
Please do not upload this copyright pdf document to any other website. Breach of copyright
may result in a criminal conviction.

This Acrobat document was generated by me, Colin Hinson, from a document held by me. I
requested permission to publish this from Texas Instruments (twice) but received no reply. It
is presented here (for free) and this pdf version of the document is my copyright in much the
same way as a photograph would be. If you believe the document to be under other
copyright, please contact me.

The document should have been downloaded from my website https://blunham.com/Radar,
or any mirror site named on that site. If you downloaded it from elsewhere, please let me
know (particularly if you were charged for it). You can contact me via my Genuki email page:
https://www.genuki.org.uk/big/eng/YKS/various?recipient=colin

You may not copy the file for onward transmission of the data nor attempt to make
monetary gain by the use of these files. If you want someone else to have a copy of the file,
point them at the website. (https://blunham.com/Radar). Please do not point them at the
file itself as it may move or the site may be updated.

It should be noted that most of the pages are identifiable as having been processed by me.

I put a lot of time into producing these files which is why you are met with this page when you
open the file.

In order to generate this file, I need to scan the pages, split the double pages and remove any
edge marks such as punch holes, clean up the pages, set the relevant pages to be all the same
size and alignment. I then run Omnipage (OCR) to generate the searchable text and then
generate the pdf file.

Hopefully after all that, I end up with a presentable file. If you find missing pages, pages in the
wrong order, anything else wrong with the file or simply want to make a comment, please
drop me a line (see above).

It is my hope that you find the file of use to you personally – I know that I would have liked to
have found some of these files years ago – they would have saved me a lot of time !

Colin Hinson
In the village of Blunham, Bedfordshire.

1053595-I

TEXAS INSTRUMENTS
HOME COMPUTER

HAROLD ABELSON

TI LOGO
EDUCATION

SOLID STATE CARTRIDGE
Requires the TI Memory Expension unit. The optional TI Disk Memory System or a cassette

recorder (sold separately) is required to save programs.

TI LOGO offers children an exciting opportunity to explore mathematical concepts, directionality,
communication, and programming. Additional memory space, large sprite graphics, and music
enhance the educational value of the program.

T I Logo

by Harold Abelson

McGraw-Hill Book Company

New York St. Louis San Francisco Auckland
Bogota Hamburg Johannesburg London Madrid
Mexico Montreal New Delhi Panama Paris
Sao Paulo Singapore Sydney Tokyo Toronto

Copyright ©1984 by McGraw-Hill, Inc. All rights reserved.
Printed in the United States of America. Except as permitted
under the United States Copyright Act of 1976, no part of this
publication may be reproduced or distributed in any form or by
any means, or stored in a data base or retrieval system, without
the prior written permission of the publisher.

1234567890 SEM/SEM 89876543

ISBN 1J-07-038464-9

Printed and bound by Semline, Inc.

Text set in Times Roman by BYTE Publications.
Edited by Bruce Roberts and Dan Watt.
Design and Production Supervision by Ellen Klempner.
Production Editing by Peggy McCauley.
Production by Mike Lonsky.
Typeset by Donna Sweeney.

Table of Contents

Introduction vii

1. A First Look at Logo 1

1.1. The Computer Keyboard 1
1.2. Preparing to Use Logo 2
1.3. Using Logo Commands 2

1.3.1. Basic Turtle Commands 4
1.3.2. Correcting Typing Errors 5
1.3.3. Error Messages 5
1.3.4. Practice with Commands 6

1.4. Introduction to Procedures 7
1.4.1. Simple Procedures 8
1.4.2. Defining Procedures 9
1.4.3. Errors in Procedures 12

1.5. Other Graphics Commands 13
1.5.1. Drawing in Color 13
1.5.2. The Background 14

1.6. Modes of Using the Screen 15
1.6.1. Noturtle Mode 15
1.6.2. Turtle Mode 15
1.6.3. Edit Mode 15

2. Programming with Procedures 17

2.1. Procedures with Inputs 17
2.1.1. Multiple Inputs 18
2.1.2. Inputs as Private Names 19
2.1.3. An ARC Procedure 21

2.2. Repetition and Recursion 22
2.2.1. Thinking About Recursion 23
2.2.2. Conditional Commands and STOP 24
2.2.3. Thinking Harder About Recursion 26
2.2.4. Drawing Trees 28

3. Projects in Turtle Geometry 31

4. Animation 51

4.1. Sprites 51
4.1.1. Exploring with Sprites 51
4.1.2. Practice with Sprites 53
4.1.3. Talking to More Than One Sprite at a Time 54

4.2. Defining Shapes 57
4.2.1. Example: Birds Flying 58
4.2.2. Two Notes on the Shape Editor 59

4.3. Tiles 59
4.3.1. Positioning Tiles on the Screen 60
4.3.2. Foreground and Background Colors 61
4.3.3. Characters as Tiles 62

4.4. Project: A Simple Movie 63

5. Workspace, Filing, and Debugging 69

5.1. Managing Workspace 69
5.1.1. PO 69
5.1.2. ERASE 69

5.2. Saving and Retrieving Information 69
5.2.1. Using Cassette Tape 70
5.2.2. Using Diskette 70
5.2.3. Saving and Recalling Using Other 72
5.2.4. Other Uses of the File System 72
5.2.5. Obtaining Hard Copy: the PRINTOUT Command 73

5.3. Aids For Debugging 73
5.3.1. Pausing Execution with the AID Key 73
5.3.2. TRACEBACK 75
5.3.3. The DEBUG Option 75

6. Numbers, Words, and Lists 77

6.1. Numbers and Arithmetic 77
6.2. Outputs 78

6.2.1. Combining Operations 79
6.2.2. Example: Remainders and Random Numbers 80

6.3. Words 80
6.4. Lists 83
6.5. Naming 85

6.5.1. Local and Global Names 87
6.5.2. Free Variables 88

6.6. Conditional Expressions and Predicates 89
6.7. Details on Logo Syntax 92

6.7.1. How Logo Separates Lines into Words 92
6.7.2. Using Parentheses 92
6.7.3. The Minus Sign 95

7. More Logo Projects 97

7.1. Arithmetic Quiz Program 97
7.2. Random-Sentence Generators 98
7.3. Nim: A Game-Playing Program 101

7.3.1. The Sub-Goal Plan 101
7.3.2. A Simple Scorekeeper 103
7.3.3. A Mechanical Player 105
7.3.4. Frills and Modifications 107
7.3.5. A Listing of the NIMPLAY Procedures 108

7.4. Growing Flowers 108
7.4.1. Coordinates for Sprites and Tiles 109
7.4.2. Defining the Shapes 110
7.4.3. The Grass 112
7.4.4. Planting the Bulbs 112
7.4.5. Sunrise 112
7.4.6. Growing the Flowers 113
7.4.7. Combining All the Pieces 115
7.4.8. Elaborations 115

Iv

v

8. Writing Interactive Programs 117

8.1. Controlling Screen Output 117
8.2. Keyboard Input 118

8.2.1. Example: Instant Response for Very Young Children 118
8.2.2. Keyboard Control of an Ongoing Process 119
8.2.3. Instant Response with Sprites 120

8.3. Example: The Dynaturtle Program 120
8.3.1. What is a Dynamic Turtle? 121
8.3.2. Activities with a Dynaturtle 122
8.3.3. Changing the Dynaturtle's Behavior 122
8.3.4. Sines and Cosines 124

9. Logo Music 127

9.1. Playing Melodies 127
9.1.1. A Simple Tune 128
9.1.2. Tuneblocks 129
9.1.3. Specifying Notes 131

9.2. Multiple Voices 133
9.3. Musical Accompaniment to Logo Procedures 134

10. Inputs, Outputs, and Recursion 137

10.1. REVERSE 138
10.1.1. Reversing Words 139
10.1.2. Reversing Lists 140
10.1.3. Designing Recursive Procedures 140

10.2. Recursive Procedures that Manipulate Lists 141
10.2.1. The PICK Procedure 141
10.2.2. The MEMBER? Predicate 143

10.3. Radix Conversion 144

11. Advanced Use of Lists 147

11.1 Hierarchical Structures 147
11.1.1. List Operations 148
11.1.2. Example: Association Lists 151

11.2. Programs As Data 153
11.2.1. The RUN Command 153
11.2.2. The DEFINE Command 156
11.2.3. The TEXT Command 159
11.2.4. Adding New Programming Constructs 159

11.3. More Projects Using Lists 161
11.3.1. Example: The DOCTOR Program 161
11.3.2. The ANIMAL Program 164

12. Glossary of Logo Primitive Commands 173

12.1. Graphics Commands 173
12.2. Numeric Operations 178
12.3. Word and List Operations 179

12.4. Defining and Editing Procedures 181

12.5. Conditional Expressions 182

12.6. Predicates Used with Conditional Expressions 183

12.7. Controlling Procedure Execution 184

12.8. Input and Output 184

12.9. Naming 186

12.10. Filing and Managing Workspace 186
12.11. Music Primitives 187
12.12. Debugging Aids 188
12.13. Editing Commands 188
12.14. Other Special Keys 188
12.15. Miscellaneous Commands 189
12.16. Error Messages 189

References 193
Caring for the Module 195

Warranty 196
Keyboard Reference Guide 198

Index 199

VI

Introduction

Logo is the name for a philosophy of education and for a continually
evolving family of computer languages that aid its realization. Its learning
environments articulate the principle that giving people personal control over
powerful computational resources can enable them to establish intimate
contact with profound ideas from science, from mathematics, and from the
art of intellectual model building. Its computer languages are designed to
transform computers into flexible tools to aid in learning, in playing, and in
exploring.

Logo's designers are guided by the vision of an educational tool with no
threshold and no ceiling. We try to make it possible for young children to
control the computer in self-directed ways, even at their very first exposure
to Logo. At the same time, we believe that Logo should be a general-purpose
programming system of considerable power and wealth of expression. In
fact, we regard these two goals as complementary rather than conflicting,
since it is the very lack of expressive power of primitive languages such as
BASIC that makes it difficult for beginners to write simple programs that do
interesting things. More than 10 years of experience at MIT and elsewhere
have demonstrated that people across the whole range of "mathematical
aptitude" enjoy using Logo to create original and sophisticated programs.
Logo has been successfully and productively used by preschool, elementary,
junior high, high school, and college students, and by their teachers.

