Please do not upload this copyright pdf document to any other website. Breach of copyright may result in a criminal conviction.

This Acrobat document was generated by me, Colin Hinson, from a document held by me. I requested permission to publish this from Texas Instruments (twice) but received no reply. It is presented here (for free) and this pdf version of the document is my copyright in much the same way as a photograph would be. If you believe the document to be under other copyright, please contact me.

The document should have been downloaded from my website https://blunham.com/Radar, or any mirror site named on that site. If you downloaded it from elsewhere, please let me know (particularly if you were charged for it). You can contact me via my Genuki email page: https://www.genuki.org.uk/big/eng/YKS/various?recipient=colin

You may not copy the file for onward transmission of the data nor attempt to make monetary gain by the use of these files. If you want someone else to have a copy of the file, point them at the website. (https://blunham.com/Radar). Please do not point them at the file itself as it may move or the site may be updated.

It should be noted that most of the pages are identifiable as having been processed by me.

I put a lot of time into producing these files which is why you are met with this page when you open the file.

In order to generate this file, I need to scan the pages, split the double pages and remove any edge marks such as punch holes, clean up the pages, set the relevant pages to be all the same size and alignment. I then run Omnipage (OCR) to generate the searchable text and then generate the pdf file.

Hopefully after all that, I end up with a presentable file. If you find missing pages, pages in the wrong order, anything else wrong with the file or simply want to make a comment, please drop me a line (see above).

It is my hope that you find the file of use to you personally - I know that I would have liked to have found some of these files years ago - they would have saved me a lot of time !

Colin Hinson
In the village of Blunham, Bedfordshire.

Diskette

Software

Toth in outine tipraty

 from an exolic - ${ }^{\circ}$ FUUCTION ANALYS tables, and finds zeros BASES, PRs, computes prime haich functions.

of a matrix and solves up up ivns. Computer and the equations with ten in the T T-99/4 Home Controler and $T 1$ Disk

As this manual was designed for the U.S. market, the warranty conditions described herein are not applicable in the U.K. The only valid Guarantee Conditions are those set forth in the "Users Reference Guide" accompanying the Home Computer.
Overview 2
Fourier Series
Description 3
Background 4
User Instructions 5
Example 7
Modifications 8
Ordinary Differential Equations Description 9
Background 10
User Instructions 11
Example 13
Modifications 14
Function Analysis
Description 15
User Instructions 16
Modifications 19
Bases, Primes, Hyperbolics
Description 20
User Instructions 21
Simultaneous Equations and Matrix Inversion Description 23
User Instructions 24
Example 27
Loading Cassettes 28
In Case of Difficulty 30
Limited Warranty 31

Copyright (c) 1980, Texas Instruments Incorporated. Program and database contents copyright (C) 1980, Texas Instruments Incorporated.

```
    Author : Texas Instruments
Language : TI-99/4 BASIC
Hardware : TI-99/4 Home Computer
    Disk Controller and Drive or Cassette Recorder
    Thermal Printer (Optional)
    RS232 Interface and Compatible Printer (Optional)
    Media : Diskette or Cassette
The Math Routine Library is a collection of programs which
enable you to perform sophisticated mathematical analyses and
use complex functions in a simple, straightforward manner. With
these programs you can compute the coefficients in a Fourier
series, solve ordinary differential equations, integrate and
differentiate mathematical functions, evaluate hyperbolic
functions, solve simultaneous equations, and perform many other
mathematical computations.
Each program includes a predefined function. You may use the program to analyze this function or enter one of you own. In either case, the computer asks you for the values it needs to perform its computations.
```

The Fourier Series program computes the Fourier coefficients, A_{k} and B_{k}, of a Fourier series. You may use the program either by defining an explicit function, F, or by entering discrete values for the function. When you specify the values for the period, T, and the number of coefficients, N, the computer calculates and displays the values of the coefficients.

