
Please do not upload this copyright pdf document to any other website. Breach of copyright
may result in a criminal conviction.

This Acrobat document was generated by me, Colin Hinson, from a document held by me. I
am unable to find the author to request permission to publish, so beware, this is not totally
my copyright. It is presented here (for free) and this pdf version of the document is my
copyright as it is part of my database of documents. If you believe the document to be under
other copyright, please contact me.

The document should have been downloaded from my website https://blunham.com/Radar,
or any mirror site named on that site. If you downloaded it from elsewhere, please let me
know (particularly if you were charged for it). You can contact me via my Genuki email page:
https://www.genuki.org.uk/big/eng/YKS/various?recipient=colin

You may not copy the file for onward transmission of the data nor attempt to make
monetary gain by the use of these files. If you want someone else to have a copy of the file,
point them at the website. (https://blunham.com/Radar). Please do not point them at the
file itself as it may move or the site may be updated.

It should be noted that most of the pages are identifiable as having been processed by me.

I put a lot of time into producing these files which is why you are met with this page when you
open the file.

In order to generate this file, I need to scan the pages, split the double pages and remove any
edge marks such as punch holes, clean up the pages, set the relevant pages to be all the same
size and alignment. I then run Omnipage (OCR) to generate the searchable text and then
generate the pdf file.

Hopefully after all that, I end up with a presentable file. If you find missing pages, pages in the
wrong order, anything else wrong with the file or simply want to make a comment, please
drop me a line (see above).

It is my hope that you find the file of use to you personally – I know that I would have liked to
have found some of these files years ago – they would have saved me a lot of time !

Colin Hinson
In the village of Blunham, Bedfordshire.

AX LIMI >0002
EE LIMI >0000
AC MOVB *R13,R9
AB JLT AM

MOVB R9,R4
SRL R4,12
MOV @AN(R4),R5
B *R5

AM CLR R4
MOV R9,R5
ANDI R5,>0100
BL @AO
SWPB R4
MOV R 1, R3
MOV R0,R2
CI R9,>A000
JL AP
COC @AQ,R9
JNE AR
MOV R13,R1
MOVB *R1,R0
DEC R1
BL @AS
JMP AT

>0300,>0002
>0300,>0000
>D250
>1105
>D109
>09C4
>C164,>0C36
>0455
>04C4
>C149
>0245,>0100
>06A0,>077A
>06C4
>C0C1
>C080
>0289,>A000
>1A09
>2260,>0030
>160C
>C04D
>D011
>0601
>06A0,>07AA
>1008

F } ~~~.t~.t 3 ►~/ L- '

MANUAL WRITTEN BY

R, KENT THOMSON

IN COLLABORATION WITH

THOMAS S. FREEAN

The Information contained in this book is subject to change
without notice.

Millers Graphics shall not be liable for technical or
editorial errors or omissions contained herein; nor for
incidental or consequential damages resulting from the
furnishing, performance, or use of this material or product
described by this manual.

This manual contains information protected by copyright. All
rights are reserved. No part of this manual may be
photocopied or reproduced in any form without prior written
consent from Millers Graphics.

DISkASSEMBLER Software and Associated Manual
(Produced in the United States of America)

Copyright 1986

by

Millers Graphics
1475 W. Cypress Ave.
San Dimas, CA 91773

TABLE OF CONTENTS

Introduction to DISkASSEMBLER 1

Quick Reference Guide 2

Loading/Running DISkASSEMBLER 3

Default Options 3

Some General Information 4

Page One 6
Function Keys During Input 6
Disassembly From Disk 7
The "File Information" 8
Options 10
Disassembly From Memory 13
Disassembling Device Service Routines 14

Page Two - Data and Text Blocks 16

Page Three - Data Following Subroutines 17

Page Four - Specifying Output Devices 19
Output to Printer 19
Output to Disk 20

Function Keys During Passes 21

First Pass 23

Second Pass 25
REF/DEF/END 26
EQU List 27
Symbol Table List 27

Reassembly 28
Dis/Fix 80 File Without REFs 28
Dis/Fix 80 File With REFs 30
Program Image - Standard Loader File 32
Program Image - Custom Loader File 33
Memory Disassembly 33

Appendix A - Save Utility Tutorial 34
Appendix B - Files Larger Than 48 Sectors 42
Appendix C - Memory Maps 44
Appendix D - Common Equates & Subroutines 52

INTRODUCTION TO DISkARSElBLER

DISkASSEMBLER is a program that allows you to disassemble
assembly language object code (referred to as code in this
manual). It is designed for use as a learning tool,
allowing the novice or experienced assembly language
programmer to investigate the techniques used in existing
code and to allow you to modify it to suit your needs.

Unlike other disassemblers code can be disassembled directly
from disk, thus the name DISkASSEMBLER, or from an area of
memory in the TI 99/4A, such as the Device Service Routines.
DISkASSEMBLER is a smart disassembler in that it will
automatically; insert labels as needed, split up Data
blocks, correctly insert Data for Subroutines and set up the
Data for BLWPs.

As code is disassembled, it can be saved on disk or printed;
simultaneously if you wish. Files saved to disk can be
accessed later using the TI Editor/Assembler or TI Writer,
customized by the user, and reassembled. Or, portions can
be extracted for use in other programs.

In concert with programs like Miller Graphic's Explorer and
Advanced Diagnostics, or the Gram Kracker, you'll have the
tools you need to take advantage of the limitless
capabilities TI built into the 99/4A.

SYSTEM REQUIRE1ENTS
To load and run DISkASSEMBLER you must have memory
expansion, at least one disk drive, and one of the following
cartridges:

Extended Basic
Mini Memory
Editor Assembler

QUICK REFERENCE GUIDE

Function and Control Keys During Input

FCTN 1 - Delete a Character
FCTN 2 - Insert a Space Character
FCTN 3 - Erase Input Line
FCTN 4 - Abort Back to the Top of Page One
FCTN 5 - not used
FCTN 6 - Go to the Next Input Page
FCTN 7 - not used
FCTN 8 - not used
FCTN 9 - Back One Input Page
FCTN 0 - not used
FCTN = - not used - Quit is Turned Off
CTRL 1 - Change Screen and Text Colors
CTRL = - QUIT DISkASSEMBLER (Top of Page One Only)

Option List

R - Put in R before Register Number
B - Add Basic Bias to TEXT (ASCII) Display
T - Place TEXT before DATA
D - Enable DSR Disassembly
X - Extend Label Checking
V - Override Automatic BLWP DATA for EXTERNAL REFs
H - Input/Output from/to Myarc Floppy Disk Controller
G - Input/Output from/to RAM Disk or Hard Disk

Function and Control Keys During Disassembly

FCTN 1 - DATA before TEXT
FCTN 2 - TEXT before DATA
FCTN 3 - not active
FCTN 4 - CANCEL Printer Output
FCTN 5 - Toggles Left and Right Screen Display
FCTN 6 - not active
FCTN 7 - PRINTER ON/OFF
FCTN 8 - OUTPUT FILE ON/OFF
FCTN 9 - ESCAPE Disassembly - Back to Top of Page One
FCTN 0 - RETRO SCREEN CAPTURE ON/OFF
FCTN = - Scroll Speed Fast/Slow
CTRL 1 - Change Screen and Text Colors
CTRL = not active

2

LOADING/RUNNING DISkASSEMBLER

Place the disk in any disk drive and follow the directions
below for the specific cartridge you are using.

LOADING FROM THE EDITOR ASSEMBLER
Select 3 LOAD AND RUN from the E/A menu and type in:
DSKx.DISKASSEM (where x = the drive no. that the

DISkASSEMBLER disk was placed in)
DISkASSEMBLER will load and auto start.

LOADING FROM EXTENDED BASIC
Place the DISkASSEMBLER disk in drive one and select
Extended Basic from the menu. DISkASSEMBLER will auto
load and run. Or, go into Extended Basic and execute
CALL INIT. Then type in:
CALL LOAD('DSKx.DISKASSEM') and press Enter.
DISkASSEMBLER will load and auto start.

LOADING FROM THE MINI MEMORY
Select MINI MEMORY from the menu and then select 1 LOAD
AND RUN from the MINI MEMORY menu and then type in:
DSKx.DISKASSEM (where x = the drive no. that the

DISkASSEMBLER disk was placed in)
DISkASSEMBLER will load and auto start.

DEFAULT OPTIONS - DISKCONFIG FILE
On the DISkASSEMBLER diskette you will find the file called
DISKCONFIG. This file contains the default colors, default
options (see "Page One") and the default printer name. You
can load this file into the E/A Editor or the TI-Writer
Editor and change these defaults to suit your taste. The
file will appear as follows when loaded into an Editor:

F4
R
PIO

COLORS - The FIRST LINE in the file MUST contain the screen
and text colors you would like for DISkASSEMBLER. They are
in Hex and they follow the same color values used for text
mode in the E/A module. Examples:

F4 = White on Dark Blue
17 = Black on Cyan
15 = Black on Light Blue
FC = White on Dark Green

m.

DEFAULT OPTIONS - The SECOND LINE in the file MUST contain
the Default Options (see Page One - Options). They can be in
any order and they will appear in the "Options" input field
when you first use DISkASSEMBLER. If you do not want any
options then leave this line blank. Examples:

R
RM
G

PRINTER NAME - The THIRD LINE in this file MUST contain the
Default Printer name that is used when you press FCTN 7 -
Printer on Page Four or during the Passes. You can type in
any valid output device on this line but the name must not
be any longer than 38 characters. Examples:

PIO
RS232.BA=1200.DA=8.EC.TW
RS232/2.BA=9600.LF

SOME GENERAL INFORMATION

DISkASSEMBLER - is a two-pass disassembler. This means that
the code requires two independent "looks" or "passes" to be
completely disassembled with labels. For each pass, you can
enter information to tell DISkASSEMBLER the specifics on how
you want the code disassembled. This information is entered
on four different screens referred to as "PAGES." You'll be
introduced to the four different Pages in the sections
coming up.

There are two ways code may be disassembled. You can
disassemble machine language for its assembly language
representation (referred to as symbolic or source code) or
you can accomplish what is referred to as "block"
disassembly. Block disassembly provides a listing, with
line numbers, of the existing machine code in its
hexadecimal (hex) representation along with its ASCII
equivalent. This has specific uses that are described
later.

ivta 4

RORG or AORG CODE - Throughout this manual there are a
number of references to RORG or AORG CODE. When code is of
the RORG type (Relocatable Origin, Dis/Fix 80) it will be
loaded into the first available free address according to
the pointers for the module that loads it (E/A, XB or Mini
Mem). When code is of the AORG type (Absolute Origin) it
will be loaded exactly where the programmer specified and
the pointers to the first and last free addresses will not
be adjusted by the module's loader. RORG code on the disk
contains a bias or additive value for addressing. For
example, an address reference in the file may be >00C2 this
and the RORG Tag will instruct the loader to add >00C2 to
the start load address for this reference. So, if the file
starts to load at >A000 this reference will become >A0C2. In
AORG type files the absolute or exact address is referenced
so it would contain >AOC2 instead of >00C2 for the above
example. This is why you are instructed to use a "Loads At"
address of >0000 for RORG code IF you want to reassemble it
as an RORG program.

OPCODE and OPERAND - These two terms are also used
throughout the manual and they refer to the following:

OPCODE is the INSTRUCTION to be performed, i.e.
MOV, MOVB, BLWP etc. or an assembler directive i.e.
AORG, RORG etc.

OPERAND(s) is the memory location(s), value or
register(s) to be used by the instruction.

AA MOV R1,R2

Operands

Opcode

Label Field

TAG - Tags are single byte flags placed in Dis/Fix 80 Object
Code assembly files to instruct the loader how to handle the
next word(s). DISkASSEMBLER uses these Tags in the same
manner when it disassembles these files. See pages 238
through 241 in the Editor/Assembler manual for additional
information on the various Tags and their use.

ivt, c

PAGE ONE

Load and run the program in the manner previously described.
After the Title Screen the following will appear on the
screen. This is the beginning or Top of Page One.

DISkASSEMBLER

Input File Name or Null for Memory
DSK1.

Once DISkASSEMBLER is loaded you can remove the disk from
your drive and replace it with a diskette containing the
file you want to disassemble. If you are going to
disassemble a file to another diskette you should have a
couple of formatted diskettes ready for use. Before going
any further, you should know something about the function
keys active during this (the input) phase of the program.

Function and Control Keys During Input
Below are the function keys active during the input phase of
the program. They work when you are entering information on
pages 1-4. They are redefined during the disassembly or
"passes" phase of the program and you'll be reintroduced to
them later when they change.

FCTN 1 - Delete a Character - deletes a single character
from the current input line or field.

FCTN 2 - Insert a Character - inserts a single space
character into the current input line or field,
characters at the very end of the input field will
be deleted.

FCTN 3 - Erase Input Line - erases the entire input line or
field.

FCTN 4 - Abort Back to the Top of Page One - takes you from
any input page to the very beginning of Page One
and cancels your input.

FCTN 6 - Proceed to the Next Input Page instructs
DISkASSEMBLER to go to the next input page and
accept all the inputs on the current page.

FCTN 9 - Back One Input Page - instructs DISkASSEMBLER to go
to the previous input page and accept all the
inputs on the current input page.

CTRL 1 - Change Screen and Text Colors - toggles through 7
different text and screen color combinations.