Some of the important features of Logo are:

• Logo is a procedural language. Logo programs are created by combining
commands into groups called procedures and by using these procedures as
steps in other procedures, and so on to arbitrary levels of complexity. Each
individual step of a procedure may be any primitive Logo command or any
user-defined procedure. Procedures can communicate among themselves
via inputs and outputs.

• Logo is an interactive programming language. Any Logo command,
whether built into the language or defined as a procedure, can be executed
by simply typing the command at the keyboard. Logo's integrated editor
makes it easy to define, execute, and modify procedures, because there is
no necessity to deal with separate compilers, loaders, monitors, and so
forth.

• Logo's data objects (those things that can be named by individual variables,
passed directly as inputs to procedures, and returned as values) include not
only numbers and character strings, but also compound structures called
lists. Many computer languages force the programmer to manipulate data
structures in terms of sequences of operations on individual numbers and
character strings. In contrast, Logo's lists are functional units that can be
transformed in single operations, making Logo a convenient and powerful
language for applications involving symbol manipulation. Moreover, the
fact that Logo procedures can themselves be represented and manipulated
as lists means that users can attain considerable direct control over the way

VII

commands are interpreted—for example, to provide special interfaces to
Logo for the physically handicapped or the very young)

Another important aspect of Logo is its incorporation of a programming
area called turtle geometry. A turtle is a computer-controlled "cybernetic
animal" that lives on the display screen and responds to Logo commands
that make it move (FORWARD or BACK) and rotate (LEFT or RIGHT). As
the turtle moves, it leaves a trace of its path and in this way can be used to
make drawings on the display screen. For example, the following Logo
procedure tells Logo how to make the turtle draw a square by repeating four
times the commands "go FORWARD 100 units, turn RIGHT 90 degrees":

TO SQUARE
REPEAT 4 [FORWARD 100 RIGHT 90]
END

Turtle graphics is highly successful, both as an introduction to programming
for people of all ages and also as a foundation for a computer-based
mathematics curriculum. In this book, we use turtle graphics to introduce the
basic ideas of Logo programming, although we also cover other aspects of
the language.2

TI Logo
Since its creation in 1968, Logo has been under continual development.3

As Logo is a complex and sophisticated language, most Logo work during
the 1970s was conducted using large research computer systems. It is only
recently that computers capable of supporting Logo have become inexpensive
enough for widespread use in schools and homes. In 1979 the MIT Logo
Group and Texas Instruments began a joint effort to develop an
implementation of Logo for the TI home computer.4 The resulting TI Logo
system, which runs on the TI 99/4 and 99/4A computers is a powerful yet
easy-to-use programming language, which incorporates all the aspects of
Logo mentioned above. In addition, TI Logo includes the following special
features:

1Section 11.2.1 gives an example of such an interface The implementation makes use of the fact that it is

possible to write Logo procedures that themselves define procedures. The book by Goldenberg [10] describes

work during 1976 and 1977 using Logo with physically and emotionally handicapped children. More recent

research in this area is discussed in the article by Weir [17]

2In his book Mindstorms [5], Papert discusses the turtle as exemplary of the kind ot computational `object to

think with" through which technology can lead to fundamental educational change. Mmdstorms also

discusses the Logo philosophy of education and the role of computer technology in transforming education.

The book by Abelson and diSessa [I] uses turtle geometry as the basis for exploring in mathematics and

presents extended treatments of mathematical topics ranging from elementary geometry through General

Relativity. Although turtle geometry originated as a part ot the Logo language, its use is not restricted to

Logo. Other languages that have incorporated turtle graphics are Smalltalk (Kay [13] and Goldberg [9]) and
UCSD Pascal (Bowles[5]).

3Logo was initially developed in 1968 as part of a National Science Foundation sponsored research project

conducted at Bolt, Beranek & Newman, Inc., in Cambridge, Massachusetts (Feurzeig, et al. [7]). The

majority of Logo work since then has been conducted at MIT in the Artificial Intelligence Laboratory and

the Div ision for Study and Research in Education, but there has also been significant continuing work at

BBN (Feurzeig, et. al. [8]), at the University of Edinburgh (Howe, et. al. [12]), and at a number of other
universities throughout the world.

°The TI Logo project implementation project at MIT was carried out under the supervision of Seymour Papert

Principal contributors to this effort were Gary Drescher, Edward Hardebeck, Mark Gross, Leigh Klotz, John Berlow,

Ralph Payne, Maxine Bobco, Sid Nolte, Richard Tarrent, John D'Angelo, Al Riccomi, and Wyatt Dodd

VIII

IX

• TI Logo makes it easy for even very young children to create spectacular
animation effects through the use of sprites. Sprites, like turtles, are
"creatures" that live on the display screen. But unlike ordinary Logo
turtles, sprites can change their color and shape, and can move across the
screen smoothly and continuously under program control. Even more than
turtle graphics, sprites and animation provide an exciting area in which
beginners can experiment with the power of computation.

• TI Logo II includes commands for generating music with up to three voices
plus a "drum." When combined with the power of Logo procedures and
lists, this makes it easy to write programs that play tunes and harmonies.
Moreover, by synchronizing music and sprite graphics, even beginning
programmers can create animated movies with musical accompaniment.

A guide to this book
This book is an introduction to the Logo system and to programming in

Logo.5 You should think about learning Logo in three stages. The first stage,
covered in Chapters 1 and 2, includes the basics of defining procedures and
using turtle graphics to draw pictures on the display screen. Chapter 3
consists of suggestions for programming projects based on this material.
Chapter 4 introduces sprites and animation, and shows how to write simple
programs for making movies. Chapter 5 describes the mechanics of keeping
track of procedures and saving them in files. The next stage in learning Logo
includes writing procedures that use data—numbers, words, and lists as
introduced in Chapter 6—to carry out projects such as the ones presented in
Chapters 7 and 8, and also for using the Logo music system, which is
described in Chapter 9. The last section of Chapter 6 also discusses some fine
points of Logo syntax, which are mostly ignored in the first five chapters.
Chapters 10 and 11 cover advanced topics in Logo programming, including
using recursion to deal with words and lists and using lists to represent
complex data structures. Chapter 12 is a reference that describes the primitive
commands included in the TI Logo system.

Acknowledgements
The examples included in this book draw upon research conducted over the

past 10 years by members of the Logo Group at the MIT Division for Study
and Research in Education and the MIT Artificial Intelligence Laboratory.
Section 7.3 reprints a 1970 AI Lab Memo by Seymour Papert and Cynthia
Solomon. The projects in Chapter 3 come from material prepared by Dan
Watt as part of a teaching experiment conducted in the Brookline, MA,
elementary school system which is documented in [6]. I would like to thank
Greg Gargarian for help in assembling this chapter. The Dynaturtle project in
Chapter 8 is based on work by Andy diSessa and Dan Watt. The music
system draws on numerous ideas and experimental systems developed by
Jeanne Bomberger. I would also like to thank Dan Watt, Leigh Klotz, Nola
Sheffer, and Richard Carter for comments on previous drafts of this book.

5There are currently two releases of TI Logo. The major difference between them is that TI Logo II includes

commands for generating music while TI Logo I does not. This manual can be used with either version.

NOTICE
P-Code Card
If you are using the Peripheral Expansion Box with the P-Code card inserted, turn
the P-Code OFF or remove the card. If you do a SAVE, RECALL, or PRINTOUT
with the P-Code card turned on, the computer goes through the console power-up
code and into the UCSD p-System *

SPRITE Wrap-around
Unlike the first version of TI LOGO, where SPRITE 50 would automatically default
to SPRITE 18, LOGO II attends only to sprites addressed as 0 through 31. Sprites
can be addressed only as SPRITE 0 through SPRITE 31 in LOGO II. Do not call a
sprite beyond the number 31.

*UCSD p-System is a trademark of the Regents of the University of California.

A First Look at Logo / 1

CHAPTER

A First Look at Logo

This chapter introduces the basic mechanics of using Logo. It describes how
to execute simple commands and how to define and edit procedures. The
examples are given in terms of using turtle graphics to draw pictures on the
screen. Even though we do not, at this point, introduce more than a few
commands or attempt a full explanation of the rules for writing programs,
the material in this chapter and the next is sufficient to allow you to use Logo
for a wide variety of interesting projects such as the ones described in
Chapter 3. Try to work through this chapter at the computer keyboard,
experimenting with the different features as they are introduced.

1.1. The Computer Keyboard If you have never used a computer before, you will need to become
accustomed to a few idiosyncrasies of computer keyboards as compared with
typewriter keyboards. Be careful not to type the numeral 0 in place of the
letter 0, or the numeral 1 in place of the letter I. These may look alike to a
person, but the keys generate different signals for the computer to interpret.
TI Logo uses uppercase letters only, so do not worry about using the SHIFT

key for typing letters. There are, however, a few symbols that are typed using
the SHIFT key. For example, the asterisk symbol * appears as SHIFT-8, just as

on an ordinary typewriter keyboard. To type *, hold down the SHIFT key and
press the 8 key (rather than trying to press both SHIFT and 8 simultaneously).

Computer keyboards generally include a few keys not ordinarily found on
typewriters. The key marked ENTER is used in Logo to signal the computer to
process a command line that has been typed.

The FCTN (function) key on the 99/4A is used like an alternate shift key to
obtain the symbols that are marked on the front of various keys. For
instance, the open bracket character [appears on the front of the R key, so to
type a [on the 99/4A, hold down the FCTN key and press R. Throughout this
book, we specify function characters by the prefix "FCTN," as in "FCTN-R."

Other FCTN symbols that are used in Logo programming are closed bracket],

RVMEYrs
double quote ", and the four arrow keys f—, —>, T, 1.

TIVS/4 Logo also makes use of special symbols called DEL, ERASE, CLEAR, BEGIN,

PROC'D, AID, BACK, and QUIT. On the TI-99/4A, these are typed using FCTN,

together with the keys on the top row of the keyboard. The special symbol
names are marked on the plastic strip that is supplied with the TI-99/4A.
Figure 1.1 shows a diagram of the keyboard on the 99/4A with indications of
the special keys used with Logo.l

On the TI-99/4, which has no FCTN key, the additional FCTN symbols are
 typed in alternative ways, using SHIFT [Appendix A gives a complete list of

Figure 1.1: The TI-99/4A keyboard with special the special symbols used by Logo and the key sequences required to type
them on both the 99/4 and the 99/4A.]

