$$
F O F
$$


```
PART 1: INTRODUCTION
    A Introdurtion
    ? Iraneiple of F::tended wagic llmus
    A Standard Mode - Graphic Mode
PART 2: EXTENDED STATEMENT SET
    10 E:%tended Statement Set
    11 FHCOFY
    1:% WFEEEF
    1? WFOFE
    14 GFFEEF
    15 ALLSET
    1c WAIT
    17 MOJVE
    1E mSAVE
    19 MLGAD
    Z" BYE
    =1 NEW
    ここ FIESTOFE
    ミ: OUITOF
    ここ OUITON
    24 GFFFOF
    24 SFFOON
    S5 SCFEENOF
    \therefore\therefore SCFEENON
    \because% F IND
PART ?: HIGH RESOLUTION GRAPHIC
    28 Frimciple of the High Fifsolution Graphic
    zs Worting in the Graphic Mode
    ?i) Controlling the Gursor
    \because1 Lnading the Graphic Instrurtiom Get
    -1 Frror Messanes
    \because2 Graphic Statements
    \becauseAFESOFT
    O.4 CLFAFFE
    -5 GFIAFIC
    #? FMEGYE
    \becauseE WINDOW
```

40	SE TELE
41	Cltele
42	TAFILE
4.	SETCOL
4%	INVEFT
46	CLSCFIN
4＂	CENTFE
40	SETTO
50	fiESET
51	IFSET
52	MCIVE
$5:$	FEMOVE
54	MOVETO
5	\＆EMVTO
56	TLIFN
57	TUFENTO
S日	FEECT
59	CLFECT
\therefore－	CIFCLE
61	CLCFEL
$6:$	AFCUS
67	CLAFCS
64	ELLIFS
65	CILIF＇S
bt	$\because A L U E S$
57	AXIS
68	HSTDIA
69	CFFCDIA
70	WFITE
71	DSFPLAY
アニ	ACCEF＇T
74	GHIFT
プ	Gisave
76	Gl．OAD
\cdots	IHCDFY
79	Hardoopy Demmestrat 1 ori

PART 4：ADDENDUM
\＆5 Alphatoetac Ouncl Fiefermome
9\％．Feference List of E\％tゃmbed KASIC IImus
99 Memory Mapping
Q9（CFU Memory Use
Qo Fidrle and GFOMs
1 in vip Memory Use
111 Femarts to VDF FinM Use

INTRODENTXGN

INTRODUCTION

Meitiatronic E:itended EASIC IIPus r ceeds the possibilities of TI E: tended HASIC ronsiderably with enharired capability and fleaibility. boout ou powerful commands and statrononts have been added.

MÉchatronse E:itended FIASIC IJPus is Gowsisting of three major elements:

1. Standard Extended EASIC

The Standard Entended EASIC 15 a copy of the original TI F: tended EASIC (version 110) and 15 manufactured under larense of Te:as Instruments. An extensive description of this powerful programming language can be found in the reference manual for T E.:tended FASIC.

2. Extended Statement Set

More than $\because G$ new statements provilo additional features, which are on the one hand - even with high programming effort - not arhievable with the Standard Extended FASIC, on the other hand. efficient simplifications in program development and signifirant increasing of the processing speed.

E\%amples are the hardcopy routine, direct access to the UDF FiAM, moving of memorv bloels. saving and loading of blocts to and from cassette recorders and other e\%ternal devices.
The e:tended statement set of Mechatronic E:tended EASIC IIPMKill be dicussed in part 2 of this manual. Interesting hints about the use of the UDF FiAM are in the addendum (part 4) of this manual.

3. High Resolution Graphic.

High resolution graphic allows to adress every single pivel of the screen using all 16 forground and bat groung colors. 40 powerful oraphic statements are available to draw lines, circles, rectangles. aris. circle diagrame etc. to sare and load the graphics on dislettes. or to male hard copies. The graplic statements are written 10 TMS 990 assembly language and do only worl with a cornected Gil byte FiAM e:pansion. The statemont set of the high rosolution quaphic has been implemthitid under lirense af Apesoft. Miciro Computer Software, Austria. itiese statements are discussen in nart $\overline{\text { not }}$ of the manual.

F: : anded FASIC IIfus is fully compatillip with Tl F:atended fasic or Mecharonic (Staridard) Ei:tended fiASIC. This means, every program written with $!$ tended FASIC (version 11i). will worl with Merhateronic
 \therefore :Il: fan get their modules upgraded by their retailers. inis as not

PRINCIPILE OF MECHATRONIC EXTENDED BASIC IIAUS
E tendur! FASIT IImus has two screen output operatirig modes availatile, which are called STANDAFiD MODE and GFiAFHIC MODE. Foth operating modes may be changed during program execution.

The standard mode is available after plugging in the module and choosang MECHATFONIC EXTENDED EASIC. All statements, commands, and functions of (standard) E:tended FASIC are available plus the entended statement set. The $\because 2 l$ byte FAM e:pransion $1 s$ not required, but it can be used. In standard mode the statements of the high resolution grapinit are not availble.

The araphis monte will be gotten by following actions:
1.) Indtial2=1ng of FiAM expansion and transterring of graphic statement set with the command

CALL APESOFT
betore larding or typing in any program.
2.) Switchung to the graphic mode with the statement

CALL LINK ("GRAFIC", MODUS)

In araphic mode are all those statements of the standard mode frohibited aftecting any screen output. The reason is the different I;nu wif marupulation of screen outputs by the TI-99/4A in standard mode and 1 n graphic mode. Included are all sprite statements and the sound statement. A detailed assingnment list of all statements to looh operating modes can be found in the addendum (part 4).

The graphic mode can be quit on two ways
1.) Fieset ifto standard mode win the statement:

CALL LINK("BYEBYE")

Thas 15 the orily defined methade returnimg bart luta citamard mode'
2.) Frogram interruption (an graphic mode) raused bv

BREAK, STOP, END, FCTN 4 or program error
Ferears caluse atn undefined condition, but they are often umavoldable. Continuing the program uncontrolled will result unpleasant side effects (whach may be explored by the user himself). Denending. if the program shall be contimued in araphic mode or in standard mode. the first erecuted statement after the breal must be a

Correct applitrition of the graphir modre may be compared with the call for ar suhroutine'

$$
\begin{aligned}
\text { LimL AFESOFT } & \text { n direct mode twh ore loading of any program } \\
& \text { mmediately atter selection of E:tended GASIC }
\end{aligned}
$$


```
::::: FEEM start of program
::." F.EM In staridard mode
    ,
:\because::}\mathrm{ FEM swltching to
:::: FiEM graphic mode
::::: FEMM
:::% CALL LINT ("GFIAFIC",0)
```


$::::$ FiEM seament 1 n
: : : F FEM starnard mode
$x: x$ FiEM end of program
In graphic mode are maximum z opernded filed at once permitted. Therfore CALL FII_ES should not be applied.
C.Al. CLFAFFE Guits the graphic mode dand rauses a reset to the initial rondition, J!st after selection of MECHATFONIC EXIFNDED EASIC. Howover, all stored brograms and data will be eracied.

```
EXTENDED STATEMIENT SET
```

EXTENDED STATEMENT SET

Mechatronst E:itended EiASIC IIPus e: terids the TI E::terided EASIC. More than ai new statements provide additional features. which are on the one hand - even with high firogramming offort - not athievable with the Standard E:iterided EASIC, ori the other harid, efficient simplifications in program development and significant increasing of the processing speted.

The screen copy feature with a line printer as implemented as well as ! the cholce the save or load screpen displays or other segments of memory from and to cassette or distette.

All e:tended statements are available in standardmode. Thev can be also applied in graphic mode if they do not affect screen outputs. A detailed assimgnment list of all statrments to both operating modes carl be found in the adderidum (part 4).

Following system configuratuon 1 s riquired if the standard mode shall be applied:

TI-9Q/4A + Extended EASIC IImux
Useful, but not essentially:

+ Eir byte fiam expansion
+ Dist system
+ Frinter (with graphic Capabilities)

CAUTION

The power supply of the $\because 21$ buto FiAM eitpansion may be $n 0$ t prowided by the il-99/4A - luerneatinm'

EHCDRY

FORMAT

CALL EHCOF＇Y（＂FILE NAME＂：＂ESC－SEQUENCE＂）

DESCRIPTION
This subroutine generates a hardcopy of the screen on lime printers operating in the EIT IMAGE MODE．Sprites will not be considered．

All valid file names of connected peripheral devices may be used．egg．
 for correct working of the subroutine．Serial interfaces（FiSk Se）need to use \exists data bits and the appropriate eitension＂．DA＝8＂．Of course the printer has to be set internal tor 8 data bits，too．

Concerning the ESC sequence the reference manual of the printer should be taken into consideration．FHCOFY is sending at the beginning of every line ESC（＝CHRis（ご）），followed by the inserted string sequence （up to 10 characters），than the characters CHRis（G），CHE（1）（for ass following bytes），than 256 bytes，correspondeing to the hardeopy of one line，and finally＂CF＂（＝CHFis（1．））．Many line printers will have good results $1 f$ the ESC sequence＂L＂or＂F＂ 1 s applied．

EXAMPLES
CALL FHCOFY（＂FSEBZ．DA＝8．CF＂，＂L＂）
CALL EHCOFY（＂FFIO．CF＂，＂リ＂＂）
Frogram e：amples can be found in the description of BHCOF F and in the section of HAFiDCOF•Y DEMONSTFATION in Fart 3.

Note，
Linefego Must be Set Before Bhcopy is＜alum

$$
\text { SEE PAGE } 79 \text { Peobran Linus 260-290 }
$$

VDEER

FDRMAT

CAIL VFEEK (ADDFESS. NUMEFIC VAFIIAFLE LIST)

DESCRIPTION

llt WreEt subroutine allows to read directly the contents of the memory adresses in the UDF FAM. To the first NUMEFIC VAFIAABLE of the varlitule list will be assigned the content of that memory location, which has been called via ADDFESS. All subsequent varıables of the varıathe list qet assigned the bytes of the appropriate subsequent

It Mas to tor considered, that the address range of the UDF FAM is G througn 1 sage Entering higher valute, can raust malfunctions of the romputar.

EXAMPLES

Character patterns are stored in VDF area ouFo through sol刀F (decimal: 10 of through 1919). The definition of one character requires 9 bytes. Feginning with the address 100 a and the subsequent 7 addresses is stored the character fattern idfintifier of the cursor (ASCI] code Bo). It may be read by:

1 OO CALL UFEEF (1OOB, A,E.C.D.E.F.G.H)
11 C FFFINT $A ; E ; C: D ; E: F: G: H$
Fiesulting appear in screen 8 decimal numbers:
$\begin{array}{lllllll}0 & 124 & 124 & 124 & 124 & 124 & 124 \\ 124\end{array}$
The dppropriate values, in he:iadecimal notation are:
$\because \quad \rightarrow \quad$ アC $\because C \quad 7 C \quad 7 C \quad 7 C \quad 70$
llsed in a Call CHAFi statement (mith an hisll code \because) will result the shimpe of the cur sor again.

The proposial of a computer magazime is to change the cursor as following:

Heqiming on afitrpss 1 ghe (1. valup) will be stored B subsequent Gecimal values, corresponding to the heiadecimal patern identitiers. e used in CAll. CHAF: statements.
F.: : hr wiy. the curcor modification will be preserved also after the tir "at wif programs.

vpcock

FORMAT

CAIL VFOFE (ADDFESS.NUMEFIC VALUE LIST)

DESCRIFTION

thi VFOt s subprogram allows to wi ble bytes directly to addresses of the UDF FIAM.

Numeric data will be subsequently written into memory beginning with the location ADDFiESS.

Uncoverfer use of VFOFE can result malfunctions of the computer. A system crash may occur, which forces the user to switch off his system for a moment, getting it running again. However, this will cause the total loss of program and data, if robacl up is availlable.

