
Please do not upload this copyright pdf document to any other website. Breach of copyright
may result in a criminal conviction.

This Acrobat document was generated by me, Colin Hinson, from a document held by me. I
requested permission to publish this from Texas Instruments (twice) but received no reply. It
is presented here (for free) and this pdf version of the document is my copyright in much the
same way as a photograph would be. If you believe the document to be under other
copyright, please contact me.

The document should have been downloaded from my website https://blunham.com/Radar,
or any mirror site named on that site. If you downloaded it from elsewhere, please let me
know (particularly if you were charged for it). You can contact me via my Genuki email page:
https://www.genuki.org.uk/big/eng/YKS/various?recipient=colin

You may not copy the file for onward transmission of the data nor attempt to make
monetary gain by the use of these files. If you want someone else to have a copy of the file,
point them at the website. (https://blunham.com/Radar). Please do not point them at the
file itself as it may move or the site may be updated.

It should be noted that most of the pages are identifiable as having been processed by me.

I put a lot of time into producing these files which is why you are met with this page when you
open the file.

In order to generate this file, I need to scan the pages, split the double pages and remove any
edge marks such as punch holes, clean up the pages, set the relevant pages to be all the same
size and alignment. I then run Omnipage (OCR) to generate the searchable text and then
generate the pdf file.

Hopefully after all that, I end up with a presentable file. If you find missing pages, pages in the
wrong order, anything else wrong with the file or simply want to make a comment, please
drop me a line (see above).

It is my hope that you find the file of use to you personally – I know that I would have liked to
have found some of these files years ago – they would have saved me a lot of time !

Colin Hinson
In the village of Blunham, Bedfordshire.

Texas Instruments Home Computer

Editor/Assembler
Includes the Editor/Assembler Solid State Software'
Command Module and two program diskettes.
Designed for use with the TI Home Computer, the TI
Memory Expansion unit, and the TI Disk Memory
System (TI Disk Drive Controller and one to three TI
Disk Memory Drives)—all sold separately.

1035984-2

Texas Instruments Home Computer

Editor/Assembler
Includes the Editor/Assembler Solid State SoftwareTM
Command Module and two program diskettes.
Designed for use with the TI Home Computer, the TI
Memory Expansion unit, and the TI Disk Memory
System (TI Disk Drive Controller and one to three TI
Disk Memory Drives)—all sold separately.

Copyright © 1981 Texas Instruments Incorporated
Command Module program and data base contents
copyright © 1981 Texas Instruments Incorporated
See important warranty information at back of book

The Editor/Assembler program was developed by the staff of the Texas Instruments
Personal Computer Division:

Allen T. Acree, Jr.
Susan Jean Bailey
Sumiko Endo

The Editor/Assembler owner's manual was developed by the staff of the Texas
Instruments Learning Center:

Cheryl Watson
Robert E. Whitsitt, II

With Contributions by:

Ira McComic
Henry C. Mishkoff
Jacquelyn Quiram
Jan E. Stevens

Copyright CI 1982 by Texas Instruments Incorporated

EDITOR/ASSEMBLER
Page 2

TABLE OF CONTENTS

GENERAL INFORMATION 15
1.1 Using This Manual 17
1.2 Set-Up Instructions 18

1.2.1 In Case of Difficulty 19
1.3 Special Key Functions 20

USING THE EDITOR/ASSEMBLER 21
2.1 Editor 22

2.1.1 Load 22
2.1.2 Edit 23
2.1.3 Save 30
2.1.4 Print 31
2.1.5 Purge 32

2.2 Assemble 33
2.2.1 File and Option Specification 33
2.2.2 Assembly 35

2.3 Load and Run 36
2.4 Run 37
2.5 Run Program File 38

GENERAL PROGRAMMING INFORMATION 39
3.1 Registers 39

3.1.1 Program Counter Register (PC) 39
3.1.2 Workspace Pointer Register (WP) 39
3.1.3 Status Register (ST) 40

3.2 Transfer Vectors and Workspace 45
3.3 Source Statement Format 46

3.3.1 Character Set 47
3.3.2 Label Field 47
3.3.3 Operation Field 48
3.3.4 Operand Field 48
3.3.5 Comment Field and Comment Line 48

3.4 Expressions 49
3.4.1 Well-Defined Expressions 49
3.4.2 Arithmetic Operators 49

EDITOR/ASSEMBLER
Page 3

3.5 Constants 50
3.5.1 Decimal Integer Constants 50
3.5.2 Hexadecimal Integer Constants 50
3.5.3 ' Character Constants 51
3.5.4 Assembly-Time Constants 51

3.6 Symbols 52
3.7 Predefined Symbols 53
3.8 Terms 54
3.9 Character Strings 55

ADDRESSING MODES 56

4.1 General Addressing Modes 56
Workspace Register Addressing 57
Workspace Register Indirect Addressing 57
Workspace Register Indirect Auto-Increment Addressing . . 58

Symbolic Memory Addressing 58
Indexed Memory Addressing 59

4.2 Program Counter Relative Addressing 60
4.3 CRU Bit Addressing 61
4.4 Immediate Addressing 62
4.5 Addressing Summary 63

INSTRUCTION FORMATS 65
5.1 Format I -- Two General Address Instructions 66
5.2 Format II -- Jump Instructions 67

5.2.1 Format II -- Bit I/O Instructions 68

5.3 Format III -- Logical Instructions 69

5.4 Format IV -- CRU Multi-Bit Instructions 70

5.5 Format V -- Register Shift Instructions 71
5.6 Format VI -- Single Address Instructions 72
5.7 Format VII -- Control Instructions 73
5.8 Format VIII -- Immediate Instructions 74
5.9 Format IX -- Extended Operation Instruction 76

5.9.1 Format IX -- Multiply and Divide Instructions 77

ARITHMETIC INSTRUCTIONS 78
6.1 Add Words--A 80
6.2 Add Bytes--AB 82
6.3 Absolute Value--ABS 84
6.4 Add Immediate--Al 85
6.5 Decrement--DEC 86

EDITOR/ASSEMBLER
Page 4

4.1.1
4.1.2
4.1.3
4.1.4
4.1.5

6.6 Decrement by Two--DECT 87
6.7 Divide--DIV 88
6.8 Increment--INC 90
6.9 Increment by Two--INCT 91
6.10 Multiply--MPY 92
6.11 Negate--NEG 94
6.12 Subtract Words--S 95
6.13 Subtract Bytes--SB 96
6.14 Instruction Examples 98

6.14.1 Incrementing And Decrementing Examples 98
6.14.2 General Example 102

JUMP AND BRANCH INSTRUCTIONS 104
7.1 Branch--B 107
7.2 Branch and Link--BL 108
7.3 Branch and Load Workspace Pointer--BLWP 109
7.4 Jump If Equal--JEQ 110
7.5 Jump If Greater Than--JGT 111
7.6 Jump If High or Equal--JHE 112
7.7 Jump If Logical High--JH 113
7.8 Jump If Logical Low--JL 114
7.9 Jump If Low or Equal--JLE 115
7.10 Jump If Less Than--JLT 116
7.11 Unconditional Jump--JMP 117
7.12 Jump If No Carry--JNC 118
7.13 Jump If Not Equal--JNE 119
7.14 Jump If No Overflow--JNO 120
7.15 Jump If Odd Parity--JOP 121
7.16 Jump On Carry--JOC 122
7.17 Return with Workspace Pointer--RTWP 123
7.18 Execute--X 124
7.19 Extended Operation--XOP 125
7.20 Instruction Examples 127

7.20.1 Common Workspace Subroutine Example 127
7.20.2 Context Switch Subroutine Example 129
7.20.3 Passing Data to Subroutines 133
7.20.4 Extended Operations 136
7.20.5 Execute Example 136

EDITOR/ASSEMBLER
Page 5

COMPARE INSTRUCTIONS 138
8.1 Compare Words--C 140
8.2 Compare Bytes--CB 142
8.3 Compare Immediate--Cl 143
8.4 Compare Ones Corresponding--COC 144
8.5 Compare Zeros Corresponding--CZC 146

CONTROL AND CRU INSTRUCTIONS 148
9.1 Load CRU--LDCR 151
9.2 Set CRU Bit to One--SBO 152
9.3 Set CRU Bit to Zero--SBZ 153
9.4 Store CRU--STCR 154
9.5 Test Bit--TB 156
9.6 Other Instructions 157
9.7 CRU Input/Output 158

9.7.1 CRU I/O Instructions 158
9.7.2 Accessing Specific Bits 159
9.7.3 SBO Example 159
9.7.4 SBZ Example 159
9.7.5 TB Example 160

LOAD AND MOVE INSTRUCTIONS 161
10.1 Load Immediate--LI 163
10.2 Load Interrupt Mask Immediate--LIMI 164
10.3 Load Workspace Pointer Immediate--LWPI 165
10.4 Move Word--MOV 166
10.5 Move Byte--MOVB 168
10.6 Store Status--STST 169
10.7 Store Workspace Pointer--STWP 170
10.8 Swap Bytes--SWPB 171
10.9 Instruction Example 172

EDITOR/ASSEMBLER
Page 6

LOGICAL INSTRUCTIONS 174
11.1 AND Immediate--ANDI 176
11.2 OR Immediate--ORI 178
11.3 Exclusive OR--XOR 180
11.4 Invert--INV 182
11.5 Clear--CLR 184
11.6 Set to One--SETO 185
11.7 Set Ones Corresponding--SOC 186
11.8 Set Ones Corresponding, Byte--SOCB 188
11.9 Set Zeros Corresponding--SZC 190
11.10 Set Zeros Corresponding, Byte--SZCB 192

WORKSPACE REGISTER SHIFT INSTRUCTIONS 194
12.1 Shift Right Arithmetic--SRA 196
12.2 Shift Right Logical--SRL 198
12.3 Shift Left Arithmetic--SLA 200
12.4 Shift Right Circular--SRC 202
12.5 Instruction Example 204

PSEUDO-INSTRUCTIONS 206
13.1 No Operation--NOP 206
13.2 Return--RT 207

ASSEMBLER DIRECTIVES 208
14.1 Directives that Affect the Location Counter 209

14.1.1 Absolute Origin--AORG 210
14.1.2 Relocatable Origin--RORG 210
14.1.3 Dummy Origin--DORG 212
14.1.4 Block Starting with Symbol--BSS 212
14.1.5 Block Ending with Symbol--BES 213
14.1.6 Word Boundary--EVEN 213
14.1.7 Program Segment--PSEG 214
14.1.8 Program Segment End--PEND 215
14.1.9 Common Segment--CSEG 215
14.1.10 Common Segment End--CEND 216
14.1.11 Data Segment--DSEG 217
14.1.12 Data Segment End--DEND 219

EDITOR/ASSEMBLER
Page 7

14.2 Directives that Affect Assembler Output 220
14.2.1 No Source List--UNL 220
14.2.2 List Source--LIST 221
14.2.3 Page Eject--PAGE 221
14.2.4 Page Title--TITL 222
14.2.5 Program Identifier--IDT 223

14.3 Directives that Initialize Constants 224
14.3.1 Define Assembly-Time Constant--EDU 224
14.3.2 Initialize Byte--BYTE 225
14.3.3 Initialize Word--DATA 225
14.3.4 Initialize Text--TEXT 226

14.4 Directives that Link Programs 227
14.4.1 External Definition--DEF 227
14.4.2 External Reference--REF 228
14.4.3 Copy File--COPY 229
14.4.4 Force Load--LOAD 231
14.4.5 Secondary External Reference--SREF 232

14.5 Miscellaneous Directives 233
14.5.1 Define Extended Operation--DXOP 233
14.5.2 Program End--END 234

ASSEMBLER OUTPUT 235
15.1 Source Listing 235

15.1.1 Error Messages 236
15.2 Object Code 238

15.2.1 Object Code Format 238
15.2.2 Compressed Object Code Format 240

15.3 Changing Object Code 241
15.4 Machine Language Format 242
15.5 Output Example 243

15.5.1 Listing 243
15.5.2 Object Code 245

EDITOR/ASSEMBLER
Page 8

UTILITIES AND PREDEFINED SYMBOLS 246
16.1 VDP RAM Access Utilities 248
16.2 Extended Utilities 250

16.2.1 KSCAN 250
16.2.2 GPLLNK 251
16.2.3 XMLLNK 257
16.2.4 DSRLNK 262
16.2.5 LOADER 262

16.3 Predefined Symbols 264
16.3.1 SCAN 264
16.3.2 UTLTAB 264
16.3.3 PAD 265

16.4 VDP Access 266
16.4.1 VDPWA 266
16.4.2 VDPRD 267
16.4.3 VDPWD 268
16.4.4 VDPSTA 269

16.5 GROM Access 270
16.5.1 GRMWA 270
16.5.2 GRM RA 270
16.5.3 GRMRD 271
16.5.4 GRMWD 271

TI BASIC SUPPORT 273
17.1 Interface with TI BASIC 274

17.1.1 CALL INIT 274
17.1.2 CALL LOAD 274
17.1.3 CALL LINK 277
17.1.4 CALL PEEK 281
17.1.5 CALL PEEKV 281
17.1.6 CALL POKEV 282
17.1.7 CALL CHARPAT 282
17.1.8 TI BASIC Examples 283

EDITOR/ASSEMBLER
Page 9

THE DEBUGGER 363
23.1 Preliminary Information 365
23.2 Load Memory with ASCII--A 367
23.3 Breakpoint Set/Clear--B 368
23.4 CRU Inspect/Change--C 371
23.5 Execute--E 373
23.6 Find Word or Byte--F 374
23.7 GROM Base Change--G 375
23.8 Inspect Screen Location--I 376
23.9 Find Data Not Equal--K 377
23.10 Memory Inspect/Change--M 378
23.11 Move Block--N 380
23.12 Compare Memory Blocks--P 381
23.13 Quit Debugger--Q 382
23.14 Inspect or Change WP, PC, and SR--R 383
23.15 Execute in Step Mode--S 384
23.16 Trade Screen--T 385
23.17 Toggle Offset to and from TI BASIC--U 386
23.18 VDP Base Change--V 387
23.19 Inspect or Change Registers--W 388
23.20 Change Bias--X, Y, or Z 389
23.21 Hexadecimal to Decimal Conversion--> 390
23.22 Decimal to Hexadecimal Conversion--. 391
23.23 Hexadecimal Arithmetic--H 392

APPENDICES 393
24.1 Numbering Systems and Organization 394

24.1.1 Binary Number System 394
24.1.2 Byte Organization 395
24.1.3 Word Organization 396
24.1.4 Two's Complement 397

24.2 Memory Organization 398
24.2.1 Directly Addressable Memory 398
24.2.2 Memory-Mapped Devices 402

EDITOR/ASSEMBLER
Page 12

24.3 Memory, CRU, and Interrupt Structure 404
24.3.1 CPU RAM PAD Use 404
24.3.2 CRU Allocation 406
24.3.3 Interrupt Handling 407

24.4 Comparisons with TI Extended BASIC Loader 410
24.4.1 Memory Use 410
24.4.2 Loading Speed 412
24.4.3 External References 413
24.4.4 Utility References 414
24.4.5 Entry Point 414
24.4.6 Duplicate Definition 414
24.4.7 Tags 414
24.4.8 TI Extended BASIC Equates 415
24.4.9 Subprogram Use 418

24.5 Save Utility 420
24.6 Speech Synthesizer Resident Vocabulary 422
24.7 Character Set 428
24.8 Assembler Directive Table 432
24.9 Hexadecimal Instruction Table 434
24.10 Alphabetical Instruction Table 437
24.11 Program Organization 440

24.11.1 Returning When Your Program Is Run Automatically 440
24.11.2 Returning When Your Program Is Not Run Automatically . . 441
24.11.3 Other Returns 442

24.12 Error Messages 443
24.12.1 Input/Output Error Codes 443
24.12.2 Error Messages Issued by GROM Code 443
24.12.3 Errors Issued by the Loader 444
24.12.4 Execution-Time Errors 444

GLOSSARY 446

INDEX 455

LIMITED WARRANTY 467

EDITOR/ASSEMBLER
Page 13

EDITOR/ASSEMBLER
Page 14

SECTION 1: GENERAL INFORMATION

The Texas Instruments Editor/Assembler Solid State Software TM Command Module
and accompanying diskettes allow you to write programs in the powerful assembly
language of the TMS9900 microprocessor built into the TI-99/4 and TI-99/4A Home
Computers. This assembly language has all of the features expected from an

advanced microprocessor, including both byte- and word-oriented commands,
auto-incrementing capability, and a variety of addressing modes.

Your Editor/Assembler package contains a command module, two diskettes (labeled
Part A and Part B), this manual, overlays for your computer, and a manual for a
game or application program. The command module controls the Editor/Assembler
and must be inserted in the console to use the features described in this manual.
The diskette labeled Part A contains the Editor, the Assembler, TI BASIC support
routines, and both source and object code for the Debugger. The diskette labeled

Part B contains the SAVE utility, which allows you to save programs in memory
image format, and the source and object code for a game or application program that
can be used as an example.

The use of assembly language instead of a higher-level language such as BASIC or
Pascal has several advantages. The execution of assembly language programs is much
faster. In addition, assembly language gives you access to all machine resources,
including functions not available from higher-level languages.

Compared to writing programs in machine language, assembly language is much
easier. The instructions are mnemonic codes, which are easier to use and remember
than the symbols of object code. In addition, you use expressions as operands and
may use decimal numbers in expressions and as operands. Further, the use of
assembly language relieves you of the tedious task of writing machine language

instructions and keeping track of binary machine addresses within the program.

This manual provides details on creating, editing, assembling, and running assembly
language programs on the TI Home Computer and includes explanations of the
following.

• The use of the Editor.

• All TMS9900 assembly language instructions and pseudo-instructions.

• Assembler output.

EDITOR/ASSEMBLER
Page 15

GENERAL INFORMATION

• The utilities provided for reading from and writing to VDP RAM.

• The utilities provided for accessing assembly language programs.

• The utilities provided for accessing the Graphics Programming Language
subroutines.

• The seven additional TI BASIC subroutines included in the Editor/Assembler
Command Module.

• The utilities for communication between assembly language programs and TI
BASIC programs.

• The use of the Debugger program.

• The use of sound, color, graphics, and speech from assembly language
programs.

The simplest configuration for running the Editor/Assembler requires the TI Home
Computer, the TI Memory Expansion unit, the TI Color Monitor (or the TI Video
Modulator and a television set), the Editor/Assembler Command Module, the
Editor/Assembler diskette, and a TI Disk Memory System with at least one Disk
Memory Drive. With this equipment you can either develop programs of your own or
run existing assembly language programs. To enhance your system, you may want to
add the RS232 Interface, additional disk drives, or other peripherals available from

Texas Instruments.

The Editor in the module allows you to create, edit, print, and save files. Several
commands make file preparation as simple as possible. After a program file has been
created, you can assemble it with the Assembler in the module.

The Assembler reads a source file prepared in the Editor and produces object code in
one of two formats and error messages. It can list the assembled program.

After a file has been assembled, you may load and run it. The Debugger program
can help you to find and correct any errors which may occur. When the program is
satisfactory, you can save it with the SAVE utility so that you can easily run it as
needed.

EDITOR/ASSEMBLER
Page 16

GENERAL INFORMATION

1.1 USING THIS MANUAL

This manual assumes that you already know a programming language, preferably an
assembly language. If you do not, there are many fine books available which teach
the basics of assembly language use. After you know these basics, this manual gives
the details of TMS9900 assembly language and its application to the TI Home
Computer. v

When terms that may be new to you are first used, they are defined. (If you want to
review a definition later, a Glossary is provided near the end of the manual.) Section
2 explains the basics of using the Editor/Assembler. Sections 3 through 15 are a
detailed description of the TMS9900 assembly language and assembler output. The
remainder of the manual describes applications specific to the TI Home Computer,
such as access to utilities, BASIC support, file management, the linking loader, the
debugger utility, and the use of sound, color, graphics (including sprites), and speech.

Several appendices provide other useful information, including a description of the
number bases used, the character sets available, the instructions, and related
information.

EDITOR/ASSEMBLER
Page 17

GENERAL INFORMATION

1.2 SET-UP INSTRUCTIONS

Use your Disk Manager to make backup copies of the diskettes supplied with your
Editor/Assembler. You may use those copies for your own use. The originals should

be kept in a safe place.

Before you use the Editor/Assembler, the Memory Expansion unit and the TI Disk
Memory System must be properly attached to the computer and turned on. See the
appropriate owner's manuals for complete set-up instructions.

An automatic reset feature is built into the computer so that when a module is
inserted into the console the computer returns to the master title screen. All data
or program material you have entered is erased.

CAUTION
To avoid damaging the module, be sure it is free of static

electricity before inserting it into the computer. Touch

any metal object, such as a door knob or desk lamp, before
handling the module. Keep the module clean and dry, and
do not touch the recessed contacts.

1. Slide the command module into the slot on the console.

2. Turn on all peripherals. Turn on the computer.

3. Insert the diskette labeled Part A into Disk Drive 1.

4. Press any key to make the master selection list appear. To select the module,
press the key corresponding to the number beside EDITOR/ASSEMBLER.

Note: If the. diskette is not inserted prior to using a function requiring the diskette,

you may have to turn the computer off, insert the diskette, and start over.

To remove the module, first return the computer to the master title screen by
pressing <quit>. Then remove the module from the slot. If the module is
accidentally removed from the slot while the module contents are being used, the
computer may behave eratically. To restore the computer to normal operation, turn
the computer console off and wait a few seconds. Then reinsert the module and turn
the computer on again.

• EDITOR/ASSEMBLER
Page 18

GENERAL INFORMATION

If you have two or three disk drives, it is best to leave the Editor/Assembler diskette
in Disk Drive 1 at all times and put your program diskette in Disk Drive 2 or 3. If

you have one drive, then you must either keep the files that you create and edit on

the Editor/Assembler diskette or alternate putting the Editor/Assembler diskette and
your program diskette in the drive. When you need to load, edit, save, print, or run
a file from another diskette, first wait until the necessary portion of the
Editor/Assembler has been put into memory from the diskette. Then replace the
Editor/Assembler diskette with the one that has your file on it. After your file has
been loaded, edited, saved, printed, or run; remove your program diskette and replace
it with the Editor/Assembler diskette.

1.2.1 In Case of Difficulty

If the Editor/Assembler does not appear to be operating properly, remove the diskette
and return to the master title screen by pressing <esc>. Withdraw the module and
remove the diskette from the disk drive. (Note: In some instances it may be
necessary to turn the computer off, wait several seconds, and then turn it on again
before proceeding. Always remove diskettes before turning your computer on or off.)
Next align the module with the module opening and reinsert it carefully. Then
reinsert the diskette. Now press any key to make the master selection list reappear.
Repeat the selection process.

If you have any difficulty with your computer or the Editor/Assembler module, please

contact the dealer from whom you purchased the unit and/or module for service
directions. Additional information concerning service can be found in the User's
Reference Guide.

EDITOR/ASSEMBLER
Page 19

GENERAL INFORMATION

1.3 SPECIAL KEY FUNCTIONS

On the TI-99/4 console, certain keys are used in combination with the SHIFT keys.

On the TI-99/4A console, certain keys are used in combination with the FCTN keys.

Pressing any key for more than a moment causes that key to be repeated. Note:

The Editor/Assembler accepts lower-case letters from the TI-99/4A only in comments

and text. For this reason, it is usually best to keep the ALPHA LOCK key pressed

down. The {, }, [, and] keys are not available on the TI-99/4.

The following table lists the special keys available when using the Editor/Assembler.

Name TI-99/4 TI-99/4A Action

<del character> SHIFT F FCTN 1 Deletes a character in the Editor.

<ins character> SHIFT G FCTN 2 Inserts a character in the Editor.

<delete line> SHIFT T FCTN 3 Deletes a line from the screen.

<roll-up> SHIFT C FCTN 4 Displays the next 24 lines of the file.

<next-window> SHIFT W FCTN 5 Moves the display to the next window.

<roll-down> SHIFT V FCTN 6 Displays the previous 24 lines of the file.

<tab> SHIFT A FCTN 7 Moves the cursor to the next tab position.

<insert line> SHIFT R FCTN 8 Inserts a line.

<esc> SHIFT Z FCTN 9 Returns to the previously displayed screen.

In the Editor, enters the command mode.
{ FCTN F Types the left brace {.
} FCTN G Types the right brace }.

[FCTN R Types the left bracket [.

] FCTN T Types the right bracket].

<left-arrow> or SHIFT S FCTN S Moves the cursor to the left one character.

<backspace>

<right-arrow> SHIFT D FCTN D Moves the cursor to the right one character.

<down-arrow> SHIFT X FCTN X Moves the cursor down one line.

<up-arrow> SHIFT E FCTN E Moves the cursor up one line.

<return> ENTER ENTER Tells the computer to accept the

information that you type.

<quit> SHIFT GI FCTN = Leaves the Editor/Assembler.

EDITOR/ASSEMBLER

Page 20

SECTION 2: USING THE EDITOR/ASSEMBLER

This section describes the selections available with the Editor/Assembler. You start
the creation of an assembly language program by entering it with the Editor. Then
you may save it, load it, and edit it again if necessary. When it is ready, you may
assemble it and then load and run it.

The cursor is a flashing marker that appears on the screen to indicate where your

next keystroke appears. In editing, the cursor may be moved with the cursor
movement keys described in Section 1 or by some of the choices in the command
mode of the Editor.

Before using the Editor/Assembler, be certain that all hardware is properly attached
and turned on as described in Section 1, with the Editor/Assembler diskette in Disk

Drive 1 and the Editor/Assembler module inserted in the console. If you have a
TI-99/4A, it is advisable to depress the ALPHA LOCK key.

After you select the module, the Editor/Assembler title appears at the top of the

screen, followed by the five options as shown below.

EDITOR/ASSEMBLER SELECTION LIST
+ + + + + +

ED ITCR/ASSEMBLER

PRESS:
1 TO EDIT
2 ASSEMBLE
3 LOAD AND RLN
4 Ra\l
5 RLN PROGRAM FILE

1981 TEXAS INSTRUvENTS

+ + + + + + + +

To select an option, press the corresponding number key. At any time you may press
<esc> to return to the previous screen or <quit> to return to the master title screen.
The five Editor/Assembler options are discussed in the following sections.

EDITOR/ASSEMBLER
Page 21

USING THE EDITOR/ASSEMBLER

2.1 EDITOR

The Editor allows you to load a previously existing file, to create or edit a file, to

save a file that you have created or edited, to print a file, or to purge a file from

the computer's memory. If you press 1 for EDIT, you enter the Editor mode and the
computer displays the following selection list.

EDITOR SELECTION LIST
+ + + + + + + +

* EDITOR *

PRESS:
1 TO LOAD
2 EDIT
3 SAVE
4 PRINT
5 PURGE

+

+

+

+

+

+

+

+

Select LOAD to load an existing file into the computer's memory; EDIT to edit the

file in memory; SAVE to save a file from memory; PRINT to print a file from the

diskette; or PURGE to delete the file in memory.

2.1.1 Load

A file on a diskette may be loaded for editing or printing. Any file stored in a fixed

80 display format or a variable 80 display format is accepted by the Loader. By

saving your files in one of these formats, you may edit a list file or an object file, as

well as a source file. However, a compressed object file cannot be edited since it
contains undisplayable characters.

EDITOR/ASSEMBLER
Page 22

USING THE EDITOR/ASSEMBLER

Press 1 from the Editor selection list to load an existing file. If the Editor has not
already been loaded, the message

ONE MOMENT PLEASE...

is displayed on the screen briefly. Then the prompt

FILE NAME?

appears below the selection list.

If you have a single disk drive, remove the Editor/Assembler diskette and replace it
with the diskette that contains the file. With two or three disk drives, place the
program diskette in Disk Drive 2 or 3. Type the location and name of the file which
you wish to edit, save, or print (such as DSKI.OLDFILE) and press <return>. (You
may use the Disk Manager module to obtain a catalog of the files on your diskettes.)

The file is located and loaded into memory. The Editor selection list is then
displayed and you may select another option. Note: Each time a file is loaded, the
previous file is removed from memory.

2.1.2 Edit

The Edit option loads the Editor from the Editor/Assembler diskette. The Editor

allows you to create a new file or to edit a file which has been loaded with the Load
option. When you enter the Editor by pressing 2 from the Editor selection list, the

message

ONE MOMENT PLEASE...

is briefly displayed on the screen while the Editor is loaded from the
Editor/Assembler diskette. (If the Editor has already been loaded, this message does
not appear.) If no file has been loaded, the Edit option clears the screen so that you
may begin a new file. The cursor is positioned in the upper left corner of the screen
and is followed by the end-of-file marker (*EOF). Press <return> to create a new

line. The Editor is now ready to accept your new input.

If a file has been loaded into memory, the Editor displays that file on the screen with

the cursor at the top left, ready for you to edit it. You may leave the Editor and
return to the Editor selection list by pressing <esc> twice.

EDITOR/ASSEMBLER
Page 23

USING THE EDITOR/ASSEMBLER

Note: The file in memory, whether it is a new file or an existing file, may be lost

if you leave the Editor without saving it. Before returning to the Editor/Assembler

selection list, be sure to save your program.

The Editor has two modes: the command mode and the edit mode. You are in the

edit mode when you first enter the Editor. The command mode is entered from the

edit mode by pressing the <esc> key. The edit mode is reentered automatically after

you use a command in the command mode.

In the edit mode, the cursor shows where your next keystroke is placed. In the

command mode, the cursor is on the second line of the screen ready to accept

commands. The command that you enter is effective starting from the position the

cursor had when you entered the command mode.

2.1.2.1 Edit Mode

In the edit mode, the screen is 80 columns wide with three overlapping 40 column

windows available for displaying the text. You start in the left-most window with

columns 1 through 40 displayed. Pressing <next-window> moves the display to the
center window, with columns 21 through 60 displayed. Pressing <next-window> again

moves the display to the right window with columns 41 through 80 displayed.

Pressing <next-window> at this point returns the display to the left-most window.

The edit mode allows you to create, modify, and add text to program, data, and text

files. When you press a key, that character is placed on the screen in the cursor

position and the cursor moves one position to the right. (If the cursor is at the right

margin, it moves to the first position on the next line.) In addition, the edit mode

has several special keys which perform helpful edit functions. The following table

describes the special function keys that are used in the Editor.

Key Function

<return> Enters the text into the edit buffer and places the cursor at

the start of the next line. If <return> is pressed at the end

of the file, a blank line is automatically inserted.

<insert line> Inserts a blank line above the line where the cursor is

located.

EDITOR/ASSEMBLER

Page 24

USING THE EDITOR/ASSEMBLER

Key Function

<delete line> Deletes the current line of text, starting at the location of

the cursor.

<insert character> Inserts all characters typed until another function or cursor

movement key is pressed. The following characters on the

line are moved to the right. The insertion is effective for

one line only with all characters after column 80 lost.

<delete character> Deletes the character under the cursor. The following

characters on the line are moved to the left.

<tab>

<next-window>

Moves the cursor right to the next tab location. The tab

locations are set at defaults of 1, 8, 13, 26, 31, 46, 60, and

80. To change the tab locations, use the T(AB command in

the command mode. If you press <tab> from column 80,

the cursor goes to position 1 on the same line.

Moves the cursor position right to the next window so that

you may view different portions of the text. If you press

<next-window> from the right-most window, the left-most

window is displayed.

<roll-up> Scrolls the screen up by 24-line segments in the edit mode.

In the command mode, <roll-up> scrolls the screen by

22-line segments.

<roll-down> Scrolls the screen down by 24-line segments in the edit

mode. In the command mode, <roll-down> scrolls the

screen by 22-line segments.

<left-arrow> and Allow cursor movement to the left or right without

<right-arrow> changing the text. When the cursor is at the left margin,

pressing <left-arrow> alternately shows and removes the line

numbers.

<esc> Invokes the command mode when in the edit mode. From

the command mode, pressing <esc> returns you to the Editor

selection list.

EDITOR/ASSEMBLER

Page 25

USING THE EDITOR/ASSEMBLER

The current line number may be displayed and removed by pressing the <left-arrow>
key when the cursor is at the left margin. When the line numbers are displayed, the
last six characters of the 80-column display cannot be viewed.

2.1.2.2 Command Mode

The command mode, which provides additional editing features, is accessed from the
edit mode by pressing <esc>. The command mode uses the first two lines of the

screen for promptlines and your input, with the remainder of the screen displaying
your file. If an error is detected, the message ERROR appears in the left-hand
corner of the second line. Because most of the commands use line numbers, the
command mode automatically shows the line numbers. The cursor is displayed on the
second line for command input.

The command mode promptline shows the following prompts on a single line at the
top of the screen.

E(DIT,F(IND,R(EPLACE, M(OVE,I(NSERT,C(OPY,S(HO W,D(ELETE,A(DJUST,
T(AB,H(O ME?

The commands are selected by pressing the first letter of the desired command. All
of the edit mode function keys, except <insert-line>, <delete-line>, <up-arrow>, and
<down-arrow>, are also effective in the command mode. The <esc> key returns you
to the Editor selection list.

The effects of all of the commands except MOVE, I(NSERT, COPY, and DELETE

start from the position of the cursor when you entered the command mode. The
commands EDIT, ADJUST, and HOME occur when you press the letter to choose
those commands. The other commands require more information, and occur after
that information is entered and <return> is pressed.

The following gives the command mode prompts, in the order in which they appear in
the promptline, and describes their functions.

EDIT Returns you to the edit mode, with the display as it was before you
entered the command mode and the cursor at its previous position.

EDITOR/ASSEMBLER
Page 26

USING THE EDITOR/ASSEMBLER

FIND Enables you to find a string. The promptline

FIND <CNT>(<COL,COL>)/STRING/

appears on the top line of the screen. You may specify an optional count
number, from 1 through 9999, and optional beginning and ending column
numbers from 1 through 80.

The count number specifies which occurrence of the string is to be found.
If omitted, the default is 1. The two column numbers specify the

columns within which the search is to be made. The column numbers
must be preceded and followed by parentheses. If the column numbers
are omitted, the entire line, columns 1 through 80, is searched. The
string must be delimited by slashes (/). The following examples
demonstrate the use of FIND.

Example
/HELLO/

1000/HELLO/

(1,50)/ HELLO/

1000(1,50)/HELLO/

101/ /

Result
Finds the first occurrence of HELLO.

Finds the 1000th occurrence of HELLO.

Finds the first occurrence of HELLO in
columns 1 through 50.

Finds the 1000th occurrence of HELLO in
columns 1 through 50.

Finds the 101st space.

After the string is located, the Editor leaves the command mode and
returns to the edit mode. The string is displayed in line 1 with the

cursor located on the first character of the string.

REPLACE Replaces the given string with a new string. The promptline

REPLACE<V,><CNT>(<COL,COL>)/OLD/NEW/?

appears at the top of the screen. The count number specifies which
occurrence of the string is to be found. If omitted, the default is 1.
The two column numbers specify the columns within which the search is
to be made. The column numbers must be preceded and followed by

EDITOR/ASSEMBLER
Page 27

USING THE EDITOR/ASSEMBLER

parentheses. If the column numbers are omitted, the entire line, columns
1 through 80, is searched. The old string and new string are entered with
slashes delimiting them. After you press <return>, the replacement

process begins.

If V (for verify) is specified, the prompt

REPLACE STRING (Y/N/A)

is displayed followed by the string. To replace that occurrence of the

string, press Y. Press N if you do not want to replace the string in that

location. The next occurrence of the string is then located (if a count of
more than one was specified) and the prompt is again presented. To
replace all subsequent occurrences of the specified string, press A. The
following demonstrate the use of REPLACE.

Example

1000/HELLO/GOODBYE/

V,20/HELL O---/BYE/

MOVE Displays the promptline

Result
Changes the first 1000 occurrences of HELLO

to GOODBYE.

Presents, one at a time, the first 20
occurrences of HELLO---. You may change
them to BYE by pressing Y, go on to the next

one without changing that one by pressing N,
or change all subsequent ones by pressing A.

MOVE START LINE, STOP LINE, AFTER LINE?

at the top of the screen. The first value you enter specifies the line
number of the beginning of the section to be moved. The second value

specifies the line number of the end of the section to be moved. The

third value specifies the line after which you want to place the section
being moved. For example, if you specify 29 as the AFTER LINE, the

data is moved to line 30.

A maximum of a four-digit line number may be specified. However, if
the line number is greater than the EOF marker, the line number defaults
to the ECF. The ECF line number may be specified by entering E as the

starting line, stopping line, or after line. Line number 0 indicates the

EDITOR/ASSEMBLER
Page 28

USING THE EDITOR/ASSEMBLER

line above line number 1. When the move is complete, the line numbers
are automatically renumbered. The following examples demonstrate the
use of M(OVE.

Example Result
1,51,57 Moves line 1 through 51 to a position after line

57.

452,E,0 Moves lines 452 through the end of the file to
the beginning of the file.

SHOW Shows the lines starting at the line specified. The promptline

SHOW LINE?

appears. You may respond with a line number or E (to see the line at
the end of the file). For example, if you enter 30, the text on line
number 30 and all subsequent text is displayed beginning at the top of the
screen. The cursor is located on the first character in line number 30.

C(OPY Uses the same promptline and functions in the same manner as M(OVE.
However, C(OPY does not delete lines; it places a copy of the designated
data at the desired location.

INSERT Allows insertion of a file from a diskette before a specified line number.
The promptline

INSERT BEFORE LINE, FILE NAME?

requires a line number (four-digit maximum) and the name of the file.
For example, 29,DSK2.OLDFILE inserts the file OLDFILE from the
diskette in Disk Drive 2 to the file you are editing before line 29.

DELETE Deletes the desired text. The text to be deleted is specified as in the
M(OVE command. The prompt

DELETE START LINE, STOP LINE?

requires the entry of the beginning and ending line numbers for the
deletion.

EDITOR/ASSEMBLER
Page 29

USING THE EDITOR/ASSEMBLER

A(DJUST Returns you to the edit mode. Changes whether numbers are shown.
This allows you to see the last six columns of text or data. If the cursor

is located in columns 75 through 80, you must first move it to one of the
other columns before selecting A(DJUST to leave the line number mode.

T(AB Modifies and sets tabs. The Editor has default tabs at columns 1, 8, 13,
26, 31, 46, 60, and 80. When you choose this command, the top line of
the screen displays column numbers (123456789 123456789 ...). The
second line has a T located below each of the columns where tab
positions are located. Press <space> or <tab> to go to the location where
a tab is desired and type T. You may remove tabs by replacing a T with
a space. To adjust tabs in columns 75 through 80, tab to column 80 and
backspace to the position desired. The tab settings return to the defaults

when the Editor is reloaded. Note: Do not delete the tab at column 80.

HOME Moves the cursor to the upper left-hand corner of the screen.

2.1.3 Save

After you have edited a file, it must be saved on diskette for future use. Otherwise,
when you leave the Editor, the file may be lost. You save a file by pressing 3 from

the Editor selection list. The prompt

VARIABLE 80 FORMAT (Y/N)?

appears at the bottom of the screen. If Y is pressed, a file is opened with a variable
80 display format, which uses less space on the diskette than a fixed 80 display
format. If you press N, a fixed 80 display format is used. After a file is saved on
diskette, its format cannot be changed unless the file is reloaded into memory and
saved again in the new format.

After the format is chosen, the prompt

FILE NAME?

is displayed. If you have a single disk drive, remove the Editor/Assembler diskette
and replace it with the diskette that contains the file. If you have two or three disk
drives, place the program diskette in Disk Drive 2 or 3. To save your file on a

EDITOR/ASSEMBLER
Page 30

USING THE EDITOR/ASSEMBLER

diskette, enter the device and filename. For example, DSK1.SAVEFILE saves your
file on the diskette in Disk Drive 1 under the name SAVEFILE. After you save your
file, be sure that the Editor/Assembler diskette is in Disk Drive 1.

You may also save your file to the RS232 by specifying RS232 as the filename. The
output is then directed to the device connected to the RS232, which is normally a
printer. When outputting to the RS232, you must specify a file that is in variable 80
format.

You may wish to use the print option to print a file instead of the save option.
However, outputting is faster with SAVE than with the PRINT option. The TI
Thermal Printer may not be used with the save option. It is only accessible from the

print option.

2.1.4 Print

The print option allows you to print a file to the RS232 Interface, the Thermal
Printer, or a diskette file. A source, list, object, or any other file in either a
variable 80 display format or a fixed 80 display format can be printed. A printed
compressed object file may appear somewhat confusing because it contains
unprintable characters. Select the print option by pressing 4 on the Editor selection
list. The prompt

FILE NAME?

appears on the screen. If you have a single disk drive, remove the Editor/Assembler

diskette and replace it with the diskette that contains the file. With two or three
disk drives, place the program diskette in Disk Drive 2 or 3. Enter a filename, such
as DSKI.OLDFILE. The file must be on a diskette. After you enter the filename,
the prompt

DEVICE NAME?

appears. A diskette file, RS232, or TP may be specified as a device name. If the
diskette is specified (to duplicate a file) the entire diskette filename, such as
DSK1.PRNTFILE, must be entered. The output file is in variable 80 format, so an
object file duplicated with the print option cannot be loaded by the Loader.

After you specify the device, the file is printed on that device. The print option
does not require that the Editor be in memory. If the Editor is in memory, the print

EDITOR/ASSEMBLER
Page 31

USING THE EDITOR/ASSEMBLER

option does not alter the text being edited, so you may continue to edit after you use

the print option.

After you have printed your file, be sure that the Editor/Assembler diskette is in Disk

Drive 1.

2.1.5 Purge

The purge option allows you to remove the file currently in memory. After you
select the purge option by pressing 5 from the Editor selection list, the prompt

ARE YOU SURE (YIN)?

appears at the bottom of the screen. If you press Y, the file is cleared from
memory and is no longer accessible. If you press N, the file remains in memory and

you are returned to the Editor selection list. You should normally save your file
prior to purging it from memory. You normally only purge a file when you wish to

create a new file.

EDITOR/ASSEMBLER
Page 32

USING THE EDITOR/ASSEMBLER

2.2 ASSEMBLE

The Assembler allows you to assemble files that you have created, edited, and saved
with the Editor. If you press 2 for ASSEMBLE from the Editor/Assembler selection
list, you enter the Assembler.

2.2.1 File and Option Specification

If the Assembler has not been previously loaded, the prompt

LOAD ASSEMBLER?

appears on the screen. If you press N you are returned to the Editor/Assembler
selection list. If you press Y, and the Editor/Assembler diskette is in Disk Drive 1,
the message ONE MOMENT PLEASE... is displayed and the Assembler is loaded. If
the Assembler has already been loaded, the prompt LOAD ASSEMBLER? is omitted.

After the Assembler is loaded, the prompt

SOURCE FILE NAME?

appears. Type the file name, such as DSKI.SOURCE. The source file must be on a
diskette in either a fixed or variable 80 display format. Then the prompt

OBJECT FILE NAME?

appears. Type the object file name, such as DSKI.OBJECT. The object file (which
is created if it does not already exist) must be on a diskette. It is created by the
Assembler in a fixed 80 format. Then the prompt

LIST FILE NAME?

appears. Type the list file name, such as DSK1.LIST. Just press <return> if you do
not want a listing. The list file can be output to a diskette file or the RS232
Interface and is always in a variable 80 display format. Then the prompt

OPTIONS?

appears. The options available and their functions are listed on the next page.

EDITOR/ASSEMBLER
Page 33

USING THE EDITOR/ASSEMBLER

Option Function
R Defines the Workspace Register symbols RO through R15 equal to 0

through 15.
L Specifies list file generation.
S Specifies that a symbol table dump is to be included in the list file.
C Specifies that the object file is to be in compressed format to save

space on the diskette.

If no option is desired, simply press <return>. If you want more than one option,
enter each letter with no commas or spaces between the letters. If L (list file
generation) is not specified in the option input, the Assembler does not create a
listing even though a list file name was specified. If a list file is not specified, the
Assembler assembles the program file more quickly. The R option is almost always
required to generate proper object code. If a letter other than L, S, C, or R is
specified, it is ignored.

For example, the following shows the prompts and your responses if you wish to
assemble a file named SOURCE, list it to the RS232 at 9600 baud, name the object
file OBJECT, and use the options L, S, and R.

Prompt
SOURCE FILE NAME?

OBJECT FILE NAME?
LIST FILE NAME?
OPTIONS?

Your input
DSK1.SOURCE

DSKI.OBJECT
RS232.BA=9600
RLS

EDITOR/ASSEMBLER
Page 34

USING THE EDITOR/ASSEMBLER

2.2.2 Assembly

After you enter the options, the program transfers control to the Assembler. While
the Assembler is running, the message

ASSEMBLER EXECUTING

appears at the bottom of the screen. If a fatal error is encountered, the Assembler
returns the error code and stops assembling. If a non-fatal error is detected, the
line number and appropriate error message are displayed at the bottom of the screen
and assembly continues. See Section 15 for a complete description of the Assembler
output.

When assembly is complete, the total number of errors is shown on the screen, as
well as the message

PRESS ENTER TO CONTINUE.

When <return> is pressed, the program returns to the Editor/Assembler selection list.

EDITOR/ASSEMBLER
Page 35

USING THE EDITOR/ASSEMBLER

2.3 LOAD AND RUN

You may load and run the object code produced by the Assembler by pressing 3 for
LOAD AND RUN from the Editor/Assembler selection list. When you select LOAD
AND RUN, the prompt

FILE NAME?

appears. If you have a single disk drive, remove the Editor/Assembler diskette and
replace it with the diskette that contains the file. With two or three disk drives,
place the program diskette in Disk Drive 2 or 3. The file must be an object file on a
diskette in either regular or compressed object format. Type your filename (such as
DSKI.OLDOBJ) and press <return>.

After the file is loaded, the filename is erased from the screen and you may enter
another filename. You may load as many files as you like until the memory is full.
Note: If an error occurs in loading any file, then all files must be loaded again.
After you have loaded all your files, you may proceed by pressing <return> without
entering a file name.

The prompt

PROGRAM NAME?

appears next. The program name is any entry point in your program marked by a
label which has been defined in the DEF list of the program. If you press <return>

without entering a program name, the program most recently executed is located and
executed.

If the program has an entry label with an END statement, the Loader starts
executing from that label without prompting for the program name. If you attempt

to run a program in which there are unresolved references, an error occurs.

Note: Once your program has started to run, it is in total control of the computer.
Unless the program allows you to return control to the Editor/Assembler, to TI
BASIC, or to the master selection list, the only way to stop the program is to turn
off the computer.

EDITOR/ASSEMBLER
Page 36

USING THE EDITOR/ASSEMBLER

2.4 RUN

You may run a program that has already been loaded into memory by pressing 4 for
RUN from the Editor/Assembler selection list. When you select RUN, the prompt

PROGRAM NAME?

appears. The program name is any entry point in your program marked by a label
which has been defined in the DEF list of the program. If you press <return> without
entering a program name, the program most recently executed is located and
executed.

If the program has an entry label with an END statement, the Loader starts
executing from that label without prompting for the program name. If you attempt
to run a program in which there are unresolved references, an error occurs.

Note: Once your program has started to run, it is in total control of the computer.
Unless the program allows you to return control to the Editor/Assembler, to TI
BASIC, or to the master selection list, the only way to stop the program is to turn
off the computer.

EDITOR/ASSEMBLER
Page 37

USING THE EDITOR/ASSEMBLER

2.5 RUN PROGRAM FILE

You may load and run a file that is on a diskette or cassette as a memory image file
by pressing 5 for RUN PROGRAM FILE from the Editor/Assembler selection list.
You may create and save a file as a memory image by using the SAVE utility
provided on the second Editor/Assembler diskette. See Section 24.5 for a description
of this utility.

Some arcade games are provided by Texas Instruments in this format and may be run
using this option. The game on the second Editor/Assembler diskette must be put in
this format with the SAVE utility before you can use it.

When you choose this option, the prompt

PROGRAM FILE NAME?

is displayed. Enter the name of the program preceded by the device name. For
example, DSK1.GAME is a proper program filename. The program is then loaded and
run.

Note: Once your program has started to run, it is in total control of the computer.
Unless the program allows you to return control to the Editor/Assembler, to TI
BASIC, or to the master selection list, the only way to stop the program is to turn
off the computer.

EDITOR/ASSEMBLER
Page 38

SECTION 3: GENERAL PROGRAMMING INFORMATION

This section discusses how the TI Home Computer and the TMS9900 microprocessor
allow you to use Registers, transfer vectors, Workspaces, source statement formats,
expressions, constants, symbols, terms, and character strings.

3.1 REGISTERS

A register is a memory word that serves a secific purpose. Registers in Random
Access Memory (RAM) are called "software" registers. A set of 16 consecutive

registers is called a "workspace."

Three "hardware" registers are located in the CPU itself. They are the Program
Counter Register, the Workspace Pointer Register, and the Status Register.

3.1.1 Program Counter Register (PC)

The Program Counter Register (PC) keeps track of the location of the next
instruction in memory. The PC manages the program and maintains a sequential and
orderly flow of instructions.

3.1.2 Workspace Pointer Register (WP)

The Workspace Pointer Register (WP) contains the address of the current software
workspace.

EDITOR/ASSEMBLER
Page 39

GENERAL PROGRAMMING INFORMATION

3.1.3 Status Register (ST)

The Status Register (ST) contains indications of the present status of the computer.
Each bit of the status register is initialized to zero when the computer is turned on.

Then, as each instruction is performed, the computer indicates the status by changing
the appropriate "switches" as a result of that instruction. By this method the bits
are set (changed to 1) and reset (changed to 0) by machine instructions. Status bits
have the following meanings.

Bit
Name Number Meaning
L> 0 Logical greater than
A> 1 Arithmetic greater than
EQ 2 Equal
C 3 Carry
OV 4 Overflow
OP 5 Odd parity
X 6 Extended operation
- 7-11 Reserved
INT. 12-15 Interrupt mask
MASK

In the diagrams in this manual, bits that are checked or set have a caret (") printed
under them. The following is a representation of the Status Register with the L> and
EQ bits set.

Status Register

0 1 2 3 4 5 6 7 S 9 10 11 12 13 14 15
IL>IA>IEOIC IOVIOPIX I I INT. MASK I

The following table indicates the bits in the Status Register that may be affected by
the various assembly language instructions.

EDITOR/ASSEMBLER
Page 40

L>
X
X
X
X
X

A>
X
X
X
X
X

EQ
X
X
X
X
X

GENERAL PROGRAMMING INFORMATION

Status Bits Affected by Instructions'

Mnemonic
A
AB
ABS
AI
ANDI
B
BL
BLWP
C
CB
CI
CLR
COC
CZC
DEC
DECT
DIV
INC
INCT
INV
JEO
JGT
JH
JHE
JL
JLE
JLT
JMP
JNC
JNE
JNO
JOC

C OV OP X Mnemonic L> A> EQ C OV OP X
X X - - JOP —
X X X - LDCR X X X X - 2 -
X X - - LI X X X - - - -
X X - - LIMI - - -
- - - - LWPI - - -
- - - - MOV X X X
- - - - MOVB X X X

- - MPY - - - - -
- - NEG X X X X X
X - ORI X X X - -
- - RTWP X X X X X
- - S X X X X X
- - SB X X X X X
- - SBO - - - - -
- - SBZ - - - - -
- - SETO - - - - -
- - SLA X X X X X- -
- - SOC X X X - - - -
- - SOCB X X X - - X -
- - SRA X X X X - - -
- - SRC X X X X - - -

- - - - SRL X X X X - - -
- - - - STCR X X X - - 2 -
- - - - STST - - - - - - -
- - - - STWP - - - - - - -
- - - - SWPB - - - - - - -
- - - - SZC X X X - - - -
- - - - SZCB X X X - - X -
- - - - TB -
- - - - X 3 3 3 3 3 3 3
- - - - XOP 3 3 3 3 3 3 3
- - - - XOR X X X - - - -

OV

X X X - -
X X X - -
X X X - -

- - X - -
-

X X X X X
X X X X X
- - - - X
X X X X X
X X X X X
X X X - -

X -

X X

X -

Notes:

'In addition to these instructions, the instructions CKOF, CKON, IDLE, LREX,
and RSET are included in this manual for completeness. None affect any status
bits or have any other useful effect on the Home Computer.

2When an LDCR or STCR instruction transfers eight or fewer bits, the OP bit is
set or reset as in byte instructions. Otherwise, the OP bit is not affected.

3The X instruction does not affect any status bit. The instruction executed by
the X instruction sets status bits normally. When an XOP instruction is
implemented, the XOP bit is set, and the subroutine sets status bits normally.

EDITOR/ASSE MBLER
Page 41

GENERAL PROGRAMMING INFORMATION

3.1.3.1 Logical Greater Than--(L>)

The logical greater than bit is set when an unsigned number is compared with a
smaller unsigned number. In this comparison, the most significant bits of the words
being compared represent 215. The least significant bits of the bytes being compared
represent 27.

3.1.3.2 Arithmetic Greater Than--(A>)

The arithmetic greater than bit is set when a signed number is compared with a
smaller signed number. The most significant bits of the words or bytes being
compared represent the sign of the number, zero for positive or one for negative.
For positive numbers, the remaining bits represent the binary value. For negative
numbers, the remaining bits represent the two's complement of the binary value.

3.1.3.3 Equal--(E0)

The equal bit is set when the two words or bytes being compared are equal. The
significance of equality is the same whether the comparison is between unsigned
binary numbers or two's complement numbers.

3.1.3.4 Carry--(C)

The carry bit is set by a carry of 1 from the most significant bit (sign bit) of a word
or byte during arithmetic and shift operations. Thus the carry bit is used by shift
operations to store the last bit shifted out of the Workspace Register being shifted.

3.1.3.5 Overflow--(OV)

The overflow bit is set when the result of an arithmetic operation is too large or too
small to be represented correctly in two's complement representation.

In addition operations, the overflow bit is set when the most significant bits of the
operands are equal and the most significant bit of the result is not equal to the most
significant bit of the destination operand.

EDITOR/ASSEMBLER
Page 42

GENERAL PROGRAMMING INFORMATION

In subtraction operations, the overflow bit is set when the most significant bits of the
operands are not equal and the most significant bit of the result is not equal to the
most significant bit of the destination operand.

For a divide operation, the overflow bit is set when the most significant 16 bits of
the dividend are greater than or equal to the divisor.

For an arithmetic left shift, the overflow bit is set if the most significant bit of the
workspace register being shifted changes value.

For the absolute value and negate instructions, the overflow bit is set when the
source operand is the maximum negative value (>8000).

3.1.3.6 Odd Parity--(OP)

In byte operations the odd parity bit is set when the parity of the result is odd and is

reset when the parity is even. The parity of a byte is odd when the number of bits
having values of one is odd. When the number of bits having values of one is even,

the parity of the byte is even. The odd parity bit is equal to the least significant bit
of the sum of the bits in the byte.

3.1.3.7 Extended Operation--(X)

The extended operation instruction (XOP) is available in some TI-99/4A computers.
The only way to determine if your computer supports this instruction is to try it.
Extended operation instructions permit a limited extension of the existing instruction
set to include additional instructions. In the computer, these additional instructions
are implemented by software routines.

When the program contains an XOP instruction (see Section 14.5) that is software
implemented, the computer locates the XOP Workspace Pointer (WP) and Program
Counter (PC) words in the XOP reserved memory locations and loads the WP and PC.
Then the computer transfers control to the XOP instruction set through a context

switch (See Section 3.2). When the context switch is complete, the XOP workspace
contains the calling routine's return data in Workspace Registers 13, 14, and 15.

The extended operation bit is set when the software implemented extended operation
is initiated.

EDITOR/ASSEMBLER
Page 43

GENERAL PROGRAMMING INFORMATION

3.1.3.8 Interrupt Mask

The interrupt mask is status bits 12 through 15. Any device with a level number less
than or equal to the value in the interrupt mask is permitted by the TMS9900
microprocessor to interrupt a running program. Thus if the interrupt mask has a
value of 2 (binary 0010), any device with a level of 0, 1, or 2 may interrupt a running
program. On the TI Home Computer, all interrupts are on level 2. Thus only values
of 0 and 2 are useful.

EDITOR/ASSEMBLER
Page 44

GENERAL PROGRAMMING INFORMATION

3.2 TRANSFER VECTORS AND WORKSPACE

A transfer vector is two consecutive words of memory which contain a pair of
memory addresses. The first word contains the address of a 16-word area of memory
called a workspace, and the second word contains the address of a subroutine entry
point. The computer uses a transfer vector to perform a transfer of control called a
context switch.

A context switch places the contents of the first word of a transfer vector in the
Workspace Pointer Register. The active workspace becomes the workspace addressed
by that word, with the 16 words of the active workspace called registers 0 through
15. These are available for use as general purpose registers, address registers, or
index registers. The context switch places the contents of the second word of a
transfer vector in the Program Counter, causing the instruction at that address to be
executed next.

EDITOR/ASSEMBLER
Page 45

GENERAL PROGRAMMING INFORMATION

3.3 SOURCE STATEMENT FORMAT

An assembly language source program consists of source statements which may

contain assembler directives, machine instructions, pseudo-instructions, or comments.

Each line (or record) of a source statement consists of a maximum of 80 characters

of information (including spaces). A record may be subdivided into several variably

sized sections known as fields.

The label field is positioned at the beginning of the source statement and serves as a

reference point. The op-code field is the operation code (a number, name, or

abbreviation) of the task to be performed by that source statement. The operand

field stipulates the value that is to be operated upon or manipulated. It may be a

number, string, address, etc. The comment field is an area reserved for you to make

comments that increase the readability of the program but that do not affect the

operations of the computer. The syntax definition describes the required form for

the use of commands as related to the fields. Section 4 describes formatting

procedures and definitions in detail.

The following conventions apply in the syntax definitions for machine instructions and
assembler directives.

• Items in capital letters, including special characters, must be entered exactly

as shown.

• Items within angle brackets (0) are defined by you.

• Items in lower-case letters represent classes (generic names) of items.

• Items within brackets ([]) are optional.

• Items within braces ({ }) are alternative items, one of which must be entered.

• An ellipsis (...) indicates that the preceding item may be repeated.

• The symbol b represents one or more blanks or spaces.

The syntax (required form) for source statements other than comment statements is

defined as follows.

[<label>] b op-code b [<operand>] [,(operand>] ... b [<comment>]

As this syntax definition indicates, a source statement may have a label, which you

define. One or more blanks separate the label from the op-code. Mnemonic

operation codes, assembler directive codes, and pseudo-operation codes are all

included in the generic term op-code, and you may enter any of these. One or more

blanks separate the op-code from the operand, when an operand is required.

EDITOR/ASSEMBLER
Page 46

GENERAL PROGRAMMING INFORMATION

Additional operands, when required, are separated by commas. One or more blanks

separate the operand or operands from the comment field.

Note: Although the maximum length of a source record is 80 characters, the list

file displays only the first 60 characters of each line.

3.3.1 Character Set

The Assembler recognizes the following ASCII characters.

The alphabet (upper-case letters only except in comment and text fields) and

space character

The numerals 0 through 9

Several special characters and control characters

The character set is listed in the Appendix.

3.3.2 Label Field

The label field begins in the first character position of the source record and extends

to the first blank. The label field consists of a symbol containing up to six

characters, the first of which must be alphabetic. Additional characters may be any

alphanumeric characters. A label is optional for machine instructions and for many

assembler directives. When the label is omitted, however, the first character

position must contain a blank.

A source statement consisting of only a label field is a valid statement. It has the

effect of assigning the current location to the label. This is usually equivalent to

placing the label in the label field of the following machine instruction or assembler

directive. However, when a statement consisting of only a label is preceded by a

TEXT or BYTE directive and is followed by a DATA directive or a machine

instruction, the label does not have the same value as a label in the following

statement unless the TEXT or BYTE directive left the location counter on an even

(word) location. An EVEN directive following the TEXT or BYTE directive prevents

this problem.

EDITOR/ASSEMBLER
Page 47

GENERAL PROGRAMMING INFORMATION

3.3.3 Operation Field

The operation (op-code) field begins after the blank that terminates the label field or

in the first non-blank character position after the first character position when the

label is omitted. The operation field is terminated by one or more blanks and may

not extend past character position 60 of the source record. The operation field

contains an op-code, which is one of the following.

• Mnemonic operation code of a machine instruction

• Assembler directive operation code

• Symbol assigned to an extended operation by a DXOP directive

• Pseudo-instruction operation code

3.3.4 Operand Field

The operand field begins after the blank that terminates the operation field. It may

not extend past character position 60 of the source record. The operand field may

contain one or more expressions, terms, or constants, according to the requirements

of the particular op-code. The operand field is terminated by one or more blanks.

3.3.5 Comment Field and Comment Line

The comment field begins after the blank that terminates the operand field, and may

extend to the end of the source record if required. The comment field may contain

any ASCII character, including blank. The contents of the comment field are listed

in the source portion of the assembly listing but have no other effect on the
assembly.

Comment statements consist of a single field starting with an asterisk (*) in the first

character position and followed by any ASCII character, including a blank, in each

succeeding character position. Comment statements are listed in the source portion

of the assembly listing, but have no other effect on the assembly. A totally blank

line is also treated as a comment line.

EDITOR/ASSEMBLER
Page 48

GENERAL PROGRAMMING INFORMATION

3.4 EXPRESSIONS

Expressions are used in the operand fields of assembler directives and machine

instructions. An expression is a constant or symbol, a series of constants or symbols,

or a series of constants and symbols separated by arithmetic operators. Each

constant or symbol may be preceded by a minus sign (unary minus) to indicate a

negative value. An expression may contain no embedded blanks or symbols that are

defined as extended operations. Symbols that are defined as external references may

not be operands of arithmetic operations. An expression may contain more than one

symbol that is not previously defined. When these symbols are absolute, they may

also be operands of multiplication or division operations within an expression. The

Assembler only supports program-relocatable symbols.

3.4.1 Well-Defined Expressions

Some assembler directives (noted in their descriptions) require well-defined

expressions in the operand fields. For an expression to be well-defined, any symbols

or assembly-time constants in the expression must have been previously defined.

Also, the evaluation of a well-defined expression must be absolute, and a well-defined

expression may not contain a character constant.

3.4.2 Arithmetic Operators

The arithmetic operators in expressions are as follows.

+ for addition

- for subtraction

* for multiplication

/ for signed division

In evaluating an expression, the Assembler first negates any constant or symbol

preceded by a minus sign (unary minus) and then performs the arithmetic operations

from left to right. The Assembler does not assign precedence to any operation other

than unary minus. All operations are integer operations. The Assembler truncates
the fraction in division.

For example, the expression 4+5*2 is evaluated as 18, not 14, and the expression

7+1/2 is evaluated as 4, not 7. Note: Parentheses may not be used to alter the

order of the evaluation of expressions.

EDITOR/ASSEMBLER
Page 49

GENERAL PROGRAMMING INFORMATION

3.5 CONSTANTS

Constants are used in expressions. The Assembler recognizes four types of constants:
decimal integer constants, hexadecimal integer constants, character constants, and
assembly-time constants.

3.5.1 Decimal Integer Constants

A decimal integer constant is written as a string of numerals. The range of values
of decimal integers is -32,768 to +65,535. Positive decimal integer constants greater
than 32,767 are considered negative when interpreted as two's-complement values.
Operands of arithmetic instructions. other than multiply and divide are interpreted as
two's complement numbers, and all comparisons compare numbers both as signed and
unsigned values.

The following are valid decimal constants.

1000 Constant, equal to 1,000 or >3E8.
-32768 Constant, equal to -32,768 or >8000.

3.5.2 Hexadecimal Integer Constants

A hexadecimal integer constant is written as a string of up to four hexadecimal
numerals preceded by a greater than (>) sign. Hexadecimal numerals include the
decimal values 0 through 9 and letters A through F.

The following are valid hexadecimal constants.

>F Constant, equal to 15, or >F.
>37AC Constant, equal to 14252 or >37AC.

EDITOR/ASSEMBLER
Page 50

GENERAL PROGRAMMING INFORMATION

3.5.3 Character Constants

A character constant is written as a string of one or two characters enclosed in

single quotes. To represent a single quote within a character constant, two
consecutive single quotes are necessary. The characters are represented internally as

eight-bit ASCII characters, with the leading bit set to zero. A character constant
consisting only of two single quotes (no character) is valid. This is the null string

and is assigned the value >0000.

The following are valid character constants.

'AB' Represented internally as >4142.
'C' Represented internally as >43.
"'D' Represented internally as >2744.

3.5.4 Assembly-Time Constants

An assembly-time constant is written as an expression in the operand field of an EQU
directive. (See Section 14.3.) Any symbol in the expression must have been
previously defined. The value of the label is determined at assembly time and is
considered to be absolute or relocatable according to the relocatability of the
expression, not according to the relocatability of the Location Counter value.

EDITOR/ASSEMBLER
Page 51

GENERAL PROGRAMMING INFORMATION

3.6 SYMBOLS

Symbols may be used in the label field, the operator field, and the operand field. A
symbol is a string of alphanumeric characters, (A through Z and 0 through 9), the

first of which must be an alphabetic character, and none of which may be a blank.
When more than six characters are used in a symbol, the Assembler prints all the
characters but accepts only the first six characters for processing. User-defined
symbols are valid only during the assembly in which they are defined.

Symbols used in the label field become symbolic addresses. They are associated with
locations in the program and must not be used in the label field of other statements.
Mnemonic operation codes and assembler directive names are valid user-defined
symbols when placed in the label field.

The DXOP directive defines a symbol to be used in the operator field. Any symbol
that is used in the operand field must be placed in the label field of a statement or

in the operand field of a REF directive, except for a symbol in the operand field of a
DXOP directive or a predefined symbol.

EDITOR/ASSEMBLER
Page 52

GENERAL PROGRAMMING INFORMATION

3.7 PREDEFINED SYMBOLS

The predefined symbols are the dollar-sign character ($) and the Workspace Register
symbols. The dollar-sign character is used to represent the current location within
the program. The 16 Workspace Register symbols are RO through R15. They are
undefined unless you choose the R option when you run the Assembler.

The following are examples of valid symbols.

Al Assigned the value of the location at which it appears in the label
field.

OPERATION Truncated to the first six letters and assigned the value of the
location at which it appears in the label field.

$ Represents the current location.

EDITOR/ASSEMBLER
Page 53

GENERAL PROGRAMMING INFORMATION

3.8 TERMS

Terms may be used in the operand fields of machine instructions and assembler
directives. A term is a decimal or hexadecimal constant, an absolute assembly-time
constant, or a label having an absolute value.

The following are examples of valid terms.

12 Has a value of 12 or >C.

>C Has a value of 12 or >C.

WR2 Is valid if Workspace Register 2 is defined as having an absolute value.

If START is a relocatable symbol, the following statement is not valid as a term.

WR2 EQU START+4 WR2 is a relocatable value 4 greater than the
value of START. Not valid as a term but valid
as a symbol.

EDITOR/ASSEMBLER
Page 54

GENERAL PROGRAMMING INFORMATION

3.9 CHARACTER STRINGS

Several assembler directives require character strings in the operand field. A
character string is written as a string of characters enclosed in single quotes. To
represent a quote within a character string, two consecutive single quotes are
necessary. The maximum length of the string is defined by each directive that
requires a character string. The characters are represented internally as eight-bit
ASCII characters, with the leading bits set to zeros.

The following are valid character strings.

'SAMPLE PROGRAM' Defines a 14-character string
consisting of SAMPLE
PROGRAM.

'PLAN "C"' Defines an 8-character string
consisting of PLAN 'C'.

'OPERATOR MESSAGE * PRESS START SWITCH' Defines a 37-character string

consisting of the expression
enclosed in single quotes.

EDITOR/ASSEMBLER
Page 55

SECTION 4: ADDRESSING MODES

This section describes the addressing modes used in assembly language. Examples of
programming in each addressing mode are included.

4.1 GENERAL ADDRESSING MODES

A source operand is the number, address, string, etc., which is to be manipulated or
operated upon. A destination operand is the address where the result of the
performed manipulation is stored. Instructions that specify a general address for a
source or destination operand may be in one of five addressing modes. These
addressing modes and their uses are discussed in this section.

The following lists the T-field value, which indicates the type of addressing mode (see
Section 5), and gives an example for each of the addressing modes.

Addressing Modes

Addressing Mode T-field value Example
Workspace Register 00 5
Workspace Register Indirect 01 *7
Symbolic Memory" 2 10 @LABEL

Indexed Memoryll' 10 [ILABEL(5)

Workspace Register Indirect Auto-increment 11 *7+

Notes:
1The instruction requires an additional word for each T-field value of 10. The
additional word contains a memory address.

2The four-bit field immediately following the T-field value of 102, called the S
(for a source operand) or D (for a destination operand) field, is set to zero by the
Assembler.
3The T-field value of 10 indicates both symbolic and indexed memory addressing
modes. If the four-bit field which follows it contains a zero value, it is a

symbolic addressing mode. If it is non-zero, it is an indexed addressing mode,
and the non-zero value is the number of the index register. Therefore,
Workspace Register 0 cannot be used for indexing.

EDITOR/ASSEMBLER
Page 56

ADDRESSING MODES

4.1.1 Workspace Register Addressing

Workspace Register addressing specifies the Workspace Register that contains the
operand. A Workspace Register address is specified by a value of 0 through 15
preceded with an "R". For example, Workspace Register 8 is referred to as "R8".

Examples:

MOV R4,R8 Copies the contents of Workspace Register 4 into
Workspace Register 8.

COC R15,R10 Compares the bits of Workspace Register 10 that
correspond to the one bits in Workspace Register
15 to one.

4.1.2 Workspace Register Indirect Addressing

Workspace Register indirect addressing specifies a Workspace Register that contains
the address of the operand. An indirect Workspace Register address is preceded by
an asterisk (*).

Examples:

A *R7,*R2 • Adds the contents of the word at the address in
Workspace Register 7 to the contents of the word
at the address in Workspace Register 2 and places
the sum in the word at the address in Workspace
Register 2.