'One important point to keep in mind when using Logo is to never press the QUIT key unless you are done

using Logo. Pressing QUIT resets the computer and erases all programs and data from memory. On the 99/4A,

be especially careful when you type the symbol + (SHIFT — =) to be sure that you do not mistakenly type
QUIT(FCTN — _) instead.

V ~
~y
it~ ; š'

.p(411~ :4 ~ I
@
r

y~~
.y ~~~ U

~~ t~ ~~~ H K .

41l~ 14 '4 ,s N"

keys indicated.

la)

(b)

Figure 1.2: ATI-99/4A system configured to run
Logo.

(a)

1.3. Using Logo Commands

The TI Logo system operates on the TI-99/4 and TI-99/4A home
computers. In addition to the computer and the Logo cartridge, the system
requires a TI Memory Expansion Unit or a Peripheral Expansion Box with a
32K memory expansion card. If you wish to save your work on a diskette,
you must also attach a TI Disk Memory System. Alternatively, you can save
your work on cassette tape by attaching a cassette recorder. If your TI
computer system has an attached printer, you can use this to produce printed
copies of your work. Figure 1.2 shows two 99/4A systems configured to run
TI Logo. The first shows a Peripheral Expansion Box with a disk drive. The
second shows a Memory Expansion Unit with a cassette recorder.

Powering Up
If you are using the Disk Memory System, be sure to follow these steps in

powering up the system:

1. First turn on the disk controller and disk drive(s).

2. Next turn on the Peripheral Expansion Box or the Memory Expansion
unit.

3. Then turn on the computer console and any other devices.

4. Turn on the computer console and TV monitor last.

You must follow these steps in order, or the computer will not be able to
access the disk system. In this case, you must turn the power off and power
up the devices in the correct order.

Starting Logo
With the system powered up and the Logo cartridge inserted into the slot

on the computer console, you will see the master title display on the
computer screen.2 Press any key, and you will obtain a menu of available
system choices. Press the number next to TI Logo or TI Logo II. Logo will
start after a pause of about 5 seconds.

Figure 1.3 is a photograph of the display screen as it appears when Logo is
first started. The system prints a welcome message followed by a line
beginning with a question mark. The question mark, called a prompt,
indicates that Logo is waiting for you to give it a command. Just to the right
of the prompt is a black flashing symbol called a cursor. The cursor indicates
the position at which the characters you type will appear on the screen.

To give Logo a command, type the command and press the ENTER key. For
instance, to tell Logo to print the product of 37 and 67, you type the
command line

PRINT 37 * 67

That is, you type the keys P, R, I, N, T, space, 3, 7, space, *, space, 6, 7,
ENTER. The computer then prints 2479, followed by a new line with a
question mark prompt, indicating readiness to accept a new command. Bear
in mind that when you type a command line, it is not executed until you press

2You can insert the Logo cartridge either before or after powering up the system. There is an automatic reset

feature built into the computer so that the system will return to the master title display whenever a cartridge

is inserted into the console. If you want to remove the cartridge from the console, it is best to first return the

computer to the master title screen by pressing ouir

2/T1 LOGO

1.2. Preparing to Use Logo

'

4TEXRS INSTRUMENTS
HOME COMPUTER

PRESS ~
FOR...T`I čiNSIC .

2 FOR T T L.06O I Z

lb)

?PRINT 37 * 67
?PRINT ELOGO IS A LANGUAGE)
LOGO IS A LANGUAGE
7ElLNNE HOW 76T❑ PRINT37

A First Look at Logo / 3

the ENTER key. To tell Logo to print the message "Logo is a language," you
type the command line

PRINT [LOGO IS A LANGUAGE]

followed by ENTER. This example illustrates how square brackets are used in
Logo to group words into lists.3 You can use lists in this way to print
messages on the screen, but there are many other uses for lists in Logo, and
we will study these in detail in Chapter 6.

The spaces in these command lines are important, because they indicate to
Logo how the line is to be broken into its component parts.4 If you type the
first command line omitting the space between the T and the 3 as follows:

1it11 TO 71 LOGO!

PRINT37 * 67

then Logo will think you are telling it to execute a command named
PRINT37 and complain that it does not know how to do this, by responding
with the error message:

TELL ME HOW TO PRINT37
?PRINT 37 * 67
2479
?PRINT [LOGO IS A LANGUAGE]
LOGO IS A LANGUAGE
?PRINT37 * 67
TELL ME HOW TO PRINT37

Figure 1.4 shows a photograph of the screen as it appears after you have
given the three command lines described above, along with the computer's
responses to each line. The question mark shown at the beginning of each
command line is the prompt typed by Logo, and the rest of the line is the
command typed by the user. In this book, when we want to emphasize the
difference between the characters that you type and the characters that Logo
types, we print the latter characters in italics. For example, the first
command interaction in Figure 1.4 would be printed as

?PRINT 37 * 67
2479

In later chapters, we will see how to write Logo programs that manipulate
numbers and text. But we begin our study of Logo by investigating how to
use the computer to produce drawings on the display screen by issuing
commands to a "creature" known as a turtle. To set up the screen for
drawing, type

TELL TURTLE

lc)

Figure 1.3: The display screen as it appears
when Logo is first started.

Figure 1.4: Three command lines typed to
Logo, and the system's responses.

3The open and closed brackets are typed on the 99/4A as FCTN-R and FCTN-T, respectively. On the 99/4, they

are typed as SMFr--4 and shirr-5.

4Logo has some knowledge about where it is reasonable to divide lines into component parts, even when they

are not separated by spaces. For example, it knows enough to interpret the string of 5 characters 37 . 67 as

containing three elements: the number 37, the symbol ., and the number 67. However, it is a good habit to

always use spaces to separate the elements of command lines, even when this is not strictly necessary. The

rules that determine exactly where spaces are necessary are discussed in Section 6.7.

A/

RIGHT 90

4/TI LOGO

Figure 1.5: Appearance of the display screen
when Logo enters turtle mode.

1.3.1. Basic Turtle Commands

~FEDER6đpRD Y00 }FpR4RVll- ~'~p

Figure 1.6: Photograph of the display screen
showing a simple sequence turtle
commands.

turtle starts FORWARD 50

> r

FORWARD 75
LEFT 45

BACK 50 PENUP
LEFT 45 FORWARD 25

PENDOWN
FORWARD 25
HIDETURTLE

Figure 1.7: Drawing with the turtle.

and press ENTER. The screen should now appear as shown in Figure 1.5, with
the entire screen blank, except for a small triangle in the center and a
question mark near the bottom. The question mark, as before, is the prompt
indicating that Logo is ready to accept a command. When drawing, Logo
reserves the six lines at the bottom of the screen for your typed commands
and the computer's typed responses. The rest of the screen is for drawings.
When Logo is used in this way to draw pictures on the screen, the system is
said to be in turtle mode. The original screen arrangement with no space
reserved for graphics, as shown in Figures 1.3 and 1.4, is called noturtle
mode.5 Whenever Logo is in turtle mode, you can make it return to noturtle
mode by giving the command NOTURTLE.

The turtle is the triangular pointer that appears at the center of the screen
when Logo enters turtle mode. You make drawings by telling the turtle to
move and to leave a trace of its trail. There are four basic commands for
moving the turtle. The commands FORWARD and BACK make the turtle
move along the direction it is pointing. Each time you give a FORWARD or
BACK command, you must also specify a number that indicates how far the
turtle should move. The commands RIGHT and LEFT cause the turtle to
rotate. RIGHT and LEFT each require you to specify the amount of rotation
in degrees. Try typing the following sequence of Logo commands:

RIGHT 45
FORWARD 100
LEFT 135
FORWARD 150

This should produce the wedge-shaped drawing shown in Figure 1.6.
Remember to terminate each command line with ENTER and to include a
space between the command word and the number. If you mistype a
character, you can delete the character by pressing ERASE.6 See Section 1.3.2
for more details on correcting typing errors.

The number following the command is called an input. FORWARD,
BACK, LEFT, and RIGHT each need one input. Logo commands may or may
not require inputs, depending on the command. CLEARSCREEN is an
example of a command that takes no input. Later on we will see examples of
commands that require more than one input.

If you want to move the turtle without drawing a line, give the PENUP
command. Subsequent FORWARD and BACK commands will now make the
turtle move without leaving a trail. To resume drawing, give the PENDOWN
command. Neither PENUP nor PENDOWN takes an input. The
HIDETURTLE command causes the turtle pointer to disappear, although the
turtle is still "there" and will draw lines if the pen is down. SHOWTURTLE
makes the pointer reappear. Figure 1.7 illustrates the use of these commands
to draw a simple picture.

If you want to start over and draw a new picture, you can use the
CLEARSCREEN command. This erases the screen and restores the turtle to
its initial location at the center of the screen, pointing straight up.7

51n noturtle mode there are 24 lines for typing. A more complete explanation of the different modes in which
the Logo system operates is given in Section 1.6.

6ERASE is typed as FCTN-3 on the 99/4A and as sru r--Ton the 99/4.

7CLEARSCREEN can also be used in noturtle mode to clear the screen and return the cursor to the upper
left-hand corner.

A First Look at Logo / 5

1.3.2. Correcting Typing Errors

1.3.3. Error Messages

As you type Logo commands, you will undoubtedly make a few typing
errors. Common errors include omitting characters, typing extra or wrong
characters, and transposing characters. To correct typing errors, use ERASE.

Each time you press ERASE, the character immediately to the left of the
cursor is erased, and the cursor moves one space to the left. For example, if
you typed

FORWXYD 100

when you meant to type

FORWARD 100

you can correct the error by pressing ERASE 7 times to erase back to the W
and then retyping the rest of the line.

If Logo cannot execute the input line, it replies with an error message.
Logo's error messages attempt to be helpful in describing what went wrong.
For example, if you try to execute the command line

PRINT 3 +

Logo will reply

TELL ME MORE

because it expects to find something more on the line after the + to be added
to 3. Another common error message is the result of attempting to use a
command that has not been defined. For instance, if you try to execute

TURN 100

Logo will respond

TELL ME HOW TO TURN

unless you have first defined a procedure named TURN.8 The TELL ME HOW

TO error message often occurs as a result of a typing error. For example, if
you type an input line like

FORWARD100

omitting the space between the D and the 1, Logo responds

TELL ME HOW TO FORWARD100

because Logo reads the entire line as a single word, which it assumes is
supposed to be the name of a procedure.