EXAMPLES

The sorefn image with $\because \because: ~ 24=708$ characters 15 coritained in UDF segment bomb through igFF (decimal θ through 767). The characters are stored with an offset of 96 of their ASCII codes. This means the stored byte 1 c the ASCII code of the appropriate character plus 96.

To pole the word "COMFUTEF" in the soreen following command has to be entered:

CALL VFOKE ($555,163,175,17=, 176,181,190,165,178$)
-5S 15 the srrpen address (i) represpnts the upper left. 767 the lower
 codes olus 9 h of the "COMFUTEF" rharacters will be subsequently stared. The value 10315 the result of the sum of ASCII rode 6 f for (C) plus, the ritfoet os.

Morg (1etalls athout Wef lam use will br toumd 1 h the Addendum (part 4).

GPEEK

FORMAT

GFEEF (ADDFESS, NUMEFIC VAFIAEALE I.IST;

DESCRIPTION

The GFEEt subroutine allows to read the contents of addresses in GFOMs in, the computer. The functions are corresponding to CALI. FEFt.

More details about GFOMs and the prorgramming language GFL., also used in the Tl-94,4A, can be found in the bont:

TI-99/4A INTEFN
writton by Heimer Martin. (Verlag fir Technif: und Handwort GmbH. Faden-Faden, Gormany, 1985.)

ALLSET

FORMAT

CALI ALLSET

DESCRIPTION

CAll ALISET resets the characters with the ASCIl codes تa through 126 to their initial definitions.

CAL. Al. I-SET worts correspondingly to the statement CALL CHAFiSET from F:itended FiASIC. but considers also the lower cases. This can be interesting e.g. in programs being loaded after the exerution of onfes, used redefinded character images.

WATT

FORMAT

CALL. WAII (DUFAIICIN)

DESCRIPTION

CALI WAIT causes dejays. DUFATION can get assigned a value from oro 16TR2. The delay $t i m e 1 n$ seconds is the value of DUFiATION devided by So. So the assignment of 1000 represents a delay of 20 seconds.

The delay will be brolen if any key is pressed. Values exceeding the allowed range do not get useful time delays or cause an error message.

MDVE

FORMAT

CALL MIOVE (MODUS.STAFT ADDFESS. TAFIGFI ADDFESS, BYTES)

DESCRIPTION

CAil MOVE allows to move contents of memory blocl:s within the fiAM. There are four different modes available:
)

Mode values lower than 1 or higher than 4 cause an error message.

CALL MMNE can be lised to save the screen. If there are loaded no ascembly langmage programs the screfen arearan be moved (copaed) by:

CALL MOUE ($2,0,8192,768)$

```
into the Low Memory E%pansion and can be removed by:
```

CALL MOVE(こ, ©172,0,768)
bact to the screen.
Uncovered use of CALL MOVE may cause malfunctions of the computer. Total loss of program and data can be the result. Firts of program or variables may be overwritten. Detailed knowledge of the memory mapping use 15 essentially before applying CALL MOUE.

EXAMPLES

```
|(G F.EM *** MOUING DISF:LAY ***
110 CALL CLEAF:
```



```
140 DISFFLAY AT(2O, 2):"That is the powrer of": :" MECHATFONIC
": :" EXTENDED EASIC I I%,"
150 CALL MOVE(1.608,448,160)
160 FOF: }x=1\mathrm{ TO 450
17O CALL MOVV:(1,164,163,445)
1RO NEYT X
19ri CAIL WAIT (2OO)
こ!! GOTO 14%
```


MSANE

FORMAT

CAL. MSAVE ("FIIE NAME", STAFiT ADDFESS,FYTES)

DESCRIPTION

CALL MSAUV saves seqments of the CFU FiAM contents an program format to an e.tarnal device.

This allows also to store assembly programs on cassette recorder.
) CALL MSAVE("CSi ",8192.8192)
saves the complete available FiAM segment for assembly language orograms. There may be saved up to 日lqa bytes. Of course, as FILE NAMF rari tre used every valid file namf', lile "DSFI. GCFEEN".

EXAMPLES

```
|!r!FM *** SAUR GCFEEEN ***
11O CAlL CLEAF: 'Test also without thi'. luno
12O FFFM DEFINE FLUS MAFI
```



```
140 FEEM WFITTE TEXT
15O CALL HCHAF*(10.1.32.1bO)
```



```
170 CALL UFOIE (42J,165,1B4.18O.165,174,164,165,164,12F,162,141,179,
169,16`.129,1 69,169,174,185)
18O CALL WAIT(1Oण)
190 FEEM MOUV SCFEEN IMAGE
2OG CALL MOVE(2,0,B192,768)
21O CALL CLEAF
ZコGFFINT "SCFEEN IMAGE WILL TVE SAVED ON DISIETTE.....": :"..
AND WILL. EE FEELOADED NOW"
2.O CALL MGAUE("DSK1.SCFEEN".8192.768)
240 FEM ..GET IT EACK
2SG CALI MLODAD("DSt:1.SCREEN")
```



```
Z\because! (ALL WOIT ( OnO)
ZAI: FFM COFY SEEMENT
290 (at_L MOWE(1, S6=,5,100)
```


Milado

FORMAT

CAL. MLOAI. ("FIIF NAME", MODUS)

DESCRIFTION

 CALL MSAVE. SO CALL MLDAD is just the opposite statement of CALL msave.

As file Name may be used any valid file name.
MODUS may be left out in Extended BASIC.
The rumbric MODUS value \quad will cause an automatic start of an assembly language program saved in program format. Efefore starting, the VDF FiAM 1 ri this case will be organized using the assembler standard mapping.

CALL MLOAD can load anv file in program format (also basic programs). without causing ari error message. However, correct worting 15 only possible with assembler files in program format or fiAM contents, being saved before by CALL MSAVE.

CAIL MSAVE and CALL MLOAD claim a pritty big area of the UDF FiAM. which somptimes can cause a memory overflow.

ANE

FORMAT

CAIL FYE

DESCRIPTION

$W_{1}+1$, the statement CAL mire can tit quat the FASIC mode of the TI-q9/4A. CALL FYE hae the same function as the rommand FYE, p:repted that it can he used in frograms.

NEW

FOFMAT

CAIL NFW

DESCRIPTION

CAL NFW as a statement clears memory and screen und prepares the rompler for input of new programs. After ewecution of the CALL NEW statement appears * FEADY *, on the screen. Opposite to the command NEW from Extended EASIC the CALL NEW statement allows a program controlled erasing of the loaded FASIC program.

FESTDFE

FORMAT

CALL FESTGFiF. (NUMEFIC VAFiIAFLEE)

DESCRIPTION

CAlL liESTOFE prepares the computer for the next DATA statement to be considered. VAFIAELE contains that line number, the computer starts to lool for the nerit DATA statement, e:iecuting a FEAD statement.

The FESTOFE statement of E: tended FASIC can onlv use a numeric value (fict a variablp), which can cause a relatively high programming ettort.

CAUTION

If numeric values instead of numoric variables are used for lime

QLITGF - GLITGN

FORMAT

CAl. CUITOF
CAL.! RIITTON

DESCRIPTION

CALE CYIIOF suspends the function of the QUIT ley (FCTN =). This means. that unwx shed pressing of CUIT catises not longer fatal actions lile the total loss of program and data.

CALL OUITON reactivates the QUIT function. This means after pressing the OUIT lev, the master screen will appear.

ACHTUNG

CALL OUITOF is not reset by the operating system. This effect will be preserved even after e:ecution of EYE or NEW. The QUIT function can only be reactivated by executing CALL QUITON or switching off the system for some moments.

SPFDF SEFGN

FORMAT

CALI．SFFROF
CALL SFFFIN

DESCRIPTION

CAt＿！FFFOF stopps any motion of all sforites at once．
CALL GFFION rfactivates the motion of all sprites at once．Uf course． the motion of sprites has to been enabled before by CALL MOTION or CALL SFFFITE．

CAUTION

CALL SFFBF 15 mot reset by the operating system．This effect will be preserved even after e：iecutaon of EYY or NEW．the fanction can only be reactivated by e：ecuting CALL SFFiON or switching off the system for some seconds．

EXAMPLES

10 FiEM＊＊SFFITE STOF－SFFFITE GO＊＊＊
110 CALL CLEAF：
120 DISFLAY AT（ニ，マ）：＂SFFITE STOF AND GO uSing＂：：CALL SFFFOF and
CALL SFFION＂
$130 A=1$
140 CALL CHAFi（123，＂FFFFFFFFFFFFFFFF＂）
） 150 CALL MAGNIFY（2）
100 FOF $X=1$ TO 4
170 CALL SFFFITE（\＃X，12以，こ，124，124）
1 CIG NEXT X

200 CALL LOCATE（\＃2，124，140，\＃こ，140，1こ4，\＃4，140，140）
210 CALL WH゙IT（2OO）
ココロ CALL GFFPJF

240 FOF：$I=1$ TO 5
250 CALL SFFFON
こo！CALI WAIT（200）
こTO CALL SFFOF
בBG゙ CALL WAIT（2OO）
$\because 9 \mathrm{OEXT}$ I
Big CALL DELSFFITE（ALL．）
$\therefore 10$ CALI ALLSFT

SCREENOF - SCRREENON

FORMAT

CALL SCFEENDF
CALL GCFEENON

IDESCRIFTIDN

CiAL GCFEENOF 15 used to switch the screen dasplay off. Hereby the coments of the UDF fiAM will not bw lost, only the data transfer to : the monitor will disabled.

After a program breat the screen dasplay will be reactivated autometicallv.

$F=1 \mathrm{ND}$

FORMAT

CAL．FIND（＂GET－STFING＂，＂STFING AFFAY＂（）．FETUFIN VAFIAALEE）

DESCRIPTION

1th F IND Suturoutine lools 1 n a onedimensional string array for a term assiqned to GET STFING．The numeric riETUFin VAFIAELEE contains the element number．in which the term is found．If the term is not found the return variable becomes－1：

EXAMPLES

The following ciample demonstirates how fast a 10 digit string will be found $1 n$ an array with lou elements，if the array has to be completely tested．

1日G FEEM＊＊＊FINDTEST＊＊＊
110 CAL＿L CLEAF：
1，2G FFIINT＂FEFFOFMANCE TEST OF CALL FIND＂：：：
1こい FFINT＂LOADING THE AFFRAY＂：：
14 G E $=$＝TESTTESTTEST＂
150 DIM A\＄（10）O）
160 FOF $x=1$ TO 1000
170 As（1）＝＂TESTTESTTESt＂
$18 G$ NEXT X
190 A $(1 G 00)=" T E S T T E S T T E S T "$
2いG FFFINT＂SEAFCHING＂
210 CALL FIND（E\＄，A\＄（），E）
ご口 FFIINT＂FOUND IN ELEMENT＂：E
$\because \because E N D$

PRINZIPLE OF THE HIGH RESOLUTION GRAPHIC

Mecmatronic E:itended EAGilC IImus meets the desire of the TI-99/4A owner for High Fiesolution Graphics! Using the graphir mode, the powerful graphit capabilities of the computer are displayed.

The, addressing of each pi::pl of the srereen beromes possible - all this in 1 th foreground and bactground colors' 40 powerful graphic routines are available and can be applied by Merhatronic E:tender FASIC IImus.

The graphic copy feature by a matrix printer ls implemented by software, too. Generating of the graphics worl:s superfast. All the
 creative und fun to water the graphic mode at worl:

For application of the graphic mode the following hardware configuration 15 esserntial:

TI-rig:4A \rightarrow Mechatronic E:itended FASIC IIPus module

+ $\because 2$ FFAM e:pansion
useful but not essential:
+ Floppy disl system
+ Frinter (with graphir capabilities)
and approprsate interface

'ARNING

The power supply of the FiAM expansion must n o t be provided by the TI-99/4A-OVEFLGADING.