The Fourier series is an expansion series used in the mathematical analysis of complex waveforms. It enables the function under consideration to be resolved into a fundamental frequency, plus a finite number of terms involving its harmonics. Fourier series apply to periodic functions, which are defined as those that repeat themselves every T seconds. In order for the expansion of the function, $F(x)$, to be valid, certain conditions must be met. For example, $F(x)$ must be finite and single-valued. It must have a finite number of maximum and minimum values within one period, and it must have a finite number of discontinuities. When these conditions are met, the function may be represented, except at the discontinuities, by a series of simple harmonic functions in which the frequencies are integral multiples of the fundamental frequencies. In the Fourier series, all the terms of the series are added, and when the number of terms, n, becomes infinitely great, the sum approaches the value of $F(x)$.

In the actual expansion of the function, $F(x)$ is given by:
$F(x)=A_{0} / 2+\sum_{K=1}^{\infty} G_{K}(x)$, where
$G_{K}=A_{K} \cos (K \omega x)+B_{K} \operatorname{SIN}(K \omega x)$
$\omega=2 \pi / \top, \quad$ and
$T=$ Period of F
In this expression, the coefficients for the sine and cosine terms are given by:
$A_{K}=2 / T \int_{0}^{T} F(x) \cos (K \omega x) d x$
$B_{K}=2 / T \int_{0}^{T} F(x) \operatorname{Sin}(K \omega x) d x$

STEP l: If the computer is not already in the BASIC mode, select TI BASIC. To load the program from a diskette, insert the diskette into the disk drive, type

OLD DSKI.FOURIER
and press ENTER.
To load the program from a cassette tape, refer to the "Loading Cassettes" section in this manual for instructions on determining the program's position on the cassette tape. Then insert the cassette into the recorder, type

OLD CSI
and press ENTER. The computer then displays directions for loading the tape. Refer to "Loading Cassettes" if you have difficulty in loading the program from the cassette.

STEP 2: when the cursor appears, type RUN, and press ENTER. When the FOURIER SERIES title screen appears, press any key. Then select one of the following options:

1 DESCRIPTION
2 COEFFICIENTS
3 EXIT
OPTION 1: DESCRIPTION
If you select option 1 , the computer displays a mathematical description of the Fourier series. when you are ready to continue, press any key. The computer then automatically proceeds to option 2, COEFFICIENTS.

OPTION 2: COEFFICIENTS If you select option 2 , the computer displays the formulas for the coefficients in the fourier series and tells you that these coefficients are now being calculated. You can calculate coefficients for a predefined function, or you may

```
enter discrete values for the function. To
calculate the coefficients for the
predefined function, press l. To input
discrete values for the function, press 2.
NOTE: For information on defining the
function for which the program computes
Fourier coefficients, see the
"Modifications" section.
```

To perform calculations with the predefined
function, press 1. The computer asks you
for the value for the period, T, and the
number of coefficients, N, to be
calculated. Type the values, pressing ENTER
after each one. The computer then
calculates the values for A_{k} and B_{k}.
Press SHIFT V (PROC'D) to return to the
selection list. To calculate coefficients
for other values of T or N, press SHIFT R
(REDO), and the computer again asks for T
and N .
If you have chosen to input discrete values
of the function by pressing 2, the computer
first asks you for the period, T, and the
number of values for the function. Then you
are asked to enter each of the discrete
values. After you have entered all of the
values, the computer calculates and displays
the coefficients for each of the discrete
values. To return to the selection list,
press SHIFT V (PROC'D). To calculate
coefficients for other discrete values of
the function, press SHIFT R (REDO).
NOTE: The values for the coefficients are
rounded to five decimal places. For long
lists of coefficients, press the space bar
to stop and start the display of the
coefficients.
OPTION 3: EXIT
To return to TI BASIC, select option 3 from
the selection list, or press SHIFT C (CLEAR).