When Logo responds to your command with an error message, you should
try to determine the reason for the error. Sometimes it is a simple typing
error. If so, you can retype the line. Alternatively, the reason for the error
may be hidden deep in the design of one of your programs. The activity of
rooting out and repairing errors in programs is called debugging, and Logo
provides debugging aids to make this task easier. These are described in
Section 5.3.

8Section 1.4 explains how to define procedures.

If this is your first exposure to Logo, it would be a good idea to review the
material covered so far by drawing some figures using the turtle commands.
Try to understand any error messages that occur. Following are some things
to note in your exploring.

Wraparound
The turtle screen is 240 "turtle steps" wide by 144 steps high. If you give a

command that moves the turtle outside this range, the turtle wraps around to
appear at the opposite edge of the screen. That is to say, driving the turtle off
the top of the screen makes it reappear at the bottom of the screen and
continue drawing. Driving the turtle off the right edge of the screen makes it
reappear at the left of the screen, and so on.

Out of Ink
After you have drawn a large number of lines on the screen, Logo may

signal the error message

OUT OF INK

This indicates that the turtle's capacity for drawing has been used up, and it
cannot draw any additional lines. At this point, you must clear the screen if
you want to continue drawing.9

Abbreviations
Some of the commonly used Logo commands have abbreviations to help

you save typing. Abbreviations for some of the commands we have seen so
far are

FORWARD FD
BACK BK
RIGHT RT

LEFT LT
PENUP PU
PEN DOWN PD
HIDETURTLE HT
SHOWTURTLE ST
CLEARSCREEN CS

Multiple Commands on a Line
There is no restriction that each line be only a single Logo command. If

you like, you can execute lines like

FORWARD 10 PENUP FORWARD 10

Logo will execute the separate commands in order, from left to right. If some
command on the line causes an error, Logo will execute the commands up
until the point of the error before typing an error message. However, single
lines that contain many separate commands can be confusing, and it is
generally better to use only one command per line.

9The limited drawing capacity is a consequence of the way that turtle lines are implemented using tile graphics.

We will discuss this in Section 4.3.3.

6/TI LOGO

1.3.4. Practice With Commands

Figure 1.8: Using nested REPEATs to produce
a complex drawing.

1.4. Introduction to Procedures

A First Look at Logo 17

The REPEAT Command
One useful addition to your repertoire of Logo commands is REPEAT.

REPEAT takes two inputs—a number and a list of commands—and repeats
the commands in the list the designated number of times. For example,

REPEAT 4 [FORWARD 30 RIGHT 90]

makes the turtle draw a square. Notice that the list of commands is enclosed
in square brackets.10 This is a very simple example of how lists are used in
Logo to group things. Lists are introduced in Section 6.4.

REPEATs can be nested. For a pretty effect, try

REPEAT 10 [REPEAT 4 [FORWARD 30 RIGHT 90] RIGHT 36]

which produces the drawing shown in Figure 1.8. Playing with nested
REPEATs can be fun, but in terms of program clarity and power, it is much
better to combine commands by defining procedures, as we describe in
Section 1.4.

Long Command Lines
Lines on the display screen can be at most 30 characters long. Figure 1.8

illustrates how Logo treats command lines that are longer than 30 characters.
When you type the 31st character of a command line, Logo will move the
cursor to the next screen line, at which point you can continue typing. To
execute a long line, you type ENTER as usual. Even with this multiple line
capability, no input line may be longer than 127 characters. Logo will refuse
to insert more than this many characters in a command line.

In this book, long command lines are not shown as they appear on the
screen. Instead they are indented to make them easier to read. When you
type in the program examples in the book, continue typing the indented
portions as part of one long line, as shown in Figure 1.8.

Stopping Execution With the BACK Key
When Logo is executing a command, pressing the BACK key (FCTN-9) causes

it to stop whatever it is doing and wait for a new command. Logo types

STOPPED

followed by the question mark prompt. For example, if you should start
Logo executing some long process like

REPEAT 10000 [PRINT 1]

and then think better of it, you can halt it by pressing BACK. Be sure to use
BACK rather than QUIT to halt a Logo program."

You can regard Logo commands like FORWARD, PRINT, and so on, as
words that the computer understands when the Logo system is started. These
"built-in" words are called primitives. One of the most important things
about the Logo language is that it makes it easy for you to teach the
computer new words. Once you define a new word, it becomes part of the

10Be sure to use square brackets [i, not parentheses 0, for lists. You type Ij by pressing FCTN-R and FCTN-T.

"'Pressing nun-resets the computer and destroys all stored data.

8 / T I LOGO

1.4.1. Simple Procedures

(a)

TO BOX FORWARD 40
FORWARD 40 RIGHT 90
RIGHT 90 FORWARD 20
FORWARD 20 END
RIGHT 90

TO BOXES FORWARD 15
BOX RIGHT 90
PENUP PENDOWN
FORWARD 5 BOX
LEFT 90 END

(b)

TO PINWHEEL
REPEAT 4 [BOX]
END

Figure 1.9: Shapes drawn by the BOX,
BOXES, and PINWHEEL procedures.

computer's working vocabulary and can be used just as if it were a primitive
You teach Logo new words by defining them in terms of words that are
already known. These definitions are called procedures, and this section
describes the simple mechanics of how to define and edit procedures. As in
the previous section, the examples are drawn from turtle graphics programs.

The following sequence of commands makes the turtle draw a rectangular
box as shown in Figure 1.9:

FORWARD 40
RIGHT 90
FORWARD 20
RIGHT 90
FORWARD 40
RIGHT 90
FORWARD 20

You can teach the computer to execute this sequence of commands whenever
you give the command BOX by defining BOX as a procedure:

TO BOX
FORWARD 40
RIGHT 90
FORWARD 20
RIGHT 90
FORWARD 40
RIGHT 90
FORWARD 20
END

Before typing this definition to Logo, you will need to know about the
Logo procedure editor which is described below in Section 1.4.2. Notice first
that the format of the procedure definition is

• A title line, which consists of the word TO followed by the name you
choose for the procedure.

• A body, which is the sequence of command lines that make up the
definition.

• The word END to indicate that this is the end of the definition.

Once BOX is defined, it can now be used in further definitions, such as

TO BOXES
BOX
PENUP
FORWARD 5
LEFT 90
FORWARD 15
RIGHT 90
PENDOWN
BOX
END

or

1.4.2. Defining Procedures

Figure 1.10: The display screen as it appears
when you enter edit mode by
typing TO BOX.

A First Look at Logo / 9

TO PINWHEEL
REPEAT 4 [BOX]
END

which produce the drawings shown in Figure 1.9. When a procedure is used
as part of the definition of a new procedure, it is referred to as a
subprocedure of the new procedure.

Remember that once a procedure is defined, you can consider it to be just
another word that the computer "knows." You tell Logo to execute any of
these procedures in the same way that you tell it to execute a primitive
command—by typing the name of the command followed by ENTER.

Procedure definitions like the ones in the previous section are typed into
the Logo system using a procedure editor. The following paragraphs describe
how to define procedures such as the BOX procedure shown above. When
Logo gives its question mark prompt, you type

TO BOX

and press ENTER. The screen should now be clear, except for a procedure title
line TO BOX, followed by an END. The screen background also changes
color to a light green to indicate that you are now using the procedure editor,
or, are in so-called edit mode. This configuration is shown in Figure 1.10.

The Procedure Editor
In edit mode, you type in the procedure definition line by line. The major

difference between typing at the procedure editor and typing regular Logo
commands is that pressing ENTER merely moves the cursor to the beginning
of the next line, rather than telling Logo to execute the current line as a
command. Logo is now storing your command lines as part of the procedure,
rather than executing them.

After you have typed in the procedure definition, you press BACK. The
definition will be processed and Logo will be ready to accept a new
command

Editing Commands
When you type your definitions into the procedure editor, you can type

characters and use ERASE to correct typing errors as usual. There are also a
large number of more powerful editing commands to aid you in typing and
changing procedure definitions.

ERASE FCTN-3 Pressing the ERASE key, just as at Logo command
level, deletes the character to the left of the cursor
and moves the cursor one space to the left. In
addition, if the cursor is at the beginning of the line,
pressing ERASE combines that line with the previous
line.

DEL FCTN-1 Pressing the DEL key deletes the character at the
current cursor position, that is, the character over
which the cursor is flashing. In addition, if the
cursor is at the right end of the line, pressing DEL

combines that line with the next line.

Arrow keys

BEGIN

PROC'D

CLEAR

FCTN-E
FCTN-S
FCTN-D
FCTN-F

FCTN-5

FCTN-6

FCTN-4

10/TI LOGO

TO PINWHEEL
FORWARD 50
REPEAT 8 [RIGHT 45 BOX]
BACK 90
END

TO FAN
REPEAT 8 [RIGHT 45 BOX]
END

Figure 1.11: Shapes drawn by the modified
PINWHEEL and FAN procedures.

Pressing any of the arrow keys (up, down, right, or
left) moves the cursor one space in the direction of
the arrow without rubbing out any character.

Pressing the BEGIN key moves the cursor to the
beginning of the line.

Pressing the PROC'D key moves the cursor to the
right end of the line.

Pressing the CLEAR deletes all characters on the line
from the cursor rightwards.

For example, to change the line

FORWXYD 100

to

FORWARD 100

start with the cursor just to the right of the number 100. Then you can
position the cursor under the X by pressing left arrow 7 times, then delete the
X and the Y by pressing DEL twice, and then type the characters AR. Another
way to make the same change is to position the cursor under the D by
pressing the left arrow key 5 times, then delete the X and the Y by pressing
ERASE twice, and then type AR.

If you use an editing key in a context where it doesn't make sense (for
instance, trying to move to a nonexistent line), Logo will flash the screen
briefly.

Changing Procedure Definitions
Suppose you want to change the definition of a procedure. For example,

you may want to change the definition of PINWHEEL on page 9 from

TO PINWHEEL
REPEAT 4 [BOX]
END

to

TO PINWHEEL
FORWARD 50
REPEAT 8 [RIGHT 45 BOX]
BACK 90
END

so that it now makes the drawing shown in Figure 1.11. To accomplish this,
you give the command

EDIT PINWHEEL

Logo now places you in edit mode with the original text of the PINWHEEL
procedure shown on the screen. Now edit the definition, inserting and
deleting text using any of the editing commands described above. When you
have finished editing, press BACK. The definition is now changed and Logo is
ready for a new command.