CTRL = - QUIT DISkASSEMBLER (Only when the cursor is in the
"Input File Name" field on the Top of Page One)

6

DISASSEMBLY FROM DISK

When selecting files for disassembly from disk, these files
must be Display/Fixed 80 (Dis/Fix 80) or memory image
(Program) files. A Program file cannot be longer than 47
sectors (listed as 48 in a disk catalog) and it MUST be an
Assembly file to obtain a usable output. You must have 2 or
more disk drives (or 1 drive and another output device) to
disassemble a medium to large Dis/Fix 80 file since the file
is worked on one record at a time. If you have a single
drive system and if the Dis/Fix 80 File is small enough, you
can put it on the same diskette as the one to be used for
DISkASSEMBLER's output. Program type files, however, are
loaded into memory before DISkASSEMBLER works on them so
they can easily be disassembled on a single drive system.

Basic and X-Basic can also store their programs in Program
format. Disassembly of these files is not recommended as the
result is not usable in a pure assembly environment. You
could, however, disassemble them solely as DATA and Text
(block disassembly) just to see what's in the file (see page
16 for additional information on block disassembly).

After inputting the device and filename (i.e. DSK1.EDIT1)
for the file you wish to disassemble, information particular
to that file is displayed; something similar to what is
shown below:

File Information

Type : Dis/Fix 80
Code : Uncompressed
Length : >07F4 Bytes Reloc. Code
Loader : Standard
Loads at : >A000 RORG
Sectors : >00
Options : R

E/A >A000 %B >24F4 MM >7118

The last line at the bottom of the screen indicates the
default first free address that the Editor/Assembler, X-
Basic, and Mini Memory modules use for loading and executing
RORG code (Relocatable Origin code). It was placed here for
easy reference. Note that the Mini Memory module will load
the program at >7118 if it is small enough to fit in the
Mini Mem Ram, otherwise it loads it at >A000.

m. '7

The first four lines contain file information. The last
three allow you to change parameters that affect the way
code is disassembled. Each is discussed below.

Type The file type is indicated as Dis/Fix 80 or Program
Image. Program Image files are files that contain
an EXACT copy of the memory as it appears when the
program is loaded into memory. There are no "tags"
and the origin, or load address, is absolute. It is
currently not relocatable code but it can be
converted into RORG code, upon reassembly, with
DISkASSEMBLER. This format is used in some
applications for its compactness and its faster
load times. Basic and X-Basic programs may also be
stored in program image format. These Basic files
can be disassembled but the result is unusable
as an assembly program.

Code Dis/Fix 80 files will be compressed or uncompressed
code and Program type files will be memory image
code. Compressed code is stored in Hex and as the
name implies it takes up less room than
uncompressed code. It also loads slightly faster
than uncompressed code, but it can not be loaded by
the Extended Basic object code loader. Uncompressed
code is stored in ASCII format, each nibble of the
actual code is represented by one ASCII byte (0-F).
Since it is in ASCII it can be loaded into the E/A
editor and/or printed out.

Length This can be an indication of how much room some
programs require in memory. The information is
read from the beginning of the disk file if it is
available, as in relocatable Dis/Fix 80 files, or
standard format program image files. If the code
is Dis/Fix 80 and it is all AORG'd, the length will
be >0000 Relocatable Bytes since no value was
placed here by the Assembler. With RORG code this
value is used by the loader to determine if there
is enough free space to load the file. With Program
Image code this value is used by the loader to
determine how many bytes to move out of VDP RAM,
where the program is first loaded, into memory
expansion. With AORG code this value is not needed
by the loader. It is possible with Dis/Fix 80 files
to have both RORG and AORG code mixed, such as the
file named FORTH. In this case the value will be
just the number of bytes of RORG code and it will
not reflect the number of bytes of AORG code.

ivt. 8

Loader Loaders will be listed as either Standard or
Custom. Custom applies to Program Image files that
are loaded by another loader written by the
programmer, instead of the loader(s) built into the
various modules. An example of a Custom Loader file
is FORTHSAVE. All Dis/Fix 80 files and all files
that can be loaded and executed by option 5 in the
Editor/Assembler or option 3 in TI-Writer are
Standard, such as EDIT1, EDITA1, EDITA2, ASSM1,
ASSM2, FORMA'', and FORMA2. Standard also indicates
that the first 3 words of a Program file contain:

1 A flag indicating whether another file follows,
>0000 or >FFFF (this word tells DISkASSEMBLER
the file is Standard. NOTE: If it is Custom and
this word is >0000 or >FFFF you will get some
strange values for "Length" and "Loads At")

2 The total number of bytes in the file (if it is
Standard DISkASSEMBLER uses this for "Length")

3 The address to start loading the fourth word at
(if it is Standard DISkASSEMBLER uses this for
"Loads At")

Loads At Tells us where the beginning of the file will start
to load and whether it is RORG or AORG. If the code
is AORG (Absolute Origin), Dis/Fix 80 or Program
type, you will see the address followed by the word
AORG on this line. If it is RORG (Relocatable
Origin), you will see >A000 followed by RORG. >A000
is the Editor Assembler module's default first free
load address in High Memory Expansion.

If the code is RORG, type in >0000 if you wish to
reassemble it as RORG. Or, type in one of the
module defaults (see bottom of screen) if you wish
to see how it will be located in memory when using
that module. Additional work is required for
reassembly of RORG'd code. Using >0000 will make
the job a little easier. You can relocate AORG
code to another location or convert it into RORG
code by changing the AORGs prior to reassembly.
But, be careful of the labels in the Equate list or
DATA statements that reference original addresses.

If the code is of the Custom Loader Program type
DISkASSEMBLER will put in >A000 as the default load
address. You will need to disassemble and analyze
the Custom Loader file to find out where it really
"Loads At".

Sectors This value will either be >00, >2F or the actual
number of sectors. For Dis/Fix 80 files this value
will always be set at >00 and it SHOULD BE left
there. A value of >00 tells DISkASSEMBLER to
disassemble the file until it comes to the END OF
FILE marker. The >2F value will show up for Custom
Loader Program files loaded from a RAM or HARD
disk. These devices do not use the disk buffer
space in VDP RAM to store file information so
DISkASSEMBLER uses this value since it is the
maximum file size allowed. In this case you should
set this value to 1 less than the catalog size, in
HEX. This is generally the only time you will need
to change this value.

For Standard Loader Program files loaded from any
device and for Custom Loader Program files loaded
from a floppy disk this value will reflect the size
of the file. In this case you can change it if you
want to disassemble just a portion of the file.
However, DO NOT set it to >00 for these file types,
since they do not contain an END OF FILE markers

Options There are eight options you can select. When
selecting options, type the capital letters
corresponding to the options you want consecutively
with no separators (spaces or commas). All options
can be used at once and may appear in any order.

R Generates an 'R' before the register number in
the output. In operations where registers are
used, the 'R' is optional. This is correct in
either case and is up to the programmer.
However, if the code has been disassembled
using this option, you must select the R
option from the E/A when reassembling.

B For use with code that includes basic bias. If
the code you are disassembling has text that
it passes to basic, that is then displayed, it
requires the addition of a screen bias (>60).
Using this option adds the bias to the ASCII
representation of the code in the output so
you can read the text. This is rare and it is
not needed for reassembly.

T Prints TEXT first in block disassemblies.
Block disassembly is discussed further in the
section on PAGE TWO - DATA AND TEXT BLOCKS.

10

D Tells DISkASSEMBLER that you want to
disassemble a Device Service Routine. See PAGE
ONE - DISASSEMBLING DEVICE SERVICE ROUTINES.

X To extend label checking outside the file's
address range. This option should be used when
disassembling "mixed relocatable and absolute
origin" or "out of order origin" code and it
will insure that labels are accurately defined
in the disassembled output. "How do I know if
there is mixed code," you say? DISkASSEMBLER
will tell you at the end of the First Pass,
WHICH MUST BE REDONE.

You may also want to use the option if you are
disassembling a program that is contained in
more than one file, i.e. ASSM1 or ASSM2. This
will instruct DISkASSEMBLER to generate a
label and Equate list, on the Second Pass, for
any references to the other file. However, it
is not needed for proper reassembly since
DISkASSEMBLER will generate the correct
address in the operand field instead of a
label.

V This option overrides the automatic insertion
of DATA statements for BLWPs. It MUST BE
turned on at the beginning of the Second Pass
when routines are branched to using BLWP and
the locations are REF'd, which will show up at
the end of the First Pass. This includes
DSRLNK, GPLLNK, KSCAN and the VDP utilities
such as VWTR, VMBW, and any routines contained
in a separately loaded file.

In a non-REF'd file the the operand field of a
BLWP points to an address that contains 2
words of data; the workspace for the routine
and the start address. Without the V option
DISkASSEMBLER will automatically track up to
15 of these pointers and treat the 2 words
that they point to as as DATA. In a REF'd
file the address pointed to by the operand is
the address of the previous REF'd statement in
the REF chain and not the actual 2 words of
data. After the file is loaded the Tagged
Object Code loader uses these pointer chains
to resolve the External REFs found in a file.
See Reassembly for more info.

NOTE: The following M or G options should be
in your default parameters file, DISKCONFIG,
since they are used by DISkASSEMBLER when the
input file is opened and this happens before
you have the opportunity to change them. If
they are not in your default file or if you
want to change them, tell DISkASSEMBLER to
disassemble memory by inputting a nuli file
name, change them, press FCTN 9 and then type
in your file name. AFTER the input file is
opened, you should change the M or G if the
output file will be to a different device.
(i.e. Input from a Myarc floppy and then
output to a Ram Disk). On input these options
tell DISkASSEMBLER where to get the "File
Information", on output they tell it where to
get the information it needs to split up the
output into 65 sector files.

H Signals the use of a Myarc floppy disk
controller as the input or output device.
Unfortunately, this controller does not follow
the TI standard for placement of file
information in VDP and/or Scratch Pad Ram so
DISkASSEMBLER must look elsewhere for it.
Placing the M option in your default file
instructs DISkASSEMBLER where to look for this
information.

G Signals the use of a RAM disk or Hard disk for
input or output and overrides the M option.
These devices do not use the disk buffer space
in high VDP Ram to store information on the
file just opened so DISkASSEMBLER must use a
different method of obtaining this
information. This is especially important for
Custom Loader Program files. If you do not
specify the G option on this file type you
will get an incorrect "Length" and incorrect
"Sectors" and the file will NOT disassemble
properly.

NOTE: The M or G option must be enabled BEFORE the
input file is opened and/or changed to match the
output device. The X option must be enabled BEFORE
the First Pass since labels are actually resolved
on this pass. The R, B, T and V options can be
enabled on either the First or Second Pass.

12

DISASSEMBLY FROM MEMORY

When the prompt "Input File Name or Null for Memory"
appears, use FCTN 3 to erase "DSK1." and then press ENTER.
The "File Information" will appear as shown below:

File Information

Type : Disassemble Memory
Code
Length : >
Loader
Loads at : >
Sectors : >
Options : R

Start : >0000
Finish : >0000

The cursor will appear over the R option to allow selection
of additional options. Pressing Enter will move it down so
you can select hex values for Start and Finish to specify
the range of memory you wish to disassemble. The allowable
range is >0000 through >8000 and >A000 through >D000.
However, DISkASSEMBLER uses >3000 through >3FFF in low
memory expansion as a buffer area, so you will get some
strange results if you disassemble this section of memory.

NOTE: If you specify a Start or Finish address that is not
in the allowable range, DISkASSEMBLER will not accept it
and it will return you back to the Top of Page One.

ALSO NOTE: The "Finish" address is NOT inclusive. So,
inputting >0000 for the "Start" and >2000 for the "Finish"
will actually disassemble >0000 through >1FFE, since 9900
assembly code must be on even word boundaries.

DISASSEMBLING DEVICE SERVICE ROUTINES (DSRs)

Place DISkASSEMBLER in the "Disassemble Memory" mode and
place a D in the option list. Next specify an address range
in the DSR space of >4000 through >6000. Before
disassembling a DSR, you must turn it on by entering its
Communication Register Unit (CRU) base address. A prompt
for the CRU Base will appear at the bottom of Page One if
you have specified the D option and a start address between
>4000 and >6000. Example for the RS232 Card:

File Information

Type : Disassemble Memory
Code :
Length : >
Loader :
Loads at : >
Sectors : >
Options : RD

Start : >4000
Finish : >5000

CRU Base : >1300 >0000 >0000 >0000

You may specify up to four CRUs at a time. Multiple CRUs
can be specified for devices like the CorComp and Myarc Disk
Controllers, which contain "bank switched" DSR Roms. This
allows you to activate Bank 2 for these devices. When a CRU
address is specified, the code required to execute that DSR
is enabled in memory between addresses >4000 and >5FFF. If
you don't specify the CRU base, the code isn't transferred
and you will be disassembling blank memory (>0000 or >FFFF
depending on the console type). When you go to input "Page
Two" DISkASSEMBLER will turn on the DSR and move it to a
buffer area and then turn it back off. This allows the DSR
to be used as an output device while its code is being
disassembled.

NOTE: The valid CRU Base range is >1000 through >1FFF. If
you use CRU Base values lower than >1000 unpredictable
results may occur and you may lock up your console. This may
happen because these lower CRU Bases are used internally by
the console. Also, if you have the Myarc Ram disk,
specifying CRU Base values of >1002, >1004, >1006 etc. will
cause the card to do a 32K bank swap and lock up
DISkASSEMBLER.

ivt. 14

The Standard CRU addresses and devices assigned by TI are
shown below. Your system may contain other third party cards
that have their own CRU Base.