WOFRKINE IN THE GFAFMIC MODE

WORKING IN THE GRAPHIC-MODE

The urinciple of the statements in the qraphic mode 15 very simple. The graphic $1 s$ a cursor or plotter graphic.

Iht screen 15 the drawing sheet, and when initiating the "GfiAfic" mode the cursor or drawing pen will appear at position 1 , lag in the drawifig window (left bottom corner). ready to start operating along the horizontal ailis at the angle of o degrees. Simultaneously it is the \quad-point of the system of user defined coordinates.

Using cimple oraphic commands, the curfor is directed across the screen (see fiq. 1). All coordinates are identucal to mathematical ones.

Thus lines. circles, squares. ellipses. arcs and many other figures can be drawn or erased. Comple: geometrical fiquires. diagrams and so on can be generated on the screen in a very high speed.

All this is available for the Tl-qGi4A in all colors with the resolution of 25s * 192 pixels. The graphics can be stored on a floppy dist for later use.

Using the graphic mode you have a powfrtul programming-tool for the interestang realisataon of your programs. The graphic statements are sumpla and easy to learn.

CGNTROLIING THE CUFSGF

CALL LINH（＂WINDOW＂，FOOW，COLUMN）
（CAI＿L L．INI＂．SETTO＂．Y．Y）

「al．L INA，＂MOUF＂，万IS日，

LOADING THE GFAPHIC INSTRUCTION SET

1) Insert Mectiatronse Extenced EASIC I I Pus Module
\because Swlen on ofs draves (if avallable)
\because Switct on $\because \because 1$-..Fiam-Expansion or feripheral System
2) Susitch on Monator und TI-99/AA

5 .) SElect MECHATIONIC EXTENDED HASIC on main menue
6) Eriter : CALL AFESOFT
)
The entiry of graphic progr ams is now enabled.

WARN I NG

Entering
CALL AFESGFT
after loading any EASIC program will erase this program.
CALL AFt GOFT rlosms all opened files. loats the graphir routines into the Fiam e:pansion. reserves required space in the VDF FiAM, and e::ecutes, a "NEW". deleting stored EASIC programs.

NOTE

The number of operied files in graphic mode is limited to 2 files. After entering CALL AFEGOFT should no CALL FIl ES be executed.

ERROR MESSAGES

Érmr mfesagos 1 m graphic modfe are not allways correct. after e:recution of graphic statements.

All conventional errors are trapped correctly by Mechatronic: Futended basilC Ilmus Sometimes the TI-gQ/4A can fail after an interrupt with "FCIN CLEAF" or by choosing a subroutine and can be initialized only by beling switched off for a short period.

FRPAFMICSTATEMEMTS

GRAFHIC STATEMENTS

The bislc control of the high resolution graphic consists of a number of very howerful commands. They simplify the development of complicated oraphics tremendously. They are Lasic support commands and are constituted:

CALL I.INI ("FFDCEDUFE NAME", FAFAMETEF * (.FPAFAMETEF,.....)*)
CALI LINI connects the FASjIC and ASSEMFLEF program, FFOCEDUFE NAME actuatos a cortari TMS 9QOg routine, FAl AMETEFis are optional.

Terms in * ()* ran be repeated at random. A blocl up to 15 parameters can be entored at a tame.

Defending on the requirements the following parameters are allowed:

- Mimeric constants
- Numeric variables
- Numerif array elements
- Nutieric terms
- String constants
- String variables
- String array elements
- Sitring terms

AFDESGFT

FORMAI

CAI: IAFPGAF T

DESCRIPYION

Iht (Af: AFESUF7 command transfers the high resolution statement set into the ham expansion - with reservation it is available and oper at ional.

Fimasf rinte that CALL AFESOFT is a command. which can be only eriecuted 1 n dirert mode.

CAll. Alf SOFT has following functions:
fll opened files will be closed
The ar antire statements will transterred into FifM e:pansion. Festarvation of requared UDF FiAM space for graphil: e: ecutions. rflw will be e:iecuted -
this will erase any loaded EASIC program.

```
fitifr werutlon of CAI_L AFESOFT any CAL.!. FIl_FS should be avoided'
```


CI FAAFE

FORMAT

call clamatf

DESCRIPTION

CAL Clifaft restores the initial condition, just lile after selection of MFCHATNIC EXTENDED FASIC. It C an be performed only after e:ecution of CALL AFEGOFT, otherwise a Synta\% Frror will be the result.

CALL Clfiaft performs following actions:

- Transarturig CALL INIT
- Fieset of lim UDF FiAM
- Closing ot all opened files
- E Eecutama a NEW. orasing the stored orogram in memory.

SFRAFIC

FORMAT

(ALL LINR "GFAFIE", MOIUUS)

DESCRIPTION

lha \quad ommand 5 ghandizes to the computer the graphic mode and 1nitali=es all lts registers.

A grafhic tahle with ma:imum 128 vertical and maximum 120 horizontal lines 15 defined. This table section $1 s$ in graphic mode available for randon addressing of every pi:el.
 there would not remain enough storage space in the VDF fiAM of the console for fiacilc programs. string variables and so on.

In addituon the direct addressing of $192 * 250=50.176$ pi:*els needs the storage of the $12 l$ bytes VDF FiAM: character table and color tables overwrite the buffer addresses of the EASIC interpreter.

Since the graphic table can be transmitted on the screen at random there are $250 * 196=50.176$ pixels to be addressed individually.

CALI LINA "GFiAFIC". MODUS) defines thf following internal parameters:

```
FHI=0 Starting angle of the rursor
    TAELIEWIDTH 16
    FOFEGFIOUND COLOF: Green
    EACH:GFDUND COLOF Elact
```

Some more internal farameters are depending on MODLIS:

```
MODLIS = U : Graphir mode (2SE rowe for graphic)
    1%; * 1% table rows inid columns
    x=1. Y=120 : Starting position af the cursor
        (口),い)-polnt
    MiPIE, > O : Te:' mode (19: rowe for qraphis,
        1:. * 16 table rows rand columns
        The commands "DSFLAY" and "ACCEFT".
        are available for input/output
        operations.
    x=1, r=89 : Starting position of the cursor
        (0.0)-point.
```


Gifralla

 statゃmunt 15 entfered. As soon at this command is executed the
 not get the expected results.
 will worl as wsual.
 status of the romputer restored.

CONT INUE

however dope mot lead barl to the araphic mode, unlese the first commarid following CON 15 CALL LINI ("GRAFIC", MOIMS)'

EXAMPLES

```
IOG FIEM SFFIFAAL
110 FEM
120 CALL LINH("GFiAFIC",O)
12E CALL LINF ("WINDOW", -.8)
1.O CALL LINH ("SETTO".04.6O)
14O FOF DIST=5 TO 5G STEF S
15i) CALL L.INH ("MOVE".DIST)
160 CALI. LINH:"TLIFN". Q(I)
17% NEXT OIST
1@", (iOTO 1&!,
```


RYEBYE

FORMAT

(FAH (INI ("EYEBYF")

DESCRIPTION

"fyphyl" removes the graphic mode. $1 t$ reloads the standard character set and reinltalizes the standard mode. SOUNDes and SFFiITES can be used àgarn. The Computer worls as usual.

Fefore Ei:ecuting of another graphil -statement must be passed a new CALL LINI ("GliAFIC". MODUS), otherwise the program e::ecution will be interrupted with an error message.

wImDOW

FORMAT

CALL LINK ("WINDOW", FOW, COLLUMN)

CALL LIN: ("WINDOW", Z, S, ZA,SA,DZ,DS)

DESCRIPTION

This command transmits sections of the graphic table or the complete graphic table to the screen and contains 2 formats.

The total graphic window $113 * 8$ columns. $15 * 8$ rows) is set on the scrpen position column ($9-\Xi 2)$ and row $(0-24)$. The graphic window can be positioned partly or totally outside of the screen (24 rows. 32 columns).

Every graphic window, defined before the execution of

CALL LINK ("WINDOW", COLUMN, FOW)
will be deleted. if one or both parameters are negative. Only the absolute terms of the parameters are evaluated.

The statement

CALL LINK("WINDOW",Z,S,ZA,SA,DZ,DS)
transmits sections of the graphic table to the screen.
ine parameters mean:

2.S........	Screen row (2) and column (S) at which the upper left corner point of the
graphic table is projected.	

If 2 or S or both are neqative, every graphic window which is on the screen will be deleted before the new section is transmitted.

wINDOW

EXAMPLES

```
10O FEM CIFCLES
110 FEEM *******
1こ0 CALL LINF:("GFAFIC".0)
13Q CALL LINF("WINDOW",1,1)
14O FOF F=2 TO 42 STEF 2
150 CALL LINF("CIFCLE".64,60,F')
160 NEXT F
170 CALL LINK("WINDOW",12,18)
1BO CALL LINR:("WINDOW",1,19)
190 FOF I=1 TD 10OO
20 NEXT I
210 CALL LINF`("SETCOL".16.5)
ここ0 FOF I=1 TO 500
2`O NEXT I
240 CALL LINA("INUEFT",1,1,128,120)
25G CALL LINH:("WINDOW", 4, -8)
260 GOTO 260
```

At first a number of concentric circles wall appear at the left hand top corner of the screen．
These will be copied line by 170 and 180 downwards to the left and right（trippled）．Line 240 will move these circles bact to the middle of the screen and the remaining circles are deleted．On its way the graphic is changing its color：it is inverted．
）
100 FEM FYFIAMIDES
110 FEM＊＊＊＊＊＊＊＊＊
120 CALL LINK：（＂GFiAFIC＂，0）
13 CALL LINE（＂WINDOW＂．1．1．1．1．10．10）
140 CALL LINK：（＂WINDOW＂，17，1，1，1こ，17，13）
142 CALL LINF（＂WINDOW＂，13，1）
144 CALL LINE（＂WINDOW＂，1こ，17）
150 CALL LINF（＂TUFNTO＂，45）
15O CALL LINF：＂SETTO＂，64，4日）
170 FOF $A=1$ TO 36 STEF 2
180 CALL LINF＇（＂FECT＂．A，A，－A，A，－A，－A，A－A）
190 NEXT A
2川 GOTO 20\％

In this e：ample 4 top views of pyramides are orawn simultaneously． The statements in line $1 \vec{O} 0$ and 140 are performing this．

The upper left window 15 only a fraqmont berause the statement 1 ？ 0 transmits only a section of the graplit tatule．

SETBLE

FORMAT

CALL LINH ("SETELE", WIDTH)

DESCRIPTION

This command dimensions the graphic table.
WIDTH Number of columns of the graphic table It can be varied from 1 to 32.

191 characters in the te:st mode and 2sis characters in the graphic mode are available for the graphic table.

The helgth of the graphic table is; depending on the width and is calculated:

HEIGTH $=$ INT (2SS/WIDTH) for graphic mode
HEIGTH $=$ INT (191/WIDTH) for te::t mode

In this way higher and wider graphics can be generated.

CAUT ION

A "WINDOW" statement must follow every "SETELE" statement. The "WINDOW" statement rearanges the screen, otherwise the graphic generation is not all right.
jimultaneously "SETHLE" defines the centre-point of the system of user defined coordinates at pixel position:

```
CENTFIX = 1
CENTFYY = HEIGTH * 8 = YMAX
```


CLTERE

FORMAT

CALL LINK.("CLTELE")

DESCRIPTION

This command erases the graphic table and also the graphic.
Eut the table sections which are transmitted by "WINDOW" statements to the screen remain for the input of new graphics.

TABLE

FORMAT

CALL LINF ("TAFLE", Z, S, XMAX, YMAX, EYTES)

DESCRIPTIDN

This statement returns the present parameters of the graphic table to the following variables:

2 Number of rows of the table
S Number of columns of the table
XMAX Maximal pi:el columns of the table
YMAX Maximal pi :el rows of the table
EYTES Number of bytes available for the graphic

Starting with row 1 and column 12 the character bytes in the graphic table are always arranged in ascending order.