A First Look at Logo / 11

When you change a procedure definition, the computer then uses the new,
not the old, definition anytime the procedure is executed.

Changing the procedure's name (by editing the title line) is equivalent to
defining a new procedure with the new title. For example, if you edit the
PINWHEEL definition to read

TO FAN
REPEAT 8 [RIGHT 45 BOX]
END

(which draws the shape shown in Figure 1.11), Logo will remember both FAN
and PINWHEEL.

Printing Procedures and Titles
In order to see the definition of a procedure, you can use the PO (PO

stands for "print out") command followed by the name of the procedure.
Here is an example:

PO PINWHEEL
TO PINWHEEL
FORWARD 50
REPEAT 8 [RIGHT 45 BOX]
BACK 90
END

Another useful Logo command is PP (PP stands for "print procedures"),
which lists the title lines of all procedures that are currently defined; for
example:

PP
TO PINWHEEL
TO FAN
TO BOXES
TO BOX

If the printout is too long to fit on a single screen, Logo will pause when it
fills the screen and type the message

PRESS ENTER TO CONTINUE

Pressing ENTER will show the next screenful. See Section 5.1.1 for more
details on printing procedures.

Defining More Than One Procedure at a Time
If you like, you can use the editor to define more than one procedure

definition at a time. You simply type in the definitions in sequence. Be sure
to end each separate procedure definition with END.

As with multiple commands on a line, defining more than one procedure at
once can cause confusion, because if some procedure definition is badly
formed and causes a definition error (see Section 1.4.3 below), the procedure
definitions that follow it will not be processed. It is generally better to enter
and exit edit mode for each procedure separately.

More Than One Screenful
Sometimes, either because you have a very long procedure definition, or,

more commonly, because you are defining many procedures at once, you

2/TI LOGO

1.4.3. Errors in Procedures

may want to edit more lines of text than can fit on the screen at once. Logo
allows you to do this. If the cursor is at the bottom of the screen and you
press RETURN, the lines of text will scroll upwards to produce a new blank
line. In general, the screen can be thought of as a window onto a much
longer page of text that scrolls as you move the cursor from line to line so
that the part you are editing is always within the window.

Long Lines in Procedures
As is the case with command lines, lines in Logo procedures can be more

than one screen-line (30 characters) long, up to 127 characters. When you
type the 31st character of a long line using the procedure editor, the cursor
moves to the left of the next screen line while you continue typing.

If Logo encounters an error while executing a procedure, it prints an error
message as described in Section 1.3.3 together with four pieces of
information:

• A description of the error.

• The level number at which the error occurred.

• The number of the line that contained the error.

• The name of the procedure in which the error occurred.

The meaning of "level number" follows. A procedure that is called directly
by a typed command line is said to be running at level 1; a procedure called
by a level 1 procedure is said to be at level 2, and so on. The greater the level,
the longer the "chain of procedure calls" from the typed-in command to the
procedure in which the error occurred.

For example, suppose you define the procedure

TO BLOCK
ELL
RIGHT 90
ELL
END

and the definition of the subprocedure ELL contains a typing error (in the
third line of the procedure):

TO ELL
FORWARD 50
RIGHT 90
FORWAXD 25
END

Then if you give the command BLOCK, Logo will run until it tries to execute
the third line in ELL for the first time at which point it will type

TELL ME HOW TO FORWAXD
AT LEVEL 2 LINE 3 OF ELL

At this point you should edit ELL and correct the mistyped line.

A First Look at Logo / 13

Errors in Procedure Definitions
When Logo processes a procedure definition, it does not look for errors in

the lines that make up the body of the definition. For example, if you make a
typing error, as in the second line below:

TO PINWHEEL
REPEAT 8 [RIGXT 45 BOX]
END

the fact that RIGHT has been mistyped as RIGXT will cause an error when
Logo attempts to execute PINWHEEL, not when you define the procedure.12
On the other hand, there are certain things that can cause errors when you
press the BACK key and the definition is processed. For example, you may
mistakenly use the editing operations to remove the word TO from the title
line while you are editing or cause the definition to be badly formed in some
other way. Logo will complain, for example, if you try to define a procedure
with the same name as some Logo primitive. For instance, if you attempt to
define a procedure named FORWARD, Logo will respond to your pressing
the BACK key with the error message

TO DOESN'T LIKE FORWARD AS INPUT

1.5. Other Graphics Commands

1.5.1. Drawing in Color

In addition to the turtle commands FORWARD, BACK, LEFT, and RIGHT,
Logo allows you to move the turtle by specifying x,y Cartesian coordinates.
The SXY command takes two numeric inputs and moves the turtle to the
corresponding x,y screen location. There are also commands XCOR and
YCOR which output the turtle's position.13 The SETHEADING command
rotates the turtle so that it faces in a specified direction, and the HEADING
command outputs the turtle's heading. Giving the command HOME moves
the turtle back to its initial position at the center of the screen and facing
straight up.

Besides drawing with PENUP and PENDOWN, you can also make the
turtle erase any lines that it passes over. You do this by using the command
PENERASE (abbreviated PE). For instance, if you want to erase some lines
in a drawing, you can type PENERASE and then drive the turtle over those
lines. There is also a command PENREVERSE (abbreviated PR), which is
like a combination of PENDOWN and PENERASE. When the pen is
reversed, the turtle will "reverse" any points that it passes over. Any dot that
is off will be turned on, and any dot that is on will be turned off.

Section 12.1 gives a complete list of the graphics commands that are built
into Logo.

The SETCOLOR command (abbreviated SC) changes the color in which
the turtle draws. SETCOLOR takes as input a number, which specifies the
designated color. There are 16 colors available in TI Logo:

120ne very good reason for this is that it is always possible that you did mean to type RIGXT, and you will be

defining a procedure named RIGXT before using PINWHEEL One facility that a computer language can

provide to encourage sound programming practices is to make it possible to write definitions in terms of

procedures that have not yet been defined.

13See Section 6.2 on how to use outputs.

41TILOGO

1.5.2. The Background

CLEAR 0 RUST 8
BLACK 1 ORANGE 9
GREEN 2 YELLOW 10
LIME 3 LEMON 11
BLUE 4 OLIVE 12
SKY 5 PURPLE 13
RED 6 GRAY 14
CYAN 7 WHITE 15

For instance, to make the turtle draw in white, you can give the command

SETCOLOR 15

Alternatively, you can specify the name of the color rather than the number.
You do this by using the name as input, preceded by a colon (:) as in14

SETCOLOR :WHITE

The COLOR command outputs (as a number) the current color in which the
turtle is drawing.

You can also change the background color of the screen to be any of the
above colors. There are two ways to do this. One is to use the command
COLORBACKGROUND (abbreviated CB). For instance, to change the
background color to yellow, you can type either

COLORBACKGROUND 10

or

COLORBACKGROUND :YELLOW

TELL and Graphical Objects
You can also change the background color by typing

TELL BACKGROUND

followed by a SETCOLOR command, such as

SETCOLOR :YELLOW

The general idea here is that TELL is a command that "directs the computer's
attention" to various kinds of graphical objects. So far we have seen two
graphical objects, the TURTLE and the BACKGROUND. When the
computer is "talking to" an object (via TELL), all the graphics commands
refer to that object. If you type

TELL BACKGROUND

14The use of the colon here is not specifically related to colors or to drawing Rather, it reflects the general

way in which things in Logo can be named. When Logo is started, the symbol WHITE is predefined to be a

name for the number 15 (and the other color names likewise). For instance, if you type

PRINT WHITE

Logo will print 15. The colon syntax WHITE directs Logo to find the value associated with WHITE. We will

see other uses of : in dealing with inputs to procedures in Section 2 1 and with the MAKE command in

Section 6.5.

A First Look at Logo / 15

1.6. Modes of Using the Screen

and then give the COLOR command, the number returned will be the color
of the background. You must also be sure that the command is one that
makes sense for the object you are TELLing. For instance, if you type

TELL BACKGROUND
FORWARD 50

Logo will respond with the error message

BACKGROUND CAN'T FORWARD

In this case, you probably meant for the turtle to go forward, so you should
redirect the computer's attention to the turtle by typing

TELL TURTLE

As graphical objects go, the background is a rather limited one, since all
it can do is change color. We'll meet more versatile graphical objects in
Chapter 4.

This chapter has presented the basics of executing Logo commands and
defining simple procedures. As a summary, we note that Logo uses the
display screen in three different ways, or modes.

1.6.1. Noturtle Mode Logo starts in noturtle mode. You type in command lines, terminated with
ENTER. Logo executes the line and prints a response, if appropriate.

1.6.2. Turtle Mode

1.6.3. Edit Mode

Typing TELL TURTLE causes Logo to enter turtle mode as shown in
Figure 1.5, with the screen cleared and the turtle at the center. In turtle
mode, you use the turtle for drawing on the screen. The NOTURTLE
command exits turtle mode and enters noturtle mode.

Executing the commands TO or EDIT places Logo in edit mode, which
allows you to use the procedure editor as described in Section 1.4.2. Pressing
the BACK key exits edit mode and processes the definitions.

Programming with Procedures 117

CHAPTER 2

Programming with Procedures

2.1. Procedures with Inputs

In the Introduction we stressed that the ability to define procedures is one of
the powerful features of the Logo language. In this chapter we explain more
about how procedures can be used and, in particular, how they can be used
to build up complex programs in simple steps. With the material covered in
this chapter, you should have enough information about Logo to undertake
many projects in turtle geometry. Be sure to type TELL TURTLE before
trying any of the activities in this chapter.

The procedures discussed in Section 1.4 do exactly the same thing each
time they are executed. Each turtle procedure draws the same drawing each
time. Contrast this with a command like FORWARD.

FORWARD 50

does not draw exactly the same thing as

FORWARD 25

The fact that the FORWARD command takes an input is what enables you to
use this one command to draw lines of all different lengths.