CM Base

>0000
>0400

>1000

>1100

Assigned Device Your System

Internal console use
Unassigned

RAM disk or hard disk
(Some can be changed)

Floppy disk controller
>1100 & >1116 Bank 2 - CorComp
>1100 & >1106 Bank 2 - Myarc

>1200 Internal modem

>1300 RS232 1 and 2 and PIO 1

>1400 Unassigned

>1500 RS232 3 and 4 and PIO 2

>1600 Unassigned

>1700 Unreleased HEX-BUS adaptor

>1800 TI Thermal printer

>1900 EPROM Programmer

>1A00 Unassigned

>1B00 Unreleased Debugger Board

>1C00 Video controller

>1D00 IEEE 488 Controller card

>1E00 Unassigned

>1F00 P-Code card

PAGE TWO — DATA AND TEXT BLOCKS

This page allows you to specify up to 15 ranges of addresses
for "block disassembly". These ranges should be specified
for parts of the code that contain lines, or blocks of Data
and/or Text. When specifying these ranges keep in mind that
the "Finish Address" will NOT be included in the DATA or
TEXT block.

Data and Text Blocks
Start Address Finish Address

>0000 >0000
>0000 >0000
>0000 >0000

As DISkASSEMBLER looks through code, it can't differentiate
data and text from assembly language object code. It is
simply looking at a list of hex numbers. If no address
blocks are specified, data and text get disassembled as if
they were assembly language mnemonics and any illegal hex
values are converted into DATA. The result is source code
with parts that don't make any sense. This may cause a great
deal of confusion, when inspecting the disassembled code,
for even the experienced programmer. However, even though it
doesn't make any sense to you, it will still reassemble
properly.

When you specify a range of addresses for block disassembly,
the hex representation of the code, with its ASCII
equivalent, appears as DATA in the output. You then have
the proper representation of the original source code
(excluding any comments) which will make it much easier to
follow and understand. You can use the T option, mentioned
earlier, to indicate whether you want the hex (data) or
ASCII (text) representation to appear first (left most) in
your output. We recommend that you leave out the T option
and allow the DATA to be first.

On the Second Pass DISkASSEMBLER will automatically split up
these DATA blocks and insert labels in front of them, as
required by the program being disassembled. This automatic
feature will save you the tedious task of doing it yourself.

You surely won't know where the data and text are located
when disassembling a program for the first time. In this
case, just skip this Page and the next Page using FCTN 6 and
go on to Page Four.

16

PAGE THREE - DATA FOLLOWING SUBROUTINES

For the same reasons discussed in PAGE TWO - DATA AND TEXT
BLOCKS, you don't want to disassemble data following a
subroutine branch, such as BLWP @AA or BL @AA. To avoid
this, you can specify up to 15, non-REF'd, internal
subroutine addresses followed by up to >FFFF (there will
never be this many, usually 1 to 4) words of data.

Data Following Subroutines
Sub Address too. of Words

>0000 >0000
>0000 >0000
>0000 >0000

Subroutines are accessed in assembly language using the BL
and BLWP commands and they MAY be followed by one or more
words of data. This is one convenient method of transferring
information (data) to the subroutine. If there is data
following one of these commands, you will want to avoid
disassembling it by specifying the proper information on
this page. GPLLNK and DSRLNK are example BLWP routines that
use a word of data after them but, the data is usually a low
value and it will not be interpreted as code by
DISkASSEMBLER. However, user defined routines may use larger
numbers which could be interpreted as code.

You can recognize whether data is used following subroutines
by analyzing the First Pass printout to find the start
address of the routine. For a BL, this is the operand (e.g.
BL @>AOCE, look at address >AOCE). When using a BLWP, the
operand address in the BLWP points to two words of data that
specify the workspace and the start address of the
subroutine. If the command was BLWP @>AOCE, you would get
the two words of data at >AOCE. The first word is the
workspace and the second word points to the start of the
subroutine.

Next look through the subroutine's code for some MOV or MOVE
instructions to determine how many words of data, if any,
should follow the subroutine branch. If the subroutine is
branched to with a BL, the return address (pointer to the
next word or instruction following the BL @>xxxx) is stored
in Register 11. If this type of subroutine branch uses data
it will usually move it with a MOV *R11+,xxx instruction or
two MOVB *R11+,xxx instructions.

If the subroutine is branched to with a BLWP, the return
address is stored in Register 14 of the new workspace. If
this type of branch uses data it will usually move it with a
MOV *R14+,xxx instruction or two MOVB *R14+,xxx
instructions. The number of MOV *R14+ or pairs of MOVB *R14+
instructions that you find determine the number of data
words following a branch to a subroutine. Example:

MOVE *R14+,R0
MOVE *R14+,@>A0OF
MOV *R14+,R1

Two words of data were used, one for the two MOVB and one
for the MOV.

After you have the number of words for each subroutine you
can fill in the input fields on this page.

The "Sub Address" is ALWAYS the value in the operand field
PROVIDED the subroutine IS NOT REF'd at the end of the file.
If it is REF'd you can not specify that subroutine since, as
we discussed before, the operand is just a pointer in the
REF chain. And, since it is REF'd, every operand for that
BLWP will a have different value pointing to the next BLWP
in the REF chain. So for a non-REF'd BL @>AOCE or a BLWP
@>AOCE you would use >AOCE as the "Sub Address".

The "No. of Words" is the number of words of data that you
found the subroutine moving.

This input section of DISkASSEMBLER is most useful for
Dis/Fix 80 files without REF's and Program Image files that
contain user written subroutines.

NOTE: Failure to indicate any addresses for DATA FOLLOWING
SUBROUTINES or DATA AND TEXT BLOCKS will not cause any
errors with respect to reassembling the code.

ivt.
18

PAGE FOUR - SPECIFYING OUTPUT DEVICES

When you have made it this far, you are ready to start the
actual disassembly. Before doing so, you have the option to
select devices for output. The output will always appear on
the screen and you can also output to a disk or printer,
separately or simultaneously.

PRINTER OFF OUTPUT OFF SCROLL SLOW

Press Enter to Begin or

Press To

F7 Set Printer Output

F8 Set Output Device

F= Select Scroll Speed

Press FCTN 7 to specify and turn on output to printer and/or
FCTN 8 to specify and turn on output to disk. FCTN = will
toggle the scroll speed between Fast and Slow. Watch the
status line at the top of the page change as you make your
selections. Once your selections are made press ENTER to
start disassembly.

OUTPUT TO PRINTER (FCTN 7) - When you press FCTN 7 the
following will appear at the bottom of the screen with
the cursor sitting on the first character of the device
name.

Device Name: (Printer)
PIO.

The default device name is taken from the DISKCONFIG
file. At this time you can press Enter to use the device
shown, type in a new one, or you can press FCTN 4 or
FCTN 9 to abort this option. Once the device is opened
the status line at the top of the screen will show the
device ON. FCTN 7 is recommended for use with a printer,
and not to a disk drive, since it outputs one contiguous
file. It is also recommended that you output the First
Pass to a printer for reference on the Second Pass.

19

NOTE: If the device (filename) you select was one
previously selected the prompt "Last File - Add to it
Y/N:" will appear. If you are using this option to
output to printer just press Enter. If you used this
option to output to disk press Enter or Y to append to
the end of the last file or press N to change the
device. filename.

OUTPUT TO DISK (FCTN 8) - When you press FCTN 8 the
following will appear at the bottom of the screen with
the cursor sitting on the first character of the device
filename area.

Device Name: (Output)
DSK1.

When specifying output to disk, you must have an
initialized disk in the drive you select. DISkASSEMBLER
will save the output to disk in 65 sector Dis/Var 80
blocks with consecutive ASCII filenames like TESTA,
TESTB, etc. We recommend that you end the filename with
the letter "A" so you can save up to 26 consecutive
files to disk before running into an ASCII character
like "E". The name of each disk file created will be in
the beginning of the file, and on the printout, with an
asterisk in front of it for your reference. You can then
load these files using the Editor/Assembler or TI Writer
for any additional manipulation.

NOTE: If the filename you select already exists on disk,
you will be asked if you wish to add to it (Y) or erase
(N). If you select Y, new information will be appended
to the existing file. If you select N, the old
information in this file, as well as the other
consecutive files (i.e. TESTB TESTC etc.), will be
written over and YOU CAN NQ LONGER APPEND TO ANY FILES.

ALSO NOTE: Currently, the Myarc Ram disk can not append
to EXISTING files. Do not "Add" to its files or you may
wipe out ALL the files on your Ram disk. When prompted
to add (Y) or erase (N), select N and DISkASSEMBLER will
then OPEN ALL FILES IN OUTPUT MODE which, in effect,
will erase the file before it writes to it. You must
also select the G option on Page One to tell
DISkASSEMBLER your output is going to a RAM Disk so it
can properly split them up into 65 sector blocks for
easy editing, otherwise, it may lock up and create a
large number of 1 sector files. EA. 20

Before pressing ENTER to start disassembly, you should be
aware that the FCTN keys, while the program is disassembling
code (making a pass), are different than when you were
entering information on Pages One through Four.

FUNCTION KEYS DURING PASSES

FCTN 1 Toggles to DATA first during block disassembly.
Overrides the T option from Page One.

FCTN 2 Toggles to TEXT first during block disassembly.
Selecting the T option on Page One also specifies
TEXT first.

FCTN 4 Aborts printer output if it is turned ON. It will
also cancel a FCTN 7 or FCTN 8 option selection
when the option's "Device Name:" input line is
displayed.

FCTN 5 Toggles screen back and forth from left to right
since the output is 78 columns.

FCTN 7 Allows you to turn your output to printer ON and
OFF. When it is turned "ON" DURING disassembly the
output will begin with the next line to be scrolled
onto the screen. Once it is turned ON, selecting
this option again will turn it OFF and close the
file. If it is turned back "ON" again the prompt
"Last File-Add to it Y/N" will appear. Press Enter
or Y to continue printing. If you have selected a
disk file with FCTN 7, press Enter or Y to append
to the file, or press N to change the filename.

FCTN 8 Allows you to turn your output device ON and OFF.
When it is turned "ON" DURING disassembly, the
output will begin with the next line to be scrolled
onto the screen. Once it is turned ON, selecting
this option again will turn it OFF and close the
file. If it is turned back "ON" again the prompt
"Last File-Add to it Y/N" will appear. Press Enter
or Y to append to the filename displayed. Press N
to change the filename. NOTE: FCTN 8 outputs 65
sector Dis/Var 80 files and automatically closes
the file at 65 sectors, increments the filename and
opens a new file. DO NOT use this option to output
to printer because it will change the printer name
after 192 records (65 sectors) have been printed
and you will halt DISkASSEMBLER with a "Bad Device
Name" or "Bad File Attribute" error.

m_. 21

FCTN 9 Escape or Abort disassembly - once you press Enter
at the prompt, this will take you back to the Top
of Page One. It will also cancel a FCTN 7 or FCTN 8
option selection when the option's "Device Name:"
input line is displayed.

FCTN 0 Retro Screen Capture. Similar to FCTN 7, but
captures all lines that were shown on the screen.
This FCTN remains on until FCTN 0 is pressed again.
When the screen contents are captured, the message
"Screen Printed" will appear. If you want to
continue printing, press ENTER. If you want to
stop, select FCTN 0 again and the output file will
be closed, then press ENTER to continue. When you
select this option again, you will be allowed to
append to the previous one or select a new one.

FCTN = Allows you to toggle the screen scroll speed
between Fast and Slow.

CTRL 1 Rotates through screen colors.

A FEW NOTES ABOUT OUTPUT DEVICES:

1. If you turn on more than one output option (i.e. FCTN 7,
FCTN 8 and/or FCTN 0) to the SAME disk drive you will be
creating BADLY fractured files. The DSR automatically
uses the lowest free sector so, if you have two output
or append files opened on the same diskette they will
generate records on every other sector. This will cause
the Data Chain Pointer Blocks in the File Descriptor
Record (File Header) to fill up and you receive an "Out
of Space" error.

2. Since DISkASSEMBLER automatically creates 65 sector
files for the "Output Device" and increments the name
you will find that a 33 sector Program file will create
15 files as an average (i.e. TESTA through TESTO). The
last two files generated are usually less than 65
sectors so you will need approximately 875 free sectors
to disassemble these files. DISkASSEMBLER will
automatically close the file when the disk runs out of
space and allow you to change diskettes. This way you
can easily disassemble these files on a single sided
single density disk system - but it will require the
better part of 3 blank diskettes.

m_. 22

FIRST PASS

After you press ENTER on Page Four disassembly will start.
If you have specified output to a printer on Page Four and
it is not turned on, your computer will appear to lock up.
TURN THE PRINTER ON or hit FCTN 4 to escape. Once
disassembly starts you will see the "File Information"
scroll onto the screen when disassembling files. If you are
disassembling memory this information will not be displayed.
The first line of code will always be an AORG or RORG
statement with the address specified in "Loads At" or
"Start" on Page One.

We recommend that when disassembling a file or an area of
memory for the first time, that you output the First Pass to
a printer. This will provide you with some useful
information that may lead you to starting over to make a
cleaner First Pass by specifying some DATA or TEXT Blocks
and/or DATA following subroutines. Reassembly of the First
Pass is possible, although not advised, so you would rarely
output the First Pass to disk.

More specifically, a detailed look at the printout of the
First Pass will show you where the data and text statements,
and subroutine calls using BL and BLWP are located. This
printout will list the addresses in the left most column.
You could then redo the First Pass, specify addresses for
data and text blocks on Page Two and, if needed, specify the
start address (operand) for the BL or BLWP and the number of
words of data following these subroutines using Page Three.
This will result in a more readable First Pass. Or, you
could make these specifications on Pages Two and Three
before the Second Pass.