The byte number is calculated:
CHAF\# $=($ FIOW -1$) *$ WIDTH + FIOW -1
FOW Fiow of the graphic table
COLUMN Column of the graphic table
WIDTH Absolute width of the graphic table
CHAFi\# Character byte number of the table

SETCOL

FORMAT

CALL. L.INF ("SETCOL",FOFEGFOUND COLOF, FACKGROUND COLOF:)
CALL LIN: ("SETCOL",N,FG,EG*(,N1,FG1,EG1....)*)

DESCRIPTION

This command has two formats and defines foreground and background colors of the graphic.

All the $1 t$ colors known in EASIC can be used either as foreground or as baclground colors. Several different foreground and bactiground colors can be used simultaneously in one graphic.

If only two parameters are present in the parameter list. the foreground and bacleground colors are altered simultaneously in the entire graphic.

If there are more then two parameters, "SETCOL" defimes the foreground color (FG) and bactqround color (EG) for the charctersets spezified by N.

Hereby the character sets for the rows of the graphic windows are defined as following:

8 following bytes construct a character set (0-7, 3-15, ... usw.).

Within the specifications of the above mentioned table, the foreground and bacliground colors may be defined at random.

Thus a multitude of color combinations is possible. Using a parameter list. up to 5 color sets can be passed.

SETCOL

Colors for rows and columns of the graphic area（width＝16）：

EXAMPLES

```
10O FEM LEAF
110 FREM ****
120 FAANDOMIZE
1\XiO CALL LINI ("GFAAFIC",O)
135 CALL LINF:(WINDOW", ड.8)
140 FOF FHH=O TO 90 STEF S
150 CALL LINK("SETTO",64,119)
160 CALL LINI.("TURNTO".FHI)
170 CALL LINI:("MOVE",1.2*FHI)
1BO CALL LINF("TUFNTO",18G-FHI)
190 CALL LINI.("SETTO".64,119)
200) CALL LINT ("MOVE",1.2*FHI)
21G NEXT FHI
ここ0 FOF DELAY=1 TO 500
2马O NEXT DELAY
24g FG=2+14*FND
こちG FG=2+14*FND
Z00 CALL LINK:("SETCOL",FG,GG)
270 FOF DELAY=1 TO SOO
2BO}NEXT DELAY
29! CALL LIN:("INVEFT'",1,1,128,12(1)
#!け\mp@code{GOTO ここの}
```

[^0]
INVERT

FORMAT

CALL LINT ("INVEFTT", X,Y,DX,DY)

DESCRIPTION

When "INVEFir" s called, foreground and backoround color of the graphic are swapped. The following parameters are necessary:
X, Y............. Finel position of the upper left corner of the graphic section which is interchanged.
DY. Column pi:xel position of the section
DY Fiow pixel position of the section
Hereby in the section pixels which are set are deleted and vice versa.

CLSERN

FORMAT

CALL LINF（＂CLSCFN＂）

DESCRIPTION

This command 15 similar in its effert to＂CALL CLEAR＂in EASIC！ It deletes the graphic，the stored internal cursor parameters remain untouched．

EXAMPLES

```
10O FEM FAANDOM STFAAIGHT LINES
110 FEMM *********************
120 CALL LINF("GFAFIC",0)
125 CALL LINF:("WINDOW", -こ,8)
1-OUG =?+1马*FND
14O IF UG = THEN 1马O
15O CALL LINK("SETCOL",VG,2)
160 FOF 1=1 TO 2O
170 X=124*FND.
180}Y=120*FN
190 CALL LINE("MOVETO",X,Y)
20) NEXT I
210 FOF: J=1 TO 250
210 NEXT J
220 CALL LINF:("CLSCFNN")
230 FOR I=1 TO 50%
240) NEXT I
250 CALL LINK:("WINDOW", 1,1)
260 GOTO 125
```

This program e：ample draws 20 lines successive．choosing direction randomly and 5 tarting from position（1．120）（line 190），clears the graphic（lime こコロ）and starts the graphic again choosing the colors at random．

After a short time the statement＂WINDOW＂（lıne FSo）shows that only the screen with line 220 has been er ased，but the graphic in the table has remained untouched．
＂WINDOW＂with a negative parameter（line 125）effects＂CLSCFN＂，before the section of the graphic table is brought in the screen＇

CENTRE

FORMAT

CALL L INF: ("CENTFE", X,Y)

DESCRIFTION

This statement defines the system of user defined coordinates: x....... x-coordinate of the g-point in the graphic table Y Y-coordinate of the g-point in the qraphic table

```
AHLL LJHI:"EENTFE", %4, 4F:
```


Fig. $\because \because=$: SYSTEM DF USEF DEFINED COOFDINATES

After a graphic statement the centre point is e:act at position (1. 1\%O 1 (eft bottom corner of the tabla. With "CENIFE" this O-point can be moved optanally, even outside of the table'

CENTRE

EXAMPLES

```
10G FEM SYSTEM OF COOFDINATES
110 FEM **********************
120 CALL LINE("GFAFIC",1)
130 CALL LIN| ("WINDOW",7,8)
132 CALL LINK("SETTO",1,1)
13.4 CALL LINK`("RECT". 127.,87)
140 CALL LINK:("CENTFE",64,44)
150 CALL LINF("AXIS",0,60,60,4,0,40,40,2)
100 CALL LINF,("WFITE",8,10,"(0,0)")
170 CALL LINK("DSFLAY",1,5,26,":CALL LINF(""CENTFE"",
64,44)")
190 CALL LINH, "DSFLAY",5,5,22."(-64.+44) (64,+44)")
190 CALL LINK("DSFLAY",20,5,22."(-64,-44) (64,-44)")
2OO OFEN #1:"FS2S2.FA=96OO.DA=8.CF".,OUTFUT
21G FFFINT #1:CHF$(27)&"A"%CHK$(8)
22O CLOSE #1
ここO CALL EHCOFY("FS2こ2.EA=960O.DA=8.CF", "L")
240 STOF
```

This sample program produces the drawal of fig． 2 with an EFSON MX 80 or the similar Texas Instruments Line Frinter FiHF 2500．

SETTTO

FORMAT

CALL LIN: ("SETTO", X,Y*(, X1,Y1, ...)*)

DESCRIPTION

"SETTO" sets pixels at the coordinates row Y, column X. On the screen are columns 1 through 128 and rows 1 through 120.

The range of the values has no restrictions. The coordinates may be positive or negative, its value high or low at random and may also be floating point numbers. They are internally rounded to the nearest integer number.

Numbers greater than 32.768 and less than -32.76? are displayed incorrectly. There will be no error message when this range 15 exiceeded' when a parameter list is used up, to 7 pi::els can be defined simultaneously.

The internal angle FHI of the cursor remains unchanged.

PRESET

FORMAT

CALL LINI' ("FESET", $X, Y *(, X 1, Y 1, \ldots) *)$

DESCRIPTION

"FESET" deletes the pi>els with the coordinates X, Y. All conditions made for "SETTO" are valid for "FESET", too.

YFSET

FORMAT

CALL LINK（＂IFSET＂，X，Y，VAFi＊（，X1，Y1，VAFi1，．．．）＊）

DESCRIPTION

This statement checlis whether a pirel with the coordinates x, Y is set and the following values in the variables VAF are stated：

F_{1} ：el	（ X, Y ）	set				$V A F=-1$
Fu：${ }^{\text {Fel }}$	(X, Y)	deleted				$V A F=0$
Fin：el	（X，Y）	outside	the	graphic	window	$V A F i=+1$

Whth one parameter list，up to 5 pi：iels can be checled simultaneously． Otherwise the canditions set up for＂SETTO＂and＂FESET＂apply．

EXAMPLES

```
1OO FEM SINE
110 F.EM ****
120 CALL LINF:("GFIAFIC",(1)
125 CALL LINF("WINDOW", \Xi,8)
127 CALL LINF`("CENTFE",4,60
1\because0 F-I18O=4*ATN(1)/18O
140 CALL LINK("AXIS",0,0,118,5,0,50,50,5)
150 FEEM
160 FOF FHI=O TO S6O STEF 2
170 X=FHI/E+2O
180 Y=20*SIN(F.HI*F'I180)
190 CALL LINK("SETTO",X,Y,X,Y*1.5,X,Y*Z)
2OO NEXT FHI
210 FOF FHI=0 TO 360 STEF 2
2OO}X=F\cdotHI/Z+2
2马0) Y=2O*SIN(FHI*FI18O)
240 CALL LINK("FESET",X,Y*1.5,X.Y*2)
25! NEXT FHI
2G(1)}x=INT(12S*FND)+
こ`! Y=INT (120*FND) +1
2日O' CALL LINK("IFSET",X,Y,A)
290 IF A=0 THEN 2OO
ミ(O) CALL LINT:("EYEEYE")
\because10 CALL CLEAF
\becauseOO FFFINT "FOINT }X=";X:"Y=":Y;":IS SET"
\becauseOGSTOF
```

 again（210－ミロ゚）and stays in a holding loop until．it has found a set p1）：（250－296）．

MOVE

FORMAT

CALL LINF: "MOVE", DIST)

DESCRIPTION

This statement draws a line of the length DIST, starting from the present cursor position with the internal angle FHl. The position DIST. horizontally and vertically corresponds exactly with the number of pi:iels: the number of pixels themselves depends on the set angle. After performirig DIST the cursor stops at the end coordinates llast stored pisel). FHI remains unchanged.

Fositive values of DIST work in the present direction of the cursor. negative values worl 1 BO degrees opposite. DIST a an assume any value. although the range limits apply given under item SETTO.

REMCNE

FORMAT

CALL LINI（＂FEMOUE＂，DIST）

DESCRIPTION

＂FiEMOVE＂has the same effect as＂MOVE＂，but here the pixels from position X, Y up to the DIST distant new position of the cursor are deleted．

EXAMPLES

```
1OG FEM STAF
11O FEM ****
120 CALL LINF:("GFAFFIC",0)
125 CALL LINI ("WINDOW", З.8)
1JOCALL LINI:("WFITE",15.3."THAT IS GFAFHIC")
140) FG=?+1\Xi*FND
150 CALL LINH:("SETCOL",FG,2)
160 CALL LINI("SETTO",2,60)
170 CALL LINF:("TUFNTO",?6)
18O FGF I=1 TO 10
190 CALL LINE:("TUFN",1(8)
200 CALL LINE("MOVE",bO)
210 NEXT 1
ユコO CALL LINK("SETTO",2,60)
230 CALL LINF("TUFNTO".36)
240-FOF I=1 TO 10
2S0 CALL LINR:("TUFNN", 10日)
2S0 CALL LINF ("FEMOVE",G(1)
こつO NEXT I
2gO GOTO 14O
```

Through stilled application of a few commands a star is charmed onto the screen．then deleted and then the game starts again in different colors．

MOVETG

FORMAT

CALL LINK. "MOVETO", X,Y*(, X1,Y1,...)*)

DESCRIPTION

"MOVETQ" oraws a line from the present internal position of the cursor to the nesit by the parameter pair X and Y defined position.

The list of parameter can hold a maximum of 7 positions. If there are glven more than 2 parameters, the line will always be drawn from the previous position to the nest.

After the e:ecution of "MOVETO" the cursor will remain at the last position given by the parameter list. The internal arigle and the colors will remain unchanged with "MOVETO". Lines can also be drawn outside of the graphic window border.