In Logo, you can define procedures that take inputs. Consider, for
example, the following procedure, which draws a square 50 units in a side:

TO SQUARE
REPEAT 4 [FORWARD 50 RIGHT 90]
END

Whenever you give the command SQUARE, the turtle draws a square with
side 50. You can change the definition of SQUARE so that it can be used to
draw squares of all different sizes:

TO SQUARE :SIDE
REPEAT 4 [FORWARD :SIDE RIGHT 90]
END

The new SQUARE procedure takes an input that specifies the side of the
square to be drawn. The procedure is executed just like any Logo command
that takes an input. That is, to draw a square of side 50, you type

SQUARE 50

To draw a square of side 25, you type

SQUARE 25

and so on.l

IA common beginners' mistake is to type SQUARE 50, based on the (reasonable) misunderstanding that the

colon means something like "here is your input." Instead, as we shall see below, the colon as used in SIDE
means "the value associated with the name SIDE "

(a)

8/TI LOGO

The definition of SQUARE illustrates the general rule for defining
procedures that take inputs. You choose a name for the input and include it
in the procedure title line, preceded by a colon.2 Now you use the input name
(with the colon) wherever you would normally use the value of the input in
the procedure body.

To define a procedure with inputs, you use the procedure editor just as in
defining any procedure. To enter the editor, type TO followed by as much of
the title line as you like, followed by ENTER. For example, if you type TO
SQUARE :SIDE (ENTER), you will enter the editor, and the title line of the
procedure will be TO SQUARE :SIDE. If you type TO SQUARE (ENTER),

you will enter the editor with the title line TO SQUARE, and the :SIDE part
of the title line can be added using the normal editing operations.3

Here's another example. You can modify the original (side 50) SQUARE
procedure to draw a diagonal of the square and return the turtle to its
starting point. The procedure uses the fact that the length of the diagonal is
the square root of 2 (about 1.4, or 7/5) times the length of the side.

TO DIAG
REPEAT 4 [FORWARD 50 RIGHT 90]
RIGHT 45
FORWARD 70
BACK 70
LEFT 45
END

Figure 2.1: Shape drawn by the
DIAG procedure.

2.1.1. Multiple Inputs

Figure 2.1 shows the shape drawn by this procedure. To draw the shape in all
different sizes, you can use

TO DIAG :SIZE
REPEAT 4 [FORWARD :SIZE RIGHT 90]
RIGHT 45
FORWARD (:SIZE * 7) / 5
BACK (:SIZE * 7) / 5
LEFT 45
END

Logo procedures may be defined to accept more than one input. You
simply choose a name for each input and include it in the title line, preceded
by a colon. For example, the following two-input procedure can be used to
draw rectangles of varying sizes and shapes:

TO RECTANGLE :HEIGHT:LENGTH
FORWARD :HEIGHT
RIGHT 90
FORWARD :LENGTH
RIGHT 90
FORWARD :HEIGHT
RIGHT 90
FORWARD :LENGTH
RIGHT 90
END

2Logo tradition is to pronounce the colon as "dots." That is :SIDE is pronounced "dots SIDE."

3In the first release of TI Logo, you should type only TO and the procedure title and add the inputs with the

editing operations. In TI Logo II, you can use either method as described above.

HEIGHT 10

LENGTH 50

RECTANGLE

Figure 2.3: Private library set up by
executing RECTANGLE 10 50

Figure 2.4: Figure drawn by executing
FLAG 50.

Programming with Procedures / 19
(b)

As shown in Figure 2.2, executing the command

RECTANGLE 50 10

draws a long, skinny rectangle, whereas

RECTANGLE 50 50

draws a square.

Defining a Logo procedure involves grouping together a series of
commands under a name chosen by the programmer. Using inputs also
involves naming, but in a different sense. Although a new procedure is
incorporated as part of Logo's working vocabulary, the name of an input is
private to the procedure that uses the input.

Since input names are private, different procedures may use the same
names for inputs without these names interfering with each other. One way to
think about this is to imagine that each time a procedure is executed, it sets
up a "private library" that associates with its input names the actual input
values with which the procedure was called. When the procedure executes a
line that contains an input name (signaled by :) it looks up the value in the
library and substitutes the values for the name. For example, the previous
RECTANGLE procedure, called with

RECTANGLE 10 50

would set up a private library as shown in Figure 2.3.
The input values are associated with the input names in the order in which

they appear in the title line. In this case, the first input, 10, is associated with
the first input name, HEIGHT, and the second input, 50, is associated with
the second name, LENGTH.

We've already seen in Chapter 1 that the individual steps in a procedure
can themselves be procedures. Since each procedure maintains its own private
library of input values, there is no conflict between the input names used by
the different procedures. For example, here is RECTANGLE used as part of a
procedure for drawing a flag, as shown in Figure 2.4:

TO FLAG :HEIGHT
FORWARD :HEIGHT
RECTANGLE (:HEIGHT / 2) :HEIGHT
BACK :HEIGHT
END

The FLAG procedure draws a "pole" of a specified HEIGHT, then draws on
top of the pole a rectangle of dimensions HEIGHT/2 by HEIGHT, then moves
the turtle back to the base of the pole. Note the use of parentheses around
(:HEIGHT / 2). These are not actually necessary for Logo to understand what
is meant, but they make the program easier to read.4

4Section 6.7.2 discusses the rules for using parentheses in Logo.

Figure 2.2: Two rectangles drawn by the

RECTANGLE procedure.

2.1.2. Inputs as Private Names

FLAG

HEIGHT 50

FORWARD HEIGHT

T RECTANGLE I HEIGHT/271
HEIGHT I

L J

BACK HEIGHT

RECTANGLE

HEIGHT 25

LENGTH 50

Figure 2,5: Private libraries set up by
executing FLAG 50.

20 / T I LOGO

Let's examine in detail what happens when you execute the command

FLAG 50

This creates a private library for FLAG in which HEIGHT is associated with
50 and begins executing the definition of FLAG, starting with the first line

FORWARD :HEIGHT

Looking in the private library, Logo finds that 50 is the value associated with
HEIGHT, so it makes the turtle go FORWARD 50. Next it must execute the
line

RECTANGLE (:HEIGHT / 2) :HEIGHT

To do this, Logo first determines the values of the two inputs that must be
given to RECTANGLE. The first input is half the value of HEIGHT, or 25,
and the second input is HEIGHT itself, or 50. Now RECTANGLE is called
with inputs 25 and 50. This sets up a private library for RECTANGLE in
which the names of RECTANGLE'S inputs, HEIGHT and LENGTH, are
associated with 25 and 50, respectively. The entire picture is as shown in
Figure 2.5. Even though the name HEIGHT is associated with 50 in FLAG'S
library and with 25 in RECTANGLE's library, there is no conflict between the
two. Each procedure looks up its own values in its own library.

The importance of private input names is that you can use a procedure
without concern for the details of precisely how it is coded, but rather just
concentrating on what it does. When you write the FLAG procedure, you can
regard RECTANGLE as a "black box" that draws a rectangle, without
worrying about what names it uses for its inputs. Indeed, as far as FLAG is
concerned, RECTANGLE might have been a primitive included in the Logo
system.

The technique of regarding a procedure (even a complex procedure) as a
black box whose details you needn't worry about at the moment is a crucial
idea in programming or, indeed, in any kind of design enterprise. Each time
you define a new procedure, you can use it as a building block in more
complex procedures, and in this way you can build up very complex
processes in what Papert [15] refers to as "mind-size bites."

As a simple illustration, once you have defined FLAG you can use it to
easily make a procedure that draws a flag and moves the turtle over a bit:5

TO FLAG.AND.MOVE :SIZE :SPACING
PENDOWN
FLAG :SIZE
PENUP
RIGHT 90
FORWARD :SPACING
LEFT 90
END

5The period used in a name like FLAG.AND.MOVE is interpreted as an ordinary character. Logo does not

allow spaces to be part of procedure names, so the period is a useful way to make long names more readable.

CIRCLE 1

Programming with Procedures / 21

You can use this to draw a row of flags as in Figure 2.6:

TO ROW :SIZE :SPACING :HOW.MANY
REPEAT :HOW.MANY [FLAG.AND.MOVE :SIZE :SPACING]
END

As another example of using procedures with inputs, we'll consider the
problem of writing a procedure to draw circular arcs. This is not only a good
example of using procedures, but is also a useful building block to have in
making drawings.

The ARC procedure is based on making the turtle go FORWARD a small
fixed distance, turning a small fixed angle, and repeating this over and
over—this draws a good approximation to a circular arc.6 When the turtle
has turned through 360 degrees, a complete circle will have been drawn. This
leads to the following CIRCLE procedure:7

TO CIRCLE1
REPEAT 360 [FORWARD 1 RIGHT 1]
END

This draws a circle, but it is very slow, especially if you use it without hiding
the turtle. The problem is that there are so many FORWARD 1, LEFT 1
moves. And these are mostly unnecessary, because, within the accuracy of the
display screen, a regular polygon with more than 20 sides is indistinguishable
from a circle. For example, you can replace the CIRCLE1 procedure above
by the following procedure, which draws a regular 36-sided polygon:

TO CIRCLE2
REPEAT 36 [FORWARD 10 RIGHT 10]
END

(Notice that you multiply the FORWARD step by 10 in order to keep the
circle the same size as before.) The CIRCLE2 procedure runs about 10 times
as fast as CIRCLE1 and looks almost the same on the display screen.

You can make this procedure more useful by giving it an input that varies
the size of the circle:

Figure 2.6: Picture drawn by ROW 20 30 4.

2.1.3. An ARC Procedure

O
TO CIRCLE :SIZE
REPEAT 36 [FORWARD :SIZE RIGHT 10]
END

CIRCLE 2 CIRCLE 8

Figure 2.7: Circles drawn by the CIRCLE
procedure.

Note that the turtle still turns 10 degrees at each step, so varying the size of
the FORWARD step varies the size of the circle. Figure 2.7 shows some
circles drawn by the CIRCLE procedure.

6This is a fundamental idea in turtle geometry, based on the fact that a circle is a curve of constant curvature.

This observation is the key to many turtle-based approaches to mathematics as described in the book by

Abelson and diSessa [I].

7The digit 1 included as part of the name CIRCLE1 is interpreted as an ordinary character. It is standard

practice to name minor variants of procedures by appending a number to the name.

22 / T I LOGO

(

ARCRIGHT 50 60 ARCLEFT 50 90

ARCRIGHT 30 180 ARCLEFT 100 20

Figure 2.8: Circular arcs drawn by the

ARCRIGHT procedure.