After selecting your output device(s) on Page Four, press
ENTER and DISkASSEMBLER will begin disassembling the code
you have specified. During disassembly, you can use any of
the FCTN keys previously defined.

Selecting one of the function keys (options) during a pass
will pause disassembly, except CTRL 1 - Colors, and FCTN = -
Scroll Speed. Just press the space bar or press ENTER to
continue. Pressing the Space Bar or ENTER will also pause
the screen scrolling which can be restarted by pressing it
again. With the scroll speed on SLOW you can press the Space
Bar down and hold it and then tap the ENTER key to scroll
the screen up one line at a time to position it for a Retro
Screen Capture (FCTN 0).

^ti

The First Pass output contains six columns of information:

Address Source Code Object Code
LN0070 LIMI >0002 >0300,>0002
LN0074 LIMI >0000 >0300,>0000
LN0078 MOVB 14113,R9 >D25D

Tezt]3L
... '
I •. :j~.
t

Addr
0070
0074
0078

The first and last columns are addresses; last column so you
can tell what line you are on when toggling the screen (FCTN
5). The addresses in the first column are preceded by "LN."
In this form, they are acceptable labels, and if your
program is short, the First Pass can even be reassembled but
it is not recommended since the symbol table will become
full very rapidly. Columns two, three, and four contain the
assembly language mnemonics and their operands (Source
Code), the Hex values they represent (Object Code), and the
ASCII representation of these values (Text) with a period
replacing values that are out of the ASCII range. Column
five contains a message (like RL1 or RL2) that tells you how
many relocatable words of information are on that line when
you disassemble an RORG Dis/Fix 80 file.

When you disassemble code that you have specified Data and
Text blocks on Page Two the output will start with the LN
followed by the word DATA (or TEXT if you used the T option)
and then 6 words of hex data followed by 12 bytes of Text
with the address at the end.

If you toggle the screen back and forth during a pass, you
may notice that two characters in columns 39 and 40 of the
printed output do not appear on the screen. This is because
DISkASSEMBLER prints 78 column output to an output device
while only 38 columns per side are displayed on the screen.

If you are working on a Dis/Fix 80 file, some important
information about the code may appear at the end of the
First Pass. DISkASSEMBLER will tell you if the code
contains mixed RORGs and AORGs, or out of order origins. In
these cases, you should make a new First Pass and select the
X option for Extended Label Checking. If DISkASSEMBLER
brings up a list of REFs at the end you should invoke the V
option before you start the Second Pass. To make a new First
Pass, hit ENTER at the end of the old First Pass and you
will return to the "File Information" section of Page One.
Then press FCTN 4 or FCTN 9 to escape from this area back to
the Top of Page One. The filename you are working with will
be displayed. Accept this by pressing ENTER and continue on
for a new First Pass, don't forget to put in the X option if
it was needed.

EA. 24

SECOND PASS

When DISkASSEMBLER finishes the First Pass, press ENTER and
you will be returned to Page One. Select any new options
you wish from the File Information block and continue
through the pages. If you are planning on reassembling the
code later, you should specify output to disk on Page Four
before you press ENTER.

DISkASSEMBLER outputs six columns on this pass also. But,
column one is now the label field.

Label Source Code Object Code Text BL Addr
AM LIMI >0002 >0300,>0002 '....' 0070

LIMI >0000 >0300,>0000 v....1 0074
AB MOVB •R13,R9 >D25D '.]' 0078
AA JLT AG >1105 '..' 007A

Labels are assigned using combinations of two letters in the
alphabet or a letter and a number (e.g. "AB" or "A6).
Addresses that are referenced in statements like JMP, and
operands in MOV, CLR, etc. statements, can also be assigned
labels. DISkASSEMBLER can create up to 936 labels.

DISkASSEMBLER will first generate labels AA through ZZ. Next
it generates AO through Z9. If DISkASSEMBLER finds that it
will be generating labels RO through R9 it will
automatically turn off the R option for the Second Pass even
thought it still appears in the "Options" list. If it was
left on, the assembler would generate an error for the RO
through R9 labels it finds since these symbols are reserved
for register designations. Without the R option the
registers are designated simply as 0, 1, 2, 10, 11 etc.
so the labels RO through R9 are valid.

Besides adding labels, and the splitting up of DATA blocks
for label insertion, the other significant difference in the
results of the Second Pass are found at the end of the
output. This information appears in groups. In some of
these groups, the first character on a line is an asterisk
(*). This is because these lines may or may not be required
for reassembly, but can be included as comments in the
reassembled code. Each group is discussed on the following
pages in the order it appears. DISkASSEMBLER will place
these groups into a separate file when your Second Pass is
output to a disk, Ram disk or Hard disk. We call this last
file the Equate File.

REF/DEF/EID - If the file is not Dis/Fix 80 or if it does
not contain any REFS or DEFs, this block will not appear.

f SLAST END >C01A (Absolute)
DEF BOOT >C01A (Absolute)
• REF VWTR >COE0 (Absolute)
• REF VDPWA >C16C (Absolute)

SLAST END >xxxx will appear when the original code was an
Auto Start file. The address designated by the >xxxx after
END is the start address for the program. In the above
example, you will also notice that the programmer DEF'd the
label BOOT and that it also references the same start
address. Following the SLAST END statement come the REFs and
DEFs in alphabetical order. REFs are references to routines
or addresses (pointers) that are loaded into memory either
by the module or by another file. After the file is loaded
by the Tagged Object code loader, the loader will go back
through the code in memory and resolve the REFS. It does
this by replacing the REF chain pointers (operand field)
with the actual address for the routine or pointer that was
REF'd. DEFs are a method of placing labels into the REF/DEF
table for use as REFS for other files, start name(s) or CALL
LINK names.

If there are references to routines or pointers, the word
REF, name of the routine or pointer, and address of the last
reference to that routine or pointer will appear in this
block as well as the word absolute or relocatable. If the
code contains REFS, and you plan on reassembling the code,
you should output the Second Pass to your printer and to
your output device. The printed output will help you, when
editing the code, to resolve the REF chain pointers prior to
reassembly of the code.

NOTE: All DEFs MUST BE an actual label, in the label field,
somewhere in the source code in order for them to reference
valid address. Also, REFS or DEFs with a >0000 address, were
REF'd or DEF'd by the programmer but not actually used in
the program. See Reassembly for additional information.

Following the REF/DEF group you may find some information
pertaining to the AORGs and RORGs in the file. DISkASSEMBLER
will tell you if the "File contains" - "Out of order
origins" or "Absolute and relocatable data". In which case
you should have used the X option on the First and Second
Pass. If you are not disassembling a Dis/Fix 80 file, or if
the file is all RORG these messages will not appear.

26

EQU LIST - Unlike any other disassembles, DISkASSEMBLER will
automatically generate an EQU LIST for you. This is a list
of all the labels created that weren't used as actual labels
in the label field. These are operands (values) or
addresses that have been assigned names. They are critical
to the proper execution of the code, once it's reassembled,
and are not preceded by asterisks. Without this EQU LIST,
you would receive a number of "Undefined Symbol" errors when
you reassemble the code.

SYMBOL TABLE LIST - In this group DISkASSEMBLER will
generate a list of all the symbols that were used in the
label field and the address (line numbers) where they
reside. As you may have noticed, this group is preceded by
an asterisk since, it was placed in the last file just for
your reference. It is not needed for proper reassembly of
the code. This table is followed by a line that tells you
how many symbols (labels), in hex, that were generated by
DISkASSEMBLER. As it was stated before, DISkASSEMBLER can
generate up to 936 labels or symbols, which is >03A8 in hex.
If this line states that there are >03A8 symbols or you see
that label Z9 was used, there is a good chance that
DISkASSEMBLER ran out of labels. This will only happen with
LARGE files. By carefully specifying DATA or TEXT blocks on
Page Two and/or leaving out the X option, you can reduce the
number of labels used and, perhaps, DISkASSEMBLER won't run
out.

* DSKx.xxxxxx - This is the last line that DISkASSEMBLER
generates IF the Second Pass was output to a device (FCTN
8), other than a printer. It is placed on screen and in the
last file to indicate the name of the Equate File for
editing and adding COPY directives to. See Reassembly for
additional information.

NOTE: The file name is also placed at the beginning of each
file created and it is placed in the prinout to indicate
where the code is split for easy editing.

THESE BLOCKS ARE THE KEY TO
ACCURATELY REASSEMBLING THE CODE.

m..
27

REASSEMBLY

This part of the manual addresses reassembling code using
the TI Editor/Assembler (E/A). You should have selected
FCTN 8 on the Second Pass and assigned a filename like TESTA
to the output file. We will begin by discussing reassembly
of code that is not Program Image and does not contain any
REFs. The following discussion is generic in that the same
set of steps, with some additions, apply to reassembling the
other types of code as well.

DIS/FIX 80 FILE WITHOUT REFs - If the file was Dis/Fix 80
and the code does not contain any REFs, follow these steps
for reassembly.

1. Select 1 to EDIT from the * EDITOR/ASSEMBLER * screen
and then select 1 to LOAD from the * EDITOR * screen.

2. Specify the FILE NAME of the last file created by
DISkASSEMBLER, we will call this the EQUATE file for
future reference. The name of the Equate file appeared
at the end of the output for the Second Pass (something
like TESTD). Catalog the disk if you have forgotten it.

3. Select 2 EDIT from the * EDITOR * screen. The Equate
file contains the REF/DEF/END, EQU, and Symbol blocks.
If the code contains DEFs, delete the leading asterisk
from them so that they are not REM'd out.

4. The last line in this file will reference the file you
are editing. Let's say, for illustrative purposes, that
you find "* DSK1.TESTD." This means that DISkASSEMBLER
has created files named TESTA, TESTB, TESTC, and TESTD.
Provided, of course, that you specified TESTA as the
output file (FCTN 8). Use the COPY directive, explained
on page 229 of the E/A manual, and add enough "COPY"
directives to include all the files that were generated,
except the Equate file. Example:
* >003F SYMBOLS
* DSK1.TESTD

COPY •DSK1.TESTA•
COPY •DSK1.TESTB•
COPY •DSK1.TESTC•

You may want to designate the floppy name instead of a
drive number so that reassembly will not be drive number
dependent. i.e. COPY "DSK.SOURCE.TESTA" when the floppy
containing the output files is named SOURCE.

zit

5. Use FCTN 9 to escape to the * EDITOR * page and select 3
SAVE. Select "Y" for VAR 80 FORMAT and save the file
with its original name (DSK1.TESTD for this example). If
there isn't an SLAST END >xxxx statement or any DEFs in
this file you are ready for reassembly! Go on to step 8.

6. If the DEF group contained an SLAST END >xxxx statement,
the program was an auto start file. If you want it to be
auto start after reassembly you will need to edit the
last source code file, the one previous to the Equate
file, which contains the END directive, DSK1.TESTC for
this example. So load that into the editor and edit the
last line.

If the Equate file contains an SLAST END >xxxx and a DEF
name >xxxx, where the >xxxx address are the same, then
use this label name after the END directive. Example:

t SLAST END >C01A (Absolute)
f DEF BOOT >C01A (Absolute)

For the above example you would change the END directive
in this file to now read:

SLAST END BOOT
If the file did not contain a DEF that had the same
address as SLAST END >xxxx then place a new label there,
like the name START.

SLAST END START

7. If there are any other DEFs in the Equate file note
their addresses on your printout. If any of them are
contained in the file now loaded into the editor then
edit those lines. Pressing FCTN 5 twice in the E/A
editor will display the addresses on the right hand edge
of the screen. When you find the line press FCTN 5 again
to get to the left hand edge, label field. Next type in
the DEF name that corresponds with this address. If the
line already contains a label press FCTN 8 to insert a
new line above it and at the beginning of the new line
type in the DEF name, followed by EQU $. Example:

BOOT EQU $
AA LWPI AC

This allows you to assign two labels to the same
address. Do this for each DEF name listed in the Equate
file. Don't forget to save the edited version of each
file before you load the next one. After all the DEF
names have been put into the file(s) you are ready for
reassembly! That was easy. ^ti

29

8. After your file is saved use FCTN 9 to escape to the
* EDITOR * screen and select 2 ASSEMBLE. Specify
your EQUATE file name as the SOURCE file, DSK1.TESTD for
this example. Specify a name for the object file. Don't
forget to use the R option if it was used in
DISkASSEMBLER on disassembly.

The E/A will then reassemble your EQUATE file and
include all the other files specified in your COPY
directives. DSK1.TESTD will include TESTA, TESTB and
TESTC for this example. The assembler will generate one
object code file that contains all the pieces specified
with the COPY directives. You can then use the LOAD AND
RUN option from E/A to run the code. If the file was
auto start it will start right up. If it starts on a
start name it will use one of the DEF names. Or, it may
be a file that is CALL LINKed to from Basic.

NOTE: There are other methods that programmers use to
auto start their programs without the use of END START
type directives. One is to AORG >83C4, the ISR Hook,
with the Start Address of the program. This starts the
program running when the next interrupt occurs.

DIS/FIX 80 FILE WITH REFs - If you did not specify printed
output on the Second Pass, then print out the files that
DISkASSEMBLER generated. You'll need the printed output to
help you make the proper changes. Mark the printed output
as follows, then you can easily use the E/A EDITOR to make
the proper changes to the files DISkASSEMBLER has created.

Each REF will be shown in the REF/DEF/END group with the
address (line number) of the last line it was used in.
Example: REF VMBW >C030 (Absolute)
This is the start of REF Chain Pointers. Follow the steps
below to resolve all of the REFs on your printout.