This example demonstrates entering 12 discrete values for a function and computing the Fourier coefficients. After you load and run the program, select COEFFICIENTS by pressing 2 . Next press 2 to input discrete values. Then enter the information shown here:

```
PERIOD T ? 6.283
HOW MANY F VALUES ? 12
F VALUE l ? 2
F VALUE 2 ? 3.2
F VALUE 3 ? 3.7
F VALUE 4 ? 2.5
F VALUE 5 ? 1.2
F Value 6 ? 1.5
F VALUE 7 ? 2.7
F VALUE 8 ? 2.4
F VALUE 9 ? 0
F VALUE 10 ? -3.3
F VALUE 11 ? -3.3
F VALUE l2 ? 0
```

After you enter the last F-value, the computer calculates the coefficients. As mentioned previously, the computer rounds the values to five decimal places.

$$
\begin{aligned}
& A O=2.43333 \\
& B O=0 \\
& A 1=-1.25056 \\
& B 1=1.71929 \\
& A 2=-0.55 \\
& B 2=1.90526 \\
& A 3=.75 \\
& B 3=.18333 \\
& A 4=.58333 \\
& B 4=.05774 \\
& \ldots \\
& \ldots \\
& \cdots \\
& A 11=-1.25056 \\
& B 11=1.71929 \\
& A 12=2.43333 \\
& B 12=0
\end{aligned}
$$

To return to the selection list, press any key.

To define the function for which the computer calculates coefficients, modify line 150 of the program using the following procedure:

```
STEP 1: After you have loaded the program as
        described in STEP 1 of the "User
        Instructions," press SHIFT C (CLEAR) to
        enter the TI BASIC mode.
STEP 2: Type "l50" and press SHIFT X (OOWN).
STEP 3: To define a new function, \(F(X)\), press SHIFT
        D (RIGHT) to move the cursor to the right of
        the equal sign, and type the new function
        over the old one. Use SHIFT F (DELETE) to
        delete the remainder of the previous
        function, if any.
STEP 4: When you are sure you have typed the new
        function correctly, press ENTER. When the
        cursor reappears, type RUN and press ENTER.
        The computer then displays the FOURIER
        SERIES title screen.
```

Ordinary Differential Equations enables you to solve ordinary differential equations with initial conditions. The computer gives you a mathematical description for the reduction of Nth order differential equations to a system of N first-order differential equations. When you enter the number of initial conditions, the increment, T, the number of increments, and the initial conditions, the computer calculates and displays the values of the functions for each increment.

Ar. Nth degree ordinary differential equation with initial conditions can be solved with the Runge-Kutta 4 th order numerical method. (Reference: Hornoeck, Robert W. Numerical Methods. New York: Q

$$
\begin{aligned}
y_{j+1}=y_{j} & +\Delta t\left[f\left(y_{j}, t_{j}\right) / 6+f\left(y^{*} j+1 / 2, t_{j+1 / 2}\right) / 3\right. \\
& \left.+f\left(y^{* *} j+1 / 2, t_{j+1 / 2}\right) / 3+f\left(y^{*} j+1, t_{j+1}\right) / 6\right]
\end{aligned}
$$

where

$$
\begin{aligned}
& y^{*}{ }_{j+1 / 2}=y_{j}+\Delta t\left[f\left(y_{j}, t_{j}\right)\right] / 2 \\
& y^{* *} j+1 / 2=y_{j}+\Delta t\left[f\left(y^{*}{ }_{j+1 / 2}, t_{j+1 / 2}\right)\right] / 2 \\
& y^{*} j+1=y_{j}+\Delta t\left[f\left(y^{* *} j+1 / 2, t_{j+1 / 2}\right)\right]
\end{aligned}
$$

It is assumed that any Nth-order differential equation can be reduced to a system of N first-order differential equations of the form:

$$
\begin{aligned}
d y_{1} / d t & =f_{1}\left(y_{1}, y_{2}, \ldots, y_{n}, t\right) \\
d y 2 / d t & =f_{2}\left(y_{1}, y_{2}, \ldots, y_{n}, t\right) \\
& \cdot \\
d y_{n} / d t & =f_{n}\left(y_{1}, y_{2}, \ldots, y_{n}, t\right)
\end{aligned}
$$

subject to the initial conditions:

$$
\begin{aligned}
y_{1}(0) & =y_{10} \\
y_{2}(0) & =y_{20} \\
& \dot{ } \\
y_{n}(0) & =y_{n 0}
\end{aligned}
$$

You can define as many as ten functions to be used in solving the equations. For information on defining functions, see the "Modifications" section.

```
    STEP l: If the computer is not already in the BASIC
        mode, select TI BASIC. To load the program
        from a diskette, insert the diskette into
        the disk drive, type
            OLD DSKI.ODES
        and press ENTER.
    To load the program from a cassette tape,
        refer to the "Loading Cassettes" section in
        this manual for instructions on determining
        the program's position on the cassette
        tape. Then insert the cassette into the
        recorder, type
            OLD CSI
        and press ENTER. The computer then displays
        directions for loading the tape. Refer to
        "Loading Cassettes" if you have difficulty
        in loading the program from the cassette.
    STEP 2: When the cursor appears, type RUN, and press
        ENTER. When the ORDINARY DIFFERENTIAL
        EQUATIONS title screen appears, press any
        key. Then select one of the following
        options:
    l DESCRIPTION
2 COMPUTATIONS
3 EXIT
OPTION 1: DESCRIPTION
If you select option l, the computer displays a mathematical description for the reduction of Nth-order differential equations. When you are ready to continue, press any key. The computer automatically proceeds to option 2, COMPUTATIONS.
OPTION 2: COMPUTATIONS
If you select option 2 , enter the number of functions ( \(n\) ), the increment ( \(t\) ), and the number of increments. You are then asked to enter the initial values, \(y_{l}(0), y_{2}(0)\), ... , \(y_{n(0)}\). After you enter the initial conditions, the computer calculates and displays the \(y_{j}\) values for each \(t\) increment.
```

NOTE: Press the space bar to stop the display of the values.

To return to the option selection list, press SHIFT V (PROC'D). If you want to solve other equations or the same equations with different initial conditions, press SHIFT R (REDO).

OPTION 3: EXIT
To return to TI BASIC, select option 3 from the selection list, or press SHIFT C (CLEAR).

Given the initial value problem:

$$
\begin{aligned}
& d^{2} y / d t^{2}+2 d y / d t+4 y=0 \\
& y(0)=2, d y / d t(0)=0
\end{aligned}
$$

This problem is converted to the first order system:

```
    dy2}/dt=-2\mp@subsup{y}{2}{}-4\mp@subsup{y}{1}{
```

 \(d y_{1} / d t=y_{2}\)
 with the initial conditions: $y_{2}(0)=0, y_{1}(0)=2$.
To solve this problem, select COMPUTATIONS as described in STEP 2 of the "User Instructions" and enter the following information

```
NUMBER OF INTITIAL CONDITIONS (N) ? 2
T INCREMENT ? . I
NUMBER OF INCREMENTS ? }
ENTER INITIAL CONDITIONS:
    Yl(O)=? 2
    Y2(0)=? 0
```

The computer then calculates the $y j$ values rounded to five decimal places, as shown here:

$$
\begin{aligned}
& T=0 \\
& Y 1(0)=2 \\
& Y 2(0)=0 \\
& T=.1 \\
& Y 1(.1)=2.0527 \\
& Y 2(.1)=.081 \\
& T=.2 \\
& Y 1(.2)=2.02168 \\
& Y 2(.2)=-.67434 \\
& T=.3 \\
& Y 1(.3)=1.92322 \\
& Y 2(.3)=-1.2684
\end{aligned}
$$

To return to the selection list, press any key.

To define the functions $F 1, F 2, \ldots$, Fn with which the program operates, modify the program using the following procedure:

STEP 1:	After you have loaded the program as described in STEP 1 of the "User Instructions," press SHIFT C (CLEAR) to enter the TI BASIC mode.
STEP 2:	Type "LIST 140-230" and press ENTER. The computer then lists the following program lines:
	140 DEF Fl=Y2
	150 DEF F2 $=-2 *$ Y $2-4 *$ Y 1
	160 DEF F3 $=0$
	230 DĖF Fl0 $=0$
STEP 3:	After you have decided which one of the functions you wish to modify, type the line number for that particular function and press SHIFT X (DOWN).
STEP 4:	To define a new function, $F(X)$, press SHIFT D (RIGHT) to move the cursor to the right of the equal sign, and type the new function over the old one. Use SHIFT F (DELETE) to delete the remainder of the previous function, if any.
STEP 5:	When you are sure you have typed the new function correctly, press ENTER. You may define as many as 10 functions in the original program or you may add additional ones on the unused lines between line 140 and 230. When you have defined all the functions to be used, type RUN and press ENTER. Then the computer displays the ORDINARY DIFFERENTIAL EQUATIONS title screen.

Function Analysis allows you to graph, generate a table of x and y values, integrate, differentiate, and find zeros for a predefined function or a function you define.

STEP l: If the computer is not already in the BASIC mode, select TI BASIC. To load the program from a diskette, insert the diskette into the disk drive, type

OLD DSKI.FUNCTION
and press ENTER.
To load the program from a cassette tape, refer to the "Loading Cassettes" section in this manual for instructions on determining the program's position on the cassette tape. Then insert the cassette into the recorder, type

OLD CSI
and press ENTER. The computer then displays directions for loading the tape. Refer to "Loading Cassettes" if you have difficulty in loading the program from the cassette.

STEP 2: When the cursor appears, type RUN, and press ENTER. When the FUNCTION ANALYSIS title screen appears, press any key. The computer tells you that the function, F, may be defined at line 140. To define the function, see the "Modifications" section. Press any key, and select one of the following options:

1 GRAPH
2 TABLE
3 INTEGRATE
4 DIFFERENTIATE
5 FIND ZEROS
6 EXIT
OPTION 1: GRAPH
If you select option l, the computer asks you for the interval (A, B) on which the function, F, is to be graphed. After you enter A and B, the computer generates and displays a graph of the function within the specified interval. The computer also
displays the maximum and minimum values for the function within the interval. To return to the selection list, press any key.

OPTION 2:	TABLE If you select option 2 , the computer asks you for the interval (A, B) and a step increment, H. You then have a choice of printing the table on the screen, the Thermal Printer, or another type of output device. To name the output device, refer to the RS232 manual for instructions. When you make your selection, the computer generates and displays or prints a table of x values and the corresponding values of $F(x)$. To return to the selection list, press any key.
OPTION 3:	INTEGRATE If you select option 3 , the computer uses Simpson's rule to calculate the Nth approximation of the integral $F(x)$ on the interval (A, B). You are asked to enter A, B, and N. The computer calculates and displays the Nth approximation of the integral. Press SHIFT V (PROC'D) to return to the selection list. To obtain other integrals, press SHIFT R (REDO), and the computer again asks for A, B, and N.
OPTION 4:	DIFFERENTIATE If you select option 4 , the computer calculates the Nth approximation of the derivative $F^{\prime}(X)$ with the difference quotient: $F^{\prime}(x)=\frac{F(x+1 / n)-F(x)}{1 / n}$ You are asked to enter values for X and n, and the computer then calculates and displays the Nth approximation of the derivative. To return to the selection list, press SHIFT V (PROC'D). To obtain approximations at other points, press SHIFT R (REDO), and the computer again asks for X and n.
OPTION 5:	FIND ZEROS If you select option 5, you can find the zeros of the function, F, by a Newton method. You are asked to enter an interval (A, B) such that $F(A)$ and $F(B)$ differ in

```
    sign. If the interval you enter does not
    satify this condition, you are asked to
    enter another interval. Once a legitimate
    interval is entered, the algorithm goes
    through 50 iterations of bisecting the
    interval to pinpoint the zero. The
    resulting zero, X, and F(X) are then
    displayed. Press SHIFT V (PROC'D) to return
    to the selection list. To find zeros for a
    different interval, press SHIFT R (REDO).
OPTION 6: EXIT
    To return to TI BASIC, select option 6 from
    the selection list or press SHIFT C (CLEAR).
```

```
To define the function which the computer analyzes, modify line
l40 of the program using the following procedure:
    STEP l: After you have loaded the program as
        described in STEP l of the "User
        Instructions," press SHIFT C (CLEAR) to
        enter the TI BASIC mode.
    STEP 2: Type "l40" and press SHIFT X (DOWN).
    STEP 3: To define a new function, F(X), press SHIFT
        D (RIGHT) to move the cursor to the right of
        the equal sign, and type the new function
        over the old one. Use SHIFT F (DELETE) to
        delete the remainder of the previous
        function, if any.
    STEP 4: When you are sure you have typed the new
        function correctly, press ENTER. When the
        cursor reappears, type RUN and press ENTER.
        The computer then displays the FUNCTION
        ANALYSIS title screen.
```

BASES, PRIMES, ANO HYPERBOLICS can be used to convert a number from one base to another, to calculate prime factors, and to calculate the value of hyperbolic or inverse hyperbolic functions.

In converting a number, any base from 2 through 36 can be used. The number to be converted can be up to 100 characters including a decimal point. However, because TI BASIC can only handle numbers from 10^{-128} through 10126, the program does not work for numbers outside this range. The conversion is accurate to 12 significant decimal digits for the integer portion of the number. The fractional part has the same accuracy but is truncated to seven characters.

A second option in the program calculates and displays the prime factors for positive integers.

Two other options enable you to calculate and display the hyperbolic or inverse hyperbolic functions at a point which you enter. These include SINH, COSH, TANH, COTH, CSCH, and SECH for the hyperbolics and SINH ${ }^{-1}$, COSH^{-1}, TANH ${ }^{-1}$, $\mathrm{COTH}^{-1}, \mathrm{CSCH}^{-1}$, and SECH^{-1} for the inverse hyperbolics.

STEP l: If the computer is not already in the BASIC mode, select TI BASIC. To load the program from a diskette, insert the diskette into the disk drive, type

OLO DSK1.B/P/H
and press ENTER.
To load the program from a cassette tape, refer to the "Loading Cassettes" section in this manual for instructions on determining the program's position on the cassette tape. Then insert the cassette into the recorder, type

> OLD CSl
and press ENTER. The computer then displays directions for loading the tape. Refer to "Loading Cassettes" if you have difficulty in loading the program from the cassette.

STEP 2: When the cursor appears, type RUN, and press ENTER. When the BASES, PRIMES, AND HYPERBOLICS title screen appears, press any key. Then select one of the following options:

1 BASE CONVERSION
2 PRIME FACTORIZATION
3 HYPERBOLICS
4 INVERSE HYPERBOLICS
5 EXIT
OPTION I: BASE CONVERSION
If you select option 1 , the computer asks you for the two bases, B1 and B2. These bases may be from 2 to 36. Enter the number in base Bl, which must be positive and cannot be in scientific notation. The computer then converts and displays the number in base 82 . To return to the selection list, press SHIFT V (PROC'D). To make other base conversions, press SHIFT R (REDO).

```
OPTION 2: PRIME FACTORIZATION
    If you select option 2, enter a number, N.
    The computer then calculates and displays
    the prime factors for that number. To
    return to the selection list, press SHIFT V
    (PROC'D). To obtain the prime factors of
    another number, press SHIFT R (REDO).
OPTION 3: HYPERBOLICS
    If you select option 3, enter a number, X.
    The computer calculates and displays the
    hyperbolic functions for that number. To
    return to the selection list, press SHIFT V
    (PROC'D). To evaluate the hyperbolic
    functions for another value of }X\mathrm{ , press
    SHIFT R (REDO).
OPTION 4: INVERSE HYPERBOLICS
    If you select option 4, enter a value for X,
    the number to be evaluated. The computer
    then calculates and displays the inverse
    hyperbolic functions for that value. To
    return to the selection list, press SHIFT V
    (PROC'D). To evaluate the inverse
    nyperbolic function for another value of }x\mathrm{ ,
    press SHIFT R (REDO).
OPTION 5: EXIT
    To return to TI BASIC, select option 5 from
    the selection list or press SHIFT C (CLEAR).
```

Simultaneous Equations and Matrix Inversion performs a variety of calculations including displaying and inverting a matrix, computing determinants, and solving simultaneous equations.

You may enter and display up to a 10 by 10 matrix. The program uses the Gramm-Schmidt procedure to compute both the determinant and the inverse of the matrix. (Reference: Birkhoff, Garrett, and Saunders MacLane. A Survey of Modern Algebra. New York: McMillan Co., 1953.) Additionaliy, you can use the program to solve up to 10 simultaneous equations with lo unknowns.

STEP 1: If the computer is not already in the BASIC mode, select TI BASIC. To load the program from a diskette, insert the diskette into the disk drive, type

OLD DSKI.SIMEQ
and press ENTER.
To load the program from a cassette tape, refer to the "Loading Cassettes" section in this manual for instructions on determining the program's position on the cassette tape. Then insert the cassette into the recorder, type

OLD CSI
and press ENTER. The computer then displays directions for loading the tape. Refer to "Loading Cassettes" if you have difficulty in loading the program from the cassette.

STEP 2: when the cursor appears, type RUN, and press ENTER. When the SIMULTANEOUS EQUATIONS AND MATRIX INVERSION title screen appears, press any key. Then select one of the following options:

1 ENTER MATRIX
2 DISPLAY MATRIX
3 CHANGE MATRIX
4 INVERT MATRIX
5 COMPUTE DETERMINANT
6 SOLVE EQUATIONS
7 REDIRECT OUTPUT
8 EXIT

OPTION l:	ENTER MATRIX
	You must select option 1 first because
	options 2 through 8 are not available until
	you enter the matrix. The matrix must be
	square. For example, a second order matrix
	has two rows and two columns; a third order
	matrix has three rows and three columns.
	When the computer asks you for the size of

the matrix, enter its order. Tnen enter the
elements of row l separated by spaces; enter
the elements of row 2 separated by spaces.

Continue to enter the elements in rows until

and the computer returns to the selection

```
OPTION 7: REDIRECT OUTPUT
    If you select option 7, the computer gives
    you the option of displaying calculated
    results on the screen or printing them on
    the Thermal Printer. To display results on
    the screen, press ENTER. To print the
    results, type TP and press ENTER. In either
    case, the computer automatically returns to
    the selection list.
    OPTION 8: EXIT
    To return to TI BASIC, select option 8, or
    press SHIFT C (CLEAR).
```

Find the inverse of the maxtix:

and solve the equations:

$$
\begin{aligned}
2 X+3 y & =1 \\
x+y & =-1
\end{aligned}
$$

First, select option l, ENTER MATRIX. Enter the size of the matrix, which is two. Then enter the elements in the rows as shown below:

1) 23
2) 11

Press any key to return to the selection list. Then select option 4, INVERT MATRIX, and the computer displays:

DETERMINANT $=-1$
$\begin{array}{rr}-1 & 3 \\ 1 & -2\end{array}$
Now, press any key again, and select option 6, SOLVE EQUATIONS. The computer displays:

ENTER EQUATION VALUES:
$\begin{aligned} 2 A+3 B & =? \quad \text { (Enter 1) } \\ A+B & =? \quad \text { (Enter -1) }\end{aligned}$
The computer then calculates and displays the values for A and $B:$

$$
\begin{aligned}
& A=-4 \\
& B=3
\end{aligned}
$$

To return to the selection list, press any key.