TO PETAL SIZE
ARCRIGHT SIZE 60
RIGHT 120
ARCRIGHT SIZE 60
RIGHT 120
END

TO FLOWER SIZE
REPEAT 6 [PETAL SIZE RIGHT 60]
END

TO RAY SIZE
ARCLEFT •SIZE 90
ARCRIGHT SIZE 90
ARCLEFT SIZE 90
ARCRIGHT SIZE 90
END

TO SUN :SIZE
REPEAT 9 [RAY •SIZE RIGHT 160]
END

Figure 2.9: Simple procedures that use arcs.

2.2. Repetition and Recursion

An arc procedure can be implemented in the same way, except the turtle
should turn through as many degrees as there are degrees in the arc. The
following procedure draws circular arcs turning toward the right:

TO ARCRIGHT :SIZE :DEGREES
REPEAT:DEGREES/10 [FORWARD :SIZE RIGHT 10]
END

Note that we divide the DEGREES input by 10 to obtain the number of
10-degree steps the turtle should perform to construct an arc of that many
degrees.8 An ARCLEFT procedure can be designed in exactly the same way.
Figure 2.8 shows some arcs generated by this procedure.

Once you have defined ARCRIGHT and ARCLEFT, you can use them to
develop all sorts of interesting shapes. Figure 2.9 shows two examples.

We've already seen the use of the Logo REPEAT command (page 7) to
repeat a series of steps a fixed number of times. Another way to make
something repeat is to define a procedure that includes a call to itself as the
final line. For example,

TO SQUARE :SIZE
FORWARD :SIZE
RIGHT 90
SQUARE :SIZE
END

makes the turtle move in a square pattern over and over again until you stop
it by pressing BACK. You can think of the way this procedure works as a kind
of joke—the steps of a procedure can include calls to any procedure, so why
not call the procedure itself? In this case, the definition of SQUARE is "go
forward, turn right, and then do SQUARE again." And this last step entails
going forward, turning right, and then doing SQUARE again, and so on
forever.9

One disadvantage of this SQUARE, as opposed to the one we have been
previously using,

TO SQUARE :SIZE
REPEAT 4 [FORWARD :SIZE RIGHT 90]
END

is that it goes on indefinitely and so is not a good building block to use in
making more complex drawings. On the other hand, this kind of indefinite
repetition can be useful in situations in which you do not know (or cannot
easily figure out) how many times to repeat some sequence of steps. The
following program is an excellent example:

81n TI Logo, disision always produces an integer quotient; for instance, 76/10 yields 7. Our arc procedure will

gtse a correct result only when the DEGREES input is a multiple of 10.

9Compare: If a genie appears and offers you three wishes, you should use your third wish to wish for three

more wishes

POLY 50 120 POLY 50 160

POLY 60 80 POLY 80 144

Figure 2.10: Shapes drawn by the POLY
program.

2.2.1. Thinking About Recursion

Programming with Procedures / 23

TO POLY:SIDE :ANGLE
FORWARD :SIDE
RIGHT :ANGLE
POLY:SIDE :ANGLE
END

Figure 2.10 shows some of the many figures drawn by POLY as the angle
varies. They are all closed figures, but the number of sides that must be
drawn before the figure closes depends in a complicated way upon the
ANGLE input to the program.10 Using the indefinite repeat you can draw
them all with a single, simple procedure.

Recursion is the programming word for the ability to use the term POLY as
part of the definition of POLY or, in general, to write procedures that call
themselves.11

The recursive procedures above have a very simple form—they merely
repeat an unchangeable cycle over and over again. Recursion is a much more
powerful idea and can be used to obtain much more complicated effects. We
shall meet many examples. To take just a small step beyond the purely
repetitive kind of recursion, consider

TO COUNTDOWN :NUMBER
PRINT :NUMBER
COUNTDOWN : NUMBER — 1
END

Let's examine what happens if you give the command

COUNTDOWN 10

To understand the effect of this command, look back at the definition of the
COUNTDOWN procedure. You see that it needs an input and that is uses the
name NUMBER for this input. In this case, you have given 10 as the input,
so the procedure takes NUMBER to be 10.12 The first line says

PRINT :NUMBER

so it prints 10 and goes on to the next line, which is

COUNTDOWN :NUMBER — 1

or, in this case

COUNTDOWN 9

'°This phenomenon forms the basis for a number of mathematical investigations involving symmetry and

number theory, described in Abelson and diSessa [(].

11Languages like Fortran and (most versions of) BASIC do not allow recursion because the implementation of

a computer language is simplified if one can assume that there are no recursive functions.

12Usmg the terminology introduced in Section 2.1.2, we would say that COUNTDOWN sets up a private

library in which the name NUMBER is associated with 10.

24 /TI LOGO

POLYSPI 5 120

POLYSPI 5 144

Figure 2.11: Shapes drawn by the POLYSPI

program.

This order causes the same effect as if you had typed in the command

COUNTDOWN 9

which would be to print 9 and then give the order

COUNTDOWN 8

and so on ... In sum, the effect of

COUNTDOWN 10

is to print 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, — 1, — 2, ... until you stop the
process by pressing BACK.

Another example of the same programming technique is the following
modification of the POLY program on page 23:

TO POLYSPI :SIDE :ANGLE
FORWARD :SIDE
RIGHT :ANGLE
POLYSPI (:SIDE + 3) :ANGLE
END

Giving the command

POLYSPI 0 90

leads to the sequence of turtle moves

FORWARD 0
RIGHT 90
FORWARD 3
RIGHT 90
FORWARD 6
RIGHT 90
FORWARD 9
RIGHT 90

which procedures a square-like spiral.13 By changing the ANGLE input, you can
draw all sorts of spiral shapes, as shown in Figure 2.11. Part of the power of
recursion is the fact that such simple programs can lead to such varied,
unexpected results.

2.2.2. Conditional Commands and Suppose you want COUNTDOWN to stop before printing 0. You can do
STOP this as follows:

TO COUNTDOWN :NUMBER
IF :NUMBER = 0 STOP
PRINT :NUMBER
COUNTDOWN :NUMBER — 1
END

130r "squiral," as it was dubbed by a fifth-grade Logo Programmer who discovered this figure.

TO TOWER :SIZE
IF :SIZE < 1 THEN STOP
SQUARE :SIZE
FORWARD •SIZE
TOWER :SIZE / 2
ENE

Figure 2.12: Picture drawn by TOWER 50.

Programming with Procedures / 25

The IF statement is used in Logo to perform tests, in this case to test
whether the value of NUMBER is zero. If so, the COUNTDOWN procedure
STOPs. That is, rather than continuing with the next line in the procedure, it
returns control to wherever the procedure was originally called from. So in
response to the command

COUNTDOWN 5

the computer prints 5, 4, 3, 2, 1 and prompts for a new command.
Keep in mind that the idea of STOP is that when a procedure stops, the

next command that gets executed is the one after the command that called
the procedure. For example,

TO BLASTOFF
COUNTDOWN 10
FORWARD 100
END

counts down from 10 to 1 and then moves the turtle.14
The IF statement is called a conditional expression. It has the form

IF {some condition is true} {do some action}

If the condition is true, then the rest of the line is executed. If not, execution
proceeds with the next line. If you like, you can separate the condition and
the action with the word THEN as in

TO COUNTDOWN :NUMBER
IF :NUMBER = 0 THEN STOP
PRINT:NUMBER
COUNTDOWN : NUMBER — 1
END

Either way is acceptable. The THEN is completely optional.
The kinds of conditions that can be tested are generated by Logo

operations called predicates. Predicates are things whose value is either true
or false. COUNTDOWN uses = , which is true if the two things it is
comparing are equal. Two other predicates are > , which tests whether the
number on its left is greater than the number on its right, and < , which tests
for less than. These three predicates deal with numbers.15 Logo includes
other predicates for dealing with other kinds of data. It is also easy to define
your own special-purpose predicates (see Section 6.6).

Here is a turtle program based on the COUNTDOWN model. It draws a
tower of squares that get smaller and smaller and stops when the squares get
very tiny, as shown in Figure 2.12.

14This stopping behavior is just what normally happens after a procedure executes its final line. If you like,

you can imagine that every procedure includes a STOP command at its end.

15Actually, = can be used for testing equality of any two pieces of Logo data. A precise description of the

behavior of = is given in Section 12.6.

The recursion examples we have seen so far, in which the recursive call is
the final step in the procedure, can be readily viewed as a kind of generalized
repetition.16 Other uses of recursion can be much more powerful but,
unfortunately, much harder to understand. Let's compare the COUNTDOWN
procedure from Section 2.2.2:

TO COUNTDOWN :NUMBER
IF :NUMBER = 0 STOP
PRINT :NUMBER
COUNTDOWN :NUMBER — 1
END

with the following similar-looking procedure:

TO MYSTERY :NUMBER
IF :NUMBER = 0 STOP
MYSTERY :NUMBER — 1
PRINT :NUMBER
END

As we saw,

COUNTDOWN 3

prints 3, 2, 1. In contrast

MYSTERY 3

prints 1, 2, 3. Most people find this very hard to understand.
Let's trace through the process carefully. You first call MYSTERY with the

input 3, so, as explained on page 9, MYSTERY sets up a private library in
which NUMBER is associated with 3. It checks whether the value of
NUMBER is 0, which it is not, so MYSTERY proceeds to the next line which
produces the command

MYSTERY 2

Now let's stop and think. Eventually this second MYSTERY call will stop,
and the original

MYSTERY 3

procedure will have to continue with the next command after the call. But
this means that there will have to be, in some sense, two MYSTERY
procedures existing at once—the one called by the command

MYSTERY 2

and the original one called by the command

MYSTERY 3

16The special case of recursion in which the recursive call is the final step is sometimes called tad recursion.

Logo includes techniques for implementing tail recursion efficiently, so that a tail recursive procedure can

effectively run "forever" without running out of storage.

26/TI LOGO

2.2.3. Thinking Harder About
Recursion

NUMBER

IF NUMBER 0 LSTSP]

MYSTERY MYSTERY

NUMBER

MYSTERY NUMBER-1 1
L

PRINT NUMBEP

Figure 2.13: Beginning execution of

MYSTERY 3.