1. Go to the referenced address minus 2 (the REF points to
the operand) and you will find an instruction such as
BLWP @>xxxx, or BLWP @AA for subroutine REFs (i.e. VMBW,
GPLLNK, DSRLNK etc.). For pointer REFS (i.e. GPLWS,
SOUND, UTLTAB etc.) you may find any valid instruction
such as, LWPI >xxxx or LWPI AA, or LI R1,>xxxx or LI
R1,AA. Examples:

m. BLWP @AF
BLWP @AN
LWPI AB

>0420,>0000
>0420,>C04E
>02E0,>83E0

30

2. Replace the label generated by DISkASSEMBLER or the
>xxxx with the REF name. Example:

Change BLWP @AF
To BLWP @VMBW

3. Next look at the Object Code column of the printout on
this line. If you see >0000 as the operand, i.e.
>0420,>0000, then you have reached the end of the REF
Chain for this name. If there is an address there, i.e.
>0420,>C04E, then go to that address-2 or line (>C04C
for this example) and replace the label or >xxxx with
the same REF name. As you noticed, we are moving
(chaining) backwards through the program. This is a
similar operation to what the loader does when the file
is completely loaded into memory, to resolve the REFs.

4. Now that you have pencil whipped your printout, use the
EDITOR to make the proper changes to each of the files.
Then go back and perform the steps outlined for DIS/FIX
80 FILE WITHOUT REFs to handle any DEFs or Auto Start
statements.

NOTE: IF the file containing REFs that you are
disassembling loads into High Memory Expansion between
>A000 and >C800, you can let the loader resolve the REFs
for you. But, the file MUST LOAD between >A000 and >C800
or part of it will get wiped out by DISkASSEMBLER when
it is loaded and run.

To do this, first load a NON-AUTO START Dis/Fix 80 file
into memory with 3 LOAD AND RUN. Next load DISkASSEMBLER
and disassemble memory >A000 to the end of your program.
You see, once the file is loaded by the E/A loader all
of the REFs have been resolved. This has the added bonus
of allowing you to specify "Data Following Subroutines"
on Page Three, and not having to worry about the V
option. Disassembling memory will then have the same
results as disassembling a file without REFs or DEFs.
(If the file contained DEFs you can patch them in later,
before reassembly).

ALSO NOTE: The Extended Basic Tagged Object Code Loader
(CALL LOAD) can not resolve REFs. All items that are
REF'd must be, instead, placed into the EQU List and the
asterisks left in front of the REFs in the Equate file.
i.e. VMBW EQU >2024 - see Appendix D in this manual or
pages 412 through 418 in the E/A manual for the proper
Extended basic equates and additional information.

m. 31

PROGRAM IMAGE - STANDARD LOADER FILES - Program Image files
do not contain REFs or DEFs and they do not use any of the
utilities that are loaded into Low Memory by the E/A Module
for Dis/Fix 80 files. The 5 RUN PROGRAM loader auto starts
these files so we do not have to worry about END START
directives. They all start with the first instruction of the
first file loaded, i.e. ASSM1, EDIT1, EDITA1, FORMAL, GAME
etc.

1. Follow the first four steps in DIS/FIX 80 FILES WITHOUT
REFS for adding the COPY directives to the Equate file.

2. To change the file back into a Program Image format you
will need to add DEF SFIRST,SLOAD,SLAST to the beginning
of the Equate file for the first Program loaded by the
RUN PROGRAM loader. Next add the floowing two lines
after the first AORG in the first file that
DISkASSEMBLER generated.

SFIRST EQU $
SLOAD EQU $

SLAST is automatically placed in front of the END
directive for you, so you do not need to EQU it or place
it there yourself.

NOTE: If the Program Image file you disassembled is part
of a multi-file program, i.e. ASSM1 & ASSM2 or EDITA1 &
EDITA2, you will need to place the DEF SLAST in the
Equate file for the last file loaded by the RUN PROGRAM
loader not in the first file. For example; place DEF
SLAST in the Equate file for ASSM2 or EDITA2 and leave
it out of the Equate file for ASSM1 or EDITA1. The DEFs
for SFIRST and SLOAD along with their EQU $ must still
be in the first file, such as ASSM1 or EDITA1.

3. Reassemble the file(s). Next Load the file(s) with 3
LOAD AND RUN and then load the Save Utility found on the
on the second E/A disk. See page 420 of the E/A manual
for instructions on its use.

NOTE: If the program that was disassembled resides in
Low Memory Expansion (AORG >2000 - 3FFF) you MUST use
the Mini Memory Module to load it and then load a
modified Save Utility (see Appendix A of this manual).
This is because the E/A Tagged Object Code Loader and
the standard Save Utility both reside in Low Memory and
as such either the loader will be wiped out by your
program or your program will be wiped out by the Save
Utility.

Nl, 32

PROGRAM IMAGE - CUSTOM LOADER FILES - These Program Image
file are loaded by a custom loader that was written by the
programmer. You MUST disassemble and understand how this
loader works and where it places the Program Image file in
memory that it loads. Without knowing where in memory it
places the file it loads, you can not disassemble or
reassemble and run a Custom Loader file with much success.

This is especially important for files like FORTHSAVE that
are placed all over memory when they are loaded. Since these
files do not contain any Tags, DISkASSEMBLER has no way of
knowing where they reside. It assumes that they reside in
one contiguous area of memory, with a default address of
>A000, and disassembles them as such. You will need to find
out if this is true or not and add the proper AORG
directives to the source code to get them to load right.
Also, if they do reside all over memory you will need to
write a special Save utility that groups them back into one
block before they are Saved.

Even if they reside in one contiguous area of memory you
will still need to write your own Save utility to order to
Save it as one file without the standard first 6 bytes of
loader information in the beginning of the file.

MEMORY DISASSEMBLY - Usually when you disassembly memory,
especially ROM or DSR ROMs, it is done strictly for
reference and as such it is rarely reassembled. If it was
reassembled you could not load it because ROM can not be
written to. The exception to this is when you let the loader
resolve the REFS for you in a Dis/Fix 80 file (See DIS/FIX
80 FILE WITH REFs), or if you have a device that contains
RAM where ROM normally resides. In these cases, it is like
reassembling an AORG'd Dis/Fix 80 file without REFS or DEFs.

GOOD LUCK, LEARN A LOT.

FA, 33

NOTES

Nt

APPENDIX A — TUTORIAL ON THE SAVE UTILITY

The purpose of this tutorial is twofold: 1) to guide the
user through the actual process of using DISkASSEMBLER to
break down and reassemble an existing file in a different
way and 2) use the output to understand what the program is
really doing. The file we are going to disassemble and
convert into a relocatable file is called SAVE. It is on the
second diskette that comes with the Editor/Assembler
package.

gormattina the Output

Remember that it is always a good idea to scan the file once
as text to see if there are obvious large blocks of text.
This would be done as follows: after entering the name of
the program (DSKx.SAVE) on Page One of the DISkASSEMBLER,
you will see in the "File Information" that there are >0000
bytes of relocatable code, i.e. the file has an absolute
origin, and that the origin is at >2800. Press Enter to
place the cursor in the "Options" area and enter a T in your
list of options so that text will come up on the left
screen. Now on Page Two enter as a "block" of disassembled
code >2800 for the start address and >FFFE as the end
address. This should certainly take care of the whole
range. Then use FCTN 6 to advance through the rest of the
pages and press <ENTER> on Page Four to start the process.
You will see at first large blocks of obvious text, since
you can read them. As these blocks scroll by, look for
periods since unprintable text is represented by a period.
When you see one then check the data side of the screen to
see if there is really a hex >2E there, in which case the
period is real. (If it isn't then the program will not
reassemble correctly as text.) In this particular case you
will find that all the addresses from >2800 to >2BB2 contain
only text with the exception of the words at >282C and
>2B30. So we don't want these in our text block. It turns
out that there are other short areas of data only, but we
will ignore these for now.

You should also note that there are multiple external REFs
listed at the end, so you should invoke the V option as well
to avoid getting two word blocks of data where there should
be opcode (see Options on page 11).

EvL,
34

Having scanned through the entire program you should now see
the message to press enter for the Second Pass. After you
press enter the cursor will be in the "File Information"
area, so press FCTN 9 to place it in the File Name area to
redo the First Pass. Accept the default program name by
pressing enter, and remember to add the V option. However,
now on Page Two enter three separate blocks. The first
should start at >2800 and end at >282C, the second start at
>282E and end at >2B30, and the third start at >2B32 and end
at >2BB2. Then press FCTN 6 to advance to Page Four and
press enter, we don't need an output at this time.

When you get to the end of the First Pass press enter, you
are now starting the Second Pass. Accept all defaults on
Pages One through Three by pressing FCTN 6 for each page. On
Page Four use FCTN 7 to output to your printer, and FCTN 8
to output to a disk file (for instructional purposes we will
use the name SAVEA for the output file). At the end of the
Second Pass DISkASSEMBLER is finished so press enter and
then and you can exit the program by pressing CTRL = since
the cursor is at the Top of Page One.

jiodifvieg the OUteut

It is useful to have a printed output to make the following
changes, before typing them in on the disk files, but not
necessary.

First look at the file SAVEC (you should have seen the
message at the end of the Second Pass that this was the
final output file). As described in the section on
Reassembly - Dis/Fix 80 With REFs, you will now have to
trace the REF chain backwards, entering the proper name at
each location, so that the file can be reassemble properly.
First look at the last one listed - VSBW. The REF tells you
that this is located at >2C40. Scan the reference addresses
at the right and find 2C3E (line 150 of SAVEA).

BLWP @>0000 >0420,>0000 '. ..' 2C3E
Replace the >0000 with VSBW so that it now reads:

BLWP @VSBW >0420,>0000 '. ..' 2C3E

You did not actually find 2C40 because it is the second word
of the instruction. The >0000 tells you that there are no
more references to VSBW.

Now do the same with the next REF - VSBR. This is at >2E10,
so look for >2EOE which is at line 101 of SAVEB.

BLWP 00000 >0420,>0000 '. ..' 2EOE
Again, replace the >0000 with VSBR so that it now reads:

BLWP @VSBR >0420,>0000 '. ..' 2EOE

Once again there are no more (>0000). Next is VMBW at >2DA4.
This is on line 72 of SAVEB.

BLWP @BZ >0420,>2D5A I. -Z' 2DA2
Note that here you see BLWP @BZ. Replace the BZ with VMBW,
and see that the data in the comment field tells you that BZ
is >2D5A.

BLWP @VM W >0420,>2D5A I. -Z' 2DA2

So now look for >2D58 (line 49) and do the same thing.
BLWP @>BP >0420,>2D4E '. -N' 2D58

so that it now reads:
BLWP @>VMBW >0420,>2D4E '. -N' 2D58

In the case of VMBW there are TEN references and you must
work each one backwards, replacing the label or address with
VMBW. The last, indicated by BLWP @>0000 is on line 121 of
SAVEA.

Now do the same with the other REFs. For your information,
there are 2 for VMBR, and 1 each for SLOAD, SLAST, SFIRST,
KSCAN, GPLWS, GPLLNK, and DSRLNK. GRMWA and GRMRD are never
actually used since their REF address is >0000. Also, the
label SAVE should be placed in the label field on the line
for address >2BD6 (line 118 of SAVEA), since this is the
DEF, or starting, address. If you are typing in the changes
directly on the disk files already, remember to save them
each time you go to a different file, or you will lose what
you have done! That is why it is easier to pencil in the
changes on paper, and then type them all at once.

Once you have the REFs and DEFs resolved and typed in you
are ready to make the final changes in the disk file. Load
SAVEA and decide whether you want an AORG (Absolute Origin)
or RORG (Relocatable Origin) file. If it is to be an AORG
file then you must change the addresses listed with each
AORG on the file (lines 10, 85, and 87 of SAVEA) remembering
to keep the relationship between them the same. For example,
if you wanted to AORG the file at >D000 you would change the
three AORGs to:

AORG >D000
AORG >D332 (>2B32 - >2800 + >D000)
AORG >D352 (>2B52 - >2800 + >D000)

36

In this tutorial we will make it a relocatable file, by
deleting the first AORG altogether. The other two may also
be deleted, and then on the same line as the label AW, type
BSS >20 (this is the difference between the two AORGs just
deleted (>2B52 - >2B32 = >0020) and represents the area
reserved for the name of the program to be created, as you
will see below). While we are at it, you will see when we
analyze the program that the following sequences are data
only, so to make things look neat, type DATA over the opcode
and delete the operand field so that the words of DATA which
are presently a comment, slide over and become the operand:
SAVEA line 16 (>282C), 100-101 (>2BB4->2BB6), 103 (>2BBA),
109-112 (>2BC4->2BCA), and 116 (>2BD2). There aren't any in
SAVEB and SAVEC. So these lines in SAVEA should now look
like: 0016 DATA >2E00 '..' 282C

0100 DATA >0600 '..' 2BB4
0101 DATA >1000 '..' 2BB6
0103 DATA >2000 ' .' 2BBA
0109 DATA >B7OF '..'
0110 DATA >800F '..' 2BC6
0111 DATA >D000 '..' 2BC8
0112 DATA >B7OF '..' 2BCA
0116 DATA >7C7C 'ii' 2BD2

Next load SAVEC, after saving SAVEA and at the the bottom of
this file delete the asterisks at the beginning of each line
of the REFS and DEFs. Next append to the end of this file
the COPY directives for the other two files:

COPY eDSSz.SAVEA'
COPY 'DSgz.SAVEB'

where x is the disk drive you are using. Save the file as
DSKx.SAVEC and you are now ready for the final assembly
process. Enter the ASSEMBLER in the E/A module. For the
input file type DSKx.SAVEC and for the output file, use any
name you wish (but not SAVE if the original file is on this
disk). For options use R, since your source code uses R for
registers. If you had not used the R option in the
DISKASSEMBLER then it would not be necessary here.

Before you can actually run this program, read the
instructions in the E/A manual. You need to have another
program in memory which has as DEFs the labels SFIRST,
SLOAD, and SLAST, referring to the first and last (END)
addresses of the file, and normally the first instruction of
the file should be B @LABEL, where LABEL is the actual start
of your program. Since this file is relocatable it can't be
used with AORG files unless its loaded into the Mini Memory
Module. It should also be loaded last, so that the code
saved begins where the module normally puts it.

m. 37

What does SAVE do/

First we look at the DEF for the program which is SAVE.
This is >2BD6 located on line 118 of SAVEA (you should have
put it there already). The first 4 lines set RO to >0000,
which is the beginning of the screen image table, R1 to AB
(line 17 of SAVEA) and R2 to >300, then does a BLWP at VMBW.
Remember that in a VMBW or VMBR, RO must always be the
location in VDP that data is to be moved to or from, R1 is
the location in CPU that it will be moved from or to, and R2
is the number of bytes to move. A complete screen in
GRAPHICS mode is 24 rows by 32 columns, or 768 bytes (>300
in hex), so in other words a complete screen is written to
VDP ram. This is a wasteful way of doing it, by the way,
since the spaces don't need to be written. Next a VMBW is
done for the 8 bytes at AC to VDP >400. This is the
definition of sprite character >80, and if you look at the
code (0000000000007C7C) it represents an underline. See the
Basic Manual for explanation of graphics definitions. This
program will be using a sprite as its cursor.

Next the sequence moves the word at AE (>B70F) to AF. You
might wonder why, since AF already contains this word, but
as you will see, it changes during the course of the
program, and this instruction reinitializes it. Next R3 is
loaded with >02E2, which will be used for the starting
location for input on the screen (row 23, col 2). Finally a
BL @AG is done, which uses the 8 bytes at AF to set the
sprite attribute list for sprite >O1 at VDP >300. It
initially sets the pixel row to B7, pixel column to >OF,
uses character >80, and color >F (white). The routine AG
will always be used to move the sprite, because the 2nd byte
at AF will be changed.

Now a BLWP @KSCAN is done, to look for a key press. MOVB
@>837C looks for the condition bit at the GPL status bye; it
is 0 if no new key was pressed. Hence the JNE AI tells the
program that a new key WAS pressed, and JMP AJ goes back to
look again, if a key WAS NOT pressed. (This sequence is
looped through thousands of times per second).

We are now at line 137 of SAVEA. If a key was pressed, the
byte at >8375 contains the ASCII value of the key, and it is
moved to 111 and checked for the following values: A) >08 is
the backspace - we jump to AM which checks to make sure that
R3, which is keeping track of the screen location, is not
less than >02E2. If it isn't, R3 is DECremented, 8 is
subtracted from the value at AR, which is the Y location of
the sprite (1 byte after AF) and we branch back to AJ, move

38

the sprite (BL @AG) and then look for a key press. B) >OD
is the enter key and will jump to the continuation of the
program. C) >05 is the quit key and jumps to A0. This
branches to AK, which clears the status byte so no error is
detected, loads the GPL workspace and branches directly to
>0070 (which in turn will return to the calling program). AK
could not be branched to directly because it was more than
>100 bytes away, and jumps can't handle this. D) >OF is the
back key and does the same as quit in this case. E) >20
checks for any other ASCII less than the space key and
doesn't allow it. Finally by moving the current screen
location in R3 to RO and BLWP to VSBW, the key pressed is
moved to the current screen location, the latter is
incremented, checked against the end of the line and if not,
we go back to look for another key. Unfortunately a mistake
in the program does not give you an error if you ARE at the
end of the line - it just puts you back at the beginning and
allows you to keep typing!

Now let us say that the whole file name has been entered and
displayed on the screen, and the enter key pressed. We
therefore arrive at AN (line 171 of SAVEA). First the byte
>DO is moved from AV to AF and the 8 from AF to VDP >300 via
routine AG. The byte >DO indicates no more active sprites
and since it is at the start of the sprite attribute list,
we are left with NO active sprites. This speeds up the rest
of the program. Next the >20 bytes on the screen beginning
with >02E2 are moved to CPU ram at AW via a BLWP @VSBR. It
should be >1E bytes since we began in col 2!

The next sequence at AZ "parses" for the first space in the
name at AW. R3 is initialized to AW. AZ begins by making
sure that the end of the block reserved for the name as not
been reached. If not it looks for the value of the byte
contained in the address in R3 and increases R3. It is
compared to the value at AY which is a space. If it is not
a space, we go back to AZ and look again, R3 being 1 higher
than before. If it is, we move on. R3 now contains a value
TWO higher than the last non-space in the name. It is moved
to R8, which is then decremented by two, and hence holds the
last non-space of the name. The value AW (not the byte
contained AT that location) is now subtracted from R3, which
therefore represents the length of the name + 1. This is
moved to R4 to save it, and then decremented so that R3 now
holds the name length. The length is now compared to 3 and
if less we branch to AX which uses the text at AS (bad file
name) for an error message, eventually allowing you to start
again. Follow this sequence in your source code - you should
wind up at CA which is just after the start of the program. rvt. 39

If the name length is OK, the bytes in R3 are swapped so
that the length is in the MSB, and this is moved (byte
operations are always on the MSB, hence the swap) to
location BA, which is 1 before AW. That is we now have at
BA the length of the name followed by the actual name.

Now we are finally ready to work with the program that was
loaded to be "saved," and happen to be exactly at the last
line of SAVEA. R6 is loaded with SLOAD, the start address
of the program to be saved, and is stored at location BB,
and R7 with SLAST the end address. SFIRST is subtracted
from R7 which is therefore the total length of the program.
If it is negative (Jump if Less Than) an error has occurred,
the message at BX is.loaded into the error routine and the
latter is branched to. Next at BW R7 (which will always
contain what is left to save) is moved to R2 and compared to
>1FFA. This is because >2000 (8K) bytes can be saved in
each portion of the program, but the first 3 words are
reserved for system information (the flags >FFFF or >0000
for more to load or no more to load, the total length in the
segment, and the start address to put it at). Thus if R2 is
less than >1FFA all of it will be used, otherwise a maximum
of >1FFA.

Now at BD, R2 is moved to R10 to save it and then 6 is added
to account for the 3 words mentioned above. This total
length of bytes in the file is now moved to location BE,
which is the 4th of a sequence of 5 words starting at AF.
This will comprise all but the name of the file in a PAB,
which must be set up before any disk access. You should
read your E/A manual for a fuller explanation of PABs. >06
represents the OP-CODE for save (a memory image file) >1000
the location in VDP of the data to be saved, the third word
is not used, the 4th (taken from R2) represents the number
of bytes to be saved) and the LSB of the last is the length
of the device name, which will be inserted in a moment. The
first 9 bytes (up to the length) are moved to VDP at >0F80,
a frequent but not necessary location for PABs. Now R4,
which you may remember from above is the device name length
plus 1, is moved to R2, and the total sequence of length
plus name itself is moved to VDP at >0F89, the 10th byte of
the PAB. This completes the setting up of the PAB.

The screen is now rewritten, wiping out the input device
name, and R2 bytes (DECremented by 1) from AW are written to
the screen on the line below "CURRENT FILE :" You can check
this by seeing what it in this file at >202 + >282E _ >2A30.
Next location BK is cleared and then either left as 0 if R10
is equal to R7, or set as >FFFF if they are unequal.

m_. 40

(Remember that at BW, R7 was what was left to do in tl
entire program, and at BD, R10 was the number of bytes i
this segment - >1FFA or what was left). At BL the length c
this segment (including the extra 6 bytes) is moved to 1
and SFIRST (where it is to start when the newly creatE
program is loaded into memory) is moved to BN. These si
bytes at BK,BM, and BN are moved to VDP at >1000 to form tt
beginning of the data sequence to be saved. The moving C
data is completed by loading RO with >1006, the location
VDP after the 3 data words just moved, R1 with SFIRST (Rb
the location of the beginning of the program in CPU, and 1
with the number of bytes in R10 (>1FFA or less). Then BLTw
@VMBW does the job.

The name at AW is now compared to "CS" at BQ and if equal
i.e. cassette is to be used, a branch to the routine at E
is peformed. We won't analyze this part now, but you ca
used it if you ever want to set up cassette access routine
in your programs. It involves setting up a lot of words 1
scratch pad ram (>8300 to >8400) and then BLWP @GPLLNK, Dill
>3D

If the cassette routine is not used, then the main progra
goes on. The location of the device name length (>0F89 i
this case) is moved to location >8356 in CPU (this must b
done before EVERY disk access) and then a BLWP @DSRLNK, DAT
>08 completes the process of writing this segment to disk
The equal bit of the status register is set if there is a
error, so JEQ BT branches to the error routine and will giV
an I/O error message, with the number of the error bein
determined from byte 1 of the PAB (this is done by th
console and the DSRLNK routine) and employed in the sequenc
at BU. For some strange reason the routine BU is branche
to anyway, but since the error byte is 0 it jumps ou
immediately with a JEQ CG, where CG contains B *R11, o
return.

We now move the "more" flag to R1 and if it is 0, i.e. n
more, go to the return to E/A routine at AK. This is th
same routine used if quit or back was pressed at th
beginning of the program. Next we add R10, which should b
>1FFA if there was more to do, to R6, which is SFIRST, s
that now R6 holds the start address for the next segment
used in the 8th line after BL (line 48 of SAVEB). R10 4
also subtracted from R7, leaving R7 with the total of what
is left, and added to the word at BB, to hold the new SLOAD,
used 1 line after BL. Finally we AB @BV,eR8. That is, the
byte at BV, which is >01, is added to the contents of the
location specified in R8, which you may remember from way

IVL
41

back, was the last character of the device name. So we have
now set up a new filename differing by one ASCII character
and we finally branch back to BW which will determine how
much is left to do, and do it.

This tutorial has of necessity been rather long. However it
shows you the power of DISkASSEMBLER, and how you can use it
to take apart a program and LEARN!

42

APPENDIX B- PROGRAM FILES LARGER THAN 48 SECTORS

As noted in Section 2.2, program files larger than 47
sectors (48 when listed in the catalog) cannot be handled by
DISkASSEMBLER, because of lack of buffer space. HERE ARE
THE INSTRUCTIONS TO SPLIT such FILES up into manageable
segments that can be disassembled. The only requirement is
a sector editor such as Advanced Diagnostics (A/D). We will
use A/D for this example.

First, copy the file to a blank initialized disk. This will
make the following steps easier, because you will know where
the file is located, and we can refer to absolute sector
numbers. Next copy two dummy files to the same disk. Use
names that follow the program name you are working with
alphabetically. If the program name was TEST, use TESTA,
and TESTB. Now enter Advanced Diagnostics, select the drive
your working disk is in, and Edit Sector 1 (ES 1). Sector
one is the alphabetical list of header sectors (file
descriptor records or FDR) and should read 000200030004 and
the rest 0's. We will leave this sector alone. Next ES 2.
If you read it in ASCII you should see the name of your
program - we will work with the hex code in a moment. Now
go back to the command line and Write Sector 3 (WS 3) and WS
4. You have now replaced the header sectors of the two
dummy files with exact copies of the one for your program.
We will now modify sectors 3 and 4.

FIRST SPLIT - First let's edit sector 3 (ES 3). In ASCII
mode, change the name of the file to the first name you
selected above (TESTA). Next look at byte 15. This is the
hex equivalent of the number of sectors used, which is ONE
LESS than that listed in a catalog (the latter counts the
FDR as well). For this file, we will use the maximum that
DISkASSEMBLER allows (>2F or decimal 47 sectors). Type this
in. Next move down to bytes 28-30. This is the beginning
of the series of data chain pointer blocks telling the disk
controller where the sectors are located. Because we have
moved the file to a new disk there is only one. We will
use, as an example, a file that has 50 sectors of data
(listed as 51 in a catalog). The block will thus read
221003 (or 201003 if a Myarc Disk Manager was used with
another sector editor).

These 3 bytes are composed of 6 hex digits, each called a
"nibble." We will call them n1 to n6. n4n1n2 in that order
indicate the start sector of the first contiguous block of
data sectors (in this case >022, decimal 34). n5n6n3
indicate the offset from the beginning of the block to the ^ti

9 a

end, and includes offsets in previous blocks, in this case
none. For this file we have >031, so the last sector in the
block is >022 + >031, or >053. These 3 nibbles are the ones
we must change. We want to indicate that only >2F sectors
are used. The offset must be >02E, since it is ADDED to the
first sector. Type "02E" over n5, n6, and n1. The block
should now read >22E002. That completes the change for this
FDR. Get back to the command line and save this back to
disk using Write Sector 3 (WS 3).

SECOND SPLIT - First, ES 4. Change the name of the file to
the second name you selected when creating the dummy files.
Now go to hex. In byte 15 type 03. This number is the
number of sectors left (50-47). You must type whatever is
appropriate for your file of course. Now move down to bytes
28-30. We want the "file" to start where the previous one
left off, so we add >2F sectors to the original start
sector, >22. This will be sector >051 so type in "051" over
n4n1n2. The block should now read 51x0xx. The offset now
becomes >002 (calculated by subtracting >02F the number of
sectors in the first file, from >051, the original offset).
Type this in and you now have 512000. Write this sector
back to disk (WS 4) and you are finished.

If you catalog the disk now, you will see something like:

Filename Size Tune
TEST 51 PROGRAM
TESTA 48 PROGRAM
TESTB 4 PROGRAM

TESTA and TESTB can be read and disassembled by
DISkASSEMBLER. The same technique can be used for files of
any size, of course, even ones that have to be split into
three parts.

NOTE: Since no file larger than 33 sectors is meant to be
loaded by Option 5 of the E/A or Option 3 of the TI-WRITER,
these files must have a separate loader. You should
disassemble this loader first to see how the file is placed
into memory, and WHERE IT STARTS. This is necessary so that
you may enter the start address, "Loads At", on Page One of
the DISkASSEMBLER input screens, otherwise the code will not
make sense.

ALSO NOTE: For a more complete explanation of FDR's and the
Data Chain Pointer Blocks, see page 33 of the Advanced
Diagnostics Manual.

44

Appendix C - Memory Maps
Extended Basic LOW MEMORY EXPANSION after CALL INIT

I>2000 I >205A XML link to name link routine pointer. I
1>2002 I >24FA First Free address in low mem-exp.
1>2004 I >4000 Last Free address in low mem-exp.
1>2006 I >AA55 Indicates CALL INIT has been executed.

(UTILITY VECTOR TABLE (ie: BLWP @KSCAN)
1>2008 I >2038 NUMASG Utility workspace pointer
I>200A I >2096 Start address for BLWP @NUMASG I
>200C I >2038 NUMREF Utility workspace pointer I
>200E I >217E Start address for BLWP @NUMREF I
>2010 i >2038 STRASG Utility workspace pointer
>2012 I >21E2 Start address for BLWP @STRASG
>2014 I >2038 STRREF Utility workspace pointer
>2016 I >234C Start address for BLWP @STRREF
>2018 I >2038 XMLLNK Utility workspace pointer
I>201A I >2432 Start address for BLWP @XMLLNK
I>201C I >2038 KSCAN Utility workspace pointer I
I>201E I >246E Start address for BLWP @KSCAN I
1>2020 i >2038 VSBW Utility workspace pointer
I>2022 I >2484 Start address for BLWP @VSBW
1>2024 I >2038 VMBW Utility workspace pointer
I>2026 I >2490 Start address for BLWP @VMBW
1>2028 i >2038 VSBR Utility workspace pointer
I>202A I >249E Start address for BLWP @VSBR I
I>202C I >2038 VMBR Utility workspace pointer
1>202E I >24AA Start address for BLWP @VMBR
1>2030 i >2038 VWTR Utility workspace pointer I
I>2032 I >24B8 Start address for BLWP @VWTR
I>2034 I >2038 ERR Utility workspace pointer
I>2036 i >2090 Start address for BLWP @ERR
1>2038 I >0000 Start of Utility Workspace
I>205A I Start of XML link to name link routine.
1>2090 i Start of ERR Routine. (Return Error code to basic)(
1>2096 I Start of NUMASG Routine. (Numeric Assignment)
1>217E I Start of NUMREF Routine. (Numeric Reference)
I>21E2 I Start of STRASG Routine. (String Assignment)
I>234C I Start of STRREF Routine. (String Reference)
1>2432 I Start of XMLLNK Routine. (Link to sys Utilities) I
I>246E I Start of KSCAN Routine. (Keyboard Scan)
1>2484 I Start of VSBW Routine. (VDP single byte write)
1>2490 I Start of VMBW Routine. (VDP multiple byte write)(
I>249E I Start of VSBR Routine. (VDP single byte read)
I>24AA I Start of VMBR Routine. (VDP multiple byte read)
I>24B8 I Start of VWTR Routine. (Write to VDP register)
I i (NOTE: No GPLLNK or DSRLNK in X-Basic CALL INIT)
I>24FA I First Free Address Low Mem-Exp pointed to by >2002I

45

Extended Basic LOW MEMORY EXPANSION Continued

1 * *
f * The REF/DEF Table resides at the end of *
1 * Low Memory Expansion. Each entry is 8 bytes. * 1
1 * 6 for the Name and 2 for the starting address.* 1
1 * CALL INIT in X-Basic leaves this space empty. * 1
f * *

f>3FF0 I DEF Name (CALL LINK or BLWP @) 6 characters. 1
f>3FF6 f Start address of the above routine, 2 bytes.
;>3FF8 I DEF Name (CALL LINK or BLWP @) 6 characters.
1>3FFE 1 Start address of the above routine, 2 bytes.

Extended Basic HIGH MEMORY EXPANSION usage

1>A000 ;START OF HIGH MEM-EXPANSION ;
(If Mem-Exp is present then the value at >8389 1

{ ; will be >E7 while the program is running) 1
f f 1
1
1

1

i

š

Last byte = >00
;>FFE7 f Highest address to be used in Mem-Exp by XB
I>FFFC f Workspace Pointer for LOAD Interrupt
I>FFFE Start Address (PC) for LOAD Interrupt

46

NUMERIC VALUE TABLE (in RADIX 100 notation) f
Starting point of the Symbol table in VDP RAM is I
pointed to by >833E while the program is running. I
The Symbol table then points into the Numeric I
value table for each of the variable names. 1

Highest Free Address Mem-Exp. pointed to by >8386 1

LINE NUMBER TABLE - 4 Bytes per entry. f
; Line ¢=2 Bytes ; Start Address of line=2 bytes 11
Line numbers are stored highest it to lowest ¢
Starting address of this table pointed to by >83301
Ending address of this table pointed to by >83321
Current line number being referenced 1
in this table is pointed to by >832E 1
 1

PROGRAM SPACE (Last line entered is at the top) 1
Start of program space = (value at >8332)+1 f
Reserved words have been converted to Token values;
and line numbers are removed from the beginning off
each line. The format for each line is as follows::
1st Byte = Number of bytes for the line 1
Following Bytes = Actual line code with Token f

values replacing reserved words.I

I>2000
1>2002
1>2004
1>2006
>2008

>2022
>2024
>2026
>2028
>202A

>A551
>2128
>2398
>225A

UTLTAB
>0000
>A000
>FFD7
>2676
>3F38

>0000 Pointer to FLAG byte in PAB (in VDP)
>0000 GPL return address
>0000 CRU base of Peripheral
>0000 Entry address of DSR
>0000 Device Name Length
>0000 Pointer to Device Name (PAB in VDP)
>0000 Version Number of DSR

80 BYTE RECORD Buffer
UTILITY Workspace Registers
DSRLNK Workspace Registers
USER Workspace Registers
LOADER Workspace Registers

>0000 Checksum Saved
Saved
Saved
Saved
Saved
Saved
Saved
Saved
Start of
Start of
Start of
Start of
Start of

Editor Assembler LOW MEMORY EXPANSION after CALL INIT

Indicates CALL INIT has been executed. I
Start address of NAME LINK routine i
Start address of LOADER executed from GPL
Start address of CIF
Start of Variable Storage area

(Utility Table Area) I
START address for program just loaded
First Free address in High Memory
Last Free address in High Memory
First Free address in Low Memory
Last Free address in Low Memory and I
pointer to default REFs/DEFs tbru >3FFF

1>202C
I>202E
I>2030
1>2032
I>2034
1>2036
1>2038
I>203A
I>203C
1>2094
1>209A
1>20BA
I>20D9
I>20FA
I>20FC
I>20FE
I>20FF

i>2100
1>2102
1>2104
1>2106
i>2108
I>210A
1>210C
1>210E
i>2110
1>2112
1>2114
i>2116
1>2118
i>211A
1>211C
I>211E
+-

m.,

>0064
>2000

>2E
>AA

UTILITY
>2094
>21C4
>2094
>2196
>2094
>21DE
>2094
>21FA
>2094
>2200
>2094
>220E
>2094
>221A
>2094
>2228

Data 100
Data >2000 (H20 and H2000)
Byte Decimal Point r.r
Byte >AA for Validation
VECTOR TABLE (ie: BLWP @KSCAN)
GPLLNK Utility workspace pointer
Start address for BLWP @GPLLNK
XMLLNK Utility workspace pointer
Start address for BLWP @XMLLNK
KSCAN Utility workspace pointer
Start address for BLWP @KSCAN
VSBW Utility workspace pointer
Start address for BLWP @VSBW
VMBW Utility workspace pointer
Start address for BLWP @VMBW
PSBR Utility workspace pointer
Start address for BLWP @VSBR
VMBR Utility workspace pointer
Start address for BLWP @VMBR
VWTR Utility workspace pointer
Start address for BLWP @VWTR

~:T

Editor Assembler LOW MEMORY EXPANSION Continued

I>2120
1>2122
1>2124
1>2126
1>2128
1>218A
1>2196
1>21C4
1 >21 DE
1>21F4
1>2200
1>220E
1>221A
1>2228
1>225A
1>22B2
1>2398
1>23BA
1>2676
1>3F38
1
1>3F38
1>3F40
1>3F48
1>3F50
i>3F58
1>3F60
1>3F68
1>3F70
1>3F78
1>3F80
i>3F88
1>3F90
1>3F98
1>3FAO
>3FA8
>3FB0
>3FB8
>3FC0
>3FC8
>3FDO
>3FD8
>3FE0
>3FE8
>3FF0
>3FF8

+-

>209A DSRLNK Utility workspace pointer 1
>22B2 Start address for BLWP @DSRLNK 1
>20DA LOADER Utility workspace pointer
>23BA Start address for BLWP @LOADER
Start of Name Link routine. 1
Routine to Return to Assembly Language from GPLLNKI
Start of XMLLNK Routine. (Link to sys Utilities) I
Start of GPLLNK Routine. (Link to GPL Routines) 1
Start of KSCAN Routine. (Keyboard Scan) 1
Start of VSBW Routine. (VDP single byte write) 1
Start of VMBW Routine. (VDP multiple byte write)I
Start of VSBR Routine. (VDP single byte read) 1
Start of VMBR Routine. (VDP multiple byte read) 1
Start of VWTR Routine. (Write to VDP register) 1
Start of CIF Routine.
Start of DSRLNK Routine. (Link to DSR routines) 1
Start of LOADER when comming from GPL 1
Start of LOADER Routine. (Loads DIS/FIX 80 files) 1
First Free address Low Memory Pointed to by >2028)1
Last Free address Low Memory Pointed to by >202A)I
Start of Default E/A REF Table. 1
UTLTAB >2022 Pointer to Utility Table - Low Meml
PAD >8300 Start address of Scratch Pad Ram 1
GPLWS >83E0 GPL Workspace pointer 1
SOUND >8400 Location of the Sound Chip
VDPRD >8800 VDP Read Byte port 1
VDPSTA >8802 VDP Read Status port l
VDPWD >8C00 VDP Write Byte port ;
VDPWA >8CO2 VDP Write (set) Address port 1
SPCHRD >9000 Speech Read port
SPCHWT >9400 Speech Write port
GRMRD >9800 Grom/Gram Read Byte port
GRMRA >9802 Grom/Gram Read Address port
GRMWD >9C00 Grom/Gram Write Byte port
GRMWA >9CO2 Grom/Gram Write (set) Address port
SCAN >000E BL address for key scan routine
XMLLNK >2104 BLWP address XMLLNK Routine
KSCAN >2108 BLWP address keyboard scan
VSBW >210C BLWP address VDP Single Byte Write;
VMBW >2110 BLWP address VDP Multi Byte Write l
VSBR >2114 BLWP address VDP Single Byte Read 1
VMBR >2118 BLWP address VDP Multi Byte Read 1
VWTR >211C BLWP address VDP Write To VDP Regsl
DSRLNK >2120 BLWP address DSRLNK Routine
LOADER >2124 BLWP address DIS/FIX 80 Loader I
GPLLNK >2100 BLWP address GPLLNK Routine 1

48

Editor Assembler HIGH MEMORY EXPANSION

1>A000 START OF HIGH MEM-EXPANSION
1 '
1>A000 1 First Free address High Mem Pointed to by
1>FFD7 1 Last Free address High Mem Pointed to by

>FFD8 ; XOP 1 Workspace
>FFF8 1 XOP 1 First Instruction

~ ~

>2024 1
>2026 1

>FFFC
>FFFE
>FFFF

Workspace Pointer for LOAD Interrupt
Start Address (PC) for LOAD Interrupt

;END OF HIGH MEMORY EXPANSION

NOTE: When RORG (Relocatable Orign) DIS/FIX 80 files are
loaded by the E/A Tagged Object Code Loader they are loaded
at >A000 by default. The loader looks at the value in >2024,
which contains >A000 at first, and loads the next word(s)
according to this value.

If the file contains any AORG directives the loader will
load the code where the programmer specified (i.e. AORG
>C000) instead of where the pointer says to. Also, whith
AORG code this pointer at >2024 is not updated as the file
is loaded.

Since the E/A Tagged Object Coode Loader resides in Low
Memory Expansion, >23BA - >2675, you can not use this loader
to load this area of memory since the loader will get wiped
out. Also, since this loader uses other routines in Low Mem
and other address for storage, it should not be used to load
>2000 - >23B9 either. However, you can use the Mini Mem's
loader to load this area of memory since it's loader resides
in the cartridge ROM and leaves ALL of Low and High Mem free
for your programs.

If the file is a PROGRAM IMAGE type file the Program Loader
built into the E/A module (5 RUN PROGRAM FILE) loads the
file back into the memory it was SAVED from with the SAVE
Utility. This loader is written in GPL code and resides
entirely in the E/A module so it also leaves ALL of Low and
High Mem free for your programs.

^1, 49

Mini Memory RCM >6000->6FFF

(>6000 { >AA00 Space for Standard Rom Header - All >0000 {
(>6010 (>605A Start address of NAME LINK routine
(>6012 (>62CA Start address of DIS/FIX 80 LOADER from GPL(
(>6014 (>618C Start address of CIF
(>6016 ; >0000 not used

;UTILITY VECTOR TABLE (ie: BLWP @KSCAN)
(>6018 (>7092 GPLLNK Utility workspace pointer
1>601A I >60F6 Start address for BLWP @GPLLNK
(>601C I >7092 ZMLLNK Utility workspace pointer
(>601E (>6008 Start address for BLWP @XMLLNK
(>6020 (>7092 KSCAN Utility workspace pointer
I>6022 (>6110 Start address for BLWP @KSCAN
I>6024 (>7092 VSBW Utility workspace pointer
(>6026 (>6126 Start address for BLWP @VSBW
>6028 (>7092 VMBW Utility workspace pointer
>602A I >6132 Start address for BLWP @VMBW
>602C I >7092 VSBR Utility workspace pointer
>602E (>6140 Start address for BLWP @VSBR
>6030 } >7092 VMBR Utility workspace pointer
>6032 (>614C Start address for BLWP @VMBR
>6034 (>7092 VWTR Utility workspace pointer
>6036 ; >615A Start address for BLWP @VWTR

(>6038 { >7098 DSRLNK Utility workspace pointer
(>603A (>61E4 Start address for BLWP @DSRLNK
(>603C (>70D8 LOADER Utility workspace pointer
(>603E (>62EC Start address for BLWP @LOADER
(>6040 (>70F8 NUMASG Utility workspace pointer
(>6042 (>660E Start address for BLWP @NUMASG
(>6044 ; >70F8 NUMBER Utility workspace pointer
(>6046 (>66FE Start address for BLWP @NUMREF
(>6048 (>70F8 STRASG Utility workspace pointer
(>604A (>6768 Start address for BLWP @STRASG
(>604C I >70F8 STRREF Utility workspace pointer
(>604E I >6888 Start address for BLWP @STRREF
(>6050 (>70F8 ERR Utility workspace pointer
(>6052 (>6966 Start address for BLWP @ERR
(>6054 (>0064 Data 100
(>6056 (>2000 Data >2000 (H20 and H2000)
(>6058 (>2E Byte Decimal Point '.'
(>6059 { >00 Byte >00 (
>605A (Start of Name Link routine.
>60BC I Routine to Return to Assembly Language from GPLLNK(
>6008 { Start of XMLLNK Routine. (Link to sys Utilities)
>60F6 { Start of GPLLNK Routine. (Link to GPL Routines)
>6110 I Start of KSCAN Routine. (Keyboard Scan)
>6126 I Start of VSBW Routine. (VDP single byte write)

+Kt

50

Mini Memory ROM >6000->6FFF Continued

1>6132
1>6140
I>614C
>615A
>618C
>61E4
>62CA
>62EC
>660E
,>66FE
1>6768
1>6888
!>6966
i>697E
, ,
1>6FOE
1>6FOE
1>6F16
1>6F1E
!>6F26
!>6F2E
!>6F36
1>6F3E
1>6F46
1>6F4E
1>6F56
1>6F5E
1>6F66
1>6F6E
1>6F76
1>6F7E
I>6F86
1>6F8E
!>6F96
1>6F9E
1>6FA6
1>6FAE
1>6FB6
1>6FBE
1>6FC6
!>6FCE
I>6FD6
1>6FDE
1>6FE6
1>6FEE
1>6FF6
+-

Start of VMBW Routine. (VDP multiple byte write)
Start of VSBR Routine. (VDP single byte read)
Start of VMBR Routine. (VDP multiple byte read)
Start of VWTR Routine. (Write to VDP register)
Start of CIF Routine. (Integer to Floating)
Start of DSRLNK Routine. (Link to DSR routines)
Start of DIS/FIX 80 LOADER when coming from GPL ,
Start of LOADER Routine. (Loads DIS/FIX 80 files) I
Start of NUMASG Routine. (Basic Numeric Assignment!
Start of NUMREF Routine. (Basic Numeric Reference)!
Start of STRASG Routine. (Basic String Assignment)!
Start of STRREF Routine. (Basic String Reference) I
Start of ERR Routine. (Basic Error Message) I
Thru >6FOC Not Used All >0000 I

Can Be used in the Gram Kracker
Start of Default Mini Memory REF Table
UTLTAB >7020 Pointer to Utility Table - Low Mem
PAD >8300 Start address of Scratch Pad Ram
GPLWS >83E0 GPL Workspace pointer
SOUND >8400 Location of the Sound Chip (port) I
VDPRD >8800 VDP Read Byte port
VDPSTA >8802 VDP Read Status port
VDPWD >8C00 VDP Write Byte port
VDPWA >8CO2 VDP Write (set) Address port
SPCHRD >9000 Speech Read port
SPCHWT >9400 Speech Write port
GRMRD >9800 Grom/Gram Read Byte port
GRMRA >9802 Grom/Gram Read Address port
GRMWD >9C00 Grom/Gram Write Byte port
GRMWA >9CO2 Grom/Gram Write (set) Address port
SCAN >000E BL address for key scan routine
XMLLNK >601C BLWP address XMLLNK Routine
KSCAN >6020 BLWP address Keyboard Scan
VSBW >6024 BLWP address VDP Single Byte Write
VMBW >6028 BLWP address VDP Multi Byte Write
VSBR >602C BLWP address VDP Single Byte Read
VMBR >6030 BLWP address VDP Multi Byte Read
VWTR >6034 BLWP address VDP Write To VDP Regs
DSRLNK >6038 BLWP address DSRLNK Routine
LOADER >603C BLWP address DIS/FIX 80 LOADER
GPLLNK >6018 BLWP address GPLLNK Routine
NUMASG >6040 BLWP address Numeric Assignment
NUMREF >6044 BLWP address Numeric Reference
STRASG >6048 BLWP address String Assignment
STRREF >604C BLWP address String Reference
ERR >6050 BLWP address Error Message

~

51

Mini Memory RAM >7000 - >7FFF - After INIT

>7000 { >A55A Indicates that INIT MINI MEM has been done {
>7002 j >0000 Start of Identifiers passed by CALL LINKs

>701C J >7118 First Free address in Mini Memory Ram
>701E ; >7FFF Last Free address in Mini Memory Ram and

pointer to user's REFs and DEFs thru >7FFF
UTLTAB

>7020 >0000 Default START address for program loaded
>7022 >A000 First Free address in High Memory
>7024 >FFEO Last Free address in High Memory
>7026 >2000 First Free address in Low Memory
>7028 >3FFF Last Free address in Low Memory
>702A , >0000 Saved Checksum
>702C j >0000 Saved Pointer to FLAG byte in PAB (in VDP)
>702E ; >0000 Saved GPL return address
>7030 } >0000 Saved CRU base of Peripheral
1>7032 i >0000 Saved Entry address of DSR
i>7034 j >0000 Saved Device Name Length
1>7036 ; >0000 Saved Pointer to Device Name in PAB in VDP
1>7038 i >0000 Saved Version Number of DSR (i.e. >0001)
>703A ; Start of 80 BYTE RECORD Buffer for LOADER
>708A 1 Start of DEVICE NAME Buffer
>7092 } Start of UTILITY Workspace Registers
>7098 l Start of DSRLNK Workspace Registers
>70B8 ; Start of USER Workspace Registers
>70D8) Start of LOADER Workspace Registers
>70F8 i Start of Variable Storage area (temp data)

1>7118 ; First Free Address in Mini Mem Pointed to by >701C1
l i 1
1>7FFF ; Last Free Address in Mini Mem Pointed to by >701E1
j } Also Start of User REF/DEF Table j
+-

NOTE: The Mini Memory Tagged Object Code Loader looks at
the number of RELOCATABLE bytes (RORG) in the file and if
they will fit in Mini Mem it loads it there. Otherwise it
loads RORG (Relocatable Origin) Code into High Mem starting
at >A000 by default.

If the file contains any AORG (Absolute Origin) Code the
loader will load it where the programmer specified (i.e.
AORG >2000). Also, since the Mini Mem Loader resides
entirely in cartridge Rom and uses the Mini Mem Ram for
temporary storage, it can load DIS/FIX 80 Tagged Object Code
anywhere in Low or High Mem according to the RORG and AORG
directives in the file.

52

Appendix D - Common Equates and Subroutines

Common CPU ROM/RAM Equates

>000E
>006A
>0070
>OOCE
>8300
>8322
>834A
>8356
>8374
>8375

SCAN
RESET
NEXT
SET
PAD

FAC
NAMLEN

Scan Keyboard (BL @SCAN)
Return to GPL with COND Bit Reset (0)
Return to GPL without changing COND Bit
Return to GPL with COND Bit Set (1)
Start of Scratch Pad Ram
Return Error Code from Assembly back to GPL
Floating Point and DSR useage
Points to DSR Name Lenght Byte in PAB
Keyboard no. to be scanned
Key Code Returned by SCAN or KSCAN

>837C GPL Status Byte
>83C2 Auto Sound, Auto Sprite and Quit Key flags
>83C4 ISR Hook - User Interrupt Start Address
>83F6 R11 of GPL Workspace
>83E0 GPLWS GPL Workspace pointer
>8400 SOUND Sound Chip port
>8800 VDPRD VDP Read Byte port
>8802 VDPSTA VDP Read Status Byte port
>8C00 VDPWD VDP Write Byte port
>8CO2 VDPWA VDP Write Address and Registers port
>9000 SPCHRD Speech Read Byte port
>9400 SPCHWD Speech Write Byte port
>9800 GRMRD Grom Read Byte port
>9802 GRMRA Grom Read Address port
>9C00 GRMRD Grom Write Byte port
>9CO2 GRMWA Grom Write Address port

Common VDP RAM Equates

>1000 Standard E/A PAB Location
>1080 Buffer for above PAB
>1100 Second E/A PAB
>1180 Buffer for second PAB
>1200 Third E/A PAB
>1280 Buffer for third PAB
>1300 Fourth E/A PAB (for COPY directives)
>1380 Buffer for fourth PAB and for PROGRAM files

m.
53

Appendix D — Common Equates and Subroutines Continued

Common Subroutine (BLWP) Addresses and
Number of Data Words that follow them:

Name E/A Add XB Add MM Ads_ No. Words

POWER UP >0000 >0000 >0000 >0000

NUMASG n/a >2008 >6040 >0000

NUMREF n/a >200C >6044 >0000

STRASG n/a >2010 >6048 >0000

STRREF n/a >2014 >604C >0000

XMLLNK >2104 >2018 >601C >0001

KSCAN >2108 >201C >6020 >0000

VSBW >210C >2020 >6024 >0000

VMBW >2110 >2024 >6028 >0000

VSBR >2114 >2028 >602C >0000

VMBR >2118 >202C >6030 >0000

VWTR >211C >2030 >6034 >0000

ERR n/a >2034 >6050 >0000

GPLLNK >2100 n/a >6018 >0001

DSRLNK >2120 n/a >6038 >0001

LOADER >2124 n/a >603C >0000

NOTE: The E/A's NUMASG, NUMREF, STRASG, STRREF and ERR
subroutines are in the file called BSCSUP on the E/A disk.
This file is an RORG file so their addresses are
relocatible and vary according to where the file is loaded.

fvt. 54

MILLERS GRAPHICS - LIMITED WARRANTY

Millers Graphics warrants the DISkASSEMBLER program, which
it manufactures, to be free from defects in materials and
workmanship for a period of 90 days from the date of
purchase.

During the 90 day warranty period Millers Graphics will
replace any defective products at no additional charge,
provided the product is returned, shipping prepaid to
Millers Graphics. The Purchaser is responsible for insuring
any product so returned and assumes the risk of loss during
shipping.

Ship to:
Millers Graphics

1475 W. Cypress Ave.
San Dimas, California 91773

WARRANTY COVERAGE - This DISkASSEMBLER program is warranted
against defective material and workmanship. THIS WARRANTY IS
VOID IF THE PRODUCT HAS BEEN DAMAGED BY ACCIDENT,
UNREASONABLE USE, NEGLECT, TAMPERING, IMPROPER SERVICE OR
OTHER CAUSES NOT ARISING OUT OF DEFECTS IN MATERIALS OR
WORKMANSHIP.

WARRANTY DISCLAIMERS - ANY IMPLIED WARRANTIES ARISING OUT OF
THIS SALE, INCLUDING, BUT NOT LIMITED TO THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN DURATION TO THE ABOVE 90 DAY PERIOD.
MILLERS GRAPHICS. SHALL NOT BE LIABLE FOR LOSS OR USE OF THE
SOFTWARE OR OTHER INCIDENTAL OR CONSEQUENTIAL COSTS,
EXPENSES, OR DAMAGES INCURRED BY THE CONSUMER OR ANY OTHER
USE.

Some states do not allow the exclusion or limitation of
implied warranties or consequential damages, so the above
limitations or exclusion may not apply to you in those
states.

LEGAL REMEDIES - This warranty gives you specific legal
rights, and you may also have other rights that vary from
state to state.

REPLACEMENT AFTER WARRANTY - After the 90 Warranty period
has expired you may return any original defective diskette,
along with a check for 4.00 to cover shipping and diskette
costs, and we will replace it.

MILLERS GRAPHICS
1475 W. Cypress Ave.
San Dimas, CA 91773

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61