MOV *R7,R0 Copies the contents of the word at the address
given in Workspace Register 7 into Workspace
Register 0.

EDITOR/ASSEMBLER
Page 57

ADDRESSING MODES

4.1.3 Workspace Register Indirect Auto-Increment Addressing

Workspace Register indirect auto-increment addressing specifies a Workspace Register
that contains the address of the operand. After the address is obtained from the
Workspace Register, the Workspace Register is incremented by 1 for a byte
instruction or by 2 for a word instruction. A Workspace Register auto-increment
address is preceded by an asterisk and followed by a plus sign (+).

Examples:

S *R3+,R2 Subtracts the contents of the word at the address
in Workspace Register 3 from the contents of
Workspace Register 2, places the result in
Workspace Register 2, and increments the address
in Workspace Register 3 by two.

C R5,*R6+ Compares the contents of Workspace Register 5
with the contents of the word at the address in
Workspace Register 6 and increments the address
in Workspace Register 6 by two.

4.1.4 Symbolic Memory Addressing

Symbolic memory addressing specifies the memory address that contains the operand.
A symbolic memory address is preceded by an "at" sign (@).

Examples:

S @FIX1,@LIST4 Subtracts the contents of the word at location
FIX1 from the contents of the word at location
LIST4 and places the difference in the word at
location LIST4.

C RO,@STORE

MOV @12,@>7C

Compares the contents of Workspace Register 0
with the contents of the word at location STORE.

Copies the word at address >000C into location
>007C.

EDITOR/ASSEMBLER
Page 58

ADDRESSING MODES

4.1.5 Indexed Memory Addressing

Indexed memory addressing specifies the memory address that contains the operand.
The address is the sum of the contents of a Workspace Register and a symbolic
address. An indexed memory address is preceded by an "at" sign (@) and followed by
a term enclosed in parentheses. The Workspace Register specified by the term
within the parentheses is the index register. Workspace Register 0 may not be
specified as an index register.

Examples:

A [al2(R7),R6 Adds the contents of the word found at the address

computed by adding 2 to the contents of Workspace

Register 7 to the contents of Workspace Register 6
and places the sum in Workspace Register 6.

MOV R7,@LIST4-6(R5) Copies the contents of Workspace Register 7 into a
word of memory. The address of the word of
memory is the sum of the contents of Workspace
Register 5 and the value of symbol LIST4 minus 6.

EDITOR/ASSEMBLER
Page 59

ADDRESSING MODES

4.4 IMMEDIATE ADDRESSING

Immediate instructions use the contents of the word following the instruction word as
the operand of the instruction. The immediate value is an expression, and the
Assembler places its value in the word following the instruction. Immediate
instructions that require two operands have a Workspace Register address preceding
the immediate value.

Example:

LI R5,>1000 Places >1000 into Workspace Register 5.

EDITOR/ASSEMBLER
Page 62

ADDRESSING MODES

4.5 ADDRESSING SUMMARY

The following table shows the addressing mode required for each instruction of the
Assembler instruction set. The first column lists the instruction mnemonic. The
second and third columns specify the required address, listed below.

G General address:

Workspace Register address
Indirect Workspace Register address

Symbolic memory address
Indexed memory address
Indirect Workspace Register auto-increment address

WR - Workspace Register address
PC - Program counter relative address
CRU - CRU bit address
I - Immediate value
* The address into which the result is placed when two operands are

required

Instruction Addressing

First Second First Second
Mnemonic Operand Operand Mnemonic Operand Operand

A G G* LDCR G Note 1
AB G G* LI WR* I
ABS G - LIMI I
AI WR* I LREX -
ANDI WR* I LWPI I -
B G MOV G G*
BL G MOVB G G*
BLWP G MPY G WR*
C G G NEG G -
CB G G ORI WR* I
CI WR I RSET
CKOF RTWP -
CKON S G G*
CLR G SB G G*
COC G WR SBO CRU
CZC G WR SBZ CRU
DEC G SETO G
DECT G SLA WR* Note 2
DIV G WR* SOC G G*
IDLE SOCB G G*
INC G SRA WR* Note 2
INCT G SRC WR* Note 2
INV G - SRL WR* Note 2

EDITOR/ASSEMBLER
Page 63

ADDRESSING MODES

First Second First Second
Mnemonic Operand Operand Mnemonic Operand Operand

JEO PC - STCR G* Note 1
JGT PC - STST WR -
JH PC - STWP WR -
JHE PC - SWPB G -
JL PC - SZC G G*
JLE PC - SZCB G G*
JLT PC - TB CRU -
JMP PC - • X G -
JNC PC - XOP G Note 3
JNE PC - XOR G WR*
JNO PC -
JOC PC -
JOP PC -

Notes:
1The second operand is the number of bits to be transferred, from 0 through 15,
with 0 meaning 16 bits.
2The second operand is the shift count, from 0 through 15. 0 indicates that the
count is in bits 12 through 15 of Workspace Register 0. When the count is 0 and
bits 12 through 15 of Workspace Register 0 equal 0, the count is 16.
3The second operand specifies the extended operation, from 0 through 15. The
disposition of the result may or may not be in the first operand address, as
determined by you.

EDITOR/ASSEMBLER
Page 64

SECTION 5: INSTRUCTION FORMATS

An assembler instruction occupies one word (16 bits) of memory. Each word is
divided into appropriately sized bit fields which are arranged in one of nine formats.
These formats are discussed below and are referred to in the discussions of the
instructions in the following sections. You must clearly understand addressing modes,
as described in Section 4, before reading this section.

Each format contains one or more of the following bit fields.

Op-Code - Machine operation code.

B - Byte indicator: 1 for byte instructions, 0 for word instructions.

Td - Type of addressing mode of the destination operand.

D - Destination operand.

Ts - Type of addressing mode of the source operand.

S - Source operand.

DISP - Displacement value (signed).

C - Count (bit count).

W - Workspace register.

EDITOR/ASSEMBLER
Page 65

INSTRUCTION FORMATS

5.1 FORMAT I -- TWO GENERAL ADDRESS INSTRUCTIONS

The operand field of Format I instructions contains two general addresses separated

by a comma. The first address is the source address and the second is the

destination address. The Format I mnemonic operation codes are listed below and

discussed in subsequent sections.

A Add words

AB Add Bytes

C Compare words

CB Compare Bytes

MOV MOVe word

MOVB MOVe Byte

S Subtract words

SB Subtract Bytes

SOC Set Ones Corresponding
SOCB Set Ones Corresponding, Byte

SZC Set Zeros Corresponding
SZCB Set Zeros Corresponding, Byte

Example:

SUM A [LABEL1,*R7 Adds the contents of the word at

location LABEL1 to the contents of

the word at the address in

Workspace Register 7 and places the

sum in the word at the address in

Workspace Register 7. SUM is the

location of the instruction.

Format I instructions are assembled as follows.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IOP -CODEI B I Td I D I Ts I S I

When either Ts or Td (but not both) equal binary 10, the instruction occupies two

words of memory. The second word contains a memory address used with S or D to

develop the effective address. When both Ts and Td equal binary 10, the instruction
occupies three words of memory. The second word contains the memory address of

the source operand, and the third word contains the memory address of the

destination operand.

EDITOR/ASSEMBLER

Page 66

INSTRUCTION FORMATS

5.2 FORMAT II -- JUMP INSTRUCTIONS

Format II instructions use Program Counter (PC) relative addresses coded as
expressions corresponding to instruction locations on word boundaries. The Format II
jump mnemonic operation codes are listed below and discussed in subsequent sections.
See Section 5.2.1 for a discussion of the Format II CRU bit I/O instructions.

JEO Jump if EQual
JGT Jump if Greater Than
JH Jump if logical High
JHE Jump if High or Equal
JL Jump if logical Low
JLE Jump if Low or Equal
JLT Jump if Less Than
JMP unconditional JuMP
JNC Jump if No Carry
JNE Jump if Not Equal
JNO Jump if No Overflow
JOC Jump On Carry
JOP Jump if Odd Parity

Example:

NOW JMP BEGIN Jumps unconditionally to the instruction at
location BEGIN. The address of location BEGIN
must not be greater than the address of location
NOW by more than 128 words, nor less than the
address of location NOW by more than 127
words.

Format II instructions are assembled as follows.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
I OP-CODE I DI SP I

The signed displacement value is shifted one bit position to the left and added to the
contents of the Program Counter after the Program Counter has been incremented to
the address of the following instruction. In other words, it is a displacement in
words from the instruction address plus two.

EDITOR/ASSEMBLER
Page 67

INSTRUCTION FORMATS

5.2.1 Format II -- Bit I/O Instructions

In addition to jump instructions, the CRU bit I/O instructions also follow Format II.
The operand field of Format II CRU bit I/O instructions contains a well-defined

expression which evaluates to a CRU bit address, relative to the contents of
Workspace Register 12. The Format II CRU bit I/O instructions are listed below and
discussed in subsequent sections. See Section 5.2 for a discussion of the Format II

jump instructions.

SBO Set Bit to logic One
SBZ Set Bit to logic Zero
TB Test Bit

Example:

SBO 5 Sets a CRU bit to one.

EDITOR/ASSEMBLER
Page 68

INSTRUCTION FORMATS

5.3 FORMAT III -- LOGICAL INSTRUCTIONS

The operand field of Format III instructions contains a general address followed by a
comma and a Workspace Register address. The general address is the source address.

The Workspace Register address is the destination address. The Format III mnemonic
operation codes are listed below and discussed in subsequent sections.

COC Compare Ones Corresponding
CZC Compare Zeros Corresponding
XOR eXclusive OR

Example:

COMP XOR @LABEL8(R3),R5 Performs an exclusive OR operation

on the contents of a memory word
and the contents of Workspace

Register 5 and places the result in
Workspace Register 5. The address
of the memory word is the sum of
the contents of Workspace Register
3 and the value of the symbol
LABELS.

Format III instructions are assembled as follows.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
I OP-CODE I D I Ts I S I

When Ts equals binary 10, the instruction occupies two words of memory. The

second word contains the memory address of the source operand.

EDITOR/ASSEMBLER
Page 69

INSTRUCTION FORMATS

5.4 FORMAT IV -- CRU MULTI-BIT INSTRUCTIONS

The operand field of Format IV instructions contains a general address followed by a
comma and a well-defined expression. The general address is the memory address
from which or into which bits are transferred. The CRU address for the transfer is
the contents of bits 3 through 14 of Workspace Register 12. The well-defined
expression is the number of bits to be transferred and must have a value of 0 through
15. A 0 value specifies a 16 bit transfer. For eight or fewer bits the general
address is a byte address. For nine or more bits the general address is a word

address. The Format IV mnemonic operation codes are listed below and discussed in
subsequent sections.

LDCR LoaD CRU
STCR STore CRU

Example:

LDCR *R6+,8 Places eight bits from the byte of memory at the address in

Workspace Register 6 into eight consecutive CRU lines and

increments Workspace Register 6 by 1.

Format IV instructions are assembled as follows.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
I OP-CODE I C I Ts I S I

When Ts equals binary 10, the instruction occupies two words of memory. The
second word contains the memory address for the source operand.

EDITOR/ASSEMBLER
Page 70

INSTRUCTION FORMATS

5.5 FORMAT V -- REGISTER SHIFT INSTRUCTIONS

The operand field of Format V instructions contains a Workspace Register address
followed by a comma and a well-defined expression. The contents of the Workspace
Register are shifted a number of bit positions specified by the well-defined
expression. When the term equals zero, the shift count must be placed in bits 12-15
of Workspace Register 0. The Format V mnemonic operation codes are listed below
and discussed in subsequent sections.

SLA Shift Left Arithmetic
SRA Shift Right Arithmetic
SRC Shift Right Circular
SRL Shift Right Logical

Example:

SLA R6,4 Shifts the contents of Workspace Register 6 to the left 4 bit
positions and replaces the vacated bits with zeros.

Format V instructions are assembled as follows.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
I OP-CODE I C I W I

EDITOR/ASSEMBLER
Page 71

INSTRUCTION FORMATS

5.6 FORMAT VI -- SINGLE ADDRESS INSTRUCTIONS

The operand field of Format VI instructions contains a general address. The Format
VI mnemonic operation codes are listed below and discussed in subsequent sections.

ABS ABSolute value
B Branch
BL Branch and Link
BLWP Branch and Load Workspace Pointer
CLR CLeaR
DEC DECrement
DECT DECrement by Two
INC INCrement
INCT INCrement by Two
INV INVert
NEG NEGate
SETO SEt To One
SWPB SWaP Bytes
X eXecute

Example:

CNT INC R7 Adds one to the contents of Workspace Register
7 and places the sum in Workspace Register 7.
CNT is the location into which the instruction is
placed.

Format VI instructions are assembled as follows.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
I OP-CODE I Ts I S I

When Ts equals binary 10, the instruction occupies two words of memory. The
second word contains the memory address of the source operand.

EDITOR/ASSEMBLER
Page 72

INSTRUCTION FORMATS

5.7 FORMAT VII -- CONTROL INSTRUCTIONS

Format VII instructions require no operand field. The Format VII mnemonic
operation codes are listed below and discussed in subsequent sections. All but the
last instruction have no effect on the TI Home Computer.

CKOF ClocK OFf
CKON ClocK ON
IDLE IDLE
LREX Load or REstart eXecution
RSET ReSET
RTWP ReTurn with Workspace Pointer

Example:

RTWP Returns control to the calling program and restores the context of the
calling program by placing the contents of Workspace Registers 13, 14,
and 15 into the Workspace Pointer Register, the Program Counter, and
the Status Register.

Format VII instructions are assembled as follows.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
I OP-CODE I 01 01 01 01 01

The op-code field contains 11 bits that define the machine operation. The five least
significant bits are zeros.

EDITOR/ASSEMBLER
Page 73

INSTRUCTION FORMATS

5.8 FORMAT VIII -- IMMEDIATE INSTRUCTIONS

The operand field of Format VIII instructions contains a Workspace Register address
followed by a comma and an expression. The Workspace Register is the destination

address, and the expression is the immediate operand. The Format VIII mnemonic
operation codes are listed below and discussed in subsequent sections.

AI Add Immediate
ANDI AND Immediate
CI Compare Immediate
LI Load Immediate
ORI OR Immediate

There are two additional Format VIII instructions that require only an expression in
the operand field. The expression is the immediate operand. The destination is

implied in the name of the instruction. These instructions are listed here.

LIMI Load Interupt Mask Immediate
LWPI Load Workspace Pointer Immediate

Another modification of Format VIII requires only a Workspace Register address in
the operand field. The Workspace Register address is the destination. The source is
implied in the name of the instruction. The following mnemonic operation codes use
this modified Format VIII.

STST STore STatus

STWP STore Workspace Pointer

Examples:

ANDI 4,>000F Performs an AND operation on the contents of Workspace
Register 4 and immediate operand >000F.

LWPI WRK1 Places the address defined for the symbol WRK1 into the
Workspace Pointer Register.

STWP R4 Places the contents of the Workspace Pointer Register into
Workspace Register 4.

EDITOR/ASSEMBLER
Page 74

INSTRUCTION FORMATS

Format VIII instructions are assembled as follows.

0 1 2 3 4 5 6 7 S 9 10 11 12 13 14 15
1 CP-CODE 1 01 W

A zero bit separates the two fields. The instructions that have no Workspace
Register operand place zeros in the W field. The instructions that have immediate
operands place the operands in the word following the word that contains the op-code,
i.e., these instructions occupy two words each.

EDITOR/ASSEMBLER
Page 75

INSTRUCTION FORMATS

5.9 FORMAT IX -- EXTENDED OPERATION INSTRUCTION

The extended operation instruction can be used on some TI Home Computers. See

Section 7.19 for more information.

The operand field of the Format IX extended operation instruction contains a general
address and a well-defined expression. The general address is the address of the
operand for the extended operation. The term specifies the extended operation to be
performed and must be in the range of 0 through 15. The Format IX mnemonic
operation code is listed below and discussed in subsequent sections. See Section 5.9.1
for a discussion of the Format IX multiply and divide instructions.

XOP eXtended OPeration

Example:

XOP [a1LABEL(R4),12 Performs extended operation 12 using the
address computed by adding the value of symbol
LABEL to the contents of Workspace Register 4.

Format IX instructions are assembled as follows.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
I OP-COCE I D I Ts I S I

When Ts equals binary 10, the instruction occupies two words of memory. The
second word contains the memory address for the source operand.

EDITOR/ASSEMBLER
Page 76

INSTRUCTION FORMATS

5.9.1 Format IX -- Multiply and Divide Instructions

The operand field of Format IX multiply and divide instructions contains a general
address followed by a comma and a Workspace Register address. The general address
is the address of the multiplier or divisor, and the Workspace Register address is the
address of the Workspace Register that contains the multiplicand or dividend. The
Workspace Register address is also the address of the first of two Workspace
Registers to contain the result. The Format IX multiply and divide instructions are
listed below and discussed in subsequent sections. See Section 5.9 for a discussion of
the Format IX extended operation instruction.

MPY MultiPlY
DIV DIVide

Example:

MPY @ACC,R9 Multiplies the contents of Workspace Register 9
by the contents of the word at location ACC
and places the product in Workspace Registers 9
and 10, with the 16 least significant bits of the
product in Workspace Register 10.

Multiply and divide instructions are assembled in the same format as shown in Section
5.9, except that the D field contains the Workspace Register operand.

EDITOR/ASSEMBLER
Page 77

SECTION 6: ARITHMETIC INSTRUCTIONS

The following arithmetic instructions are described in this section.

Instruction Mnemonic Section
Add words A 6.1
Add Bytes AB 6.2
ABSolute value ABS 6.3
Add Immediate AI 6.4
DECrement DEC 6.5
DECrement by Two DECT 6.6
DIVide DIV 6.7
INCrement INC 6.8
INCrement by Two INCT 6.9
MultiPlY MPY 6.10

NEGate NEG 6.11
Subtract words S 6.12

Subtract Bytes SB 6.13

Examples are given in Section 6.14.

Each instruction consists of the following information.

• A heading, consisting of the instruction name and mnemonic name
• The op-code

• The syntax definition
• An example of the instruction

• The definition of the instruction

• The status bits affected
• The execution results
• Application notes when appropriate

The op-code is a four-digit hexadecimal number which corresponds to an instruction
word whose address fields contain zeros.

EDITOR/ASSEMBLER
Page 78

ARITHMETIC INSTRUCTIONS

The syntax definition follows the conventions described in Section 5. The generic
names used in the syntax definitions are:

gas General Address of the Source operand

gad General Address of the Destination operand
wa Workspace register Address
iop Immediate OPerand

wad Workspace register Address Destination
disp DISPlacement of CRU lines from the CRU base register

exp EXPression that represents an instruction location
cnt CouNT of bits for CRU transfer
scnt Shift CouNT
xop number of eXtended OPeration

Source statements that contain machine instructions can use the label field, the
operation field, the operand field, and the comment field.

Use of the label field is optional. When it is used, the label is assigned the address

of the instruction. The Assembler advances to the location of a word boundary (even
address) before assembling a machine instruction.

The operation (op-code) field contains the mnemonic operation code of the
instruction. The contents of the operand field are defined for each instruction.

Inclusion of the comment field is optional. If used, it may contain any ASCII
characters, including blanks. The comment has no effect on the assembly process
other than being printed in the listing.

In the execution results, the following conventions are used.

()
=>
**

Indicates "the contents of."
Indicates "replaces."
Indicates "the absolute value of."

The generic names used in the syntax definitions are also used in the execution
results.

EDITOR/ASSEMBLER
Page 79

ARITHMETIC INSTRUCTIONS

6.1 ADD WORDS--A

Op-code: A000 (Format I)

Syntax definition:

[<label>) b A b <gas>,<gad> b [(comment>)

Example:

LABEL A [alADR1(R2),Qa ADR2(R3) Adds the word at the address found
by adding ADR1 to the contents of
Workspace Register 2 to the word at
the address found by adding ADR2
to the contents of Workspace

Register 3 and puts the result in the
word at the second address.

Definition:

Adds a copy of the source operand (word) to the destination operand (word) and
replaces the destination operand with the sum. The computer compares the sum
to zero and sets/resets the status bits to indicate the result of the comparison.
When there is a carry of bit zero, the carry status bit is set. When there is an
overflow, the overflow status bit is set.

Status bits affected:

Logical greater than, arithmetic greater than, equal, carry, and overflow.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>IEDIC IOVIOPIX I I INT. MASK I

Execution results:
(gas) + (gad) => (gad)

EDITOR/ASSEMBLER
Page 80

ARITHMETIC INSTRUCTIONS

Application notes:
The A instruction adds both signed and unsigned integer words. For example, if

the address labeled TABLE contains >3124 and Workspace Register 5 contains >8,

the instruction

A 5,@TABLE

results in the contents of TABLE changing to >312C and the contents of
Workspace Register 5 not changing. The logical and arithmetic greater than

status bits are set and the equal, carry, and overflow status bits are reset.

EDITOR/ASSEMBLER
Page 81

ARITHMETIC INSTRUCTIONS

6.2 ADD BYTES--AB

Op-code: B000 (Format I)

Syntax definition:

[<label>] b AB b <gas>,<gad> b [<comment>]

Example:

LABEL AB 3,2 Adds the left byte of Workspace Register 3 to
the left byte in Workspace Register 2 and places
the result in the left byte of Workspace Register
2.

Definition:

Adds a copy of the source operand (byte) to the destination operand (byte) and
replaces the destination operand with the sum. When the source or destination
operand is addressed in the Workspace Register mode, only the leftmost byte (bits

0 through 7) of the addressed Workspace Register is used. The computer
compares the sum to zero and sets/resets the status bits to indicate the results of

the comparison. When there is a carry of the most significant bit of the byte,

the carry status bit is set. When there is an overflow, the overflow status bit is
set. The odd parity bit is set when the bits in the sum (destination operand)
establish odd parity and is reset when the bits in the sum establish even parity.

Status bits affected:
Logical greater than, arithmetic greater than, equal, carry, overflow, and odd
parity.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>IEOIC IOVIOPIX I I INT. MASK I

Execution results:
(gas) + (gad) => (gad)

EDITOR/ASSEMBLER
Page 82

ARITHMETIC INSTRUCTIONS

Application notes:
The AB instruction is used to add signed or unsigned integer bytes. For example,
if Workspace Register 3 contains >7400, memory word >2122 contains >F318 and
Workspace Register 2 contains >2123, the instruction

AB 3,*2+

changes the contents of memory word >2122 to >F38C because >74 (the value in
Workspace Register 3) plus >23 (the value in memory byte >2123) is >8C. The

left byte of memory word >2122 is unchanged. The contents of Workspace
Register 2 are changed to >2124, while the contents of Workspace Register 3

remain unchanged. The logical greater than, overflow, and odd parity status bits
are set, while the arithmetic greater than, equal, and carry status bits are reset.

EDITOR/ASSEMBLER
Page 83

ARITHMETIC INSTRUCTIONS

6.3 ABSOLUTE VALUE--ABS

Op-code: 0740 (Format IV)

Syntax definition: .

[<label>] b ABS b <gas> b [<comment>]

Example:

LABEL • ABS *2 Replaces the contents of the word starting at
the address in Workspace Register 2 with its
absolute value.

Definition:

Computes the absolute value of the source operand and replaces the source
operand with the result. The absolute value is the two's complement of the
source operand when the sign bit (bit zero) is equal to one. When the sign bit is
equal to zero, the source operand is unchanged. The computer compares the
original source operand to zero and sets/resets the status bits to indicate the
results of the comparison.

Status bits affected:

Logical greater than, arithmetic greater than, equal, and overflow.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>IEQIC IOVIOPIX I I INT. MASK I
A A A A

Execution results:
(gas) => (gas)

Application notes:

The ABS instruction is useful for taking the absolute value of an operand. For
example, if the third word in array LIST contains the value >FF3C and Workspace
Register 7 contains the value >4, the instruction

ABS ®LIST(7)

changes the contents of the third word in array LIST to >00C4. The logical
greater than status bit is set, while the arithmetic greater than and equal status
bits are reset.

EDITOR/ASSEMBLER
Page 84

ARITHMETIC INSTRUCTIONS

6.4 ADD IMMEDIATE--AI

Op-code: 0220 (Format III)

Syntax definition:

[<label>] b AI b <wa>,<iop> b [<comment>]

Example:

LABEL AI 2,7 Adds 7 to the contents of Workspace Register 2.

Definition:
Adds a copy of the immediate operand (the contents of the word following the
instruction word in memory) to the contents of the Workspace Register specified
in the wa field and replaces the contents of the Workspace Register with the
results. The computer compares the sum to zero and sets/resets the status bits
to indicate the result of the comparison. When there is a carry of bit zero, the
carry status bit is set. When there is an overflow, the overflow status bit is set.

Status bits affected:
Logical greater than, arithmetic greater than, equal, carry, and overflow.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>IEQIC IOVIOPIX I I INT. MASK I
A A A A A

Execution results:
(wa) + iop => (wa)

Application notes:
The AI instruction adds an immediate value to the contents of a Workspace
Register. For example, if Workspace Register 6 contains a zero, the instruction

AI 6,>C

changes the contents of Workspace Register 6 to >000C. The logical greater
than and arithmetic greater than status bits are set, while the equal, carry, and
overflow status bits are reset.

EDITOR/ASSEMBLER
Page 85

ARITHMETIC INSTRUCTIONS

6.5 DECREMENT--DEC

Op-code: 0600 (Format IV)

Syntax definition:

[<label>) b DEC b <gas> b [<comments>)

Example:

LABEL DEC 2 Decrements the contents of Workspace Register

2 by 1.

Definition:

Subtracts a value of one from the source operand and replaces the source operand

with the result. The computer compares the result to zero and sets/resets the

status bits to indicate the result of the comparison. When there is a carry of bit

zero, the carry status bit is set. When there is an overflow, the overflow status
bit is set.

Status bits affected:

Logical greater than, arithmetic greater than, equal, carry, and overflow.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>IEQIC IOVIOPIX 1 I INT. MASK I

Execution results:

(gas) - 1 => (gas)

Application notes:

The DEC instruction subtracts a value of one from any addressable operand. The

DEC instruction is also useful in counting and indexing byte arrays. For example,

if COUNT contains a value of >1, the instruction

DEC @COUNT

results in a value of zero in location COUNT and sets the equal and carry status

bits while resetting the logical greater than, arithmetic greater than, and

overflow status bits. The carry bit is always set except on transition from zero

to minus one.

EDITOR/ASSEMBLER
Page 86

ARITHMETIC INSTRUCTIONS

6.6 DECREMENT BY TWO--DECT

Op-code: 0640 (Format IV)

Syntax definitions:

[<label>] b DECT b <gas> b [<comment>]

Example:

LABEL DECT @ADDR Decrements the contents of ADDR by 2.

Definition:
Subtracts two from the source operand and replaces the source operand with the

result. The computer compares the result to zero and sets/resets the status bits
to indicate the result of the comparison. When there is a carry of bit zero, the
carry status bit is set. When there is an overflow, the overflow status bit is set.

Status bits affected:

Logical greater than, arithmetic greater than, equal, carry, and overflow.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>IEQIC IOVIOPIX I I INT. MASK I

Execution results:
(gas) - 2 => (gas)

Application notes:
The DECT instruction is useful in counting and indexing word arrays. Also, the
DECT instruction enables you to subtract a value of two from any addressable
operand. For example, if Workspace Register PRT, which has been equated to 3,
contains a value of >2C10, the instruction

DECT PRT

changes the contents of Workspace Register 3 to >2COE. The logical greater
than, arithmetic greater than and carry status bits are set, while the equal and
overflow status bits are reset.

EDITOR/ASSEMBLER
Page 87

ARITHMETIC INSTRUCTIONS

6.7 DIVIDE--DIV

Op-code: 3C00 (Format IX)

Syntax definition:

[<label>] b DIV b <gas>,<wad> b [<comment>]

Example:

LABEL DIV ®ADR(2),3 Divides the contents of the words in Workspace

Register 3 and Workspace Register 4 by the
value of ADR plus Workspace Register 2 and
stores the integer result in Workspace Register 3
with the remainder in Workspace Register 4.

Definition:

Divides the destination operand (a consecutive two-word area of workspace) by a
copy of the source operand (one word), using unsigned integer rules. Places the
integer quotient in the first of the two-word destination operand area and places
the remainder in the second word of that same area. This division is graphically
represented as follows.

Destination Operand Workspace Registers:

Workspace Register(n)IWorkspace Register(n+1)
0 1510 15
< >1< >

Resulting Quotient Resulting Remainder
< >

Dividend

Source operand:

Addressable Memory
0 15
< >

Divisor

The first of the destination operand Workspace Registers, shown above, is
addressed by the contents of the D field. The dividend is right justified in this

EDITOR/ASSEMBLER
Page 88

ARITHMETIC INSTRUCTIONS

2-word area. When the division is complete, the quotient (result) is placed in the

first Workspace Register of the destination operand (represented by n) and the

remainder is placed in the second word of the destination operand (represented by

n+1).

When the source operand is greater than the first word of the destination

operand, normal division occurs. If the source operand is less than or equal to

the first word of the destination operand, normal division results in a quotient

that cannot be represented in a 16-bit word. In this case, the computer sets the

overflow status bit, leaves the destination operand unchanged, and cancels the

division operation.

If the destination operand is specified as Workspace Register 15, the first word of

the destination operand is Workspace Register 15 and the second word of the

destination operand is the word in memory immediately following the workspace

area.

Status bits affected:

Overflow

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>IEQIC IOVIOPIX I I INT. MASK I

Execution results:

(wad and wad +1) divided by (gas) _> (wad) and (wad) + 1

The quotient is placed in wad and the remainder is placed in wad + 1.

Application notes:

The DIV instruction performs a division. For example, if Workspace Register 2

contains a zero and Workspace Register 3 contains >000C, and the contents of

LOC is >0005, the instruction

DIV @LOC,2

results in >0002 in Workspace Register 2 and >0002 in Workspace Register 3.

The overflow status bit is reset. If Workspace Register 2 contained the value

>0005, the value contained in the destination operand equals 327,692 and division

by the value 5 results in a quotient of 65,538, which cannot be represented in a

16-bit word. This attempted division sets the overflow status bit and the

computer cancels the operation.

EDITOR/ASSEMBLER

Page 89

ARITHMETIC INSTRUCTIONS

6.8 INCREMENT--INC

Op-code: 0580 (Format VI)

Syntax definition:

[<label>] b INC b <gas> b [<comment>]

Example:

LABEL INC >1A03 Increments the contents of address >1A03 by 1.

Definition:
Adds one to the source operand and replaces the source operand with the result.

The computer compares the sum to zero and sets/resets the status bits to

indicate the result of the comparison. When there is a carry of bit zero, the

carry status bit is set. When there is an overflow, the overflow status bit is set.

Status bits affected:
Logical greater than, arithmetic greater than, equal, carry, and overflow.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>IEQIC IOVIOPIX I I INT. MASK I

Execution results:
(gas) + 1 => (gas)

Application notes:

The INC instruction may be used to count and index byte arrays, add a value of

one to an addressable memory location, or set flags. For example, if COUNT

contains a zero, the instruction

INC @COUNT

places a >0001 in COUNT and sets the logical greater than and arithmetic greater

than status bits, while the equal, carry, and overflow status bits are reset.

EDITOR/ASSEMBLER
Page 90

ARITHMETIC INSTRUCTIONS

6.9 INCREMENT BY TWO--INCT

Op-code: 05C0 (Format VI)

Syntax definition:

[<label>] b INCT b <gas> b [<comment>]

Example:

LABEL INCT 3 Increments the contents of Workspace Register
3 by 2.

Definition:
Adds a value of two to the source operand and replaces the source operand with
the sum. The computer compares the sum to zero and sets/resets the status bit
to indicate the result of the comparison. When there is a carry of bit zero, the
carry status bit is set. When there is an overflow, the overflow status bit is set.

Status bits affected:
Logical greater than, arithmetic greater than, equal, carry, and overflow.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>IEQIC IOVIOPIX I I INT. NWSK I

Execution results:
(gas) + 2 => (gas)

Application notes:
The INCT instruction may be used to count and index word arrays and add the
value of two to an addressable memory location. For example, if Workspace
Register 5 contains the address (>2100) of the fifteenth word of an array, the
instruction

INCT 5

changes Workspace Register 5 to >2102, which points to the sixteenth word of the
array. The logical greater than and arithmetic greater than status bits are set,
while the equal, carry, and overflow status bits are reset.

EDITOR/ASSEMBLER
Page 91

ARITHMETIC INSTRUCTIONS

6.10 MULTIPLY--MPY

Op-code: 3800 (Format IX)

Syntax definition:

[<label>) b MPY b <gas>,<wad> b [<comment>]

Example:

LABEL MPY Qa ADDR,3 Multiplies the contents of Workspace Register 3
by the value of ADDR. The result is right
justified in the 32 bits of Workspace Register 3
and Workspace Register 4.

Definition:
Multiplies the first word in the destination operand (a consecutive 2-word area in
workspace) by a copy of the source operand and replaces the 2-word destination
operand with the result. The multiplication operation may be graphically

represented as follows.

Destination operand Workspace Registers:

Workspace Register(n)lWorkspace Register(n+1)
0 15I0 15
< >

Multiplicand
< >

Product

Source operand:

Addressable Memory
0 15
< >

Multiplier

EDITOR/ASSEMBLER
Page 92

ARITHMETIC INSTRUCTIONS

The first word of the destination operand, shown on the previous page, is
addressed by the contents of the D field. This word contains the multiplicand

(unsigned value of 16 bits) right-justified in the Workspace Register, (represented

by workspace n above). The 16-bit, unsigned multiplier is located in the source

operand. When the multiply operation is complete, the product appears
right-justified in the entire 2-word area addressed by the destination field as a

32-bit unsigned value. The maximum value of either input operand is >FFFF and

the maximum value of the unsigned product is >FFFE0001.

If the destination operand is specified as Workspace Register 15, the first word of
the destination operand is Workspace Register 15 and the second word of the

destination operand is the memory word immediately following the workspace

memory area.

Status bits affected:

None

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>IEQIC IOVIOPIX I I INT. MASK I

Execution results:
(gas) * (wad) = (wad) and (wad)+1

The product (32-bit magnitude) is placed in wad and wad + 1, with the most

significant half in wad.

Application notes:

The MPY instruction performs a multiplication. For example, if Workspace

Register 5 contains >0012, Workspace Register 6 contains >1B31, and memory

location NEW contains >0005, the instruction

MPY @NEW,5

changes the contents of Workspace Register 5 to >0000 and Workspace Register 6

to >005A. The source operand is unchanged. The Status Register is not affected
by this instruction.

EDITOR/ASSEMBLER
Page 93

ARITHMETIC INSTRUCTIONS

6.11 NEGATE--NEG

Op-code: 0500 (Format VI)

Syntax definition:

[(label>] b NEG b <gas> b [<comment>]

Example:

LABEL NEG 2 Replaces the contents of Workspace Register 2
with its additive inverse.

Definition:
Replaces the source operand with the two's-complement of the source operand.
The computer determines the two's-complement value by inverting all bits of the
source operand and adding one to the resulting word. The computer then
compares the result to zero and sets/resets the status bits to indicate the result
of the comparison.

Status bits affected:
Logical greater than, arithmetic greater than, equal, and overflow.

0 1 2 3 4 5 6 7 S 9 10 11 12 13 14 15
IL>IA>IEOIC IOVIOPIX I I INT. MASK I

Execution results:
-(gas) => (gas)

Application notes:
The NEG instruction changes the contents of an addressable memory location its
additive inverse. For example, if Workspace Register 5 contains the value >A342,

the instruction

NEG 5

changes the contents of Workspace Register 5 to >5CBE. The logical greater
than and arithmetic greater than status bits are set, while the equal status bit is
reset.

EDITOR/ASSEMBLER
Page 94

ARITHMETIC INSTRUCTIONS

6.12 SUBTRACT WORDS--S

Op-code: 6000 (Format I)

Syntax definition:

[<label>! b S b <gas>,<ged> b [<comment>)

Example:

LABEL S 2,3 Subtracts the contents of Workspace Register 2
from the contents of Workspace Register 3.

Definition:
Subtracts a copy of the source operand from the destination operand and places
the difference in the destination operand. The computer compares the difference
to zero and sets/resets the status bits to indicate the result of the comparison.
When there is a carry of bit zero, the carry status bit is set. When there is an
overflow, the overflow status bit is set. The source operand remains unchanged.

Status bits affected:
Logical greater than, arithmetic greater than, equal, carry, and overflow.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>IEQIC IOVIOPIX I I INT. MASK I

Execution results:
(gad) - (gas) => (gad)

Application notes:
The S instruction subtracts signed integer values. For example, if memory
location OLDVAL contains a value of >1225 and memory location NEWVAL
contains a value of >8223, the instruction

S ®OLDVAL,®NEWVAL

changes the contents of NEWVAL to >6FFE. The logical greater than, arithmetic
greater than, carry, and overflow status bits are set, while the equal status bit is
reset.

EDITOR/ASSEMBLER
Page 95

ARITHMETIC INSTRUCTIONS

6.13 SUBTRACT BYTES--SB

Op-code: 7000 (Format I)

Syntax definition:

[<label>] b SB b <gas>,<gad> b [<comment>]

Example:

LABEL SB 2,3 Subtracts the leftmost byte of Workspace
Register 2 from the leftmost byte of Workspace
Register 3.

Definition:

Subtracts a copy of the source operand (byte) from the destination operand (byte)

and replaces the destination operand byte with the difference. When the
destination operand byte is addressed in the Workspace Register mode, only the
leftmost byte (bits 0-7) in the Workspace Register is used. The computer
compares the resulting byte to zero and sets/resets the status bits accordingly.
When there is a carry of the most significant bit of the byte, the carry status bit
is set. When there is an overflow, the overflow status bit is set. If the result
byte establishes odd parity (an odd number of logic one bits in the byte), the odd
parity status bit is set.

Status bits affected:

Logical greater than, arithmetic greater than, equal, carry, overflow, and odd
parity.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>IEOIC IOVIOPIX I I INT. MASK I

Execution results:
<gad> - <gas> => <gad>

EDITOR/ASSEMBLER
Page 96

ARITHMETIC INSTRUCTIONS

Application notes:
The SB instruction subtracts signed integer bytes. For example, if Workspace
Register 6 contains the value >121C, memory location >121C contains the value
>2331, and Workspace Register 1 contains the value >1344, the instruction

SB Q6+,1

changes the contents of Workspace Register 6 to >121D and the contents of
Workspace Register 1 to >F044. The logical greater than status bit is set, while
the other status bits affected by this instruction are reset.

EDITOR/ASSEMBLER
Page 97

ARITHMETIC INSTRUCTIONS

6.14 INSTRUCTION EXAMPLES

This section includes several arithmetic instruction examples for further clarification.
The application of these instructions is not necessarily limited to that given.

6.14.1 Incrementing and Decrementing Examples

There are two decrement and two increment instructions that may be used for various
types of control when passing through a loop, indexing through an array, or operating
within a group of instructions.

The incrementing and decrementing instructions available for use with the Assembler
are:

INCrement (INC)

INCrement by Two (INCT)
DECrement (DEC)
DECrement by Two (DECT)

The single increment and decrement instructions are useful for indexing byte arrays
and for counting byte operations. The increment by two and decrement by two
instructions are useful for indexing word arrays and for counting word operations.
The following sections provide some examples of these operations.

6.14.1.1 Increment Instruction Example

The example program shows how the INC instruction is useful in byte operations.
The program searches a character array for a character with odd parity. To
terminate the search, the last character contains zero. The search begins at the
lowest address of the array and maintains an index in a Workspace Register. The
character array for this example is called Al and is also the relocatable address of
the array. The code is shown on the next page.

EDITOR/ASSEMBLER
Page 98

ARITHMETIC INSTRUCTIONS

SETO 1 Set counter index to -1
SEARCH INC 1 Increment index

MOVB [alA1(1),2 Get character
JOP ODDP Jump if found
JNE SEARCH Continue search if not zero

ODDP

6.14.1.2 Decrement Instruction Example

To illustrate the use of a DEC instruction in a byte array, this example inverts a
26-character byte array and places the results in another array of the same size
called A2. The contents of Al are defined with a data TEXT statement as follows.

Al TEXT 'ABCDEFGHIJKLMNOPORSTUVWXYZ'

Array A2 is defined with the BSS statement as follows.

A2 BSS 26

The sample code for the solution is:

LI 5,26 Counter and index for Al.
LI 4,A2 Address of A2.

INVRT MOVB @A1-1(5),*4+ Invert array (Note 1).
DEC 5 Reduce counter.
JGT INVRT Continue if not complete.

Note:
1

@A1(5) addresses the elements of array Al in descending order as Workspace
Register 5 is decremented. *4+ addresses array A2 in ascending order as
Workspace Register four is incremented.

EDITOR/ASSEMBL ER
Page 99

ARITHMETIC INSTRUCTIONS

Array A2 contains the following as a result of executing this sequence of code:

A2 ZYXWVUTSROPONMLKJIHGFEDCBA

Even though the result of this code sequence is trivial, the use of the MOVB
instruction, with indexing by Workspace Register 5 and the result incrementally
placed into A2 with the auto-increment function, can be useful in other applications.

The JGT instruction used to terminate the loop allows Workspace Register 5 to serve
both as a counter and as an index register.

A special quality of the DEC instruction allows you to simulate a jump greater than
or equal to zero instruction. Since DEC always sets the carry status bit except when
changing from zero to minus one, it can be used in conjunction with a JOC
instruction to form a JGE loop. The example below performs the same function as
the preceding example.

Al TEXT 'ABCDEFGHIJKLMNOPORSTUVWXYZ'
A2 BSS 26

LI 5,25 Counter and index for Al.
LI 4,A2 Address of A2.

INVRT MOVB Qa A1(5),*4+ Invert array.
DEC 5 Reduce counter.
JOC INVRT Continue if not complete.

Note: Since the use of JOC makes the loop execute when the counter is zero, the
counter is initialized to 25 rather than 26 as in the preceding example.

EDITOR/ASSEMBLER
Page 100

ARITHMETIC INSTRUCTIONS

6.14.1.3 Decrement by Two Instruction Example

To illustrate the use of a DECT instruction in processing word arrays, this example
adds the elements of a word array to the elements of another word array and places
the results in the second array. The contents of the two arrays are initialized as
follows.

Al DATA 500,300,800,1000,1200,498,650,3,27,0
A2 DATA 36,192,517,29,315,807,290,40,130,1320

The sample code that adds the two arrays is as follows.

LI 4,20 Initialize counter (Note 1).
SUMS A ®Al-2(4),[alA2-2(4) Add arrays (Note 2).

DECT 4 Decrement counter by two.
JGT SUMS Repeat addition.

Notes:
1The counter is preset to 20 which is the number of bytes in the array.
2The addressing of the two arrays through the use of the at sign ([) is indexed by
the counter, which is decremented after each addition.

The contents of the A2 array after the addition process are as follows.

A2 536,492,1317,1029,1515,1305,940,43,157,1320

EDITOR/ASSEMBLER
Page 101

ARITHMETIC INSTRUCTIONS

There is another method by which this addition process may be accomplished. This
method is shown in the following code.

LI 4,10 Initialize counter (Note 1).

LI 5,A1 Load address of Al (Note 2).

LI 6,A2 Load address of A2 (Note 2).

SUMS A *5+,*6+ Add arrays (Note 3).

DEC 4 Decrement counter.

JGT SUMS Repeat addition (Note 4).

Notes:
'The counter is preset to 10 (the number of elements in the array).
2This address is incremented each time an addition takes place. The increment
is via the auto-increment function (+).
3The * indicates that the contents of the register are to be used as an address,
and the + indicates that it is to be automatically incremented by two each time

the instruction is executed.
4Workspace Register 4 is only greater than zero for ten executions of the DEC
instruction, so control is transferred to SUMS nine times after the initial
execution.

After execution, the contents of array A2 are the same for this method as for the
first.

6.14.2 General Example

The following program illustrates several of the arithmetic instructions. The program
consists of a calling program and a subroutine. The subroutine produces the result of
the function X-(I3*YI+5) where X and Y are variable data, treated as signed integers,
and passed to the subroutine from the calling program.

EDITOR/ASSEMBLER
Page 102

ARITHMETIC INSTRUCTIONS

To simplify the example, no error checking is included in the subroutine, and it is
assumed that the product of 3*Y is in the range of a signed 16-bit word (-32,768
through 32,767).

*CALLING PROGRAM

BL @CALC Call subroutine.

VAR DATA 37 X value.
DATA 1804 Y value.
MOV 0,RESULT Save result.

RESULT BSS 2

CALC MOV *11+,0 Put X value in Register 0.
MOV *11,1 Put Y value in Register 1.

ABS 1 Take absolute value of Y.
MPY @THREE,1 Take 3 times absolute value of Y.

AI 2,5 Add 5 to previous result.

S 2,0 Subtract previous result from X.
RT Return.

THREE DATA 3 Constant.

EDITOR/ASSEMBLER
Page 103

SECTION 7: JUMP AND BRANCH INSTRUCTIONS

The following jump and branch instructions are described in this section.

Instruction Mnemonic Section
Branch B 7.1
Branch and Link BL 7.2
Branch and Load Workspace Pointer BLWP 7.3
Jump if EQual JEQ 7.4
Jump if Greater Than JGT 7.5
Jump if High or Equal JHE 7.6
Jump if logical High JH 7.7
Jump if logical Low JL 7.8
Jump if Low or Equal JLE 7.9
Jump if Less Than JLT 7.10
Unconditional JUMP JMP 7.11
Jump if No Carry JNC 7.12
Jump if Not Equal JNE 7.13
Jump if No Overflow JNO 7.14
Jump if Odd Parity JOP 7.15

Jump On Carry JOC 7.16

ReTurn Workspace Pointer RTWP 7.17

EXecute X 7.18
EXtended OPeration XOP 7.19

Examples are given in Section 7.20.

Branch instructions transfer control either unconditionally or conditionally according
to the state of one or more bits of the Status Register. The conditional branch
(jump) instructions and the status bit or bits tested are shown on the next page.

EDITOR/ASSEMBLER
Page 104

JUMP AND BRANCH INSTRUCTIONS

Status Bits Tested by Jump Instructions

Mnemonic L> A> EQ C OV OP Jump if:

JH X X - - L>=1 and EQ=0
JL X - X - - - L>=0 and EQ=0
JHE X - X - - - L>=1 or EQ=1
JLE X - X - - - L>=0 or EQ=1
JGT+ - X - - - - A>=1
JLT+ - X X - - - A>=0 and EQ=0
JEQ - - X - - - EQ=1
JNE - - X - - - EQ=0
JOC - - - X - - C=1
JNC - - - X - - C=0
JNO - - - - X - OV=O

JOP - - - - - X OP=1

+Only JGT and JLT use signed arithmetic comparisons. The others are unsigned
(logical) comparisons.

For all jump instructions, a displacement of zero results in execution of the next

instruction in sequence. A displacement of -1 results in execution of the same
instruction (a single-instruction loop).

Each instruction consists of the following information.

• A heading, consisting of the instruction name and mnemonic name
• The op-code
• The syntax definition
• An example of the instruction
• The definition of the instruction

• The status bits affected
• The execution results

• Application notes when appropriate

The op-code is a four-digit hexadecimal number which corresponds to an instruction
word whose address fields contain zeros.

EDITOR/ASSEMBLER
Page 105

JUMP AND BRANCH INSTRUCTIONS

The syntax definition follows the conventions described in Section 5. The generic

names used in the syntax definitions are:

gas General Address of the Source operand

gad General Address of the Destination operand

wa Workspace register Address

iop Immediate OPerand

wad Workspace register Address Destination

disp DISPlacement of CRU lines from the CRU base register

exp EXPression that represents an instruction location

cnt CouNT of bits for CRU transfer
scnt Shift CouNT

xop number of eXtended OPeration

Source statements that contain machine instructions can use the label field, the

operation field, the operand field, and the comment field.

Use of the label field is optional. When it is used, the label is assigned the address

of the instruction. The Assembler advances to the location of a word boundary (even

address) before assembling a machine instruction.

The operation (op-code) field contains the mnemonic operation code of the

instruction. The contents of the operand field are defined for each instruction.

Inclusion of the comment field is optional. If used, it may contain any ASCII

characters, including blanks. The comment has no effect on the assembly process

other than being printed in the listing.

In the execution results, the following conventions are used.

() Indicates "the contents of."

=> Indicates "replaces."

* * Indicates "the absolute value of."

The generic names used in the syntax definitions are also used in the execution
results.

EDITOR/ASSEMBLER
Page 106

JUMP AND BRANCH INSTRUCTIONS

7.1 BRANCH--B

Op-code: 0440 (Format VI)

Syntax definition:

[<label>] b B b <gas> b [<comment>]

Example:

LABEL B @THERE Transfers control to location THERE.

Definition:
Replaces the Program Counter contents with the source address and transfers
control to the instruction at that location.

Status bits affected:
None.

0 1 2 3 4 5 6 7 S 9 10 11 12 13 14 15
IL>IA>IEQIC IOVIOPIX I I INT. MASK

Execution results:
(gas) => (PC)

Application notes:
The B instruction transfers control to another section of code to change the
linear flow of the program. For example, if the contents of Workspace Register
3 is >21CC, the instruction

B *3

causes the word at location >21CC to be used as the next instruction, because
this value replaces the contents of the Program Counter when this instruction is
executed.

See Section 24.11.3 for using the B instruction to return to the calling program.

EDITOR/ASSEMBLER
Page 107

JUMP AND BRANCH INSTRUCTIONS

7.2 BRANCH AND LINK--BL

Op-code: 0680 (Format VI)

Syntax definition:

[<label>] b BL b <gas> b [<comment>]

Example:

LABEL BL @SUER Calls SUBR as a common Workspace subroutine.

Definition:

Places the source address in the Program Counter, places the address of the

instruction following the BL instruction (in memory) in Workspace Register 11,

and transfers control to the new Program Counter contents.

Status bits affected:

None.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>IEQIC IOVIOPIX I I INT. MASK I

Execution results:

(old PC) => (Workspace Register 11)

(gas) => (PC)

Application notes:

The BL instruction returns linkage. For example, if the instruction

BL QaTRAN

occurs at memory location >04BC, this instruction has the effect of placing

memory location TRAN in the Program Counter. Since the instruction BL

CaITRAN requires two words of machine code (which are placed at addresses

>04BC and 04BE), the word address immediately following the second word is

>04C0 so that value is the address placed in Workspace Register 11.

EDITOR/ASSEMBLER
Page 108

JUMP AND BRANCH INSTRUCTIONS

7.3 BRANCH AND LOAD WORKSPACE POINTER--BLWP

Op-code: 0400 (Format VI)

Syntax definition:

[(label>) b BLWP b <gas> b [(comment>]

Example:

LABEL BLWP @a1VECT Branches to subroutine at address (Qa VECT+2)

and executes context switch.

Definition:

Places the source operand in the Workspace Pointer and the word immediately
following the source operand in the Program Counter. Places the previous

contents of the Workspace Pointer in the new Workspace Register 13, places the

previous contents of the Program Counter (address of the instruction following

BLWP) in the new Workspace Register 14, and places the contents of the Status

Register in the new Workspace Register 15. When all store operations are

complete, the computer transfers control to the new Program Counter.

Status bits affected:

None.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>IEQIC IOVIOPIX I I INT. MASK I

Execution results:

(gas) => (WP)

(gas + 2) => (PC)

(old WP) => (Workspace Register 13)

(old PC) => (Workspace Register 14)

(ST) => (Workspace Register 15)

Application notes:

The BLWP instruction links to subroutines, program modules, or other programs
that do not necessarily share the calling program's workspace. See Section 7.20.3
for an example of using the BLWP instruction.

EDITOR/ASSEMBLER
Page 109

JUMP AND BRANCH INSTRUCTIONS

7.4 JUMP IF EQUAL--JEO

Op-code: 1300 (Format II)

Syntax definition:

[<label>] b JEQ b <exp> b [<comment>]

Example:

LABEL JEO LOC Jumps to LOC if EQ = 1.

Definition:
When the equal status bit is set, transfers control by adding the signed
displacement in the instruction word to the Program Counter and then placing the

sum in the Program Counter to transfer control.

Status bits tested:
Equal.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>IEQIC IOVIOPIX I I INT. MASK I

Jump if: EQ = 1

Status bits affected:
None.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>IEQIC IOVIOPIX I I INT. MASK 1

Execution results:

If the equal bit is equal to 1: (PC) + Displacement => (PC).
If the equal bit is equal to 0: (PC) => (PC).

Application notes:

The JEQ instruction transfers control when the equal status bit is set.

EDITOR/ASSEMBLER
Page 110

JUMP AND BRANCH INSTRUCTIONS

7.5 JUMP IF GREATER THAN—JOT

Op-code: 1500 (Format II)

Syntax definition:

[<label>] b JGT b <exp> b [<comment>]

Example:

LABEL JGT THERE Jumps to THERE if A> = 1.

Definition:
When the arithmetic greater than status bit is set, adds the signed displacement

in the instruction word to the Program Counter and places the sum in the
Program Counter. Transfers control to the new Program Counter location.

Status bits tested:
Arithmetic greater than.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>IEQIC IOVIOPIx I I INT. MASK f

Jump if: A> = 1

Status bit affected:

None.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>IEO C OV OP X l I INT. MASK

Execution results:

If the arithmetic greater than bit is equal to 1: (PC) + Displacement => (PC).

If the arithmetic greater than bit is equal to 0: (PC) => (PC).

Application notes:
The JGT instruction transfers control if the arithmetic greater than status bit is
set.

EDITOR/ASSEMBLER
Page 111

JUMP AND BRANCH INSTRUCTIONS

7.6 JUMP IF HIGH OR EQUAL--JHE

Op-code: 1400 (Format II)

Syntax definition:

[<label>) b JHE b <exp> b [<comment>)

Example:

LABEL JHE BLBD Jumps to location BLBD if either EQ or L> is
set.

Definition:

When the equal status bit or the logical greater than status bit is set, adds the
signed displacement in the instruction word to the Program Counter and replaces
the contents of the Program Counter with the sum.

Status bits tested:

Logical greater than, equal.

0 1 2 3 4 5 6 7 S 9 10 11 12 13 14 15
IL>IA>IEQIC IOVIOPIX I I INT. MASK I
A A

Jump if: L>=1orEQ=1

Status bits affected:
None.

0 1 2 3 4 5 6 7 S 9 10 11 12 13 14 15
IL>IA>IEQIC IOVIOPIX I I INT. MASK I

Execution results:

If the logical greater than bit is equal to 1 or the equal bit is equal to 1:
(PC) + Displacement => (PC).

If the logical greater than bit and the equal bit are equal to 0: (PC) => (PC).

Application notes:

The JHE instruction transfers control when either the logical greater than or
equal status bit is set.

EDITOR/ASSEMBLER
Page 112

JUMP AND BRANCH INSTRUCTIONS

7.7 JUMP IF LOGICAL HIGH--JH

Op-code: 1B00 (Format II)

Syntax definition:

[<label>] b JH b <exp> b [<comment>]

Example:

LABEL JH CONT If L> equals 1 and EQ equals 0, skips to CONT.

Definition:
When the equal status bit is reset and the logical greater than status bit is set,
adds the signed displacement in the instruction word to the contents of the
Program Counter and replaces the Program Counter with the sum.

Status bits tested:
Logical greater than, equal.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>IEQIC IOVIOPIX I I INT. MASK

Jump if: L> = 1 and EQ = 0

Status bits affected:

None.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>IEQIC IOVIOPIX I I INT. MASK I

Execution results:
If the logical greater than bit is equal to 1 and the equal bit is equal to 0:
(PC) + Displacement => (PC).
If the logical greater than bit is equal to 0 or the equal bit is equal to 1:

(PC) => (PC).

Application notes:
The JH instruction transfers control when the equal status bit is reset and the
logical greater than status bit is set.

EDITOR/ASSEMBLER
Page 113

JUMP AND BRANCH INSTRUCTIONS

7.8 JUMP IF LOGICAL LOW—JL

Op-code: 1A00 (Format II)

Syntax definition:

[<label>] b JL b <exp> b [<comment>]

Example:

LABEL JL PREVLB If L> and EQ are reset, jumps to PREVLB.

Definition:
When the equal and logical greater than status bits are reset, adds the signed
displacement in the instruction word to the Program Counter contents and

replaces the Program Counter with the sum.

Status bits tested:
Logical greater than, equal.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>IEQIC IOVIOPIX I I INT. MASK I

Jump if: L>=0 and EQ=0

Status bits affected:
None.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>IEQIC IOVIOPIX I I INT. MASK I

Execution results:
If the logical greater than bit and the equal bit are equal to 0:

(PC) + Displacement => (PC).
If the logical greater than bit is equal to 1 or the equal bit is equal to 1:
(PC) => (PC).

Application notes:
The JL instruction transfers control when the equal and logical greater than
status bits are reset.

EDITOR/ASSEMBLER
Page 114

JUMP AND BRANCH INSTRUCTIONS

7.9 JUMP IF LOW OR EQUAL--JLE

Op-code: 1200 (Format II)

Syntax definition:

[<label>] b JLE b <exp> b [<comment>]

Example:

LABEL JLE THERE Jumps to THERE when EO = 1 or L> = 0.

Definition:
When the equal status bit is set or the logical greater than status bit is reset,

adds the signed displacement in the instruction word to the contents of the

Program Counter and replaces the Program Counter with the sum.

Note: JLE is not "jump if less than or equal."

Status bits tested:
Logical greater than, equal.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>IEOIC IOVIOPIX I I INT. MASK

Jump if: L>=0orEQ=1

Status bits affected:

None.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IOVIOPIX I I I NT . MASK I

Execution results:

If the logical greater than bit is equal to 0 or the equal bit is equal to 1:

(PC) + Displacement => (PC).
If the logical greater than bit is equal to 1 and the equal bit is equal to 0:

(PC) => (PC).

Application notes:

The JLE instruction transfers control when the equal status bit is set or the
logical greater than status bit is reset.

EDITOR/ASSEMBLER
Page 115

JUMP AND BRANCH INSTRUCTIONS

7.10 JUMP IF LESS THAN--JLT

Op-code: 1100 (Format II)

Syntax definition:

[<label>] b JLT b <exp> b [<comment>]

Example:

LABEL JLT THERE Jumps to THERE if A> = 0 and EQ = 0.

Definition:

When the equal and arithmetic greater than status bits are reset, adds the signed
displacement in the instruction word to the Program Counter and replaces the

Program Counter contents with the sum.

Status bits tested:

Arithmetic greater than, equal.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>IEOIC IOVIOPIX I I INT. MASK I

Jump if: A> = 0 and EQ = 0

Status bits affected:

None.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>IEDIC IOVIOPIX I I INT. MASK I

Execution results:

If the arithmetic greater than bit and the equal bit are equal to 0:
(PC) + Displacement => (PC)

If the arithmetic greater than bit is equal to 1 or the equal bit is equal to 1:
(PC) => (PC).

Application notes:

The JLT instruction transfers control when the equal and arithmetic greater than
status bits are reset.

EDITOR/ASSEMBLER
Page 116

JUMP AND BRANCH INSTRUCTIONS

7.11 UNCONDITIONAL JUMP--JMP

Op-code: 1000 (Format II)

Syntax definition:

[<label>] b JMP b <exp> b [<comment>]

Example:

LEAVE JMP >11A3 Jumps to address >11A3 if it is within >100
bytes of the current address.

Definition:

Adds the signed displacement in the instruction word to the Program Counter and
replaces the Program Counter with the sum if the sum is within >100 bytes of the
current Program Counter.

Status bits affected:

None.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>IEQIC IOVIOPIX I I INT. MASK I

Execution results:
(PC) + Displacement => (PC)

The Program Counter is always incremented to the address of the next instruction
prior to execution of an instruction. The execution results of jump instructions
refer to the Program Counter contents after the contents have been incremented
to address the next instruction in sequence. The displacement (in words) is

shifted to the left one bit position to orient the word displacement to the word

address, and added to the Program Counter contents. The sum must be within
>100 bytes of the current Program Counter.

Application notes:

The JMP instruction transfers control to another section of the program.

EDITOR/ASSEMBLER
Page 117

JUMP AND BRANCH INSTRUCTIONS

7.12 JUMP IF NO CARRY--JNC

Op-code: 1700 (Format II)

Syntax definition:

[<label>] b JNC b <exp> b [<comment>]

Example:

LABEL JNC NONE Jumps to NONE if C = 0.

Definition:
When the carry status bit is reset, adds the signed displacement in the instruction
word to the Program Counter and replaces the Program Counter with the sum.

Status bits tested:

Carry.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>IEOIC IOVIOPIX I I INT. MASK I

Jump if: C = 0

Status bits affected:
None.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>IEOIC IOVIOPIX I I INT. MASK I

Execution results:
If the carry bit is equal to 0: (PC) + Displacement => (PC).
If the carry bit is equal to 1: (PC) => (PC).

Application notes:
The JNC instruction transfers control when the carry status bit is reset.

EDITOR/ASSEMBLER
Page 118

JUMP AND BRANCH INSTRUCTIONS

7.13 JUMP IF NOT EQUAL—JNE

Op-code: 1600 (Format II)

Syntax definition:

[<label>] b JNE b <exp> b [<comment>]

Example:

LABEL JNE LOC2 Jumps to LOC2 if EO = 0.

Definition:
When the equal status bit is reset, adds the signed displacement in the instruction
word to the Program Counter and replaces the Program Counter with the sum.

Status bits tested:
Equal.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA> IEOIC IOVIOPIX I_ _j INT. MASK I

Jump if: EO = 0

Status bits affected:
None.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>IEOIC IONIOPIX I I INT. MASK I

Execution results:
If the equal bit is equal to 0: (PC) + Displacement => (PC).
If the equal bit is equal to 1: (PC) => (PC).

Application notes:
The JNE instruction transfers control when the equal status bit is reset. For
instance, JNE is often useful when testing CRU bits.

EDITOR/ASSEMBLER
Page 119

JUMP AND BRANCH INSTRUCTIONS

7.14 JUMP IF NO OVERFLOW--JNO

Op-code: 1900 (Format II)

Syntax definition:

[<label>] b JNO b <exp> b [<comment>]

Example:

LABEL JNO NORML Jumps to NORML if OV = 0.

Definition:

When the overflow status bit is reset, adds the displacement in the instruction
word to the Program Counter and replaces the Program Counter with the sum.

Status bits tested:

Overflow.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>IEOIC IOVIOPIX I I INT. MASK I

Jump if: OV = 0

Status bits affected:
None.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>IEQIC IOVIOPIX I I INT. MASK I

Execution results:

If the overflow bit is equal to 0: (PC) + Displacement => (PC).
If the overflow bit is equal to 1: (PC) => (PC).

Application notes:

The JNO instruction transfers control when the overflow status bit is reset. JNO

normally transfers control during arithmetic sequences where addition,
subtraction, incrementing, and decrementing may cause an overflow condition.
JNO may also be used following an SLA (Shift Left Arithmetic) operation. If,

during SLA execution, the sign of the Workspace Register being shifted changes,
the overflow status bit is set. This feature permits transfer, after a sign change,
to error correction routines or to another functional code sequence.

EDITOR/ASSEMBLER
Page 120

JUMP AND BRANCH INSTRUCTIONS

7.15 JUMP IF ODD PARITY--JOP

Op-code: 1C00 (Format II)

Syntax definition:

[<label>] b JOP b <exp> b [<comment>]

Example:

LABEL JNP THERE Jumps to THERE if OP = 1.

Definition:

When the odd parity status bit is set, adds the signed displacement in the
instruction word to the Program Counter and replaces the Program Counter with
the sum.

Status bits tested:

Odd parity.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>IEOIC IOVIOPIX I I INT. MASK I

Jump if: OP = 1

Status bits affected:
None.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>IEQIC IOVIOPIX I I INT. MASK I

Execution results:

If the odd parity bit is equal to 1: (PC) + Displacement => (PC).
If the odd parity bit is equal to 0: (PC) => (PC).

Application notes:

The JOP instruction transfers control when there is odd parity. Odd parity
indicates that there is an odd number of logic one bits in the byte tested. JOP
transfers control if the byte tested contains an odd number of logic one bits.
This instruction may be used in data transmissions where the parity of the
transmitted byte is used to ensure the validity of the received character at the
point of reception.

EDITOR/ASSEMBLER
Page 121

JUMP AND BRANCH INSTRUCTIONS

7.16 JUMP ON CARRY--JOC

Op-code: 1800 (Format II)

Syntax definition:

[<label>] b JOC b <exp> b [<comment>]

Example:

LABEL JOC PROCED If C = 1, jumps to PROCED.

Definition:
When the carry status bit is set, adds the signed displacement in the instruction
word to the Program Counter and replaces the Program Counter with the sum.

Status bits tested:
Carry.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>IEOIC IOVIOPIX I I INT. MASK I

Jump if: C = 1

Status bits affected:
None.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>1A>IE0IC IOVIOPIX I I INT. MASK I

Execution results:
If the carry bit is equal to 1: (PC) + Displacement => (PC).
If the carry bit is equal to 0: (PC) => (PC).

Application notes:
The JOC instruction transfers control when the carry status bit is set.

EDITOR/ASSEMBL.ER
Page 122

JUMP AND BRANCH INSTRUCTIONS

7.17 RETURN WITH WORKSPACE POINTER--RTWP

Op-code: 0380 (Format VII)

Syntax definition:

[<label>] b RTWP b [<comment>]

Example:

LABEL RTWP Returns from subroutine called by BLWP.

Definition:
Replaces the contents of the Workspace Pointer Register with the contents of the
current Workspace Register 13. Replaces the contents of the Program Counter
with the contents of the current Workspace Register 14. Replaces the contents
of the Status Register with the contents of the current Workspace Register 15.
The effect of this instruction is to restore the execution environment that existed
prior to an interrupt, a BLWP instruction, or an XOP instruction.

Status bits affected:

Restores all status bits to the value contained in Workspace Register 15.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>IEOIC IOVIOPIX I I INT. M4SK I
A A A A A A A A A A A

Execution results:

(Workspace Register 13) => (WP)
(Workspace Register 14) => (PC)
(Workspace Register 15) => (ST)

Application notes:

The RTWP instruction restores the execution environment after the completion of
an interrupt, a BLWP instruction, or an XOP instruction.

EDITOR/ASSEMBLER
Page 123

JUMP AND BRANCH INSTRUCTIONS

7.18 EXECUTE--X

Op-code: 0480 (Format VI)

Syntax definition:

[<label>] b X b <gas> b [<comment>]

Example:

LABEL X 2 Executes the contents of Workspace Register 2.

Definition:
Executes the source operand as an instruction. When the source operand is not a
single word instruction, the word or words following the execute instruction are
used with the source operand as a 2-word or 3-word instruction. The source
operand, when executed as an instruction, may affect the contents of the Status
Register. The Program Counter increments by either one, two, or three words
depending upon the source operand. If the executed instruction is a branch, the
branch is taken. If the executed instruction is a jump and if the conditions for a
jump (i.e. the status test indicates a jump) are satisfied, then the jump is taken

relative to the location of the X instruction.

Status bits affected:
None, but substituted instruction affects status bits normally.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>IEQIC IOVIOPIX I I INT. MASK I

Execution results:
An instruction at gas is executed instead of the X instruction.

Application notes:

The X instruction executes the source operand as an instruction. This is
primarily useful when the instruction to be executed is dependent upon a variable
factor. Refer to Section 7.20 for additional application notes.

EDITOR/ASSEMBLER
Page 124

JUMP AND BRANCH INSTRUCTIONS

7.19 EXTENDED OPERATION--XOP

Op-code: 2C00 (Format IX)

Syntax definition:

[<label>] b XOP b <gas>,<xop> b [<comment>]

Example:

LABEL XOP [a1BUFF(4),1 Performs XOP 1 on the word of the address

BUFF plus the displacement specified by

Workspace Register 4.

Definition:

This instruction is on all TI-99/4A Home Computers. However, some only

support XOP 2 while others support both XOP 1 and XOP 2. To find out if your

TI-99/4A computer supports the XOP 1 instruction, run CALL PEEK in TI BASIC

and read one word at address >44. If the word if >FFD8, then XOP 1 is

available. If it contains other data (most likely >FFE8), then XOP 1 is not
available.

The op field specifies the extended operation transfer vector in memory. The

two memory words at that location contain the Workspace Pointer and Program

Counter contents for the software implemented XOP instruction subroutine.

Note that the two memory words at this location must contain the necessary

Workspace Pointer and Program Counter values prior to the XOP instruction
execution for software implemented instructions.

XOP 1 is at address >44, with vectors >FFD8 and >FFFB. XOP 2 is at address >48

with vectors >83A0 and >8300. The first entry in the vector is the new

workspace address. The second entry is the new Program Counter address.

When the computer is turned on, XOP 1 is set up to be used with development

software used by Texas Instruments. However, if you have XOP 1 you may
modify the data for your own use.

The effective address of the source operand is placed in Workspace Register 11 of

the XOP workspace. The Workspace Pointer contents are placed in Workspace

Register 13 of the XOP workspace. The Program Counter contents are placed in

Workspace Register 14 of the XOP workspace. The Status contents are placed in

EDITOR/ASSEMBLER
Page 125

JUMP AND BRANCH INSTRUCTIONS

Workspace Register 15 of the XOP workspace. Control is transferred to the new

Program Counter address and the software implemented XOP is executed. (XOP

execution of software implemented XOP instruction is similar to an interrupt trap

execution.)

Status bits affected:

Extended operation.

0 1 2 3 4 5 6 7 S 9 10 11 12 13 14 15
IL>IA>IEQIC IOVIOPIX I I INT. MASK I

Execution results:

gas => (Workspace Register 11)

(>0040 + (op)*4) => (WP)

(>0042 + (op)*4) => (PC)

(WP) => (Workspace Register 13)
(PC) => (Workspace Register 14)

(ST) => (Workspace Register 15)

1 => X (XOP status bit)

EDITOR/ASSEMBLER

Page 126

JUMP AND BRANCH INSTRUCTIONS

7.20 INSTRUCTION EXAMPLES

There are two types of subroutine linkage available with the Assembler. One type,
called a common workspace subroutine, uses the same set of Workspace Registers

that the calling routine uses. The BL instruction stores the contents of the Program
Counter in Workspace Register 11 and transfers control to the subroutine.

The other type is a context switch subroutine. The BLWP instruction stores the
contents of the Workspace Pointer Register, the Program Counter, and the Status
Register in Workspace Registers 13, 14, and 15. The instruction makes the
subroutine workspace active and transfers control to the subroutine.

7.20.1 Common Workspace Subroutine Example

The following is an example of memory contents prior to a BL call to a subroutine.

The contents of Workspace Register 11 are not important to the main routine. When
the BL instruction is executed, the CPU stores the contents of the Program Counter
in Workspace Register 11 of the main routine and transfers control to the instruction
located at the address indicated by the operand of the BL instruction. This type of
subroutine uses the main program workspace. The second example shows the memory
contents after the call to the subroutine with the BL instruction.

When the instruction at location >1130 is executed (BL @RAD), the present contents
of the Program Counter, which point to the next instruction, are saved in Workspace
Register 11. Workspace Register 11 would then contain an address of >1134. The

Program Counter is then loaded with the address of label RAD, which is address

>2220. This subroutine returns to the main program with a branch to the address in

Workspace Register 11 using the B *11 instruction.

EDITOR/ASSEMBLER
Page 127

JUMP AND BRANCH INSTRUCTIONS

HARDWARE NEMCRY
REGISTERS ADDRESS NENCRY VALUE
+ + + +

WP I >A100 I > >A100 I MAIN WORKSPACE I (WRO)
+ + + +

+ +
I I (WR11)
+ +

f. + +
>B020 I NW IN PROGRAM I

I I
+ + >B130 I BL (a-RAD I

PC I >B134 I > >B134 I JNE FIX I
+ + I I

>C220 RAD ...

SUBROUTINE AREA
+ +

ST I EXECUTION I
I STATUS I B *11
+ + +

a

Common Workspace Subroutine Example

EDIT OR/ASSE MBLER
Page 128

WP

HARDWARE
REGISTERS
+
I >A100
+

+
I
+

 >

NEIvERY
ADDRESS

>A100

JUMP AND BRANCH INSTRUCTIONS

NENDRY VALUE
+ +
I MAIN WORKSPACE I (WRO)
+ +

+ +
I >B134 I (WR11)
+ +

+ +
>B020 I MAIN PROGRAM I

>B130 I BL [RAD
>B134 I JNE FIX I

+ +

+ + + +
PC I >C220 I > >C220 RAD ...

+ +
SUBROUTINE AREA

+ +
ST I EXECUTION I

I STATUS I B *11
+ +

PC Contents after BL Instruction Execution

7.20.2 Context Switch Subroutine Example

This example shows the memory contents prior to the call to the subroutine. The
contents of the subroutine's Workspace Registers 13, 14, and 15 are not significant.
When the BLWP instruction is executed at location >0300, there is a context switch
from the main program to the subroutine. The context switch then places the main
program Program Counter, Workspace Pointer, and Status Register contents in

Workspace Registers 13, 14, and 15 of the subroutine. This saves the environment of
the main program for use on return. The operand of the BLWP instruction specifies
that the address vector for the context switch is in Workspace Registers 5 and 6.
The address in Workspace Register 5 is placed in the Workspace Pointer Register, and
the address in Workspace Register 6 is placed in the Program Counter.

EDITOR/ASSEMBLER
Page 129

JUMP AND BRANCH INSTRUCTIONS

HARDWARE NEMZRY
REGISTERS ADDRESS NEMORY VALUE
+ + + +

WP I >A100 I > >A100 I 1 (WRO)
+ + + +

+ +
I >A220 I (WR5)
+ +
I >A700 I (WR6)
+ +

+ +
>A220 I I (WRO)S

+ +

+

I (WR13)S

>A260

I I (WR14)S

I I
I I (WR15)S
+ +

+ +
I MAIN PRO3RAM

+ + >A300 I BLWP 5 I
PC 1 >A302 I > >A302 I I

+ + I
+ +

>A700
+ +

START

SUBROUTINE AREA
+ +

ST I EXECUTION I
I STATUS I RTWP
+ +

(WNr) = Workspace Register of Main Program

(WNr)S = Workspace Register of Subroutine

Context Switch Subroutine Example

After the instruction at location >0300 is executed, the Workspace Pointer points to

the subroutine workspace and the Program Counter points to the first instruction of

the subroutine. The contents of the Status Register are not reset prior to the

EDITOR/ASSEMBLER

Page 130

+

JUMP AND BRANCH INSTRUCTIONS

execution of the first instruction of the subroutine, so the status indicated will

actually be the status of the main program execution. A subroutine may then

execute depending on the status of the main program.

HARDWARE I'EWRY
REGISTERS ADDRESS IvEM RY VALUE

+ +
>A100 I I (WO)

+ +

+ +
I >A220 I (VVR5)
+ +
I >A700 I (WR6)
+ +

+ + + +
WP I >A220 I > >A220 I I (WRO)S

+ + + +

+ +
I >A100 I (WR13)S
I I
I >A302 I (WR14)S
I I
I STATUS I (WR15)S
+ +

+ +
>A260 I MAIN PROGRAM I

I I
>A300 I BLWP 5 I

I I
I I

+ +

+ +

+ +
PC I >A700 I > >A700 START

+ +
SUBROUTINE AREA

+ +
ST I EXECUT I C7N I

I STATUS I RTWP
+ +

(WNr) = Workspace Register of Main Program

(WNr)S = Workspace Register of Subroutine

After Execution of BLWP Instruction

EDITOR/ASSEMBLER
Page 131

START

SUBROUTINE AREA

RTWP

JUMP AND BRANCH INSTRUCTIONS

This example subroutine contains a RTWP return from the subroutine. Control is
transferred to the main program at the instruction following the BLWP to the
subroutine. The Status Register is restored from Workspace Register 15 and the
Workspace Pointer points to the workspace of the main program.

HARDWARE NEWRY
REGISTERS ADDRESS NEIvRRY VALUE
+ + + +

WP I >A100 I > >A100 I I (VvRO)
+ +<_ _ + +

+ +
I >A220 I (VvR5)
+ +
I >A700 I (WR6)
+ +

+ +
>A220 I I (WRO)S

+ +

+ +
I >A100 I (WR13)S
I I
I >A302 I (WR14)S
I
I STATUS I (WR15)S
+ +

+ +
>A260 I MAIN PRO3RAM I

+

PC I >A302
+

+<_ =

+

>A300 I BLWP 5
> >A302 I

>A700

+ +
ST I EXECUTION I<= =

I STATUS I
+ +

(WNr) = Workspace Register of Main Program
(WNr)S = Workspace Register of Subroutine

After Return using the RTWP Instruction

EDITOR/ASSEMBLER
Page 132

JUMP AND BRANCH INSTRUCTIONS

7.20.3 Passing Data to Subroutines

When a subroutine is entered with a context switch (BLWP), data may be passed using
either the contents of Workspace Register 13 or 14 of the subroutine workspace.
Workspace Register 13 contains the memory address of the calling program's
workspace, which may contain data to be passed to the subroutine. Workspace
Register 14 contains the memory address of the next memory location following the
BLWP instruction. This location and following locations may also contain data to be
passed to the subroutine.

When the calling program's workspace contains data for the subroutine, this data may
be obtained by using the indexed memory address mode indexed by Workspace
Register 13. The address used is equal to twice the number of the Workspace
Register that contains the desired data. The following instruction is an example.

MOV [a110(13),R10

The contents of Workspace Register 5 of the calling program's workspace (bytes 10
and 11 relative to the workspace address) are placed in Workspace Register 10 of the
subroutine workspace.

EDITOR/ASSEMBLER
Page 133

JUMP AND BRANCH INSTRUCTIONS

The following examples show the passing of data to a subroutine by placing the data
following the BLWP instruction.

BLWP [SUB Subroutine call.
DATA V1 Data.
DATA V2 Data.
DATA V3 Data.
JEQ ERROR Return from subroutine, test for
. error. (The subroutine sets the
. equal status bit to one for error.)

SUB DATA SUBWS,SUBPRG Entry point for SUB & SUB
Workspace.

SUBWS BSS 32
SUBPRG MOV *14+,1

MOV *14+,2

MOV *14+,3

Fetch V1 placed in Workspace
Register 1.

Fetch V2 placed in Workspace
Register 2.

Fetch V3 placed in Workspace
Register 3.

RTWP Return from subroutine.

The three MOV instructions retrieve the variables from the main program module and
place them in Workspace Registers one, two, and three of the subroutine.

When the BLWP instruction is executed, the main program module status is stored in

Workspace Register 15 of the subroutine. If the subroutine returns with a RTWP
instruction, this status is placed in the Status Register after the RTWP instruction is
executed. The subroutine may alter the Status Register contents prior to executing
the RTWP instruction. The calling program can then test the appropriate bit of the
status word (the equal bit in this example) with jump instructions.

EDITOR/ASSEMBLER
Page 134

JUMP AND BRANCH INSTRUCTIONS

A BL instruction can also be used to pass parameters to a subroutine. When using

this instruction, the originating Program Counter value is placed in Workspace

Register 11. Therefore, the subroutine must fetch the parameters relative to the

contents of Workspace Register 11 rather than the contents of Workspace Register 14

as in the BLWP example. The following example demonstrates parameter passing
with a BL instruction.

BL @SUBR
DATA PARM1,PARM2

3E0 ERROR

Branch to subroutine.
Passed parameters stored in next

two memory words.
Test for error. (Subroutine sets the

equal status bit to one for error.)

SUBR EQU $
MOV *R11+,R0

MOV *R11+,R1

•

Get value of first parameter and put

in Workspace Register 0.

Get value of second parameter and
put in Workspace Register 1. (R11
is incremented past the locations of

the two data words and now

indicates the address of the next

instruction in the main program.)

B *11

EDITOR/ASSEMBLER
Page 135

JUMP AND BRANCH INSTRUCTIONS

7.20.4 Extended Operations

Extended operation instructions permit a limited extension of the existing instruction
set to include additional instructions. In the computer, these additional instructions
are implemented by software routines.

When the program module contains an XOP instruction that is software implemented,
the computer locates the XOP Workspace Pointer and Program Counter words in the
XOP reserved memory locations and loads the Workspace Pointer and Program
Counter. When the Workspace Pointer and Program Counter are loaded, the
computer transfers control to the XOP instruction set through a context switch.
When the context switch is complete, the XOP workspace contains the calling routine
return data in Workspace Registers 13, 14, and 15.

The XOP instruction passes one operand to the XOP (input to the XOP routine in
Workspace Register 11 of the XOP workspace). At the completion of the software
XOP, the XOP routine should return to the calling routine with an RTWP instruction
that restores the execution environment of the calling routine to that in existence at
the call to the XOP.

7.20.5 Execute Example

The execute instruction may be used to execute an instruction that is not in sequence
without transferring control to the desired instruction. One useful application is to
execute one of a table of instructions, selecting the desired instruction by using an
index into the table. The computed value of the index determines which instruction
is executed.

A table of shift instructions illustrates the use of the X instruction. Place the
following instructions at location TBLE.

TBLE SLA R6,3 Shift Workspace Register 6.
SLA R7,3 Shift Workspace Register 7.
SLA R8,3 Shift Workspace Register 8.

TABEND EQU $

EDITOR/ASSEMBLER
Page 136

JUMP AND BRANCH INSTRUCTIONS

A character is placed in the most significant byte of Workspace Register 5 to select

the Workspace Register to be shifted to the left 3 bit positions. ASCII characters A,

B, and C specify shifting Workspace Registers 6, 7, and 8, respectively. Other

characters are ignored. The following code performs the selection of the shift

desired.

SRL R5,8

AI R5,-'A'

JLT NOSHIFT

SLA R5,1

CI R5,TABEND-TBLE-2

JGT NOS HFT

X [a1TBLE(R5)

NOSHFT ECU $

Move to lower byte.

Subtract table bias.

Illegal.

Make it a word index.

Illegal.

When using the X instruction, if the substituted instruction contains a Ts field or a Td

field that results in a two word instruction, the computer accesses the word following

the X instruction as the second word, not the word following the substituted

instruction. When the substituted instruction is a jump instruction with a

displacement, the displacement must be computed from the X instruction, not from

the substituted instruction.

EDITOR/ASSE MBLER

Page 137

SECTION 8: COMPARE INSTRUCTIONS

The following compare instructions are described in this section.

Instruction Mnemonic Section
Compare words C 8.1
Compare Bytes CB 8.2
Compare Immediate CI 8.3
Compare Ones Corresponding COC 8.4
Compare Zeros Corresponding CZC 8.5

Compare instructions have no effect other than the setting or resetting of appropriate

status bits in the Status Register. The compare instructions perform both arithmetic
and logical comparisons. An arithmetic comparison is of the two operands as two's
complement values, while a logical comparison is of the two operands as unsigned

magnitude values.

Each instruction consists of the following information.

• A heading, consisting of the instruction name and mnemonic name
• The op-code

• The syntax definition

• An example of the instruction

• The definition of the instruction
• The status bits affected

• The execution results

• Application notes when appropriate

The op-code is a four-digit hexadecimal number which corresponds to an instruction
word whose address fields contain zeros.

EDITOR/ASSEMBLER
Page 138

COMPARE INSTRUCTIONS

The syntax definition follows the conventions described in Section 5. The generic
names used in the syntax definitions are:

gas General Address of the Source operand

gad General Address of the Destination operand

wa Workspace register Address

iop Immediate OPerand

wad Workspace register Address Destination

disp DISPlacement of CRU lines from the CRU base register

exp EXPression that represents an instruction location

cnt CouNT of bits for CRU transfer

scnt Shift CouNT

xop number of eXtended OPeration

Source statements that contain machine instructions can use the label field, the

operation field, the operand field, and the comment field.

Use of the label field is optional. When it is used, the label is assigned the address

of the instruction. The Assembler advances to the location of a word boundary (even

address) before assembling a machine instruction.

The operation (op-code) field contains the mnemonic operation code of the

instruction. The contents of the operand field are defined for each instruction.

Inclusion of the comment field is optional. If used, it may contain any ASCII

characters, including blanks. The comment has no effect on the assembly process

other than being printed in the listing.

In the execution results, the following conventions are used.

() Indicates "the contents of."

=> Indicates "replaces."

* * Indicates "the absolute value of."

The generic names used in the syntax definitions are also used in the execution
results.

EDITOR/ASSEMBLER

Page 139

COMPARE INSTRUCTIONS

8.1 COMPARE WORDS--C

Op-code: 8000 (Format I)

Syntax definition:

[(label>] b C b <gas>,<gad> b [(comment>]

Example:

LABEL C 2,3 Compares the contents of Workspace Register 2
and Workspace Register 3.

Definition:

Compares the source operand (word) with the destination operand (word) and
sets/resets the status bits to indicate the results of the comparison. The
arithmetic and equal comparisons compare the operand as signed, two's
complement values. The logical comparison compares the two operands as
unsigned, 16-bit magnitude values.

Status bits affected:

Logical greater than, arithmetic greater than, and equal.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>IEQIC IOVIOPIX I I INT. MV'SK I

Execution results:
(gas) compared to (gad)

Application notes:

The C instruction compares the two operands as signed, two's complement values
and as unsigned integers. Some examples are:

Status Bits Set
Source Destination Lo • ical> Arithmetic> Equal

>0000 1 0 0 >H-Fr

>7FFF >0000 1 1 0
>8000 >0000 1 0 0
>8000 >7FFF 1 0 0
>7FFF >7FFF 0 0 1
>7FFF >8000 0 1 0

EDITOR/ASSEMBLER
Page 140

COMPARE INSTRUCTIONS

An alternate way to compare a word or byte to zero is to move the word or byte to

itself. For example:

MOV

JEQ

RO,RO

OUT

jumps to OUT if RO is equal to zero.

EDITOR/ASSEMBLER
Page 141

COMPARE INSTRUCTIONS

8.2 COMPARE BYTES--CB

Op-code: 9000 (Format I)

Syntax definition:

[<label>] b CB b <gas>,<gad> b [<comment>]

Example:

LABEL CB 2,3 Compares the leftmost bytes of Workspace
Register 2 and Workspace Register 3.

Definition:
Compares the source operand (byte) with the destination operand (byte) and
sets/resets the status bits according to the result of the comparison. The CB

instruction uses the same comparison basis as does the C instruction. If the
source operand contains an odd number of logic one bits, the odd parity status bit
is set. The operands remain unchanged. If either operand is addressed in the
Workspace Register mode, the byte addressed is the most significant byte.

Status bits affected:
Logical greater than, arithmetic greater than, equal, and odd parity.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>IEQIC IOVIOPIX I I INT. MASK I

Execution results:
(gas) compared to (gad)

Application notes:
The CB instruction compares the two operands as signed, two's complement values
or as unsigned integers.

Source Destination

Some examples

Lo• ical>

are:

Status Bits Set
Odd Parity Arithmetic> Equal

>00 >FF 1 0 0 0

>00 >7F 1 1 0 1

>7F >80 1 0 0 1

>7F >7F 0 0 1 1

>80 >7F 0 1 0 1

EDITOR/ASSEMBLER
Page 142

COMPARE INSTRUCTIONS

8.3 COMPARE I M MEDIATE--CI

Op-code: 0280 (Format VIII)

Syntax definition:

[(label>) b CI b <wa>,(iop> b [(comment>)

Example:

LABEL CI 3,7 Compares the contents of Workspace Register 3

to >0007.

Definition:
Compares the contents of the specified Workspace Register with the word in
memory immediately following the instruction and sets/resets the status bits

according to the comparison. The CI instruction makes the same type of
comparison as does the C instruction.

Status bits affected:
Logical greater than, arithmetic greater than, and equal.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>IEQIC IOVIOPIX I I INT. MASK I
A A A

Execution results:
(wa) compared to iop

Application notes:
The CI instruction compares the Workspace Register to an immediate operand.
For example, if the contents of Workspace Register 9 is >2183, the instruction

CI 9,>F330

results in the arithmetic greater than status bit being set and the logical greater

than and equal status bits being reset.

EDITOR/ASSEMBLER
Page 143

COMPARE INSTRUCTIONS

8.4 COMPARE ONES CORRESPONDING--COC

Op-code: 2000 (Format III)

Syntax definition:

[<label>) b COC b <gas>,<wad> b [<comment>)

Example:

LABEL COC (a1MASK,2 Compares the contents of Workspace Register 2
with the contents of MASK.

Definition:

When the bits in the destination operand Workspace Register that correspond to
the logic one bits in the source operand are equal to logic one, sets the equal

status bit. The source and destination operands are unchanged.

Status bits affected:
Equal.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>IEOIC IOVIOPIX I I INT. MASK

Execution results:
The equal bit is set if all bits of <wad> that correspond to the bits of <gas> that
are equal to 1 are also equal to 1.

EDITOR/ASSEMBLER
Page 144

COMPARE INSTRUCTIONS

Application notes:
The COC instruction tests single or multiple bits within a word in a Workspace

Register. For example, if TESTBI contains the word >C102 and Workspace

Register 8 contains the value >E306, the instruction

COC Qa TESTBI,8

sets the equal status bit because for each 1 bit in the first operand there is a 1

bit in the corresponding bit position of the second operand as shown below.

>C102 = 1100 0001 0000 0010 and

>E306 = 1110 0011 0000 0110

If Workspace Register 8 contains >E301, the equal status bit is reset. Use this

instruction to determine if a Workspace Register has is in the bit positions

indicated by the is in a mask.

EDITOR/ASSEMBLER

Page 145

COMPARE INSTRUCTIONS

8.5 COMPARE ZEROS CORRESPONDING--CZC

Op-code: 2400 (Format III)

Syntax definition:

[<label>] b CZC b <gas>,<wad> b [<comment>]

Example:

LABEL CZC [a1MASK,2 Compares the contents of Workspace Register 2
with the contents of MASK.

Definition:

When the bits in the destination operand Workspace Register that correspond to
the one bits in the source operand are. all equal to logic zero, sets the equal
status bit. The source and destination operands are unchanged.

Status bits affected:
Equal.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>IEQIC IOVIOPIX I I INT. MASK I

Execution results:

The equal bit is set if all bits of <wad> that correspond to the bits of <gas> that
are equal to 1 are equal to 0.

Application notes:

The CZC instruction tests single or multiple bits within a word in a Workspace
Register. For example, if the memory location labeled TESTBI contains the
value >C102, and Workspace Register 8 contains >2301, the instruction

CZC @TESTBI,8

resets the equal status bit because for each 1 bit in the first operand there is not
a corresponding zero bit in the corresponding bit position of the second operand
as shown below.

>C102 = 1100 0001 0000 0010 and
>2301 = 0010 0011 0000 0001

EDITOR/ASSEMBLER
Page 146

COMPARE INSTRUCTIONS

If Workspace Register 8 contains the value >2201, then the equal status bit is set.
Use the CZC instruction to determine if a Workspace Register has zeros in the
positions indicated by ones in a mask.

EDITOR/ASSEMBLER
Page 147

SECTION 9: CONTROL AND CRU INSTRUCTIONS

The following control and CRU instructions are described in this section.

Instruction Mnemonic Section
LoaD CRU LDCR 9.1

Set CRU Bit to One SBO 9.2
Set CRU Bit to Zero SBZ 9.3

STore CRU STCR 9.4
Test Bit TB 9.5

The following instructions are described in Section 9.6. All of them are properly
assembled and are recognized by the TMS9900 microprocessor, but they should not be
used on the Home Computer.

Instruction Mnemonic

ClocK OFf CKOF

ClocK ON CKON

IDLE IDLE

ReSET RSET

Load or REstart eXecution LREX

Examples are given in Section 9.7.

Control instructions affect the operation of the Arithmetic Unit (AU) and the
associated portions of the computer or microprocessor. CRU instructions affect the
modules connected to the Communications Register Unit.

For CRU bit instructions, the signed displacement is shifted one bit position to the
left and added to the contents of Workspace Register 12. In other words, it is a
displacement in bits from the contents of bits 3 through 14 of Workspace Register 12.

See Section 24.3.2 for more information.

EDITOR/ASSEMBLER
Page 148

CONTROL AND CRU INSTRUCTIONS

Each instruction consists of the following information.

• A heading, consisting of the instruction name and mnemonic name
• :The op-code
• The syntax definition

• An example of the instruction
• The definition of the instruction

• The status bits affected

• The execution results

• Application notes when appropriate

The op-code is a four-digit hexadecimal number which corresponds to an instruction
word whose address fields contain zeros.

The syntax definition follows the conventions described in Section 5. The generic
names used in the syntax definitions are:

gas General Address of the Source operand
gad General Address of the Destination operand
wa : Workspace register Address
iop Immediate OPerand
wad Workspace register Address Destination
disp DISPlacement of CRU lines from the CRU base register
exp EXPression that represents an instruction location
cnt CouNT of bits for CRU transfer
scnti Shift CouNT
xop number of eXtended OPeration

Source statements that contain machine instructions can use the label field, the
operation field, the operand field, and the comment field.

Use of the label field is optional. When it is used, the label is assigned the address
of the instruction. The Assembler advances to the location of a word boundary (even
address) before assembling a machine instruction.

The operation (op-code) field contains the mnemonic operation code of the
instruction. The contents of the operand field are defined for each instruction.

Inclusion of the comment field is optional. If used, it may contain any ASCII
characters, including blanks. The comment has no effect on the assembly process
other than being printed in the listing.

EDITOR/ASSEMBLER
Page 149

CONTROL AND CRU INSTRUCTIONS

In the execution results, the following conventions are used.

() Indicates "the contents of."
=> Indicates "replaces."

* * Indicates "the absolute value of."

The generic names used in the syntax definitions are also used in the execution
results.

EDITOR/ASSEMBLER
Page 150

CONTROL AND CRU INSTRUCTIONS

9.1 LOAD CRU--LDCR

Op-code: 3000 (Format IV)

Syntax definition:

[<label>] b LDCR b <gas>,<cnt> b [<comment>]

Example:

WRITE LDCR ®BUFF,15 Sends 15 bits from BUFF to the CRU.

Definition:
Transfers the number of bits specified in the cnt field from the source operand to
the CRU. The transfer begins with the least significant bit of the source
operand. The CRU address is contained in bits 3 through 14 of Workspace
Register 12. When the cnt field contains zero, the number of bits transferred is
16. If the number of bits to be transferred is from one to eight, the source
operand address is a byte address. If the number of bits to be transferred is
from 9 to 16, the source operand address is a word address. If the source
operand address is odd, the address is truncated to an even address prior to data
transfer. When the number of bits transferred is a byte or less, the source
operand is compared to zero and the status bits are set/reset, according to the

results of the comparison. The odd parity status bit is set when the bits in a
byte (or less) to be transferred establish odd parity.

Status bits affected:
Logical greater than, arithmetic greater than, and equal. When cnt is less than
nine, odd parity is also set or reset. The odd parity status bit is set according to
the full word or byte, not just the transferred bits.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>IEQIC IOVIOPIX I I INT. MASK I

Execution results:
The number of bits specified by cnt are transferred from memory at address gas
to consecutive CRU lines beginning at the address in Workspace Register 12 (bits
3 through 14).

EDITOR/ASSEMBLER
Page 151

CONTROL AND CRU INSTRUCTIONS

9.2 SET CRU BIT TO ONE--SBO

Op-code: 1D00 (Format II)

Syntax definition:

[<label>] b SBO b <disp> b [<comment>]

Example:

LABEL SBO 7 Sets CRU bit 7, relative to the CRU base in
Workspace Register 12, to one.

Definition:

Sets the digital output bit to one on the CRU at the address derived from this
instruction. The derived address is the sum of the signed displacement and the
contents of Workspace Register 12, bits 3 through 14. The execution of this
instruction does not affect the Status Register or the contents of Workspace
Register 12.

Status bits affected:

None.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>IEQIC IOVIOPIX I I INT. MASK I

Execution results:

A CRU bit is set to one. The CRU bit equals the sum of the contents of
Workspace Register 12 (bits 3 through 14) and the displacement.

EDITOR/ASSEMBLER
Page 152

CONTROL AND CRU INSTRUCTIONS

9.3 SET CRU BIT TO ZERO--SBZ

Op-code: 1E00 (Format II)

Syntax definition:

[<label>] b SBZ b <disp> b [<comment>]

Example:

LABEL SBZ 7 Sets CRU bit 7, relative to the CRU base in
Workspace Register 12, to zero.

Definition:
Sets the digital output bit to zero on the CRU at the address derived from this
instruction. The derived address is the sum of the signed displacement and the
contents of Workspace Register 12, bits 3 through 14. The execution of this
instruction does not affect the Status Register or the contents of Workspace
Register 12.

Status bits affected:
None.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>IEOIC IOVIOPIX I I INT. MASK I

Execution results:
A CRU bit is set to zero. The CRU bit equals the sum of the contents of
Workspace Register 12 (bits 3 through 14) and the displacement.

EDITOR/ASSEMBLER
Page 153

CONTROL AND CRU INSTRUCTIONS

9.4 STORE CRU--STCR

Op-code: 3400 (Format IV)

Syntax definition:

[(label>] b STCR b <gas>,<cnt> b [<comment>]

Example:

READ STCR Qa BUF,9 Reads 9 bits from the CRU and stores them at
location BUF.

Definition:

Transfers the number of bits specified in the cnt field from the CRU to the
source operand. The transfer begins from the CRU address specified in bits 3
through 14 of Workspace Register 12 to the least significant bit of the source
operand and fills the source operand toward the most significant bit. When the
cnt field contains a zero, the number of bits to transfer is 16. If the number of
bits to transfer is from one to eight, the source operand address is a byte
address. Any bit in the memory byte not filled by the transfer is set to zero.

When the number of bits to transfer is from 9 to 16, the source operand address
is a word address. If the source operand address is odd, the address is truncated

to an even address prior to data transfer. If the transfer does not fill the entire
memory word, unfilled bits are set to zero. When the number of bits to transfer
is a byte or less, the bits transferred are compared to zero and the status bits
are set or reset to indicate the results of the comparison. Also, when the bits to
be transferred are a byte or less, the odd parity bit is set when the bits establish
odd parity.

Status bits affected:
Logical greater than, arithmetic greater than, and equal. When cnt is less than

9, odd parity is also set or reset. Status is set according to the full word or
byte, not just the transferred bits.

0 1 2 3 4 5 6 7 S 9 10 11 12 13 14 15
IL>IA>IEOIC IOVIOP(X i 1 INT. MASK I

EDITOR/ASSEMBLER
Page 154

CONTROL AND CRU INSTRUCTIONS

Execution results:
The number of bits specified by cnt are transferred from consecutive CRU lines
beginning at the address in Workspace Register 12 (bits 3 through 14) to memory
at address gas.

Application notes:

The STCR instruction transfers a specified number of CRU bits from the CRU to
the memory location specified as the source operand. Note that the CRU base
address must be in Workspace Register 12 (bits 3 through 14) prior to the
execution of this instruction.

EDITOR/ASSEMBLER
Page 155

CONTROL AND CRU INSTRUCTIONS

9.5 TEST BIT--TB

Op-code: 1F00 (Format II)

Syntax definition:

[<label>] b TB b <disp> b [<comment>]

Example:

CHECK TB 7 Reads CRU bit 7 relative to the CRU base
address in Workspace Register 12, and sets the
equal status bit to the value read.

Definition:
Reads the digital input bit on the CRU at the address specified by the sum of the
signed displacement and the contents of Workspace Register 12, bits 3 through 14,
and set the equal status bit to the value read. The digital input bit and the
contents of Workspace Register 12 are unchanged.

Status bits affected:
Equal.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>IEOIC IOVIOPIX I I INT. MASK I

Execution results:
Equal bit is set to the value of the CRU bit addressed by the sum of the contents
of Workspace Register 12 (bits 3 through 14) and the displacement.

Application notes:
The TB instruction transfers the level from the indicated CRU line to the equal
status bit without modification. If the CRU line tested is set to one, the equal
status bit is set to one; if the line is zero, it is set to zero. The JEQ instruction

can then be used to transfer control when the CRU line is one and not transfer
control when the line is zero. In addition, the JNE instruction transfers control

under the opposite conditions.

EDITOR/ASSEMBLER
Page 156

CONTROL AND CRU INSTRUCTIONS

9.6 OTHER INSTRUCTIONS

The following instructions are properly assembled and are recognized by the TMS9900
microprocessor, but they should not be used on the Home Computer. Their op-code
and syntax definition are given below.

Instruction Mnemonic 0.-code Format Syntax definition
ClocK OFf CKOF 03C0 VII [(label>] b CKOF b [<comment>
ClocK ON CKON 03A0 VII [(label>] b CKON b [(comment)]
IDLE IDLE 0340 VII [<label>] b IDLE b [(comment>]
ReSET RSET 0360 VII [(label>] b RSET b [<comment>]
Load or REstart LREX 03E0 VII [(label>] b LREX b [<comment>]

eXecution

EDITOR/ASSEMBLER
Page 157

CONTROL AND CRU INSTRUCTIONS

9.7 CRU INPUT/OUTPUT

The Communications Register Unit (CRU) performs single and multiple bit
programmed input/output. All input consists of reading CRU line logic levels into

memory and output consists of setting CRU output lines to bit values from a word or
byte of memory. The CRU provides a maximum of 4096 input and output lines that
may be individually selected by a 12-bit address. The 12-bit address is located in
bits 3 through 14 of Workspace Register 12 and is the base address for all CRU
communications. See Section 24.3.2 for more information.

9.7.1 CRU I/O Instructions

There are five instructions for communications with CRU lines.

SBO Set CRU Bit to One. This instruction sets a CRU output line to one.

SBZ Set CRU Bit to Zero. This instruction sets a CRU output line to zero.

TB Test CRU Bit. This instruction reads the digital input bit and sets the equal
status bit (bit 2) to the value of the digital input bit.

LDCR Load Communications Register. This instruction transfers the number of bits
(1-16) specified by the cnt field of the instruction to the CRU from the
source operand. When less than nine bits are specified, the source operand
address is a byte address. When nine or more bits are specified, the source
operand is a word address. The CRU address is the address of the first CRU
digital output affected. The CRU address is determined by the contents of

Workspace Register 12, bits 3 through 14.

STCR Store Communications Register. This instruction transfers the number of bits
specified by the cnt field of the instruction from the CRU to the source
operand. When less than nine bits are specified, the source operand address
is a byte address. When nine or more bits are specified, the source operand
address is a word address. The CRU address is determined by Workspace

Register 12, bits 3 through 14.

EDITOR/ASSEMBLER
Page 158

CONTROL AND CRU INSTRUCTIONS

9.7.2 Accessing Specific Bits

There are many different ways to access the same CRU bit. For instance, if
Workspace Register 12 contains >0100, making the base address in bits 3 through 14
equal to >80, the following instruction sets CRU line >85 to one.

SBO 5

Alternatively, if Workspace Register 12 contains >010A, making the base address in

bits 3 through 14 equal to >85, the following instruction also sets CRU line >85 to
one.

SBO 0

9.7.3 SBO Example

Assume that a control device turns on a motor when the computer sets a one on CRU
line >10F and that Workspace Register 12 contains >0200, making the base address in
bits 3 through 14 equal to >100. The following instruction sets CRU line >10F to
one.

SBO 15

9.7.4 SBZ Example

Assume that a control device shuts off a valve when the computer sets a zero on a
CRU line is connected to CRU line 2 and that Workspace Register 12 contains zero.
The following instruction sets CRU line 2 to zero.

SBZ 2

EDITOR/ASSEMBLER
Page 159

CONTROL AND CRU INSTRUCTIONS

9.7.5 TB Example

Assume that Workspace Register 12 contains >0140, making the base address in bits 3
through 14 equal to >AO. The following instructions test the input on CRU line >A4
and execute the instructions beginning at location RUN when the CRU line is set to
one. When the CRU line is set to zero, the instructions beginning at location WAIT
are executed.

TB 4 Test CRU line 4.
JEQ RUN If on, go to RUN.

WAIT If off, continue.

RUN .

The TB instruction sets the equal bit of the Status Register to the level on line 4 of
the CRU device.

EDITOR/ASSEMBLER
Page 160

SECTION 10: LOAD AND MOVE INSTRUCTIONS

The following load and move instructions are described in this section.

Instruction

Load Immediate

Load Interrupt Mask Immediate

Load Workspace Pointer Immediate

MOVe words

MOVe Bytes

STore STatus

STore Workspace Pointer

SWaP Bytes

Mnemonic

LI

LIMI

LWPI

MOV

MOVB

STST

STWP

SWPB

Section

10.1

10.2

10.3

10.4

10.5

10.6

10.7

10.8

An example is given in Section 10.9.

Load and move instructions permit you to establish the execution environment and the

execution results. These instructions manipulate data between memory locations and

between hardware registers and memory locations.

Each instruction consists of the following information.

• A heading, consisting of the instruction name and mnemonic name

• The op-code

• The syntax definition

• An example of the instruction

• The definition of the instruction

• The status bits affected

• The execution results

• Application notes when appropriate

The op-code is a four-digit hexadecimal number which corresponds to an instruction

word whose address fields contain zeros.

EDITOR/ASSEMBLER
Page 161

LOAD AND MOVE INSTRUCTIONS

The syntax definition follows the conventions described in Section 5. The generic
names used in the syntax definitions are:

gas General Address of the Source operand

gad General Address of the Destination operand
wa Workspace register Address
iop Immediate OPerand

wad Workspace register Address Destination

disp DISPlacement of CRU lines from the CRU base register
exp EXPression that represents an instruction location

cnt CouNT of bits for CRU transfer
scnt Shift CouNT

xop number of eXtended OPeration

Source statements that contain machine instructions can use the label field, the

operation field, the operand field, and the comment field.

Use of the label field is optional. When it is used, the label is assigned the address

of the instruction. The Assembler advances to the location of a word boundary (even
address) before assembling a machine instruction.

The operation (op-code) field contains the mnemonic operation code of the

instruction. The contents of the operand field are defined for each instruction.

Inclusion of the comment field is optional. If used, it may contain any ASCII

characters, including blanks. The comment has no effect on the assembly process
other than being printed in the listing.

In the execution results, the following conventions are used.

()
_>
**

Indicates "the contents of."

Indicates "replaces."

Indicates "the absolute value of."

The generic names used in the syntax definitions are also used in the execution
results.

EDITOR/ASSEMBLER
Page 162

LOAD AND MOVE INSTRUCTIONS

10.1 LOAD IMMEDIATE--LI

Op-code: 0200 (Format VIII)

Syntax definition:

[<label>] b LI b <wa>,<iop> b [<comment>]

Example:

GETIT LI 3,>17 Loads Workspace Register 3 with >0017.

Definition:

Places the immediate operand (the word of memory immediately following the
instruction) in the Workspace Register (W field). The immediate operand is not
affected by the execution of this instruction. The immediate operand is
compared to 0 and the logical greater than, arithmetic greater than, and equal
status bits are set or reset according to the result of the comparison.

Status bits affected:
Logical greater than, arithmetic greater than, and equal.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>IEQIC IOVIOPIX I I INT. MASK I

A A A

Execution results:
(iop) => (we)

Application notes:

The LI instruction places an immediate operand in a specified Workspace
Register. This may be used to initialize a Workspace Register as a loop counter.
For example, the instruction

LI 7,5

initializes Workspace Register 7 with the value >0005. In this example, the
logical greater than and arithmetic greater than status bits are set, while the
equal status bit is reset.

EDITOR/ASSEMBLER
Page 163

LOAD AND MOVE INSTRUCTIONS

10.2 LOAD INTERRUPT MASK IMMEDIATE--LIMI

Op-code: 0300 (Format VIII)

Syntax definition:

[(label>] b LIMI b <iop> b [<comment>]

Example:

LABEL LIMI 2 Masks level 2 and below.

Definition:

Places the least significant four bits (bits 12-15) of the contents of the immediate

operand (the next word after the instruction) in the interrupt mask of the Status

Register. The remaining bits of the Status Register (0 through 11) are not

affected.

Status bits affected:

Interrupt mask.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>IEOIC IOVIOPIX I I INT. MASK I

Execution results:
Places the four least significant bits of iop into the interrupt mask.

Application notes:

The LIMI instruction initializes the interrupt mask so that a particular level of

interrupt is accepted. For example, the instruction

LIMI 2

sets the interrupt mask to level two and enables interrupts at levels 0, 1, and 2.

The instruction

LIMI 0

Disables all interrupts and is the normal state of the computer.

EDITOR/ASSEMBLER
Page 164

LOAD AND MOVE INSTRUCTIONS

10.3 LOAD WORKSPACE POINTER IMMEDIATE--LWPI

Op-code: 02E0 (Format VIII)

Syntax definition:

[<label>] b LWPI b <iop> b [<comment>]

Example:

NEWWP LWPI >02F2 Sets NEWWP equal to >02F2.

Definition:
Replaces the contents of the Workspace Pointer with the immediate operand.

Status bits affected:
None.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>IEQIC IOVIOPIX I I INT. MASK

Execution results:
(lop) => (WP)

Application notes:
The LWPI instruction initializes or changes the Workspace Pointer Register to

alter the Workspace environment of the program. You may use a BLWP or a
LWPI instruction to load your own Workspace Registers.

EDITOR/ASSEMBLER
Page 165

LOAD AND MOVE INSTRUCTIONS

10.4 MOVE WORD--MOV

Op-code: C000 (Format I)

Syntax definition:

[<label>] b MOV b <gas>,<gad> b [<comment>]

Example:

GET MOV [1WD,2 Moves a copy of WD into Workspace Register 2.

Definition:

Replaces the destination operand with a copy of the source operand. The

computer compares the resulting destination operand to zero and sets/resets the
status bits according to the comparison.

Status bits affected:

Logical greater than, arithmetic greater than, and equal.

0 1 2 3 4 5 6 7 S 9 10 11 12 13 14 15
IL>IA>IEQIC IOVIOPIX I I INT. MASK I

Execution results:

(gas) => (gad)

Application notes:

The MOV instruction moves 16-bit words as follows:

Memory-to-memory (non-register)

Load register (memory-to-register)

Register-to-register

Register-to-memory

EDITOR/ASSEMBLER
Page 166

LOAD AND MOVE INSTRUCTIONS

The MOV instruction may also be used to compare a memory location to zero.

For example,

MOV 7,7

JNE TEST

moves Workspace Register 7 to itself and compares the contents of Workspace

Register 7 to zero. If the contents are not equal to zero, the equal status bit is

reset and control transfers to TEST.

As another example of the use of MOV, assume that Workspace Register 9

contains >3416 and location ONES contains >EPEE. Then

MOV ®ONES,9

changes the contents of Workspace Register 9 to >EPEE, while the contents of

location ONES is not changed. For this example, the logical greater than status

bit is set and the arithmetic greater than and equal status bits are reset.

EDITOR/ASSEMBLER

Page 167

LOAD AND MOVE INSTRUCTIONS

10.5 MOVE BYTE--MOVB

Op-code: D000 (Format I)

Syntax definition:

[<label>] b MOVB b (gas),(gad) b [<comment>]

Example:

NEXT MOVB 2,>2A41 Stores the most significant byte of

Workspace Register 3 in address >2A41.

Definition:

Replaces the destination operand (byte) with a copy of the source operand (byte).

If either operand is addressed in the Workspace Register mode, the byte

addressed is the most significant byte. The least significant byte is not affected.

The computer compares the destination operand to zero and sets/resets the status

bits to indicate the result of the comparison. The odd parity bit is set when the

bits in the destination operand establish odd parity.

Status bits affected:

Logical greater than, arithmetic greater than, equal, and odd parity.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>IEOIC IOVIOPIX I I INT. MASK I

Execution results:

(gas) => (gad)

Application notes:

The MOVB instruction moves bytes in the same combinations as the MOV

instruction moves words. For example, if memory location >1C14 contains a

value of >2016 and TEMP is located at >1C15, and if Workspace Register 3

contains >542B, the instruction

MOVB Qa TEMP,3

changes the contents of Workspace Register 3 to >1628. The logical greater

than, arithmetic greater than, and odd parity status bits are set, while the equal
status bit is reset.

EDITOR/ASSEMBLER
Page 168

LOAD AND MOVE INSTRUCTIONS

10.6 STORE STATUS--STST

Op-code: 02C0 (Format VIII)

Syntax definition:

[<label>] b STST b (wa) b [<comment>]

Example:

LABEL STST 7 Stores status in Workspace Register 7.

Definition:

Stores the Status Register contents in the specified Workspace Register.

Status bits affected:

None.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>IEOIC IOVIOPIX I I INT. MASK I

Execution results:

(ST) => (wa)

Application notes:

The STST instruction stores the Status Register in the specified Workspace

Register.

EDITOR/ASSEMBLER
Page 169

LOAD AND MOVE INSTRUCTIONS

10.7 STORE WORKSPACE POINTER--STWP

Op-code: 02A0 (Format VIII)

Syntax definition:

[<label>] b STWP b (wa) b [<comment>)

Example:

LABEL STWP 6 Stores the Workspace Pointer in Workspace
Register 6.

Definition:

Places a copy of the Workspace Pointer contents in the specified Workspace
Register.

Status bits affected:
None.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>IEOIC IOVIOPIX I I INT. MASK I

Execution results:

(WP) => (wa)

Application notes:
The STWP instruction stores the contents of the Workspace Pointer in the
specified Workspace Register.

EDITOR/ASSEMBLER
Page 170

LOAD AND MOVE INSTRUCTIONS

10.8 SWAP BYTES--SWPB

Op-code: 06C0 (Format VI)

Syntax definition:

[<label>] b SWPB b (gas) b [<comment>]

Example:

SWITCH SWPB 3 Switchs the most significant and least significant

bytes in Workspace Register 3.

Definition:

Replaces the most significant byte (bits 0-7) of the source operand with a copy of
the least significant byte (bits 8-15) of the source operand and replaces the least
significant byte with a copy of the most significant byte.

Status bits affected:

None.

0 1 2 3 4 5 6 7 S 9 10 11 12 13 14 15
IL>IA>IEQIC IOVIOPIX I I INT. MASK I

Execution results:
Exchanges left and right bytes of word (gas).

Application notes:

Use the SWPB instruction to interchange bytes of an operand prior to executing
various byte instructions. For example, if Workspace Register 0 contains >2144
and memory location >2144 contains the value >F312, the instruction

SWPB *0+

changes the contents of memory location >2144 to >12F3 and increments
Workspace Register 0 to >2146. The Status Register is unchanged.

EDITOR/ASSEMBLER
Page 171

LOAD AND MOVE INSTRUCTIONS

10.9 INSTRUCTION EXAMPLE

The following program segment illustrates the use of many of the instructions
discussed in this section. The first six instructions are a portion of a program that
calls a subroutine labeled SUBR. The calling program performs some initialization
and then calls the subroutine to check the contents of a 20-byte buffer. If the
subroutine finds that the buffer contains byte values that are in numerically
sequential order, then it returns >00 to the calling program in Workspace Register 4.
If the bytes are not in numerically sequential order, the subroutine returns >01 in
Workspace Register 4. The program and subroutine are described in greater detail
after the program is listed.

LWPI >AC20 Load Workspacer Pointer.

BL SUBR Call subroutine.

DATA BUFFER Address of BUFFER.

MOV 4,4 See if numbers are in sequence.

JNE NOSEQ Jump if subroutine found non-sequential
numbers.

SUBR S 4,4 Clear Workspace Register 4.

LI 10,20 Put loop count in Workspace Register 10.

MOV *11+,7 Put address of BUFFER in Workspace Register 7.

MOVE *7,6 Put first number in the left byte of Workspace

Register 6.

CHECK MOV *7+,8 Put two bytes in Workspace Register 8.

SB 6,8 Check for sequence.

JNE OUT Jump if out of sequence.

AI 6,>100 Add one to sequence checker.

SWPB 8 Put other byte in left half of register.

SB 6,8 Check for sequence.

JNE OUT Jump if out of sequence.

AI 6,>100 Add one to sequence checker.

DECT 10 Decrement loop counter.

JGT CHECK Jump to check next two bytes.

JMP RETURN Through checking, all in order.

OUT INC 4 Set Workspace Register 4 to a non-zero value.

RETURN B *11 Return to calling program.

EDITOR/ASSEMBLER
Page 172

LOAD AND MOVE INSTRUCTIONS

In the calling program, the LIMI instruction places a zero in the interrupt mask of
the Status Register to turn off all maskable interrupts before loading the Workspace
Pointer with the LWPI instruction and calling the subroutine.

The BL instruction transfers program control to the subroutine with the address
following the BL instruction placed in Workspace Register 11 to allow for return to
the program. The location following the BL instruction contains the address of the
20-byte buffer to be checked by the subroutine. The subroutine returns control to
the MOV instruction in the calling program, which then checks to see if the
subroutine found the bytes in numerically sequential order and jumps to location
NOSEQ (not shown) if they were not.

The subroutine clears Workspace Register 4 with the S instruction and puts a loop
counter value of 20 in Workspace Register 10 with the LI instruction.

Since Workspace Register 11 contains the address of the location following the BL
instruction in the calling program, the MOV *11+,7 instruction copies the address of
BUFFER into Workspace Register 7 and increments the address in Workspace Register
11 to the location following the DATA directive, setting the address to the MOV
instruction for the return when the subroutine is finished. The MOVB *7,6 instruction
copies the first byte value into the left byte of Workspace Register 6.

At label CHECK, the MOV instruction begins a loop that copies a word (two bytes)
into Workspace Register 8 and auto-increments the address in Workspace Register 7
to the next word in the buffer. The left byte of Workspace Register 8 is subtracted
from its right byte. A non-zero result indicates an out of sequence number and the
JNE instruction transfers control to the instruction labeled OUT which places a >01 in
Workspace Register 4.

If the subtraction produces a zero result, the INC 6 instruction increments the
contents of Workspace Register 6 to the next byte to be checked. The following
SWPB instructon swaps the bytes in Workspace Register 8 so the following SB and
JNE instructions can check the sequence. If the sequence is correct, the next INC
instruction updates Workspace Register 6 to the address of the next byte.

The DECT instruction decrements the loop counter in Workspace Register 10 by two
since two bytes have been checked. If the result is non-zero, there are more bytes
to be checked and the JGT instruction causes a reiteration of the loop. If the result
is zero, all 20 bytes have been checked and the JMP instruction causes a jump to the
subroutine's exit at RETURN. There the B *11 instruction causes a return to the
calling program.

EDITOR/ASSEMBLER
Page 173

LOAD AND MOVE INSTRUCTIONS

SECTION 11: LOGICAL INSTRUCTIONS

The following logical instructions are described in this section.

Instruction Mnemonic Section
AND Immediate ANDI 11.1
OR Immediate ORI 11.2
EXclusive OR XOR 11.3
INVert INV 11.4
CLeaR CLR 11.5
SET to One SETO 11.6
Set Ones Corresponding SOC 11.7
Set Ones Corresponding, Byte SOCB 11.8
Set Zeros Corresponding SZC 11.9
Set Zeros Corresponding, Byte SZCB 11.10

Logical instructions permit you to perform various logical operations on memory
locations and/or Workspace Registers.

Each instruction consists of the following information.

• A heading, consisting of the instruction name and mnemonic name
• The op-code
• The syntax definition
• An example of the instruction
• The definition of the instruction
• The status bits affected
• The execution results
• Application notes when appropriate

The op-code is a four-digit hexadecimal number which corresponds to an instruction
word whose address fields contain zeros.

EDITOR/ASSEMBLER
Page 174

LOGICAL INSTRUCTIONS

The syntax definition follows the conventions described in Section 5. The generic
names used in the syntax definitions are:

gas General Address of the Source operand

gad General Address of the Destination operand
wa Workspace register Address
iop Immediate OPerand

wad Workspace register Address Destination
disp DISPlacement of CRU lines from the CRU base register
exp EXPression that represents an instruction location
cnt CouNT of bits for CRU transfer
scnt Shift CouNT

xop number of eXtended OPeration

Source statements that contain machine instructions can use the label field, the
operation field, the operand field, and the comment field.

Use of the label field is optional. When it is used, the label is assigned the address
of the instruction. The Assembler advances to the location of a word boundary (even
address) before assembling a machine instruction.

The operation (op-code) field contains the mnemonic operation code of the
instruction. The contents of the operand field are defined for each instruction.

Inclusion of the comment field is optional. If used, it may contain any ASCII
characters, including blanks. The comment has no effect on the assembly process
other than being printed in the listing.

In the execution results, the following conventions are used.

() Indicates "the contents of."
=> Indicates "replaces."
* * Indicates "the absolute value of."

The generic names used in the syntax definitions are also used in the execution
results.

EDITOR/ASSEMBLER
Page 175

LOGICAL INSTRUCTIONS

11.1 AND IMMEDIATE--ANDI

Op-code: 0240 (Format VIII)

Syntax definition:

[<label>] b ANDI b (wa),(iop) b [<comment>]

Example:

LABEL ANDI 3,>FFFO Sets least significant 4 bits of Workspace
Register 3 to zeros.

Definition:
Performs a bit-by-bit AND operation on the 16 bits in the immediate operand and
the corresponding bits of the Workspace Register. The immediate operand is the
word in memory immediately following the instruction word. Place •the result in
the Workspace Register. The computer compares the result to zero and

sets/resets the status bits according to the results of the comparison.

Status bits affected:

Logical greater than, arithmetic greater than, and equal.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>IEQIC IOVIOPIX I I INT. MASK I

Execution results:
(wa) AND iop => (wa)

EDITOR/ASSEMBLER
Page 176

LOGICAL INSTRUCTIONS

Application notes:
The ANDI instruction performs a logical AND with an immediate operand and a
Workspace Register. Each bit of the 16-bit word of both operands follows the
following table.

Immediate Workspace AND

Operand Bit Register Bit Result

0 0 0 a

0 1 0
1 0 0

1 1 1

For example, if Workspace Register 0 contains >D2AB, the instruction

ANDI 0,>6D03 .

results in Workspace Register 0 changing to >4003. This AND operation on a

bit-by-bit basis is

0110 1101 0000 0011 (Immediate operand--6D03)
1101 0010 1010 1011 (Workspace Register 0--D2AB)

0100 0000 0000 0011 (Workspace Register 0 result--4003)

In this example, the logical greater than and arithmetic greater than status bits

are set, while the equal status bit is reset.

EDITOR/ASSEMBLER
Page 177

LOGICAL INSTRUCTIONS

11.2 OR IMMEDIATE--ORI

Op-code: 0260 (Format VIII)

Syntax definition:

[(label>] b ORI b (wa),(iop) b [<comment>]

Example:

LABEL ORI 3,>F000 Sets the most significant 4 bits of Workspace
Register 3 to ones.

Definition:

Performs a logical OR operation on the.16-bit immediate operand and the
corresponding bits of the Workspace Register. The immediate operand is the

memory word immediately following the ORI instruction. Place the result in the
Workspace Register. The computer compares the result to zero and sets/resets
the status bits to indicate the result of the comparison.

Status bits affected:

Logical greater than, arithmetic greater than, and equal.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
I L> I A> I EG1 I C I OV I OP I X I I I NT . MASK I

Execution results:

(wa) OR (iop) => (wa) •

EDITOR/ASSEMBLER
Page 178

LOGICAL INSTRUCTIONS

Application notes:
The ORI instruction performs a logical OR with the immediate operand and a
specified Workspace Register. Each bit of the 16-bit word of both operands
follows the following table.

Immediate Workspace ORI

Operand Bit Register Bit Result

0 0 0

1 0 1

0 1 1

1 1 1

For example, if Workspace Register 5 contains >D2AB, the instruction

ORI 5,>6D03

results in Workspace Register 5 changing to >FFAB. This OR operation on a

bit-by-bit basis is

0110 1101 0000 0011 (Immediate operand-->6D03)
1101 0010 1010 1011 (Workspace Register 5-->D2AB)

1111 1111 1010 1011 (Workspace Register 5 result-->FFAB)

In this example, the logical greater than status bit is set, and the arithmetic
greater than and equal status bit are reset.

EDITOR/ASSEMBLER
Page 179

LOGICAL INSTRUCTIONS

11.3 EXCLUSIVE OR--XOR

Op-code: 2800 (Format III)

Syntax definition:

[<label>] b XOR b (gas),(wad) b [<comment>]

Example:

LABEL XOR Qa WORD,3 Exclusive ORs the contents of WORD and

Workspace Register 3.

Definition:

Performs a bit-by-bit exclusive OR of the source and destination operands, and

replaces the destination operand with the result. The exclusive OR is

accomplished by setting the bits in the resultant destination operand to one when
the corresponding bits of the two operands are not equal. The bits in the

resultant destination operand are reset to zero when the corresponding bits of the

two operands are equal. The computer compares the resultant destination

operand to zero and sets/resets the status bits to indicate the result of the

comparison.

Status bits affected:

Logical greater than, arithmetic greater than, and equal.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>IEOIC IOVIOPIX I I INT. MASK I

Execution results:

(gas) XOR (wad) => (wad)

EDITOR/ASSEMBLER
Page 180

LOGICAL INSTRUCTIONS

Application notes:
The XOR instruction performs an exclusive OR on two word operands. Each bit

of the 16-bit word of both operands follows the following table.

Immediate Workspace XOR

Operand Bit Register Bit Result

0 0 0

0 1 1

1 0 1

1 1 0

For example, if Workspace Register 2 contains >D2AA and location CHANGE
contains the value >6D03, the instruction

XOR @CHANGE,2

results in the contents of Workspace Register 2 changing to >BFA9. Location
CHANGE remains >6D03. This is shown as follows.

0110 1101 0000 0011 (Source operand-->6D03)
1101 0010 1010 1010 (Destination operand-->D2AA)

1011 1111 1010 1001 (Destination operand result-->BFA9)

In this example, the logical greater than status bit is set, while the arithmetic
greater than and equal status bits are reset.

EDITOR/ASSEMBLER
Page 181

LOGICAL INSTRUCTIONS_

11.4 INVERT--INV

Op-code: 0540 (Format VI)

Syntax definition:

[<label>] b INV b (gas) b [<comment>]

Example:

COMPL INV @BUFF(2) Replaces the value at the address found by

adding the value of Workspace Register 2 to the

contents of BUFF with the one's complement of

the data.

Definition:

Replaces the source operand with the one's complement of the source operand.

The one's complement is equivalent to changing each zero in the source operand

to one and each one in the source operand to zero. The computer compares the

result to zero and sets/resets the status bits to indicate the result of the
comparison.

Status bits affected:

Logical greater than, arithmetic greater than, and equal.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>IEQIC IOVIOPIX I I INT. MASK I

Execution results:

The one's complement of (gas) is placed in (gas).

EDITOR/ASSEMBLER
Page 182

LOGICAL INSTRUCTIONS

Application notes:
The INV instruction changes each zero in the source operand to one and each one
to zero. For example, if Workspace Register 11 contains >157A, the instruction

INV 11

changes the contents of Workspace Register 11 to >EA85. This INV operation on
a bit-by-bit basis is

0001 0101 0111 1010 (Workspace Register 11-->157A)
1110 1010 1000 0101 (Workspace Register 11 result-->EA85)

The logical greater than status bit is set and the arithmetic greater than and
equal status bits are reset.

EDITOR/ASSEMBLER
Page 183

LOGICAL INSTRUCTIONS

11.5 CLEAR--CLR

Op-code: 04C0 (Format VI)

Syntax definition:

[<label>] b CLR b (gas) b [<comment>]

Example:

PRELM CLR ®BUFF(2) Clears the value at the address found by adding
the value of Workspace Register 2 to the
contents of BUFF.

Definition:

Replaces the source operand with a full 16-bit word of zeros.

Status bits affected:
None.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>IEQIC IOVIOPIX I I INT. MASK 1

Execution results:
0 => (gas)

Application notes:

The CLR instruction sets a full, 16-bit, memory-addressable word to zero. For
example, if Workspace Register 11 contains the value >2001, the instruction

CLR *>B

results in the contents of memory locations >2000 and >2001 being set to 0.
Workspace Register 11 and the Status Register are unchanged. Word operations,
such as CLR, operate on the next lower address when an odd address is given as
the operand.

EDITOR/ASSEMBLER
Page 184

LOGICAL INSTRUCTIONS

11.6 SET TO ONE--SETO

Op-code: 0700 (Format VI)

Syntax definition:

[<label>] b SETO b (gas) b [<comment>]

Example:

LABEL SETO 3 Sets Workspace Register 3 to >FFFF or negative

1.

Definition:

Replaces the source operand with a full 16-bit word of ones.

Status bits affected:

None.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>IEQIC IOVIOPIX I I INT. MASK 1

Execution results:

>1-I- F I- => <gas>

Application notes:

The SETO instruction initializes an addressable memory to a value of negative 1.

For example, the instruction

SETO 3

initializes Workspace Register 3 to a value of >FFFF. The contents of the Status

Register are unchanged. This is a useful means of setting flag words.

EDITOR/ASSEMBLER
Page 185

LOGICAL INSTRUCTIONS

11.7 SET ONES CORRESPONDING--SOC

Op-code: E000 (Format I)

Syntax definition:

[(label>] b SOC b (gas),(gad) b [(comment>]

Example:

LABEL SOC 3,2 ORs Workspace Register 3 into Workspace

Register 2.

Definition:

Sets to one the bits in the destination operand that correspond to the one bits in
the source operand. Leaves unchanged the bits in the destination operand that

are in the same bit positions as the zero bits in the source operand. This

operation is an OR of the two operands. The changed destination operand

replaces the original destination operand. The computer compares the result to

zero and sets/resets the status bits to indicate the result of the comparison.

Status bits affected:

Logical greater than, arithmetic greater than, and equal.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>IEQIC IOVIOPIX I I INT. MASK I

Execution results:

The bits of (gad) that correspond to the bits of (gas) that are equal to 1 are set

to 1.

EDITOR/ASSEMBLER
Page 186

LOGICAL INSTRUCTIONS

Application notes:

The SOC instruction ORs the 16-bit contents of two operands. For example, if

Workspace Register 3 contains >FF00 and location NEW contains >AAAA, the
instruction

SOC 3,@ NEW

changes the contents of location NEW to >FFAA, while the contents of Workspace

Register 3 are unchanged. This SOC operation on a bit-by-bit basis is

1111 1111 0000 0000 (Source operand-->FF00)

1010 1010 1010 1010 (Destination operand-->AAAA)

1111 1111 1010 1010 (Destination operand result-->FFAA)

In this example, the logical greater than status bit is set and the arithmetic

greater than and equal status bits are reset.

EDITOR/ASSEMBLER

Page 187

LOGICAL INSTRUCTIONS

11.8 SET ONES CORRESPONDING, BYTE--SOCB

Op-code: F000 (Format I)

Syntax definition:

[<label>] b SOCB b (gas),(gad) b [<comment>]

Example:

LABEL SOCB 3,®DET ORs Workspace Register 3 into the byte at
location DET.

Definition:
Sets to one the bits in the destination operand that correspond to the one bits in
the source operand byte. Leaves unchanged the bits in the destination operand
that are in the same bit positions as the zero bits in the source operand byte.
This operation is an OR of the two operand bytes. The changed destination
operand byte replaces the original destination operand byte. The computer

compares the resulting destination operand byte to zero and sets/resets the status
bits to indicate the results of the comparison. The odd parity status bit is set

when the bits in the resulting byte establish odd parity.

Status bits affected:
Logical greater than, arithmetic greater than, equal, and odd parity.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>IEQIC IOVIOPIX I I INT. MASK I

Execution results:
The bits of (gad) that correspond to the bits of (gas) that are equal to 1 are set

to 1.

EDITOR/ASSE MBLER
Page 188

LOGICAL INSTRUCTIONS

Application notes:

The SOCB instruction ORs two byte operands. For example, if Workspace

Register 5 contains >F013 and Workspace Register 8 contains the value >AA24,
the instruction

SOCB 3,8

changes the contents of Workspace Register 8 to >FA24, while the contents of

Workspace Register 5 are unchanged. This SOCB operation on a bit-by-bit basis
is

1111 0000 0001 0011 (Source operand-->F013)

1010 1010 0010 0100 (Destination operand-->AA24)

1111 1010 0010 0100 (Destination operand result-->FA24)

(Unchanged)

In this example, the logical greater than status bit is set, while the arithmetic

greater than, equal, and odd parity status bits are reset.

EDITOR/ASSEMBLER
Page 189

LOGICAL INSTRUCTIONS

11.9 SET ZEROS CORRESPONDING--SZC

Op-code: 4000 (Format I)

Syntax definition:

[<label>] b SZC b (gas),(gad) b [<comment>]

Example:

LABEL SZC (a1MASK,2 Resets the bits of Workspace Register 2 as
indicated by MASK.

Definition:

Sets to zero the bits in the destination operand that correspond to the bit
positions equal to one in the source operand. This operation is effectively an
AND operation of the destination operand and the one's complement of the source
operand. The computer compares the resulting destination operand to zero and
sets/resets the status bits to indicate the results of the comparison.

Status bits affected:
Logical greater than, arithmetic greater than, and equal.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>IEQIC IOVIOPIX I I INT. MASK I

Execution results:
The bits of (gad) that correspond to the bits of (gas) that are equal to 1 are set
to 0.

EDITOR/ASSEMBLER
Page 190

LOGICAL INSTRUCTIONS

Application notes:
The SZC instruction turns off flag bits or ANDs the destination operand. For
example, if Workspace Register 5 contains >6D03 and Workspace Register 3
contains >D2AA, the instruction

SZC 5,3

changes the contents of Workspace Register 3 to >92A8, while the contents of
Workspace Register 5 remain unchanged. This SCZ operation on a bit-by-bit
basis is

0110 1101 0000 0011 (Source operand-->6D03)
1101 0010 1010 1010 (Destination operand-->D2AA)

1001 0010 1010 1000 (Destination operand result-->92A8)

In this example, the logical greater than status bit is set, while the arithmetic

greater than and equal status bits are reset.

EDITOR/ASSEMBLER
Page 191

LOGICAL INSTRUCTIC

Application notes:
The SZC instruction turns off flag bits or ANDs the destination operand. For
example, if Workspace Register 5 contains >6D03 and Workspace Register 3
contains >D2AA, the instruction

SZC 5,3

changes the contents of Workspace Register 3 to >92A8, while the contents of
Workspace Register 5 remain unchanged. This SCZ operation on a bit-by-bit
basis is

0110 1101 0000 0011 (Source operand-->6D03)
1101 0010 1010 1010 (Destination operand-->D2AA)

1001 0010 1010 1000 (Destination operand result-->92A8)

In this example, the logical greater than status bit is set, while the arithmetic

greater than and equal status bits are reset.

EDITOR/ASSEMBLER
Page 191

LOGICAL INSTRUCTIONS

Application notes:

The SZCB instruction is used for the same applications as SZC except that bytes

are used instead of words. For example, if location BITS contains the value

>F018 and location TESTVA contains the value >AA24, the instruction

SZCB (aIBITS,@TESTVA

changes the contents of TESTVA to >0A24, while BITS remains unchanged. This

is shown as

1111 0000 0001 1000 (Source operand-->F018)

1010 1010 0010 0100 (Destination operand-->AA24)

0000 1010 0010 0100 (Destination operand result-->0A24)

(Unchanged)

In this example, the logical greater than and arithmetic greater than status bits

are set, while the equal and odd parity status bits are reset.

EDITOR/ASSEMBLER
Page 193

SECTION 12: WORKSPACE REGISTER SHIFT INSTRUCTIONS

The following Workspace Register shift instructions are described in this section.

Instruction Mnemonic Section
Shift Right Arithmetic SRA 12.1

Shift Right Logical SRL 12.2
Shift Left Arithmetic SLA 12.3

Shift Right Circular SRC 12.4

An example is given in Section 12.5.

Workspace Register shift instructions permit you to shift the contents of a specified

Workspace Register from one to 16 bits. For each of these instructions, if the shift

count in the instruction is zero, the shift count is taken from Workspace Register 0,

bits 12 through 15. If the four bits of Workspace Register 0 are equal to zero, the

shift count is 16 bit positions. The value of the last bit shifted out of the Workspace

Register is placed in the carry bit of the Status Register. The result is compared to

zero, and the results of the comparison are shown in the logical greater than,

arithmetic greater than, and equal bits in the Status Register. If a shift count

greater than 15 is supplied, the Assembler fills in the four-bit field with the least
significant four bits of the shift count.

Each instruction consists of the following information.

o A heading, consisting of the instruction name and mnemonic name

o The op-code

o The syntax definition

o An example of the instruction

o The definition of the instruction

o The status bits affected

o The execution results

o Application notes when appropriate

The op-code is a four-digit hexadecimal number which corresponds to an instruction
word whose address fields contain zeros.

EDITOR/ASSEMBLER

Page 194

WORKSPACE REGISTER SHIFT INSTRUCTIONS

The syntax definition follows the conventions described in Section 5. The generic

names used in the syntax definitions are:

gas General Address of the Source operand
gad General Address of the Destination operand

wa Workspace register Address
iop Immediate OPerand
wad Workspace register Address Destination
disp DISPlacement of CRU lines from the CRU base register

exp EXPression that represents an instruction location
cnt CouNT of bits for CRU transfer
scnt Shift CouNT
xop number of eXtended OPeration

Source statements that contain machine instructions can use the label field, the

operation field, the operand field, and the comment field.

Use of the label field is optional. When it is used, the label is assigned the address
of the instruction. The Assembler advances to the location of a word boundary (even

address) before assembling a machine instruction.

The operation (op-code) field contains the mnemonic operation code of the
instruction. The contents of the operand field are defined for each instruction.

Inclusion of the comment field is optional. If used, it may contain any ASCII
characters, including blanks. The comment has no effect on the assembly process

other than being printed in the listing.

In the execution results, the following conventions are used.

()
_>
**

Indicates "the contents of."

Indicates "replaces."
Indicates "the absolute value of."

The generic names used in the syntax definitions are also used in the execution

results.

EDITOR/ASSEMBLER
Page 195

WORKSPACE REGISTER SHIFT INSTRUCTIONS

12.1 SHIFT RIGHT ARITHMETIC--SRA

Op-code: 0800 (Format V)

Syntax definition:

[(label)] b SRA b (wa),(scnt) b [(comment)]

Example:

LABEL SRA 2,3 Shifts Workspace Register 2 right 3 bit
locations.

Definition:

Shifts the contents of the specified Workspace Register to the right for the
specified number of bit positions. Fills vacated bit positions with the sign bit.

Status bits affected:
Logical greater than, arithmetic greater than, equal, and carry.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>IEGII C IOVIOPIX I I INT. MASK I

Execution results:

Shifts the bits of (wa) to the right, extending the sign bit to fill vacated bit
positions. When scnt is greater than 0, shifts the number of bit positions
specified by scnt. If scnt is equal to 0, shifts the number of bit positions
contained in the four least significant bits of Workspace Register 0. If scnt and
the four least significant bits of Workspace Register 0 both contain Os, shifts 16
positions.

EDITOR/ASSEMBLER
Page 196

WORKSPACE REGISTER SHIFT INSTRUCTIONS

Application notes:

The SRA instruction shifts the given Workspace Register to the right the given

number of bit positions and fills vacated positions with the sign bit. If

Workspace Register 5 contains the value >8224, and Workspace Register 0

contains the value >F326, the instruction

SRA 5,0

changes the contents of Workspace Register 5 to >FE08. This SRA operation on

a bit-by-bit basis is

1111 0011 0010 0110 (Workspace Register 0-->F326 Four least

significant bits are 0110, so shift 6 positions)

1000 0010 0010 0100 (Workspace Register 5-->8224)

1111 1110 0000 1000 (Workspace Register 5 result-->FE08)

The logical greater than and carry status bits are set, while the arithmetic greater

than and equal status bits are reset.

EDITOR/ASSEMBLER

Page 197

WORKSPACE REGISTER SHIFT INSTRUCTIONS

12.2 SHIFT RIGHT LOGICAL--SRL

Op-code: 0900 (Format V)

Syntax definition:

[<label>] b SRL b (wa),(scnt) b [<comment>]

Example:

LABEL SRL 2,7 Shifts Workspace Register 2 right 7 bit
locations.

Definition:

Shifts the contents of the specified Workspace Register to the right the specified
number of bits. Fills the vacated bit positions with zeros.

Status bits affected:

Logical greater than, arithmetic greater than, equal, and carry.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>IEOIC IOVIOPIX I I INT. NWSK I

Execution results:

Shifts the bits of (wa) to the right, filling the vacated bit positions with zeros.
If sent is greater than 0, shifts the number of bit positions specified by sent. If
sent is equal to 0, shifts the number of bit positions contained in the four least
significant bits of Workspace Register 0. If sent and the four least significant
bits of Workspace Register 0 both contain Os, shifts 16 bit positions.

EDITOR/ASSEMBLER
Page 198

WORKSPACE REGISTER SHIFT INSTRUCTIONS

Application notes:
The SRL instruction shifts the given Workspace Register to the right the given
number of bit positions and fills vacated positions with zeros. If Workspace
Register zero contains the value >FFEF, the instruction

SRL 0,3

changes the contents of Workspace Register 0 to >1FFD. This SRL operation on
a bit-by-bit basis is

1111 1111 1110 1111 (Workspace Register 0-->FFEF)

0001 1111 1111 1101 (Workspace Register 0 result-->1FFD)

The logical greater than, arithmetic greater than and carry status bits are set,

while the equal status bit is reset.

EDITOR/ASSEMBLER
Page 199

WORKSPACE REGISTER SHIFT INSTRUCTIONS

12.3 SHIFT LEFT ARITHMETIC--SLA

Op-code: 0A00 (Format V)

Syntax definition:

[(label>] b SLA b (wa),(scnt) b [(comment>]

Example:

LABEL SLA 2,1 Shifts Workspace Register 2 left 1 bit location.

Definition:
Shifts the contents of the specified Workspace Register to the left the specified

number of bit positions. Fills the vacated bit positions with zeros. Note that
the overflow status bit is set when the sign of the word changes during the shift

operation. The carry status bit contains the value shifted out of bit position
zero.

Status bits affected:
Logical greater than, arithmetic greater than, equal, carry, and overflow.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>IEOIC IOVIOPIX I I INT. MASK I

Execution results:
Shifts the bits of (wa) to the left, filling the vacated bit positions with zeros.
When sent is greater than 0, shifts the number of bit positions specified by sent.
If scnt is equal to 0, shifts the number of bit positions contained in the four least

significant bits of Workspace Register 0. If sent and the four least significant
bits of Workspace Register 0 both contain Os, shifts 16 bit positions.

EDITOR/ASSEMBLER
Page 200

WORKSPACE REGISTER SHIFT INSTRUCTIONS

Application notes:
The SLA instruction shifts the given Workspace Register to the left the given
number of bit positions and fills vacated positions with zeros. If Workspace
Register 10 contains the value >1357, the instruction

SLA 10,5

changes the contents of Workspace Register 10 to >6AEO. This SLA operation on
a bit-by-bit basis is

0001 0011 0101 0111 (Workspace Register 10-->1357)

0110 1010 1110 0000 (Workspace Register 10 result-->6AEO)

The logical greater than, arithmetic greater than, and overflow status bits are
set, while the equal and carry status bits are reset. Refer to Section 12.5 for
another example.

EDITOR/ASSEMBLER
Page 201

WORKSPACE REGISTER SHIFT INSTRUCTIONS

12.4 SHIFT RIGHT CIRCULAR--SRC

Op-code: OB00 (Format V)

Syntax definition:

[(label>) b SRC b (wa),(scnt) b [(comment)]

Example:

LABEL SRC 7,16-3 Shifts Workspace Register 7 circularly 3 bit
locations right.

Definition:
Shifts the specified Workspace Register to the right the specified number of bit

positions. Fills vacated bit positions with the bit shifted out of position 15. The
carry status bit contains the value shifted out of bit position zero.

Status bits affected:

Logical greater than, arithmetic greater than, equal, and carry.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IL>IA>IE®IC IOVIOPIX I I INT. MASK I

Execution results:
Shifts the bits of (wa) to the right, filling the vacated bit positions with the bits
shifted out at the right. If scnt is greater than 0, shifts the number of bit
positions specified by scnt. If scnt is equal to 0, shifts the number of bit
positions contained in the four least significant bits of Workspace Register 0. If

scnt and the four least significant bits of Workspace Register 0 both contain Os,
shifts 16 bit positions.

EDITOR/ASSEMBLER
Page 202

WORKSPACE REGISTER SHIFT INSTRUCTIONS

Application notes:
The SRC instruction shifts the given Workspace Register to the right the given

number of bit positions and fills vacated positons with the bits shifted. If
Workspace Register 2 contains the value >FFEF, the instruction

SRC 2,7

changes the contents of Workspace Register 2 to >DFFF. This SRC operation on
a bit-by-bit basis is

1111 1111 1110 1111 (Workspace Register 2-->FFEF)

1101 1111 1111 1111 (Workspace Register 2 result-->DFFF)

The logical greater than and carry status bits are set, while the arithmetic
greater than and equal status bits are reset.

There is no "shift left circular" instruction because the same effect can be
obtained with SRC. To shift left a number of bits, instead shift right by a
number equal to 16 minus the number. For example, to shift left 7 bits, shift
right by 16 minus 7 or 9 bits.

EDITOR/ASSEMBLER
Page 203

WORKSPACE REGISTER SHIFT INSTRUCTIONS

12.5 INSTRUCTION EXAMPLE

This shift instruction shifts the indicated Workspace Register a specified number of
bits to the left. For example, the instruction

SLA 5,1

shifts the contents of Workspace Register five one bit to the left. The carry status
bit contains the value shifted out of bit position zero. The jump instructions JOC

and JNC permit you to test the shifted bit. The overflow status bit is set when the
sign of the contents of the Workspace Register being shifted changes during the shift
operation. If Workspace Register 5 contains

0100 1111 0000 1111

before the shift, the instruction changes Workspace Register 5 to

1001 1110 0001 1110

The carry status bit contains a zero and the overflow status bit is set because the
contents changed from positive to negative (bit zero changed from 0 to 1). If this
shift sign change is significant, you could insert a JNO instruction to test the

overflow condition. If there is no overflow, control transfers to the normal program
sequence. Otherwise, the next instruction is executed.

EDITOR/ASSEMBLER
Page 204

WORKSPACE REGISTER SHIFT INSTRUCTIONS

It is possible to construct double-length shifts with the SLA instruction, to shift two
or more words in a Workspace. The following code shifts two consecutive Workspace

Registers assuming that:

o The contents of Workspace Registers 1 and 2 are shifted one bit position.

o Additional code could be included to execute the code once for each bit shift
required, when shifts of more than one bit position are required. The
additional code must include a means of testing that the desired number of

shifts are performed.

o Additional code tests for overflow from Workspace Register 1, to branch to an

error routine at location ERR when overflow occurs.

SLA 1,1 Shift R1 one bit.

JOC ERR
SLA 2,1 Shift R2 one bit.

JNC EXIT Transfer if no carry.

INC 1 Transfer bit from R2 to R1.

EXIT INC 1 Continue with program.

•

ERR NOP

EDITOR/ASSEMBLER
Page 205

SECTION 13: PSEUDO-INSTRUCTIONS

A pseudo-instruction has the form of a machine instruction but its unusual
characteristics do not allow it to be a machine instruction by proper definition. Each
pseudo-instruction serves a unique purpose. The Assembler includes two
pseudo-instructions which are discussed below.

Instruction Mnemonic Section
No OPeration NOP 13.1
ReTurn RT 13.2

13.1 NO OPERATION--NOP

Syntax definiton:

[<label>] b NOP b [<comment>]

NOP places a machine instruction in the object code which only effects the execution
time of the program. Use of the label field is optional. When the label field is
used, the label is assigned the location of the instruction. The operation field
contains NOP. The operand field is not used. Use of the comment field is optional.

Enter the NOP pseudo-instructions as shown in the following example.

MOD NOP

Location MOD contains a NOP pseudo-instruction when the program is loaded.
Another instruction may be placed in location MOD during execution to implement a
program option. The Assembler supplies the same object code as though the source

statement contained the following code.

MOD JMP $+2

EDITOR/ASSEMBLER
Page 206

PSEUDO-INSTRUCTIONS

13.2 RETURN--RT

Syntax definition:

[<label>] b RT b [<comment>]

RT places a machine instruction in the object code to return control from a
subroutine to a calling routine. Use of the label field is optional. When the label
field is used, the label is assigned the location of the instruction. The operation field

contains RT. The operand field is not used. Use of the comment field is optional.

Enter the RT pseudo-instruction as shown in the following example.

RT

The Assembler supplies the same object code as though the source statement
contained the following code.

B *11

When control is transferred to a subroutine by execution of a BL instruction, the link
to the calling routine is stored in Workspace Register 11. An RT pseudo-instruction
returns program control to the instruction following the BL instruction in the calling
routine.

See Section 24.11 for more information.

E DITOR/ASSE MBLER
Page 207

SECTION 14: ASSEMBLER DIRECTIVES

You can do much to affect the assembly process by placing assembler directives in

your source code. With these directives, you can

• Alter the Location Counter.

• Change Assembler output.

• Initialize constants.

• Provide linkage between programs.

• Define extended operations and end programs.

These classes of directives are discussed in this section in the order listed.

Each directive consists of the following information.

• The directive name and mnemonic name.

• The syntax definition, following the conventions described in Section 5.

• An example of the directive.

• The definition of the directive.
• Application notes when appropriate.

In Assembler directives, use of the label field is optional. When a label is used, it is
assigned the address of the directive. Inclusion of the comment field is also
optional. If used, it may contain any ASCII characters, including blanks. The
comment has no effect on the assembly process other than being printed in the
listing.

EDITOR/ASSEMBLER
Page 208

ASSEMBLER DIRECTIVES

14.1 DIRECTIVES THAT AFFECT THE LOCATION COUNTER

As the Assembler reads the source statements of a program, a component of the
Assembler, called the Location Counter, advances to correspond to the memory

locations assigned to the resulting object code. The first five assembler directives
discussed in this section (AORG, RORG, DORG, BSS, and BES) initialize the Location

Counter and set up blocks of code, allowing you to place code at the location in
memory where it will operate most efficiently when there are special memory
requirements. RORG also forces object code to be relocatable so that the computer
can place it where it is most efficient. EVEN places the Location Counter at an
even word boundary.

PSEG and PEND are standard conditions, so they are not ordinarily used. With
another loader, which allowed the use of CSEG, CEND, DSEG and DEND, they would
be useful. The directives that affect the Location Counter and are useable with the
Loader provided are shown below.

Directive Mnemonic Section
Absolute ORiGin AORG 14.1.1
Relocatable ORiGin RORG 14.1.2
Dummy ORiGin DORG 14.1.3
Block Starting with Symbol BSS 14.1.4
Block Ending with Symbol BES 14.1.5
Word boundary EVEN 14.1.6
Program SEGment PSEG 14.1.7
Program segment END PEND 14.1.8

Other directives, for setting up various kinds of segments, are also available for use

with a loader which you provide. They are discussed in detail so that you may write
a loader which uses them. They are not acceptable to the Loader provided. The
directives that affect the Location Counter but are not useable with the Loader
provided are shown below.

Directive Mnemonic Section
Common SEGment CSEG 14.1.9

Common segment END CEND 14.1.10
Data SEGment DSEG 14.1.11
Data segment END DEND 14.1.12

EDITOR/ASSEMBLER
Page 209

ASSEMBLER DIRECTIVES

14.1.1 Absolute Origin--AORG

Syntax definition:

[<label)] b AORG b <wd-exp> b [<comment>]

Example:

LABEL AORG >C000+X If X has a value of 6, the Location Counter is
set to >C006. LABEL is assigned the value
>C006.

Definition:
Places a value in the Location Counter and defines the following locations as
absolute, enabling you to specify the exact locations in which object code is
loaded. If a label is used, it is assigned the value that the directive places in

the Location Counter. If you do not include an AORG directive in your program,
the object code contains no absolute addresses.

14.1.2 Relocatable Origin--RORG

Syntax definition:

[<label>] b RORG b [<exp>] b [<comment>]

Example:

LABEL RORG $-20 Overlays 10 words. The $ symbol refers to the
location following the preceding relocatable
location of the program. This example backs up
the Location Counter 10 words. LABEL is
assigned the value placed in the Location
Counter.

Definition:
Places a value in the Location Counter which, if encountered in absolute code,
also defines succeeding locations as program-relocatable. If a label is used, it is

assigned the value that the directive places into the Location Counter. The

operation field contains RORG, and the operand field is optional. The comment
field can be used only when the operand field is used.

EDITOR/ASSEMBLER
Page 210

ASSEMBLER DIRECTIVES

If the operand field is not used, the length of the program segment, data
segment, or specific common segment of a program replaces the value of the
Location Counter. For a given relocation type X, the length of the X-relocatable
segment is zero if no program-relocatable code has been previously assembled.

Otherwise, it is the maximum value of the Location Counter due to the assembly
of any preceding block of X-relocatable code.

Since the Location Counter begins at zero, the length of a segment and the "next

available" address within that segment are identical.

If the RORG directive appears in absolute or relocatable code and the operand
field is not used, the Location Counter value is replaced by the current length of
the program segment of that program. If the directive appears in
data-relocatable code without an operand, the Location Counter value is replaced
by the length of the data segment. Similarly, in common-relocatable code a
RORG directive without an operand causes the length of the appropriate common
segment to be loaded into the Location Counter.

If the operand field is used, the operand must be an absolute or relocatable
expression (exp) containing only previously defined symbols. If the directive is in
absolute code, a relocatable operand must match the current Location Counter.
If the RORG directive appears in absolute code, it changes the Location Counter
to program-relocatable and replaces its value with the operand value. In
relocatable code, the operand value replaces the current Location Counter value,
and the relocation type of the Location Counter remains unchanged.

Application notes:

You may use the RORG directive to replace previous instructions and directives.
This is the purpose of the example. Alternatively, the RORG directive can be
used without an operand field.

For example, suppose your program starts with statements defining data which
occupies >44 bytes, followed by an AORG directive, a BSS directive, statements
in a block, and a BES directive to end the block. Then the directive

SEG2 RORG

places >0044 in the Location Counter and defines the Location Counter as

relocatable. The symbol SEG2 is given a relocatable value of >0044. The RORG
directive, as used here, has no effect except at the end of an absolute block or a
dummy block.

EDITOR/ASSEMBLER
Page 211

ASSEMBLER DIRECTIVES

14.1.3 Dummy Origin—DORG

Syntax definition:

[(label>] b DORG b <exp> b [<comment>]

Example:

LABEL DORG 0 Causes the Assembler to assign values to the

labels within the dummy section relative to the

start of the dummy section.

Definition:

Places a value in the Location Counter and defines the following address locations

as a dummy block or section. When assembling a dummy section, the Assembler

does not generate object code but operates normally in all other respects. The

result is that the symbols that describe the layout of the dummy section are

available to the Assembler during assembly of the remainder of the program.

The label is assigned the value that the directive places in the Location Counter.

The operand field contains an expression which may be either absolute or

relocatable. Any symbol in the expression must have been previously defined. If

the operand is absolute, the Location Counter contents are absolute. If the

operand is relocatable, the Location Counter contents are relocatable.

14.1.4 Block Starting with Symbol—BSS

Syntax definition:

[<label>] b BSS b <wd-exp> b [<comment>]

Example:

BUFF1 BSS 80 Reserves a 80-byte buffer at location BUFF1.

BUFF1 is set equal to the previous value of the

Location Counter.

Definition:

Advances the Location Counter by the value of the well-defined expression in the

operand field. If a label is used, it is assigned the value of the location of the

first byte in the block.

EDITOR/ASSEMBLER

Page 212

ASSEMBLER DIRECTIVES

Application notes:
The BSS directive is used to start a block. Blocks are used to set up areas of
code that you wish to have loaded into specific memory locations; for example, to
set up a reference table. The AORG directive must precede the BSS directive.

14.1.5 Block Ending with Symbol--BES

Syntax definition:

[<label>] b BES b <wd-exp> b [<comment>]

Example:

BUFF2 BES >10 Reserves a 16-byte buffer. If the Location
Counter contains >100 when the Assembler
processes this directive, BUFF2 is assigned the
value >110.

Definition
Advances the Location Counter according to the value of the well-defined
expression in the operand field. If a label is included, the directive assigns the
new Location Counter value to the symbol in the label field. The BES directive
marks the end of a block started with the BSS directive.

14.1.6 Word Boundary--EVEN

Syntax definition:

[<label>] b EVEN b [<comment>]

Example:

WRF1 EVEN Assigns the Location Counter address to label WRF1 and
ensures that the Location Counter contains a word boundary
address.

Definition:
Places the Location Counter on the next word boundary (even) byte address. If
the Location Counter is already on a word boundary, the Location Counter is not

EDITOR/ASSEMBLER
Page 213

ASSEMBLER DIRECTIVES

altered. If a label is used, the value in the Location Counter is assigned to the
label before processing the directive. The operand field is not used.

Application notes:
The EVEN directive ensures that the program is at an even word boundary when a
statement that consists of only a label is preceded by a TEXT or BYTE directive
and is followed by a DATA directive or a machine instruction. In this case, the
label does not have the same value as a label in the following instruction unless
the TEXT or BYTE directive left the Location Counter on an even (word)

location.

Using an EVEN directive before or after a machine instruction or a DATA
directive is redundant since the Assembler automatically advances the Location
Counter to an even address when it processes a machine instruction or a DATA
directive.

14.1.7 Program Segment--PSEG

Syntax definition:

[(label>] b PSEG b [(comment>]

Example:

LABEL PSEG

Definition:
Places a value in the Location Counter and defines successive locations as
program-relocatable. If a label is used, it is assigned the value that the
directive places in the Location Counter. The value placed in the Location
Counter as a result of this directive is zero if no program-relocatable code has
been previously assembled. Otherwise, it is the maximum value the Location
Counter has attained as a result of the assembly of any preceding block of

program-relocatable code.

Application notes:
The PSEG directive only repeats the default mode. If you are using another
loader that also accepts the CSEG, CEND, DSEG, and DEND directives, when the
PSEG directive is useful.

EDITOR/ASSEMBLER
Page 214

ASSEMBLER DIRECTIVES

14.1.8 Program Segment End--PEND

Syntax definition:

[<label>] b PEND b [<comment>]

Example:

LABEL PEND

Definition:
Places a value in the Location Counter and defines the following locations as

program-relocatable. If a label is used, it is assigned the value of the Location

Counter prior to modification. The value placed in the Location Counter by this
directive is the maximum value ever attained by the Location Counter as a result
of the assembly of all preceding program-relocatable code. If the PEND

directive is encountered in data-relocatable or common-relocatable code, it

functions as a DEND or CEND and a warning message is issued. Like DEND and

CEND, PEND is invalid if used in absolute code.

Application notes:
The PEND directive only repeats the default mode. If you are using another

loader that also accepts the CSEG, CEND, DSEG, and DEND directives, then the

PEND directive is useful. The PEND directive is provided as the

program-segment counterpart to the DEND and CEND directives. However, since

PEND properly appears only in program-relocatable code, the relocation type of
successive locations remains unchanged.

14.1.9 Common Segment—CSEG

The CSEG directive is not accepted by the Loader provided with the

Editor/Assembler.

Syntax definition:

[<label>] b CSEG b [<comment>]

Example:

COM1 CSEG

EDITOR/ASSEMBLER
Page 215

ASSEMBLER DIRECTIVES

Definition:

If you provide an appropriate loader, CSEG places a value in the Location

Counter and defines successive locations as common-relocatable (i.e., relocatable
with respect to a common segment). If a label is used, it is assigned the value
that the directive places in the Location Counter.

The CSEG directive defines the beginning (or continuation) of the "blank common"
segment of the program.

Application notes:

The CSEG directive is not accepted by the Loader provided with the

Editor/Assembler. The CEND, PSEG, DSEG, AORG, and END directives all
terminate the definition of a block of common-relocatable code. The block is
normally terminated with a CEND directive. Like CEND, the PSEG directive
indicates that successive locations are program-relocatable. The DSEG and
AORG directives effectively terminate the common segment by beginning a data
segment or absolute segment. The END directive terminates the common
segment as well as the program.

14.1.10 Common Segment End--CEND

The CEND directive is not accepted by the Loader provided with the
Editor/Assembler.

Syntax definition:

[<label>] b CEND b [<comment>]

Example:

LABEL CEND

Definition:

If you provide an appropriate loader, CEND terminates the definition of a block
of common-relocatable code by placing a value in the Location Counter and
defining successive locations as program-relocatable. If a label is used, it is
assigned the value of the Location Counter prior to modification. The value
placed in the Location Counter as a result of this directive is zero if no
program-relocatable code has been previously assembled. Otherwise, it is the

EDITOR/ASSEMBLER
Page 216

ASSEMBLER DIRECTIVES

maximum value the Location Counter has attained as a result of the assembly of
any preceding block of program-relocatable code.

Application notes:

The CEND directive is not accepted by the Loader provided with the
Editor/Assembler. If the directive is encountered in common-relocatable or
program-relocatable code, it functions as a DEND or PEND directive and a
warning message is issued. Like DEND and PEND, CEND is invalid if it is used
in absolute code.

14.1.11 Data Segment--DSEG

The DSEG directive is not accepted by the Loader provided with the
Editor/Assembler.

Syntax definition:

[<label>] b DSEG b [<comment>]

Example:
LABEL DSEG

Definition:

If you provide an appropriate loader, DSEG places a value in the Location
Counter and defines successive locations as data-relocatable. If a label is used,
it is assigned the data-relocatable value that the directive places in the Location

Counter. The value placed in the Location Counter as a result of this directive
is zero if no program-relocatable code has been previously assembled. Otherwise,
it is the maximum value the Location Counter has attained as a result of the
assembly of any preceding block of program-relocatable code.

The DSEG directive defines the beginning of a block of data-relocatable code.
The block is normally terminated with a DEND directive. If several such blocks
appear throughout the program, they comprise the data segment of the program.
The entire data segment can be relocated independently of the program segment
when the programs are linked and therefore provides a convenient means of
separating modifiable data from executable code.

EDITOR/ASSEMBLER
Page 217

ASSEMBLER DIRECTIVES

Application notes:

The DSEG directive is not accepted by the Loader provided with the

Editor/Assembler. In addition to the DEND directive, the PSEG, CSEG, AORG,
and END directives properly terminate the definition of a block of

data-relocatable code. Like DEND, the PSEG directive indicates that successive
locations are program-relocatable. The CSEG and AORG directives effectively
terminate the data segment by beginning a common segment or absolute segment,
respectively. The END directive terminates the data segment as well as the
program.

The following example illustrates the use of both the DSEG and the DEND
directives.

RAM DSEG Start of data area.

* Data-relocatable code.

ERAM DEND
*

LRAM EQU ERAM-RAM

The block of code between the DSEG and DEND directives is data-relocatable.
RAM is the symbolic address of the first word of this block. ERAM is the
data-relocatable byte address of the location following the code block. The value
of the symbol LRAM is the length of the block in bytes.

EDITOR/ASSEMBLER
Page 218

ASSEMBLER DIRECTIVES

14.1.12 Data Segment End--DEND

The DEND directive is not accepted by the Loader provided with the

Editor/Assembler.

Syntax definition:

[<label>] b DEND b [<comment>]

Example:
LABEL DEND

Definition:
If you provide an appropriate loader, DEND terminates the definition of a block
of data-relocatable code by placing a value in the Location Counter and defining
successive locations as program-relocatable. If a label is used, it is assigned the
value of the Location Counter prior to modification. The value placed in the
Location Counter as a result of this directive is zero if no program-relocatable
code has been previously assembled. Otherwise, it is the maximum value the
Location Counter has ever attained as a result of the assembly of any preceding
block of program-relocatable code.

Application notes:
The DEND directive is not accepted by the Loader provided with the
Editor/Assembler. If the directive is encountered in common-relocatable or
program-relocatable code, it functions as a CEND or PEND and a warning
message is issued. Like CEND and PEND, DEND is invalid if used in absolute
code.

EDITOR/ASSEMBLER
Page 219

ASSEMBLER DIRECTIVES

14.2 DIRECTIVES THAT AFFECT ASSEMBLER OUTPUT

In order to make Assembler output as easy to read as possible, you may specify a
variety of output forms for the Assembler. These options include whether to list the
source code, where to put pages, the page title to be used, and the program identifier
to be used. In addition, several options are available when you select the Assembler.
Refer to Section 2 for more details on the other output options. The directives that
affect Assembler output are shown below.

Directive Mnemonic Section
No source List UNL 14.2.1
LIST source LIST 14.2.2
PAGE eject PAGE 14.2.3
Page TITLe TITL 14.2.4
Program IDenTifier IDT 14.2.5

14.2.1 No Source List--UNL

Syntax definition:

[(label>] b UNL b [(comment>]

Example:

LABEL UNL

Definition:

Stops printing of the source listing. The UNL directive is not printed in the
source listing, but the line counter is incremented. If a label is used, the current
value of the Location Counter is assigned to the label. The comment field is
optional, but the Assembler does not print the comment. The UNL and LIST
directives have no effect unless you have selected an output device and the L
option has been selected. See Section 2 for more information.

Application notes:
The UNL directive stops the printing and thus reduces assembly time, as well as
the size of the source listing.

EDITOR/ASSEMBLER
Page 220

ASSEMBLER DIRECTIVES

14.2.2 List Source--LIST

Syntax definition:

[(label>] b LIST b [<comment>)

Example:

LABEL LIST

Definition:
Restarts printing of the source listing. This directive is required only if you
previously gave a No Source List (UNL) directive to cancel listing. The directive
is not printed in the source listing, but the line counter is incremented. If a
label is used, the current value of the Location Counter is assigned to the label.
The comment field is optional, but the Assembler does not print the comment.
The UNL and LIST directives have no effect unless you have selected an output
device and the L option has been selected. See Section 2 for more information.

14.2.3 Page Eject--PAGE

Syntax definition:

[<label>) b PAGE b [(comment>)

Example:

LABEL PAGE

Definition:

Causes the Assembler to continue the source program listing on a new page. The
PAGE directive is not printed in the source listing, but the line counter is
incremented. If a label is used, the current value of the Location Counter is

assigned to the label. Use of the comment field is optional, but the Assembler

does not print the comment.

EDITOR/ASSEMBLER
Page 221

ASSEMBLER DIRECTIVES

Application notes:
The PAGE directive causes the Assembler to begin a new page of the source
listing. The next source statement is the first statement listed on the new page.

Use of the page directive to begin new pages of the source listing at the logical
divisions of the program improves documentation of the program.

14.2.4 Page Title--TITL

Syntax definition:

[(label>) b TITL b '<string>' b [(comment>)

Example:

LABEL TITL '*REPORT GENERATOR*' Causes the title *REPORT
GENERATOR* to be printed in
the subsequent page headings of
the source listing.

Definition:

Supplies a title to be printed in the heading of the source listing. The directive
is not printed in the source listing. If a label is used, the current value of the
Location Counter is assigned to the label. The operand field contains the title as
a string of up to 50 characters enclosed in single quotes. If you enter more than
50 characters, the Assembler retains the first 50 characters as the title and
prints the message OUT OF RANGE. The Assembler does not print a comment

included with the directive, but does increment the line counter.

To include a title in the heading of the first page of the source listing, a TITL
directive must be the first source statement in your program. Then the title is
printed on all pages until another TITL directive is processed. If the TITLE
directive is not the first source statement, the title is printed on the next page
after the directive is processed and on subsequent pages until another TITL
directive is processed.

EDITOR/ASSEMBLER
Page 222

ASSEMBLER DIRECTIVES

14.2.5 Program Identifier--IDT

Syntax definition:

[<label>] b IDT b '<string>' b [<comment>]

Example:

LABEL IDT 'CONVERT' Assigns the name CONVERT to the program to

be assembled.

Definition:
Assigns a name to the program. If you use the IDT directive, it should precede
any machine instruction or assembler directive that results in object code. If a
label is used, the current value of the Location Counter is assigned to the label.
The operand field contains the program name as a string of up to eight characters
enclosed in single quotes. If more than eight characters are entered, the
Assembler prints a truncation error message and retains the first eight characters
as the program name.

The program name is printed in the source listing as the operand of the IDT
directive but does not appear in the page heading of the source listing. The
program name is placed in the object code but serves no purpose during the
Assembly.

EDITOR/ASSEMBLER
Page 223

ASSEMBLER DIRECTIVES

14.3 DIRECTIVES THAT INITIALIZE CONSTANTS

You may define the values of constants and place values in bytes and words with
directives. The directives that initialize constants are shown below.

Directive Mnemonic Section
Define assembly-time constant EQU 14.3.1
Initialize BYTE BYTE 14.3.2
Initialize word DATA 14.3.3
Initialize TEXT TEXT 14.3.4

14.3.1 Define Assembly-Time Constant--EOU

Syntax definition:

<label> b EQU b <exp> b [<comment>1

Example:

BUFFER EQU >1000 Assigns the value >1000 to BUFFER.

Definition:

Assigns a value to a symbol. The label field contains the symbol. The operand
field contains an expression in which all symbols have been previously defined. If
a symbol is used in the operand field, and that symbol appears in the label field
of a machine instruction in a relocatable block of the program, the value is
relocatable. After the execution of this directive, the symbol in the label field

and the value or symbol in the operand field may be used interchangeably.

EDITOR/ASSEMBLER
Page 224

ASSEMBLER DIRECTIVES

14.3.2 Initialize Byte--BYTE

Syntax definition:

[<label>] b BYTE b <exp>[,<exp>]... b [<comment)]

Example:

KONS BYTE >F+1,-1,0,'AB''AA' Initializes four bytes, starting with

the byte at location KONS. The

contents of the resulting bytes are

>10, >FF, >00, and >01.

Definition:

Places one or more values in one or more successive bytes of memory. If a label

is used, the location at which the Assembler places the first byte is assigned to

the label. The operand field contains one or more expressions separated by

commas. The expressions must contain no external references. The Assembler

evaluates each expression and places the value in a byte as an eight-bit two's

complement number. If truncation is required, the Assembler prints a truncation

error message and places the rightmost portion of the value in the byte. The

EVEN directive is commonly used after the TEXT directive to insure that the

next instruction starts on an even word boundary.

14.3.3 Initialize Word--DATA

Syntax definition:

[<label>] b DATA b <exp>[,<exp>]... b [<comment>]

Example:

KONS1 DATA 3200,1+'AB',-'AF','A' Initializes four words, starting on a

word boundary at location KONS1.

The contents of the resulting words

are >0080, >4143, >BEBA, and

>0041.

EDITOR/ASSEMBLER
Page 225

ASSEMBLER DIRECTIVES

Definition:
Places one or more values in one or more successive words of memory. The
Assembler automatically advances the Location Counter to a word boundary
(even) address if necessary and places >00 in the byte skipped. If a label is used,
the location at which the Assembler places the first word is assigned to the label.
The operand field contains one or more expressions separated by commas. The
Assembler evaluates each expression and places the value in a word as a 16-bit
two's complement number.

14.3.4 Initialize Text--TEXT

Syntax definition:

[<label>] b TEXT b [-]'<string>' b [<comment>]

Example:

MSG1 TEXT 'EXAMPLE' Places the seven ASCII hexadecimal
representations of the characters in EXAMPLE
in successive bytes. If the Location Counter is
on an even address, the result is >4558, >414D,
>504C, and >45XX where XX is determined by
the next source statement. The label MSG1 is
assigned the value of the first byte address.

Definition:
Places one or more characters in successive bytes of memory. The Assembler
negates the last character of the string if the string is preceded by a unary minus
(-) sign. If a label is used, the location at which the Assembler places the first
character is assigned to the label. The operand field contains a character string
of up to 52 characters, which can be preceded by a unary minus sign. The EVEN
directive is commonly used after the TEXT directive to insure that the next
instruction starts on an even word boundary.

EDITOR/ASSEMBLER
Page 226

ASSEMBLER DIRECTIVES

14.4 DIRECTIVES THAT LINK PROGRAMS

It is often convenient to write programs as separate modules which can be linked
together. Several directives allow you to do so. The DEF and REF directives allow
you to place one or more symbols defined in a module into the object code, making
them available for linking. The COPY directive allows you to have the Assembler
copy a file from a diskette and include it in the assembly process.

The LOAD and SREF directives assemble properly but are not used by the Loader

provided. They are discussed in detail so that you may write a loader which uses
them. With an appropriate loader, different from the one provided, the LOAD and
SREF directives allow you to place in the object code symbols used in the module but
defined in another module, so that they can be linked. The directives that link
programs are shown below.

Directive Mnemonic Section
External DEFinition DEF 14.4.1
External REFerence REF 14.4.2
COPY COPY 14.4.3
Force LOAD LOAD 14.4.4
Secondary REFerence SREF 14.4.5

14.4.1 External Definition—DEF

Syntax definition:

[<label>] b DEF b <symbol>[,<symbol>]... b [<comment>]

Example:

LABEL DEF ENTR,ANS Causes the Assembler to include symbols ENTR
and ANS in the object code so that these

symbols are available to other programs.

EDITOR/ASSEMBLER
Page 227

ASSEMBLER DIRECTIVES

Definition:

Makes one or more symbols available to other programs for reference. If a label

is used, the current value of the Location Counter is assigned to the label. The

operand field contains one or more symbols, separated by commas, to be defined

in the program being assembled. The DEF directive for a symbol must precede
the source statements that contain the symbols, or the Assembler identifies the

symbols as having been defined more than once and issues a duplicate definition

warning message.

Application notes:

Labels that have been defined with the DEF directive are entered into the

REF/DEF table and maintained in the REF/DEF table like other symbols defined

by the DEF statement. Labels defined with the REF statement are resolved at

loading time and removed fom the REF/DEF table.

Duplicate definitions are accepted by the Loader, with the most recent definition

being used. A warning message is issued when duplicate definitions are given.

14.4.2 External Reference--REF

Syntax definition:

[(label>) b REF b <symbol>[,<symbol>) ... b [(comment>)

Example:

LABEL REF ARG1,ARG2 Causes the Assembler to include symbols ARG1

and ARG2 in the object code so that the

corresponding addresses may be obtained from

other programs.

Definition:

Provides access to one or more symbols defined in other programs. If a label is

used, the current value of the Location Counter is assigned to the label. The

operand field contains one or more symbols, separated by commas, to be used in

the operand field of a subsequent source statement.

EDITOR/ASSEMBLER
Page 228

ASSEMBLER DIRECTIVES

Application notes:

If a symbol is listed in the REF statement, a corresponding symbol must be

present in a DEF statement in another source module. If a one-to-one matching

of symbols does not occur, the error code >OD is given when the program is

executed.

If a symbol in the operand field of a REF directive is the first operand of a

DATA directive, the Assembler places the value of the symbol at location 0 of

the routine. If that routine is loaded at absolute location 0, the symbol is not

linked correctly. Use of the symbol at other locations is correctly linked.

14.4.3 Copy File--COPY

Syntax definition:

[<label>) b COPY b "<file name>" b

Example:

LABEL COPY "DSKI.MAIN" Copies the file MAIN from the diskette in

Disk Drive 1 for inclusion in the assembly

process.

Definition:
Includes a file from a diskette in the assembly process. When the Assembler

encounters this directive, it copies the file from the diskette and continues with

the assembly process as if the file were in the program actually being assembled.

You can include as many COPY directives as you wish in a program. Note,

however, that when an END directive is encountered in any file, including those

being copied, the Assembler stops the assembly process.

Application notes:

The COPY directive allows you to write programs as separate modules which can

be linked together. This may be done for writing convenience or because the

program is too large to fit in one file.

EDITOR/ASSEMBLER
Page 229

ASSEMBLER DIRECTIVES

The following is a sample program which uses the COPY directive. When it is
assembled, the Assembler first assembles the file named MAIN on Disk Drive 1,
followed by the files PROG and DATA, also on Disk Drive 1. Then the rest of
the program is assembled. The object file created includes all of the assembled

files. The END statement tells the Assembler to stop assembling.

COPY "DSKI.MAIN"
COPY "DSKI.PROG"
COPY "DSK1.DATA"

END

14.4.3.1 Using the COPY Directive in the Game

In addition to the SAVE utility (See Section 24.5), the Editor/Assembler diskette
labeled Part B contains a game or application program which uses the COPY
directive.

The owner's manual for the the game or application program you received is included
with your Editor/Assembler. You can also use your Disk Manager Command Module
to catalog the diskette to find which game you received. The instructions below

relate specifically to the game Tombstone City, but they apply generally to whichever
game or application program you received.

TOMBS is the main module, consisting mostly of COPY directives. When it is

assembled, the COPY directives copy the rest of the program files, which are
TOMBA, TOMBB, TOMBC, TOMBD, TOMBE, and TOMBF. The program is broken
into these portions because of its length.

Because the source listing, TOMB, is already on the diskette, the game may be played
without further assembly. However, if you wish to assemble the file in order to see
the process, first insert the diskette which contains the Assembler (lableled Part A) in
Disk Drive 1 and choose the ASSEMBLE option on the Editor/Assembler. Then insert
the diskette (labeled Part B) that contains the game in Disk Drive 1 and give the

source file name as DSK1.TOMBS and the object file as DSKI.TOMB. If you have an
RS232 Interface unit and an RS232-compatible printer, give the list file as RS232 and

EDITOR/ASSEMBLER
Page 230

ASSEMBLER DIRECTIVES

options as LRSC. You cannot list to diskette because the file is too large. If you
do not have an RS232 Interface unit, do not give a list file and assemble with options
RC.

To run the program, select the LOAD AND RUN option on the Editor/Assembler.
The file name is DSK1.TOMB. The program ends with the END START directive, so
it begins running as soon as it is loaded. Alternatively, you may run the game from
TI BASIC by running the following program:

100 CALL LOAD("DSKI.TCMB")

You may also alter the game so that it may be used with the RUN PROGRAM FILE
option on the Editor/Assembler selection list. See Section 24.5 for instructions.

14..4.4E Force Load--LOAD

The LOAD directive is not accepted by the Loader provided with the
Editor/Assembler.

Syntax definition:

[<label>] b LOAD b <symbol>[,<symbol>]... b [<comment>]

Example:
LABEL LOAD SYMBOL

Definition:
If you provide an appropriate loader, the LOAD directive loads a symbol into the
REF/DEF table for later resolution. The LOAD directive is similar to REF,
except that the symbol does not need to be used in the module containing the
LOAD directive. The symbol included in the LOAD directive must be defined
with the DEF directive in some other module. The LOAD directive is used

together with the SREF directive. If a one-to-one matching of LOAD-SREF pairs
and DEF symbols does not occur, unresolved references occur during linking.

EDITOR/ASSEMBLER
Page 231

ASSEMBLER DIRECTIVES

14.4.5 Secondary External Reference--SREF

The SREF directive is not accepted by the Loader provided with the
Editor/Assembler.

Syntax definition:

[(label)] b SREF b <symbol>,[<symbol>]... b [(comment)]

Example:

LABEL SREF ARG1,ARG2 Includes symbols ARG1 and ARG2 in the object
code so that the corresponding addresses may be
obtained from other programs.

Definition:

If you provide an appropriate loader, SREF provides access to one or more
symbols defined in other programs. If a label is used, the current value of the

Location Counter is assigned to the label. The operand field contains one or
more symbols, separated by commas, to be used in the operand field of a
subsequent source statement.

Application notes:

The SREF directive is not accepted by the Loader provided with the
Editor/Assembler. SREF, unlike REF, does not require that a symbol have a
corresponding symbol listed in a DEF statement of another source module.
However, without a corresponding symbol, the symbol in the SREF directive is an

unresolved reference.

EDITOR/ASSEMBLER
Page 232

ASSEMBLER DIRECTIVES

14.5 MISCELLANEOUS DIRECTIVES

You may use the DXOP directive to define extended operations for use with the XOP

instruction, which is only available on the TI-99/4A Home Computer. The END

directive signals the end of a program and, when used with a label, starts execution

of a program as soon as it is loaded. The miscellaneous directives are shown below.

Directive Mnemonic Section
Define eXtended OPeration DXOP 14.5.1
Program END END 14.5.2

14.5.1 Define Extended Operation--DXOP

Syntax definition:

[<label>] b DXOP b <symbol>,<term> b [<comment>]

Example:

LABEL DXOP DADD,1 Defines DADD as extended operation 1. When

you include the symbol DADD in the operand

field of an XOP instruction, the Assembler

assembles an XOP instruction that specifies

extended operation 1.

Definition:

The DXOP directive is only useful on the TI-99/4A Home Computer. To find

which extended operations your computer supports, see Section 7.19. If

available, the DXOP directive assigns a symbol to be used in the operator field to

specify an extended operation. If a label is used, the current value in the

Location Counter is assigned to the label. The operand field contains a symbol

followed by a comma and a term. The symbol assigned to an extended operation

must not be used in the label or operand field of any other statement. The

Assembler assigns the symbol to an extended operation specified by the term,
which has a value of 1 or 2.

EDITOR/ASSEMBLER
Page 233

ASSEMBLER DIRECTIVES

14.5.2 Program End--END

Syntax definition:

[<label>] b END b [<symbol>] b [<comment>]

Example:

NAME END START Terminates the assembly of the program. The

Assembler also places the value of START in the
object code as an entry point.

Definition:

Terminates the assembly process. The last source statement of a program is the
END directive. Any source statements which follow the END directive are
ignored. If a label is used, the current value in the Location Counter is assigned
to the symbol. If the operand field is used, it contains a program-relocatable or
absolute symbol that specifies the entry point of the program. The comment

field may be used only when the operand field is used. If the END statement has
an operand, the program runs as soon as it is loaded, starting at the address of
the operand.

Application notes:

If the END statement is omitted, the Assembler issues an END ASSUMED
warning message, and I/O error >07 is displayed. However, this should not cause
a problem in loading and running the program.

If the operand field is not used, run the program by entering a program name
when using the LOAD AND RUN option on the Editor/Assembler selection list or

the CALL LINK statement in TI BASIC. The program name must be an entry
point defined in the DEF instruction.

EDITOR/ASSEMBLER
Page 234

SECTION 15: ASSEMBLER OUTPUT

The major purpose of the assembly process is the production of object code so that
your program can be run by the computer. This section includes a description of the
object code produced so that you can edit it to make minor changes in your program.

In addition to object code, the Assembler prints a source listing and a sorted symbol
table. You can affect the form of the listing by use of various directives discussed

in Section 14.2. In addition, the Assembler produces a list of fatal and nonfatal
errors. The purpose of all of this output is to enable you to discover errors in your
program so that you can, by changing the source code, make the program run
correctly.

15.1 SOURCE LISTING

The source listing shows the source statements and where their resulting object code
is placed in memory. However, for the string following a TEXT directive, only the
ASCII code for the first character is listed. A complete example is given in Section
15.5.

99/4 ASSEMBLER appears on the first line of each page. The second line contains
VERSION 1.1 (or the version you are using), the title you supplied in a TITL
directive, and the page number.

Below this heading material, the printer lists a line for each source statement
containing the source statement number, the Location Counter value, the object code

assembled (in hexadecimal notation), and the source statement as you entered it in
your program. When a source statement generates more than one word of object
code, the Assembler prints the Location Counter value and object code for each
additional word of object code on a separate line following the source statement. An
example of the material printed is

0018 0156 C820 MOV LaIINIT+3,[al3
0158 012B'
015A 0003

The source statement number, 0018 in the example, is a four-digit decimal number.
Source records are numbered in the order in which they are entered, whether or not

they are listed. The TITL, LIST, UNL, and PAGE directives are not listed, and

EDITOR/ASSEMBLER
Page 235

ASSEMBLER OUTPUT

source records between a UNL directive and a LIST directive are not listed. The
difference between two printed source record numbers indicates how many source
records are not listed.

The next field contains the Location Counter value as a hexadecimal value. In the
example, >0156 is the Location Counter value. Not all directives affect the Location
Counter. If the directive does not affect the Location Counter, the field is left
blank. Of the directives that the Assembler lists, the IDT, REF, DEF, DXOP, EQU,
SREF, LOAD, COPY, and END directives leave the Location Counter field blank.

The third field, >C820 in the example, contains the hexadecimal representation of the
object code placed in the location by the Assembler. The apostrophe (') following the
third field of the second line in the example indicates that the contents, >012B, are
program-relocatable. A quote (") in this location indicates that the location is
data-relocatable, while a plus sign (+) indicates that the label is relocatable with
respect to a common segment. All machine instructions and the BYTE, DATA, and
TEXT directives use this field for object code. The EQU directive places the value
corresponding to the label in the object code field.

The fourth field contains the first 60 characters of source statement as you wrote it.
Spacing in this field is determined by the spacing in the source statement. Thus,
source statement fields are aligned in the listing only when they are aligned in the
same character positions in the source statements.

The machine instruction used in the example specifies the symbolic memory
addressing mode for both operands. This causes the instruction to occupy three
words of memory and three lines of the listing. The object code corresponds to the
operands in the order in which they appear in the source statement.

15.1.1 Error Messages

The Assembler processes fatal and nonfatal error messages. Fatal errors stop the
assembly process with the appropriate error message displayed on the screen as
shown.

EDITOR/ASSEMBLER
Page 236

ASSEMBLER OUTPUT

Fatal Errors

SYMBOL TABLE OVERFLOW
CANT GET COMMON
CANT GET MEMORY
DSR ERROR XXXX

The XXXX field following DSR ERROR contains the first two bytes of the Peripheral
Access Block which contain the error code. See Section 18.2 for more information.

Nonfatal errors do not stop the assembly process. Instead, an error message is
printed following the statement containing the error and is also displayed on the
screen. Each error gives the type of error and the number of the statement in which
it occurred.

Nonfatal Errors

SYNTAX ERROR - nnnn
INVALID REF - nnnn
OUT OF RANGE - nnnn
MULTIPLE SYMBOLS - nnnn
INVALID MNEMONIC - nnnn
BAD FWD REFERENCE - nnnn
INVALID TERM - nnnn
INVALID REGISTER - nnnn
SYMBOL TRUNCATION - nnnn
UNDEFINED SYMBOL - nnnn
COM TABLE OVERFLOW - nnnn
PEND ASSUMED - nnnn
DEND ASSUMED - nnnn
CEND ASSUMED - nnnn
END ASSUMED - nnnn
COPY ERROR - nnnn

If there are any undefined symbols in the assembly, the undefined symbols are listed
at the end of the listing under the heading THE FOLLOWING SYMBOLS ARE
UNDEFINED.

EDITOR/ASSEMBLER
Page 237

ASSEMBLER OUTPUT

15.2 OBJECT CODE

The Assembler produces object code that may be loaded directly into the computer.
If it is not compressed, object code consists of records containing up to 71 ASCII

characters each. This format permits correction of minor errors by using the Editor
to edit the object code. The file format is DISPLAY, FIXED 80.

15.2.1 Object Code Format

The object code consists of variable-sized records. Each record consists of a number
of character tags, each followed by up to two fields. Most fields are numeric and

consist of four hexadecimal digits. The length of the character fields is described in
the following sections on each of the tag characters.

When the Assembler has no more data or the record is full, it writes the tag
character 7, followed by the checksum field and the tag character F, which requires
no fields. The Assembler then fills the rest of the record with blanks and a sequence
number and then begins a new record with the appropriate tag character. The last
record of an object module has a colon (:) in the first character position of the
record, followed by the identification code 99/4 AS.

The tag characters used by the Assembler are 0, 1, 2, 3, 4, 5, 6, 7, 9, A, B, C, and F.
You may substitute a tag character 8 for a tag character 7 in order to have the
Loader ignore the checksum. Tag character I is ignored. Any other tag produces an
error.

Tag character 0 is used for program identification. Field 1 contains the number of
bytes of program-relocatable code, and field 2 contains an eight-character program
identifier assigned to the program by an IDT directive. When you do not include an
IDT directive, the second field contains blanks. The Loader uses the program
identifier to identify the program and the number of bytes of program-relocatable
code to determine the load bias for the next module or program. The Assembler
places a single tag character 0 at the beginning of each program.

Tag characters 1 and 2 are employed with entry addresses. Tag character 1 is used
when the entry address is absolute. Tag character 2 is applicable when the entry

address is relocatable. The field contains the entry address. One of these tags may
appear at the end of the object code file. The Loader uses the field value to
determine the entry point at which execution starts when the loading is complete.

EDITOR/ASSEMBLER
Page 238

ASSEMBLER OUTPUT

Tag characters 3 and 4 are used for external references. Tag character 3 is used
when the last appearance of the symbol in Field 2 of the tag is in
program-relocatable code. Tag character 4 is employed when the last appearance of
the symbol is not in relocatable code. Field 1 contains the location of the last
appearance of the symbol. The six-character symbol in Field 2 is the external
reference. For each external reference in a program, the object code contains a tag
character with a location or an absolute zero and the symbol that is referenced.
When Field 1 of the tag character contains absolute zero, no location in the program
requires the address that corresponds to the reference. When Field 1 of the tag

character contains a location, the address corresponding to the reference is placed in
the location specified and the location's previous value is used to point to the next
location unless the value is an absolute zero.

Tag characters 5 and 6 are used for external definitions. Tag character 5 is

applicable when the location is program-relocatable. Tag character 6 is used when
the location is absolute. Field 1 provides the link to the external definition, and field
2 contains the six-character symbol of the external definition.

Tag character 7 precedes the checksum, which is an error-detection word. The
checksum is the two's complement of the sum of the 8-bit ASCII values of the
characters in the record from the first tag of the record through the checksum tag.

Tag character 8 may be inserted in place of tag character 7 so that the Loader
ignores the checksum. The field contains the previous checksum.

Tag characters 9 and A are used with load addresses for following data. Tag
character 9 is used when the load address is absolute, while tag character A indicates
that the load address is program-relocatable. The field contains the address at which
the following data word is to be loaded. A load address is required for a data word
that is to be placed in memory at some address other than the next address.

Tag characters B and C are used with data words. Tag character B is used when the
data is absolute, such as an instruction word or a word that contains text characters

or absolute constants. Tag character C is used for a word that contains a
program-relocatable address. The field contains the data word. The Loader places
the data word in the memory location specified in the preceding load address field or
in the memory location that follows the preceding data word.

Tag character F indicates the end of the record.

The following table summarizes the character tags.

EDITOR/ASSEMBLER
Page 239

ASSEMBLER OUTPUT

Character Tag Summary

Tag Use Field 1 Field 2
0 Program Identification Program Length Program ID
1 Entry Point Definition Absolute Address
2 Entry Point Definition Relocatable Address
3 External References Relocatable Address of Chain Symbol
4 External References Absolute Address of Chain Symbol
5 External Definitions Relocatable Address Symbol
6 External Definitions Absolute Address Symbol
7 Checksum Indicator Checksum
8 Checksum Ignore Any Value
9 Load Address Absolute Value
A Load Address Relocatable Address
B Data Absolute Value
C Data Relocatable Address
F End of Record

15.2.2 Compressed Object Code Format

This format is a condensed version of normal object code. Compressed object code

results in a considerable savings of diskette space compared to the normal object

format. You cannot change or edit compressed object code. Instead, change the
source code and reassemble it.

EDITOR/ASSEMBLER
Page 240

ASSEMBLER OUTPUT

15.3 CHANGING OBJECT CODE

Correction of the object code that the Assembler produces may only require changing
a character or a word. You can edit the object code using the Editor. Because the
changes may cause a checksum error when the checksum is verified as the record is
loaded, you must change the 7 tag character to an 8.

You can only change uncompressed object code. After you have finished editing,
save the file in fixed 80 format.

For best results, when more extensive changes are required, change the source code
and reassemble rather than writing additional object code records.

EDITOR/ASSEMBLER
Page 241

ASSEMBLER OUTPUT

15.4 MACHINE LANGUAGE FORMAT

Some of the data words preceded by tag character B represent machine instructions.

Comparing the source listing with the object code fields identifies the data words

that represent machine instructions. The following table shows the manner in which

the bits of the machine instructions relate to the operands in the source statements

for each format of machine instruction.

Machine Instruction Formats

Format 0 11 2 3 4 15 6 17 16 19 I10111I121131141151

I 1 11 X WB Td D 1 Ts I S I
I 1 10 X WB Td D 1 Ts I S I
I 0 11 X WB Td D 1 Ts I S 1
II 0 10 0 1 X IX X IX 1 DISP i
III, IX 0 10 1 X X IX D 1 Ts 1 S 1

IV 0 10 1 1 0 1 X NUvI 1 Ts 1 S I
V 0 10 0 0 X 10 X IX I COuNT I REG 1
VI 0 10 0 0 0 Ii X IX IX IX I Ts I S I
VII 0 10 0 0 0 10 1 11 IX IX IX IO 10 10 10 10 I
VIII 0 10 0 0 0 10 1 10 IX IX IX 10 1 REG 1

X 0 10 0 0 0 10 1 I1 10 10 11 I REG I

Key:

X A bit of the operation code that is either 0 or 1, according to the specific

instruction in the format.

WB A bit of the operation code that is 0 in instructions that operate on words

and 1 in instructions that operate on bytes.

Td A pair of bits that specify the addressing mode of the destination operand.

00 specifies Workspace Register addressing. 01 specifies Workspace

Register indirect addressing. 10 specifies symbolic memory addressing when

D equals 0 and indexed memory addressing when D is not equal to 0. 11

specifies Workspace Register indirect auto-increment addressing.

D The Workspace Register for the destination operand.

Ts A pair of bits that specify the addressing mode of the source operand as

shown for Td.

S The Workspace Register for the source operand.

NUM The number of bits to be transferred.

DISP A two's complement number that represents a displacement.

REG A Workspace Register address.

COUNT A shift count.

EDITOR/ASSEMBLER
Page 242

ASSEMBLER OUTPUT

15.5 OUTPUT EXAMPLE

The example of a crash sound, given in Section 20.4.3, produces the listing and object
code shown below.

15.5.1 Listing

The following is the listing produced when the crash program is assembled.

99/4 ASSEMBLER
VERS IOC 1.1

0001
0002
0003

PAGE 0001

* Example Program to make a crash sound.
*

0004 REF VNB►IV
0005 CEF CRASH
0006 *
0007 1000 BLFFER EGU >1000 VCP RPM buffer used by sound generator.
0008 *
0009 0000 01 HO1 BYTE >01
0010 EVEN
0011 *
0012 CRASH
0013 0002 0200 LI RO,E.FFER Load VCP RPM buffer address.

0004 1000
0014 0006 0201 LI R1,OCATA Pointer to the sound data.

0008 0038'
0015 000A 0202 LI R2,32 32 bytes to move to the VCP RPM buffer.

000C 0020
0016 000E 0420 BLAP [Atv81N Nbve to VCP RPM buffer .

0010 0000

0017 *
0018 L0Y
0019 0012 0300 LIMI 0 Disable VCP interrupt.

0014 0000
0020 0016 020A LI R10,R.FFER Load sound table address.

0018 1000
0021 001A C80A NW R10,p8302 Load pointer to the table.

001C 830✓

0022 001E F820 SIB a[i-Đ1, aj 83FD Set VCP RPM flag.

EDITOR/ASSEMBLER
Page 243

ASSEMBLER OUTPUT

0023

0020 0000'
0022 83RD
0024 C820
0026 0000'
0028 83CE

MOW a 01,p83CE Start sound processing.

0024 002A 0300 LIMI 2 Enable VCP interrupt.
0020 0002

0025 *
0026 LCCP2
0027 002E 0820 NOVB p830E,p83CE Check if time is up.

0030 83CE
0032 8301E

0028 0034 13EE JEO LEEP Repeat the sound.
0029 0036 10FB J'P LO P2 Whit until finished.
0030
0031 0038 03 O]ATA BYTE >03,>9F,>E4,>F2,5

0039 9F
003A E4
003B F2
003C 05

0032 0030 02 BYTE >02,>E4,>F0,12
003E E4
003E FO
0040 OC

0033 0041 02 BYTE >02,>E4,>F2,10
0042 E4
0043 F2
0044 OA

0034 0045 02 BYTE >02,>E4,>F4,8
0046 E4

99/4 ASSDvBIER
VERSIW 1.1

0047 F4
0048 08

0035 0049 02 BYTE >02,>E4,>F6,6
004A E4
0048 F6
004C 06

0036 0040 02 BYTE >02,>E4,>F8,4

EDITOR/ASSEMBLER
Page 244

PAGE 0002

ASSEMBLER OUTPUT

004E E4

004F F8

0050 04

0037 0051 02 BYTE >02,>E4,>FA,2

0052 E4

0053 FA
0054 02

0038 0055 01 BYTE >01,>FF,0

0056 FF

0057 00

0039 ETD

99/4 ASSENBUOR

VERSICN 1.1 PAGE 0003

B,FFER 1000 ' CDaTA 0038 D CRASH 0002 ' I-i01 0000

LOOP 0012 ' LOOP2 002E RD 0000 Rl 0001

R10 000A R11 000B R12 000C R13 0000

R14 000E R15 000F R2 0002 R3 0003

R4 0004 R5 0005 R6 0006 R7 0007

R8 0008 R9 0009 E VM3W 0010

0000 ERRCRS

15.5.2 Object Code

The following is the object code produced when the crash program is assembled.

00058 0000B0100B020081000B0201C0038B0202B0020B0420B00007F39PF 0001

A0012B0300B0000B020PB10008C80PB83OCBF820C0000B83FCBĐ820C00007F2C,6F 0002

A0028B83CEB030080002BĐ820B83C:FB83CEB13EEB10Fffi039FBE4F2B05027F23BF 0003

A003EBE4F0B0CO2BE4F2BOA02BE4F4B0802BE4F6B06028E4F8B04028E4FA7F21BF 0004

A0054B0201BFF007FC8CF 0005

30010V1v3W 500020RASH 7FPD1F 0006

. 99/4 AS 0007

EDITOR/ASSEMBLER
Page 245

SECTION 16: UTILITIES AND PREDEFINED SYMBOLS

Several utilities are provided to give you simple access to many of the resources of
the TI Home Computer. With these utilities, you can change the display, access the
Device Service Routine for peripheral devices such as disk drives and printers, scan
the keyboard, link your program to GPL routines that perform a variety of useful
tasks, and link to the Editor/Assembler Loader. This section discusses these utilities
and many of the predefined symbols. Other predefined symbols, used for sound and
speech, are discussed in Sections 20 and 22.

Normally, it is difficult to write to and read from VDP RAM and VDP Registers
because they, like GROM and speech devices, are memory mapped. To read from
most memory-mapped devices, you must first write a value to a specific address, wait
while the data is obtained, and then read the data from another address. To write to
most memory-mapped devices, a similar process occurs: put the data in an address,
write a value to an address to signify that the data is to be written, and then wait
while the data is written. This requires detailed knowledge of the addresses to use
and how to use them.

The utilities and predefined symbols are loaded at the same time as the Loader. You
can make them available by mentioning them in a REF statement at the beginning of
your assembly language program, accessing them with a BLWP instruction, and using
Registers to pass arguments. They are also loaded into the Memory Expansion unit
for use when the TI BASIC subroutines INIT or LOAD are called.

The utilities are predefined in the REF/DEF table at memory locations >3F38 through
>3FFF. They use UTILWS, starting at address >2094, as utility Workspace Registers.
All parameters are passed through your program's Workspace Registers. The USRWSP
area at >20BA may be used for your Workspace Registers.

The following list gives each of the utilities predefined in the REF/DEF table and
describes briefly what each does. Sections 16.1 and 16.2 provide a more detailed
discussion.

EDITOR/ASSEMBLER
Page 246

UTILITIES AND PREDEFINED SYMBOLS

Name Use
VSBW Writes a single byte to VDP RAM.

VMBW Writes multiple bytes to VDP RAM.

VSBR Reads a single byte from VDP RAM.

VMBR Reads multiple bytes from VDP RAM.

VWTR Writes a single byte to a VDP Register.

KSCAN Scans the keyboard.
GPLLNK Links your program to Graphics Programming Language routines.
XMLLNK Links your program to the assembly language routines in the console

ROM or in RAM.
DSRLNK Links your program to Device Service Routines.
LOADER Links your program to the Loader to load TMS9900 tagged object

code.

Several general use addresses are predefined with symbols. You may use them
instead of the addresses they represent so that you do not have to memorize the

addresses. Their use is described in Section 16.3.

Name Address Data Contained

SCAN >000E Entry address of the keyboard scan utility.

UTLTAB >2022 Utility table entry address.

PAD >8300 The scratch pad used by TI BASIC, GPL, TI BASIC, and
other programs. You may use some areas. See Section
24.3.1 for a detailed description of this area.

GPLWS >83E0 GPL Workspace.

Some addresses that are useful for accessing memory-mapped devices are predefined
with symbols. You may use these symbols in your own memory access routines
instead of the utilities described above. The use of these symbols is described in

Sections 16.4 and 16.5.

Name Address Data Contained

VDPWA >8CO2 VDP RAM write address.

VDPRD >8800 VDP RAM read data.
VDPWD >8C00 VDP RAM write data.

VDPSTA >8802 VDP RAM status.
GRMWA >9CO2 GROM/GRAM write address.
GRMRA >9802 GROM/GRAM read address.
GRMRD >9800 GROM/GRAM read data.

GRMWD >9C00 GROM/GRAM write data.

EDITOR/ASSEMBLER
Page 247

UTILITIES AND PREDEFINED SYMBOLS

16.1 VDP RAM ACCESS UTILITIES

Several utilities provide access to Video Display Processor RAM. All parameters are
passed through your program's Workspace Registers. The utilities are described
below.

Note: Before you change VDP Register 1, put a copy of it at address >83D4. The
bit that turns the screen on and off, which is used when no key is pressed for a
certain time, is in VDP Register 1 and is stored at that address. Therefore, if you
do not put the copy there, the screen returns to a prior state when you press a key.

BLWP QVSBW: VDP RAM Single Byte Write--Writes the value in the
most-significant byte of Register 1 to the VDP RAM address
indicated in Register 0.

Register 0: Address in VDP RAM.

Register 1: Most-significant byte contains the value to be
written.

For example, if Register 0 is >1000 and Register 1 is >2345, the
instruction sets address >1000 in VDP RAM equal to >23.

BLWP @VMBW: VDP RAM Multiple Byte Write--Writes the number of bytes
indicated in Register 2 from the RAM buffer pointed to by
Register 1 to the VDP RAM buffer pointed to by Register 0. The
RAM buffer is normally included in your program space with the
BSS instruction.

Register 0: Starting address of the buffer in VDP RAM.

Register 1: Starting address of the buffer in RAM.

Register 2: The number of bytes to be written.

For example, if Register 0 is >1000, Register 1 is >2345, and
Register 2 is >0014, the instruction sets addresses >1000 through
>1013 in VDP RAM equal to the 20 bytes starting at address >2345
in the Memory Expansion unit.

BLWP f VSBR: VDP RAM Single Byte Read--Reads a byte from the VDP RAM

EDITOR/ASSEMBLER
Page 248

UTILITIES AND PREDEFINED SYMBOLS

address indicated in Register 0 and places it in the most-significant
byte of Register 1.

Register 0: Address in VDP RAM.

Register 1: Value is placed in the most-significant byte.

For example, if Register 0 is >1000 and address >1000 contains >12,

the instruction sets the most-significant byte of Register 1 to >12.

BLWP ®VMBR: VDP RAM Multiple Byte Read--Reads the number of bytes
indicated in Register 2 from the RAM buffer pointed to by
Register 0 and places them in the CPU RAM buffer pointed to by
Register 1.

Register 0: Starting address of the buffer in VDP RAM.

Register 1: Starting address of the buffer in RAM.

Register 2: The number of bytes to be read.

For example, if Register 0 is >1000, Register 1 is >2345, and
Register 2 is >0014, the instruction reads the 20 bytes starting at

address >1000 in VDP RAM and sets addresses >2345 through >2358
in CPU RAM equal to those bytes.

BLWP @VWTR: VDP RAM Write Register--Writes the value in the least-significant
byte of Register 0 to the VDP Register indicated in the
most-significant byte of Register 0.

Register 0: Least-significant byte contains the value to be
written. Most-significant byte indicates the VDP
Register to be written to.

For example, if Register 0 is >010E, the instruction loads VDP
Register 1 with the value >OE. See Section 16.4 for more
information on the VDP Registers.

EDITOR/ASSEMBLER
Page 249

UTILITIES AND PREDEFINED SYMBOLS

16.2 EXTENDED UTILITIES

Five utilities, called extended utilities, allow you to access the routines built into the
Home Computer. KSCAN allows you to use the routine that scans the keyboard.
GPLLNK allows you to link to Graphics Programming Language routines. XMLLNK
allows you to use routines in ROMs. DSRLNK allows you to link to Device Service
Routines. LOADER allows you to load assembly language programs.

16.2.1 KSCAN

The KSCAN utility allows you to access the key scan routine in the computer. To
use this utility, you must include REF KSCAN in your program, select the keyboard
device to be checked, and call the utility with the instruction

BLWP @KSCAN

Then check the STATUS byte to see if a key has been pressed for the first time and
check an address to see what the key was. You can also check to see if the Wired
Remote Controllers have been moved.

Select the keyboard device to be checked by placing a byte at address >8374. A
value of >00 checks the entire keyboard. A value of >01 checks the left side of the
keyboard and places the values from Wired Remote Controller unit number one in
addresses >8376 (Y-position) and >8377 (X-position). A value of >02 checks the right
side of the keyboard and places the values from Wired Remote Controller unit number
two in addresses >8376 and >8377. The values that may be returned in the addresses
for the Wired Remote Controller are >04 (up or right), >00 (center), and >FC (down or
left). For more information on key units, see the explanation of the CALL KEY
subprogram in the User's Reference Guide.

The status bit which indicates if a key has been pressed can be tested with a compare
ones corresponding (COC) instruction. The STATUS byte is at address >837C and is
as shown below.

bit 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1

I H I GT 1COLD I CARRY I OVF I 0 1 0 1 0 1

EDITOR/ASSEMBLER
Page 250

UTILITIES AND PREDEFINED SYMBOLS

When KSCAN is called, bit 2 of the STATUS byte is set if a key was pressed that was
different from the key pressed on the last call to KSCAN. The ASCII value of the
key pressed is placed at address >8375. If no key was pressed, this address contains
>FF.

For example, if your program places >00 at address >8374, BLWP Qa KSCAN is called,
and the B key is pressed for the first time, then bit 2 of the byte at address >83C7 is
set, the value >42 is in address >8375.

16.2.2 GPLLNK

GPLLNK allows you to use routines written in Graphics Programming Language.
These routines allow you to perform such tasks as loading character sets, giving
tones, allocating space for strings, and so on. Some of the routines are described
below.

To use GPLLNK, you must include REF GPLLNK in your assembly language program,
set the STATUS byte (at address >837C) to >00, branch to GPLLNK with BLWP, and

provide the address of the routine in the console as data. For example, the following
instructions branch to the routine which loads the standard character set.

REF GPLLNK

CLR R1
MOVB R1,[>837C
BLWP Qa GPLLNK
DATA >0016

The GPL routines described below return to your program when they finish executing.
This utility lets you access any address in GROM. However, other routines than the
ones given may branch to other code or have other side effects. To be sure that a
routine returns to your program, check to see that it ends with a GPL return
instruction (>00). You must also check that the routine does not use memory areas
that your program is also using.

EDITOR/ASSEMBLER
Page 251

UTILITIES AND PREDEFINED SYMBOLS

In the routines shown below, FAC (the Floating Point Accumulator) starts at address
>834A and ARG (which contains arguments) starts at address >835C. The STATUS
byte is at address >837C. VSPTR is at address >836E.

16.2.2.1 General Purpose GPL Routines

The following are some useful general purpose GPL routines which you may access
with GPLLNK.

DATA >0016 Load Standard Character Set--Loads the standard character set into
VDP RAM.

Input: FAC is a pointer to the beginning address in VDP RAM where
characters are to be loaded.

DATA >0018 Load Small Capitals Character Set--Loads the small capitals character
set into VDP RAM.

Input: FAC is a pointer to the beginning address in VDP RAM where
characters are to be loaded.

DATA >0020 Execute Power-Up Routine--Initializes the system.

Output: The sound and VDP circuits are cleared and the default values
for the VDP Registers, character set, color table, and status
block are loaded. The available VDP RAM size is stored at
>8370.

DATA >0034

DATA >0036

DATA >0038

Accept Tone--Issues the tone associated with correct input.

Bad Response Tone--Issues the tone associated with incorrect input.

Get String Space Routine--Allocates a memory space in VDP RAM
with a specified number of bytes. This routine should not be used
outside the TI BASIC environment. If there is not enough space, the
routine does a "garbage collection" to eliminate temporary strings and
then tries again. If there is still not enough space, the routine issues
the MEMORY FULL error message.

EDITOR/ASSEMBLER
Page 252

UTILITIES AND PREDEFINED SYMBOLS

Input: Addresses >830C and >830D should contain the number of
bytes to be allocated.

Output: Address >831C points to the allocated string space and
address >831A points to the first free address in VDP RAM.
The four bytes at addresses >8356 through >8359 are used by
this routine. The FAC area may be destroyed if a garbage
collection is done.

Note: Although this routine is designed to allocate a string space in

VDP RAM, it is also useful for assigning space for the Peripheral
Access Block (PAB) and data buffer required by a DSR. See Section
18.2 for a description of Peripheral Access Blocks.

DATA >003B Bit Reversal Routine--Provides a mirror image of a byte. This routine
is used to form a mirror image of a character definition.

Input: FAC is the address of the data in VDP RAM. FAC+2 (>834C)
is the number of bytes to be reversed.

Output: In each byte, bits 0 and 7, 1 and 6, 2 and 5, and 3 and 4 are
exchanged. CPU RAM addresses >8300 through >8340 are
destroyed.

DATA >003D Cassette DSR Routine--Accesses the cassette DSR routine.

Input: The Peripheral Access Block and data buffer must be set up
in VDP RAM prior to the call. The screen offset for TI
BASIC is >60 and >00 outside the TI BASIC environment.
The screen start address must be >00 for the prompts issued
by the cassette DSR. FAC is the device name (for example,
"CS1"). Address >8356 points to the first character after the
name in the PAB. Addresses >8354 and >8355 are the length
of the name (for example, >0003 for "CS1"). The word at
address >83D0 should be set to >0000. Address >836D must
be set to >08 to indicate a DSR call. The STATUS byte must
be >00.

Output: The cassette DSR prompts for the operation of the cassette.

EDITOR/ASSEMBLER
Page 253

UTILITIES AND PREDEFINED SYMBOLS

DATA >004A Load Lower-Case Character Set (TI-99/4A only)--Loads the lower-case
character set into VDP RAM.

Input: FAC is a pointer to the beginning address in VDP RAM where

characters are to be loaded.

16.2.2.2 Mathematical Routines

When errors occur during the execution of these floating point routines, they are
indicated at address >8354 with the error codes listed.

Code Error Description
01 Overflow
02 Syntax
03 Integer overflow on conversion
04 Square root of a negative number

05 Negative number to non-integer power

06 Logarithm of a non-positive number
07 Invalid argument in a trigonometric function

The abbreviations for these routines given in parentheses are the TI BASIC functions
which call the routines.

DATA >0014 Convert Number to String (STR)--Converts a floating point number to
an ASCII string.

Input: FAC contains the eight bytes defining the number. FAC+11
(>8355), if set to 0, indicates that the output string is to be
in TI BASIC format. Otherwise, the output is in FIX mode.
If fix mode is indicated, then FAC+12 (>8356) and FAC+13
(>8357) must contain data. FAC+12 is the number of
significant digits. It contains 0 to express overflow from the
calculation range. FAC+13 indicates the number of digits to
the right of the decimal point. A negative value disables the

FIX mode.

EDITOR/ASSEMBLER
Page 254

UTILITIES AND PREDEFINED SYMBOLS

Output: FAC is modified, FAC+11 (>8355) contains the least
significant byte of the address where the result string is
located. >8300 must be added to FAC+11 to find the address
of the result string. FAC+12 (>8356) contains the length of
the result string in bytes.

DATA >0022 Greatest Integer Function (INT)--Computes the greatest integer
contained in the value.

Input: FAC contains the floating point value.

Output: FAC contains the result. For positive numbers, the integer is
the truncated value. For negative numbers, the integer is the

truncated value plus one. The STATUS byte is affected.

DATA >0024 Involution Routine--Raises a number to a specified power.

Input: FAC is the exponent value. ARG is the base value.

Output: FAC is the result in floating point format. The result is
computed as EXP(exponent-value*LOG[ABS(base-value)]). The
STATUS byte is affected. Locations >8375 and >8376 are
destroyed and the word content of VSPTR is decremented by
eight.

DATA >0026 Square Root Routine (SOR)--Computes the square root of a number.

Input: FAC is the input value.

Output: FAC is the square root of the input value. The STATUS byte
is affected. Addresses >8375 and >8376 are destroyed.

DATA >0028 Exponent Routine (EXP)--Computes the inverse natural logarithm of a
number.

Input: FAC is the input value.

Output: FAC is the result value. The STATUS byte is affected.
Addresses >8375 and >8376 are destroyed.

EDITOR/ASSEMBLER
Page 255

UTILITIES AND PREDEFINED SYMBOLS

DATA >002A Natural Logarithm Routine (LOG)--Computes the natural logarithm of a

number.

Input: FAC is the input value.

Output: FAC is the result value. The STATUS byte is affected.

Addresses >8375 and >8376 are destroyed.

DATA >002C Cosine Routine (COS)--Computes the cosine of a number expressed in

radians.

Input: FAC is the input value.

Output: FAC is the result value. The STATUS byte is affected.

Addresses >8375 and >8376 are destroyed.

DATA >002E Sine Routine (SIN)--Computes the sine of a number expressed in

radians.

Input: FAC is the input value.

Output: FAC is the result value. The STATUS byte is affected.

Addresses >8375 and >8376 are destroyed.

DATA >0030 Tangent Routine (TAN)--Computes the tangent of a number expressed

in radians.

Input: FAC is the input value.

Output: FAC is the result value. The STATUS byte is affected.

Addresses >8375 and >8376 are destroyed.

DATA >0032 Arctangent Routine (ATN)--Computes the arctangent of a number

expressed in radians.

Input: P'AC is the input value.

Output: FAC is the result value. The STATUS byte is affected.

Addresses >8375 and >8376 are destroyed.

EDITOR/ASSEMBLER
Page 256

UTILITIES AND PREDEFINED SYMBOLS

Note: A GPL routine is executed in the main program of the Editor/Assembler.
Prior to transfer to the Editor/Assembler, the GPLLNK routine sets a flag.
However, the Editor/Assembler main program checks the GPL status bit for error
handling before it checks for the flag set by the GPLLNK routine. Thus, you must

reset that status bit at address >837C before calling GPLLNK. Otherwise, a
meaningless error message is returned.

16.2.3 XMLLNK

The XMLLNK utility allows you to link an assembly language program to a routine in
ROM or to branch to a routine in the Memory Expansion unit. The ROM routines
perform such tasks as floating point arithmetic, stack arithmetic, string to number

conversions, and so on.

In linking to console ROM routines, you refer to table entries with DATA
instructions. These table entries contain the addresses of the routines which you
wish to execute. The following describes the routines contained in the tables and the
addresses of the tables. Each entry in the table takes up two bytes, so the addresses

accessed are incremented by two for each entry.

Table
Number Function Address

>0 Floating Point Routines Specified at >OCFA

>1 Conversion and TI BASIC routines Specified at >OCFC

>2 Memory Expansion unit >2000

>3 TI BASIC enhancement >3FC0

>4 TI BASIC enhancement >3FE0

>5 Peripheral ROM >4010

>6 Peripheral ROM >4030

>7 ROM in Command Module >6010

To link to a routine in ROM, the DATA instruction is followed by a word that
specifies the table and entry you wish to use. The first byte of the word indicates
the table and entry you are referring to, with the second byte equal to >00.

The first nybble of the byte is from >0 through >7, indicating the table which you

wish to use. The second nybble of the byte is from >0 through >F. When doubled, it
indicates the offset from the beginning of the table, from >00 through >1E. For

EDITOR/ASSEMBLER
Page 257

UTILITIES AND PREDEFINED SYMBOLS

example, DATA >1100 indicates the first table, two bytes from the beginning (the

address of the beginning of the table is stored at address >OCFA); DATA >3400

indicates the third table, eight bytes from the beginning, or address >3FC8; and DATA

>5C00 indicates the fifth table, >18 bytes from the beginning, or address >4028.

When you branch to XMLLNK, the address of the routine to be executed is obtained

from the table, and then the routine is executed starting at the address obtained.

For example, the following sequence branches to the convert integer to floating point

routine at address >2006 in the Memory Expansion unit.

REF XMLLNK

•

BLWP @XMLLNK

DATA >2300

You may also use the XMLLNK utility to branch to an address and start executing

there. In this case, the DATA instruction is the address to which you wish to

branch. The first bit of the word must be on, so the address may be from >8000

through >FFFF.

This use of the XMLLNK has the same effect as using the BL instruction (see Section

7.2), except that the GPL Workspace Registers are used during the instructions

executed after the branch. When the program returns, then your Workspace

Registers are again used.

For example, the following sequence branches to address >C13A in the Memory

Expansion unit.

REF XMLLNK

BLWP CaIXMLLNK

DATA >C13A

EDITOR/ASSEMBLER

Page 258

UTILITIES AND PREDEFINED SYMBOLS

16.2.3.1 ROM Routines

The following describe some of the routines in ROM that you can access with
XMLLNK, giving the data required, the input, and the output. Since XMLLNK
accesses routines in the console, care must be taken to obtain the intended result.
You must be sure that the GPL Workspace Registers are not changed, the memory
space used in the routine is set up properly, and the utility returns to the calling
program on completion.

FAC (the Floating Point Accumulator) starts at address >834A, ARG (which contains
arguments) starts at address >835C, and VSPTR is at address >836E. The STATUS
byte is at address >837C. All overflow errors, except in Convert Floating Point to

Integer (CFI), return >01 at address >8354.

DATA >0600 Floating Point Addition (FADD)--Adds two values.

Input: FAC is the first value and ARG is the second value.

Output: FAC is the result of the addition.

DATA >0700 Floating Point Subtraction (FSUB)--Subtracts two values.

Input: FAC is the value to be subtracted. ARG is the value from

which FAC is subtracted.

Output: FAC is the result of the subtraction.

DATA >0800 Floating Point Multiplication (FMUL)--Multiplies two values.

Input: FAC is the multiplier. ARG is the multiplicand.

Output: FAC is the result of the multiplication.

DATA >0900 Floating Point Division (FDIV)--Divides two values.

Input: FAC is the divisor. ARG is the dividend.

Output: FAC is the result of the division.

EDITOR/ASSEMBLER
Page 259

UTILITIES AND PREDEFINED SYMBOLS

DATA >0A00 Floating Point Compare (FCOM)--Compares two floating point numbers.

Input: ARG is the first argument. FAC is the second argument.

Output: The STATUS byte is affected. The high bit is set if ARG is
logically higher than FAC. The greater than bit is set if
ARG is arithmetically greater than FAC. The equal bit is set
if ARG and FAC are equal.

DATA >0B00 Value Stack Addition (SADD)--Adds using a stack in VDP RAM.

Input: VSPTR contains the address in VDP RAM where the left-hand
term is located. FAC is the right-hand value.

Output: FAC is the result of the addition.

DATA >0000 Value Stack Subtraction (SSUB)--Subtracts using a stack in VDP RAM.

Input: VSPTR contains the address in VDP RAM where the left-hand
term is located. FAC is the value to be subtracted.

Output: FAC is the result of the subtraction.

DATA >0D00 Value Stack Multiplication (SMUL)--Multiplies using a stack in VDP
RAM.

Input: VSPTR contains the address in VDP RAM where the
multiplicand is located. FAC is the multiplier value.

Output: FAC is the result of the multiplication.

DATA >0E00 Value Stack Division (SDIV)--Divides using a stack in VDP RAM.

Input: VSPTR contains the address in VDP RAM where the dividend
is located. FAC is the divisor value.

Output: FAC is the result of the division.

EDITOR/ASSEMBLER
Page 260

UTILITIES AND PREDEFINED SYMBOLS

DATA >0F00 Value Stack Compare (SCOMP)--Compares a value in the VDP RAM
stack to the value in FAC.

Input: VSPTR contains the address in VDP RAM where the value to
be compared is located. FAC is the other value in the

comparison.

Output: The STATUS byte is affected. The high bit is set if the
value pointed to by VSPTR is logically higher than FAC. The

greater than bit is set if the value pointed to by VSPTR is
arithmetically greater than FAC. The equal bit is set if the

value pointed to by VSPTR and FAC are equal.

DATA >1000 Convert String to Number (CSN)--Converts an ASCII string to a

floating point number.

Input: FAC+12 is the address of the string in VDP RAM.

Output: FAC is the result of the conversion in floating point format.

DATA >1200 Convert Floating Point to Integer (CFI)--Converts a floating point

number to an integer.

Input: FAC is the floating point number to be converted.

Output: FAC is the one-word integer value. The maximum value is
>FFFF. If an overflow occurs, FAC+10 (>8354) is set to the

overflow error code, >03.

DATA >2300 Convert Integer to Floating Point (CIF)--Converts an integer to a

floating point number.

Input: FAC is the one word integer value to be converted.

Output: FAC is the floating point result.

Note: This routine is loaded in the Memory Expansion unit by the
Editor/Assembler Loader. It is not loaded by the TI Extended BASIC

Loader and may not be used in TI Extended BASIC.

EDITOR/ASSEMBLER
Page 261

UTILITIES AND PREDEFINED SYMBOLS

16.2.4 DSRLNK

DSRLNK links an assembly language program to any Device Service Routine (DSR) or

subprogram in ROM. The data given is >8 for linkage to a Device Service Routine

and >10 for linkage to a subprogram. Before this routine is called, a Peripheral

Access Block (PAB) must be set up in VDP RAM. A PAB is a block of memory that

contains information about the file to be accessed. In addition, CPU RAM addresses

>8356 through >8357 must contain a pointer to the device or subprogram name length

in the PAB. See Section 18.2 for information on building a PAB.

After the routine is executed, information is passed back to your assembly language

program in the UTLTAB area (see Section 16.3.2). For instance, suppose that the

following sequence of instructions is executed.

REF DSRLNK

BLWP @DSRLNK

DATA >8

If no errors occur, the equal bit in the Status Register is reset on return from

DSRLNK. If an I/O error occurs, the equal bit is set, and the error code is stored in

the most-significant byte of Register 0 of the calling program's Workspace.

Note: This routine does not work for cassette access because it only searches ROM

DSRs and the cassette DSR is in GPL in the GROM. To access the cassette, BLWP

Qa GPLLNK with DATA >3D must be used. See Section 16.2.2.1 for more information

on accessing cassettes.

16.2.5 LOADER

LOADER loads TMS9900 tagged object code such as the Assembler produces. (See

Section 19 for a description of the Loader and Section 15 for a description of tagged

object code.) This utility is only used when you wish to load a file from your

assembly language program. Otherwise, selecting LOAD AND RUN from the

Editor/Assembler or executing a CALL LOAD statement from TI BASIC is

recommended.

EDITOR/ASSEMBLER

Page 262

UTILITIES AND PREDEFINED SYMBOLS

Before this utility is called, a Peripheral Access Block (PAB) set for OPEN mode

must be set up in VDP RAM. A PAB is a block of memory that contains information
about the file to be accessed. See Section 18.2 for information on building a PAB.
In addition, CPU RAM addresses >8356 through >8357 must contain a pointer to the
device or file name length in the PAB.

For example, the following loads a file if the proper PAB has been set up.

REF LOADER

•

BLWP @LOADER

After the utility is executed, information is passed back to your assembly language
program in the UTLTAB area (see Section 16.3.2). To access this data, you must
include the instruction

REF UTLTAB

in your program.

Address

>2022
UTLTAB+>2

UTLTAB+>4
UTLTAB+>6
UTLTAB+>8

Name
UTLTAB
FSTHI

LSTHI
FSTLOW
LSTLOW

Information
Entry address specified by a 1 or 2 tag.
First free address in high memory.
Last free address in high memory.
First free address in low memory.
Last free address in low memory.

If no errors occur, the equal bit in the Status Register is reset on return from
LOADER. If an I/O or load error occurs, the equal bit is set and the error code is
stored in the most-significant byte of Register 0 of the calling program's Workspace.

Note: The Loader does not close the file when errors occur, so in that case you
must call the DSR to close the file.

EDITOR/ASSEMBLER
Page 263

UTILITIES AND PREDEFINED SYMBOLS

16.3 PREDEFINED SYMBOLS

Several predefined symbols which can be used in place of addresses are included in
the REF/DEF table when the utilities are loaded. You must list the symbols in a REF

statement in your assembly language program to use them.

16.3.1 SCAN

SCAN is the entry address of the keyboard scan routine in the console and is set to
>000E. With SCAN, you have direct access to the keyboard scan routine KSCAN.

However, before using this address you must supply information to the GPL
Workspace Registers and load the Registers before branching to this routine. KSCAN
does this for you. For example, the following instructions branch to this address.

REF SCAN,GPLWS

LWPI GPLWS
BL [aISCAN
LWPI MYWS

16.3.2 UTLTAB

UTLTAB is the utility table. It contains information provided by DSRLNK (see
Section 16.2.4) and LOADER (see Section 16.2.5). The following table lists the

elements of UTLTAB, their standard addresses, the names often used to refer to
them, and the information that they contain.

EDITOR/ASSEMBLER
Page 264

UTILITIES AND PREDEFINED SYMBOLS

Reference Address Name Information
UTLTAB >2022 UTLTAB Entry address.
UTLTAB+>2 >2024 FSTHI First free address in high memory.
UTLTAB+>4 >2026 LSTHI Last free address in high memory.

UTLTAB+>6 >2028 FSTLOW First free address in low memory.
UTLTAB+>8 >202A LSTLOW Last free address in low memory.
UTLTAB+>A >202C CHKSAV Checksum.
UTLTAB+>C >202E FLGPTR Pointer to the flag in the PAB.
UTLTAB+>E >2030 SVGPRT GPL return address.
UTLTAB+>10 >2032 SAVCRU CRU address of the peripheral.
UTLTAB+>12 >2034 SAVENT Entry address of the DSR or subprogram.
UTLTAB+>14 >2036 SAVLEN Device or subprogram name length.
UTLTAB+>16 >2038 SAVPAB Pointer to the device or subprogram name in

the PAB.

UTLTAB+>18 >203A SAVVER Version number of the DSR.

16.3.3 PAD

PAD is the address of the beginning of the scratch pad in RAM. It is from addresses
>8300 through >83FF. It is used by assembly language programs, console routines,
and Graphics Programming Language routines. See the Appendix for a complete
description of this memory area.

EDITOR/ASSEMBLER
Page 265

UTILITIES AND PREDEFINED SYMBOLS

16.4E VDP ACCESS

You can access VDP RAM and VDP Registers directly instead of using the utilities
described at the beginning of this section. The following sections demonstrate how

to use predefined addresses to access various memory areas.

In accessing memory in VDP, allow enough time for the completion of the read from
or write to memory. This can most easily be accomplished by following the
instruction that uses the address with a NOP or SWPB instruction. Also, most of
these addresses require that you read or write the least-significant byte first.

16.4.1 VDPWA

VDPWA is the address of the VDP RAM Write Address Register and is set to >8CO2.
This Register must be prepared when you wish to access VDP RAM. To set the
address you plan to access in VDP RAM, move the two-byte address into this
location. The least-significant byte is transferred first, followed by a delay (with
NOP or SWPB), and then the most-significant byte is transferred. If data is to be
written, the most-significant two bits of the address must be 01.

For example, if the address to which you plan to read is in Register 1, the following
code loads that address.

REF VDPWA Refers to the address.

SWPB R1 Gets the least-significant byte first.

MOVB R1,@VDPWA Writes the least-significant byte.
SWPB R1 Takes time and gets the most-significant byte.
MOVB R1,@VDPWA Writes the most-significant byte.

The VDP RAM Register write address is auto-incrementing, so you can write
successive bytes without modifying the write address.

EDITOR/ASSEMBLER
Page 266

UTILITIES AND PREDEFINED SYMBOLS

You may also use this utility to change VDP Registers by setting the first bit,
specifying the VDP Register in the second nybble, and giving the value to write in the
second byte. For example, the following code changes VDP Register 2 to >01.

REF VDPWA Refers to the address.

•

LI R1,>8201
SWPB R1 Gets the least-significant byte first.
MOVB R1,[a1VDPWA Writes the least-significant byte.

SWPB Rl Takes time and gets the most-significant byte.

MOVB R1,(a1VDPWA Writes the most-significant byte.

16.4.2 VDPRD

VDPRD is the address of the VDP RAM Read Data Register and is set to >8800.
The address of the VDP RAM must be set as described in Section 16.4.1. Data can

then be read from VDPRD.

For example, if Register 1 contains the address of VDP RAM that you plan to read,
the following code puts the value from that address into Register 0.

REF VDPWA,VDPRD Refers to the addresses.

SWPB Rl Gets the least-significant byte first.

MOVB R1,@ VDPWA Writes the least-significant byte.

SWPB R1 Takes time and gets the most-significant byte.

MOVB R1,QVDPWA Writes the most-significant byte.

NOP Takes time.

MOVB ®VDPRD,RO Reads the data into Register 0.

The VDP RAM Register read address is auto-incrementing, so you can read successive
bytes without modifying the read address.

EDITOR/ASSEMBLER
Page 267

UTILITIES AND PREDEFINED SYMBOLS

16.4.3 VDPWD

VDPWD is the address of the VDP RAM Write Data Register and is set to >8000.

The address in VDP RAM to which you plan to move data must first be specified with

VDPWA with the most-significant two bits set to 01. Data is then moved to the VDP

RAM write data address when the instruction MOVB Qa VDPWD is executed.

For example, if Register 1 contains the address to which you plan to write and the

most-significant byte of Register 3 contains the data you wish to write, the following

statements move the value from Register 3 to the specified address.

REF VDPWA,VDPWD Refers to the addresses.

LI R2,>4000 Sets Register 2 with the two most-significant

bits equal to 01.

SWPB R1 Gets the least-significant byte first.

MOVB R1,[a)VDPWA Writes the least-significant byte.

SWPB R1 Takes time and gets the most-significant byte.

SOC R2,R1 Sets the two most-significant bits in Register 1

to 01.

MOVB R1,@ VDPWA Writes the most-significant byte.

NOP Takes time.

MOVB R3,[aIVDPWD Writes the data from the most-significant byte

of Register 3.

The VDP RAM write address is auto-incrementing, so you can write successive bytes

without modifying the write address.

EDITOR/ASSEMBLER
Page 268

UTILITIES AND PREDEFINED SYMBOLS

16.4.4 VDPSTA

VDPSTA is the address of the VDP RAM Read Status Register and is set to >8802.
The Status Register is read by moving it from that address to the desired destination.
The status is the most significant byte of the address.

For example, the following code moves the status byte to Register 1.

REF VDPSTA Refers to the address.

MOVB [a1VDPSTA,R1 Reads the Status Register.

The VDP Status Register contains the following information.

Bit Information
0 VDP interrupt flag. Set if a VDP interrupt has occurred. This flag

may be read even if interrupts have been disabled with the LI M I 0

instruction. The flag is cleared by reading the Status Register or by
resetting VDP.

1 Five sprites flag. Set if there are five or more sprites on a screen
line. The flag is cleared by reading the Status Register or by
resetting VDP.

2 Coincidence flag. Set if two or more sprites have overlapping pixels,
including sprites that are transparent and sprites that are off the
bottom of the screen. The flag is cleared by reading the Status
Register or by resetting VDP.

3-7 Fifth sprite number. Equal to the number of the fifth sprite on a line

if the Coincidence flag is set. The value is cleared by reading the
Status Register or by resetting VDP.

EDITOR/ASSEMBLER
Page 269

UTILITIES AND PREDEFINED SYMBOLS

16.5 GROM ACCESS

You can look at information in the GROM or GRAM in the Command Module by
using the four addresses described below.

In accessing memory in the GROM, allow enough time for the completion of the read
from or write to memory. This can most easily be accomplished by following the
instruction that uses the address with a NOP or SWPB instruction. Also, most of
these addresses require that you read or write the most-significant byte first.

16.5.1 GRMWA

GRMWA is the address of the GROM Write Address Register and is set to >9CO2.
This Register must be prepared when a GROM address is to be accessed. To set the
address to be accessed in the GROM, move the two-byte address into this location.

The most-significant byte is transferred first, followed by a delay (with NOP or
SWPB), and then the second byte is transferred.

For example, if the address to which you plan to read or write is in Register 3, the
following code loads that address.

REF GRMWA Refers to the address.

•

MOVB R3,LalGRM WA Writes the most-significant byte.
SWPB R3 Takes time.
MOVB R3,La1GRM WA Writes the least-significant byte.
SWPB R3 Return Register to its original state.

16.5.2 GRMRA

GRMRA is the address of the GROM Read Address Register and is set to >9802.
The address is read by moving the two-byte address from the read address memory
location to the destination. The most-significant byte is transferred first, followed
by the least-significant byte. The address must be decremented by one. After being

read, the GROM address value is indeterminate and must be restored or reset before
further data access can occur.

EDITOR/ASSEMBLER
Page 270

UTILITIES AND PREDEFINED SYMBOLS

For example, the following statements move the address into VALUE and VALUE+1.

REF GRMRA Refers to the address.

•

MOVB ®a GRMRA,QVALUE Reads first byte of the address.

NOP Takes time.

MOVB Qa GRMRA,Qa VALUE+1 Reads second byte of the address.

DEC @VALUE Corrects the address.

16.5.3 GRMRD

GRMRD is the address of the GROM Read Data Register and is set to >9800. The

address of the GROM must be set as described in Section 16.5.1. Data can then be

read from GRMRD.

For example, if Register 3 contains the address of GROM that you plan to read, the

following statements put the value from that address into Register 1.

REF GRMWA,GRMRD Refers to the addresses.

•

MOVB R3,@GRM WA Writes the most-significant byte.

SWPB R3 Takes time.

MOVB R3,[1GRM WA Writes the least-significant byte.

SWPB R3 Takes time.

MOVB ®aGRMRD,R1 Reads the data into Register 1.

16.5.4 GRMWD

GRMWD is the address of the GROM Write Data Register and is set to >9C00. No

data can be written to a GROM. However, if a GRAM is in place, you may write

data.

For example, if Register 1 contains the address to which you plan to write and

Register 3 contains the data you wish to write, the following statements move the

value from Register 3 to the specified address.

EDITOR/ASSEMBLER

Page 271

UTILITIES AND PREDEFINED SYMBOLS

REF GRMWA,GRMWD Refers to the addresses.

MOVB R1,[a1GRMWA Writes the most-significant byte.
SWPB R1 Takes time and gets the least-significant byte.
MOVB R1,Qa GRMWA Writes the least-significant byte.
NOP Takes time.
MOV R3,[1GRMWD Writes the data from Register 3.

EDITOR/ASSEMBLER
Page 272

SECTION 17: TI BASIC SUPPORT

The Editor/Assembler Command Module contains seven TI BASIC subprograms that

can be used in addition to the subprograms described in the User's Reference Guide.
They are described below and discussed in greater detail in Section 17.1.

Use
Loads utilities and tables into the Memory Expansion unit and clears

any previously loaded programs.
Loads an assembly language file or pokes values into CPU RAM.
Passes control from TI BASIC to an assembly language program.

Reads bytes from CPU RAM into TI BASIC variables.
Reads bytes from VDP RAM into TI BASIC variables.

Pokes values into VDP RAM.
Returns the value of character patterns.

Name
INIT

LOAD
LINK
PEEK

PEEKV
POKEV
CHARPAT

Examples of using some of these subprograms are given in Section 17.1.8.

In addition, the Editor/Assembler diskette labeled Part A contains the file BSCSUP
which contains several TI BASIC support utilities. These utilities allow you to access
variables and values passed in the parameter list of the TI BASIC subprogram LINK.

In addition, ERR allows you to return an error to the calling TI BASIC program.

These utilities use their own Workspace Registers. The Workspace Registers starting
at USRWS are loaded by the Name Search Routine in the utility before branching to
your program and are available for your use unless your program runs because an
entry point was specified after the END directive (see Section 14.5.2). In this case,
you must specify that Workspace yourself or provide your own Workspace Registers.
All parameters are passed through the calling program's Workspace Registers. An
example of using some of these utilities is given in Section 17.2.6.

The following list gives the available utilities and describes briefly what each does.
They are described in greater detail in Section 17.2.

Name
NUMASG
STRASG
NUMREF
STRREF
ERR

Use
Makes a numeric assignment.
Makes a string assignment.
Gets a numeric parameter.
Gets a string parameter.
Reports errors.

EDITOR/ASSEMBLER
Page 273

TI BASIC SUPPORT

17.1 INTERFACE WITH TI BASIC

Seven subprograms, which are included in the Editor/Assembler Command Module, are
added to TI BASIC for use in interfacing with assembly language programs. The

LOAD, POKEY, PEEK, and PEEKV subprograms can be used whether or not the
Memory Expansion unit is attached. They are described in the following sections.

17.1.1 CALL INIT

The format of the INIT subprogram is

CALL INIT

with no parameters. The INIT subprogram tests to be sure that the Memory
Expansion unit is properly connected, loads utility routines from the Editor/Assembler
module into the Memory Expansion unit starting at address >2000, and loads REF/DEF
tables in the Memory Expansion unit at addresses >3F38 through >3FFF.

The INIT subprogram should be called before assembly language programs are loaded
by TI BASIC. If the INIT subprogram is called while an assembly language program
is in memory, it removes all information relating to that program, making the
program inaccessible. However, the program itself may remain in memory.

17.1.2 CALL LOAD

The format of the LOAD subprogram depends on the use to which it is put. It may
be used to load an object file such as is produced by the Assembler or to "poke" data
directly into memory locations.

17.1.2.1 Loading a Program with LOAD

If you use the LOAD subprogram to load an assembly language object file, the format
is

CALL LOAD('object-filename'[,"object-filename",...])

EDITOR/ASSEMBLER
Page 274

TI BASIC SUPPORT

The object filename is a string expression such as DSKI.OBJFILE. The file must

contain assembly language object code, such as that produced by the Assembler.

More than one file can be loaded at a time by separating the files you want to load
with commas.

For example, the statement

CALL LOAD("DSK1.OB31","DSKI.OBJ2")

loads the files OBJ1 and OBJ2 from the diskette in Disk Drive 1.

Relocatable code is loaded starting at the first available address, which is set to

>A000 by the INIT subprogram (described in Section 17.1.1). Room is reserved for

the program according to the length specified in the character tag 0 field in the

object file. (See Section 15.2 for a description of character tags.) Absolute code is

loaded as specified in the assembly language program.

CAUTION

You must take extreme care that absolute code is really

needed and works properly. Loading data into memory
already being used by TI BASIC can cause the system to

stop functioning so that you must turn the computer off

and back on in order to continue.

If more than one program is loaded, the additional programs are loaded in the

memory following the previous program. See Section 19 for more information on the

Loader.

17.1.2.2 Poking Data with LOAD

If you use the LOAD subprogram to put data directly into memory ("poking"), the

format is

CALL LOAD(address,value[,value,...[,"",address,value[,value,...]]])

EDITOR/ASSEMBLER
Page 275

TI BASIC SUPPORT

The address is a numerical expression or variable from -32768 through 32767.

Addresses from 0 through 32767 represent >0000 through >7FFF. Addresses from

-32768 through -1 represent >8000 through >F1-1-t- expressed in two's-complement form.

To access an address above 32767, subtract 65536 from it. The values, which can be

repeated, are decimal numbers which specify the byte values to be loaded starting at

the address specified. For example, the statement

CALL LOAD(-16384,255,21)

places the values >FF and >15 in the bytes starting at address >C000.

You can specify a new address and the values to be loaded starting at that address by

separating the last value from the new address with an empty string (""). For

example, the statement

CALL LOAD(-16384,255,21,"",8192,85)

loads the same data in the same addresses as the previous program and also loads the

value >55 at address >2000.

You can use the LOAD subprogram to load a program directly into memory.

However, you must enter the program name in the REF/DEF table so that the

program can be run with the LINK subprogram (described in Section 17.1.3).

To enter the program name in the REF/DEF table, use the PEEK subprogram

(described in Section 17.1.4) to find the values at addresses >2028 and >202A. These

addresses contain the First Free Address in Low memory (FFAL) and Last Free

Address in Low memory (LFAL), respectively. These values must differ by at least

eight bytes to have space for your program name and address. Change LFAL to a

value eight less than its old value, and then load the program name, up to six bytes,

starting at the new LFAL address, followed by two bytes which give the starting

address of the program. For example, suppose LFAL is >3F38, your program name is

OBJ1, and it starts at address >8300. Change LFAL to >3F30 and load OBJ1, two

spaces, and >83 00 into addresses >3F30 through >3F37 with the statement

CALL LOAD(16176,79,66,74,49,32,32,131,00)

EDITOR/ASSEMBLER

Page 276

TI BASIC SUPPORT

17.1.3 CALL LINK

The format of the LINK subprogram is

CALL LINK("program-name'l,parameter-list])

The program-name is from one through six characters that give the name of the
assembly language program as it appears in the REF/DEF table. The assembly
language program must be in memory, and its name must be in the REF/DEF table.

See the explanation of LOAD (Section 17.1.2) for more information.

The optional parameter-list contains parameters you wish to pass from the TI BASIC
program to your assembly language program. Using parameters is discussed in
greater detail in Section 17.1.3.1.

For example, the statement

CALL LINK("START",1,3)

links the TI BASIC program to the assembly language program START, with the
values 1 and 3 passed to it.

The following actions occur when the CALL LINK statement is executed.

1. The utility program checks to see that the assembly language program name is
from one through six characters long. If the name is of the right length, the
Name Link Routine (which is part of the utility program) looks up the name of

the program called in the REF/DEF table, starting at the lowest address. The

Name Link Routine then pushes the program name on the value stack.

The Loader gives an error if you have duplicate names in DEF instructions, and
loading stops.

2. When the program name has been located in the REF/DEF table, the Name Link
Routine branches to the program with a direct assembly language branch
instruction. In order to return to TI BASIC, your assembly language program
must retain the values in Workspace Registers 11, 13, 14, and 15 and restore
those values before ending.

3. Your assembly language program is executed.

EDITOR/ASSEMBLER
Page 277

TI BASIC SUPPORT

4. When your program has finished executing, the utility branches to an error routine
if an error has been detected. Otherwise, it clears the stack and returns to the
TI BASIC program normally. Address >8310 contains the value stack pointer in
use by the TI BASIC interpreter.

17.1.3.1 Passing Arguments with LINK

You can pass up to 16 arguments from your TI BASIC program to your assembly
language program. If a simple variable (any variable except an expression) is passed,

any changes made in the value of that variable in your assembly language program
also change the value on return to your TI BASIC program. Entire arrays are passed
by following them with parentheses. If the array contains more than one dimension,
the dimensions beyond the first are indicated by placing commas between the
parentheses.

For example, the following are all simple variables whose values can be changed.
The last one is a two-dimensional array.

A,B$,VAR(3),Q$(,)

If you wish to pass the value of a simple variable, but do not need the assembly
language program to make changes in it, surround it with parentheses. However,
arrays cannot be passed by value. For example, you can pass all but the last of the
variables listed above without having their values affected on return to your TI
BASIC program by listing them as follows.

(A),(B$),(VAR(3))

In addition, constants and expressions, such as A+3, do not have their values changed
on return to your TI BASIC program.

The arguments are passed to the assembly language program through an identifier list

in CPU RAM. Address >8312 contains the number of arguments in the parameter
list. The argument identifier, which specifies the type of argument, is located at
addresses >200A through >2019. Each identifier is one byte in length. The values
are 0 for a numeric expression, 1 for a string expression, 2 for a numeric variable, 3
for a string variable, 4 for a numeric array, and 5 for a string array.

EDITOR/ASSEMBLER
Page 278

TI BASIC SUPPORT

Note: You do not need to know exacly how arguments are passed if you use the

utilities described in Section 17.2

More information on each argument is stored in an eight-byte value stack in VDP

RAM.

o If the argument is a numeric expression, the identifier is 0 and the stack
contains the value of the numeric expression in radix 100 notation. In radix
100 notation, a number is from 1.000000000000 through 99.999999999999

multiplied by 100 raised to a power from -64 to 64. The first byte in the
value stack indicates the exponent of the value of the numeric expression. If
the exponent is positive, the byte value is 64 more than the exponent. If the
exponent is negative, the byte value is obtained by subtracting the exponent
from 64. For example, if the exponent is 2, the byte is 66 or >42. If the
exponent is -3, the byte is 61 or >3D. If the number is negative, the first
word (the exponent byte and the first byte of the value) is given in

two's-complement form.

The remaining seven bytes indicate the value of the number. To find these
seven bytes, the number, in decimal form but with the decimal point missing,
is converted to hexadecimal notation. For example, the following show how

several values are expressed in radix 100 form.

Decimal Value Radix 100 Notation Stack Value

7 7x100 >40 >07 >00 >00 >00 >00 >00 >00

70 70 x 1000 >40 >46 >00 >00 >00 >00 >00 >00

2,345,600 2.3456 x 1003 >43 >02 >22 >38 >00 >00 >00 >00

23,456,000 23.456 x 1003 >43 >17 >2D >3C >00 >00 >00 >00

0 0 x 1000 >00 >00 >X< >>0< >XX >X< >X< >X(

-7 -7 x 1000 >BF >F9 >00 >00 >00 >00 >00 >00

-70 -70 x 1000 >BF >BA >00 >00 >00 >00 >00 >00

-2,345,600 -2.3456 x 1003 >BC >FE >22 >38 >00 >00 >00 >00

Note: The value 0 is expressed by >00 in each of the first two bytes and

undefined values in the remaining six bytes.

EDITOR/ASSEMBLER
Page 279

TI BASIC SUPPORT

• If the argument is a string expression, the identifier is 1. Bytes 0 and 1

contain >OO1C, byte 2 contains >65 (the string tag used by the TI BASIC

interpreter), byte 3 is not used, bytes 4 and 5 contain a pointer to the value of

the string in VPD RAM, and bytes 6 and 7 contain the length of the string.

Byte 6 is always zero because the maximum string length is 255 characters.

a If the argument is a numeric variable or a numeric array element, the

identifier list contains a 2. Bytes 0 and 1 contain a pointer to the variable's

symbol table entry in VDP RAM, byte 2 contains zero, byte 3 is not used, and

bytes 4 and 5 contain a pointer to the eight-byte value of the variable in VDP

RAM.

• If the argument is a string variable or a string array element, the identifier

list contains a 3. Bytes 0 and 1 contain a pointer to the variable's symbol

table entry in VDP RAM, byte 2 contains >65 (the string tag used by the TI

BASIC interpreter), byte 3 is not used, bytes 4 and 5 contain a pointer to the

string's value in VDP RAM, and bytes 6 and 7 contain the string length.

• If the argument is a numeric array of the form A() A(,), and so on, the

identifier list contains a 4. Bytes 0 and 1 contain a pointer to the array's

symbol table entry in VDP RAM, byte 2 contains zero, byte 3 is not used, and

bytes 4 and 5 contain a pointer to the array's value space in VDP RAM. The

value space has two bytes for each dimension, indicating the maximum index

for that dimension. Following the dimension information are the values, stored

in radix 100 notation. Note that in a numeric array the array elements are

stored in consecutive eight-byte sections of memory.

• If the argument is a string array, it is similar to the entry for a numeric array

except the identifier list contains a 5 and byte 2 of the stack entry contains

>65. Thus bytes 0 and 1 contain a pointer to the array's symbol table entry in

VDP RAM, byte 2 contains >65, byte 3 is not used, and bytes 4 and 5 contain a

pointer to the array's value space in VDP RAM. The value space for a string

array contains two bytes for each dimension, indicating the maximum index.

Following the dimension information are two bytes for each array element,

which are used as a pointer to the element's value string in VDP RAM. Note

that in a numeric array the array elements are stored in consecutive eight-byte

sections of memory, while in a string array the elements are not usually in

order.

EDITOR/ASSEMBLER
Page 280

TI BASIC SUPPORT

17.1.4 CALL PEEK

The format of the PEEK subprogram is

CALL PEEK(address,variable-list[,"",...])

The address is a numerical expression or variable from -32768 through 32767.

Addresses from 0 through 32767 represent >0000 through >7FFF. Addresses from

-32768 through -1 represent >8000 through >11-H- expressed in two's-complement form.

To access an address above 32767, subtract 65536 from it.

The PEEK subprogram reads bytes from CPU RAM and, starting at the address,

assigns those values to the numeric variables in the variable-list. You can read

values starting at more than one address by separating the last value in the

variable-list from the next address with an empty string (""). For example, the
statement

CALL PEEK(8192,A,B,C(8),"",-24576,X)

places the value from address 8192 (>2000) in A, the value from address 8193 (>2001)

in B, the value from address 8194 (>2002) in C(8), and the value from address -24576

(>A000) in X.

17.1.5 CALL PEEKV

The format of the PEEKV subprogam is

CALL PEEKV(address,variable-list[,",...])

The address is a numerical expression or variable from 0 through 16383, corresponding

to VDP RAM addresses >0000 through >3FFF.

The PEEKV subprogram reads bytes from VDP RAM and, starting at the address,

assigns those values to the numeric variables in the variable-list. You can read

values starting at more than one address by separating the last value in the

variable-list from the next address with an empty string (""). For example, the
statement

CALL PEEKV(784,A,B,C(8),"",2,X)

EDITOR/ASSEMBLER

Page 281

TI BASIC SUPPORT

places the value from address 784 (>0310) in A, the value from address 785 (>0311) in
B, the value from address 786 (>0312) in C(8), and the value from address 2 (>0002) in
X.

Note: Using an address higher than 16383 (>3FFF) can cause the system to stop
functioning so that you must turn the computer off and back on in order to continue.

17.1.6 CALL POKEV

The format of the POKEV subprogram is

CALL POKEV(address,value-list[,",...])

The address is a numerical expression or variable from 0 through 16383, corresponding
to VDP RAM addresses >0000 through >3FFF.

The POKEV subprogram writes bytes to VDP RAM from the value-list starting at the
address. You can write values starting at more than one address by separating the

last value in the value-list from the next address with an empty string (""). For
example, the statement

CALL POKEV(784,30,30,30,"",2,V)

places the value 30 (>1E) in addresses 784 (>0310), 785 (>0311), and 786 (>0312), and
places the value of V in address 2 (>0002).

Note: Using an address higher than 16383 (>3FFF) can cause the system to stop
functioning so that you must turn the computer off and back on in order to continue.

17.1.7 CALL CHARPAT

The format of the CHARPAT subprogram is

CALL CHARPAT(character-code,string-variable[,...])

The character-code is any character number from 32 to 159. The 16-character
hexadecimal pattern identifier associated with the character code is returned in the
string-variable. The pattern identifiers for characters 32 through 95 are normally
reserved for ASCII characters and are initially defined by TI BASIC. They can be

EDITOR/ASSEMBLER
Page 282

TI BASIC SUPPORT

changed, and characters 96 through 159 defined, by the CHAR subprogram. See the
User's Reference Guide for more information.

17.1.8 TI BASIC Examples

The following program initializes memory, loads the file SPRITE from the diskette in
Disk Drive 1, and executes the program, starting at the entry point BEGIN.

100 CALL INIT
110 CALL LOAD("DSKI.SPRITE")
120 CALL LINK("BEGIN")

The program below initializes memory, loads the TI BASIC support utilities (BSCSUP)

and the file DSK1.TEST, and executes the program, starting at the entry point TEST.
The parameters passed to the assembly language program are the numeric array A
and the string expression HELLO. After the assembly language program has finished
running, the program prints the value of A(9).

100 DIM A(30)
110 CALL INIT
120 CALL LOAD("DSKI.BSCSUP","DSKI.TEST")
130 CALL LINK("TEST",A(),"HELLO")
140 PRINT A(9)

The following commands read the one-word value at CPU RAM address >8370 and

calculate and print the value. The value contains the highest memory location
available in VDP RAM.

CALL PEEK(-31888,A,B)
VALUE=A*256+B
PRINT VALUE

The program below loads color table 16 at VDP RAM address >0310. As the program
executes, the background color of the space characters on the screen changes rapidly.

100 FOR I=1 TO 16
110 CALL POKEV(784,16+I)

120 NEXT I

EDITOR/ASSEMBLER
Page 283

17.2 TI BASIC SUPPORT UTILITIES

The TI BASIC support utilities are contained in the file BSCSUP on the

Editor/Assembler diskette labeled Part A. These utilities help you find the values,

and assign values to the variables, passed in the parameter-list of the LINK
subprogram.

The five utilities are NUMASG, STRASG, NUMREF, STRREF, and ERR. They are in

relocatable code and are about 900 bytes long. You can use them in your assembly

language program by listing them in a REF statement. To load them, put the

statement

CALL LOAD("DSKI.BSCSUP")

in your TI BASIC program. The Loader loads them in the Memory Expansion unit

and puts their names in the REF/DEF table.

An example of the use of these utilities is given in Section 17.2.6.

17.2.1 Numeric Assignment--NUMASG

This utility lets you assign a value to a numeric variable passed as an argument in the

TI BASIC subprogram LINK.

For assignments to a simple numeric variable, place 0 in Workspace Register 0. For

an assignment to an array, place the array element number in Workspace Register 0.

With OPTION BASE 0 (the default from TI BASIC) in effect, the element number

ranges from 0 to the maximum number of elements minus 1. With OPTION BASE 1

(from TI BASIC) in effect, the element number ranges from 1 to the maximum

number of elements. See the User's Reference Guide for information on OPTION

BASE. The element number for multiple dimension arrays is found by counting

through the first elements, then the second elements, and so on. For instance, if an

array has been defined as A(5,5,5) and the base is 0, array element A(1,2,3) is given

in Workspace Register 0 as 1 * 62 + 2 * 6 + 3 or 51.

Place the argument number, as a full word, in Workspace Register 1. The argument

number gives the order of appearance of the variable in the parameter-list of the

LINK subprogram. For example, if the LINK subprogram statement is

CALL LINK("START",A,B)

EDITOR/ASSEMBLER
Page 284

A is argument number 1 and B is argument number 2.

The floating point variable is assigned in the Floating Point Accumulator at address
>834A. Numbers in the Floating Point Accumulator are kept in radix 100 notation.

See Section 17.1.3.1 for an explanation of radix 100 notation.

The utility is accessed by BLWP @a1NUMASG. For example, suppose the TI BASIC
statement CALL LINK("PROG",A,B,C) was executed to pass control to the assembly
language program. Then if the Floating Point Accumulator, starting at address
>834A, contains >41 23 45 00 00 00 00 00, Register 0 is >00, and Register 1 is >03,

then BLWP @NUMASG assigns 356.9 to C.

As a further example, the following program segment assigns the value 3 to the third

argument passed by the LINK subprogram.

REF NUMASG

FAC EOU >834A

NUMBER DATA >4003,>0000,>0000,>0000

LI R4,4

LI R3,NUMBER

LI R2,FAC

LOOP MOV *R3+,*R2+ Load floating point number 03 into FAC area.

DEC R4
JNE LOOP

CLR RO

LI R1,3 Third numeric variable in list.

BLWP @NUMASG

EDITOR/ASSEMBLER
Page 285

17.2.2 String Assignment--STRASG

This utility allows a string to be assigned to a string variable passed as an argument
in the TI BASIC subprogram LINK. The utility allocates space for the string in VDP

RAM, copies the string into VDP RAM, and assigns the string to the selected
variable. It then modifies the original argument stack entry to point to the new
string.

Before using this utility, your program must create the string in the Memory
Expansion unit with the first byte in the string giving the length of the string. Then

the utility is called with the string address in Register 2 and the argument number in
Register 1 as a full word. The number must be the same as it appeared in the CALL
LINK statement. The utility is accessed by BLWP @STRASG.

For assignments to a simple string variable, place 0 in Workspace Register 0. For an
assignment to an array, place the array element number in Workspace Register 0.

With OPTION BASE 0 (the default from TI BASIC) in effect, the element number
ranges from 0 to the maximum number of elements minus 1. With OPTION BASE 1
(from TI BASIC) in effect, the element number ranges from 1 to the maximum

number of elements. See the User's Reference Guide for information on OPTION
BASE. The element number for multiple dimension arrays is found by counting
through the first elements, then the second elements, and so on. For instance, if an
array has been defined as A$(5,5,5) and the base is 0, then array element A$(1,2,3) is
given in Workspace Register 0 as 1 * 62 + 2 * 6 + 3 or 51.

For example, if your program has placed >00 in Register 0, >02 in Register 1, >C000
in Register 2, and >02 48 49 in the addresses starting at >C000 (where >02 is the
number of characters in the string, >48 is the ASCII code for H, and >49 is the

ASCII code for I), and the TI BASIC statement CALL LINK("START",A,B$,C) is
executed, then BWLP ®STRASG sets B$ equal to HI.

17.2.3 Get Numeric Parameter--NUMREF

This utility allows you to get the value of a numeric parameter specified in the TI
BASIC subprogram LINK. If the parameter is an array, Register 0 contains the
element number. Otherwise, Register 0 contains 0. Register 1 contains the
parameter number. The value of the numeric parameter is returned in the Floating
Point Accumulator area starting at address >834A in radix 100 form. For details, see
Section 17.2.1 on numeric assignment. The utility is accessed by BLWP @NUMREF.

EDITOR/ASSEMBLER
Page 286

17.2.4 Get String Parameter--STRREF

This utility allows you to get the value of a string parameter specified in the TI
BASIC subprogram LINK. If the parameter is an array, Register 0 contains the
element number. Otherwise, Register 0 contains 0. Register 1 contains the
parameter number. Register 2 contains the starting address of the string in the

Memory Expansion unit. Put the length of the buffer into which you are going to
read the string in the first byte of the starting address. If the string length actually

read exceeds the number specified, an error is issued. Otherwise the actual length is
placed in the first byte. For details, see Section 17.2.2 on string assignment. The
utility is accessed by BLWP Qa STRREF.

17.2.5 Error Reporting--ERR

This utility transfers control to the error reporting routine in the TI BASIC

interpreter. The assembly language program can report any existing TI BASIC error
or warning upon return to TI BASIC. Upon return, Workspace Register 0 contains
the error code in the most significant byte. The utility is accessed by BLWP Qa ERR.
In order to obtain a meaninful error code, the Peripheral Access Block address must
be stored at address >831C prior to the ERR call.

The error messages that can be issued from your program are given on the next page.

EDITOR/ASSEMBLER
Page 287

Error
Code Message
>00 I/O error (bad name).
>01 I/O error (write protected).
>02 I/O error (bad attribute).
>03 I/O error (illegal operation).
>04 I/O error (buffer full).
>05 I/O error (read past EOF).
>06 I/O error (device error).
>07 I/O error (file error).
>08 Memory full (closes files).
>09 Not applicable; signifies an incorrect statement.
>OA Bad tag.
>OB Checksum error.
>OC Duplicate definition.
>OD Unresolved references.
>OE Not applicable; signifies an incorrect statement.
>OF Program not found.
>10 Incorrect Statement.
>11 Bad name.
>12 Can't continue.
>13 Bad value.
>14 Number too big.
>15 String-number mismatch.
>16 Bad argument.
>17 Bad subscript.
>18 Name conflict.
>19 Can't do that.
>1A Bad line number.
>1B For-next error.
>1C I/O error.
>1D File error.
>1E Input error.
>1F Data error.
>20 Line too long.
>21 Memory full (does not close files).
>22 - >FF Unknown error.

EDITOR/ASSEMBLER
Page 288

Note that on any error code >00 through >07, an I/O ERROR message is displayed on
the screen. The ERR utility then transfers control to the TI BASIC error-handling
routine, which reads the I/O error code from the Peripheral Access Block.

17.2.6 TI BASIC Utilities Example

The following program demonstrates how TI BASIC support utilities are called from
an assembly language program. The TI BASIC program file loads and runs an

assembly language program called DSK1.STRINGO. Together, these programs assign
B$="HAPPY BIRTHDAY" to an array element A$(X) and display A$(X) on the screen.
The user specifies X when the program is executing.

The TI BASIC program loads the BSCSUP file and the file STRINGO and links to the
program called STRING. TI BASIC lists the arguments X, B$, and A$O to be passed
in the CALL LINK statement. Before transferring control to the assembly language
program, it prompts for the element number X.

The assembly language program STRING reads the element number X, reads the
string B$, and assigns B$ to the array element A$(X). Since Workspace Register 11
was not altered by this program, the RT instruction can be used to return to TI
BASIC.

The TI BASIC program then displays A$(X), which is HAPPY BIRTHDAY, on the
screen.

100 DIM A$(15)
110 B$="HAPPY BIRTHDAY"
120 CALL INIT
130 CALL LOAD("DSK1.BSCSUP","DSK2.TRY")
140 INPUT "ELEMENT NUMBER?":X
150 IF X>15 THEN 140

160 CALL LINK("STRING",X,B$,A$())
170 PRINT A$(X)
180 END

EDITOR/ASSEMBLER
Page 289

*

FAC
*

BUFFER

*

STRING

DEF STRING
REF STRREF,STRASG,NUM REF

ECU >834A

BYTE >1F
BSS >1F

CLR RO
LI R1,1
BLWP Ca1NUMREF

MOV @FAC,R5
ANDI R5,>00FF

CLR RO
LI R1,2
LI R2,BUFFER
BLWP (a1STRREF

MOV R5,R0
LI R1,3
LI R2,BUFFER
BLWP [aISTRASG

RT
END

*

*

*

*

Read numeric value X.

Keep the element number.

Second argument B$.
Points to the buffer area.
Read in the string value.

Element number.
Assign the string to A$(X).

EDITOR/ASSEMBLER
Page 290

SECTION 18: FILE MANAGEMENT

With assembly language, you can control the way in which files are accessed. This
section describes the file management system as it is provided. By making
appropriate changes, you can construct your own system to interface with devices in
other ways.

The file management system regards all devices (except the screen and keyboard) as

identical. Different Device Service Routines (DSRs) are used for different devices,

but they all appear the same to the assembly language programmer. They support
both random access and sequential files, and files with records of both fixed and
variable length. The following sections describe the way in which you access the
DSRs.

18.1 FILE CHARACTERISTICS

A file consists of a collection of data groupings called logical records. These records
do not necessarily correspond with the the physical divisions of the data in the file.
For example, a logical record often does not correspond to a sector on a diskette.
File input and output (I/O) are done on a logical record basis. Manipulation of
physical records is handled by the DSR.

The records on sequential files can only be read from, or written to, in sequential
order. This is appropriate for printers, modems, cassettes, and some kinds of data
files. The records on sequential files can be of either fixed or variable length.

The records on relative files can be read from, or written to, in either sequential
order or in random order. You can only use relative files on diskettes. The records
on relative files are of fixed length.

Each record on a file has a number from zero up to one less than the number of
records in the file. You use these record numbers to specify which record to access
on relative files.

When a file is created, its characteristics must be defined. Most of these
characteristics cannot be changed later in the file's existence. The characteristics of
files are discussed below.

EDITOR/ASSEMBLER
Page 291

FILE MANAGEMENT

18.1.1 File Type--DISPLAY or INTERNAL

The file type attribute specifies the format of the data in the file.

• DISPLAY sets the file type to contain displayable or printable character

strings. Each data record corresponds to one print line.

• INTERNAL sets the file type to contain data in internal machine format.

The file type attribute is not significant to the DSR. It is merely passed on without

affecting the actual data stored.

18.1.2 Mode of Operation--INPUT, OUTPUT, UPDATE, or APPEND

A file is opened for a specific mode of operation.

• INPUT specifies that the contents of the file can be read from but not written

to.

• OUTPUT specifies that the file is being created. Its contents can be written

to but not read from.

• UPDATE specifies that the contents of the file can be both written to and

read from.

• APPEND specifies that data can be added to the end of the file but data

cannot be read.

The DSR determines whether a specific mode for an I/O operation can be accepted

by the given device. For example, the TI Thermal Printer can only be opened in

OUTPUT mode.

EDITOR/ASSEMBLER
Page 292

1 All Flag/Status

FILE MANAGEMENT

18.2 PERIPHERAL ACCESS BLOCK (PAB) DEFINITION

DSRs are accessed through a Peripheral Access Block (PAB). The format of the PAB
is the same for every peripheral. In a program that you write, the only difference

between peripherals is that some of them do not allow every option provided for in
the PAB. An example of using a PAB is given in Section 18.3.

The PABs are in VDP RAM. They are created before an OPEN statement and are
not released until the I/O for their corresponding peripheral has been closed.

The following describes the bytes which make up a PAB.

Byte Bit Contents Meaning
0 All I/O Op-code The op-code for the current I/O call. See

Section 18.2.1 for a description of the op-codes.

0-2 Error code

All information the system needs about the file
type, mode of operation, and data type. The
meaning of the bits is described below.
No error is 0. Other errors are indicated in
combination with the I/O op-code. The error
codes are discussed in Section 18.2.2.

"Fixed length records" are 0 and "variable length

records" are 1.
DISPLAY is 0 and INTERNAL is 1.
UPDATE is 00, OUTPUT is 01, INPUT is 10, and

APPEND is 11.
"Sequential file" is 0 and "relative file" is 1.

The address of the data buffer that the data
must be written to or read from in VDP memory.

The logical record length for fixed length
records or the maximum length for a variable
length record.

3 Record type

4 Datatype

5,6 Mode of
operation

7 File type

2,3 All Data Buffer
Address

4 All Logical Record
Length

5 All Character The number of characters to be transferred
Count for a WRITE op-code or the number of bytes

actually read for a READ op-code.

EDITOR/ASSEMBLER
Page 293

FILE MANAGEMENT

Byte Bit Contents Meaning
6,7 All Record Number (Only required for a relative record type file.)

The record number on which the current I/O
operation is performed. The most-significant bit
is ignored, so this number can be from 0 through
32767.

8 All Screen Offset The offset of the screen characters with respect
to their normal ASCII value. This is used only
by the cassette interface, which must put prompts
on the screen.

9 All Name Length The length of the file descriptor, which starts in
byte 10.

10+ All File The device name and, if required, the filename
Descriptor and options. The length of this descriptor is

given in byte 9.

The following figure summarizes the bytes which make up a PAB.

+ +

io I1 I
I I/O Op-code 1 Flag/Status 1
+ +

12,3 I
1 Data Buffer Address I
+ +

14 15 1
1 Logical Record Length 1 Character Count 1
+ +

16,7 I
1 Record Number I
+ +

18 19 I
I Screen Offset 1 Name Length I
+ +

110+ 1
1 File Descriptor I

Errors that occur in input/output calls are returned in byte 1 (Flag/Status) of the
PAB.

EDITOR/ASSEMBLER
Page 294

FILE MANAGEMENT

18.2.1 Input/Output Op-codes

The following describes the op-codes which can be used in byte 0 (I/O Op-code) of
the PAB.

18.2.1.1 OPEN--O

The OPEN operation must be performed before any data-transfer operation except
those performed with LOAD or SAVE. The file remains open until a CLOSE
operation is performed. The mode of operation must be given in byte 1 (Flag/Status)
of the PAB. Changing the mode of operation after an OPEN causes unpredictable
results.

If a record length of 0 is given in byte 4 (Logical Record Length) of the PAB, the

assigned record length (which depends on the peripheral) is returned in byte 4. If a

non-zero record length is given, it is used after being checked for correctness with
the given peripheral.

18.2.1.2 CLOSE--1

The CLOSE operation closes the file. If the file was opened in OUTPUT or APPEND
mode, an End of File (EOF) record is written to the device or file before closing the
file.

After the CLOSE operation, you can use the space allocated for the PAB for other
purposes.

18.2.1.3 READ--2

The READ operation reads a record from the selected device and copies the bytes
into the buffer specified in bytes 2 and 3 (Data Buffer Address) of the PAB. The
size of the buffer is specified in byte 4 (Logical Record Length) of the PAB. The
actual number of bytes stored is specified in byte 5 (Character Count) of the PAB.
If the length of the input record exceeds the buffer size, the remaining characters
are discarded.

EDITOR/ASSEMBLER
Page 295

FILE MANAGE MEr

18.2.1 Input/Output Op-codes

The following describes the op-codes which can be used in byte 0 (I/O Op-code) of

the PAB.

18.2.1.1 OPEN--O

The OPEN operation must be performed before any data-transfer operation except
those performed with LOAD or SAVE. The file remains open until a CLOSE
operation is performed. The mode of operation must be given in byte 1 (Flag/Status
of the PAB. Changing the mode of operation after an OPEN causes unpredictable

results.

If a record length of 0 is given in byte 4 (Logical Record Length) of the PAB, the
assigned record length (which depends on the peripheral) is returned in byte 4. If a
non-zero record length is given, it is used after being checked for correctness with
the given peripheral.

18.2.1.2 CLOSE--1

The CLOSE operation closes the file. If the file was opened in OUTPUT or APPEN
mode, an End of File (EOF) record is written to the device or file before closing the

file.

After the CLOSE operation, you can use the space allocated for the PAB for other

purposes.

18.2.1.3 READ--2

The READ operation reads a record from the selected device and copies the bytes

into the buffer specified in bytes 2 and 3 (Data Buffer Address) of the PAB. The
size of the buffer is specified in byte 4 (Logical Record Length) of the PAB. The
actual number of bytes stored is specified in byte 5 (Character Count) of the PAB.
If the length of the input record exceeds the buffer size, the remaining characters

are discarded.

EDITOR/ASSEMBLER
Page 295

FILE MANAGEMENT

18.2.1.7 SAVE--6

The SAVE operation writes a file from VDP RAM to a peripheral. The SAVE
operation is used without a previous OPEN operation. Note that the SAVE operation

copies the entire memory image from the buffer in VDP RAM to the diskette or
other device.

For a SAVE operation, the PAB needs the op-code in byte 0 (I/O Op-code), the

starting address of the VDP RAM memory area from which the file is to be copied in

bytes 2 and 3 (Data Buffer Address), the number of bytes to be saved in bytes 6 and
7 (Record Number), the name length in byte 9 (Name Length), and the file descriptor
information in bytes 10+ (File Descriptor).

For related information, see the explanation of the SAVE utility in Section 24.5.

18.2.1.8 DELETE--7

The DELETE operation deletes the file from the peripheral. The operation also
performs a CLOSE.

18.2.1.9 SCRATCH RECORD--8

The SCRATCH RECORD operation removes the record specified in bytes 6 and 7
(Record Number) from the specified relative record file. This operation causes an
error for peripherals opened as sequential files.

18.2.1.10 STATUS--9

The status is in byte 8 (Screen Offset) of the PAB. The status byte returns the
status of a peripheral and can be examined at any time. All of the bits have
meaning if the file is currently open. Bits 6 and 7 only have meaning for files that
are currently open. Otherwise, they are reset. The bits return the information
shown on the next page.

EDITOR/ASSEMBLER
Page 297

FILE MANAGEMENT

Bit Information
0 If set, the file does not exist. If reset, the file does exist. On some

devices, such as a printer, this bit is never set since any file could exist.
1 If set, the file is protected against modification. If reset, the file is not

protected.
2 Reserved for possible future use. Fixed to 0 by the current peripherals.

3 If set, the data type is INTERNAL. If reset, the data type is DISPLAY or
the file is a program file.

4 If set, the file is a program file. If reset, the file is a data file.

5 If set, the record length is VARIABLE. If reset, the record length is
FIXED.

6 If set, the file is at the physical end of the peripheral and no more data can
be written.

7 If set, the file is at the end of its previously created contents. You can
still write to the file (if it was opened in APPEND, OUTPUT, or UPDATE
mode), but any attempt to read data from the file causes an error.

18.2.2 Error Codes

Errors are indicated in bits 0 through 2 of byte 1 (Flag/Status) of the PAB. An error
code of 0 indicates that no error has occurred. However, an error code of 0 with the
COND bit (bit 2) set in the STATUS byte at address >837C indicates a bad device
name.

The table on the following page shows the possible error codes and their meanings.

EDITOR/ASSEMBLER
Page 298

FILE MANAGEMENT

Error
Code Meaning

0 Bad device name.
1 Device is write protected.

2 Bad open attribute such as incorrect file type, incorrect record length,
incorrect I/O mode, or no records in a relative record file.

3 Illegal operation; i.e., an operation not supported on the peripheral or a

conflict with the OPEN attributes.
4 Out of table or buffer space on the device.

5 Attempt to read past the end of file. When this error occurs, the file is
closed. Also given for non-extant records in a relative record file.

6 Device error. Covers all hard device errors such as parity and bad
medium errors.

7 File error such as program/data file mismatch, non-existing file opened in
INPUT mode, etc.

18.2.3 Device Service Routine Operations

Device Service Routines (DSRs) react in specific ways to various operations and
conditions. These reactions are described in the following sections.

18.2.3.1 Error Conditions

If a non-existent DSR is called, the File Management System returns with the COND

bit (bit 2) set in the STATUS byte at address >837C.

If the DSR detects an error, it indicates the error in bits 0 through 2 of byte 1 of
the PAB. Therefore, your assembly language program must clear these bits before

every I/O operation and check them after every I/O operation.

18.2.3.2 Special Input/Output Modes

The DSR uses only the first part of the file descriptor in its search for the requested
peripheral. The remainder of the descriptor can be used to indicate special
device-related functions such as transmission rate, print width, etc. The DSR ignores
descriptor portions that it does not recognize.

EDITOR/ASSEMBLER
Page 299

FILE MANAGEMENT

An example of a special I/O mode descriptor that sets values for the RS232 Interface
is

RS232.BAUDRATE=1200.DATABITS=7.CHECKPARITY.PARITY=ODD

18.2.3.3 Default Handling

The DSR has certain defaults that are used if no values are specified. The following

shows these defaults.

Possibilities Default

Sequential or relative Sequential.

UPDATE, OUTPUT, INPUT, or APPEND UPDATE.
DISPLAY or INTERAL DISPLAY.

Fixed or variable length Fixed if relative and variable if
sequential.

Logical record length Depends on the specific peripheral.

18.2.4 Memory Requirements

The DSR uses Registers 0 through 10 of the calling Workspace and addresses >834A
through >836D. If the DSR is called in a non-interrupt driven mode (for example,
through a standard DSR entry), addresses >83DA through >83DF are used. Also used
are PAD (See Section 24.3.1) and VDP RAM.

18.2.5 Linkage to TI BASIC

When using TI BASIC, the PAB is modified by the addition of four bytes at the
beginning of the PAB. The list on the next page describes the bytes which make up

a PAB when it is called from TI BASIC.

EDITOR/ASSEMBLER
Page 300

FILE MANAGEMENT

Byte Contents Meaning
0,1 Link to next PAB The address of the next PAB in the chain of PABs used

by TI BASIC. The last PAB in the chain has a value
of >0000 in these bytes.

2 File Number The number assigned to the file by TI BASIC.

3 Internal Offset If 0, there is no effect. If non-zero, it is the value to
be added to the start address of the data buffer before

the next PRINT or INPUT operation. This is only used
if the previous PRINT operation ended in a semicolon
(;) or comma (,) or if the previous INPUT operation
ended in a comma (,).

4 I/O Op-code Same as byte 0 in the PAB described in Section 18.2.

5 Flag/Status Same as byte 1 in the PAB described in Section 18.2.

6,7 Data Buffer Same as bytes 2,3 in the PAB described in Section
Address 18.2.

8 Logical Record Same as byte 4 in the PAB described in Section

Length 18.2.

9 Character Count Same as byte 5 in the PAB described in Section 18.2.

10,11 Record Number Same as bytes 6,7 in the PAB described in Section
18.2.

12 Screen Offset Same as byte 8 in the PAB described in Section 18.2.

13 Name Length Same as byte 9 in the PAB described in Section 18.2.

14+ File Descriptor Same as bytes 10+ in the PAB described in Section
18.2.

EDITOR/ASSEMBLER
Page 301

FILE MANAGEMENT

The following figure summarizes the bytes which make up a PAB.

10,1
I Link to next PAB

12 1 3
1 File Number 1 Internal Offset

14
I I/O Op-code
+

I5
1 Flag/Status

16,7
I Data Buffer Address

18 9
I Logical Record Length Character Count

1 10,11
1 Record Number

112 1 13
1 Screen Offset 1 Name Length

114+
I File Descriptor

The following shows how three PABs might be linked in TI BASIC.

<-CPU RAM-> VDP RAM >

>833C >OFAB >0E27 >0D1A

+ + + + + + +
1--> 1 0E27 1--> I OD1A I--> I 0000 I
+ + + + + + +

1 04 1 -- I 1 01 1 -- I 12A I -- I
+ + + + + +
I PAB #1 I I PAB #2 I I PAB #3 I

EDITOR/ASSEMBLER
Page 302

I OFAB
+

FILE MANAGEMENT

18.3 EXAMPLE OF FILE ACCESS

The following program opens a fixed 80 file called DSK1.DATA, reads a record from
it, waits for you to press a key, closes the file, and returns to the calling program.

DEF DSR
REF DSRLNK,VMBW,VMBR,VSBW,KSCAN

*

PABBUF EQU >1000
PAB EQU >F80
*

STATUS EQU >837C
PNTR EQU >8356
*

SAVRTN DATA 0
PDATA DATA >0004,PABBUF,>5000,>0000,>0009

TEXT 'DSKI.DATA'
EVEN

READ BYTE >02
CLOSE BYTE >01
*

MYREG BSS >20
BUFFER BSS 80
*

DSR MOV R11,®SAVRTN Save return address.

LWPI MYREG Load own registers.

LI RO,PAB

LI R1,PDATA

LI R2,>20
BLWP [a1VMBW Move PAB data into PAB in VDP RAM.

*

LI R6,PAB+9 Pointer to name length.

MOV R6,®PNTR Store pointer to name length in >8356.

BLWP Qa DSRLNK Open file.

DATA 8

*

MOVB [1READ,R1
LI RO,PAB
BLWP @VSBW Change I/O op-code to read.

EDITOR/ASSEMBLER
Page 303

*

*

FILE MANAGEMENT

*

MOV R6,Qa PNTR
BLWP Qa DSRLNK
DATA 8

Restore pointer to name.
Read one record.

LI RO,PABBUF
LI R1,BUFFER
LI R2,80
BLWP LaIVMBR Move to CPU buffer.

*
LI RO,>102 Specify beginning screen location.
LI R1,BUFFER
LI R2,80
BLWP [aIVMBW Move line to screen.

*

LOOP
BLWP Qa KSCAN
MOVB [aISTATUS,RO
JEQ LOOP

*

OVER MOVB @CLOSE,R1
LI RO,PAB
BLWP QVSBW

*

Wait for key press.

Change I/O op-code to close.

MOV R6,Qa PNTR Restore pointer to name.
BLWP [aIDSRLNK Close file.
DATA 8

CLR RO
MOVB RO,Qa STATUS So that no error is reported.
MOV [1SAVRTN,R11 Saved return address.
RT Return to calling routine.

END

EDITOR/ASSEMBLER
Page 304

*

*

SECTION 19: THE LINKING LOADER

The Linking Loader loads assembly language programs into the Memory Expansion

unit. The Loader is written in assembly language and is included in the utility
programs in the Editor/Assembler Command Module. Both compressed and

uncompressed tagged object code can be handled by the Loader.

The Loader is loaded into the Memory Expansion unit as part of the utility programs
when you select the LOAD AND RUN option from the Editor/Assembler selection list
or when a TI BASIC program executes the CALL INIT statement. It is also loaded
the first time CALL LOAD is executed without the Loader in memory. The utility
programs are loaded in the lower block of memory, starting at address >2000, in the
Memory Expansion unit.

19.1 MEMORY ALLOCATION

The Loader always attempts to load relocatable programs into the 24K block of high
memory located in the Memory Expansion unit at addresses >A000 through >FFD7. If
insufficient space is there, the Loader places the program between the utilities and
the REF/DEF table in the low memory of the Memory Expansion unit at
approximately addresses >2676 through >3F37.

When a 0-tag (see Section 15.2 for a description of tags) is encountered, and high
memory has enough space, the starting load address is updated from the First Free
Address in High memory (FSTHI, equal to UTLTAB+2 or address >2024), and the

module length is added to FSTHI.

If the high memory is full or has insufficient space to allocate the program, the
Loader checks the low memory. If sufficient space is there, the starting load
address is updated from the First Free Address in Low memory (FSTLOW, equal to
UTLTAB+6 or address >2028) and the module length is added to FSTLOW.

Loading absolute code does not affect these memory pointers. Thus, loading
relocatable code after absolute code has been loaded may cause the absolute code to
be overwritten. Similarly, loading absolute code after relocatable code may
overwrite the relocatable code.

EDITOR/ASSEMBLER
Page 305

THE LINKING LOADER

The Loader can be called repeatedly to load more than one file until both high and
low memory are full. The programs that have been loaded are accessible until one of
the following conditions occurs.

• The EDIT, LOAD, or SAVE option is selected from the Editor/Assembler
selection list, causing the Editor to be loaded into memory.

• The ASSEMBLE option is selected from the Editor/Assembler selection list and
the Assembler program is loaded into memory.

• The LOAD AND RUN option is selected from the Editor/Assembler selection
list and the file name is entered.

• The RUN PROGRAM FILE option is selected from the Editor/Assembler
selection list, and a program file is loaded into memory.

• CALL INIT is executed from TI BASIC.

• An error occurs when loading a program. Then all previous loads are invalid.

EDITOR/ASSEMBLER
Page 306

THE LINKING LOADER

19.2 THE REF/DEF TABLE

The object tags generated by DEF statements (5- and 6-tags--see Section 15.2.1 for
more information on tags) define locations in a program that can be referenced by
other routines. Additionally, they can define assembly language programs which can
be called by name from the LOAD AND RUN or RUN options on the
Editor/Assembler selection list or from the CALL LINK statement from TI BASIC.

If the entry point is specified in the label field of an END statement (tag 1 or 2), the

Loader branches to the entry address and starts execution without returning to the
Editor/Assembler. In this case, the screen is not cleared or changed in color, so

clearing the screen and specifying a screen color is your responsibility. Also, the
Workspace Registers at USRWS are not loaded, so you must load USRWS or your own
Workspace Registers with the LWPI instruction.

The 5- and 6-tags contain the name and address that are associated with a DEF
instruction. These names and addresses are placed in the REF/DEF table starting at
the highest address in low memory (>3FFF) and going toward >3000. Each entry is
eight bytes, six for the ASCII name and two for the address. Some REFs and DEFs
are predefined and are placed in the REF/DEF table when the Loader is placed in
memory. The REF/DEF table entries for your programs normally start at >3F38 and
go toward >3000 from there. Each time an item is added to the REF/DEF table, the
pointer to the Last Free Address in Low Memory (LSTLOW, equal to UTLTAB+8 or
address >202A) is adjusted.

The Loader also resolves REFs in your programs. Any DEFed symbol can be REFed in
your program. REFed symbols are stored in the REF/DEF table in the same way as
DEFed symbols. To distinguish a REF entry from a DEF entry, the first word of REF
entries is in two's-complement form.

REFs are resolved and deleted from the table as soon as the corresponding DEF is
found. DEFs remain until the next time the utilities are loaded, which resets the
memory pointers.

The following list gives the predefined symbols for which the Loader resolves
references. The address is the address to which the symbols are equated. An error
occurs when the program is executed if a reference is never defined with the DEF
instruction. The use of these symbols is described in Section 16.

EDITOR/ASSEMBLER
Page 307

THE LINKING LOADER

Name Address Description

UTLTAB >2022 • Start of the utility variable table.

PAD >8300 Start of CPU scratch pad RAM.

GPLWS >83E0 GPL interpreter workspace pointer.

SOUND >8400 Sound chip register.

VDPRD >8800 VDP RAM Read Data Register.

VDPSTA >8802 VDP RAM Read Status Register.

VDPWD >8C00 VDP RAM Write Address Register.

SPCHRD >9000 Speech Read Data Register.

SPCHWT >9400 Speech Write Data Register.

GRMRD >9800 GROM/GRAM Read Data Register.

GRMRA >9802 GROM/GRAM Read Address Register.

GRMWD >9C00 GROM/GRAM Write Data Register.

GRMWA >9CO2 GROM/GRAM Write Address Register.

SCAN >000E Address of branch to the keyboard scan utility (KSCAN).

The following list gives the utilities, also discussed in Section 16, for which the

Loader resolves references.

Name Use
VSBW Writes a single byte to VDP RAM.

VMBW Writes multiple bytes to VDP RAM.

VSBR Reads a single byte from VDP RAM.
VMBR Reads multiple bytes from VDP RAM.

VWTR Writes a single byte to a VDP Register.

KSCAN Scans the keyboard.
GPLLNK Links your program to Graphics Programming Language routines.
XMLLNK Links your program to the assembly language routines in the console

ROM or RAM.
DSRLNK Links your program to Device Service Routines.
LOADER Links your program to the Loader to load TMS9900 tagged object

code.

EDITOR/ASSEMBLER
Page 308

THE LINKING LOADER

19.3 OBJECT TAGS

Object format tags are created in object code when your assembly language code is
assembled. The tags provide the Loader with the information it needs to load the
object code. All tags 0 through 9 and A through I, with the exception of D, E, G,
and H, can be used by the Loader. Any other tags cause the Loader to stop with an
error. In addition, the colon (:) as the first character in a record signifies the end of
the file. The actions taken for each of the object format tags are described below.

For a further discussion of object format tags, see Section 15.2.

Code Name Actions

0 Module ID The First Free Address pointer is placed in the relocation
base register and the load address register. The module
length is added to the First Free Address pointer. The
module name is ignored.

1,2 Entry A value of 1 indicates an absolute entry address. A value

Address of 2 indicates a relocatable entry address. One of these
tags may appear at the end of the object code file by
specifying an entry point with an END in your assembly
language program. The Loader immediately executes any
object code starting with one of these tags.

3,4 External A value of 3 indicates that the symbol is in relocatable

References code. A value of 4 indicates that the symbol is in absolute
code. The REFed symbol is placed in the REF/DEF table
with the address of the symbol (plus the relocation base if

the tag is 3). The entry is deleted from the table when the
corresponding DEF is found. The first word of the
reference is given in two's-complement notation.

5,6 External A value of 5 indicates that the symbol is in relocatable
Definitions code. A value of 6 indicates that the symbol is in absolute

code. The DEFed symbol is placed in the REF/DEF table

with the address of the symbol (plus the relocation base if
the tag is 5).

7 Record The checksum is tested with the computed value.
Checksum

EDITOR/ASSEMBLER
Page 309

THE LINKING LOADER

Code Name Actions
8 Ignored The value field is ignored.

Checksum

9 Absolute The value is placed in the current address register.
Load Address

A Relocatable The value plus the relocation base register is placed in
Load Address the current address register.

B Absolute The data is placed at the address specified by the
Data current address register. The current address is

incremented by 2.

C Relocatable The value of the data plus the relocation base register is
Data placed at the address specified by the current address

register. The current address is incremented by 2.

D Load Bias Loading halts with an error.

E Undefined Loading halts with an error.

F End of The rest of the record is ignored and a new record is
Record read.

G,H Undefined Loading halts with an error.

I Program Ignored.
Segment ID

End of File When the first character of a record, loading halts.

EDITOR/ASSEMBLER
Page 310

THE LINKING LOADER

Note: When absolute code is loaded into memory, free space pointers are not
updated or checked against the size of the program. Thus, the Loader does not issue

an error message if the program overwrites a utility program (including the Loader
itself) or does not fit in memory. When loading a short program by poking data into

memory, the same situation occurs. To run the poked program, you must modify the
REF/DEF table by adding a DEFed entry for the program. To avoid having the
Loader overwrite memory, the free space address pointer should be adjusted so that
the Loader does not load a program into an area where an AORGed or poked program
is located. The TI BASIC subroutine PEEK can be used to read the pointers before

they are modified. See Section 17.1.4 for more information.

19.3.1 Loader Error Codes

If no error occurs, the second bit in the STATUS byte at >837C is reset on return

from the Loader. If an I/O or loading error ocurs, the status bit is set. The
following are the error codes used.

Code Meaning
0-7 Standard I/O errors.
8 Memory overflow.
9 Not used.

10 Illegal tag.
11 Checksum error.
12 Unresolved reference.

Note: If the Loader finds a label in the DEF statement that is already defined in
the REF/DEF table, a duplicate definition error is issued and loading stops.

EDITOR/ASSEMBLER
Page 311

SECTION 20: SOUND

With the TI Home Computer, your program can generate up to three tones, with a

range of 110 to 55,938 Hz, and one noise. Sound generation involves setting the
frequency of the tone or the type of noise desired, setting the volume or attenuation,
setting the duration of the tone or noise, and then starting the sound. Sound is
generated using the TMS9919 Sound Generator Controller.

Three addresses in CPU RAM are associated with processing sound information. You
place a pointer to the sound table in VDP RAM at address >83CC. You place >01 at
address >83CE to start the processing of the sound generator. This address is used
by the interrupt routine as a count-down timer during the execution of sound. The
least-significant bit of the byte at address >83FD (which is the least-significant byte
of GPL Workspace Register 14) must be set to indicate that the sound table is in VDP
RAM.

The VDP interrupt must be disabled while you are setting up memory for sound
operation. Normally the VDP interrupt is disabled when control is transferred to
your assembly language program. If necessary, you can disable the VDP interrupt
with the LIMI 0 instruction. After the memory has been set up, you must enable
VDP interrupt with the LIMI 2 instruction in order to start processing sound

operation.

Note: Interrupts should never be enabled while your program is accessing VDP
memory because the interrupt routines can change the VDP read or write addresses.
To execute sound lists automatically, you must enable interrupts momentarily at least
every sixtieth of a second. If your program has a key scanning loop, such as the one

shown below, that is often a good place to enable interrupts.

GETKEY LIMI 2
LIMI 0
BLWP @KSCAN

MOVB Cal>837C,0
JEQ GETKEY

Test for interrupt.

EDITOR/ASSEMBLER
Page 312

SOUND

20.1 SOUND TABLE

You must construct a sound table in order to create sounds. The sound table consists
of sound lists, each of which provides the information necessary for the operation of

the sound processor. For a tone, the information consists of the register value and
data for frequency and attenuation. For a noise, the information consists of a noise
source and attenuation. Tones can be specified, singly or in combination, for
generator 1, 2, or 3. Noise can be specified by a noise generator.

When you are generating tones, the first byte in the sound list is the number of bytes
to be loaded into the sound processor. Following that are the bytes to be loaded. A
generator and frequency can be specified by two bytes. A generator and attenuation

can be specified by one byte. A generator and noise can be specified by one byte.
After you give all generator, tone, noise, and attenuation specifications, you give a
duration time. A sound list consists of a series of these specifications. Each
specification consists of a byte count, a series of generator, tone, noise, and
attenuation specifications, and a duration time.

The two bytes that specify the tone information contain the following.

Byte Bit Contents
1 0 1.

1 - 3 Operation.

4 - 7 Four least significant frequency bits.

2 0-1 00.

2 - 7 Six most significant frequency bits.

The byte that specifies attenuation information contains the following.

Byte Bit Contents
1 0 1.
1 1 - 3 Operation.
1 4 - 7 Attenuation.

EDITOR/ASSE MBLER
Page 313

SOUND

The byte that specifies noise information contains the following.

Byte Bit Contents
1 0 1.
1 1 3 Operation.
1 4 0.
1 5 White noise or periodic noise.

1 6 - 7 Type of noise.

20.1.1 Operation Specification

The operations are described in bits 1 through 3 of byte 1.

Operation Significance
0 0 0 Tone 1 frequency

0 0 1 Tone 1 attenuation
0 1 0 Tone 2 frequency

0 1 1 Tone 2 attenuation

1 0 0 Tone 3 frequency
1 0 1 Tone 3 attenuation
1 1 0 Noise control
1 1 1 Noise attenuation

20.1.2 Frequency Specification

The frequency value required in the Sound Table is contained in bits 2 through 7 of
byte 2 and bits 4 through 7 of byte 1 of the bytes specifying tone information. This
allows a value of from 00 0000 0000 through 11 1111 1111 (>000 through >3FF). This
value, which is kept in the period register, defines half of the period of the desired
frequency, N. The value is loaded into a 10-stage tone counter which is decremented
at a rate equal to n/16, where n is the standard input clock frequency, 3.579545 MHz.
When the tone counter decrements to zero, a borrow signal is produced. This borrow
signal toggles the frequency flip-flop and reloads the tone counter. Thus, the period
of the desired frequency is twice the value of the period register.

EDITOR/ASSEMBLER
Page 314

SOUND

The frequency code, f, is equal to (n/32)/N, or K/N. The rate is specified so that the
value of K is equal to 111860.8 regardless of the input clock frequency. Thus, f =
111860.8/N can always be used to calculate the frequency code. The lowest possible
frequency is 110 Hz, and the highest is 55,938 Hz.

For example, to output a frequency of 110 Hz, f = 111,860.8/110 or approximately

1017 (>3F9 or 11 1111 1001 binary). Placing this value into the correct positions
(most significant six bits in bits 2 through 7 of byte 2 and least significant four bits
in bits 4 through 7 of byte 1), adding an operation description of 000 in bits 1 through

3 of byte 1 to specify a frequency for generator 1, and putting in the required bit
values gives the correct byte values. They are 1000 1001 (>89) in byte 1 and 0011
1111 (>3F) in byte 2.

20.1.3 Attenuation Specification

The attenuation can be from 0 to 28 DB. In addition, the generator can be made
silent by specifying the maximum attenuation. The attenuation is specified in bits 4

through 7 of the byte specifying attenuation. In determining the attenuation, these
four bits may be regarded as having a binary 0 after them. Thus, a value of 0001
may be considered as 00010, or an attenuation of 2 DB. A value of 0110 may be
considered as 01100, or an attenuation of 12 DB. Setting all the bits on, or a value
of 1111, turns the sound generator off.

For example, to turn off generator 1, data 1001 1111 (>9F) is placed in the byte. To
put an attenuation of 0 DB in the noise generator, data 1111 0000 (>F0) is placed in
the byte.

20.1.4 Noise Specification

The noise generator consists of a noise source and an attenuator. The noise source is
a 15-stage shift register with an exclusive OR feedback network. The feedback
network has provisions to protect the shift register from being locked in the zero
state.

The feedback network has two feedback tap configurations as determined by bit 5.
If bit 5 is 0, the noise is of the periodic type. If bit 5 is 1, white noise results.
(See the User's Reference Guide for more information on white noise and periodic
noise.) When bit 5 is changed, the shift register is cleared.

EDITOR/ASSEMBLER
Page 315

SOUND

The register shifts at one of four rates as determined by bits 6 and 7. The fixed
shift rates are derived from the input clock, which has a frequency, n, of 3.579545
MHz. A value of 00 specifies a shift rate of n/512 or 6991. A value of 01 specifies
a shift rate of n/1024 or 3496, and a value of 10 specifies a shift rate of n/2048 or
1738. With a value of 11, you can define the shift rate by feeding the shift rate into
generator 3.

For example, to produce a white noise with a shift rate of 1748, data 1111 0110 (>F6)
must be placed in the byte.

20.1.5 Duration Control

After the byte giving the number of specification bytes to be loaded and the
specifications are entered, a byte which controls the duration of the sound is given.
This byte specifies the length in sixtieths of a second. It can range from >00 (no

time, which stops the generator) through >FF (approximately 4.25 seconds).

For example, to specify a tone with a frequency of 110 Hz and 2 DB of attenuation
for 0.5 seconds on generator 1, the bytes to load are >03, >89, >3F, >91, >1E. The
first byte (>03) specifies that there are three data bytes to load into the sound
generator hardware. The next two bytes (>893F) specify a tone of 110 Hz on

generator 1. The next byte (>91) specifies an attenuation of 2 DB on generator 1.
The last byte (>1E) specifies a duration of 30/60ths of a second. You can terminate
sound with data >01, >9F, 0.

EDITOR/ASSEMBLER
Page 316

SOUND

20.2 DIRECT ACCESS TO THE SOUND GENERATOR

Any sound list, excluding the time duration data, can be directly loaded into the
sound processor at address >8400. This address is in the DEF table in the utility
program, so REF SOUND must be included in your program. If you use this direct

loading, you must include an appropriate time delay so that the sound is heard for the
desired period. This method does not involve the interrupt processing routine in the
console.

EDITOR/ASSEMBLER
Page 317

SOUND

20.3 SOUND GENERATOR FREQUENCIES

The following table lists the data used to produce various notes with generator 1.
The first nybble must be changed to use generator 2 or 3.

Alternatively, you can find the note half a step above a given note by the following

formula.

New frequency = old frequency * 2(1/12)

For example, the frequency half a step higher than middle A is 440 * 2
(1/12) or

466.16.

In the table, the first number after the note specifies the octave of the note. The
second number, which is always 1, specifies that this is for generator 1. This table,
and similar ones for generators 2 and 3, are often useful in producing music. For

example, your program might contain

A01 EQU >893F A on generator 1.

A02 EQU >A93F A on generator 2.
A03 EQU >C93F A on generator 3.

A#01 EQU >803C A# on generator 1.

and so on. You may then refer to notes by name rather than by the data required to

produce them.

Desired Frequency

Note Data Frequency Code

A01 893F 110.00 1017 (>3F9)
A#01 803C 116.54 960 (>300)

BO1 8A38 123.47 906 (>38A)
C11 8735 130.81 855 (>357)

C#11 8732 138.59 807 (>327)

D11 8A2F 146.83 762 (>2FA)

D#11 8F2C 155.56 719 (>2CF)

E11 872A 164.81 679 (>2A7)

Fll 8128 174.61 641 (>281)

F#11 8D25 185.00 605 (>25D)

Gll 8B23 196.00 571 (>23B)

G#11 8B21 207.65 539 (>21B)

EDITOR/ASSEMBLER
Page 318

SOUND

Desired Frequency
Note Data Frequency Code
All 8C1F 220.00 508 (>1FC)
A#11 801E 233.08 480 (>1E0)
Bll 851C 246.94 453 (>105)
C21 8C1A 261.63 428 (>1AC)
C#21 8419 277.18 404 (>194)
D21 8D17 293.66 381 (>17D)
D#21 8816 311.13 360 (>168)
E21 8315 329.63 339 (>153)
F21 8014 349.23 320 (>140)
F#21 8E12 369.99 302 (>12E)
G21 8D11 392.00 285 (>11D)
G#21 8D10 415.30 269 (>10D)
A21 8EOF 440.00 254 (>0FE)
A#21 800F 466.16 240 (>OFO)
B21 820E 493.88 226 (>0E2)
C31 860D 523.25 214 (>0D6)
C#31 8A0C 554.37 202 (>0CA)
D31 8E0B 587.33 190 (>OBE)
D#31 840B 622.25 180 (>0B4)
E31 8A0A 659.26 170 (>0AA)
F31 800A 698.46 160 (>OAO)
F#31 8709 739.99 151 (>097)
G31 8F08 783.99 143 (>08F)
G#31 8708 830.61 135 (>087)
A31 8F07 880.00 127 (>07F)
A#31 8807 932.33 120 (>078)
B31 8107 987.77 113 (>071)
C41 8806 1046.50 107 (>06B)
C#41 8506 1108.73 101 (>065)
D41 8F05 1174.66 95 (>05F)
D#41 8A05 1244.51 90 (>05A)
E41 8505 1318.51 85 (>055)
F41 8005 1396.91 80 (>050)
F#41 8C04 1479.98 76 (>04C)
G41 8704 1567.98 71 (>047)
G#41 8304 1661.22 67 (>043)
A41 8004 1760.00 64 (>040)
A#41 8CO3 1864.66 60 (>03C)
B41 8903 1975.53 57 (>039)

EDITOR/ASSEMBLER
Page 319

SOUND

Desired Frequency
Note Data Frequency Code
C51 8503 2093.00 53 (>035)
C# 51 8203 2217.46 50 (>032)
D51 8003 2349.32 48 (>030)
D# 51 8D02 2489.02 45 (>02D)
E51 8A02 2637.02 42 (>02A)
F51 8802 2793.83 40 (>028)
F#51 8602 2959.96 38 (>026)
G51 8402 3135.96 36 (>024)
G#51 8202 3322.44 34 (>022)
A51 8002 3520.00 32 (>020)
A#51 8E01 3729.31 30 (>O1E)
B51 8C01 3951.07 28 (>01C)
C61 8B01 4186.01 27 (>01B)
C#61 8901 4434.92 25 (>019)
D61 8801 4698.64 24 (>018)
D#61 8601 4978.03 22 (>016)
E61 8501 5274.04 21 (>015)
F61 8401 5587.65 20 (>014)

EDITOR/ASSEMBLER
Page 320

SOUND

20.4 EXAMPLES

The following sections show a program segment which accesses the sound controller
and two programs, one that plays a chime, and one that makes a crashing sound.

20.4.1 Accessing the Sound Controller

This program segment shows how to access the sound controller, assuming that the
sound table is in VDP RAM.

HO1 BYTE >O1
EVEN

*
START LIMI 0 Disable VDP interrupt.

LI R10,TABLE Load sound table address in VDP
* RAM.

MOV R10,@>83CC Load it at >83CC.
MOVB @H01,@>83CE Trigger sound processing.
SOCB @H01,@>83FD Set VDP RAM flag.
LIMI 2 Enable VDP interrupt.

20.4.2 A Chime

The following program repeatedly plays a chime.

*
* Example program to play a chime.
*

REF VMBW
DEF CHIME

*
BUFFER EOU >1000 VDP RAM buffer used by the sound
* generator.
*
HO1 BYTE >01

EVEN

EDITOR/ASSEMBLER
Page 321

SOUND

*

CHIME

*

*

LOOP

RO,BUFFER
R1,CDATA
R2,118

BLWP [a1VMBW

Load VDP RAM buffer address.
Pointer to the sound data.
118 bytes to move to the VDP RAM
buffer.
Move to the VDP RAM.

LI
LI
LI

0
R10,BUFFER
R10,[al>83CC
@HO1,LaU83FD
[a1H01,[1>83CE
2

*

LOOP2

*

CDATA

MOVB [1>83CE,[al>83CE
JEQ LOOP
JMP LOOP2

LIMI
LI
MOV
SOCB
MOVB
LI MI

BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE

Disable VDP interrupt.
Load sound table address.
Load pointer to the table.
Set VDP flag.
Trigger sound processing.
Enable VDP interrupt.

Check if time is up.
Repeat the sound.
Wait until finished.

> 05,> 9F,> BF,> DF,>FF,> E 3,1
> 09,> 8E,> 01,> A4,> 02,> C 5,> 01,> 90, >B 6,> D 3, 6
>03,>91,>B7,>D4,5
>03,>92,>B8,>D5,4
>05,>A7,>04,>93,>B0,>D6,5
>03,>94,>B1,>D7,6
>03,>95,>B2,>D8,7
> 05,> C A,> 0 2,> 96,> B 3,> D0, 6
>03,>97,>B4,>D1,5
>03,>98,>B5,>D2,4
>05,>85,>03,>90,>B6,>D3,5
>03,>91,>B7,>D4,6
>03,>92,>B8,>D5,7
> 05,> A4,> 0 2,> 9 3,> B 0,> D6, 6
>03,>94,>B1,>D7,5
>03,>95,>B2,>D8,4
> 05,> C 5,> 01,> 96,> B 3,> D0, 5

EDITOR/ASSEMBLER
Page 322

SOUND

BYTE
BYTE
BYTE
END

>03,>97,>B4,>D1,6
>03,>98,>B5,>D2,7
>03,>9F,>BF,>DF,O

20.4.3 A Crash

The following program makes a crashing sound.

*

* Example Program to make a crash sound.
*

REF VMBW
DEF CRASH

*

BUFFER
*

EQU >1000 VDP RAM buffer used by sound
generator.

*

HO1 BYTE >O1
EVEN

*

CRASH
LI RO,BUFFER Load VDP RAM buffer address.
LI R1,CDATA Pointer to the sound data.

*
LI R2,32 32 bytes to move to the VDP RAM

buffer.
BLWP @VMBW Move to VDP RAM buffer.

*

LOOP
LI MI 0 Disable VDP interrupt.
LI Load sound table address. R10,BUFFER
MOV R10,@>83CC Load pointer to the table.
SOCB CalHO1,CaJ>83FD Set VDP RAM flag.
MOVB (_alHO1,La1>83CE Start sound processing.
LI MI 2 Enable VDP interrupt.

*

LOOP2
MOVB Lal>83CE,Qa >83CE Check if time is up.
JEQ LOOP Finished with the sound table.
JMP LOOP2 Wait until finished.

EDITOR/ASSEMBLER
Page 323

SOUND

*

CDATA BYTE >03,>9F,>E4,>F2,5
BYTE >02,>E4,>F0,12
BYTE >02,>E4,>F2,10
BYTE >02,>E4,>F4,8
BYTE >02,>E4,>F6,6
BYTE >02,>E4,>F8,4
BYTE >02,>E4,>FA,2
BYTE >01,>FF,O
END

EDITOR/ASSEMBLER
Page 324

SECTION 21: COLOR, GRAPHICS, AND SPRITES

The TI Home Computer gives you the capability of displaying a wide variety of

colored graphics and sprites, enabling you to make your programs lively and
interesting. You can place the screen in one of four modes: text, graphics,
multicolor, and bit-map (available only on the TI-99/4A).

In graphics mode, you can use the standard ASCII characters and define new
characters. You can make characters and their backgrounds a variety of colors.
The screen is 32 columns by 24 lines. This is the mode used by the Editor/Assembler
except when editing, TI BASIC, and most applications.

In multicolor mode, you can set the colors of a number of small boxes. The screen
is 64 columns by 48 lines.

In text mode, you can use the standard ASCII characters and define new characters.
All characters are one color, and the background is one color. The screen is 40
columns by 24 lines. This is the mode used by the Editor.

In bit-map mode (available only on the TI-99/4A because of its use of the TMS9918A
video processor instead of the TMS9918 video processor), you can set any pixel (the

smallest dot on the screen) on or off and make the pixels and the background a
variety of colors. The screen is 256 columns by 192 lines.

In all modes except text, up to 32 sprites (moving graphics) can be created and set in
motion without further program control.

EDITOR/ASSEMBLER
Page 325

COLOR, GRAPHICS, AND SPRITES

21.1 VDP WRITE-ONLY REGISTERS

Before using the different modes, certain preliminary information is necessary. The
following describes the eight VDP write-only registers.

VDP Register 0 The default for Register 0 is >00 for the Editor/Assembler, TI
BASIC, and TI Extended BASIC.

Bits 0 - 5 Reserved. Must be 000000.

Bit 6 Mode bit 3, called M3. If this bit is set, the display
is in bit-map mode.

Bit 7 External video enable/disable. A value of 1 enables
video input and a value of 0 disables video input.

VDP Register 1 The default for Register 1 is >E0 in the Editor/Assembler, TI
BASIC, and TI Extended BASIC. Note: Before changing this
Register, put a copy of the new value you wish it to have at

address >83D4. When a key is pressed, a copy of the value at this
address is placed in Register 1.

Bit 0 4/16K selection. A value of 0 selects 4K RAM
operation, and a value of 1 selects 16K RAM
operation.

Bit 1 Blank enable/disable. A value of 0 causes the active
display (the entire screen) to be blank, and a value of
1 allows display on the screen. With a value of 0,
the screen only shows the border color.

Bit 2 Interrupt enable/disable. A value of 0 disables VDP
interrupt, and a value of 1 enables VDP interrupt.

Bit 3 Mode bit 1, called Ml. If this bit is set, the display
is in text mode.

Bit 4 Mode bit 2, called M2. If this bit is set, the display
is in multicolor mode.

Bit 5 Reserved. Must be 0.

EDITOR/ASSEMBLER
Page 326

COLOR, GRAPHICS, AND SPRITES

Bit 6 Sprite size selection. A value of 0 selects standard
size sprites, and a value of 1 selects double-size
sprites.

Bit 7 Sprite magnification selection. A value of 0 selects
unmagnified sprites, and a value of 1 selects
magnified sprites.

VDP Register 2 The default for Register 2 is >00 in the Editor/Assembler, TI
BASIC, and TI Extended BASIC.

Defines the base address of the Screen Image Table. The Screen
Image Table base address is equal to the value of this register
times >400.

VDP Register 3 The default for Register 3 is >OE in the Editor/Assembler, >OC in
TI BASIC, and >20 in TI Extended BASIC.

Defines the base address of the Color Table. The Color Table
base address is equal to the value of this register times >40.

VDP Register 4 The default for Register 4 is >01 in the Editor/Assembler and >00
in TI BASIC and TI Extended BASIC.

Defines the base address of the Pattern Descriptor Table. The
Pattern Descriptor Table base address is equal to the value of this
register times >800.

VDP Register 5 The default for Register 5 is >06 in the Editor/Assembler, TI
BASIC, and TI Extended BASIC.

Defines the base address of the Sprite Attribute List. The Sprite
Attribute List base address is equal to the value of this register
times >80.

EDITOR/ASSEMBLER
Page 327

COLOR, GRAPHICS, AND SPRITES

VDP Register 6 The default for Register 6 is >00 in the Editor/Assembler, TI

BASIC, and TI Extended BASIC.

Defines the base address of the Sprite Descriptor Table. The

Sprite Descriptor Table base address is equal to the value of this

register times >800.

VDP Register 7 The default for Register 7 is >F5 in the Editor/Assembler and >17

in TI BASIC and TI Extended BASIC.

Bits 0 - 3 The color code of the foreground color in text mode.

Bits 4 - 7 The color code for the background color in all modes.

The mode bits, Ml, M2, and M3, are in bits 3 and 4 of Register 1 and bit 6 of
Register 0. They determine the mode of the display. If they are all reset, the

display is in graphics mode. If Ml, in bit 3 of Register 1, is set, the display is in

text mode. If M2, in bit 4 of Register 1, is set, the display is in multicolor mode.

If M3, in bit 6 of Register 0, is set, the display is in bit-map mode, available only on

the TI-99/4A.

EDITOR/ASSEMBLER
Page 328

COLOR, GRAPHICS, AND SPRITES

21.2 GRAPHICS MODE

In graphics mode, you can use the standard ASCII characters and define patterns or
characters and their foreground and background colors. The display is 32 columns by
24 lines. You can use sprites. Color and graphics are available by defining each of
the 256 characters and setting their foreground and background colors. The standard
ASCII characters are predefined by the system software.

21.2.1 Pattern Descriptor Table

The Pattern Descriptor Table contains descriptions of the 256 patterns or characters.
By changing these descriptions, you can alter the appearance of the character on the
screen. The description of each of the 256 patterns or characters takes eight bytes
of information. The description of the subprogram CHAR in the User's Reference
Guide discusses character definition.

In the Editor/Assembler, the Pattern Description Table starts at address >0800.

Thus, the description of character >00 occupies addresses >0800 through >0807,
character >01 occupies addresses >0808 through >080F, and character >FF occupies

addresses >OFFB through >OFFF.

21.2.2 Color Table

The Color Table contains the descriptions of the foreground and background colors of
the characters. The most-significant four bits of the byte specify the foreground

color and the least-significant four bits specify the background color. Each byte
specifies the color for a group of eight characters. The 16 colors available on the TI
Home Computer and their hexadecimal codes are listed on the next page.

EDITOR/ASSEMBLER
Page 329

COLOR, GRAPHICS, AND SPRITES

Hexadecimal Hexadecimal
Color Code Color Code

Transparent 0 Medium red 8
Black 1 Light red 9
Medium green 2 Dark yellow A
Light green 3 Light yellow B
Dark blue 4 Dark green C
Light blue 5 Magenta D
Dark red 6 Gray E
Cyan 7 White F

In the Editor/Assembler, the Color Table starts at address >0380. Thus, the byte at
address >0380 specifies the colors of characters >00 through >07, the byte at address
>0381 specifies the colors of characters >08 through >OF, and the byte at address
>039F specifies the colors of characters >F8 through >FF.

For example, placing a value of >17 at address >0384 sets the colors of characters
>20 through >27 to black on cyan.

21.2.3 Screen Image Table

The Screen Image Table specifies the characters that occupy each of the screen
positions. Each byte specifies the character at one screen position. The 768 screen
positions are arranged on the screen in 24 rows of 32 columns.

In the Editor/Assembler, the Screen Image Table starts at address >0000. The first
32 addresses (>0000 through >OO1F) contain the characters for the first row, the
second 32 addresses (>0020 through >003F) contain the characters for the second row,
and so on.

For example, if the value >41 (normally the code for the ASCII character A) is at
address >0022, the character described at addresses >0A08 through >OAOF of the

Pattern Descriptor Table appears in the third column of the second row, assuming the
Pattern Descriptor Table starts at address >0800.

EDITOR/ASSEMBLER
Page 330

COLOR, GRAPHICS, AND SPRITES

21.3 MULTICOLOR MODE

In multicolor mode, the display is divided into 48 rows, each containing 64 "boxes"
that are four pixels by four pixels. Each of the 3072 boxes thus defined can be one
of the 16 colors available. You can use sprites in multicolor mode.

You should initialize the Screen Image Table so that the first >80 bytes contain >00
through >1F repeated four times, the next >80 bytes contain >20 though >3F repeated
four times, and so on, so that the last >80 bytes contain >AO through >BF repeated
four times.

The Pattern Descriptor Table, instead of containing patterns, contains colors. Each
pattern in the Pattern Descriptor Table contains eight bytes. In multicolor mode,
each group of eight bytes contains 16 color descriptions, each giving the color of one
box. The colors are as given in Section 21.2.2. The left four bits of each byte
describe the color of one box and the right four bits describe the color of the next
box on the same row.

The first byte in the Pattern Descriptor Table defines the colors of the first two
boxes in the first row. The second byte defines the colors of the first two boxes in
the second row. The third byte defines the colors of the first two boxes in the third
row. This continues until the colors of the first two boxes in each of the first eight
rows have been defined.

The next eight-byte segment similarly defines the colors of the third and fourth boxes
in each of the first eight rows. This definition continues until the first 32 eight-byte
segments have described all the boxes in the first eight rows. Subsequent groups of
eight rows are described in a similar manner by subsequent groups of 32 eight-byte
segments.

The following diagram represents the screen and how it is divided in multicolor mode.
The Screen Image Table address is the offset from the beginning. The Screen Image
Table value is what you should insert in the memory location.

EDITOR/ASSEMBLER
Page 331

COLOR, GRAPHICS, AND SPRITES

Screen Image
Table Address Row 1 2 ... 63 64

Screen Image
Table Value

Colurms
3 4

>0000 - >001F 1 I I I I I ... I I I >00 - >1F
>0000 - >001F 2 I I I I I ... I I I

>0020 - >003F 3 I I I I I ... I I I >00 - >1F
>0020 - >003F 4 I I I I I ... I I I
>0040 - >005F 5 I I I I I ... I I I >00 >1F
>0040 - >005F 6 I I I I I ... I I I
>0060 - >007F 7 I I I I I ... I I I >00 >1F
>0060 - >007F 8 I I I I I ... I I I
>0080 - >009F 9 I I I I I ... I I I >20 >3F
>0080 - >009F 10 I I I I I ... I I I

>02E0 - >02FF 47 I I I I I •.. I I I >AO - >BF
>02E0 ->02FF 48 IIII I ... I I I

The following table shows the Screen Image Table character code, the addresses in
the Pattern Descriptor Table, assuming that it starts at address >0800, and the
portions of the screen that those characters and addresses describe.

Screen Image Table
Character Code

Pattern Descriptor
Table Address

Row and Columns Described
Row Columns

>00 >0800 1 1 and 2
>00 >0801 2 1 and 2
>00 >0802 3 1 and 2
>00 >0803 4 1 and 2
>00 >0804 5 1 and 2
>00 >0805 6 1 and 2
>00 >0806 7 1 and 2
>00 >0807 8 1 and 2
>01 >0808 1 3 and 4
>01 >080A 2 3 and 4

>BF >ODFF 48 63 and 64

EDITOR/ASSEMBLER
Page 332

COLOR GRAPHICS, AND SPRITES

21.4 TEXT MODE

In text mode, the display is 40 columns by 24 lines. You cannot use sprites. The
tables used to generate the patterns are the same as the Screen Image Table and

Pattern Descriptor Table used in graphics mode. However, since 960 screen positions
are used instead of 768, the Screen Image Table is longer. The definitions ignore the
last two bits in each entry so that each character has a 6-by-8 pixel definition. The
Editor is in text mode.

The two colors available in text mode are defined in VDP write-only Register 7. The
leftmost four bits describe the color of the pixels that are on and the rightmost four
bits describe the color of the pixels that are off.

For example, if the Screen Image Table starts at address >0000 and >41 is at address
>0202, the ASCII symbol A is placed on the 35th column of the 13th row. In
graphics mode, however, this address and value would place the A on the third column

of the 17th row.

EDITOR/ASSEMBLER
Page 333

COLOR, GRAPHICS, AND SPRITES

21.5 BIT-MAP MODE

In the TI-99/4A Home Computer, the bit-map mode is available for defining the
display. In bit-map mode, you can independently define each of the 768 (32-by-24)

positions of the screen. Additionally, more color information is available for each
8-by-8 pixel pattern. You can use sprites, but not their automatic motion feature.

In the bit-map mode, the patterns that occupy screen positions are described in the
Screen Image Table, the pattern descriptions are in the Pattern Descriptor Table, and
the colors of the characters are described in the Color Table.

21.5.1 Screen Image Table

The Screen Image Table lists the names of the patterns, from the Pattern Descriptor
Table, that are to be generated. Each name is a single byte from >00 to >FF.

The table is divided into three sections, with each section describing 256 entries.
The first section of 256 entries uses descriptions taken from the first 256 entries in
the Pattern Generator Table and the Color Table. The second section of 256 entries
uses descriptions taken from the second 256 entries in the Pattern Generator Table
and the Color Table, and the third section of 256 entries uses descriptions taken from
the third 256 entries in the Pattern Generator Table and the Color Table.

The first 32 entries describe the patterns that are placed on the first row of the
screen, the second 32 entries describe the patterns on the second row of the screen,
and so on. The Screen Image Table should usually be placed starting at address
>1800 by setting VDP write-only Register 2 to >06.

21.5.2 Pattern Descriptor Table

The Pattern Descriptor Table is divided into three sections of 256 entries each and
thus contains the 768 possible patterns. Each description is eight bytes long. The
description of the subprogram CHAR in the User's Reference Guide discusses
character definition.

EDITOR/ASSEMBLER
Page 334

COLOR, GRAPHICS, AND SPRITES

The descriptions in the first third of the table, 256 entries or 2048 bytes, describe the

characters in the first third of the screen. The descriptions in the second third of
the table describe the characters in the second third of the screen and the
descriptions in the last third of the table describe the characters in the last third of

the screen.

The Pattern Descriptor Table is >1800 bytes long. You must start it either at
address >0000 or >2000 by placing either >00 or >04 in VDP write-only Register 4. If
the Pattern Descriptor Table starts at address >0000, the Color Table must start at
address >2000, and vice versa.

21.5.3 Color Table

The Color Table contains the descriptions of the colors of the characters in the
Pattern Descriptor Table. The color codes are as described in Section 21.2.2. Eight

bytes are used to describe the colors of each character. The first nybble of each
byte describes the color of the pixels that are on in one row of eight pixels, and the
second nybble describes the color of the pixels that are off in the same row of eight
pixels.

The color descriptions in the first third of the table, 256 entries or 2048 bytes,

describe the colors of the characters in the first third of the screen. The
descriptions in the second third of the table describe the colors of the characters in
the second third of the screen and the descriptions in the last third of the table
describe the colors of the characters in the last third of the screen.

The Color Table is >1800 bytes long. You must start it either at address >0000 or
>2000 by placing either >00 or >04 in VDP write-only Register 3. If the Color Table
starts at address >0000, the Pattern Descriptor Table must start at address >2000,
and vice versa.

21.5.4 Bit-Map Mode Discussion

In using the bit-map mode, it is usually easiest to initialize the Screen Image Table
to >00 through >FF repeated three times, and then alter the entries in the Pattern
Descriptor Table and the Color Table.

EDITOR/ASSEMBLER
Page 335

COLOR, GRAPHICS, AND SPRITES

To alter a pixel on the screen, you must calculate the byte and bit to be changed in
the Pattern Descriptor Table. To alter the foreground and background colors of a
row of eight pixels, you must calculate the byte that must be changed in the Color
Table. The following program segment allows you to find those values.

The program segment assumes that the X-value of the pixel is in Workspace Register
0 (RO) and the Y-value of the pixel is in Workspace Register 1 (R1). The offset of
the byte that you must change in the Pattern Generator Table is returned in
Workspace Register 4 (R4), and the bit that must be altered is returned in Workspace
Register 5 (R5). The offset of the byte that you must change in the Color Table is
also returned in Workspace Register 4.

MOV R1,R4 R1 is the Y value.
SLA R4,5
SOC R1,R4
ANDI R4,>FF07
MOV RO,R5 RO is the X value.
ANDI R5,7
A RO,R4 R4 is the byte offset.
S R5,R4 R5 is the bit offset.

21.5.5 Bit-Map Mode Example

Suppose the entry for a character in the Pattern Descriptor Table is
>FF9999FF182442C3. This defines the character shown below.

Character Pattern

1*1*1*1*1*1*1*1*1 FF
1*1 I I*I*I I 1*1 99
1*1 I 1*1*1 I I*I 99
1*1*1*1*1*1*1*1*1 FF
I 1 1 1*1*1 I I I 18
I I I*I I 1*1 I I 24
I I*I I I I 1*1 I 42
1*1*1 I I I 1*1*1 C3

EDITOR/ASSEMBLER
Page 336

COLOR GRAPHICS, AND SPRITES

If the entry in the Color Table is >464646464D4D4D4D, the pattern is as follows,
with B representing dark blue (>4), R representing dark red (>6), and M representing
magenta (>D).

Character Pattern Colors

IBIBIBIBIBIBIBIBI FF 46

IBIRIRIBIBIRIRIBI 99 46

IBIRIRIBIBIRIRIBI 99 46

IBIBIBIBIBIBIBIBI FF 46

IMIMIMIBIBIMIMIMI 18 4D

IMIMIBIMIMIBIMIMI 24 4D

IMIBIMIMIMIMIBIMI 42 4D

IBIBIMIMIMIMIBIBI C3 4D

On a magenta background, the magenta portions of the character blends with the

background. With the pixel markings removed, the character appears as follows, with

* representing dark blue (>4) and = representing dark red (>6).

EDITOR/ASSEMBLER
Page 337

COLOR, GRAPHICS, AND SPRITES

21.6 SPRITES

Sprites are moving graphics that can occupy space on the screen independently and in
addition to the characters which normally make up the screen. You can define and
place in motion up to 32 sprites of any shape and several different sizes. After you
start sprites moving, their motion continues without further program control. You
can use sprites in graphics, multicolor, and bit-map mode. In bit-map mode,

however, automatic motion cannot be used. Sprites are defined by setting up tables
that indicate their position, their pattern, their color, their size, and their motion.

21.6.1 Sprite Attribute List

The Sprite Attribute List defines the position and color of each of the 32 possible
sprites, numbered 0 through 31. As sprites move, the entries in the Sprite Attribute
List are changed.

For sprites, the screen is divided into 192 (>C0) rows of 256 (>100) columns. Each of
these locations is called a pixel, the smallest dot that can be displayed on the screen.

The top row of pixels is designated >FF, followed by >00, >01, and so forth up to >BE.
The left column of pixels is designated >00, followed by >01, >02, and so forth up to
>FF.

Each sprite definition takes up four bytes in the Sprite Attribute List. The first byte
is the vertical (Y) position of the sprite and starts at >FF, followed by >00 through
>BE. The second byte is the horizontal (X) position of the sprite, which can be from
>00 through >FF. The third byte is the pattern code, which can be from >00 through
>FF. The fourth byte is the early clock attribute, which controls the location of the
sprite, and color of the sprite.

Y-locations with values of >CO through WE are effectively off the bottom of the
screen. However, a Y-location of >DO causes that sprite and all following it in the
Sprite Attribute List to be undefined. For example, if the Sprite Attribute List
starts at address >0300 and no sprites are defined, the value >DO should be placed at
address >0300. If the fifth sprite is the last one active, a value of >DO should be
placed at address >0314. You can leave all 32 sprites active with the ones you do
not wish to appear located off the bottom of the screen. However, it is
recommended that you cause the final unused sprites to be undefined with a
Y-location of >DO.

EDITOR/ASSEMBLER
Page 338

COLOR, GRAPHICS, AND SPRITES

The third byte of each entry of the Sprite Attribute Table defines the character
pattern to use for the sprite. The pattern can be from >00 to >FF and corresponds to
a character defined in the Sprite Descriptor Table. For example, in the

Editor/Assembler addresses >400 through >407 contain the entry for character >80.

The four most-significant bits in the fourth byte control the early clock of the sprite.

If the last of these four bits is 0, the early clock is off. Then the sprite's location is
its upper left-hand corner, and it fades in and out on the right edge of the screen.
If the last of these four bits is 1, the early clock is on. Then the sprite's location is

shifted 32 pixels to the left, allowing it to fade in and out on the left edge of the
screen.

The color of the sprite is specified in the four least-significant bits of the fourth byte
of the sprite description. The values used are the same as those given in Section
21.2.2.

In the Editor/Assembler, the Sprite Attribute List starts at address >0300. If you
wish to use automatic motion, the Sprite Attribute List must start at that address.
If you put the default base address (>0000) in VDP Register 6, the Sprite Descriptor
Table (described in Section 21.6.2) starts at address >0000. Since the area >0000
through >03FF is used for the Screen Image Table, Color Table, and Sprite Attribute
List, character codes starting at >80, at address >0400, are then normally used for
sprites. When you use sprite motion, only the character codes from >80 through >EF
can be used because the Sprite Motion Table starts at address >0780.

21.6.2 Sprite Descriptor Table

The Sprite Descriptor Table describes the sprites' patterns in the same way as in the
Pattern Descriptor Table. However, sprites can be double-size or magnified by
writing a value to the two least-significant bits in VDP Register 1. The following
description tells the different sizes and magnifications possible.

EDITOR/ASSEMBLER
Page 339

COLOR, GRAPHICS, AND SPRITES

Value Description
00 Standard size sprites. Each sprite is 8 by 8 pixels, the same as a

standard character on the screen.
01 Magnified sprites. Each sprite is 16 by 16 pixels, equal to four standard

characters on the screen. The pattern definition is the same as for
standard size sprites, but each pixel occupies four pixels on the screen.

10 Double-size sprites. Each sprite is 16 by 16 pixels, equal to four
standard characters on the screen. Each sprite is defined by four
consecutive patterns from the Sprite Descriptor Table. For example,

each of the character codes >80, >81, >82, or >83 causes a double-size
sprite to use characters >80, >81, >82, and >83 for the sprite. The first
of these characters is the upper left-hand corner of the sprite, the second
is the lower left-hand corner, the third is the upper right-hand corner,
and the fourth is the lower right-hand corner.

11 Double-size magnified sprites. Each sprite is 32 by 32 pixels, equal to 16
standard characters on the screen. Sprites are defined as described under
double-size sprites, and each pixel occupies four pixels on the screen.

In the Editor/Assembler, the Sprite Descriptor Table starts at address >0000 for
pattern code >00. However, addresses >0400 and above are usually used for the block
because the lower addresses are used for the Screen Image Table, Color Table, and
Sprite Attribute List. The pattern defined starting at address >0400 is referred to as

pattern code >80 in the Sprite Attribute Table.

21.6.3 Sprite Motion Table

The Sprite Motion Table defines the motion of sprites. It must start at address
>0780. In order to move sprites, you must set up a number of conditions.

First, interrupts must be enabled during the execution of the program. Therefore,
every time the program accesses the VDP RAM, interrupt handling must be disabled,
which is the default. If you have enabled interrupt handling with the LI MI 2

instruction, you must disable it with a LI M I 0 instruction so that the interrupt

handling routine does not alter the VDP write address.

Second, an indication of the number of sprites which have motion must be put in CPU
RAM address >837A. For example, if sprites 2 and 4 are moving, the number 5 must
be put at that address to allow for the motion of sprites 0, 1, 2, 3, and 4.

EDITOR/ASSEMBLER
Page 340

COLOR, GRAPHICS, AND SPRITES

Third, descriptions of the motion of the sprite must be put in the Sprite Motion Table

which always starts at VDP address >0780. Each sprite's motion takes up four bytes

in the table. The first byte defines the vertical (Y) motion of the sprite. The

second byte defines the horizontal (X) motion of the sprite. The third and fourth

bytes are used by the interrupt routine.

The velocity in the first and second bytes can range from >00 to >FF. Velocities

from >00 to >7F are positive velocities (down for vertical motion and right for

horizontal motion), and velocities from >FF to >80 are taken as two's-complement

negative velocities (up for vertical motion and left for horizontal motion).

A value of >01 causes the sprite to move one pixel every 16 VDP interrupts, or about

once every 16/60ths of a second.

Since sprites are set up by loading data into VDP RAM and the TI BASIC interpreter

allows interrupts, you can run sprites by successive use of the statement CALL

POKEV (see Section 17.1.6). However, caution must be taken not to interfere with

the TI BASIC interpreter, which does not recognize the existence of sprites. It is

possible that the sprites may cause the TI BASIC interpreter to stop functioning. In

TI Extended BASIC, this problem does not exist.

EDITOR/ASSEMBLER

Page 341

COLOR, GRAPHICS, AND SPRITES

21.7 GRAPHICS AND SPRITE EXAMPLES

The first two of the following three assembly language programs are similar in their
effect. The first places several bubble shapes on the screen and moves them up the

screen. It does not use sprites, so the motion is not smooth. The second program
defines the shapes as sprites, so the motion is quite smooth. In addition, pressing
any key toggles the sprites from standard size to magnified sprites and back. The
third program is a demonstration of automatic sprite motion.

Each of these programs must be assembled with the R option, which automatically
generates Workspace Registers, and run with the LOAD AND RUN option of the
Editor/Assembler.

21.7.1 Graphics Example

In the following program, several characters shaped like bubbles are placed on the
screen and moved up the screen. These characters are not sprites, so the motion is
not smooth. Run the program with the LOAD AND RUN option of the
Editor/Assembler, using the program name BUBBLE. To leave the program, the
computer must be turned off because no provision has been made for returning to the
Editor/Assembler.

DEF BUBBLE
REF VMBW,VMBR,VSBW

*

BB LE DATA
COLOR DATA
BBL BYTE
SPACE BYTE
LOC DATA
MYREG BSS
*

* Set up colors.
*

BUBBLE

> 3 C 7 E,> CFDF,>FFFF,> 7E 3 C
>F333

>AO
>A8

> 01 D A,> 020 D,> 0271,> 02 A 5 ,> 02 D6,> 02 E 1,> 0000
>20

LWPI
LI

LI
LI
BLWP

MYREG
R0,>394

R1,COLOR
R2,2
@VMBW MBW

Color Table 20 and 21.
Load colors >F3 and >33.
Two bytes to load.
Move to VDP RAM.

EDITOR/ASSEMBLER
Page 342

LI

LI

LI
BLWP

*

* Clear screen
*

CLR

LOOP1 MOVB

BLWP

INC

CI

JNE

R0,>D00

R1,BBLE

R2,8
@VMBW

RO
(a1SPACE,R1

@VSBW

RO

R0,>300

LOOP1
*

* Place bubbles on the screen.
*

MOVB @BBL,R1
LI R2,LOC

LOOP2 MOV *R2+,R0
MOV RO,RO

JEO SCROLL

BLWP CaIVSBW
JMP LOOP2

*

* Scroll Screen.
*

VDPBF1 BSS >20
VDPBF2 BSS >20
*

SCROLL

CLR
LI
LI

BLWP

LI

LI
LI

RO

R1,VDPBF1
R2,>20
Qa V M BR

R0,>20

R1,VDPBF2
R2,>20

*

COLOR, GRAPHICS, AND SPRITES

*

* Set up character definition.
*

Character >AO location.

Definition of bubble character.

8 bytes to move.

Start at VDP RAM >0000.
Move space character.

Move one space at a time.
Points to next location on screen.

Out of screen.

Load character code for bubble.
Load pointer to address for bubble.

Load real address.
Check if finished loading.

Finished. Start scrolling the screen.

Write bubble on the screen.

VDP source address.
CPU buffer address.

Number of bytes to move.
Move >20 from VDP RAM.

VDP address >20.
CPU buffer address.

Number of bytes to move.

EDITOR/ASSEMBLER
Page 343

COLOR, GRAPHICS, AND SPRITES

LOOP3 BLWP [VMBR Copy the line.
AI R0, >20 Move to lower VDP memory.
BLWP [1VMBW Write back to the lower line.
AI R0,>40 Read next line.
CI R0,> 300 Check if end of screen.
JL LOOP3 If not, copy more.

*
LI RO,>2E0 Write the last line.
LI R1,VDPBF1 CPU buffer where the first line is.
BLWP QaVMBW Move CPU to VDP.

*
JMP SCROLL Keep scrolling.

*
END

21.7.2 Sprite Example

In the following program, several sprites shaped like bubbles are placed on the screen
and moved up the screen. Because sprites are used, the motion is quite smooth.
Run the program with the LOAD AND RUN option of the Editor/Assembler, using the
program name SBBLE. To leave the program, the computer must be turned off
because no provision has been made for returning to the Editor/Assembler.

DEF
REF
REF

*

BBLE DATA
BBL BYTE
SPACE BYTE
SLIST DATA

DATA
DATA

MYREG 855

SBBLE
VMBW,VMBR,VSBW,VSBR
VWTR,KSCAN

>3C7E,>CFDF,>1-1- F F ,>7E3C
>80

>20
> 7 0 D0,> 800F,> 8068,> 800F,> 98 88,> 800F
>A828,>800F,>B0B0,>800F,>B808,>800F
>D000
>20

EDITOR/ASSEMBLER
Page 344

COLOR GRAPHICS, AND SPRITES

*

* Set up character definition.
*

SBBLE
LWPI MYREG
LI R0,>400 Sprite character >80.
LI R1,BBLE Definition of character.
LI R2,8 8 bytes to move.
BLWP ®VMBW

*

* Define sprites.
*

LI RO,>300 Address of Sprite Attribute List.
LI R1,SLIST Pointer to the list.
LI R2,26 Move 26 bytes to VDP RAM at >300.
BLWP @VMBW Move the list.

*

* Scroll screen.
*

KEYBRD EOU >8375
STATUS ECU >837C
*
SET DATA >2000
*

SCROLL
CLR R5 Counter for sprite size.

LOOP
LI RO,>300 Pointer to the first Y-location.

READ BLWP @VSBR Read one byte into R1.
SRL R1,8 Make it a word operation.
CI R1,>00D0 Check to see if it is finished.
JEO KEY Check on key input.
DEC Ri Decrement Y-location.
JNE MOVE Move up one pixel.
LI R1,>0008 Adjust the pointer.

MOVE SLA R1,8 Change it back to byte operation.
BLWP @VSBW Write back to the list.
AI RO,>4 Points to the next location.
JMP READ Read next Y-pointer.

EDITOR/ASSEMBLER
Page 345

COLOR, GRAPHICS, AND SPRITES

Clear keyboard.
Call key scan routine.
Move status byte.
Check for status bit.
Key pressed, change size of sprites.
Otherwise, keep scrolling.

*

KEY

*

CLR
BLWP
MOV
COC
JEQ

JMP

@KEYBRD
@KSCAN
@STATUS,R3
@SET,R3
CHANGE
LOOP

CHANGE
MOV R5,R5 Is R5 null?

JNE SMALL Make sprites small.

LARGE
INC R5 Change R5.

LI R0,>01E1 Change R1 to >El.
BLWP @VWTR Modify VDP register.

JMP LOOP Go back to loop.

SMALL
CLR R5 Clear R5.

LI R0,>01E0 Change R1 to >EO.
BLWP @VWTR Modify VDP register.

JMP LOOP Go back to loop.
*

END

21.7.3 Automatic Sprite Motion Example

This program is an example of using automatic motion. It places four magnified

sprites in the middle of the screen and moves them in different directions at
different speeds. Note that the LIMI 2 instruction is given to allow interrupts to

occur. Without interrupts, sprites cannot be moved. Then, the LIMI 0 instruction is
given to prevent the rest of the program from inadvertantly changing VDP RAM

registers which are being used by the sprites' motion.

Run the program with the LOAD AND RUN option of the Editor/Assembler, using the
program name MOVE. To leave the program, the computer must be turned off
because no provision has been made for returning to the Editor/Assembler.

EDITOR/ASSEMBLER
Page 346

COLOR, GRAPHICS, AND SPRITES

DEF MOVE
REF VMBW,VWTR,VMBR,VSBW

NUM EQU >837A
SAL EQU >300
COLTAB EQU >384
PATTN EQU >400
SPEED EQU >780
*
COLOR DATA >FF00
BALL DATA >3C7E,>FFFF,>FFFF,>7E3C
SDATA DATA >6178,>8006

DATA >6178,>8003
DATA >6178,>8004
DATA >6178,>800B,>D000

SPDATA DATA >0404,>0000,>F808,>0000
DATA >0CF4,>0000,>FOF0,>0000

MYREG BSS >20
*
MOVE

LWPI MYREG Load my own registers.
LI RO,COLTAB
MOVB ®COLOR,R1
BLWP @VSBW Load background color as white.

*
LI RO,PATTN
LI R1,BALL
LI R2,8
BLWP @VMBW Load ball pattern.

*
LI RO,SAL
LI R1,SDATA
LI R2,17
BLWP @VMBW Load Sprite Attribute List.

*
LI RO,SPEED
LI R1,SPDATA
LI R2,16
BLWP @VMBW Load speed of sprites.

EDITOR/ASSEMBLER
Page 347

COLOR, GRAPHICS, AND SPRITES

*

LI R0,>81E1
BLWP @VWTR

*
Load VDP Register to magnify sprites.

LI R1,4
SLA R1,8
MOVB R1,®NUM Specify number of sprites.

*

LOOP

*

LOOP2

LI RO,SAL
LI R3,4
LI R2,2

Repeat 4 times.

LIMI 2 Enable interrupt.
LIMI 0 Disable interrupt.

*

LI R1,MYREG+14 Read it into Register 7.
BLWP @VMBR
AI R7,-24
CI R7,>B8C8 Check if 0 < Y < 184, 24 < X < 224.
JH ADJUST

NEXT AI R0,4 Look at next sprite.
DEC R3
JEO LOOP
JMP LOOP2

ADJUST LI R1,SDATA Reload Sprite Attribute List.
LI R2,2
BLWP t VMBW
JMP NEXT
END

EDITOR/ASSEMBLER
Page 348

SECTION 22: SPEECH

With the TI Solid State Speech TM Synthesizer and the TI Memory Expansion unit

attached to the computer, your assembly language programs can include speech. (See
the owners manuals for these products for connection instructions.)

To have the computer speak a word or phrase from the resident Speech Synthesizer
vocabulary, your program must check that the Speech Synthesizer is present, obtain

the address of the word or phrase to be spoken, load the address in the synthesizer so
that it can be spoken, and give the command to speak. You can obtain the address
by looking it up in the Section 24.6, or you can find it with your program.

You can also provide speech data directly to the Speech Synthesizer instead of using
a word from the resident vocabulary. Then you use a different command to have the
word or phrase spoken.

22.1 PRELIMINARY INFORMATION

Before using the Speech Synthesizer, you must be familiar with the timing
requirements, addresses, and commands to use, and know how to load speech
addresses, read data, and check to see that the Speech Synthesizer is attached.

22.1.1 Timing Considerations

The Speech Synthesizer requires time for each of its commands to be executed.' The
delay time necessary from the time a read data or read status command is given until
the data or status is available is 12 microseconds. The delay time from writing
external data until the next access is 10 microseconds. The delay time from loading
an address until the next command is 42 microseconds.

During the delay after a read, the 8-bit peripheral bus which is connected to the
Memory Expansion unit cannot be used. Therefore, the reads of data from the
Speech Synthesizer and the delays must be in the area accessed by the 16-bit bus.
One area convenient for this starts at address >8328.

The following program segment shows how to place the necessary delay in the proper
place.

EDITOR/ASSEMBLER
Page 349

SPEECH

REF SPCHRD

SPDATA ECU >8328

READIT ECU >8330
*

CODE MOVB @SPCHRD,Qa SPDATA
NOP
NOP
NOP

RT
CLEN ECU $-CODE

START
* Put read routine on 16-bit bus.

LI R1,READIT

LI R2,CODE

LI R3,CLEN

ST2 MOV *R2+,*R1+
DECT R3
JH ST2

Then to read a byte of speech data, use the instruction BL @READIT. The data is

returned at the address SPDATA.

A delay of 12 or 42 microseconds can be accomplished by branching to routines, using

NOP instructions, and returning. The following code segment shows the routines to

delay for 12 and 42 microseconds. They can be called with BL ®DLY12 and BL

@DLY42 instructions respectively.

DLY12 NOP
NOP
RT

*
DLY42 LI R1,10

DLY42A DEC R1

JNE DLY42A

RT

EDITOR/ASSEMBLER
Page 350

SPEECH

In the rest of this section, the necessary delays are indicated by a comment as
follows. Section 22.2.2 gives a complete program using these methods of delay.

*

* Delay as described in Section 22.1.1.
*

22.1.2 Addresses

The two addresses used to read and write speech data are SPCHRD at address >9000
and SPCHWT at >9400. You make them available by putting them in a REF
statement at the beginning of your program.

22.1.3 Commands

You can give the Speech Synthesizer commands by placing a value in the SPCHWT
address. If you load >10, you can read a byte from the SPCHRD address. If you
load >4X, where X is a nybble to be loaded, the nybble is loaded. This is used to
load speech addresses as described in Section 22.1.4. If you load >50, the word or
phrase whose address you have loaded is spoken. If you load >60, you can load the
word or phrase data, which you have constructed, to be spoken. Other commands are
described in the TMS5200 Voice Synthesis Processor Data Manual, available from
Texas Instruments.

22.1.4 Loading Speech Addresses

You load the address of the resident speech data by loading five nybbles of data.
The first nybble is always >0, with the next four nybbles equal to the address. You
load each nybble with the >4X command, where the X is replaced by the nybble you
wish to load. The least significant nybble is loaded first. The fifth nybble to be
loaded is always >0 so the fifth byte loaded is >40, which marks the end of the
address. The following program segment demonstrates how to load the address given
in location PHROM.

EDITOR/ASSEMBLER
Page 351

SPEECH

REF SPCHWT

PHROM

• DATA <data>
*

LOAD

MOV QaPHROM,RO Address to load.

LI R2,4 Four nybbles to load.

LOADLP
SRC R0,4 Start with least significant nybble.

MOV RO,R1

SRC R1,4

ANDI R1,>0F00 Get only particular nybble.

ORI R1,>4000 Put in >4X00 format.

MOVB R1,@SPCHWT Write the nybble.

DEC R2

JNE LOADLP

LI R1,>4000

MOVB R1,@SPCHWT Write the fifth nybble.

In the rest of this section, the above process is indicated by a comment as follows.

*
* Load address as described in Section 22.1.4.
*

EDITOR/ASSEMBLER
Page 352

SPEECH

22.1.5 Reading Data

Data can be read from the Speech Synthesizer by loading the correct address using

the 4X command, writing a read command (>10) at SPCHWT, and reading data from

SPCHRD. The following program segment shows how to read one word of data and

store it at DATAAD.

REF SPCHWT,SPCHRD
*

PHROM DATA <Speech Synthesizer ROM address>

DATAAD DATA >0000 Data storage may be initialized to

* zero.

SPDATA EQU >8328

READIT EQU >8330

H10 BYTE >10

EVEN
*

READ
*
* Load address as described in Section 22.1.4.
*

MOVB @H10,@SPCHWT Read command.
*
* Delay as described in Section 22.1.1.
*

BL Ca1READIT Read one byte from the Speech

Synthesizer.

MOVB ®SPDATA,@a1DATAAD

MOVB @H10,@SPCHWT Read command again.
*
* Delay as described in Section 22.1.1.
*

BL @READIT Store it in the next byte.

MOVB @SPDATA,Qa DATAAD

EDITOR/ASSEMBLER

Page 353

*

SPEECH

22.1.6 Checking to See if the Speech Synthesizer is Attached

Before your program attempts to produce speech, it must determine whether the
Speech Synthesizer is attached. The Speech Synthesizer addresses start at >0000. If

this location contains >AA, the Speech Synthesizer is attached. The following
program segment checks to see if the speech unit is attached. The program segment
assumes that label RUN is where to go if the Speech Synthesizer is connected and
label NOT is where to go if it is not connected.

*
REF SPCHWT,SPCHRD

PHROM DATA >0000 Pointer to speech data.
H10 BYTE >10 Read data command.

HAA BYTE >AA
EVEN

READIT EQU >8330
*

CLR @PHROM Look at >0000 first.
*

* Load address as described in Section 22.1.4.
*

MOVB @H10,@SPCHWT Read data command.
*

* Delay as described in Section 22.1.1.
*

BL @READIT Read one byte.

CB @SPDATA,@HAA Is it >AA?

JEQ RUN Run the program.

JMP NOT

EDITOR/ASSE MBLER
Page 354

SPEECH

22.2 SPEECH EXAMPLES

To speak a word or phrase from the resident vocabulary, specify its address. You
can find the address by looking it up in the Appendix or with your program. After

you have obtained the address, load it using the >4X command as described in Section
21.1.4, and then use the >50 command to have it spoken.

The addresses of all of the words and phrases are listed in the Appendix. For
example, the address of the word HELLO is >351A. The following program segment

causes the computer to say HELLO if the Speech Synthesizer is attached.

22.2.1 Accessing Speech using the Address from the Appendix

*
REF SPCHWT,SPCHRD

HELLO EQU >351A Speech data address from the
* Appendix.
READIT EQU >8330
PHROM DATA >0000
H50 BYTE >50

EVEN
*

WAIT BL QREADIT Read from speech read data.
MOVB Ca1SPDATA,R0
COC Qa H8000,R0 Check on Status.
JEO WAIT Wait until finished speaking.

*

LI RO,HELLO Load address of HELLO.
MOV R0,(aIPHROM
LI R2,4 Four nybbles to load.

*

* Load address as described in Section 22.1.4.
*
*

* Delay as described in Section 22.1.1.
*

MOVB @a1H50,[aISPCHWT Write execute speak command.
*

* Delay as described in Section 22.1.1.
*

EDITOR/ASSEMBLER
Page 355

SPEECH

22.2.2 Accessing Speech Directly and by Finding the Speech Address

You can also find speech data addresses in the Speech Synthesizer by searching a

table, located at the beginning of the Speech Synthesizer's memory, for the word or
phrase you need. The following list describes the information for each word or
phrase included in the table.

Item Length Example

ASCII Length 1 byte >4
Word or Phrase in ASCII n bytes >77 >79 >82 >69 ("MORE")

Less-Than Pointer 2 bytes >04B6

Greater-Than Pointer 2 bytes >OEB5

Speech Data Pointer 3 bytes >004642

Speech Data Length 1 byte >51

The less-than pointer gives the table address of the information related to the word

or phrase next in alphabetical order. The greater-than pointer gives the table
address of the information related to the preceding word or phrase in alphabetical
order.

In addition, you can load speech data directly in a program and have it spoken using

the >60 command.

In the following program, the entry point START looks up the address of the word
"HELLO" in the Speech Synthesizer. The word is then spoken until a key is pressed.

Control is then returned to the calling program.

The entry point DIRECT is an example of providing the Speech Synthesizer with
direct data. When DIRECT is used, a phrase is spoken once. After it is spoken,

control is returned to the calling program.

EDITOR/ASSEMBLER
Page 356

SPEECH

PHROM
DATAAD
SPDATA
READIT
RSA
SSA
H8000
H4000
HELLO
SPEECH

REF
DEF
DATA
DATA
EQU
EQU
DATA
DATA
DATA
DATA
EQU
DATA
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE

SPCHWT,SPCHRD,GPLWS,KSCAN
START,DIRECT
0
0
>8328
>8330
0
0
>8000
>4000
>351A
118
166,209
198,37,104,82,151
206,91,138,224,232
116,186,18,85,130
204,247,169,124,180
116,239,185,183,184
197,45,20,32,131
7,7,90,29,179
6,90,206,91,77
136,166,108,126,167
181,81,155,177,233
230,0,4,170,236
1,11,0,170,100
53,247,66,175,185
104,185,26,150,25
208,101,228,106,86
121,192,234,147,57
95,83,228,141,111
118,139,83,151,106
102,156,181,251,216
167,58,135,185,84
49,209,106,4,0
6,200,54,194,0
59,176,192,3,0
0

EDITOR/ASSEMBLER
Page 357

SPEECH

STRING BYTE 5
TEXT 'HELLO'

H50 BYTE >50
H10 BYTE >10
H60 BYTE >60
HAA BYTE >AA

EVEN
CODE MOVB @SPCHRD,Qa SPDATA

NOP
NOP
NOP
RT

CLEN EQU $-CODE
DIRECT
* Put read routine on 16-bit bus.

LI R1,READIT
LI R2,CODE
LI R3,CLEN

DR2 MOV *R2+,*R1+
DECT R3
JH DR2
LI R2,SPEECH Pointer to speech data.
MOV *R2+,R3 Size.
LI R1,16 16 bytes to load.
MOVB CalH60,[a1SPCHWT Speak external command.
BL La1DLY12

LOOPR
MOVB *R2+,[a1SPCHWT Send a byte.
DEC R3
JEQ OUT Finished with data.
DEC R1
JNE LOOPR

LOOPB
BL (_aIREADIT
MOVB QSPDATA,RO
COC [_a1H4000,R0
JNE LOOPB
LI R1,8
JMP LOOPR

Speech not terminated; wait more.
Queue half finished; send more data.

EDITOR/ASSEMBLER
Page 358

SPEECH

START
* Put read routine on 16-bit bus.

LI R1,READIT
LI R2,CODE
LI R3,CLEN

ST2 MOV *R2+,*R1+
DECT R3
JH ST2

* Check for existence of Speech Synthesizer.
BL @THERE
DATA OUT

* Start looking after the validation byte.
INC @PHROM

SEARCH LI R3,STRING
MOVB *R3+,R7 Length of target string.
SRL R7,8
JEQ OUT Null string.

*

BL @LOAD Load speech data address.
BL @DLY42
MOVB @H10,@SPCHWT
BL @DLY12
BL @READIT Read length byte of string.
MOV @SPDATA,R4
SRL R4,8 Make it a word.
INC @PHROM

NEXT
BL @LOAD Address of next letter.
BL @DLY42
MOVB @H10,@SPCHWT
BL @DLY12
BL @READIT Read the letter.
CB *R3+,@SPDATA Does it match?
JEQ MATCH Yes.
JH HIGH Too high.
JMP LOW Too low.

EDITOR/ASSEMBLER
Page 359

SPEECH

MATCH

HIGH

STRN

LOW

NXTPHR

*

SPEAK

INC Qa PHROM
DEC R4
JNE STRN More letters available.
DEC R7
JEQ SPEAK Found the word.

LI R8,2 Skip one pointer.
JMP NXTPHR
DEC R7
JNE NEXT

CLR R8 Do not skip pointer.

A R4,[1PHROM Skip over rest of word.
A R8,[aIPHROM (Maybe) skip first pointer.
BL [)READ Read two bytes.
MOV @aIDATAAD,R5
JEQ OUT Word not found.
MOV R5,@PHROM
JMP SEARCH Keep looking.

LI R8,5
A R8,QaPHROM
BL Qa READ Read address of speech data.
BL [1DLY12
MOV @DATAAD,@PHROM
BL [a1LOAD Load address of speech data.
BL [alDLY42
MOVB [a1H50,Qa SPCHWT Speak word.
BL Qa WAIT Wait for finish (or exit).
B QaSTART Do it all again.

EDITOR/ASSEMBLER
Page 360

SPEECH

WAIT
MOV R11,R10

BL ®READIT

MOV ®SPDATA,RO

BLWP ®KSCAN

MOVB @>837C,R1
JNE OUT

COC ®H8000,R0
JEQ WAIT

B *R10

OUT LWPI GPLWS
B ®>6A

* Read a word of data.

* Address in PHROM, data returned

* Call with BL

READ MOV R11,@RSA Save return address.

BL ®LOAD Load the address.

BL ®DLY42 Wait.

MOVB ®H10,®SPCHWT

BL @DLY12
BL ®READIT Read first byte.

MOVB ®SPDATA,®DATAAD
MOVB ®H10,®SPCHWT

BL @DLY12

BL ®READIT Read second byte.

MOVB ®SPDATA,®DATAAD+1

MOV ®RSA,R11 Return.

RT

* Check to see if the Speech Synthesizer is attached.

* Called as BL ®T RE
DA <not there>

THERE MOV R1 ,®RSA Save return address.

CLR ®PHROM Location 0.

BL @LOAD

BL @DLY42

MOVB ®H10,®SPCHWT

BL @DLY12

BL ®READIT

CB @SPDATA,@HAA
JEO RUN

EDITOR/ASSEMBLER
Page 361

Save return address.

Read the status byte.

Scan keyboard.

Was a key pressed?

Yes. Exit.

Word finished?
No. Keep waiting.
Yes. Return.

Return to calling program.

in DATAAD.

Read the byte.

Is is >AA?
Yes. The peripheral is attached.

SPEECH

* Not there.
MOV
MOV
RT

* There
RUN MOV

INCT
RT

* Load address.

* Called as BL
* Uses RO, R1,

LOAD MOV
LI

LOADLP SRC
MOV
SRC
ANDI
ORI
MOVB
DEC

JNE
LI
MOVB
RT

DLY12 NOP
NOP
RT

DLY42 LI

DLY42A DEC
JNE
RT
END

@RSA,R11

*R11,R11

@RSA,R11
Rll

@PHRO M,RO
R2,4

R0,4
RO,R1

R1,4
R1,>0F00
R1,>4000
R1,@SPCHWT

R2
LOADLP

R1,>4000
R1,@SPCHWT

R1,10
R1

DLY42A

Fetch data word as alternate return.

Skip alternate return.

Pick off four bits.
Make it >4X.

Do it four times.

Write the >40.

Short delay.

Long delay after address set up.

@LOAD with address in PHROM.

and R2.

EDITOR/ASSEMBLER
Page 362

SECTION 23: THE DEBUGGER

The Debugger program allows you to find errors in your program while it is actually
running. You can read values in memory, write new values, inspect Workspace
Registers and alter their values, move memory from one location to another, perform
hexadecimal arithmetic, and a variety of other functions. Each function is easily
available with a single-letter command.

With many of the commands, you can enter a G or V after an operand to indicate
that the operation is to take place in the Command Module GROM or VDP RAM,
respectively, instead of in CPU RAM or ROM.

You can define up to three bias characters, labeled X, Y, and Z. When one of these
characters is appended to an operand, its value is added to the value of the operand.
Thus, if you have set X to >12A and enter an operand of >1B2X, the operand used is
the sum of >12A and >1B2 or >2DC.

The Debugger is located on the Editor/Assembler diskette labeled Part A. In
addition to the compressed object file, called DEBUG, the entire source listing of the
Debugger is included. DEBUGS is the main program, consisting mostly of COPY

directives; DEBUGA is the first 400 lines of the Debugger; DEBUGB is the second 400
lines; DEBUGC is the third 400 lines; DEBUGD is the fourth 400 lines; and DEBUGE
is the fifth 400 lines. You should make a backup copy of these files.

The Debugger program is a modified version of the TIBUG program designed to be
used on a TI Home Computer. The Debugger is relocatable and can be loaded by the

LOAD AND RUN option on the Editor/Assembler or with CALL LOAD from TI
BASIC. The name of the file to load is DSK1.DEBUG if the diskette labeled Part A
is in Disk Drive 1. Since the Debugger is relocatable, it is suggested that you first

load the program to be debugged and then load the Debugger. Then enter the
Debugger and do the required set up so that you can return to the Debugger when

desired. The Loader places the Debugger program in memory the same way any
other assembly language program is loaded.

Follow these steps to access the Debugger from the Editor/Assembler.

1. Insert the Editor/Assembler Command Module into the console.

2. Press any key to make the master selection list appear. Select the
Editor/Assembler.

EDITOR/ASSEMBLER
Page 363

THE DEBUGGER

3. Insert the Editor/Assembler diskette that contains the Debugger program
(Part A) into Disk Drive 1.

4. Select LOAD AND RUN from the Editor/Assembler selection list.

5. Enter the file name of the program to be debugged. If there is no such
program, go to the next step.

6. Type DSK1.DEBUG (the file name of the Debugger), and press <return>.

7. Press <return> again to advance to the next prompt.

8. Enter DEBUG as the program name of the Debugger.

9. The Debugger is loaded and ready to accept commands.

Follow these steps to use the Debugger from TI BASIC.

1. Insert the Editor/Assembler Command Module into the console.

2. Press any key to make the master selection list appear. Select TI BASIC.

3. Insert the Editor/Assembler diskette that contains the Debugger program
(Part A) into Disk Drive 1.

4. Load the program that you wish to debug, using the CALL LOAD statement.

5. Execute CALL LOAD ("DSKI.DEBUG") from TI BASIC.

6. Execute CALL LINK("DEBUG").

7. The Debugger is loaded and ready to accept commands.

Note: If the Debugger is entered from TI BASIC, you should immediately select the
U command so that the display is correct.

EDITOR/ASSEMBLER
Page 364

THE DEBUGGER

23.1 PRELIMINARY INFORMATION

Pressing single-letter commands executes the Debugger routines. The Debugger
automatically places a space after the letter, although you cannot see it because no
cursor appears on the screen. Do not press <space> following the command letter
unless you intend to terminate the command.

After choosing the command, you enter the command's operands, which consist of up
to three hexadecimal fields, depending on the command. Operands contain four
hexadecimal digits each. If you enter more than four digits, only the last four are
used. If you enter fewer than four digits, they are considered by the Debugger to be
the right-most digits of the operand.

The following are the Debugger commands.

Command Letter Section
Load Memory with ASCII A 23.2
Breakpoint Set/Clear B 23.3
CRU Inspect/Change C 23.4
Execute E 23.5
Find Word or Byte F 23.6
GROM Base Change G 23.7
Inspect Screen Location I 23.8
Find Data Not Equal K 23.9
Memory Inspect/Change M 23.10
Move Block N 23.11
Compare Memory Blocks P 23.12
Quit Debugger Q 23.13
Inspect or Change WP, PC, and SR R 23.14
Execute in Step Mode S 23.15
Trade Screen T 23.16
Toggle Offset to and from TI BASIC U 23.17
VDP Base Change V 23.18
Inspect or Change Registers W 23.19
Change Bias X, Y, or Z 23.20
Hexadecimal to Decimal Conversion > 23.21
Decimal to Hexadecimal Conversion . 23.22
Hexadecimal Arithmetic H 23.23

Each command description consists of the following information.

EDITOR/ASSEMBLER
Page 365

THE DEBUGGER

o A heading, consisting of the command name and command letter

o The syntax definition

o An example of the command

o The definition of the command

In the syntax definition, the following notational conventions are used. Items

surrounded by <angle brackets> represent keys or items that you must provide. Items
surrounded by (braces} indicate that you must choose between the two or more items

included. Items surrounded by [brackets] indicate optional material. The elipsis (...)
indicates that the previous item may be repeated.

Note: In the Debugger, the <escape> key is not the same as the <esc> key used in
the rest of the Editor/Assembler. The <escape> key is SHIFT X on the TI-99/4 and
FCTN X on the TI-99/4A.

In the example and definition of the commands, the information you type is
underlined.

EDITOR/ASSEMBLER
Page 366

THE DEBUGGER

23.2 LOAD MEMORY WITH ASCII--A

Syntax definition:

A<start address><return>
<ASCII string><escape>

Example:

A 1000<return>
1000 NEW WORDS<escape> Places the ASCII string NEW WORDS in memory

starting at address >1000.

Definition:

Places the ASCII string in memory starting at the given hexadecimal address.
Any information, including <return>, that is typed before <escape> is placed in
memory. After each 16 (>10) bytes, the current memory location is shown on the
screen.

EDITOR/ASSEMBLER
Page 367

THE DEBUGGER

23.3 BREAKPOINT SET/CLEAR--B

Syntax definitions:

• To set a breakpoint:

B<address><return>

• To clear a breakpoint:

B<address><->

• To show breakpoints:

B<return>

• To clear all breakpoints:

B<->

Example:

B A000<return> Sets a breakpoint to be performed at address >A000.

Definition:

Sets a breakpoint to be performed at the given address if B is followed by an

address and <return>. Clears a breakpoint if B is followed by an address and <->.

Shows all breakpoints if B is followed by <return>. Clears all breakpoints if B is

followed by <->.

From 11 to 16 breakpoints can be set at the same time, depending on your

computer. When a breakpoint is encountered during execution, the workspace

pointer, program counter, and status are saved, the breakpoint is cleared, and the

Debugger is entered.

Setting a breakpoint replaces the contents of the breakpoint address with an XOP

1 call (>2F40) or a branch to BENTRY (two words). If your console does not

support XOP 1, the Debugger automaticaly uses the two-word BENTRY and

provides the message

BKPT USES 2 WORDS

EDITOR/ASSEMBLER
Page 368

THE DEBUGGER

Some TI-99/4A computers support XOP 1 and some do not. If you get the
message BKPT USES 2 WORDS when you enter a breakpoint, yours does not.

If your computer uses two-word breakpoints, you must observe several
precautions. First, you cannot set breakpoints at consecutive words. If you
attempt to do so, the following message is displayed.

ILLEGAL CONSECUTIVE BREAKPOINT

Second, under some circumstances the computer may interpret the address of the
Debugger as an instruction. For instance, suppose your program reads as follows.

ADDR JMP START Code 1010

LOOP MOV R1,R2 Code C001
DEC R3 Code 0603

JGT LOOP Code 15FD

START LI R3,6 Code 0203
0006

JMP LOOP Code 10F0

If you then set a two-word breakpoint at ADDR (assuming that the address of the
Debugger entry is >B062), the program becomes

ADDR BLWP Ca1BENTRY Code 0420

LOOP Code B062

DEC R3 Code 0603

JGT LOOP Code 15FD

START LI R3,6 Code 0203
0006

JMP LOOP Code 10F0

When the program executes the JGT LOOP instruction, it interprets the address
of BENTRY as an AB instruction. This situation can be avoided by not inserting
breakpoints where the second word is a label.

EDITOR/ASSEMBLER
Page 369

THE DEBUGGER

In two-word breakpoints the previous contents of the memory are saved.
Clearing a breakpoint restores the original contents of the memory location. If a
breakpoint is set more than once at the same location, the following message is
displayed.

ILLEGAL CONSECUTIVE BREAKPOINT

The show breakpoint command, B<return>, gives the addresses of the current

breakpoints in the order in which they were set.

EDITOR/ASSEMBLER
Page 370

THE DEBUGGER

23.4 CRU INSPECT/CHANGE--C

Syntax definition:

C<base address>{<space> or <,>}<bit count><return>

[<data>]{<return> or <space>}

Example:

C 1380,1<return> Gives the value of the least-significant CRU bit at address

>1380.

Definition:

Gives the value of the specified number of CRU bits. If you specify 1 through

15 bits, that many bits are returned as a hexadecimal number. If you specify 0

as the bit count, 16 bits are returned.

Each CRU bit takes up two bytes on the CRU.

is as shown in the following table.

CRU

Bit Value

For example, supppose the CRU

CRU

Address

0 1 >1380

1 0 >1382

2 1 >1384

3 1 >1386

4 0 >1388

5 1 >138A

6 1 >138C

7 0 >138E

8 1 >1390

9 0 >1392

A 0 >1394
B 0 >1396

C 1 >1398

D 0 >139A

E 1 >139C

F 0 >139E

EDITOR/ASSEMBLER
Page 371

THE DEBUGGER

Then if you give the command

C 1380,1

The Debugger returns 0001. If you give the command

C 1380,5

The Debugger returns 000D. If you give the command

C 1380,8

The Debugger returns 006D. If you give the command

C 1380,0

The Debugger returns 516D.

The C command uses the STCR and LDCR instructions. For more information on

these instructions, see Sections 9 and 24.3.2.

The corresponding CRU output bits can be altered by inputting data in the same

format that it is given by the Debugger. If a change is followed by <return>,

control is returned to the Debugger. If a change is followed by <space>, the
CRU input bits are displayed again.

Reading CRU data immediately after changing CRU data at the same address

does not always give the same value because the CRU input and output may not

have the same hardware configuration at the same address.

For example, the Disk Drive Controller CRU address >1100 is designed to enable

the disk Device Service Routine ROM. This is a write-only CRU bit, so there is

no input circuit. Performing an SBO instruction on address >1100 enables the

Device Service Routine ROM. However, reading CRU output data from address

>1100 gives meaningless data.

In addition, in some devices, such as the clock, bits may be altered by the time

the CRU bit is read after writing to the CRU. Thus, the same data cannot be

read even though you write the data correctly.

EDITOR/ASSEMBLER
Page 372

THE DEBUGGER

23.5 EXECUTE--E

Syntax definition:

E[<address>]<return>

Example:

E 2000<return> Enters the program with the parameters defined by the R
command, starting at address >2000.

Definition:
Enters the program with the parameters defined by the R command, starting at
the address provided. If the optional address is entered, execution begins at that
address rather than at the address specified by the R command. Normally, you
should use the Q command rather than the E command since the Q command
restores the screen and updates the screen offset, VDP address, and screen width.

EDITOR/ASSEMBLER
Page 373

THE DEBUGGER

23.6 FIND WORD OR BYTE--F

Syntax definition:

F<start address>{<space> or <,>}<stop address>{<space> or <,>}<data>
{<return> or <->}

Example:

F 2000 3003 AF10<return> Compares the data in addresses >2000 through

>3003 with >AF10 and displays the addresses and
contents of those that match.

Definition:
Compares the values in the start address through the stop address with the values
given by the data and displays the addresses and contents of those that match.
If the final entry is <return>, words are compared. If the final entry is <->,
bytes are compared. If words are compared, the address is incremented by 2
before the next comparison, so that comparisons are made on word boundaries. If
a byte comparison is performed, the address is only incremented by one after
each comparison.

A G or V can be entered at the end of the start address to indicate that the

comparison should be made at the address in GROM or VDP, respectively, rather
than in CPU memory. The F command is the opposite of the K command.

EDITOR/ASSEMBLER
Page 374

THE DEBUGGER

23.7 GROM BASE CHANGE--G

Syntax definition:

G

Example:

G Causes the current GROM Read Data address to be displayed. It can

then be altered.

Definition:
Displays the present GROM Read Data address. This address can be altered by
typing the new address desired and pressing <return>. This procedure allows you
to use the commands that access GROMs or GRAMs to be used in the GROM
library memory areas or any other GROM address spaces. The read and write
addresses are >1000 apart. The default address is >9800.

Note: This command is not useful unless you are developing special hardware.

For example, if you enter G, the response is

GROM BASE = 9800

You can then enter a new address if the device is a GRAM or press <return> to
accept the address.

EDITOR/ASSEMBLER
Page 375

THE DEBUGGER

23.8 INSPECT SCREEN LOCATION--I

Syntax definition:

I

[Knew screen address>]<return>
[<new screen offset>]<return>
[<new width>]<return>

Example:

I Displays the previous beginning
VDP SCREEN ADDRESS = 0000 <return> screen address and accepts it.
SCREEN OFFSET = 0000 60<return> Displays the previous screen offset
WIDTH (>20 or 28) = 0020 <return> and changes it to >0060. Displays

the previous width and accepts it.

Definition:

Displays the current beginning screen address, screen offset, and width, and
allows you to change them. The screen address (Screen Image Table) normally
starts at VDP address >0000. To move this table, you inform the Debugger with
the I command. Note that the Debugger does not change the VDP Registers. It
sets up a temporary word that contains the new address. The Registers are
changed the next time the Debugger is entered via a breakpoint. If the

Debugger is entered in another way, such as by LINK (from TI BASIC) or the
LOAD AND RUN option (from the Editor/Assembler), the changes are not made.

The screen offset is useful if you are using TI BASIC because the ASCII values

of the TI BASIC screen characters are offset by >60.

If your program is running in text mode, you can set the screen width to >28
rather than the default of >20.

The following example shows the use of the I command to change the screen
address to >0400, the screen offset to >60, and the width to >28.

I
VDP SCREEN ADDRESS = 0000 400<return>

SCREEN OFFSET = 0000 60<return>
WIDTH (>20 or 28) = 0020 28<return>

EDITOR/ASSEMBLER
Page 376

THE DEBUGGER

23.9 FIND DATA NOT EQUAL--K

Syntax definition:

K<start address){<space> or <,>}<stop address){<space> or <,>}<data>
{<return> or <->}

Example:

K 2000 2100 AF10<return> Compares the data in addresses >2000 through
>2100 with >AF10 and displays the addresses and
contents of those that do not match.

Definition:

Compares the values in the start address through the stop address with the values
given by the data and displays the addresses and contents of those that do not
match. If the final entry is <return>, words are compared. If the final entry is
<->, bytes are compared. If words are compared, the address is incremented by
two before the next comparison so that comparisons are made on word
boundaries. If a byte comparison is performed, the address is only incremented
by one after each comparison.

A G or V can be entered at the end of the start address to indicate that the

comparison should be made at the address in GROM or VDP, respectively, rather
than in CPU memory.

EDITOR/ASSEMBLER
Page 377

THE DEBUGGER

23.10 MEMORY INSPECT/CHANGE--M

Syntax definitions:

• To see or alter a memory location:

M <address><return>
[<data>]{<return> or <space> or <->}

• To see multiple memory locations:

M<start address>{<space> or <,>}<stop address><return>

Examples:

M 2000<return>

2000=1000 A35C<return> Changes the values in address >2000 from >1000
to >A35C.

M 2000 2100<return> Displays addresses >2000 through >2100 and their
values.

Definition:

Displays the address and its value if a single address is given. If a start address
and stop address are given, displays the addresses and their values.

If a single address is given, followed by <return> and a value, that value is placed
in the address. If a change is followed by <return>, control is returned to the
Debugger. If a change is followed by <space>, the next address and its value are
displayed and you can change that value. If a change is followed by <->, the
previous address is displayed and you can change it. Note that entering a change
followed by <space> <-> allows you to check the memory location that you have
just changed.

The following example shows how to change the value in address >4042 from
>1234 to >5678 and then check the change. The example assumes that address
>4044 contains >CDEF. The final <return> returns you to the Debugger.

EDITOR/ASSEMBLER
Page 378

THE DEBUGGER

M 4042<return>
4042 = 1234 5678<space>
4044 = CDEF <->
4042 = 5678 <return>

If you choose to see multiple memory locations, each line of the display consists
of the address of the first memory location followed by 12 bytes of data and the
ASCII representation of the data with an asterisk {) for the unprintable
characters. The display process can be halted by pressing <escape>. Press any

key to stop a list of memory locations temporarily and press a key again to
resume the list.

A G or V can be entered at the end of the start address to indicate that the
comparison should be made at the address in GROM or VDP, respectively, rather

than in CPU memory. When GROM or VDP memory are being addressed, data is
accessed and altered one byte at a time. Only addresses >0000 through >3FFF of
VDP RAM can be accessed. GROM cannot be altered.

Note: Even accessing GROM can alter the GROM program counter, preventing
correct return to your program.

To change a VDP register, enter an address of V8 followed by the register number
(0 through 7), the data byte, and <return>. For example, the following loads VDP
Register 1 with >60.

M V8160<return>

Note: You cannot read VDP Registers; you can only write to them.

EDITOR/ASSEMBLER
Page 379

THE DEBUGGER

23.11 MOVE BLOCK--N

Syntax definition:

N<from address>{<space> or <,>}<to address>{<space> or <,>}<byte count>

{<return> or <->}

Example:

N 2000V C000 100<return> Moves the 100 bytes starting at address >2000 in

VDP RAM to the 100 bytes starting at address

>C000 in CPU RAM.

Definition:
Moves the number of bytes specified. If the command is terminated with

<return>, the bytes are transferred in the following order.

From Byte To Byte

from address to address

from address + 1 to address + 1

from address + 2 to address + 2

from address + byte count - 1 to address + byte count - 1

If the command is terminated with <->, the bytes transfer in the following order.

From Byte To Byte

from address + byte count - 1 to address + byte count - 1

from address + byte count - 2 to address + byte count - 2

from address + byte count - 3 to address + byte count - 3

from address to address

With the first method, you can effectively copy the same byte into several

consecutive memory locations. For instance, if >13 is in address >2000, the

following command places >13 in addresses >2000 through >2100.

N 2000 2001 100<return>

EDITOR/ASSEMBLER
Page 380

THE DEBUGGER

23.12 COMPARE MEMORY BLOCKS--P

Syntax definition:

P<start address 1>{<space> or <,>}<start address 2>{ <space> or <,>}

<byte count><return>

Example:

P 2000 3000G 100<return> Compares the 100 bytes starting at address

>2000 in CPU RAM to the 100 bytes starting at

address >3000 in the GROM and prints the

addresses whose data do not match and what is

actually in those addresses.

Definition:

Compares the number of bytes given in byte count from the locations starting at

start address 1 to the locations starting at start address 2 and prints the

addresses whose data do not match and what is actually in those addresses. A G

or V can be entered at the end of start address 1 or start address 2 to indicate

that the comparison should be made with the address in GROM or VDP,

respectively, rather than in CPU memory.

EDITOR/ASSEMBLER
Page 381

THE DEBUGGER

23.13 QUIT DEBUGGER--Q

Syntax definition:

a<return>

Example:

O<return> Leaves the Debugger and executes the program whose

parameters were defined by the R command.

Definition:

Leaves the Debugger, restores the screen, updates data entered by the I

command, and executes the program whose parameters were defined by the R

command. If the Program Counter is equal to >0000, the Debugger returns to

the Editor/Assembler screen. You can then run your program with either the

LOAD AND RUN or RUN option.

•

EDITOR/ASSEMBLER
Page 382

THE DEBUGGER

23.14 INSPECT OR CHANGE WP, PC, AND SR--R

Syntax definition:

R<return>
[<data>]{<return> or <space>}
[<data>]{<return> or <space>)
[<data>]<return>

Example:

R<return> Shows the Workspace Pointer value and allows you to change
it.

Definition:
Shows the Workspace Pointer, Program Counter, and Status Register and allows
changes to be made in their values. After you open a register, you can change
it. Then press <return> to return to the Debugger or <space> to open the next
register for inspection or change.

The Workspace Pointer points to the program workspace. The Program Counter
points to the first instruction of the program to be executed. The Status
Register contains the status of the program. These values are passed to the
program when the Debugger commands 0, E, or S are executed.

EDITOR/ASSEMBLER
Page 383

THE DEBUGGER

23.15 EXECUTE IN STEP MODE--S

Note: Executing a program one step at a time requires special hardware that is not
available for the TI Home Computer. Without this special hardware, the S command
has the same effect as the E command.

Syntax definition:

S[<step count>]<return>

Example:

S<return> Executes one step in the program and returns control to the Debugger.

Definition:

With the special hardware required, enters the program with the parameters

defined by the R command, executes step count steps, shows the values in the
Workspace Pointer, Program Counter, and Status Register, and returns to the
Debugger. If step count is omitted, the default is 1.

Caution should be used when single-stepping through a section of your program
that sets up VDP write addresses because the Debugger also changes VDP write
addresses. You should also avoid single-stepping through code which accesses the

GROM because of possible alterations to the GROM program counter.

EDITOR/ASSEMBLER
Page 384

THE DEBUGGER

23.16 TRADE SCREEN--T

Syntax definition:

T

Example:

T Trades the Debugger screen for the screen as it was when the program

stopped at a breakpoint.

Definition:

Trades the Debugger screen for the screen as it was when the program stopped at

a breakpoint. You remain in the Debugger and can continue to use the Debugger

commands. However, using commands again scrolls the screen.

EDITOR/ASSEMBLER
Page 385

THE DEBUGGER

23.17 TOGGLE OFFSET TO AND FROM TI BASIC--U

Syntax definition:

U

Example:

U Changes the offset by plus or minus >60.

Definition:

Changes the screen offset by plus or minus >60 to allow you to alternate
displaying the screen as TI BASIC uses it and as the Debugger uses it. The
ASCII characters used by TI BASIC are offset >60 from the way in which the
Debugger uses those characters.

EDITOR/ASSEMBLER
Page 386

THE DEBUGGER

23.18 VDP BASE CHANGE--V

Syntax definition:

V<address><return>
[<data>]<return>

Example:

V<return> Causes the present VDP Read Data address to be displayed.
The address can be altered by typing a new address and
pressing <return>.

Definition:
Causes the present VDP Read Data address to be displayed. The address can be
altered by typing a new address and pressing <return>. This procedure allows you
to use the commands that access VDP to be used in the VDP library memory

areas or any other VDP address space. The read and write addresses are >1000

apart. The default address is >8800. Note: At present, no alternate VDP
memory spaces exist.

For example, if you enter V, the response is

VDP BASE = 8800

You can then enter a new address or press <return> to accept this address.

EDITOR/ASSEMBLER
Page 387

THE DEBUGGER

23.19 INSPECT OR CHANGE REGISTERS--W

Syntax definition:

W[<register number>]<return>

[<data>]{<return> or <space> or <->}

Example:

W <return> Displays all of your Workspace Registers and their values.

Definition:

Displays all of your Workspace Registers and their values if no Workspace
Register number or data are given and the command is followed by <return>. If

a Workspace Register number is given, it and its value are displayed and the

value can be changed. After changing a value, you can press <return> to return
to the Debugger, press <space> to display the next Workspace Register and its
value so that you can alter that value, or press <-> to display the previous
Workspace Register and its value so that you can alter that value.

EDITOR/ASSEMBLER
Page 388

THE DEBUGGER

23.20 CHANGE BIAS--X, Y, OR Z

Syntax definition:

• Change X bias:

X<value><return>

• Change Y bias:

Y<value><return>

• Change Z bias:

Z<value><return>

Example:

Y 34<return> Changes the Y bias to >34.

Definition:
Changes the X, Y, or Z bias to the value given. After a value is assigned, you

can give the characters X, Y, and Z following an address in any other command
and alter that address by the amount of the bias. If the result of the alteration
is an odd value, the actual address displayed is the next lower value.

For example, if the Y bias has been set to >34, the following M command displays
the value in address >0134.

M 100Y<return>

EDITOR/ASSEMBLER
Page 389

THE DEBUGGER

23.21 HEXADECIMAL TO DECIMAL CONVERSION-->

Syntax definition:

><hexadecimal value>{<space> or <return>}

Example:

> 34<space> Displays the decimal value of >34, which is 52.

Definition:

Displays the decimal value of up to four hexadecimal digits. Values of >8000 to
>FFFF are interpreted as two's-complement numbers and are thus given as
negative decimal numbers.

EDITOR/ASSEMBLER
Page 390

THE DEBUGGER

23.22 DECIMAL TO HEXADECIMAL CONVERSION--.

Syntax definition:

.<decimal value>{<space> or <return>}

Example:

. 52<space> Displays the hexadecimal value of 52, which is >34.

Definition:
Displays the hexadecimal value of any decimal value from -32768 through 65535.

For negative numbers the sign precedes the number. Values less than 0 are
returned in two's-complement form. Thus, both the value 65535 and -32768 are
returned as >FFFF.

EDITOR/ASSEMBLER
Page 391

THE DEBUGGER

23.23 HEXADECIMAL ARITHMETIC--H

Syntax definition:

H<first number>{<space> or <,>}<second number><return>

Example:

H A 6<return> Displays the sum, difference, product, quotient, and remainder

of >A and >6.

Definition:

Displays the sum, difference, product, quotient, and remainder of the first number

and second number. Each hexadecimal number can have up to four digits. In

the example, the information is displayed as follows.

H1=000A H2=0006 H1+H2 = 0010

H1-H2 = 0004 H1*H2 = 0000 003C

H1/H2 = 0001 R 0004

EDITOR/ASSEMBLER
Page 392

SECTION 24: APPENDICES

The following are the appendices contained in this section.

Appendix Section

Numbering Systems and Organization 24.1

Memory Organization 24.2

Memory, CRU, and Interrupt Structure 24.3

Comparisons with TI Extended BASIC Loader 24.4

SAVE Utility 24.5

Speech Synthesizer Resident Vocabulary 24.6

Character Set 24.7

Assembler Directive Table 24.8

Hexadecimal Instruction Table 24.9

Alphabetical Instruction Table 24.10

Program Organization 24.11

EDITOR/ASSEMBLER
Page 393

APPENDICES

24.1 NUMBERING SYSTEMS AND ORGANIZATION

The following sections discuss the decimal, binary, and hexadecimal number systems,
followed by a description of the byte and word organization in the TI Home Computer
and the two's-complement representation of negative numbers.

24.1.1 Binary Number System

The number system we commonly use, using the digits 0 through 9, is known as the
decimal system, or base 10. In a decimal number, each place value represents a
power of 10. For example, the number 1111 in the decimal system represents the
following.

111110 = (1 x 103) + (1 x 102) + (1 x 101) + (1 x 100)

The binary (base 2) number system uses only the two digits 0 and 1. In a computer,
these digits represent two electronic states, off and on. Each place of the binary
number represents a power of two. For example, the number 1111 in the binary
system is interpreted as follows.

11112 = (1 x 23) + (1 x 22) + (1 x 21) + (1 x 20) = 15
10

The decimal numbers 0 through 15 can each be represented by a four-digit binary
number as shown in the following table. Each four-digit binary number corresponds
to a one-digit hexadecimal (base 16) number, represented by the digits 0 through 9
and the upper-case letters A through F.

EDITOR/ASSEMBLER
Page 394

APPENDICES

Decimal Binary Hexadecimal
Number Number Number

0 0000 0

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5
6 0110 6

7 0111 7

8 1000 8

9 1001 9

10 1010 A

11 1011 B

12 1100 C

13 1101 D

14 1110 E

15 1111 F

24.1.1.1 Hexadecimal Notation

The hexadecimal (base 16) numbering system is often used as a convenient shorthand
method for representing binary numbers. As the previous table shows, any four-digit
binary number can be represented by one hexadecimal digit. In this manual (and in
Assembler source statements), hexadecimal numbers are preceded by a greater-than

sign (>).

The following illustrates the relationship between a binary number and its
hexadecimal equivalent.

0010 1010 0001 11102 = >2A1E

24.1.2 Byte Organization

A bit (binary digit) is the smallest unit of computer information. It corresponds
directly to the electronic circuitry of the computer. A bit is either on or off, and
thus can be used to make either/or distinctions. For example, a bit can distinguish
between yes or no, up or down, on or off, one or zero, or any two opposites. Bits
are usually represented in the binary number system.

EDITOR/ASSEMBLER
Page 395

APPENDICES

Four bits equal a nybble and eight bits equal a byte. A byte is the smallest
addressable unit of information in the Home Computer. In the Home Computer, the

most-significant (left-most) bit (MSB) is designated as bit 0 and the least significant
(right-most) bit (LSB) is designated as bit 7.

Memory Byte

(MSB) (LSB)

bit 0 1 2 3 4 5 6 7

24.1.3 Word Organization

Two bytes, or 16 bits, of memory constitute a word. The computer can process a
maximum of one word of information at a time. In the Home Computer, the most
significant bit (MSB) of a word of memory is bit 0, while the least significant bit
(LSB) is bit 15.

Memory Word

(MSB) (LSB)

bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The 16 bits of a word can represent such things as a machine language computer
instruction, a memory address, the bit configurations of two characters, or a number.
If the contents of a word are to be interpreted as a number, the number may be
interpreted as a signed number in the range of -32,768 through +32,767 or as an
unsigned number in the range of 0 through 65,535. Signed numbers are designated in
two's-complement form. See Section 24.1.4

Each word begins at an even-numbered address (location) in memory. The
even-address byte contains bits 0 through 7 of the word, and the odd-address byte
contains bits 8 through 15. When word instructions address an odd byte, the
computer automatically accesses the preceding even-numbered byte. All instructions
must begin on a word boundary. Instructions are 1, 2, or 3 words long.

EDITOR/ASSEMBLER
Page 396

APPENDICES

24.1.4 Two's Complement

In the Home Computer, negative numbers are represented in two's-complement form.
In two's-complement form, the left-most bit of a computer word is designated as the
sign bit, which indicates whether the number is positive or negative. The sign bit
does not function as a part of the value of the number but only indicates positive or

negative, 0 or 1, respectively.

The binary number to be subtracted (the subtrahend) must be "complemented" by
changing all the 0's to l's and all the l's to 0's. Then 1 is added to the
complemented binary number to get the two's complement. The following examples
show how to find the two's complement of 26 and 53.

00011010 26 (>1A) 00110101 53 (>35)

11100101 complemented 11001010 complemented

+1 plus 1 +1 plus 1

11100110 2's complement (-26, >E6) 11001011 2's complement (-53, >CB)

Notice that the bit at the far left of the byte (MSB) is always 1 when a negative

number is represented. Conversely, the MSB is 0 if a positive number is represented.

When performing subtraction, the computer converts the binary number to be
subtracted to a negative number by using two's complement and then adds. In the

previous example, 26 (000110102) was converted to negative 26 (111001102) or the
two's complement. The following example demonstrates how to subtract 26 from 53.

00110101 00110101 53 >35

-00011010 becomes +11100110 or -26 +>E6

100011011 27 >1B

The answer is 110112 or 27, with the ninth digit disappearing because in a byte
arithmetic operation the computer recognizes only eight digits in one byte, leaving

the correct answer of 000110112.

EDITOR/ASSEMBLER
Page 397

APPENDICES

24.2 MEMORY ORGANIZATION

To understand memory organization, you must understand some basic terms and how
they apply to the TI Home Computer.

The Central Processing Unit (CPU) of the computer contains all the circuitry for
arithmetic functions, comparisons, hardware registers, and all other functions that
actually process computer instructions. The CPU processes all commands and

instructions fed into the computer and accesses all memory spaces. The CPU in the

Home Computer is the TMS9900 Microprocessor.

One way to divide memory is into RAM (Random Access Memory) and ROM (Read
Only Memory). RAM is a memory which can be written to, or read from, by any
program. It stores programs and data. ROM is a memory which can only be read
but not altered by any program. It is used to store information used by the

computer itself, such as the built-in TI BASIC language and the makeup of the
alphanumeric characters.

So that you can refer to any specific byte in the computer's memory, each byte is
assigned a number. These sequential numbers, called the addresses of the bytes, are
unique within each of the computer's memory spaces. They are usually referred to in
hexadecimal notation.

The TMS9900 microprocessor has an address space of 64K bytes. In the Home
Computer, some of this address space contains RAM and some contains ROM. In
addition, some addresses are used for access to special devices, such as sound and
speech, and to other areas of memory, such as VDP RAM and GROMs.

24.2.1 Directly Addressable Memory

When all possible devices are connected, 64K (65,536 or >10000) bytes of memory are
directly addressable.

Addresses >0000 through >1FFF are built into the console. They contain 8K bytes of
ROM that contain the TI BASIC language and other information necessary to the
functioning of the computer.

Addresses >2000 through >3FFF are the 8K bytes of RAM that make up the low
memory of the Memory Expansion unit. They can only be used when the Memory
Expansion unit is connected.

EDITOR/ASSEMBLER
Page 398

APPENDICES

Addresses >4000 through >5FFF are built into various peripherals. They contain up to

8K bytes of ROM for the Device Service Routine used to run peripheral devices, such

as disk drives and printers. These ROMs are selected by CRU operations (see

Section 9), so several ROMs can be at the same address.

Addresses >6000 through >7FFF are available on the Command Module port. Some

Command Modules, for example TI Extended BASIC, have ROM in this space.

Addresses >8000 through >9FFF are built into the console. They contain PAD from

addresses >8300 through >83FF (see Section 24.3.1) and all of the memory-mapped

device locations.

Addresses >A000 through >FFFF are the 24K bytes of RAM that make up the high

memory of the Memory Expansion unit. They can only be used when the Memory

Expansion unit is connected.

The following memory map summarizes the above information.

CPU Memory Use

General Case

>0000 + +
I (Console Ravi) I
I Two 4K REM chips I

>2000 + +
I Low Memory Expansion I

>4000 + +
I Peripheral ROMs (mapped) I
I for Device Service Routine I

>6000 + +
I Application Ravis in Command Module I

>8000 + +
I Memory-mapped devices for I
I VDP, GRavl, Sound, and Speech I
I PAD at >8300 I

>A000 + +
I I
I High Memory Expansion I
I I

>FFFF + +

EDITOR/ASSEMBLER

Page 399

APPENDICES

When the LOAD AND RUN option of the Editor/Assembler is in use, the following
diagram shows how the memory is used.

CPU Memory Use
LOAD AND RUN Option from the Editor/Assembler

>0000 + +
I (Console RCM) I
I Two 4K ROM chips I

>2000 + +
I Low Memory Expansion I
I Loader, your program, I
I and REF/DEF Table 1

>4000 + +
I Peripheral RCMs (mapped) I
I for Device Service Routine I

>6000 + +
I Unavailable 1

>8000 + +
I Memory-mapped devices for I
I VDP, LRCM, SOUND, and SPEED-I I
I CPU RAM at >8300 I

>A000 + +
I I
I High Memory Expansion 1
I Your program 1
I I

>FFFF + +

24.2.1.1 Expansion RAM

The Memory Expansion unit is a 32K-byte peripheral on an eight-bit bus. It has two

blocks of memory, an 8K block from >2000 through >3FFF and a 24K block from

addresses >A000 through >FFFF. Addresses >FFD8 through >FFFF are used for XOP 1

on the TI-99/4A. When your program is executing, the 24K block contains your

program and the 8K block contains the Loader, your program (if it was too large to

fit in the 24K block), utilities, and the REF/DEF table.

EDITOR/ASSEMBLER
Page 400

APPENDICES

24.2.1.2 ROM

All the ROMs (Read Only Memory) are directly accessible by an assembly language
program. Two 4K-byte console ROMs are located at addresses >0000 through >1FFF.

They contain the operating system, the GPL interpreter, and part of the TI BASIC

interpreter.

The memory block at addresses >4000 through >5FFF is assigned to the peripheral
ROMs which can be accessed by setting the bit assigned for the CRU (Communication
Register Unit) to enable the particular ROM. These ROMs contain DSRs (Device
Service Routines), and they are located in a peripheral. See Section 9 for more

information.

Application ROMs are contained in command modules. They occupy address >6000

through >7FFF.

24.2.1.3 GROM

A GROM (Graphics Read Only Memory) is another type of ROM. It is designed to
contain GPL (Graphic Programming Language) programs which are executed by the
GPL interpreter in the console. GPL is commonly used in applications software and

can only be executed through a GROM.

A GROM is a memory-mapped device, just as VDP RAM is. A GROM's memory is
addressed by writing its address to a specific CPU address and reading data from
another specified CPU address. See Section 16.5 for a discussion of accessing
GROMs.

GROM addresses are from >0000 through >F7FF. Each GROM has 6K bytes of
memory that start from an even-numbered first-digit address. For example, GROM 0
is at addresses >0000 through >17FF and GROM 1 is at addresses >2000 through
>37FF. The computer can access up to eight GROMs at a time.

GROMs 0, 1, and 2 are in the console and contain the monitor program, part of the
operating system, and most of the TI BASIC interpreter. Five additional GROMS can
be located in a Command Module. The number of GROMs used in a Command
Module depends on the size of the applications program.

EDITOR/ASSEMBLER
Page 401

APPENDICES

24.2.2 Memory-Mapped Devices

The memory-mapped devices are VDP (Video Data Processing) RAM, the Speech
Synthesizer, the sound processor, GROMs, and so forth. VDP RAM is discussed in
this section. For discussions of other memory-mapped devices, see Sections 16, 20,
21, and 22.

The Video Display Processor (VDP) RAM, located in the console, is used chiefly for
common video functions, such as screen images, character pattern tables, color

tables, etc. See Section 21 for a discussion of the use of VDP RAM for
screen-related functions.

When TI BASIC is in use, VDP RAM also contains the TI BASIC program, the
program symbol table, the value stack, and the string space. VDP RAM is also used
as a storage space by applications programs. Part of VDP RAM is used as a data
buffer. Another part of VDP RAM functions as a PAB (Peripheral Access Block) to
pass information from a file to the appropriate DSR (Device Service Routine).
Assembly language programs cannot be executed from VDP RAM.

VDP RAM is a memory-mapped area of 16K (16,384 or >4000) bytes numbered >0000
through >3FFF. VDP RAM addresses are automatically incremented, so only one
address in CPU RAM is required to read or write a specific block of data. Assigned
addresses exist for each I/O function in the RAM. For example, the VDP RAM read

data Register is located at CPU RAM address >8800, the VDP read status Register is
found at CPU RAM address >8802, the VDP write data Register is at CPU RAM
address >8C00, and the VDP write address Register is at CPU RAM address >8CO2.
See Section 16 for more information on writing to and reading from VDP RAM.

The diagram on the next page shows the memory of VDP RAM when it is being used
by the Editor/Assembler.

EDITOR/ASSEMBLER
Page 402

APPENDICES

VDP RAM Memory Use

Editor/Assembler

>0000 + +
I Screen Image Table I
I (>300 bytes) I

>0300 + +
I Sprite Attribute List I

>0380 + +
I Color Table I
I and free space I

>0400 + +
I Sprite Descriptor Table I

>0780 + +
I Sprite Motion Table I

>0800 + +
I Pattern Generator Table I
I Standard characters at >0900 through > AFF I
I Also used for PABs I

>1000 + +
I Free memory space I
I Also used for PABs and buffers I

>37C7 + +
I Blocks reserved for diskette DSR I

>3FFF + +

EDITOR/ASSEMBLER
Page 403

APPENDICES

24.3 MEMORY, CRU, AND INTERRUPT STRUCTURE

The following gives the structure and addresses of the memory use in PAD at
addresses >8300 through >83FF, CRU use, and interrupt handling.

24.3.1 CPU RAM PAD Use

CPU RAM PAD is located at addresses >8300 through >83FF. The system software
uses the high memory locations at addresses >83C0 through >83FF. The rest of the
CPU RAM is used according to the type of routines being executed. The following
describes the use of this memory.

Addresses Use

>8300 - >8349 Available for use by your program, with some limitations. The

system software uses this area only for temporary storage.

However, if your assembly language program is executed through
a TI BASIC program by CALL LOAD and CALL LINK, and the
assembly language program returns control to TI BASIC, only the
area from >8300 through >8317 is available. Further, if
parameters are passed by CALL LINK, then only the area from
>8300 through >83W is available. However, if TI BASIC is used

only to load and transfer control to an assembly language
program, all of this area is available to your program.

>834A - >836D Used as a stack area by the interpreter, floating point routines,
and DSR routines. Unless console routines are called by your
assembly language program, this area is available for use.

>836E - >836F Available for your use. However, if the TI BASIC interpreter or

floating point routines are running, this area is used as a value
stack pointer.

>8370 - >837F Used for the GPL status block as follows.
>8370 Contains the highest available address of VDP RAM.
>8372 The least-significant byte of the data stack pointer. The

most-significant byte is >83. When the computer is initialized,
this contains a value of >CF. However, after the first time it is
accessed, it is changed to >DO.

>8373 The least-significant byte of the subroutine stack pointer. The
most-significant byte is >83. When the computer is initialized,
this contains a value of >7E. However, after the first time it is
accessed, it is changed to >80.

>8374 The keyboard number to be scanned, with a default value of >0.

EDITOR/ASSEMBLER
Page 404

APPENDICES

Addresses Use
>8375 The ASCII key code detected by the scan routine.
>8376 The Wired Remote Controller Y-location.
>8377 The Wired Remote Controller X-location.

>8378 The random number generator.

>8379 The VDP interrupt timer. It is incremented every sixtieth of a
second.

>837A The number of sprites that can be in motion. It is originally set
to >00.

>837B The VDP status byte. It is a copy of the VDP status Register.
Bit 0 is the 60 Hz VDP interrupt. It is on every time the screen
is updated and off when the bit is read.
Bit 1 is on any time there are five or more sprites on a line.
Bit 2 is on any time that sprite coincidence occurs.
Bits 3 through 7 contain the number of the fifth sprite on a line
when there are five or more sprites on a line.

>837C The GPL STATUS byte. All the values are controlled by the GPL

interpreter.
Bit 0 is the high bit.
Bit 1 is the greater than bit.
Bit 2 is the condition bit. The key scan routine turns this bit on
when a new key is detected. Also, the DSR routine turns this bit
on to indicate that a file does not exist.
Bit 3 is the carry bit.
Bit 4 is the overflow bit.

>837D The character buffer used by the VDP. It reflects the code
loaded in the screen image area of the VDP RAM. Loading a
character code at this address results in displaying the character
on the screen based on the pointers at address >837E and >837F.

>837E Points to the current row on the screen.
>837F Points to the current column on the screen.

>8380 - >83BF The default subroutine stack address is >8380 and the default data
stack address is >83A0. Your assembly language program may

use this area unless it uses the GPLLNK routine. GPL uses
subroutine stacks and data stacks while executing the routine.

Thus, it is important to leave this area untouched. The TI
BASIC interpreter uses address >838A through >83BF as the
subroutine and data stack area. Additionally, addresses >8388
and >8389 are reserved for the TI BASIC interpreter.

>83C0 - >83DF Interpreter Workspace. You must not use this area. The bytes
are used by the interpreter as follows.

EDITOR/ASSEMBLER
Page 405

APPENDICES

Addresses Use
>83C0 Random number seed.
>83C2 TI-99/4 only: Eight bytes for remote handset debounce and

internal flags.

TI-99/4A only: Used as a flag byte to control interrupt routine.
>83C4 TI-99/4A only: Address of the user-defined interrupt routine.
>83CA Console keyboard debounce.
>83CC Sound list pointer.
>83CE Number of the sound byte, decremented on each VDP interrupt.
>83D0 Search pointers for GROM and ROM search. Four bytes.
>83D4 Current value stored in VDP Register 1.
>83D6 Screen time-out counter, decremented on each VDP interrupt.

Screen blanks after the word reaches >0000. Upon new key
detection, the word is reset.

>83D8 Return address saved by the scan routine.
>83DA Player number used by the scan routine.

>83E0 - >83FF GPL Workspace Registers. This area is used as a register area
by all the console routines, including the GPL and TI BASIC

interpreters. Use of the registers depends on the routine being

executed. However, Registers 13, 14, and 15 always contain the
GROM write address, the system flags, and the VDP write
address, respectively.

24.3.2 CRU Allocation

The Communication Register Unit (CRU) is used for system access to peripherals.
There are 4K CRU bits, numbered >0000 through >OFFF. The CRU address loaded
into Workspace Register 12 is twice the bit number. Thus, loading Workspace
Register 12 with >1000 sets the base equal to CRU bit >800. (See Section 9 for

more information.) Of the available 4K of CRU bits, the first K, at addresses >0000
through >07FE, are used internally by the console. This includes the TMS9901 I/O
chip, which addresses the keyboard, joysticks, cassette, etc. See Section 24.3.3 for
more information on I/O mapping.

The second K, at addresses >0800 through >OFFE, are reserved for future use.

The last 2K, at addresses >1000 through >1FFE, are reserved for the peripherals that
are attached to the console port. A block of 128 CRU bits is assigned to each
peripheral as shown below. AO through A15 are the CPU address bus lines.

EDITOR/ASSEMBLER
Page 406

APPENDICES

Device
CRU Addresses A3 A4 A5 A6 A7 Use (Peripheral) Number
>0000 - >OFFE 0 x x x x Internal use
>1000 - >10FE 1 0 0 0 0 Reserved 0
>1100 - >11FE 1 0 0 0 1 Disk controller 1
>1200 - >12FE 1 0 0 1 0 Reserved 2
>1300 - >13FE 1 0 0 1 1 RS232, ports 1 and 2 3
>1400 - >14FE 1 0 1 0 0 Reserved 4
>1500 - >15FE 1 0 1 0 1 RS232, ports 3 and 4 5
>1600 - >16FE 1 0 1 1 0 Reserved 6
>1700 - >17FE 1 0 1 1 1 Reserved 7
>1800 - >18FE 1 1 0 0 0 Thermal Printer 8
>1900 - >19FE 1 1 0 0 1 Future expansion 9
>1A00 - >1AFE 1 1 0 1 0 Future expansion 10
>1B00 - >1BFE 1 1 0 1 1 Future expansion 11
>1C00 - >1CFE 1 1 1 0 0 Future expansion 12

>1D00 - >1DFE 1 1 1 0 1 Future expansion 13
>1E00 - >1EFE 1 1 1 1 0 Future expansion 14
>1F00 - >1FFE 1 1 1 1 1 P-Code peripheral 15

CRU address 0 at A8 through A14 is the memory enable bit in each device address
space. Setting the bit to 1 turns the device ROM/RAM on, and resetting it to 0
turns it off. This enables the address space from >4000 through >5FFF reserved for
the peripheral ROM.

24.3.3 Interrupt Handling

The highest priority interrupts are the reset and load vectors with a priority of 0.
The reset interrupt is used when the computer is turned on. Interrupt priority 1
connects through the TMS9901 Programmable Systems Interface for interrupt
expansion. The following shows the interrupts available.

EDITOR/ASSE MBLER
Page 407

APPENDICES

Interrupt Vector Memory

9900 Interrupts

Device
Level Address CPU Pin Assignment
Highest >0000 RESET Reset
0 >FFEC LOAD Load
1 >0004 INT1 External Device (TMS9901)

Note that the lower priority CPU interrupts are not used. The following additional
interrupts are implemented on the TMS9901.

9901 Interrupt Mapping

Address CRU Bit 9901 Pin Function
>0000 0 Control Control.

>0002 1 INT1 17 External.

>0004 2 INT2 18 VDP vertical
synchronization.

>0006 3 INT3 9 Clock interrupt, keyboard

enter line, and joystick fire
button.

>0008 4 INT4 8 Keyboard 1 line and
joystick left.

>000A 5 INT5 7 Keyboard p line and
joystick right.

>000C 6 INT6 6 Keyboard 0 line and

joystick down.
>000E 7 INT7 (P15) 34 Keyboard shift line and

joystick up.

>0010 8 INT8 (P14) 33 Keyboard space line.

>0012 9 INT9 (P13) 32 Keyboard q line.

>0014 10 INT10 (P12) 31 Keyboard 1 line.

>0016 11 INT11 (P11) 30 Not used.

>0018 12 INT12 (P10) 29 Reserved.
>OO1A - >001E 13 - 15 INT13 - INT15 28, 27, 23 Not used.
>0020 16 PO 38 Reserved.

>0022 17 P1 37 Reserved.

>0024 18 P2 26 Bit 2 of keyboard select.

>0026 19 P3 22 Bit 1 of keyboard select.

EDITOR/ASSEMBLER
Page 408

APPENDICES

Address CRU Bit 9901 Pin Function
>0028 20 P4 21 Bit 0 of keyboard select.
>002A 21 P5 20 Alpha lock on the

TI-99/4A.
>002C 22 P6 19 Cassette control 1.
>002E 23 P7 (INT15) 23 Cassette control 2.
>0030 24 P8 (INT14) 27 Audio gate.
>0032 25 P10 (INT12) 28 Magnetic tape output.
>0036 27 P11 (INT11) 30 Magnetic tape input.
>0038 - >003E 28 - 31 P12 - P15 31-34 Not used.

EDITOR/ASSEMBLER
Page 409

APPENDICES

24.4E COMPARISONS WITH TI EXTENDED BASIC LOADER

The following sections compare the Loader that the Editor/Assembler uses with the
Loader used by TI Extended BASIC. The major differences involve memory use,
speed, external references, utility references, entry points, duplicate definitions, tags,
and use of some routines.

24.4.1 Memory Use

One of the basic differences between the Editor/Assembler Loader and the TI
Extended BASIC Loader is the use of the memory in the Memory Expansion unit.

The TI Extended BASIC interpreter uses the high memory location starting at address
>A000 for its own program space and data. Its utilities are loaded at the low
memory area starting at address >2000. The Loader only recognizes the area
between addresses >2000 and >3FFF (size about 8K) as the area for an assembly
language program.

The Editor/Assembler Loader, however, recognizes both areas (addresses >2000
through >3FFF and >A000 through >FFD7), and the Loader is loaded at address >2000.

The Loader checks the high memory area first. If there is not enough space left to

load the program it is loaded into the low memory area. Thus, the Editor/Assembler

Loader has more space (about 32K including utility routines and the Loader itself) for
programs than the TI Extended BASIC Loader.

When using TI Extended BASIC, you can load the program in the high memory area
by loading absolute code with a program which starts with an AORG statement.
However, extreme caution must then be taken if the TI Extended BASIC program
needs to run after the load because the TI Extended BASIC program code, line
number table, and numeric values are located in the high memory starting from the
top of the memory.

The easiest way to find out the available memory space in the high memory area is

to do a SIZE command after running the TI Extended BASIC program once. The
program space displayed on the screen is the space available for the assembly
language program. Note that this value is given in decimal notation.

The other way to find the highest memory address available for assembly language
programs is to execute the CALL PEEK statement at address >8386. For example,
execute CALL PEEK(-31866,A,B) and print A and B. This address contains the

EDITOR/ASSEMBLER
Page 410

APPENDICES

pointer to the highest free address in the expansion memory. Convert this value to a

hexadecimal value, and compare it with the last address in the assembly language
program.

It is possible for your assembly language program and the TI Extended BASIC

program to overwrite each other if one or both of the programs use large amounts of
space.

The utility routines include a Name Link Routine to search the program and other

utility routines provided by the Loader. The basic memory configuration of both

Loaders is similar, except that the Editor/Assembler Loader has more utility routines
available and has free higher memory spaces.

The memory usage of the two Loaders is shown in the following figures.

Memory Expansion Unit Use

by the Editor/Assembler Loader

>2000 + +
I ID code >A55A I

>2002 + +
I XNL vectors used by Editor/Assembler I

>2022 + +
I UTLTAB utility data area 1

>2100 + +
1 Utility BLWP vectors 1

>2128 + +
1 Utility routines 1

>2700 + +
1 Assembly language program area 1
1 1

>3F38 + +
1 REF/DEF table 1

>3FFF + +

>A000 + +
I 1
I 1
1 Assembly language program area 1
1 1
1 1

>FFEO + +

EDITOR/ASSEMBLER
Page 411

APPENDICES

Memory Expansion Unit Use

by the TI Extended BASIC Loader

>2000 + +
XM_ vector used by the interpreter I

>2002 + +
I Utility data area I

>2006 + +
I ID code >AA55 I

>2008 + +
I Utility BLM3 vectors I
+ +

I Utility routines I
+ +

I Assembly language program area I
I I
+ +

I DEF table I
>3FFF + +

>A000 + +
I Free space, end pointed to by I
I CPU RAM address >8386 I
+ +

I Numeric Values I
+ +

I Line number table I
+ +

I TI Extended BASIC program space I
>FFEO + +

24.4.2 Loading Speed

Both Loaders are tagged object loaders which load a fixed 80 display format file from

a diskette. The difference between the Loaders is the greater speed of the

Editor/\ssembler Loader. Also, it handles compressed object files, which the TI

Extended BASIC Loader cannot handle.

EDITOR/ASSEMBLER
Page 412

APPENDICES

24.4.3 External References

The Editor/Assembler Loader is a linking loader which handles external references.
Thus, a program can be broken into different files, and any section of the program

can be referred to by the other files by means of REF and DEF instructions. The TI

Extended BASIC Loader does not allow external references.

For example, if both the following programs are loaded and run, the Editor/Assembler
resolves all references.

DEF DATA1,PRGM
*

DATA1 EOU >1234
*

PRGM ... Beginning of the program.

END

DEF MAIN
REF DATA1,PRGM,KSCAN

*

MAIN Beginning of the program.

LI R1,DATA1

BL @PRGM

END

EDITOR/ASSEMBLER

Page 413

APPENDICES

24.4.4 Utility References

The TI Extended BASIC Loader only handles DEF statements and DEFed labels that
are entered by the Loader as it loads the program. In order to access the utility
routines in TI Extended BASIC, equated addresses must be specified in the program

by EQU instructions. See Section 24.4.8 for descriptions of the equated addresses.

The Editor/Assembler Loader creates pre-defined labels of all the utility routines and
frequently accessed memory addresses. Thus, REF instructions in your program are
sufficient to access the utility routines, and object tags 3 and 4 are accepted by this
Loader.

24.4.5 Entry Point

Another feature of the Editor/Assembler Loader is that it allows a program entry
point to be specified with the END instructions. Any address label with the END
statement is considered to be the address and executes the program immediately

without comming back to the Editor/Assembler screen. Thus, object tags 1 and 2 are
accepted by this Loader.

24.4.6 Duplicate Definition

Duplicate definition is allowed by the TI Extended BASIC Loader, with the Loader
replacing the new defintion with the old definition. Thus, if two programs with the
same entry name are loaded, the most recently loaded program is executed when the
name is specified.

The Editor/Assembler Loader, however, issues a DUPLICATE DEFINITION error
message, and loading stops.

24.4.7 Tags

The comparison of the object tags is listed on the next page.

EDITOR/ASSEMBLER
Page 414

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

VDPWA
VDPWD

VDPRD
VDPSTA
FAC
GPLWS
PAD
SOUND
SPCHRD
SPCHWT
GRMRD
GRMRD
GRMWD
GRMWA

SCAN

>8CO2
>8C00

>8800
>8802
>834A

>83E0
>8300
>8400
>9000

>9400
>9800

>9802
>9C00

>9CO2
>000E

APPENDICES

Tags Function Extended BASIC Loader Editor/Assembler Loader
0 Module ID Supported Supported
1, 2 Entry address Ignored Supported
3, 4 External REFs Issues error Supported
5, 6 External DEFs Supported Supported
7, 8 Checksum Supported Supported
9, A Load address Supported Supported
B, C Data Supported Supported
D, E Load bias Issues error Issues error
F End of record Supported Supported
G, H Unused Issues error Issues error
I Program ID Ignored Ignored
M Data/common seg. Ignored Issues error
Other Issues error Issues error

In order to access the utility routines of the TI Extended BASIC Loader, all the

utility references must be done by equating (with EQU) to the routine address.

24.4.8 TI Extended BASIC Equates

The following shows the equates used in TI Extended BASIC.

* Utility Branches

EDITOR/ASSEMBLER
Page 415

APPENDICES

*

NUMASG EQU >2008
NUMREF EQU >2000
STRASG EQU >2010
STRREF EQU >2014
XMLLNK EQU >2018
KSCAN EQU >201C
VSBW EQU >2020
VMBW EQU >2024
VSBR ECU >2028
VMBR EQU >202C
VWTR EQU >2030
ERR EQU >2034
FADD EQU >0D80
FSUB EQU >0D7C
FMUL EQU >0E88
FDIV EQU >OFF4
SADD EQU >0D84
SSUB EQU >0D74
SMUL ECU >0E8C
SDIV ECU >OFFB
CSN EQU >11AE
CFI EQU >12B8
FCOMP EQU >0D3A
NEXT EQU >0070
COMPCT EQU >00
GETSTR EQU >02
MEMCHK EQU >04
CNS ECU >06
VPUSH EQU >OE
VPOP EQU >10
ASSGNV EQU >18
CIF EQU >20
SCROLL ECU >26
VGWITE EQU >34
GVWITE EQU >36

EDITOR/ASSEMBLER
Page 416

APPENDICES

*

* Error Equates
*

ERRNO EQU >0200 2 Numeric Overflow.
ERRSYN EQU >0300 3 Syntax Error.
ERRIBS EQU >0400 4 Illegal After Subprogram.
ERRNQS EQU >0500 5 Unmatched Quotes.
ERRNTL EQU >0600 6 Name Too Long.
ERRSNM EQU >0700 7 String-Number Mismatch.
ERROBE EQU >0800 8 Option Base Error.
ERRMUV EQU >0900 9 Improperly Used Name.
ERRI M EQU >0A00 10 Image Error.
ERRMEM EQU >OB00 11 Memory Full.
ERRSO EQU >0000 12 Stack Overflow.
ERRNWF EQU >0D00 13 NEXT Without FOR.
ERRFNN EQU >0E00 14 FOR-NEXT Nesting.
ERRSNS EQU >0F00 15 Must Be in Subprogram.
ERRRSC EQU >1000 16 Recursive Subprogram Call.
ERRMS EQU >1100 17 Missing SUBEND.
ERRRWG EQU >1200 18 RETURN Without GOSUB.
ERRST EQU >1300 19 String Truncated.
ERRRBS EQU >1400 20 Bad Subscript.
ERRSSL EQU >1500 21 Speech String Too Long.
ERRLNF EQU >1600 22 Line Not Found.
ERRBLN EQU >1700 23 Bad Line Number.
ERRLTL EQU >1800 24 Line Too Long.
ERRCC EQU >1900 25 Can't Continue.
ERRCIP EQU >1A00 26 Command Illegal in Program.
ERROLP EQU >1B00 27 Only Legal in a Program.
ERRBA EQU >1C00 28 Bad Argument.
ERRNPP EQU >1D00 29 No Program Present.
ERRBV EQU >1E00 30 Bad Value.
ERRIAL EQU >1F00 31 Incorrect Argument List.
ERRINP EQU >2000 32 Input Error.
ERRDAT EQU >2100 33 Data Error.
ERRFE EQU >2200 34 File Error.
ERRIO EQU >2400 36 I/O Error.
ERRSNF EQU >2500 37 Subprogram Not Found.
ERRPV EQU >2700 39 Protection Violation.
ERRIVN EQU >2800 40 Unrecognized Character.
WRNNO EQU >2900 41 Numeric Overflow.

EDITOR/ASSEMBLER
Page 417

APPENDICES

WRNST EQU >2A00 42 String Truncated.
WRNNPP EQU >2B00 43 No Program Present.
WRNINP EQU >2C00 44 Input Error.
WRNIO EQU >2D00 45 I/O Error.

24.4.9 Subprogram Use

All the TI BASIC interface and support routines in the TI Extended BASIC Loader
are supported by the Editor/Assembler Loader. However, some routines work slightly

differently. The use of these subprograms with TI BASIC when the Editor/Assembler
module is attached is described in Section 17. The following describe how they differ

from the TI Extended BASIC routines with the same names.

CALL INIT--Loads the utility routines from a TI Extended BASIC program or from
the Editor/Assembler command module. This subprogram functions similarly, but the
code that accomplishes it is different.

CALL LOAD--The Editor/Assembler is forced to load the utility routines if they have

not been loaded by INIT routine. This is not done in the TI Extended BASIC Loader,
and an an error is issued if INIT has not been called.

CALL LINK--The Editor/Assembler Loader uses its own workspace to store
information from the parameter list. Only the addresses >8310 through >8312 are

reserved for parameter passing purposes. TI Extended BASIC uses addresses >8300
through >8315 for this information. Your assembly language program must not
modify this area if parameters are to be accessed in the program.

CALL PEEK--The Editor/Assembler allows the TI BASIC program to peek more than
one consecutive memory area in a statement by means of a null string delimiter,
whereas TI Extended BASIC only allows one consecutive memory area to be peeked in
each statement.

CALL PEEKV, CALL POKEV--These are not supported by TI Extended BASIC.

ERROR LINK ROUTINE--The error code used with the TI Extended BASIC support
routine may not give the same error message when the program is run in the
Editor/Assembler environment, due to the fact that the TI BASIC and TI Extended
BASIC interpreters have different error messages and error handling routines.

EDITOR/ASSEMBLER
Page 418

APPENDICES

Note also that the error messages given by the Editor/Assembler while executing TI
BASIC interface routines use the console TI BASIC error messages. They are very
often different from the error message issued by TI Extended BASIC. For example,

the STRING-NUMBER MISMATCH error issured by TI Extended BASIC is a SYNTAX
ERROR when issued by the Editor/Assembler since the TI BASIC in the console does
not contain the STRING-NUMBER MISMATCH error message.

The TI Extended BASIC support routines which are used to access numeric and string
parameters are slightly modified in the Editor/Assembler version in order to utilize
console routines in the console TI BASIC interpreter. However, assembly language

programs access them exactly the same way as with the TI Extended BASIC utilities.

EDITOR/ASSEMBLER
Page 419

APPENDICES

24.5 SAVE UTILITY

The SAVE utility slows you to save TMS9900 tagged object code in memory image
format on either diskette or cassette. In this format programs can be run by using

the RUN PROGRAM FILE option on the Editor/Assembler.

The SAVE program is on the Editor/Assembler diskette labeled Part B under the name
SAVE. The program is executed with the LOAD AND RUN option on the

Editor/Assembler. However, before it is run, you must include certain DEFs in your
program, assemble it, and load it.

Your program must contain DEF SFIRST,SLAST,SLOAD, with these symbols defined as
follows.

SFIRST must be a pointer to the start of your program. Further, the start of the
program must be an executable instruction. However, SFIRST does not
necessarily reflect where the memory image program is loaded.

SLOAD must be the address where the saved program is to be located. Since
memory image programs are not relocatable, SLOAD should usually equal SFIRST.

SLAST must be a pointer to the address after the last word of your program.
This can be done most easily by making SLAST the label for the END directive in
your program.

Then choose the LOAD AND RUN option. For the first file name, enter the name of
your object file: for example, DSK1.OBJECT. Then enter the name of the SAVE
program, DSK1.SAVE. Then press <return> to go to the next prompt, and enter the
program name as SAVE. The SAVE utility then executes. It displays reminders
about using the utility and prompts for a file name for the file that it creates.

To output to cassette rather than diskette, enter the file name CS1.

The SAVE utility can only save 8K in one file. If your program is larger than that
(SFIRST minus SLAST is greater than >2000 bytes), then the SAVE utility creates a
second file by incrementing the last byte of the current file name, thus creating a
new file name. The Editor/Assembler option RUN PROGRAM FILE expects files to
be linked in this way.

EDITOR/ASSEMBLER
Page 420

APPENDICES

Note: If you save a file on CS1 that is larger than 8K, do not rewind the cassette
when saving the additional files, even though you are instructed to do so. Otherwise
you will save the additional files over the first one. When loading programs that
consist of more than one file using the RUN PROGRAM FILE option, give the input
file name as CS1. If you give it as CS1, then the RUN PROGRAM FILE option

will increment the name to CS2 for the second file, and CS2 is an invalid file name
in RUN PROGRAM FILE.

EDITOR/ASSE MBLER
Page 421

APPENDICES

24.6 SPEECH SYNTHESIZER RESIDENT VOCABULARY

The following is a list of all the letters, numbers, words, and phrases that can be
accessed, followed by the location of their codes in ROM.
description of the use of speech.

See Section 22 for a

Phrase Address Phrase Address
- (NEGATIVE) 48DC + (POSITIVE) 51B3
. (POINT) 50EC 0 13C3
1 1409 2 145C
3 149A 4 14E7
5 1531 6 15A8
7 15E8 8 1637
9 1664

A (ay) 16E4 Al (uh) 1700
ABOUT 1714 AFTER 1769
AGAIN 17A5 ALL 1807
AM 1830 AN 1876
AND 18AC ANSWER 1913
ANY 1962 ARE 556E
AS 19A7 ASSUME 19E8
AT 1A25

B 1A42 BACK 1A64
BASE 1A8F BE 1A42
BETWEEN lADE BLACK 1B47
BLUE 1B8A BOTH 1BB6
BOTTOM 1BEA BUT 1C20
BUY 1C48 BY 1C48
BYE 1C48

C 1C86 CAN 1CD9
CASSETTE 1D10 CENTER 1D47
CHECK 1D82 CHOICE 1DA2
CLEAR 1DE6 COLOR 1E20
COME 1E54 COMES 1E87
COMMA lEDE COMMAND 1F1A
COMPLETE 1F71 COMPLETED 1FCD
COMPUTER 2034 CONNECTED 208B

EDITOR/ASSEMBLER
Page 422

APPENDICES

Phrase Address Phrase Address
CONSOLE 20F3 CORRECT 213C
COURSE 2182 CYAN 21C0

D 2203 DATA 223C
DECIDE 2294 DEVICE 22FD
DID 2366 DIFFERENT 23C4
DISKETTE 242D DO 2480
DOES. 24B3 DOING 24EA
DONE 253E DOUBLE 2599
DOWN 25D3 DRAW 2612
DRAWING 2668

E 26CB EACH 26F0
EIGHT 1637 EIGHTY 2723
ELEVEN 2759 ELSE 27B6
END 27F5 ENDS 2866

ENTER 28AD ERROR 28EF
EXACTLY 2937 EYE 3793

F 299F FIFTEEN 29C2
FIFTY 2A1D FIGURE 2A60
FIND 2AD7 FINE 2B1E
FINISH 2B5B FINISHED 2B94
FIRST 2BD7 FIT 2C14
FIVE 1531 FOR 14E7
FORTY 2C3E FOUR 14E7
FOURTEEN 2C7F FOURTH 2D19
FROM 2D74 FRONT 2DBC

G 2DEB GAMES 2E28
GET 2E8C GETTING 2EBA
GIVE 2F38 GIVES 2F8D
GO 2FFC GOES 3031
GOING 3079 GOOD 30D6
GOOD WORK 30FA GOODBYE 3148
GOT 31A0 GRAY 31D1
GREEN 321D GUESS 327E

H 32C0 HAD 32EF
HAND 3339 HANDHELD UNIT 337E

EDITOR/ASSEMBLER
Page 423

APPENDICES

Phrase Address Phrase Address
HAS 3405 HAVE 344A
HEAD 348C HEAR 34E5
HELLO 351A HELP 3571
HERE 34E5 HIGHER 35AE
HIT 360A HOME 363E
HOW 3689 HUNDRED 36EF
HURRY 3757

I 3793 I WIN 37CF
IF 3850 IN 3872
INCH 38B5 INCHES 38FA
INSTRUCTION 394B INSTRUCTIONS 39BD
IS 3A32 IT 3A7A

J 3AAE JOYSTICK 3AED
JUST 3B4C

K 3B8A KEY 3BB9
KEYBOARD 3BE9 KNOW 3C4F

L 3C8F LARGE 3CDO
LARGER 3D19 LARGEST 3D67
LAST 3DDE LEARN 3E1E
LEFT 3E78 LESS 3EB2
LET 3F08 LIKE 3F2F
LIKES 3F6A LINE 3FD5
LOAD 404B LONG 40D3
LOOK 413D LOOKS 4191
LOWER 41E7

M 4233 MADE 4267
MAGENTA 42AE MAKE 432E
ME 437D MEAN 43BD
MEMORY 4405 MESSAGE 446C
MESSAGES 44D7 MIDDLE 4551
MIGHT 4593 MODULE 45DF
MORE 4642 MOST 4693
MOVE 46DF MUST 473D

EDITOR/ASSEMBLER
Page 424

APPENDICES

Phrase Address Phrase Address
N 4786 NAME 47C0
NEAR 4833 NEED 4880
NEGATIVE 48 DC NEXT 4959
NICE TRY 49A5 NINE 1664
NINETY 4A4E NO 3C4F
NOT 4AAB NOW 4ADA
NUMBER 4B20

O 4B7D OF 4BBA
OFF 4C13 OH 4B7D
ON 4C41 ONE 1409
ONLY 4C8B OR 4CDC
ORDER 4D34 OTHER 4D8A
OUT 4DD4 OVER 4E0A

P 4E66 PART 4E9F
PARTNER 4EE0 PARTS 4F31
PERIOD 4F81 PLAY 4FE5
PLAYS 502D PLEASE 5093
POINT 50EC POSITION 5148
POSITIVE 51B3 PRESS 5231
PRINT 526D PRINTER 52AA
PROBLEM 52F9 PROBLEMS 5360
PROGRAM 53EE PUT 5477
PUTTING 54AA

O 5520

R 556E RANDOMLY 55A0
READ (reed) 5652 READ1 (red) 57C1
READY TO START 56B3 RECORDER 5745
RED 57C1 REFER 5801
REMEMBER 5861 RETURN 58CF
REWIND 593A RIGHT 7C38
ROUND 59C2

S 5A5A SAID 5AA1
SAVE 5AEF SAY 5B65
SAYS 5BA2 SCREEN 5BFB
SECOND 5C5B SEE 1C86

EDITOR/ASSEMBLER
Page 425

APPENDICES

Phrase Address Phrase Address
SEES 5CBF SET 5D1B
SEVEN 15E8 SEVENTY 5D50
SHAPE 5DA5 SHAPES 5DDE
SHIFT 5E27 SHORT 5E5C
SHORTER 5EA5 SHOULD 5F24
SIDE 5F6D SIDES 5FC8
SIX 15A8 SIXTY 601A
SMALL 6070 SMALLER 60AE
SMALLEST 60F1 SO 6153
SOME 6197 SORRY 6106
SPACE 6226 SPACES 625D
SPELL 62CC SQUARE 6333
START 637C STEP 63C5
STOP 63F7 SUM 6197
SUPPOSED 6423 SUPPOSED TO 6489
SURE 64F4

T 6551 TAKE 658B
TEEN 65BF TELL 6603
TEN 664E TEXAS INSTRUMENTS 6696
THAN 675B THAT 67B6
THAT IS INCORRECT 6816 THAT IS RIGHT 68FE
THE (thee) 6974 THE1 (thuh) 69B6
THEIR 6A72 THEN 69E1
THERE 6A72 THESE 6ADE
THEY 6B47 THING 6BA0
THINGS 6COF THINK 6C73
THIRD 6CBC THIRTEEN 6D11
THIRTY 6DA2 THIS 6DDE
THREE 149A THREW 6E26
THROUGH 6E26 TIME 6E69
TO 145C TOGETHER 6EB0
TONE 6F1F TOO 145C
TOP 6F8D TRY 6FBB
TRY AGAIN 700F TURN 7092
TWELVE 70CE TWENTY 7119
TWO 145C TYPE 7170

EDITOR/ASSEMBLER
Page 426

APPENDICES

Phrase Address Phrase Address
U 71BE UHOH 71F4
UNDER 7245 UNDERSTAND 729D
UNTIL 732E UP 739F
UPPER 73C3 USE 7403

V 7449 VARY 7487
VERY 74DA

W 7520 WAIT 759D
WANT 75DF WANTS 7621
WAY 76B0 WE 767D
WEIGH 76B0 WEIGHT 759D
WELL 7717 WERE 775C
WHAT 77BC WHAT WAS THAT 77E9
WHEN 7875 WHERE 78AB
WHICH 78F4 WHITE 7924
WHO 7969 WHY 79B4
WILL 7A11 WITH 7A6B
WON 1409 WORD 7AAB
WORDS 7BOA WORK 7875
WORKING 7BBC WRITE 7C38

X 7C8D

Y 7CB2 YELLOW 7CF8
YES 7D58 YET 7D99
YOU 71BE YOU WIN 7DDB
YOUR 7E4D

Z 7E99 ZERO 13C3

EDITOR/ASSEMBLER
Page 427

APPENDICES

24.7 CHARACTER SET

The Editor/Assembler recognizes the ASCII characters listed in the following table.
The table includes the ASCII code for each character represented as both a
hexadecimal and decimal value. The Editor/Assembler also recognizes the six special
characters shown in the second table. On the TI-99/4A Home Computer, the
Editor/Assembler also represents the lower-case letters, {, }, and the tilde as shown in
the third table.

Editor/Assembler Primary Character Set

Hexadecimal Decimal
Value Value Character
20 32 Space
21 33 !
22 34 "
23 35 #
24 36 $
25 37 %
26 38 &
27 39 '
28 40 (
29 41)
2A 42 *

2B 43 +
2C 44 ,
2D 45 -
2E 46 .
2F 47 /
30 48 0
31 49 1
32 50 2
33 51 3
34 52 4
35 53 5
36 54 6
37 55 7
38 56 8
39 57 9
3A 58 :

EDITOR/ASSEMBLER
Page 428

APPENDICES

Hexadecimal Decimal
Value Value Character
3B 59 ;
3C 60 <
3D 61 =
3E 62 >
3F 63 ?
40 64 Lal
41 65 A
42 66 B
43 67 C
44 68 D
45 69 E
46 70 F
47 71 G
48 72 H
49 73 I
4A 74 J
4B 75 K
4C 76 L
4D 77 M
4E 78 N
4F 79 0
50 80 P
51 81 0
52 82 R
53 83 S
54 84 T
55 85 U
56 86 V
57 87 W
58 88 X
59 89 Y
5A 90 Z

EDITOR/ASSEMBLER
Page 429

APPENDICES

Editor/Assembler Special Characters

Hexadecimal

Value

Decimal

Value Character

5B 91 [

5C 92
5D 93]

5E 94
5F 95 _
60 96

TI-99/4A Editor/Assembler Additional Characters

Hexadecimal

Value

Decimal

Value Character

61 97 a

62 98 b

63 99 c

64 100 d

65 101 e

66 102 f

67 103 g

68 104 h

69 105 i

6A 106 j

6B 107 k

6C 108 1

6D 109 m

6E 110 n

6F 111 o

70 112 p

71 113 q

72 114 r

73 115 s

74 116 t

75 117 u

76 118 v

77 119 w

78 120 x

79 121 y

EDITOR/ASSEMBLER

Page 430

APPENDICES

Hexadecimal Decimal

Value Value Character

7A 122 z

7B 123 {

7D 125 }

7E 126

EDITOR/ASSEMBLER

Page 431

APPENDICES

24.8 ASSEMBLER DIRECTIVE TABLE

The assembler directives for the TI Home Computer are listed in the following table.
All directives may include a comment field following the operand field. Those
directives that do not require an operand field may have a comment field following
the operator field. Those directives that have optional operand fields (RORG and
END) may have comment fields only when they have operand fields.

The following symbols and conventions are used in defining the syntax of assembler
directives.

Angle brackets (< >) enclose items you supply.
Brackets ([]) enclose optional items.
An ellipsis (...) indicates that the preceding item may be repeated.
Braces ({ }) enclose two or more items of which one must be chosen.

The following words are used in defining the items used in assembler directives.

label
string
expr
wd expr
term
operation

A symbol used in the label field.
A character string of a length defined for each directive.
An expression.

A well-defined expression.
The term used to refer to an extended operation.
A mnemonic operation code, macro name, or previously defined
operation or extended operation.

Assembler Directives

Directive

Page TiTLe
Program IDTntifier

External DEFinition
External REFerence
COPY file
Absolute ORiGin
Relocatable ORiGin
Dummy ORiGin

Force
Word

Syntax Boundary Note
[<label>] TITL <string> NA
[<label>] IDT <string> NA
[<label>] DEF <symbol>[,<symbol>]... NA
[<label>] REF <symbol>[,<symbol>]... NA
[<label>] COPY "<file name>" NA
[<label>] AORG <wd expr> No
[(label>) RORG [(expr>] No 2
[<label>] DORG [(expr>] No

EDITOR/ASSEMBLER
Page 432

3Symbol must have been previously defined.
4
These directives have no effect when using the Loader provided with the
Editor/Assembler.

1The minus sign causes the Assembler to negate the right-most character.
2Symbols in expressions must have been previously defined.

APPENDICES

Force
Word

Directive Syntax Boundary Note
Block Starting

with Symbol
[<label>] BSS <wd expr> No

Block Ending
with Symbol

[<label>] BES <wd expr> No

Initialize word [<label>] DATA (expr>[,<expr>]... Yes
Initialize TEXT [<label>] TEXT [-] <string> No 1
Define eXtended [<label>] DXOP <symbol>, <term> NA

OPeration
Define assembly-

time constant
[<label>] EQU <expr> NA 2

Word boundary [(label>) EVEN Yes
No source List [<label>] UNL NA
LIST Source [<label>] LIST NA
PAGE eject [<label>] PAGE NA
Initialize BYTE [<label>] BYTE <wd expr>[,<wd expr>]... No
Program END [<label>] END [<symbol>] NA 3
Program SEGment [<label>] PSEG Yes 4
Program segment END [<label>] PEND Yes 4
Data SEGment [<label>] DSEG Yes 4
Data segment END [<label>] DEND Yes 4
Common SEGment [<label>] CSEG [<string>] Yes 4
Common segment END [<label>] CEND Yes 4
Secondary REFerence [<label>] SREF <symbol>[,<symbol>)... NA 4
Force LOAD [<label>] LOAD <symbol>[,<symbol>]... NA 4

Notes:

EDITOR/ASSEMBLER
Page 433

APPENDICES

24.9 HEXADECIMAL INSTRUCTION TABLE

The following table lists the TMS9900 assembly language instructions, their format,
and the section in which they are described. They are in order according to their
hexadecimal operation code. For an alphabetical listing by their mnemomic operation

code, see Section 24.10. See Section 5 for an explanation of the format.

Hexadecimal
Operation

Mnemonic
Operation

Code Code Name Format Section
0200 LI Load Immediate VIII 10.1
0220 AI Add Immediate VIII 6.4
0240 ANDI AND Immediate VIII 11.1

0260 ORI OR Immediate VIII 11.2

0280 CI Compare Immediate VIII 8.3
02A0 STWP ST ore Workspace Pointer VIII 10.7

02C0 STST STore STatus VIII 10.6
02E0 LWPI Load Workspace Pointer VIII 10.3

Immediate
0300 LIMI Load Interrupt Mask VIII 10.2

Immediate

0340 IDLE IDLE VII 9.6
0360 RSET ReSET VII 9.6

0380 RTWP ReTurn with Workspace VII 7.17
Pointer

03A0 CKON ClocK ON VII 9.6

03C0 CKOF ClocK OFf VII 9.6

03E0 LREX Load or REstart eXecution VII 9.6

0400 BLWP Branch And Load Workspace VI 7.3

Pointer

0440 B Branch VI 7.1

0480 X EXecute VI 7.18

04C0 CLR CLeaR operand VI 11.5

0500 NEG NEGate VI 6.11
0540 INV INVert VI 11.4

0580 INC INCrement VI 6.8

05C0 INCT INCrement by Two VI 6.9

0600 DEC DECrement VI 6.5

0640 DECT DECrement by Two VI 6.6

0680 BL Branch and Link VI 7.2

EDITOR/ASSEMBLER
Page 434

Hexadecimal
Operation

Mnemonic
Operation

APPENDICES

Code Code Name Format Section
06C0 SWPB SWaP Bytes VI 10.8

0700 SETO SET to One VI 11.6

0740 ABS ABSolute value VI 6.3

0800 SRA Shift Right Arithmetic V 12.1

0900 SRL Shift Right Logical V 12.2

0A00 SLA Shift Left Arithmetic V 12.3
OB00 SRC Shift Right Circular V 12.4

1000 JMP Unconditional JuMP II 7.11
1100 JLT Jump Less Than II 7.10
1200 JLE Jump if Low Or Equal II 7.9
1300 JEQ Jump EQual II 7.4
1400 JHE Jump High Or Equal II 7.6
1500 JGT Jump Greater Than II 7.5

1600 JNE Jump Not Equal II 7.13

1700 JNC Jump No Carry II 7.12

1800 JOC Jump On Carry II 7.16

1900 JNO Jump No Overflow II 7.14

1A00 JL Jump if logical Low II 7.8
1800 JH Jump if logical High II 7.7

1C00 JOP Jump Odd Parity II 7.15

1D00 SBO Set CRU Bit to One II 9.2

1E00 SBZ Set CRU Bit to Zero II 9.3
1F00 TB Test Bit II 9.5
2000 COC Compare Ones Corresponding III 8.4
2400 CZC Compare Zeros Corresponding III 8.5
2800 XOR EXclusive OR III 11.3
2C00 XOP EXtended OPeration IX 7.19
3000 LDCR LoaD CRU IV 9.1
3400 STCR ST ore CRU IV 9.4
3800 MPY MultiPlY IX 6.10
3C00 DIV DIVide IX 6.7
4000 SZC Set Zeros Corresponding I 11.9
5000 SZCB Set Zeros Corresponding,

Byte
I 11.10

6000 S Subtract words I 6.12
7000 SB Subtract Bytes I 6.13

8000 C Compare words I 8.1
9000 CB Compare Bytes I 8.2

EDITOR/ASSEMBLER
Page 435

APPENDICES

Hexadecimal

Operation
Mnemonic
Operation

Code Code Name Format Section
A000 A Add words I 6.1
B000 AB Add Bytes I 6.2
C000 MOV MOVe words I 10.4
D000 MOVB MOVe Bytes I 10.5
E000 SOC Set Ones Corresponding I 11.7
F000 SOCB Set Ones Corresponding,

Byte
I 11.8

EDITOR/ASSEMBLER
Page 436

APPENDICES

24.10 ALPHABETICAL INSTRUCTION TABLE

The following table lists the TMS9900 assembly language instructions, their format,
and the section in which they are described. They are in alphabetical order by their
mnemonic operation code. For a listing in order according to their hexadecimal
operation code, see Section 24.9.

Hexadecimal Mnemonic
Operation Operation

See Section 5 for an explanation of the format.

Code Code Name Format Section

A000 A Add words I 6.1

B000 AB Add Bytes I 6.2

0740 ABS ABSolute value VI 6.3

0220 AI Add Immediate VIII 6.4

0240 ANDI AND Immediate VIII 11.1

0440 B Branch VI 7.1

0680 BL Branch and Link VI 7.2

0400 BLWP Branch And Load Workspace VI 7.3
Pointer

8000 C Compare words I 8.1

9000 CB Compare Bytes I 8.2

0280 CI Compare Immediate VIII 8.3

03C0 CKOF ClocK OFf VII 9.6

03A0 CKON ClocK ON VII 9.6

04C0 CLR CLeaR operand VI 11.5

2000 COC Compare Ones Corresponding III 8.4

2400 CZC Compare Zeros Corresponding III 8.5

0600 DEC DECrement VI 6.5

0640 DECT DECrement by Two VI 6.6

3C00 DIV DIVide IX 6.7

0340 IDLE IDLE VII 9.6

0580 INC INCrement VI 6.8

05C0 INCT INCrement by Two VI 6.9

0540 INV INVert VI 11.4

1300 JEQ Jump EQual II 7.4

1500 JGT Jump Greater Than II 7.5

1800 JH Jump if logical High II 7.7

1400 JHE Jump High Or Equal II 7.6

1A00 JL Jump if logical Low II 7.8

1200 JLE Jump if Low Or Equal II 7.9

EDITOR/ASSEMBLER
Page 437

APPENDICES

Hexadecimal
Operation

Mnemonic
Operation

Code Code Name Format Section

1100 JLT Jump Less Than II 7.10

1000 JMP Unconditional JuMP II 7.11

1700 JNC Jump No Carry II 7.12

1600 JNE Jump Not Equal II 7.13

1900 JNO Jump No Overflow II 7.14

1800 JOC Jump On Carry II 7.16

1C00 JOP Jump Odd Parity II 7.15

3000 LDCR LoaD CRU IV 9.1
0200 LI Load Immediate VIII 10.1

0300 LIMI Load Interrupt Mask VIII 10.2
Immediate

03E0 LREX Load or REstart eXecution VII 9.6

02E0 LWPI Load Workspace Pointer VIII 10.3

Immediate
C000 MOV MOVe words I 10.4

D000 MOVB MOVe Bytes I 10.5

3800 MPY MultiPlY IX 6.10

0500 NEG NEGate VI 6.11

0260 ORI OR Immediate VIII 11.2

0360 RSET ReSET VII 9.6

0380 RTWP ReTurn with Workspace VII 7.17

Pointer

6000 S Subtract words I 6.12

7000 SB Subtract Bytes I 6.13

1D00 SBO Set CRU Bit to One II 9.2

1E00 SBZ Set CRU Bit to Zero II 9.3

0700 SETO SET to One VI 11.6

0A00 SLA Shift Left Arithmetic V 12.3

E000 SOC Set Ones Corresponding I 11.7

F000 SOCB Set Ones Corresponding,

Byte

I 11.8

0800 SRA Shift Right Arithmetic V 12.1

OBOO SRC Shift Right Circular V 12.4

0900 SRL Shift Right Logical V 12.2

3400 STCR STore CRU IV 9.4

02C0 STST STore STatus VIII 10.6

02A0 STWP STore Workspace Pointer VIII 10.7

EDITOR/ASSEMBLER
Page 438

Hexadecimal

Operation

Mnemonic

Operation

APPENDICES

Code Code Name Format Section

06C0 SWPB SWaP Bytes VI 10.8

4000 SZC Set Zeros Corresponding I 11.9

5000 SZCB Set Zeros Corresponding,

Byte

I 11.10

1F00 TB Test Bit II 9.5
0480 X EXecute VI 7.18
2C00 XOP EXtended OPeration IX 7.19
2800 XOR EXclusive OR III 11.3

EDITOR/ASSEMBLER

Page 439

APPENDICES

24.11 PROGRAM ORGANIZATION

You can write your program so that it returns to the Editor/Assembler, to the TI
BASIC or TI Extended BASIC program that called it, or to the master title screen.
The program must retain the return address and must not have altered the GPL
Workspace Registers.

24.11.1 Returning When Your Program Is Run Automatically

The final instruction in your program can be an END instruction followed by a label
which has been mentioned in a DEF instruction. Then the program is run
automatically when it is loaded by the Editor/Assembler LOAD AND RUN option, the
Editor/Assembler RUN option, or the TI BASIC or TI Extended BASIC statement
CALL LOAD. When your program is run automatically, the user Workspace equate
(USRWS EQU >20BA) is not loaded. To use this area for your Workspace Registers,
use the following sequence.

USRWS EQU >20BA
LWPI USRWS

You may define your own Workspace Register area instead.

When your program is run automatically, it starts in the Graphics Progamming
Language Workspace (starting at GPLWS). The return address is in Workspace
Register 11. Do not use GPLWS as your Workspace. Instead, branch to your own
area, save the return address from GPL Workspace Register 11, and set up your own
Workspace. When your program is done, return by clearing the GPL STATUS byte at
address >837C to indicate that there are no errors, put the return address in your
Workspace Register 11, and return. The following program segment shows these
steps.

SAVRTN DATA 0
MYWS BSS 20
STATUS EQU >837C

EDITOR/ASSEMBLER
Page 440

APPENDICES

START MOV
LWPI

R11,(_a1SAVRTN
MYWS

Save GPL return address.
Set up Workspace Registers.

CLR RO

MOVB RO,@STATUS
MOV (a1SAVRTN,R11
RT

END START

Prepare to return to GPL.
Indicate no errors.

Load return address.
Return.

24.11.2 Returning When Your Program Is Not Run Automatically

If you run your program by answering the PROGRAM NAME prompt in the
Editor/Assembler LOAD AND RUN or RUN options or with the CALL LINK
statement in TI BASIC, the user Workspace equate (USRWS EQU >20BA) is loaded

and you can use the area that starts at that address for your Workspace Registers or
you can define your own Workspace Register area instead.

The address in Workspace Register 11 does not need to be saved unless you use the
Workspace Register for some other purpose. When you wish to return, simply clear
the GPL STATUS byte and return. The following program segment shows these steps.

DEF START
STATUS EQU >837C
START .

CLR RO

MOVB RO,@STATUS
RT
END

Prepare to return to GPL.

Indicate no errors.
Return.

EDITOR/ASSEMBLER
Page 441

APPENDICES

24.11.3 Other Returns

You can return to the calling program by branching to address >0070. Before doing
this, clear the GPL STATUS byte to indicate that there are no errors and load the
GPL Workspace Registers. The following program segment shows these steps.

CLR RO
MOVB RO,®STATUS Indicate no errors.
LWPI GPLWS Load GPL Workspace Registers.
B Qa>0070 Return.

You can return to the master title screen by enabling interrupts, loading the GPL
Workspace Registers, and branching through the vector >0000. The following program
segment shows these steps.

LIMI 2 Enable interrupts.
LWPI GPLWS Load GPL Workspace Registers.
BLWP Qa >0000 Return to color bar screen.

EDITOR/ASSEMBLER
Page 442

APPENDICES

24.12 ERROR MESSAGES

The following sections give the error messages that may be returned by the
Editor/Assembler.

24.12.1 Input/Output Error Codes

The following table lists the input/output error codes.

Error
Code Meaning
0 Bad device name.
1 Device is write protected.
2 Bad open attribute such as incorrect file type, incorrect record

length, incorrect I/O mode, or no records in a relative record file.
3 Illegal operation;, i.e., an operation not supported on the peripheral or

a conflict with the OPEN attributes.
4 Out of table or buffer space on the device.
5 Attempt to read past the end of file. When this error occurs, the

file is closed. Also given for non-existing records in a relative
record file.

6 Device error. Covers all hard device errors such as parity and bad
medium errors.

7 File error such as program/data file mismatch, non-existing file
opened in INPUT mode, etc.

24.12.2 Error Messages Issued by GROM Code

The following are the error messages that may be issued by code in a GROM.

NAME TOO LONG
NO MEMORY EXPANSION
I/O ERROR n, where n is the I/O error code from 0 through 7.

EDITOR/ASSEMBLER
Page 443

APPENDICES

24.12.3 Errors Issued by the Loader

The following are the error messages that may be issued by the Loader.

I/O ERROR n, where n is the I/O error code from 0 through 7.
MEMORY FULL
ILLEGAL TAG
CHECKSUM ERROR
DUPLICATE DEFINITION

UNRESOLVED REFERENCE

24.12.4 Execution-Time Errors

The following are the error messages that may be issued at execution time.

I/O ERROR n, where n is the I/O error code from 0 through 7.

PROGRAM NOT FOUND
ERROR CODE n, where n is the error code listed below.

The table on the following page lists the errors that may be issued when you attempt
to run your program.

EDITOR/ASSEMBLER
Page 444

APPENDICES

Error
Code Meaning
00 - 07 Input/Output error
08 MEMORY FULL
09 INCORRECT STATEMENT
OA ILLEGAL TAG
OB CHECKSUM ERROR
OC DUPLICATE DEFINITION
OD UNRESOLVED REFERENCE
OE INCORRECT STATEMENT
OF PROGRAM NOT FOUND
10 INCORRECT STATEMENT
11 BAD NAME •
12 CAN'T CONTINUE
13 BAD VALUE
14 NUMBER TOO BIG
15 STRING-NUMBER MISMATCH
16 BAD ARGUMENT
17 BAD SUBSCRIPT
18 NAME CONFLICT
19 CAN'T DO THAT
1A BAD LINE NUMBER
1B FOR-NEXT ERROR
1C I/O ERROR
1D FILE ERROR
1E INPUT ERROR
1F DATA ERROR
20 LINE TOO LONG
21 MEMORY FULL
22 - FF UNKNOWN ERROR CODE

EDITOR/ASSEMBLER
Page 445

GLOSSARY

Addresses: The numbering system which defines the memory locations within the

computer.

Addressing mode: A way of using memory addressing. In the Editor/Assembler, the

addressing modes are Workspace Register addressing, Workspace Register

indirect addressing, Workspace Register indirect auto-increment addressing,

symbolic memory addressing, and indexed memory addressing.

Arithmetic greater than bit: A bit in the Status Register that is set when a signed

number is compared with a smaller signed number.

Arithmetic operators: The arithmetic operators are + for addition, - for subtraction,

* for multiplication, and / for signed division.

ASCII: American Standard Code for Information Interchange. The code used to
represent data.

Assembler: The portion of the Editor/Assembler on Diskette A that allows you to

assemble an assembly language program into object code (machine language).

Assembling: Changing an assembly language program into a machine language

program, called object code, that can be run by the computer.

Assembly language: A lower-level language that allows fast access to all machine

resources, including functions not available from higher-level languages.

Assembly options: Options that you provide at the time of assembly. They are R

for automatic Workspace Register generation, L for list file generation, S for a

symbol table, and C for compressed object format.

Assembly-time constant: An expression in the operand field of an EQU directive.

Binary: The base 2 numbering system used by the computer.

Bit I/O instructions: Format II instructions whose operand field contains a

well-defined expression which evaluates to a CRU bit address, relative to the
contents of Workspace Register 12.

EDITOR/ASSEMBLER

Page 446

GLOSSARY

Bit-map: A way of handling graphics in the TI-99/4A Home Computer.

Bit: A BInary digiT.

Byte: Eight bits.

Carry bit: A Status Register bit that is set by a carry of 1 from the most

significant bit (sign bit) of a word or byte during arithmetic and shift
operations.

Character constant: A string of one or two characters enclosed in single quotes.

Character set: The characters that are recognized by the Assembler/Linker. It is
listed in Section 24.7.

Character string: A string of characters enclosed in single quotes.

Color Table: A table in memory that defines the colors of graphics.

Command mode: The mode in the Editor in which you may perform special

functions, such as copying lines, deleting lines, altering data, and the like.

Comment field: An area in which to make comments that increase the readability of

the program but that do not affect the operations of the computer.

Compressed object code: Object code that takes up less space on diskettes. The

code has compressed hexadecimal numbers for the tagged fields.

Console: The main physical unit of the computer.

Constant: An unchanging value. The four types of constants recognized by the

Assembler are decimal integer constants, hexadecimal integer constants,

character constants, and assembly-time constants.

Context switch: A change in the location of the next address to be accessed by the
computer.

Control and CRU instructions: The control and CRU instructions are Clock Off

(CKOF), Clock On (CKON), Load CRU (LDCR), Idle (IDLE), Load or Restart

Execution (LREX), Reset (RSET), Set CRU Bit to One (SBO), Set CRU Bit to

Zero (SBZ), Store CRU (STCR), and Test Bit (TB).

EDITOR/ASSEMBLER

Page 447

GLOSSARY

Control instructions: Format VII instructions which require no operand field.

CPU: Central Processing Unit.

CPU RAM: Central Processing Unit Random Access Memory. Used in this manual

to describe any memory that can be directly addressed by the CPU.

CRU: Communications Register Unit. A command-driven bit-addressable I/O
interface.

Debugger: A program to help you check memory locations, registers, and the like in

order to find and correct any errors which may occur in your program.

Decimal integer constant: A decimal number from -32,768 to +65,535. Positive

decimal integer constants greater than 32,767 are considered negative when

interpreted as two's complement values.

DEF/REF Table: A list of the variables which have been referred to in a DEF or REF
statement in a program or series of programs.

Destination operand: The address where the result of the performed manipulation is
stored.

Device Service Routine: A routine to handle communications between the computer

and all external devices, such as printers, disk drives, the RS232 Interface, etc.

Directives: Instructions to the Assembler that control the assembly process.

Directives affect the Location Counter and the Assembler output, initialize

constants, provide linkage between programs, and have other functions.

DSR: Device Service Routine.

Edit mode: The mode in the Editor in which you may create and alter files.

Editor: The portion of the Editor/Assembler that allows you to create, edit, print,

and save files.

End-of-file marker: (*EOF). The mark that indicates the end of a file that you are
editing.

EDITOR/ASSEMBLER
Page 448

GLOSSARY

Equal bit: A Status Register bit that is set when the two words or bytes being
compared are equal.

Expressions: Used in the operand fields of assembler directives and machine

instructions. An expression is a constant or symbol, a series of constants or
symbols, or a series of constants and symbols separated by arithmetic
operators.

Extended operation bit: A Status Register bit that is set when an extended operation
(available in some TI-99/4A Home Computers) is being executed.

Fatal error: An error which stops the assembly process.

Field: A division of a record. A source record consists of the label field, op-code
field, operand field(s), and comment field.

File: A group of program statements, object code, data, or the like, contained in the
computer's memory or on an external device such as a diskette.

GPL: Graphics Programming Language. The language frequently used to program
Command Modules.

GROM: Graphics Read Only Memory.

Hexadecimal integer constant: A string of up to four hexadecimal numerals preceded
by a greater than (>) sign. Hexadecimal numerals include the decimal values 0
through 9 and the letters A through F.

Hexadecimal: Base 16 numbering system. Often used as an easy representation of
the binary numbering system.

Immediate instructions: Format VIII instructions which contain a Workspace Register
address followed by a comma and an expression. Use the contents of the word
following the instruction word as the operand of the instruction.

Indexed memory addressing: Specifies the memory address that contains the operand.
An indexed memory address is preceded by an "at" sign (dal) and followed by a
register name enclosed in parentheses.

Instruction formats: One of nine formats that specify the way in which instructions
are assembled to machine language.

EDITOR/ASSE MBLER
Page 449

GLOSSARY

Interrupt mask bits: Bits 12 through 15 in the Status Register. They determine

what devices are permitted to interrupt the processor.

Jump instructions: Format II instructions that use Program Counter relative

addresses coded as expressions corresponding to instruction locations on word

boundaries.

Label field: The first field in a source record. It serves as a reference point.

List file: A file which the Assembler can create. It contains a record of the

assembly process.

Loader: An assembly language program used to load assembly language programs into

the Memory Expansion unit.

Loading: The process of putting object code into the computer's memory so that it

can be run.

Location counter: A counter that keeps track of where the Assembler is in the

assembly process.

Logical greater than bit: A Status Register bit that is set when an unsigned number

is compared with a smaller unsigned number.

Machine language: The code into which assembly language is translated by the

Assembler. The code produced can be recognized and operated on by the

TMS9900 microprocessor.

Memory: The storage locations or addresses in the computer.

Mnemonic codes: Codes which help you to remember the instructions in assembly

language.

Mode of operation: The way in which a file may be accessed. May be INPUT,

OUTPUT, UPDATE, or APPEND.

Non-fatal error: An error which does not stop the assembly process.

Nybble: Four bits; half a byte.

EDITOR/ASSEMBLER
Page 450

GLOSSARY

Object code: The machine code into which assembly language is translated by the

Assembler.

Odd parity bit: A Status Register bit that is set when the parity of the result is odd

and is reset when the parity is even.

Op-code field: The second field in a source record. It is the operation code (a

number, name, or abbreviation) of the task to be performed by that source

statement.

Operand field: The field that stipulates the value to be operated upon or

manipulated by the op-code.

Operands: The numbers, expressions, or characters upon which assembly language

instructions operate.

Overflow bit: A Status Register bit that is set when the result of an arithmetic

operation is too large or too small to be represented in two's complement

representation.

PAB: Peripheral Access Block.

Peripheral Access Block: A set of locations in VDP memory that defines how

devices, such as printers and disk drives, are accessed.

Predefined symbols: Symbols for addresses that are predefined in the DEF/REF table.

Program Counter Register: Keeps track of the location of the next instruction in

memory.

Program Counter relative addressing: Used only by jump instructions. It is written

as an expression that corresponds to an address at a word boundary.

Pseudo-instruction: An assembly language statement that has the form of an

instruction, but is defined in terms of other instructions. The

pseudo-instructions are No Operation (NOP) and Return (RT).

RAM: Random Access Memory.

EDITOR/ASSEMBLER

Page 451

GLOSSARY

Re-entrant programming: A technique that allows the same program code to be used
for several different applications while maintaining the integrity of the data
used with each application.

Register: A memory word that serves a secific purpose. Registers in Random
Access Memory (RAM) are called "software" registers. A set of 16
consecutive registers is called a "workspace."

ROM: Read Only Memory.

Screen Image Table: A table in memory corresponding to graphics on the screen.

Source operand: The number, address, string, etc., which is to be manipulated or
operated upon.

Source statements: The statements of an assembly language program.

Special keys: Special characters and functions and certain keys available for cursor
movement when using the Editor/Assembler.

Sprite: One of 32 characters that may be placed on the screen and moved smoothly.

Sprite Attribute List: A list in memory that defines the location, color, and pattern
of sprites.

Sprite Descriptor Table: A table in memory defining sprite patterns and sizes.

Sprite Motion Table: A table in memory that defines the motion of sprites.

STATUS byte, GPL: The byte at address >837C that contains status information.

Status Register: The register that contains indications of the present status of the
computer.

Symbol table: A table constructed by the Assembler or TI BASIC in the assembly
process. It lists all of the symbols used in a program and contains information

on the symbols in the program, their addresses, and their types.

Symbol: A string of alphanumeric characters (A through Z and 0 through 9), the first
of which must be an alphabetic character, and none of which may be a blank.

EDITOR/ASSEMBLER
Page 452

GLOSSARY

Symbolic Addresses: Addresses associated with locations in the program that must
not be used in the label field of other statements.

Symbolic memory addressing: Specifies the memory address that contains the
operand. A symbolic memory address is preceded by an "at" sign (M.

Syntax definition: A description of the required form for the use of commands as
related to the fields.

Syntax: The required form for source statements.

T-field value: A value which indicates the type of addressing mode used.

TMS9900 microprocessor: The Chip on which the TI-99/4 and TI-99/4A Home
Computers are based.

Tag characters: Characters that describe the information in an object file.

Terms: A decimal or hexadecimal constant, an absolute assembly-time constant, or a
label having an absolute value.

Transfer vector: Two consecutive words of memory which contain a new Workspace
pointer and a new program counter. The computer uses a transfer vector to
perform a transfer of control called a context switch.

Two's complement: The way in which negative numbers are expressed in binary in
the computer.

Undisplayable characters: Characters that have valid ASCII meanings but cannot be
displayed on the screen.

Utilities: Programs provided by Texas Instruments to enable quick and easy use of
certain computer capabilities. They are VSBW, VMBW, VSBR, VMBR, VWTR,
XMLLNK, KSCAN, GPLLNK, DSRLNK, SAVE, LOADER, NUMASG, STRASG,
NUMREF, STRREF, and ERR.

VDP RAM: Video Display Processor Random Access Memory. This memory can be
accessed indirectly.

Well-defined expressions: Expressions whose symbols or assembly-time constants have
been previously defined.

EDITOR/ASSEMBLER
Page 453

GLOSSARY

Window: A 40-column area that is displayed on the screen. The entire file is 80
characters wide, made up of three overlapping windows.

Workspace Pointer Register: Contains the address of the current software
workspace.

Workspace Register addressing: Specifies the Workspace Register that contains the

operand.

Workspace Register indirect addressing: Specifies a Workspace Register that contains
the address of the operand. An indirect Workspace Register address is

preceded by an asterisk (*).

Workspace Register indirect auto-increment addressing: Specifies a Workspace
Register that contains the address of the operand.

Workspace: A set of 16 consecutive words of memory.

EDITOR/ASSEMBLER
Page 454

INDEX

. (decimal to hexadecimal conversions)
Debugger command 391

> (hexadecimal to decimal conversions)
Debugger command 390

A
A (add words) instruction 80
A (load memory with ASCII)

Debugger command 367
AB (add bytes) instruction 82
ABS (absolute value)

instruction 84
Absolute value instruction 84
Absolute code 311
Absolute origin directive 210
Accept tone 252
Add bytes instruction 82
Add immediate instruction 85
Add words instruction 80
Addressing modes 56
Addressing summary 63
Addressing, CRU bit 61

immediate 62
indexed memory 59
program counter relative 60
symbolic memory 58
Workspace Register 57
Workspace Register indirect . . 57
Workspace Register indirect

auto-increment 58
Adjust command 30
AI (add immediate) instruction . . . 85
Alpha lock key 21
ANDI (and immediate)

instruction 176
AORG (absolute origin) directive. 210
APPEND mode of operation . . . 292
Arctangent routine 256
Argument passing with LINK

subroutine 278

Arithmetic instructions 78
Arithmetic instructions examples . 98
Arithmetic operators 49
Arrow keys 20, 25
ASCII values 428
Assembler directives . . . 46, 208, 432
Assembler output 235
Assembler output directives . 220
Assembler output example 243
Attenuation specification, sound . 315
Automatic program execution . . 234
Automatic program running 414

B
B (branch) instruction 107
B (breakpoint set/clear)

Debugger command 368
Backspace key 20
Bad response tone 252
BASIC PAB linkage 300
BASIC examples 283
BASIC support 273
BASIC support utilities 284
BASIC support utilities example . • 289
BES (block ending with symbol)

directive 213
Binary numbering system 394
Bit access example 159
Bit reversal routine 253
Bit-map mode 334
Bit-map mode example 336
BL (branch and link) instruction . ▪ 108
Block ending with symbol

directive 213
Block starting with symbol

directive 212
BLWP (branch and load Workspace

pointer) instruction 109
Branch and link instruction 108

EDITOR/ASSEMBLER
Page 455

INDEX

Branch and load Workspace COC (compare ones corresponding)
pointer instruction 109 instruction 144

Branch instruction 107 Color codes 330
Branch instructions 104 Color table, bit-map mode 335
Branch instructions examples . . . 127 graphics mode 329
BSCSUP (BASIC support) Color, graphics, and sprites 325

utilities 284 Command mode 26
BSS (block starting with Commands, Debugger 365

symbol) directive 212 Comment field and line 48

BYTE (initialize byte) directive . 225 Comments 46
Byte organization 395 Common segment directive 215

Common segment end directive . 216
C Compare bytes instruction 142
C (compare words) instruction . . 140 Compare immediate instruction . 143
C (CRU inspect/change) Debugger Compare instructions 138

command 371 Compare ones corresponding
CALL CHARPAT 282 instruction 144
CALL INIT 274 Compare words instruction 140
CALL LINK 277 Compare zeros corresponding

CALL LOAD 274 instruction 146
CALL PEEK 281 Compressed object code 240
CALL PEEKV 281 Computer differences 20,125,233,
CALL POKEV 282 325, 334, 366
Cassette DSR routine 253 Constant initialization
CB (compare bytes) instruction. . 142 directives 224
CEND (common segment end) Constants, assembly-time 51

directive 216 character 51
Changing object code 241 decimal integer 50
Character set 47, 428 hexadecimal integer 50
Character strings 55 Context switch 45
CHARPAT subroutine 282 Context switch example 129
Chime sound example 321 Control instructions 148
CI (compare immediate) Controller access, sound 321

instruction 143 Convert floating point to
CKOF (clock off) instruction . . . 157 integer 261
CKON (clock on) instruction . . . 157 Convert integer to floating
Clear instruction 184 point 261
Clock off instruction 157 Convert number to string 254
Clock on instruction 157 Convert string to number 261
CLOSE PAB op-code 295 Copy command 29
CLR (clear) instruction 184 COPY (copy file) directive 229

EDITOR/ASSEMBLER
Page 456

Cosine routine 256

INDEX

DEND (data segment end)
CPU RAM PAD use 404 directive 219
Crash sound example 323 Device Service Routine (DSR)
CRU allocation 406 operation 299
CRU bit addressing 61 Device Service Routines (DSRs) . . 291

CRU examples 158 Devices, memory-mapped 402
CRU instructions 148 Direct access to sound 317
CRU, memory, and interrupt Directives that affect

structure 404 assembler output 220
CSEG (common segment) Directives that affect the

directive 215 location counter 209
CZC (compare zeros Directives that initialize

corresponding) instruction 146 constants 224
Directives that link programs . . . 227

D Directives, assembler . . . 46, 208, 432
DATA (initialize word) directive . . 225 Directives, miscellaneous 233

Data segment directive 217 DISPLAY file type 292
Data segment end directive 219 DIV (divide) instruction 88

Debugger 363 DORG (dummy origin) directive . . 212
DEC (decrement) instruction 86 Down arrow key 20
Decimal to hexadecimal conversions DSEG (data segment) directive . . . 217

(.) Debugger command 391 DSR (Device Service Routine)
Decrement by two instruction 87 operation 299
Decrement by two instruction DSR input/output modes 299

example 101 DSR memory use 300
Decrement instruction 86 DSRLNK (Device Service Routine
Decrement instruction example . . . 99 link) utility 262
DECT (decrement by two) DSRs (Device Service Routines) . . 291

instruction 87 Dummy origin directive 212
DEF (external definition) Duplicate definitions 414

directive 227 Duration control, sound 316
DEF/REF table 307 DXOP (define extended
Define assembly-time constant operation) directive 233

directive 224
Define extended operation E

directive 233 E (execute) Debugger command . . 373
Delete character key 25 Early clock sprite attribute 339
Delete command 29 Edit command 26

Delete key 20 Edit mode 24

Delete line key 20, 25 Edit option 23

DELETE PAB op-code 297 Editor use 22.

EDITOR/ASSEMBLER
Page 457

INDEX

END (program end) directive 234
Enter key 20
Entry points 414
EQU (define assembly-time

constant) directive 224
Equates, TI Extended BASIC . . . • 415
ERR (error reporting) utility . . . 287
Error codes and messages. . . 229, 236,

254, 288, 298, 299, 311, 443, 444
Error equates, TI Extended

BASIC 417
Escape key 20, 25
EVEN (word boundary) directive . . 213
Example, asssembler output 243

bit-map mode 336
chime sound 321
context switch 129
copy file directive 230

crash sound 323
crash sound output 243
execute 136
extended operation 136
file access 303
game 230
listing 243
load and move instructions . . 172
object code 245
set CRU bit to one 159
set CRU bit to zero 159
shift 204
sprite motion 346
subroutine 133
test bit 160
TI BASIC support utilities . . 289
Tombstone City 230
Workspace Register shift . . . 204

Examples, arithmetic
instructions 98
CRU 158
graphics and sprite 342
jump and branch 127

sound 321
speech 355
TI BASIC 283

Exclusive or instruction 180
Execute example 136
Execute instruction 124
Execute power-up routine 252
Expansion RAM 400
Exponent routine 255
Expressions 49
Extended BASIC equates 415
Extended BASIC loader 410
Extended operation example . . . ▪ 136
Extended operation instruction . . ▪ 125
Extended utilities 250
External definition directive . . . • 227
External reference directive . . . • 228
External references 413

F
F (find word or byte) Debugger

command 374
Field, comment 48

label 47
operand 48
operation 48

File access example 303
File characteristics 291
File defaults 300
File management 291
File memory use 300
File specification 33
File type 292
Find command 27
Floating point addition 259
Floating point compare 260
Floating point division 259
Floating point multiplication . . . 259
Floating point subtraction 259
Force load directive 231
Format, source statement 46

EDITOR/ASSEMBLER
Page 458

INDEX

Formats, instruction 65

Frequencies, sound 318

Frequency specification, sound . . 314

G
G (GROM base change) Debugger

command 375

Game example 230

General addressing modes 56

Generator frequencies, sound 318
Get string space routine 252

GPL routines 252
GPLLNK (GPL link) utility 251
Graphics and sprite examples. . . 342

Graphics mode 329

Graphics, color, and sprites 325

Greatest integer function 255

GRMRA (GROM read address)
symbol 270

GRMRD (GROM read data address)
symbol 271

GRMWA (GROM write address)
symbol 270

GRMWD (GROM write data address)

symbol 271

GROM 401

GROM access 270

H
H (hexadecimal arithmetic)

Debugger command 392

Hexadecimal numbering system . 395
Hexadecimal to decimal conversions

(>) Debugger command 390

Home command 30

I
I (inspect screen location)

Debugger command 376

IDLE instruction 157

IDT (program identifier)
directive 223

Immediate addressing 62
INC (increment) instruction 90
Increment by two instruction 91
Increment instruction 90
Increment instruction example . . . 98
INCT (increment by two)

instruction 91
Indexed memory. addressing 59
INIT subroutine 274
Initialize byte directive 225
Initialize text directive 226
Initialize word directive 225
INPUT mode of operation 292
Input/Output op-codes 295
Insert character key 20, 25
Insert command 29
Insert line key 20, 24
Instruction formats 65
Instructions, alphabetical list. . . . 437

arithmetic 78
branch 104
compare 138
control 148
CRU 148
hexadecimal list 434
jump 104
load and move 161
logical 174
machine 46
set-up 18
Workspace Register shift 194

INTERNAL file type 292
Interrupt handling 407
Interrupt, memory, and CRU

structure 404
INV (invert) instruction 182
Involution routine 255

EDITOR/ASSEMBLER
Page 459

INDEX

J
JEQ (jump if equal) instruction. .
JGT (jump if greater than)

instruction
JH (jump if logical high)

instruction
JHE (jump if high or equal)

instruction
JL (jump if logical low)

instruction
JLE (jump if low or equal)

instruction
JLT (jump if less than)

instruction
JMP (unconditional jump)

instruction
JNC (jump if no carry)

instruction
JNE (jump if not equal)

instruction
JNO (jump if no overflow)

instruction
JOC (jump on carry)

instruction
JOP (jump if odd parity)

instruction
Joystick use
Jump if equal instruction
Jump if greater than instruction .
Jump if high or equal

instruction
Jump if less than instruction .
Jump if logical high instruction
Jump if logical low instruction .
Jump if low or equal instruction
Jump if no carry instruction . .

Jump if no overflow instruction
Jump if not equal instruction. .

Jump if odd parity instruction
Jump instruction examples
Jump instructions

110 Jump on carry instruction 122

111 K
K (find data not equal)

113 Debugger command 377
Keys, special 20

112 KSCAN (keyboard scan) utility . . . 250

114 L
Label field 47

115 LDCR (load CRU) instruction . . . 151
Left arrow key 20, 25

116 LI (load immediate) instruction . . 163
LI MI (load interrupt mask

117 immediate) instruction 164
Line numbers 26

118 LINK subroutine 277
Linking Loader 305

119 Linking a PAB in TI BASIC . . . 300

Linking directives 227
120 LIST directive 221

Listing example 243
122 Listing, source 235

Load and run option 36
121 Load CRU instruction 151
250 LOAD (force load) directive . . . 231
110 Load immediate instruction 163
111 Load instructions 161

Load instructions example 172
112 Load interrupt mask immediate

104 LOAD subroutine 274

. . 116 instruction 164

. . 113 Load lower-case character set . . 254

. . 114 Load option 22

. . 115 Load or restart execution

. . 118 instruction 157

. . 120 LOAD PAB op-code 296

. . 119 Load small capitals character

. . 121 set 252

127 Load standard character set . . . 252

EDITOR/ASSEMBLER
Page 460

INDEX

Load Workspace pointer immediate
instruction 165

Loader 305

Loader error codes 311

LOADER utility 262
Loader, TI Extended BASIC . . . • 410

Location counter directives 209

Logical instructions 174

LREX (load or restart execution)

instruction
LWPI (load Workspace pointer

immediate) instruction 165

M
M (memory inspect/change)

Debugger command 378

Machine instructions 46

Machine language 15, 242

Magnification of sprites 340
Mathematical routines 254
Memory allocation with the

Loader 305
Memory Expansion unit 400
Memory map, Editor/Assembler . ▪ 403

general case 399
LOAD AND RUN option . . . ▪ 400

Memory Expansion unit,
Editor/Assembler Loader . . 411

Memory Expansion unit, TI
Extended BASIC Loader . ▪ 412

Memory organization 398
Memory use by TI Extended BASIC

and Editor/Assembler
Memory, CRU, and interrupt

structure 404
Memory, directly addressable . . • 398
Memory-mapped devices 402
Miscellaneous directives 233

Mnemonic codes 15
Mode of operation 292

Mode, command 26
edit 24

Modes, addressing 56
MOV (move word) instruction . . . 166
MOVB (move byte) instruction . . . 168
Move command 28
Move instructions 161
Move instructions example 172
Move word instruction 166

92
331
92

N
N (move block) Debugger

command 380
Natural logarithm routine 256
NEG (negate) instruction 94
Negative numbers in

two's-complement notation . . . 397
Next window key 20, 25
No operation pseudo-instruction . . 206
No source list directive 220
Noise specification, sound 315
NOP (no operation)

pseudo-instruction 206
NUMASG (numeric assignment)

utility 284
Numbering systems 394
NUMREF (get numeric parameter)

utility 286

0
238

Object code example 245
Object code, changing 241

compressed format 240
Object tag use by TI Extended

BASIC and Editor/Assembler . . 414
Object tags 307, 309
OPEN PAB op-code 295

MPY (multiply) instruction

157 Multicolor mode
Multiply instruction

410 Object code

EDITOR/ASSEMBLER
Page 461

INDEX

Operand field 47
Operation field 47
Operation specification, sound . . . 314
Operators, arithmetic 49
Option specification 33
Options 34
Options on the Editor/Assembler . . 21
ORI (or immediate) instruction. . . 178
Output example 243
OUTPUT mode of operation . . . 292
Output, assembler 235

Program counter relative
addressing 60

Program end directive 234
Program identifier directive . . . 223
Program linking directives 227
Program organization 440
Program segment directive 214
Program segment end directive . 215
PSEG (program segment)

directive 214
Pseudo-instructions 46, 206
Purge option 32

P Q
P (compare memory blocks) 0 (quit Debugger) Debugger

Debugger command 381 command 382
PAB (Peripheral Access Block) Quit key 20

definition 293
PAB op-codes 295 R
PAD symbol 265 R (inspect or change WP, PC,
PAD use 404 and SR) Debugger command . 383
PAGE (page eject) directive . . . 221 Radix 100 notation 279
Page title directive 222 READ PAB op-code 295
Passing arguments with LINK REF (external reference)

subroutine 278 directive 228
Pattern descriptor table, REF/DEF table 307

bit-map mode 334 References, external 413
graphics mode 329 utility 414
multicolor mode 331 Registers 39

PEEK subroutine 281 Registers, VDP write-only 326
PEEKV subroutine 281 Relocatable origin directive . . . 210
PEND (program segment end) Replace command 27

directive 215 Reset instruction 157
Periodic noise 315 RESTORE/REWIND PAB
Peripheral Access Block (PAB) op-code 296

definition 293 Return key 20, 24
POKEV subroutine 282 Return pseudo-instruction 207
Poking data with LOAD subroutine 274 Return with Workspace pointer
Predefined symbols 53, 246, 264 instruction 123
Print option 31 Returning 440
Program counter register 39 Right arrow key 20, 25

EDITOR/ASSEMBLER
Page 462

INDEX

Roll-down key 20, 25

Roll-up key 20, 25

ROM 401

ROM routines 259

RORG (relocatable origin)

directive 210

Routines, GPL 252

mathematical 254

ROM 259

RSET (reset) instruction 157

RT (return) pseudo-instruction . . 207

RTWP (return with Workspace

pointer) instruction 123

Run option 37

Run program file option 38

S

S (execute in step mode)

Debugger command 384

Save option 30

SAVE PAB op-code 297

SAVE utility 420

SB (subtract bytes) instruction . . ▪ . 96

SBO (set CRU bit to one)

instruction 152

SBZ (set CRU bit to zero)

instruction 153

SCAN symbol 264

SCRATCH RECORD PAB

op-code 297

Screen image table,

bit-map mode 334

graphics mode 330

multicolor mode 331

text mode 333

Secondary external reference

directive 232

Set ones corresponding

instruction 186

Set CRU bit to one example . . . • 159

Set CRU bit to one instruction. . ▪ 152

Set CRU bit to zero example . . . 159

Set CRU bit to zero instruction . • 153

Set to one instruction 185

Set zeros corresponding

instruction 190

Set zeros corresponding, byte

instruction 192

SETO (set to one) instruction. . . • 185

Set-up instructions 18

Shift instructions 194

Shift instructions example 204

Shift left arithmetic

instruction 200

Shift right arithmetic

instruction 196

Shift right circular instruction . . • 202

Shift right logical instruction. . . ▪ 198

Show command 29

Sine routine 256

Size of sprites 340

SLA (shift left arithmetic)

instruction 200

SOC (set ones corresponding)

instruction 186

SOCB (set ones corresponding,

byte) instruction 188

Sound 312

Sound attenuation specification . • 315

Sound controller access 321

Sound duration control 316

Sound examples 321

Sound frequency specification . . • 314

Sound generator frequencies . . . • 318

Sound noise specification 315

Sound operation specification . . . • 314

Sound table 313

Sound, direct access 317

Source listing 235

Source statement format 46

Source statement length 47

Speech 349

EDITOR/ASSEMBLER

Page 463

INDEX

Speech addresses 351

Speech checking to see if the

Synthesizer is attached 354

Speech commands 351

Speech data reading 353

Speech examples 355

Speech Synthesizer resident

vocabulary 422

Speech timing 349

Sprite and graphics examples . . . 342

Sprite attribute list 338

Sprite descriptor table 339

Sprite magnification 340

Sprite motion example 346

Sprite motion table 340

Sprite size 340

Sprites 338

Sprites, graphics, and color 325

Square root routine 255

SRA (shift right arithmetic)

instruction 196

SRC (shift right circular)

instruction 202

SREF (secondary external

reference) directive 232

SRL (shift right logical)

instruction 198

STATUS byte 250

STATUS PAB op-code 297

Status register 40

Status register bits affected

by instructions 41

STCR (store CRU) instruction . . . 154

Store status instruction 169

Store Workspace pointer

instruction 170

STRASG (string assignment)

utility 286

Strings, character 55

STRREF (get string parameter)

utility 287

STST (store status) instruction . . 169

STWP (store Workspace pointer)

instruction 170

Subprogram use by TI Extended

BASIC and Editor/Assembler . . 414

Subroutine example 127, 133
Subtract bytes instruction 96

Swap bytes instruction 171
Switch, context 45

SWPB (swap bytes) instruction . . . 171
Symbol, GRMRA 270

GRMRD 271
GRM WA 270
GRMWD 271

PAD 265
SCAN 264

UTLTAB 264

VDPRD 267

VDPSTA 269

VDPWA 266
VDPWD 267

Symbolic memory addressing 58
Symbols 52

Symbols, predefined 53, 246, 264

Syntax conventions 46

SZC (set zeros corresponding)

instruction 190

SZCB (set zeros corresponding,

byte) instruction 192

T

T (trade screen) Debugger

command 385

Tab command 30

Tab key 20, 25

Tag use by TI Extended BASIC

and Editor/Assembler 414

Tags, object 307, 309

Tangent routine 256

TB (test bit) instruction 156

Terms 54

EDITOR/ASSEMBLER
Page 464

INDEX

Test bit example 160 Value stack addition 260
Test bit instruction 156 Value stack compare 261
TEXT (initialize text) directive . . 226 Value stack division 260
Text mode 333 Value stack multiplication 260

TI BASIC examples 283 Value stack subtraction 260

TI BASIC PAB linkage 300 VDP access 266

TI BASIC support 273 VDP RAM access utilities 248

TI BASIC support utilities 284 VDP write-only Registers 326

TI BASIC support utilities VDPRD (VDP read data address)

example 289 symbol 267
TI Extended BASIC equates 415 VDPSTA (VDP read status
TI Extended BASIC loader 410 register) symbol 269
TITL (page title) directive 222 VDPWA (VDP write address)
Tombstone City 230 symbol 266
Transfer vectors 45 VDPWD (VDP write data address)
Two's-complement notation symbol 268

(negative numbers) 397 Vectors, transfer 45

VMBR (VDP RAM multiple byte
U read) utility 249

U (toggle offset to and from TI VMBW (VDP RAM multiple byte
BASIC) Debugger command . . . 386 write) utility 248

Unconditional jump instruction . . . 117 VSBR (VDP RAM single byte
UNL (no source list) directive . . . 220 read) utility 248
Up arrow key 20 VSBW (VDP RAM single byte
UPDATE mode of operation 292 write) utility 248
Using the Editor/Assembler 21 VWTR (VDP RAM write register)
Utilities 246 utility 249
Utilities example, TI BASIC

support 289 W
Utilities, extended 250 W (inspect or change Registers)

TI BASIC support 284 Debugger command 388

VDP RAM access 248 Well-defined expressions 49
Utility references 414 White noise 315
Utility references by TI Extended Wired Remote Controller use. . . . 250

BASIC and Editor/Assembler . . 414 Word boundary directive 213
Utility, SAVE 420 Word organization 396
UTLTAB symbol 264 Workspace 45

Workspace pointer register 39

V Workspace Register addressing 57

V (VDP base change) Debugger Workspace Register indirect

command 387 addressing 57

EDITOR/ASSEMBLER

Page 465

INDEX

Workspace Register indirect
auto-increment addressing .

Workspace Register shift

. . . 58

instructions 194

Workspace Register shift
instructions example 204

Workspace subroutine example . . . 127
Write-only Registers in VDP 326
WRITE PAB op-code 296

X
X (change X bias) Debugger

command 389
X (execute) instruction 124
XMLLNK utility 257

XOP (extended operation)
instruction 125

XOR (exclusive or) instruction . . : 180

Y
Y (change Y bias) Debugger

command 389

Z
Z (change Z bias) Debugger

command 389

EDITOR/ASSEMBLER
Page 466

EDITOR/ASSEMBLER
Page 467

THREE-MONTH LIMITED WARRANTY
HOME COMPUTER SOFTWARE MEDIA

Texas Instruments Incorporated extends this consumer warranty only to the original
consumer purchaser.

WARRANTY COVERAGE

This warranty covers the electronic and case components of the software program
storage media. These components include all semiconductor chips and devices,
diskettes, plastics, boards, wiring and all other hardware contained in this storage
media ("the Hardware"). This limited warranty does not extend to the programs
contained in the storage media and the accompanying book materials ("the
Programs").

The Hardware is warranted against malfunction due to defective materials or
construction. THIS WARRANTY IS VOID IF THE HARDWARE HAS BEEN
DAMAGED BY ACCIDENT, UNREASONABLE USE, NEGLECT, IMPROPER
SERVICE, OR OTHER CAUSES NOT ARISING OUT OF DEFECTS IN
MATERIALS OR WORKMANSHIP.

WARRANTY DURATION

The Hardware is warranted for a period of three months from the date of the original
purchase by the consumer.

WARRANTY DISCLAI MERS

ANY IMPLIED WARRANTIES ARISING OUT OF THIS SALE, INCLUDING
BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
LIMITED IN DURATION TO THE ABOVE THREE-MONTH PERIOD. TEXAS
INSTRUMENTS SHALL NOT BE LIABLE FOR LOSS OF USE OF THE
HARDWARE OR OTHER INCIDENTAL OR CONSEQUENTIAL COSTS,
EXPENSES OR DAMAGES INCURRED BY THE CONSUMER OR ANY OTHER
USER.

Some states do not allow the exclusion or limitation of implied warranties or
consequential damages, so the above limitations or exclusions may not apply to you in
those states.

EDITOR/ASSEMBLER
Page 468

THREE-MONTH LIMITED WARRANTY

LEGAL REMEDIES

This warranty gives you specific legal rights, and you may also have other rights that
vary from state to state.

PERFORMANCE BY TI UNDER WARRANTY

During the above three-month warranty period, defective Hardware will be replaced
when it is returned postage prepaid to a Texas Instruments Service Facility listed
below. The replacement Hardware will be warranted for three months from date of
replacement. Other than the postage requirement, no charge will be made for
replacement.

TI strongly recommends that you insure the Hardware for value prior to mailing.

TEXAS INSTRUMENTS CONSUMER SERVICE FACILITIES

U.S. Residents Canadian Residents only

Texas Instruments Service Facility Geophysical Services Incorporated
P.O. Box 2500 41 Shelley Road
Lubbock, Texas 79408 Richmond Hill, Ontario, Canada L4C5G4

Consumers in California and Oregon may contact the following Texas Instruments
offices for additional assistance or information.

Texas Instruments Consumer Service
831 South Douglas Street
El Segundo, California 90245
(213) 973-1803

Texas Instruments Consumer Service
6700 Southwest 105th
Kristin Square, Suite 110
Beaverton, Oregon 97005
(503) 643-6758

IMPORTANT NOTICE OF DISCLAIMER REGARDING THE PROGRAMS

The following should be read and understood before purchasing and/or using the
software media.

EDITOR/ASSEMBLER
Page 469

THREE-MONTH LIMITED WARRANTY

TI does not warrant that the Programs will be free from error or will meet the
specific requirements of the consumer. The consumer assumes complete
responsibility for any decision made or actions taken based on information obtained
using the Programs. Any statements made concerning the utility of the Programs are
not to be construed as expressed or implied warranties.

TEXAS INSTRUMENTS MAKES NO WARRANTY, EITHER EXPRESSED OR
IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES
OR MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE,
REGARDING THE PROGRAMS AND MAKES ALL PROGRAMS AVAILABLE
SOLELY ON AN "AS IS" BASIS.

IN NO EVENT SHALL TEXAS INSTRUMENTS BE LIABLE TO ANYONE FOR
SPECIAL, COLLATERAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES IN
CONNECTION WITH OR ARISING OUT OF THE PURCHASE OR USE OF THE
PROGRAMS AND THE SOLE AND EXCLUSIVE LIABILITY OF TEXAS
INSTRUMENTS, REGARDLESS OF THE FORM OF ACTION, SHALL NOT
EXCEED THE PURCHASE PRICE OF THE SOFTWARE MEDIA. MOREOVER,
TEXAS INSTRUMENTS SHALL NOT BE LIABLE FOR ANY CLAIM OF ANY
KIND WHATSOEVER BY ANY OTHER PARTY AGAINST THE USER OF THE
PROGRAMS.

Some states do not allow the exclusion or limitation of implied warranties or
consequential damages, so the above limitations or exclusions may not apply to you in
those states.

EDITOR/ASSEMBLER
Page 470

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199
	Page 200
	Page 201
	Page 202
	Page 203
	Page 204
	Page 205
	Page 206
	Page 207
	Page 208
	Page 209
	Page 210
	Page 211
	Page 212
	Page 213
	Page 214
	Page 215
	Page 216
	Page 217
	Page 218
	Page 219
	Page 220
	Page 221
	Page 222
	Page 223
	Page 224
	Page 225
	Page 226
	Page 227
	Page 228
	Page 229
	Page 230
	Page 231
	Page 232
	Page 233
	Page 234
	Page 235
	Page 236
	Page 237
	Page 238
	Page 239
	Page 240
	Page 241
	Page 242
	Page 243
	Page 244
	Page 245
	Page 246
	Page 247
	Page 248
	Page 249
	Page 250
	Page 251
	Page 252
	Page 253
	Page 254
	Page 255
	Page 256
	Page 257
	Page 258
	Page 259
	Page 260
	Page 261
	Page 262
	Page 263
	Page 264
	Page 265
	Page 266
	Page 267
	Page 268
	Page 269
	Page 270
	Page 271
	Page 272
	Page 273
	Page 274
	Page 275
	Page 276
	Page 277
	Page 278
	Page 279
	Page 280
	Page 281
	Page 282
	Page 283
	Page 284
	Page 285
	Page 286
	Page 287
	Page 288
	Page 289
	Page 290
	Page 291
	Page 292
	Page 293
	Page 294
	Page 295
	Page 296
	Page 297
	Page 298
	Page 299
	Page 300
	Page 301
	Page 302
	Page 303
	Page 304
	Page 305
	Page 306
	Page 307
	Page 308
	Page 309
	Page 310
	Page 311
	Page 312
	Page 313
	Page 314
	Page 315
	Page 316
	Page 317
	Page 318
	Page 319
	Page 320
	Page 321
	Page 322
	Page 323
	Page 324
	Page 325
	Page 326
	Page 327
	Page 328
	Page 329
	Page 330
	Page 331
	Page 332
	Page 333
	Page 334
	Page 335
	Page 336
	Page 337
	Page 338
	Page 339
	Page 340
	Page 341
	Page 342
	Page 343
	Page 344
	Page 345
	Page 346
	Page 347
	Page 348
	Page 349
	Page 350
	Page 351
	Page 352
	Page 353
	Page 354
	Page 355
	Page 356
	Page 357
	Page 358
	Page 359
	Page 360
	Page 361
	Page 362
	Page 363
	Page 364
	Page 365
	Page 366
	Page 367
	Page 368
	Page 369
	Page 370
	Page 371
	Page 372
	Page 373
	Page 374
	Page 375
	Page 376
	Page 377
	Page 378
	Page 379
	Page 380
	Page 381
	Page 382
	Page 383
	Page 384
	Page 385
	Page 386
	Page 387
	Page 388
	Page 389
	Page 390
	Page 391
	Page 392
	Page 393
	Page 394
	Page 395
	Page 396
	Page 397
	Page 398
	Page 399
	Page 400
	Page 401
	Page 402
	Page 403
	Page 404
	Page 405
	Page 406
	Page 407
	Page 408
	Page 409
	Page 410
	Page 411
	Page 412
	Page 413
	Page 414
	Page 415
	Page 416
	Page 417
	Page 418
	Page 419
	Page 420
	Page 421
	Page 422
	Page 423
	Page 424
	Page 425
	Page 426
	Page 427
	Page 428
	Page 429
	Page 430
	Page 431
	Page 432
	Page 433
	Page 434
	Page 435
	Page 436
	Page 437
	Page 438
	Page 439
	Page 440
	Page 441
	Page 442
	Page 443
	Page 444
	Page 445
	Page 446
	Page 447
	Page 448
	Page 449
	Page 450
	Page 451
	Page 452
	Page 453
	Page 454
	Page 455
	Page 456
	Page 457
	Page 458
	Page 459
	Page 460
	Page 461
	Page 462
	Page 463
	Page 464
	Page 465
	Page 466
	Page 467