REMVTG

FORMAT

CALL LINF（＂FEMUTO＂，X，Y＊（，X1，Y1．．．．）＊）

DESCRIPTION

＂FEMVTO＂worls life＂MOUETQ＂with the difference that here the lines are deleted．All the conditions for＂MOVETO＂also apply to＂FiEMVTO＂．

EXAMPLES

```
1@G FEM THFEAD GFIAFHIC
110 FEM **************
12O CALL LINF!"GFAFIC",0)
1こ5 CALL LIN|("WINDOW".\Xi.8)
120 D=2.S
140 2 = 125
150 51=128
160 FOF S=1 TO 126 STEF 5
170 Z=Z-5
13O S1=S1-D
190 CALL LINF`("SETTO",S.1.%..
ZO!) CALL LINF("MOVETO".S1.
こ10 NEXT S
ここ! Z=125
2#0) S1=1
240 FOF S=126 TO 1 STEF -5
250, 2=2-5
2S! S1=S1+D
27! CALL LINK:("SETTO",S,120)
2g! CALL LINK.("MOVETO",51,Z)
~QO NEXT S
\becauseM GOTO ?OO
```


TUARN

FORMAT

CALL LINT ("TUFN",FHI)

DESCRIPTION

This command adds to the present internal angle of the cursor the angle $F H$ in decimal degrees.

The limitations of the angle are $+1-2047$ degrees. Internally the angle is modulated from σ - \mathbf{i} o degrees.

The trigonometrical functions are generated by the computer via interpolation tables. Since the storage capacity is very limited the angles are interpolated in the range of 5 degrees. This may lead to ine:act results when using intermediate values.

TUFRNTO

FORMAT

CALL LIN：，（＂TUFNTQ＂，FHI）

DESCRIPTION

This command imperatively sets the internal angle of the cursor to FHI （degrees）．AJl limitations made for＂TUFiN＂also apply here．

EXAMPLES

```
1% FEM OCTAGONS
11G FEEM ********
120, CALL LINI,("GFIAFIC",O)
1-0 CALL LINK("WINDOW", 4.5)
140 CALL LINO.("WINDOW",6,19)
150 DIST=2
100 FOF S=2S TO 108 STEF 4
17! CALL LINF:("SETTO".S.42)
190}\mathrm{ CALL LINK("TUFNTO".90)
19G DIST=DIST+2
2OO FOF: I=1 TO 8
210 CALL LINI ("TUFN",45)
220 CALL LINK:("MOVE",DIST)
2SO NEXT I
24i NEXT S
250 GOTO こ与に
```

RECT

FORMAT

CALL LINK("FECT", A, E*(, A1, E1, ...)*)

DESCRIPTION

Starting from its present position and the internal angle of the chisor "KECT" draws rectangles with the sequence

$$
A-B E A-Y
$$

The rectangle turns clock-wise, if t is positive. The einample shows the 1 nfluence of the operational sign of the side length with reference to its ultimate position.

The internal angle and the position of the cursor are not influenced by "FECT". The side length of the rectangle can tate any value. Up to $?$ rectangles can be passed with one parameterlist. Fut they all begin at the same starting position and also finish there.

CIFECT

FOFMAT

CALL LINH ("CLFECT", A,F*(, A1, E1,...)*)

DESCRIPYION

Worts 1 dentically to "FECT" with the difference that "CLFECT" deletes the rertangles.

All conditions of "FiECT" apply to "CLFECT".

EXAMPLES

```
1O KEM FECTANGLES
110 FEEM **********
1こ! CALL LINL("GFAFIC",0)
115 CALL LINF:("WJNDOW", \Xi,8)
1?O CALL LINI ("SETTO".64.6O)
140 A=40
150, E=20
1GO CALL LINF, ("FECT",A,E,A,-E, -A,E, -A, -E)
170 FOF I=1 TO 25!
18G NEXT I
190 CALL LINF, "CLFECT".A,F,A,-E, -A, F, -A, -E)
200 CALL LINK("TUFN", 45)
210 GOTO 160
```

Line 160 draws 4 rectangles with only one command, line lag deletes them. Line ano turns the internal angle on by 45 deqrees.

EIPCLE

FORMAT
CALL LINF, ("CIFiCLE", X,Y,Fi* (, X1, Y1, Ki1,)*)

;DESCRIPTION

"CIFCLE" oraws a circle with the central point X. Y and the radius fi. With one parameterlist up to 5 different circles can be drawn.

The parameters can assume any value. For the radius the absolute value is worled out automatically. If the value for the $F=O$, "CIFiCLE" sets a point (pisel). After the execution of "CIFiCLE" the cursor tales the central point of the last drawn circle.

The internal angle FHI remains unchanged.
Due to internal rounding errors the circular arcs may appear not quite smooth.

CLCREL

FORMAT

CALL LINH：（＂CLCFCL＂，X，Y，Fi＊（，X1，Y1，F1．．．．．）＊）

DESCRIPTION

＂CLCFiCl＂worts identically to＂CIFCLE＂，but here the circles are deleted．All the conditions for＂CIfCLE＂also apply to＂CLCFCL＂．

EXAMPLES

```
1OO FEM CIFICLES
11O FEM *******
120 F'I=4*ATN(1)
1-0) CALL LINK ("GFAFIC",O)
1こG CALL LINK:("WINDDW", \Xi, B)
1:7 CALL LINK("CENTFE", 64,60)
140 CALL LINF:("CIFCLE".O.O.こO)
150 FOF FHI=0 TO 2*F\cdotI STEF F'I/16
150 CALL LINF;("CIFCLE", こO*COS(FHI),SO*SIN(FHI), BO)
170 NEXT FHI
180 GOTO 180
```


AFCLSS

FORMAT

CALL LINF ("AFECUS", X,Y,F,FFHI, DFHI* (, X1, Y1, K1,FHI1, DFHI 1, ...)*)

DESCRIPTION

"AFiCUS" draws circular arcs with the following parameters:

```
X,Y ......... Centre point of the arc
Fi............ Fiadius of the are
FHI ......... Starting angle of the arc (absolute)
DFHI ........ Arc angle of the arc
```

Simultaneously three ares can be generated with one rommand. Due to internal roundirig errors and generating the trigoriometrical functions via interpolation tables the results are not always satisfying.

The coordinates of the cursor describe the last drawn arc pi\%el after the execution of "AFiCUS".

MAACS

FORMAT

CALL LINF ("CLAFiCS", X,Y,F,FHI, DFHI* (, X1,Y1,FI,FHI1, DFHI1, ...)*)

DESCRIPTION

$\because C L A F C S "$ worls identically to "AliCUS" the difference being that "CLAFiCS" deletes all arc pixels.

ELLIPS

FORMAT
CALL LINF ("ELLIFS", X,Y,A,E* (, X1,Y1, A1, E1, ...)*)

DESCRIPTION

"ELLIF'S" oraws ellipses with the aiils cientre point X, Y of the big semi a:15 A and small semi a:is E and the inclination FHI of the big semi as:15.

A ma:imum of three different ellipses can be drawn with one parameterllst. The parameters can assume any values enept o. The absolute value is automatically used for the big and small semi ayis. After the e:xerution of "ELLIFS" the cursor assumes the coordinates of the semi a: 1 s points of intersectiou. The internal angle forl remains unchanged.

Through internal rounding errors the elliptical arcs may sometimes not appear quite smooth. This orcurs particularly when the main a:ies are inclined to the horizontal or vertical. because the coordinate transformations are carried out by interpolated trigometrical functions.

CLLTFS

FORMAT

CAI．L LIrNt（＂CLLIFS＂，X，Y，A，E＊（，X1，Y1，A1，E1，．．．）＊）

DESCRIPTION

＂CLLIFS＂worls lite＂ELLIF＇S＂，with the difference，that here the ellipses are deleted．All the conditions listed for＂ELLIFS＂are appropriate valid．

EXAMPLES

```
1!" FEM CONE
110 FREM ****
1\becauseG CALL LINF:("GFiAFIC",O)
1こ5 CALL LINI:("WINDOW", \because,8)
1?OCALL LINH:("SETCOL",15,2)
140)}M=
150 A=42
1SO) E:= こ2
170 FOF Y=81 TO 1 STEF -8
180. IF M=O THEN 2MO
190)M$="ELLIF.S"
2GO FEM
210 GOTO 2马O
この0 M$="CLLIF'S"
2.O CALL LINH:(M$,64,Y,A,B)
240 A=A-4
250 H=H-2
2G0 NEXT Y
2? IF M=1 THEN 140
180}M=
=90 GOTO 150
```

If $M=1$ ，a cone $1 s$ always drawn due to the control commands ごッ－こタッ．M\＄，A string variable，can also be passed as＂FFOCEDUFE NAME＂．

The program as urolen on entering＂FCTN CLEAFi＂．

VARCIES

FORMAT

CALL LINI ("UALUES", X,Y,FHI,FG,EG)

DESCRIPTION

"VALUES" returns the present internal parameters to the variable list.
X Cursor column
Y Cursor row
FHI Cursor angle
FG Foreground color
EG Eaclaround color

As the angle 15 modulated internally, it is always between o-3bO degrees independent of the previous input.

EXAMPLES

```
100 FEM EXAMFLE
110 FEEM *******
120 CALL LINE("GFIAFIC",0)
125 CALL LINK ("WINDOW", \Xi.8)
1こO FOF I=1 TO 11
140 CALL LINK("SETTO",64,60)
15G CALL LINE("MOVE", \XiO)
160 CALL LINK`("VALUES",X,Y,FHI,FG,EG)
170 CALL LINK:("CIFCLE",X,Y,2O)
18O CALL LINK("TUKN", BO)
190 NEXT I
200 GOTO 200
```

From the centre point of the graphic window, program line 150 draws a line with the length 3 .

Line 160 determines the final cursor position, line \quad iol tales this position as centre point for a circle with radius \because.

FOFMAT

CALL．LINH（＂AXIS＂．X．LENXF，LENXL，DELTAX，Y，LENYU，LENYD，DELTAY）

DESCRIPTION

```
"AxIS" draws a system of coordinates with the following parameters:
    X,Y ....... Centre point of coordanates
    LENXL ..... Left hand side X-semi-a`is (length)
    LENXFi ..... Fight hand side X-semi-a%is (length)
    DELTAX .... Fitch of the X-grid
    LENYU ..... Top Y-semi-a%is (length)
    LENYD ..... Eottom Y-semi-axis (length)
    DELTAY .... Fitch of the Y-grid
```

All walues are talen as absolute values．If one of the semi a\％is has the value o，then this semi axis is not drawn．

If the value for the grid equals o or more than that of the corresponding semi a：is，no grid will be drawn．

After the e：ecution of＂AXIS＂the cursor will assume the position at the centre point of the coordinate system．

The internal angle FHI is altered．The system of coordinates may not be completely on the screen．

EXAMPLES

```
10G FEM ZYKLLOM
11(FEEM ******
12O CALL LINK("GFAFIC".(1)
125 CALL LINK("WINDOW", ミ,8)
1\becauseFF|=8*ATN(1)
140 CALL LINH:("AX15".8.0.110,4.6!.,\.50.4,
15% X=7
10% CALL LINF("SETTO", X,40)
170 FOF FHI=O TO Z*FFIZ STEF FII/16
13! X=X+2
190 Y=20*(SIN(2*FHI)+2*COS (FHI)) +50
200 CALL LINI ("MOVETO",X,Y)
210 NEXT FH1
ココロ GOTO ご回
```


HSTOXA

FORMAT

CALL LINK ("HSTDIA", X,Y,WIDTH, HEIGTH, DEF'TH)

DESCRIPTION

"HSTDIA" draws a bloct diagram with the following parameters:
X, Y...... Coordinates of the left bottom corner of the block:
WIDTH Width of block diagram
HEIGTH Heigth of block diagram
DEF•TH Depth of bloct diagram

Only the absolute values are token.

