware Base Address 2-3, 2-4
Map 3-2,
Software Base Address 2-2
CRUCLK Signal 4-2
CRUIN Signal 4-6
CRUOUT Signal 4-4, 4-6
DIP Switch 2-1, 2-3
Echo 1-1
Edge Connectors 1-1, 2-7
Eight Bit Block 4-2
Example Programs
Echoing Output Data 3-4
Reading from Input Ports 3-4
Write to and Read from the Flag Register 3-4
Write, Echo, and Read to a Port 3-7
Flag Register$2-5,2-10,3-3,4-1,4-7$
H Block 2-6, 2-7
Hardware Base Address 2-3, 2-4
High Block 2-8
Input/Output Latches and Buffers 4-6
I/O Bits 2-7, 3-3
I/O Reset 2-9
Input Buffers 2-10
Input Latches 4-2
Input/Output Latches and Buffers 4-6
Installation 2-1
Inverting Buffers 2-9
Jumpers 2-1
J1 2-5
J2 2-5
J3 2-5
J4 2-5
J5 - J10 2-5
J11 - J16 2-6
J 15 4-6 6
J 16 4-6
J 17 2-7 -7
Jumper Connections as Shipped 2-11 11
Jumper Options 2-5
Jumper Platform 2-3 3
Jumper Selections 2-5
Jumper Settings 2-2

L Block 2-6

L Block Bits 2-7

Low Block 2-8
Module Dimensions 1-1, 1-3 -3
Non-inverting Output Socketed Buffers 2-9
Operation 2-1
Uperation Temperature 1-1
Output Block 2-5
Output Buffer 2-5,
$2-9,2-10,2-11,4-6$
Output Buffer Enable Circuitry 4-5
Uutput Buffer Jumpers 2-6
Output Disable Jumpers 2-4
Output Drivers 1-1
Output Latches 4-2
Output Resistors 2-9
Output Shunt Resistors 2-6
P2, P3, P4 2-7
Physical Characteristics 1-1
Port 1-1,
Port A 2-4
Port A Address 3-1
Port Address 3-3
Port Address Decoders 4-2 -
Port Address Selection 2-1
Port Address Switch/Jumper Assignments 2-2
Port Address Switch/Jumper Settings as Shipped 2-11 11
Port/Output Disable Switch Settings as Shipped 2-11
Port and Output Disable Switch/Jumpers 2-4
Port B 2-6, -2-8
Port B Address 3-1
Port Base Address 3-3
Port C 2-6,
2-2, 2-7, 2-8, 2-9 3-32-6, 2-82-6-1
3-1
Port C Address
2-8
Port Connector Assignments
2-4
Port Disable Switches
3-3
Port LED
4-4
Port Reset and Buffer Enable Logic
4-2
Port Select Switch Banks 4-
Ports 2-1, 4-2
Power Requirements 1-1
Principal Components 1-1, 1-4
Programmed Inputs 1-1
Programmed Outputs 1-1
Programming 3-1
Pull-up/Pull-down Output Resistors 2-6, 2-9, 2-10, 4-6
Reset 3-3
Keset Enable 3-3
Keset Enable LEDs 2-10
RESET ENABLE Signal 4-4
Reset Logic Circuitry 4-4
Reset Operation 2-9
KESET- Signal 4-4
Resetting Ports with Software 3-3
S1 2-1, 4-2
S2 2-1, 4-2
S3 2-1, 4-2
Setting and Writing to Output Ports 3-32-10, 2-11, 4-6
Shunt Resistors2-10, 2-11
Socket platform 2-1
Software Base address 2-3, 2-4
Software keset 3-3
Specifications 1-1
Storage Temperature 1-1
Switch and Jumper Configurations as Shipped 2-1
Switch Positions 2-3
Switch S1 3-1
Switch S 2 3-1
Switch S3 3-1
Switch Settings 2-2, 2-4
Switch/Jumper Number 7 2-4
Switch/Jumper Number 8 2-4
Temperature Requirements 1-1
Theory of Operation 4-1
Unpacking 2-1
VALID Signal 4-2
Voltage Regulator 4-1, 4-8
Wiring Connections for Example 3.7.2 3-7

[^0]:

