As you are now the owner of this document which should have come to you for free, please consider making a donation of $£ 1$ or more for the upkeep of the (Radar) website which holds this document. I give my time for free, but it costs me money to bring this document to you. You can donate here https://blunham.com/Misc/Texas

Many thanks.
Please do not upload this copyright pdf document to any other website. Breach of copyright may result in a criminal conviction.

This Acrobat document was generated by me, Colin Hinson, from a document held by me. I requested permission to publish this from Texas Instruments (twice) but received no reply. It is presented here (for free) and this pdf version of the document is my copyright in much the same way as a photograph would be. If you believe the document to be under other copyright, please contact me.

The document should have been downloaded from my website https://blunham.com/, or any mirror site named on that site. If you downloaded it from elsewhere, please let me know (particularly if you were charged for it). You can contact me via my Genuki email page: https://www.genuki.org.uk/big/eng/YKS/various?recipient=colin

You may not copy the file for onward transmission of the data nor attempt to make monetary gain by the use of these files. If you want someone else to have a copy of the file, point them at the website. (https://blunham.com/Misc/Texas). Please do not point them at the file itself as it may move or the site may be updated.

It should be noted that most of the pages are identifiable as having been processed by me.

I put a lot of time into producing these files which is why you are met with this page when you open the file.

If you find missing pages, pages in the wrong order, anything else wrong with the file or simply want to make a comment, please drop me a line (see above).

It is my hope that you find the file of use to you.
Colin Hinson
In the village of Blunham, Bedfordshire.

TM990

MICROSYSTEM

E-SERIES

TM990/E255 EPROM EXPANSION MODULE DATA MANUAL

DECEMBER 1981

Table of Contents

Page

1. General 3
2. Rey Features 4
3. Functional Description. 5
3.1 Theory of Operation 5
3.2 Selecting the EPROM Devices 7
3.3 Bank Switching 8
3.3.1 Selecting the Bank Switching Mode 10
3.4 Selecting the Number of Wait States 10
3.5 Eight and Sixteen Bit Data Bus 11
4. Electrical Specification 11
5. User Options and Ordering Number 12
6. Jumper and Switch Descriptions 12
6.1 Wait States for PEADY and AREADY (J4) 12
6.2 Jumper Positions J1,J2,J3 12
6.3 Switch S2.8 12
6.4 Switches S2.1 - S2.2 12
6.5 Switches S2.3-S2.7 13
6.6 Assignment of the 4 EPROM-Blocks 13
7. E-Bus Connector and Bus Loading 14
8. Installation. 16
Appendix A: Circuit Diagram. 17

Figure 1 TM990/E255 EPROM Expansion Board

1 General.

The TM990/E255 EPROM expansion module is a member of the E-Bus compatible family of microcomputer modules in the single Eurocard format. The TM990/E255 module offers the user eight 28-pin EPROM sockets. By using eight THS 2564 devices, the TM990/E255 can provide 64 k -Bytes of EPROM memory. The TM990/E255 module is designed for four different size EPROMs (up to the future l28k-Bit device). This document describes the installation and the operation of the TM990/E255 EPROM-Module.

2 Rey Features.

The TM990/E255 module offers the following features:

- Full E-bus compatible
- 8 Sockets for TMS2516, 2532, 2564 and 2528 EPROMS
- Up to $128 k$-Byte EPROM capacity
- 20 bit address decoding (1M-Byte)
- 8 or 16 bit data bus width
- Endaddress selectable in $4 k$-Byte steps
- Address decoding width selectable from 4-128k-Bytes
- Selectable wait states (0, 1, 2, 3, or 4)
- Bank switching to select one of the four EPROM-blocks
- Standard (DIN 41612) backplane connector
- Standard board size 100 mm x 160 mm

Figure 2: Functional Block diagram

3 Functional Description.

3.1 Theory of Operation.

The TM990/E255 module is designed for TMS25XX series EPROMS from Texas Instruments. The TMS25XX EPROMs are single $+5 V$ supply, erasable, programable, read-only memorys *. The TM990/E255 module is physically organized in 16 bit words. Therefore each word is split, with the left byte in one EPROM and the right byte in another.
A rather sophisticated decoding scheme is implementated on this board to privide the customer with the highest level of flexibility. Therefore it is mandatory to check the following items carefully, before the jumper and switch positions are set up.

- Mode of operation (Normal or Bank-switching mode)
- EPRON type to be used
- Desired address space (given by the number and type of EPRON's used)
- Endaddress of the desired address space

As mentioned above, the TM990/E255 can operate in one of two modes: The normal mode and the bank-switching mode. A brief description of the normal mode follows below.
The TM990/E255 comprises of eight EPROM sockets which are grouped into four blocks of two sockets each (figure 4). It is possible to move the desired address space in steps of $4 k$ bytes through the whole address space from >0 to >FFFFF.
In some cases it might be desirable to use less than four blocks of EPROM's while still operating in normal mode (e.g. when XAO ... XA3 can't be manipulated). In those cases one or more EPROM blocks can be masked out by setting the appropriate switches (S2.3 .. 7) according to table 3. The first block that will be masked out while changing the state of $S 2$ is block 0, then block 1 and so on (figure 3).
Note, if only one block is to be accessed, the EPROMs have to be installed into the EPRON sockets labled with block 3 and the switches S2.3 ... 7 have to be set up according to the address space to be accessed.
Care should be taken, while setting switch Sl. It is recomended to calculate the value of Sl from the endaddress of the desired address space, since the address where the first block starts moves up in direction higher order addresses, when one or more EPROM blocks are to be masked out (Figure 3).

[^0]There are sixteen possible endaddresses in one map of $64 k$ bytes. The according switch positions are listed in table la. There are 16 possible maps that can be accessed via the address XAO ... XA3. The according switch positions are listed in table $2 b$. The appropriate start address of the desired address space can be determined easyly by subtracting the desired address space minus 1 from the endaddress.

Table la

	SWITCH Sl				
ENDADDRESS	POSITI	4	3	2	1
>0XFFF	Cn	OFF	OFF	OFF	OFF
>1XFFF	1	OFF	OFF	OFF	ON
> 2 XFFF	1	OFF	OFF	ON	OFF
>3XFFF	1	OFF	OFF	ON	ON
>4XFFF	1	OFF	ON	OFF	OFF
$>5 \mathrm{XFFF}$	1	OFF	ON	OFF	On
>6XFFF	1	OFF	ON	ON	OFF
>7XFFF	1	OFF	ON	ON	ON
>8XFFF	1	ON	OFF	OFF	OFF
>9XFFF	1	ON	OFF	OFF	ON
>AXFFF	1	ON	OFF	ON	OFF
>BXFFF	,	ON	OFF	On	ON
>CXFFF	1	ON	ON	OFF	OFF
>DXFFF	1	ON	ON	OFF	ON
>EXFFF	- V	On	ON	ON	OFF
>EXFFF	Cr	ON	ON	ON	ON

Table lb

Figure 3

```
Cn = >_FFFFF - STARTADDRESS - DESIRED ADDRESS SPACE - l
```

Cn... reflects the binary value applied to the adder inputs of the decoding circuitry.

$$
\begin{aligned}
& O F F=5 V=\text { EIGH }=\text { SWITCH OPEM } \\
& O F=O V=L O W=\text { SWITCH CLOSED }
\end{aligned}
$$

3.2 Selecting the EPROM Devices.

The positions of the jumpers J1 - J3 and switch 52 are set, depending on the EPROM sizes. Table 2 shows the positions for the possible devices TMS2516, 2532, 2564 and 2528.

Table 2: EPROM Size Select

Table 2 is only valid for a fully populated TM990/E255 module (8 EPROMs). It is possible to use only two or four ERRONs without a waste of memory address space. In these cases the address space of the TM990/E255 module can be decreased by changing the switches S2.3-S2.7. The following table shows the positions of S2.3-S2.7 as a function of the number and types of EPROMs used. 52.1 and 52.2 depend only on the type of EPROMs used (see table 2). The jumpers J1, J2 and J3 are set up according table 2 also.

Table 3: Address Space Select

Note: 'EPROM's of different size may not be mixed on the TM990/E255 module.

3.3 Bank Switching.

The Tm990/E255 module provides a horizontal "Bank switching" by using the extended address lines XA2 and XA3. In this case the access to one of the four EPROM-blocks (figure 4) depends only on the state of XA2 and XA3 (see table 4), and allows the user an easy way to switch between different software modules. The address lines XAO, XAl and AO to A3 are decoded as usual.
Example: The TM990/E255 EPROM-module is to be used together with the TM990/EI55 MC-module (which allows to change the eztended address lines via CRU). By using eight TMS2564 EPROMS, four different l6k-Eyte software modules share the normal l6k-Eyte memory address area.

Note, the TN990/E155 applies addresses to the E-BUS, while reading or writing to onboard memory. Therefore, the TM990/E255 will respond by turning on the access LED; if it is put on a address that corresponds to a TM990/E155 onboard decoded address. However, the data buffer of the TM990/El255 is disabled, to prevent interference from extraneous data from the E-BUS, while reading of writing to onboard memory.

XA2 XA3	selected EPRON-Block*	
0	0	BLK 0
0	1	BLR 1
1	0	BLR 2
1	1	BLR 3 (END)

* paragraph 6.6 shows the assignment of these blocks

Table 4: Bank Switchina

3.3.1 Selecting the Bank Switching Mode.

The bank switching mode of the TM990/E255 module is selected by setting switch S2.8 to the OFF-state. The positions of the jumpers J1-J3 and the switches S2.3 - S2.7 still depend on the EPROMs used (See table 2). In Bank switching mode the positions of $S 2.1$ and $S 2.2$ are ignored.

Example: Four 8k-Byte software modules each in two TMS2532s, are to be installed on a TM990/E255. The following jumper and switch positions are selected:

J1	$:$ E3-E4
J2	$:$ E6-E5
S2.1 - S2.2	$:$ DON'T CARE
S2.3 - S2.7	$:$ ON
S2.7 and S2.8	OFF

Note: To determine the positions of Sl in the Bank switching Node, the address lines XA3 and XA2 must be ignored (use zerofor calculation purposes). Use only the following addresses: $>0 \mathrm{X} 000$, $>4 \mathrm{X} 000,>8 \mathrm{X} 000,>\mathrm{CXOOO}(\mathrm{X}=0 \ldots \mathrm{~F})$.
3.4 Selecting the Number of Wait States.

The position of the jumper 34 depends on the required number of wait states. The TM990/E255 module generates both READY- and AREADYsignals. READY- (active low) indicates that a memory cycle is ready to complete during the present BUSCLK-cycle. AREADY- (Advanced Ready) indicates that a memory cycle will be ready to complete during the next BUSCLK-cycle. The number of wait states are selectable by $J 4$ for both signals as following:

Table 5: Number of Wait States

The following table shows the required number of wait states for two different MC-modules. The duration of a wait state depends on the BUSCLK- (Pin 2c of the E-Bus). The TM990/E150 generates a $2,5 \mathrm{MHz}$ BUSCLK- and the TM990/E155 a 3 MHz BUSCLK-.

Table 6: Required Wait States
3.5 Eight and Sixteen Bit Data Bus.

The TM990/E255 is designed to be used within E-Bus compatible MC- or MMC-modules having either an eight or sixteen bit data-path width. The data path width is controlled by the signal MEMWIDTH (pin 3la of the EBOS). A high level indicates that 8 bit wide transfers are being used, and the data transfer takes place in two cycles via the bus lines A8/D8-AI5/D15/CRUOUT. A low level on MEMHIDTH indicates 16 bit wide transfers, and the bus lines AO/DO/INTO - Al5/D15/CRUOUT. are used for a data transfer. MEMWIDTH must be controlled by the MC- or MMC-Module currently accessing to the E-Bus.

4 Electrical Specification

Memory:	Up to eight EPRONS of the single +5 V supply family (TMS25XX).
Power Supply:	+5 V typ. 750 mA (without EPROM) typ. 1,3A with 8 TMS2564 max. 2,7A with 8 TMS2564
Environmental:	Operating Temperature: $0-70$ degree C Humidity O-95 a non condensing Shock : will stand Im vertical drop in a chassis
Board size:	Single Eurocard $100 \mathrm{~mm} \times 160 \mathrm{~mm}$
Interface:	E-Bus compatible using 64-Pin female connector (DIN 41612)

5 User Options and Ordering Number.

Ordering Number	Type
TM990/E255	EPRON expansion Module with
	eight sockets for TMS2516, 2532,
	2564 or 2528 EPROMS.

6 Jumper and Switch Descriptions.
6.1 Wait states for READY- and AREADY- (J4).

J4	Number of Wait States
E15-none	none
E15-Ell	1
E15-E12 *	2
E15-E13	3
E15-E14	4

6.2 Jumper Positions J1, J2, J3.

JI	J2	J3	EPPON
$E 3-E 2$	E6-E5	X	TMS2516
E3-E4*	E6-E5*	X	TMS2532
E3-E4	E6-E7	E9-E8*	TMS2564
E3-E4	E6-E7	E9-E10	TMS2528

6.3 Switch S2.8.

ON * Normal Mode OFF Bank switching Mode
6.4 Switches S2.1-S2.2 (S2.8 = ON).

EPROM-TyPe	S2.1	S2.2
TMS2516	ON	ON
TMS2532*	OFF	ON
TMS2564	$O N$	$O F F$
TMS2528	$O F F$	$O F F$

*Factory configuration
6.5 Switches S2.3-S2.7.

* Factory configuration
6.6 Assignment of the 4 EPROM-BIocks.

Figure 4: The 8 EPROM-Sockets of the TM990/E255 Module
Note: Mark 1 adjacent to the EPROM sockets refers to pin 1 of the EPROM types TMS2564/28. Mark 1 adjacent to the EPROM sockets refers to pin 1 of the EPROM types TMS2516/32.

EPROM | EPROM-Sockets | relative block-startaddress* Block |left Byte|right BytelTMS2516|TMS2532|TMS2564|TMS2528

BLRO	U8	U7	0	0	0	0
BLRI	010	09	>1000	>2000	>4000	>8000
BLK2	Ul2	011	>2000	>4000	>8000	> 7000
BLK3	U14	013	>4000	>8000	>C000	$1>18000$

*S2.8 = ON (Normal mode - not Bank switching)

7 E-Bus Connector and Bus Loading

Figure 5 shows the signal assignments for the E-Bus connector Pl.

$N C=$ no connection on the board

Figure 5: E-Bus connector pinout

Figure 6: E-Bus unit bus loading

8 Installation.

To install the TM990/E255 in a Microcomputer system the following equipment is necessary:

* TM990/E150 or TM990/E155 MC-Module with an EIA-module
* TM990/E5000 Backplane or equivalent
* Standard Eurocard rack
* Power Supplies ($+5 \mathrm{~V},+/-12 \mathrm{~V}$)
* Data Terminal with RS-232 or TTY interface
* Monitor program EUROBUG 2 or 4
* 1, 2 or 4 TMS25XX EPROM-pairs with software

Each EPROM-pair consists of two TMS25XX which are programmed "parallel" with the left and right byte. Set all switches and jumpers as described in paragraph 3. A program may be started by the "G"-command of EUROBUG. Access to the TM990/E255 module will be indicated by the on board LED.

NOTE
Software programmed into ERROMS of the TM990/E255 module must be word, not byte organised (as on TM990/E250 module). Therefore at least two TMS25XX EPROMs are always necessary.

Appendix A: Circuit Diagram

17 1040091

[^0]: *See also the "MOS Memory Data Book" (LCC4782)