EXAMPLES

```
10G FEM HISTOGFIAMS
110 FEEM **********
120 CALL LINK,("GFAFIC",0)
1こ5 CALL LINK`("WINDOW".3.8)
1?O FOK N=2 TO 2O
140 CALL LINK%("SETCOL".N,14.2)
150 NEXT N
160 CALL LINF:("AXIS",8,10,120,8,20,90,0,4)
170) CALL LINK:("HSTDIA",16,22,12,80,6)
180 CALL LINF:("HSTDIA",40,22,12,45,6)
190) CALL LINK("HSTDIA",70,22,12,67,6)
200 CALL LINE:("HSTDIA",94,22,16,12,6)
210 CALL LINK("WFITE",15, 彐."HISTOGFAMS")
220 GOTO 2NO
```


coc

FORMAT

CALL LINF（＂CFCDIA＂，X，Y，FADIUS，FHI，DFHI＊（，X1，Y1，FHI1，DFHI1，．．．）＊）

DESCRIPTION

＂CFiCDlat＂draws a circular diagram with the following parameters：
\dot{x}, y. Coordinates of circular segment centre point
FiADIUS ．．．．．．Fiadius of circular segment FHI ．．．．．．．．Start angle of circular seqment DFHI ．．．．．．．Final angle of circular segment

Only the absolute values are regarded．

EXAMPLES

```
100 FEM CIFCULAFi DIAGFiAMS
110 FiEM *****************
120) CALL LINF:("GFAFIC",(0)
1こ5 CALL LINK ("WINDOW", З,8)
1 GO FOF N=1 TO 1こ STEF 2
140 CALL LINF:"SETCOL",N,16,2,N+1.14,2,N+14,9.2,N+15.
13,こ)
150 NEXT N
160 CALL LINE("CFCDIA",64,60, 38,180,276)
170 CALL LINK("CRCDIA",68,60, 38, 276,450)
180 CALL LINF("CFECDIA", 68,64,38,90,180)
190 CALL LINK.("WFITE",14,2,"CIFEC-DIAGFAMS")
2O0 GOTO 2OO
```


WRITE

FORMAT

CALL LINF ("WFITTE", 2, S, STFING* (, 21, S1, GTFING1,.....)*)

DESCRIPTION

"WFilTE" enables the mi:ing of graphic and te:t.

At position row (2) and column (S) of the graphic window "WFilTE" dısplays a string (STFiNG).

Limitations: $\begin{array}{lllll}2 & \ldots . . . & 1 & \text { to } & 15 \\ & \text { S } \ldots . . . & 1 & \text { to } & 16\end{array}$

If the string is too long for the appropriate line, the rest will be cut. A ma:imum of 5 strings can be entered with one parameter list. The ASCII codes lupper cases, lower cases, digits and special characters) apply.

DSPLAV

FORMAT

CALL LINF:("DSFLAY", Z,S.SI2E,VAFis)

DESCRIPTION

This statement corresponds to the well linown EXTENDED EASIC command "DISFLAY AT". It as using the following parameters:

2	Fiow of	screen	(1-24)	
5	Column	of screen	($1-32$	
SI2E	Length	of the string	(ma):	32)
VAF:I	String	varıable	(mas:	-2)

With this statement $S I Z E$ characters of the string UAF are transmitted to the screen position (2,S). Hereby graphic values located under the string are erased (difference to "WFiITE"').

If SIZE 15 negative. SIZE positions are not deleted before the output of the string.
"DSFLAY" is in graphic mode available, only if the mode has been set $\therefore 0$.

ACCEPT

FORMAT

CAL! 1.INF ("ACCEFT", Z,S,SIZE, VAFis)

DESCRIPTION

This statement corresponds to the well inown ExTENEED FASJC statement "ACCEFT AT" and is using the followin parameters:

```
Z .......... Fiow of the screen
S ......... Collimn of the sereen
SIZE ...... Length of the straric
variq....... String variable
(1-24)
(1-52)
(ma::. \becauseS charracterr)
(ma:: . }\because\mathrm{ characters)
```

"ACCEFT" accepts SIZE characters of a string at the position (Z.S).
If SIZE is positive SIZE positions are deleted previously.
During the input the following feys are active:

CAUT ION

) "FCTN CUIT" and "FCTN CLEAF" are ineffective during the e:iecution of this command.

While accepting all ley codes can te? addrested, hut for te:it purposes only UALFHAS (upper rasess) are usefull.

ACCEFT

EXAMFLES

```
10G FEM 5TAF:1
110 FIEM *****
1二G CALL LINR("GFiAFIC",1)
12\Xi CALL LINI ("WINDOW", 
1ZO CALL LINI ("SETCOL",12.こ)
140 CALL LINF ("SETTO",5, 6O)
150 CALL LINF("MOVE",120)
16O C.ALL LINI:"SETTD",64,1)
170 CALL LINO!"TUFNN",90)
1BO CALL L.INF:"MO'JE", 120)
190 51=5
200 21=60
210 2こ=.06
=ッツ==64
\because~O-=124
240 2こ=60
こ5! 24=84
ZSG 54=64
270 FOF I=1 TO 10
28O CALL LINH ("SETTG",S1, 21)
290 CALL LINK(MOVETO",S2.22,5こ.2こ.54,74,51,21)
3O) 51=S1+4
ミ1U 2こ=2こー4
720 5?=53-4
\becauseO4=24+4
`40 NEXT I
#SG CALL LINH ("WFIJTE", 15.1,"DAS IST GFAFHIF")
-Gi) CALL LINI"("DSFLAY",17, 彐, 27,"EEI EINGAEE VON STOF" WIFD")
\Xi70 CALL LINI ("DSFLAY",18, %, 27,"DIE GFIAFHIV AGGFFFOOCHEN"")
BBG CALL LIHJ ("ACCFFT",`こ, -, 4,M&)
\Xi90 IF M&, 5TCF THEN 120
4@G STOF
```


SHIFT

FORMAT

CALL LINF " SHIFT", DELTAX, DELTAY)

DESCRIPTION

This statement performs a linear transformation of the graphic.
DELTAX Movement in X-dirertion (collumns) (positive values rightwards)
DELTAY Movement in Y-direction (rowsi) (positive values dowiwards)

CAUTION

The graphic windows in the screen will not be trarisformed!

GSAVE

FORMAT

CALL GSAVE ("File NAME")

DESCRIFTION

With this staternent it $1 s$ possible to save screen displavs.
Graphics can only be saved on floppy dists. Any valid file name mav be used. The file riame cian be fentered as a string or a string varlable. The name of the file may not be longer than 9 fharacters.

The saved file, 5 formatted in the "Mimofir IMAGE" format. The colors of the graphis and the position of lhe graphic wimow are also etored on total \because consequent files.

GLOAD

FORMAT

CALL GLOAD（＂FILE NAME＂）

DESCRIPTION

This statement loads a or aphic called＂File NAME＂from dislette into VDF FiAM，unless being previously stored with＂GLDAD＂．

Usang CALL GLOAD without e：：ecuting previous a＂Griafic＂statement will cause an error message and program exfcution interrupt．

EXAMPLES

```
1OG FEM SAWE GFIAFHIC
11O FIEM ************
12O CALL LINI<"GFIAFIC",O)
1こ5 CALL LINH ("WINDOW".*.B)
1-G FOF F:== TO 4O
140 CALL LINF:("CIFiCLE",&4,60,F゙)
150 NEXT F
1SO CALL GSAVE("DSK`.SAVETEST")
170 STUF
```


rNEW

10 FEM LOAD GFAFHIC
110 FEM＊＊＊＊＊＊＊＊＊＊＊＊＊
120 CALL LINF（＂GFAFIC＂，O）
$1 \because$ CALL GL＿OAD（＂DSI：S．SAVETEST＂）
154 GOTO 140

The nerevous e：ample rauses the generatison of the following files on DSt：2．

＂SAVETEST＂	Contains grapfar table and Darameters
＂SAUETEST1＂	Contains a corpen dump
＂SAVETESTこ＂	Contains colore of the graphic

Ey sawing and loading the graphic only the first file name，in our case＂SAVETEST＂must be stated．The input of the sexond or third file name leads to incorrert functioris．

The statement＂wINDOW＂ran br eaneellifl by loadimothe araphir because every whindow on the scrien 15 overwitten by the ladeded arapliag．

EACDFV

FORMAT

CALL EHCOF•y（＂FILE NAME＂．＂ESC－SEQUENCE＂）

DESCRIFTION

＂EHCOFY＂produces screen dumps with afot matiry pronters lile EF＇sQN or compatible ones in＂EiIT IMAGE MODE＂．

In this way the creation of graphics by matri：primers beromes very easy and fast．These hardcopy routines worl 1 n the standard mode of the Extended EASIC IIPus too．

The parametere arte：

File NAMF Frinter options

The din switches of the printer have to be set accordingly

ESC－SECLFNCE Firantifer adjustment
e．g．：
＂f＂or＂L＂
for normal or doobble density 1 H EIT IMAGE MODE

CAUTION

The file name extension．CFi 15 essentially for correct worling of the routines．The pranter must heve＇set the inverse signal＂AllTO FEED XT＂ internal to＂ON＂．

Using serial interfaces（F゙Sごス）the eッtension ．DA＝ 9 must be added． The printer needs to be set to g data hits，ton．

According to the ESC seduence has to the combithoritt fhw mamuld of the

 characters CHFit（0）and CHFit（1）（for the subsemupnt asis fivtes）． afterwards the 25S Fytes，corresponding to the hardcopy of one serpen line and rlosing CHFi（1？）for CF）．This respects the datatransfer sequence of TI Line Frinter（EF SQN）wsing the But Imane Mode． Format－Samples：

CAL＿L EHCOT＇Y（＂F ID．EF：＂．＂L＂）

EHCOFTV

EXAMPLES

```
1", FEEM EFSONCOFY
11G KEM *********
120 CALL L.INF("GFAFFIC",O)
130 CALL L.INT ("WINDOW", 昭)
140 CALL L. INF ("CENTFE",64,6O)
150 FOF FHI=0 TO 35S GTEF S
130 CALI LINF""SETTO",O,O)
170 CALL LITN ("TUFNNTO",FHI)
18O CALL L.IN| !"MOUE", 5O)
190) NEXT FHI
Z%, CALL LINH"("WFIITE",15,6, "EHCOFFY")
210 FOFFTq="FSSここ. FIA=Ct,OO.DA=EI.CF""
215 FEM
```



```
2こけ FFFINT #1:CHF% (こ`):"A":CHF.& (8)
240 CLOSE #1
245 FEM
=5% CALL EHCOF-Y(FOF'T$, "F"")
こかO STOF
```


Fig．3）BHCOPY

The rear oduction of the radiating wreath on the orinter in genorated
 detormed elluntirally wring doutile rar．．．．．．．．．．．．

MARDCOPY DEMONSTRATION PROGRAM

In the fallowng a proaram e：admple alled＂HCOFYDEMO＂．
This proqram demonstraters how various graphis patterns are ereated．

This program as a luseful aid studilng the outiput of graphic to a matri：：pranter．

```
1(1O FEM ************************
11GFEEM **************************
1このFEM ** **
1-0 FEM ** HCOFY [ E M O **
1^CFEM ** **
15いFEEM **************************
1ふ几FFEM ************************
170 FEM
130 FEEM WY AFESOFT 19G50:01
ZOH FEN
ユO F-OFT$="FG=`こ. HA=GSOO.DA=8. CF:" ' SCHNJTTSTELLENOFTTION
こ\becauseG FROM
24O FEM LINE FEED FEDMCTION TO S FIXEL. FOWS
こちG FiEM ***********************************
```



```
こつ\emptyset OFEN #1:FOFTT$, CUTFUIT
2GG F.FINNT #1:LF8$
290 CLGSE #1
B(M) FEEM
Y1G FEM FATTEFN FOF THE "GAFESOFT" COF.YFIGHT SIGN
シコ!FEM *****************************************
```



```
F,9%.E=C1QOGOBOC1ESFF
```



```
こoG DATA 1!4.7FフFフFフFフFフFフFフF
```



```
FフF, 1O9, OMMOE7ETETCフ日GO
```



```
SG!, 11-, FFFFFEFEFEFCFBEO
```



```
F7F,1こ1, 7FったフFフF7FフFフF7F
```



```
FTF,1こ?, TFフFTFZFGF1FOFGS
```



```
OBC, 1 G.FCFCFEFEFEFE゙FFFE
```



```
GFC,1?, IFFFFFFFFFFFFF-F
```


MAFDCOPV DEMONSTRATIN

```
470 FEM
4GO FEM TFANGFEF CIF AFFE CHAFIACTEF:
485, 「EMM *************************
490 CALL CIEAF:
EOG CALL SCFFEEN(2)
S1O FEAU 1,N'S
SNO CALL CHAFF(I,N$)
5O JF I : 141 THEN 5]G
54C FFIINT TAE(5');"MICFOCOMFUUTEF:": :
```



```
a";CHF%(1こ⿱):CHK$(Jこの)
```



```
SQG FFFINT :TAE(11):"SOFTWAFEE": : : : : : : : : : : : : : : :
GOO CALL SCFEENN(4)
G1O CALL FHCOFY(F.OF'T$,"%")
615 CALL ALLSET
6こ0 FEM
6?G FEM OUADEF:
640 FEM ******
bEO CALL LINI,("GFiAFIC",O)
ob0 CALL LINI.("CENTKE",1,-2)
67g CALL LINI ("WINDOW", 1,1)
680 CALL LINF:("TUFNTO",41.810P)
690 FOK Y=-\because0 TO -Y5 STEF - -
7O% CALL LINF("SETTO",X,Y)
70G CALL LIIN ("MOVE",4O)
720 NEXT Y
70}Y=-5
740 CALL LINF ("TUFNTG",90)
750 FOF }x==2=2 TO 117 STEF :.
7SO Y=Y+1
770 CALL LINK:("SETTO",X,Y)
780) CALL LINH:("MOUE",G5)
790 NEXT Y
8OO CALL LINI("TUFINTO",-19.4749)
810}Y=-马!
82! FOFi Y=1 TO \becauseZ STEF :
8B0 CALL LINH ("SETTO", X,Y)
84O CALL LINI ("MOUE".92)
850) Y=Y-Z.5
8S(i) NEXT X
87O CALL EHCOF`Y(FOF-T$."F.")
```


HAFDCOFV DEMOMSTFATIGN ऊ

```
GBG FIEM
GQU FIEM FYFIAMID
GOH FEM *******
91O CALL LINI ("CLTELE")
920 CALL LINH ("CENTFE",64,1)
9#4 YG=-96
```



```
950.) CALL LINF ("SETTO",0,0)
QSI. CALL LIPH ("MOUETO",XG,YG)
O?
GGO NEXT XG
990 CALL LINH ("SETTO",0,0)
10M CALL LINH:("FEMVTO",XG,YG)
1010 FOF: XG=\\G+马 TO 4S STEF G
1OEO CALL LINI ("SETTO",O,O)
10-9 CALL LINI.("MOUETO".XI,YG)
1OQO YG=YG+#
105G NEXT XB
10?0 CALL FHHCOF'Y(FOOFT$."K")
10日G: F:FM
1OMOFEM CYLINDEF:
110G FEEM *********
1110 CALL LINF:("CLTELE")
1120) CALL LINH ("SETELE".12)
11-0 CALL LINF ("WINDOW".-1.4)
1140 CALL LINH ("CENTFF",4日,1)
1150 CALL LINF("TUFNTO",G)
1160 FOF: Y=-120 TO -40 STEF `
117O CALL LINt.("ELLIFS",0,Y,43,24)
1180 NEXT Y
1190 FOF Fi=48 TO 2 STEF -2
12OH CALL LINH("ELLIFS",O,Y,F, F゙ノこ)
121@ NFYT Fi
127O CALL BHCOFY(FOFTTL."Y')
```


HAFDCOFY
 DEMGNSTRATKN

```
1240 FIEM
125G FIEM CYILONE
1こ60 FiEM *******
1こフ0 F.I2=@*ATN(1)
1280 CALL LINK("GFAFIC",1)
1:90 CALL LINF("WINDOW",5,8)
1-00) CALL LINF ("CENTFE", 1,40)
1310 CALL LINH ("AX15", 3,116,0,4,0, 3.4,40,4)
1ここ0 }X=\mathrm{ ?
1\becauseG CAILL LINH ("SETTO", x,-2O)
1.40 FOF: FHI=O TO -*FFI2 STEF F.12:16
1-50) }x=x+
1.0% Y=20*(S.1N(2*FHI)*COS(F.H1)*2)
1~.7O CALL LINH ("MOVETO", X.Y)
1.9O TNEXT FHI
17.9G CALL LIPN.("DSFLAY".13.9.G,"AVEFIAGE")
14OM CALL LINH ("DSFLAAY",17,7,17."VALUFES")
1410 M&="TEMFEFATUFE"
14こOFOF: Z=气 TO 15
14ごO CALL LINH("DSFILAY", 2.7.1.SEG$(M$,7-4,1))
1440 NE:T Z
1450 CALL LINK:("WFITE",10, -."day-degrees")
1470, CALL EHCOF'Y(F.DF'T$,"ゲ")
1490 FEM
149O FEEM HISTFRGGFIAMS
1500 FEEM ***********
1510 CALL LINI.("GFAFIC",0)
15=0 CALL LINI:("SETEILE", 24)
15ミ! CALL LINH:("WINDOW",1,1)
1540 CALL LINK("HSTDIA",1,68,4,8,2,8,56,8,16,4,24,32,12,32,3)
1550 CALL LINF ("HSTDIA",50,0,1日,50,11)
1570 CALL FHCOFY(FOFT直,"r")
1580 FEMM
15OU FEM TOFILS
160% FEMM *****
1610 CALL LINF("CLTELE")
162O CALL LINI ("CENTEE".96,4O)
16%:FIANC=4*ATN(1)
164O FOFE FHI=G TO =*F.TAF:C STEF F.IAFC'AO
1SEM CALL LINH ("CIFCLE", GS*SIN(FHI), OO*COS (FHH), 17
lobg NEXT FHI
16GO CALL HHCOFY(FOFT$$."'")
```



```
1690 FEFM
170O FEEM FLOWEF:S
1710 FEEM *******
17=O CALL LINH."GFAFIC".(口)
17?O CFILL LINH"("WINLOW", 1,4)
1740 CALL LINH ("CENTFEE",54,49)
175G CALL L.INI ("SETTO",O,O)
17SU FOF FHI=O TO ここ.5 STEF ここ.S
17>O CALL LINH ("TUFNNTO",FHI)
1?GO FOF: }x=1\mathrm{ TO 7
1790 FOF W=0 TO 15
1GआO CALL LINH ("MOUE",4)
1日1O CALL LINT ("TUFN",W)
1QNG NEXT W
1OSO FOF: W=1& TO 4 STEF - 1
1940 CALL (INF ("MOVE",4)
1FEM CALL L.INI ("TUFIN",W)
1BSG NEYT W
18?O CALL LINI("MOVETO",O.O)
1घBOG CALL LINF:("TUFN",&)
1890 NEXT X
190% NEXT F.HI
1910 FOF K=1 IO 12
1920 CALL LINI:("CIFCLE",O,O,F:)
19\Xi0 NEXT Fi
1950 CALL EHCOF'Y(FOF'T$,"ト")
1960 FEM
1965 LF$=CHFis(10)' LINE FEED
1970 OF'EN #1:F\cdotOF'T$,DUTFUIT
1975 FFFINT #1:CHF%(こ7):CHF゙$(こ)' FESET TO STANDAF:D LINE FEED
```



```
LF$
1990 FFIINT #1:I_F$;" G Fi A F H I C'':LF$:L.F$
2010 CLOSE #1
马ON" CALL LINF ("BYEFYE")
```


QUICREFEFENEE

Alpharetic QuICk REFEFENCE

The order of statemente distegerds arny preceeding calle or cal. L. IN: s. \because

CALL LINK.("ACCEPT", $2,5,5 I Z E$, VAF $\$$)
acefpte SIz[charactere of the string VAF:\$ at position (2. S).

CALL ALLSET

CALL APESOFT
 This rommand must be thered before, loading of EASIC programs.

CALL LINK("ARCUS", X,Y,F,PHI,DPHI*(,X1,Y1,R1,PHI1,DFHI1, ...)*)
oraws arcs with the centre point x, y, the radius fi, the starting angle FHI and the arc angle DFHI.

CALL LINK("AXIS", X, LENXL, LENXR, DELTAX, Y, IENYU,LENYD, DELTAY)
or aws a sustem of roordinates with thr centre poirit x, Y, the left
 x-grid DELTAY. the uppor y-semi-a:is IrNYU, the bottom y-5emi-axis I ENDY and the fitch of the Y-grid DFltar.

CALL EHCOPY("FILE NAME","ESC-SEQUENCE")
gerierates srifen copire on EFGON or compatjble printers in "HIT IMAGE MODE". "FIIE NAME" respect the intertace options and "ESC-SEDUENCE" meance the PRinter adjustmont.

GUTEK FREEFERENOE

CALL EYE

erases the loaded programs and data and calls the master screen. The EASIC-Mode will be left.

CALL LINK("BYEBYE")
cancels the graphic mode. loads the standard character sets and reestablishes, standard mode of E:itended EASIL IIMus.
(CALL LINK ("CENTRE", X, Y)
defines the system of user defined rorordinates with the (ou, opoint at the position (Y,Y) of the graphic tatole.

CALL LINK ("CIRCLE", $X, Y, R *(, X 1, Y 1, R 1, \ldots) *)$
draws a circle with the centre point x, y and the radiur fi.

CALL CLRAPE

initializes Extended FASIC just lite after selction of MECHATFIONIC EXTENDED EASIC from the main menue. It may only be entered after es:ecution of CALL AFESOFT otherwise $1 t$ will cause a synta\% error.

CALL LINK ("CLARCS", $X, Y, R, F H I, D P H I *(, X 1, Y 1, R 1, F H I 1, D P H I 1, \ldots) *)$ erases the arc pi:iels.

CALL LINK ("Cl_CRCL", X, Y, $F *(, X 1, Y 1, R 1, \ldots) *)$
erases the: trcles.

erases the ellipses.

CALL LINK ("CLRECT", A, B¥ (, A1, B1, ...)
erases the rectangles

QUIERKFEFEFENE

CALL LINK("CLSCRN")

clears the screen. The graphoc in the table together with all other internal parmeters remain.

CALL LINK ("CLTBLE")
clears the araphic table and thus tho graphic.

CALL LINK. "CPCDIA", X,Y,RAD, PHI, DPHI* (. X1, Y1, RADI, PHI1, DPHI1,...):

 amgle of tiec circular seqment DFHI.

CALL LINK. "DSPLAY", $Z, S, S I Z E, V A F \$)$
set $=$:iJF charar.ters of the string vifit at nositu ari iz.S).

drawe ellifises with the a:is centre point x, y, of the toig semi axis A. of the small stmi a:is Fi and the lnclanation FHI of the big semi axis.

CALL FIND ("GET-STRING"."STRING ARRAY" (), RETURN VAFIABLE)
15 looling in a one-dimensional string arrav for "GET-STFiING". The FETUFN wAFiIAELE carries the number of the wantect elemente If WANTETF:ING $1 E$ nOt foundea. FETIFIN VAF:IAFLEE QETS trie valle - 1.

CALI. FLOAD("FILE NAME")

CALL GFEEK (ADDFESS, NUMEFIC VARIABLE LIST)

QUICK FEFEFKENIEE

CALL LINK("GRAFIC",MODUS)

signalizes the qraphic mode, jnitiali.ris all the computer registers and defines a graphic table (ma\%. 12 g vertical and 120 horizontical lines) depending on the MODUS (graphir or te:it mode).

CALL GSAVE("FILE NAME")

saves the colloris of the graphic, the position of the graphig window, and the graphil parameters in "MEMOFY IMABE" format on dislette.

CALL LINK("HSTDIA", X,Y,WIDTH,HEIGTH,DEPTH)

draws a bloct diagram with the coordinates of the left bottom corner of the tilacl x, Y, the w: dth WIDTH, the hergth HEIGTH and the depth DEFTH.

CALL LINK("IFSET", X,Y,VAR*(, X1,Y1,VAR1, ...)
checl:s if a pixel with the coordinatas Y. Y is set or not and returns the result to the variable UAF:

CALL LINK("INVERT", $X, Y, D X, D Y)$

inverts sections of the graphic: with x, y the pi:es position of the upper left corner, with DX the pi::el column posjtion and with DY the pixel row position of the inverted graphic section are stated.

CALL MLOAD("FILE NAME", MODUS)
loads saved Clll fiAm contents bacl :ili thw CFll nf thm Tl-QQ/AA.

 ber per formed.

CALL MOVE (MODUS, START ADDRESS, TARGET ADDRESS, BYTES)
moves the contents of menory blorta with the length EyTES depending of the MOLUS (1-4) between VI)F FiAM and (Ill finm or within UDF F:AM or CFul FFAM.

QUICOK FREFERENRE

CALL LINK("MOVE",DIST)

draws a lime of the length DIST, startifg from the present posjtion x. Y of the Eursor with the present anternal angle fill.

CALL LINK: ("MOVETO", X,Y*(, X1, Y1, ...)*)
draws a line from the present anternal position of the rursor to the ne: t one u y the parameter palar X, y drofimed positiori.

CALL MSAVE ("FILE NAME", STAFT ADDFESS, BYTES)

saves memery hlocte of the Cribriam with the Jemgth liytfes to an e:ttornal rjevirf an program amage format.

CALL NEW

er ases the EASIC program and data J f FinM and prepares the romputer for recriving of new FASIC progr ams.

CALL QUITOF

desactivates the QUIT function (FCTN =).

CALL QUITTON

reactivates the desactivated otil fumrtion.

CALL LINK("RECT", A, B* (, A1, E1, ...) $\#$)
 parameters.

CALL LINK("REMOVE", DIST)
deleters all mixels from nosituon x, y in to tha hist distant new position of the cursor.

CALL LINK("REMVTO", $X, Y *(, X 1, Y 1, \ldots) *)$
deletere the linocs

QUIEK FKEFEFENGE

CALL LINK("RESET", $X, Y(1, X 1, Y 1, \ldots) *)$
erasps pa::els with the coordinates x, y.

CALL RESTORE (NUMERIC VARIABLE)

prepares the computer to process the ne:t DATA statemont using the line number Garried by the NUMEFIC VAFiIELEE.

CALL SCREENOF

```
SWitcher, the rereen off.
```


CALL SCREENON

reactivatms thre serewn.

CALL LINK("SETBLE", BREITE)
dimensions the graphal tahle.

CALL LINK("SETCOL",FOREGROUND COLOR, GACKGROUND COLOR)
changes foreground and hardground eolor eimultaneously for the entire graphic.

CALL LINK("SETCOL",N,FG,BG* (,N1,FG1, BG1,....)*)
defines the foreground color (FG) and baclogromet onlar (for) far the character set cinccified tuy N.

CALL LINK("SETTO", $X, Y \neq(, X 1, Y 1, \ldots) \neq)$
sets pieds with the coordinates X and Y.

CALL LINK ("SHIFT", DELTAX, DELTAY)
transformes a araphic linear by the values DELTAX in column directaon and DELTAY in row directiom.

QUICRE FEFEFSENCE

CALL SFFOF

```
    stopps thp movement of all sprites at once.
:
call spron
```

```
restarts all stopped sprites.
```

```
restarts all stopped sprites.
```

CALL LINK ("TABLE", $2, S$, XMAX, YMAX, BYTES)
returns the present parameters of the fraphio table ta the alven
variables, whoretyy 2 corresponds to the mumber ut rowe, 5 to the
number of columns. XMAX to the mexilmal fi:iel rolumns. YMAX to the
ma:imal pi::el rows of the tablen and EYYES to the mumber of abailable
bytes.

CALL LINK("TUFN",PHI)
adds to the present internal angle of the cursor the angle frij in decimal degrees. FHI turns rloctwise.

CALL LINK("TUFNTO",PHI)
sets the internal angle imperatively to fHl (degrefos).

CALL LINK ("VALUES", X, Y, PHI,FG, BG)
returns the present internal parameters to the variathe lust. whereby X means the rursor column, Y the cursor row. FiHl the rursor angle. FG the foreground color and $E G$ the barkaround color.

CALL UFEEK (ADDRESS, NUMEFIC VARIABLE LIST)

reads the contents of the suthsequment addresore of thr bif fiAM, starting with ADDFESS, and returns thom to the NumfFilG VAF:lfFll LIST.

CALL VPOKE (ADDRESS,NUMERIC DATA)

writes numeric data direct into sut.erpuent adoressise af thr vibf fiam. starting with ADDFESS.

QUICRK FEFEFENCE

CALL WAIT (DURATION)

results delays, with those to the numeric variable DUFATION assigned number of $1 / 50$ seconds.

CALL LINK ("WINDOW", ROW, COLUMN)
sets the entire graphic table (16*3 columns, $15 * 8$ rows or $11 * 8$ rows in the te:it mode) at position column (1-72) and row (1-24).

CALL LINK ("WINDOW", Z, S, ZA, SA, DZ, DS)
transmits sertions of the graphic table to the soreme z means the row. S the column, ZA and GA mean the upper left ormer fonint of the graphic table, $D z$ the number of qraphic table characters in row direction and $D S$ the number of graphic table characters in colum dirertion.

CALL LINK ("WRITE", $2, S, \operatorname{STRING}(, 21, S 1, S T R I N G 1, \ldots, *)$
enablec the mixing of graphic and te:t in the graphic table and writes a string (STFING) at position row (2) and column (S) of the graphic table.

REEFERENCE LIST

REFERENCE LIST FOR MECHATRONIC EXTENDED BASIC IImus

Following abbreviations are used:
(D) allowed only in Disect mode
(C) subroutine preceeding C) ALL
(L) assembler routine preceeding CALL L)INK

REFERENCE LIST

RREFERENCE LIST

REEFERENCE LIST

REFERENCE LIST

MEMGFY MAFPINE

Commands of the extended statement set of Mechatronic Extended EASIC IIMUS Iite CALL VFEEK. VFOKE, MOVE, MSAVE. MLOAD require detailed knowledge of the system organisationg if their whole power shall be used.

In the following is written a short survey of the memory mapping of the TI-99/4A, which may give the user some orientation. Anyway, this Ex:tended $B A S I C$ reference manual can not provide details of the operating system or the EASIC interpreter. More detailed information can be found in the Editor/Assembler manual.

MEMORY MAPPING DF THE TI-99/4A

The TMS 9900 microprocessor has an adress space of 641 bytes. In the Home Computer, some of this adress space contains FAM and some contains FOM. In addition, some adresses are used for access to special devices, such as sound and speech, and other areas of memory. such as VDF FiAM and GFiOMs.

In the following the memory map directly adressable:

FOMS AND GFRMS

ROMS

All the FiOMs (Fiead Only Memory) are directly accessable by an assembly language program. Two 4t: byte console foMs are located at adresses OQGO through \quad IFFFF. They contain the operating system, the GFL interpreter, and parts of the TI EASIC interpreter.

GROMS

A GFOM (Graphics Fiead Only Memory) is another type of FOM. It is designed to contain GFL (GFL = Graphics frogramming Language) programs which are e::ecuted by the GFL interpreter in the console. GFL is commonly used in applications software and can only be executed through a GFiOM.

VDP-RAM
The Video Display Frocessor (Fiandom Access Memory) KAM, located in the console. 15 chiefly used for common video functions. such as screen images, character pattern tables, color table etc.

When E:tencled EASIC is in use, VDF FiAM also contains the EASIC program the program symbol table, the value stack, and the string space. The VDF FiAM is also used as storage space by application programs. Fart of VDF FiAM is used as a data buffer. Another part of VDF FiAM functions as a F.AE (Feripheral Access Elocl:) to pass information from a file to appropriate DSFi (Device Service Foutine). Assembly language programs cannot be executed from UDF FAM.

VDF FAM is a memory-mapped area of 161 (16384 or 9000) bytes numbered OOOG through : JFFF. UDF FAM adresses are automatically incremented, so only one adress in CFUl FAM is required to read or write a specific bloct of data.

VDP MEMORV LSE

80000	Screen	0000
O2FF		0767
20300	Sprite Attribute List	0768
00370		0880
20371	EASIC Temporaries	0881
OOEEF		1007
203FO	Character Tables	1008
2077 F		1019
20780	Sprite Motion Table	1920
OGFF		2047
$\bigcirc 080 \mathrm{~F}$	Color Table	2063
081 F		2079
0820	EASIC Crunch Euffer	2080
00957		$2 \Xi 91$
20953	Value Stact:	2392
	String Space	
	Symbol Tabels	
	Line Number Table	
	Crunched Programm	
	FAE	
SFFF		16393

REMARKSS TO VDP RAM USE

REMARKS TO VDF RAM USE

```
;
i
```


Screen Images

The 769 Characters (32 columns $: 24$ rows) of screen are aranged line by line by the adresses 0 through 767 starting in the upper left corner.

Every character is represented by one byte. This byte corresponds to an offset of 96 to the value of the ASCII Code of the displayed character. (ASCII value + 96).

Sprite Attributes

In this area are stored the data of the sprites \# 1 through 28 subsequently. Every sprite is represented by 4 bytes in following order:

```
1. Y-Foosition (Fi%el row 1 = 255)
    (Fi%el row 2 = 0)
    (F1%el row }2=1) etc
2. X-Fosition (Fi:el column 1 = 0)
(Fi:el column 2 = 1) etc.
3. Character Code (Offset of ASCCI codes of sprite character)
4. Color Code (EASIC color code minus 1)
```


Character Patterns

The images of the ASCII codes 30 through 14 t are subsequently by 8 byte defined. The character definition correspondes to that of BASIC with one e::ception: Each byte in he\%adecimal notation has to be converted in decimal notation. (1 Eyte $=2$ he: diqits. off corresponds to dec 00 - 255).

Example:
CALL CHAF (こ2.007C7C7C7C7C7C7C)
CALL VFOHE (1024,0,124,124,124,124,124,124,124)
If no sprite motion occurs, the ASCII Codes 144 - 159 may be applied.

FREMARI<S TO VDF FAM LSE

Sprite Motions

In this area are the velocities of the sprites \#1 through \#28 subsequently stored. Every sprite is represented by 4 bytes in the following order:
\because

1. Vertical speed
2. Horizontal speed
3. Used by operating system
4. Used by operating system

Color Tabel

Informations about both, foreground color and bactoround color. of the character sets O through 14 are subsequently stored in one byte. The value is the result of foreground color code minus 1 times 16 plus background color code minus 1. E. g. entering CALL VFOKE(2063,96) results a dark red cursor during program execution.

Crunch Buffer

Geginning with address 2240 through $2 \Xi 91$ are the mavimum 151 characters of the last beyboard entry subspquently stored by their offsets), which may be recalled by FiEDO (FCTN 8).

BASIC Programs

User depending data as there are crunched EASIC programm lines and the appropriate line numbers, symbol tabels, string space etc. do not have fixed start addresses. They depend on the system configuration and the program itself.

CAUT ION

Unicovered use of the statements VFOFF or MOVE commonly causes a system crash in connection with the total loss of stored program and data. Therefore, before starting experiments barking up the used programs is strongly recommended.

[^0]: ＇n： 1 nverts torfgroumd arid tatelgromma iolor．