NUMBER 2

IF NUMBER 0 [STOP]

NUMBER 3

IF NUMBER 0 [STOP]

I MYSTERY NUMBER - 1 I
L J

PRINT NUMBER

I MYSTERY NUMBER -1 I
L ~

PRINT NUMBER

NUMBER

IF NUMBER 0 [STOP]

r ~
I MYSTERY NUMBER -1 I
L- J

PRINT NUMBER

NUMBER 0

IF NUMBER 0 [STOP]

MYSTERY NUMBER-1

PRINT NUMBER

Programming with Procedures 127

which is waiting for the other MYSTERY to stop, so it can continue.
Moreover, each MYSTERY has its own value for NUMBER—NUMBER is 2
for one and 3 for the other. Each MYSTERY must maintain a separate
private library.17 The situation is shown in Figure 2.13.

Let's go on. The first thing that the

MYSTERY 2

procedure does is check whether the value for NUMBER is equal to 0. Since
this is not the case, MYSTERY gives the command

MYSTERY 1

and so now there are three MYSTERY procedures! And

MYSTERY 1

does a test and calls up yet another

MYSTERY 0

which makes four MYSTERY calls all existing at once as shown in Figure
2.14. Note that so far nothing has been printed. All that has happened is that
MYSTERY procedures have called up more MYSTERY procedures.

MYSTERY MYSTERY MYSTERY MYSTERY

prints 3 prints 2
and stops and stops

Figure 2.14: Complete execution of MYSTERY 3.

prints 1
lust stops

))) and stops

Now

MYSTERY 0

performs its test and finds that the value of NUMBER is indeed 0. So it
STOPs and the process continues with the procedure that called it, namely,

MYSTERY 1

This MYSTERY now proceeds with the next line after the call, which says to
print the value of NUMBER. Since NUMBER is 1 (in this MYSTERY's
private library), it prints 1. Now it is done and so returns to the procedure
that called it, namely

MYSTERY 2

17In other words, the private library is associated, not with a procedure, but with a given call to a procedure
(or what is technically called an activation of a procedure).

Figure 2.15: A binary tree.

28/T1 LOGO

2.2.4. Drawing Trees

This MYSTERY now continues with the line after the call, which says to
print NUMBER. Since NUMBER is 2 (in this private library), it prints 2 and
returns to its caller, namely,

MYSTERY 3

which prints 3 and returns to its caller, which is the main Logo command
level.

Whew! Try going through this example again step by step, referring to
Figure 2.14. In essence, this complex process is doing nothing more than
unwinding the following rule:

• When a procedure is called, the calling procedure waits until the second
procedure stops and then continues with the next instruction after the call.

Recursion, however, forces us to appreciate all the ramifications of this
simple sounding rule. In particular:

• There may be several instances (or "activations") of the "same" procedure
all coexisting at once.

• Each procedure activation has a separate private library, so the "same"
name may be associated with different values in different procedure
activations.

• The order in which things happen can be very confusing.]$

As another example of complex use of recursion, let's look at a program
that draws a binary tree, as in Figure 2.15.

Think about how you would describe this figure. One way to do it would
be to say something like "the tree is a vee-shape with a smaller tree at each
tip. And each smaller tree is a vee-shape with a still smaller tree at each of its
tips, and so on." This is a recursive description of the tree. You can translate
this description into a recursive procedure that draws the figure. You start
with the following commands that make the turtle draw a vee-shape of a
certain length and return to its initial position and heading:

LEFT 45
FORWARD :LENGTH
BACK :LENGTH
RIGHT 90
FORWARD :LENGTH
BACK :LENGTH
LEFT 45

This is the basic vee-shape of the tree. Now, according to the recursive
description, the entire tree consists of this vee with smaller vees (say, half as
big) drawn at each tip. So the TREE procedure should be something like

18More specifically, things happen in the reverse order from the way one might expect. This is a consequence

of the fact that the last procedure called is the first one to stop

Programming with Procedures 129

TO TREE :LENGTH
LEFT 45
FORWARD :LENGTH
TREE :LENGTH / 2
BACK :LENGTH
RIGHT 90
FORWARD :LENGTH
TREE :LENGTH / 2
BACK :LENGTH
LEFT 45
END

But this doesn't quite work. Consider—if you call TREE with an input of
20, this will make the turtle go LEFT 45, FORWARD 20 and call

TREE 10

which will make the turtle go LEFT 45, FORWARD 10 and call

TREE 5

and so on forever.19 This is something like the forever-running
COUNTDOWN procedure on page 23, or even more like the chain of

MYSTERY procedures on page 26, in that no procedure finishes until the last
one to be called has stopped. What you need is a stop rule to keep the
process from going on forever. You can make the process stop by having the
procedure just stop without drawing anything if LENGTH is very small:

TO TREE :LENGTH
IF :LENGTH < 2 THEN STOP
LEFT 45
FORWARD :LENGTH
TREE :LENGTH / 2
BACK :LENGTH
RIGHT 90
FORWARD :LENGTH
TREE :LENGTH / 2
BACK :LENGTH
LEFT 45
END

You can modify the TREE procedure to produce a procedure TREE1, in
which the subtree branches have the same length as the original branches,
rather than half the length. If you do this, however, then the branches of
successive subtrees will not get smaller and smaller, which means that you
cannot use the same stop rule as in TREE. A different strategy for providing
a stop rule is to include for TREE1 an extra input, DEPTH, which
determines the "depth" to which the tree is drawn. Each tree of a given depth
spawns two subtrees of depth one less. When the TREE procedure is called
with DEPTH equal to 0, it just stops without drawing:

19That is, until Logo runs out of storage.

Figure 2.16: Some figures drawn by the
NEW.TREE procedure.

30/TI LOGO

TO TREE1 :LENGTH :DEPTH
IF :DEPTH = 0 THEN STOP
LEFT 45
FORWARD :LENGTH
TREE1 :LENGTH :DEPTH — 1
BACK :LENGTH
RIGHT 90
FORWARD :LENGTH
TREE1 :LENGTH :DEPTH — 1
BACK :LENGTH
LEFT 45
END

Thinking in terms of recursive descriptions can take a lot of getting used
to, and the programs can be subtle. One especially subtle point about the
TREE program is the final BACK and LEFT moves, which are needed to
restore the turtle to its initial heading so that the different calls to TREE will
fit together correctly. On the other hand, many seemingly complex designs
have simple recursive descriptions and can be drawn by remarkably brief
programs. The design of recursive turtle programs for drawing complex
patterns is discussed extensively in Abelson and diSessa [1].

To illustrate the flavor of recursive designs, here is a modification to
TREE1, in which the left branch of each vee is twice as long as the right
branch. We'll also allow the angle of the vee to be varied as an input. Figure
2.16 shows some of the patterns that result.

TO NEW.TREE :LENGTH :ANGLE :DEPTH
IF :DEPTH = 0 THEN STOP
LEFT :ANGLE
FORWARD 2 * :LENGTH
NEW.TREE :LENGTH :ANGLE :DEPTH — 1
BACK 2 * :LENGTH
RIGHT 2 * :ANGLE
FORWARD :LENGTH
NEW.TREE :LENGTH :ANGLE :DEPTH — 1
BACK :LENGTH
LEFT :ANGLE
END

Projects in Turtle Geometry / 31

CHAPTER 3

Projects in Turtle Geometry

Here are some projects that use Turtle Geometry. Refer to other portions of
this text for help in defining or editing programs. Feel free to change

programs that are offered and to design new programs. Be sure to type TELL

Here is a square procedure. TURTLE before trying any of these projects.

TO SQUARE
REPEAT 4 [FORWARD 60 RIGHT 90]
END

Here are two square procedures
designed to allow variable size. The
triangles show the turtle's initial
position.

A

TO LSQUARE :SIZE
FORWARD :SIZE
LEFT 90
FORWARD :SIZE
LEFT 90
FORWARD :SIZE
LEFT 90
FORWARD :SIZE
LEFT 90
END

32 / T I LOGO

Or

TO LSQUARE :SIZE
REPEAT 4 [FORWARD :SIZE LEFT 90]
END

TO RSQUARE :SIZE
FORWARD :SIZE
RIGHT 90
FORWARD :SIZE
RIGHT 90
FORWARD :SIZE
RIGHT 90
FORWARD :SIZE
RIGHT 90
END

or

A

TO RSQUARE :SIZE
REPEAT 4 [FORWARD :SIZE RIGHT 90]
END

Some procedures using RSQUARE and
recursion.

Some ideas for using square
procedures.

TO MOVE :SIZE
FORWARD :SIZE
RIGHT 90
FORWARD :SIZE
LEFT 90
END

TO STAIRS :SIZE
RSQUARE :SIZE
MOVE :SIZE
STAIRS :SIZE
END

Projects in Turtle Geometry / 33

J

TO BOXES
RSQUARE 30
MOVE 30
RSQUARE 20
MOVE 20
RSQUARE 10
MOVE 10
RSQUARE 5
RIGHT 180
PENUP
MOVE 60
RIGHT 180
PENDOWN
END

TO MANYBOXES
BOXES
FORWARD 30
RIGHT 90
MANYBOXES
END

L

❑

0

❑

0

34 / T I LOGO

TO SPINSQUARES :SIZE
RSQUARE :SIZE
RIGHT 20
SPINSQUARES :SIZE
END

SPINSQUARES 40

TO GROWSQUARES :SIZE
RSQUARE :SIZE
RIGHT 20
GROWSQUARES :SIZE + 5
END

A rectangle procedure designed to allow
variable size and some examples that
use it.

TO RECTANGLE :LENGTH :WIDTH
FORWARD :LENGTH
RIGHT 90
FORWARD :WIDTH
RIGHT 90
FORWARD :LENGTH
RIGHT 90
FORWARD :WIDTH
RIGHT 90
END

n

Projects in Turtle Geometry / 35

TO FLOWER
RECTANGLE 50 10
RIGHT 20
RECTANGLE 5 20
RIGHT 20
FLOWER
END

TO SPINRECS :SIZE
IF :SIZE < 10 STOP
RECTANGLE :SIZE 20
LEFT 30
SPINRECS :SIZE —5
END

Examples using RSQUARE and REC-
TANGLE.

TO HOP :SIZE
FORWARD :SIZE
RIGHT 90
FORWARD 3
LEFT 90
END

TO TELESCOPE :SIZE
IF :SIZE < 6 STOP
RSQUARE :SIZE
HOP :SIZE
TELESCOPE :SIZE — 6
END

36/TI LOGO

TO ROCKTOP
LEFT 30
FORWARD 30
LEFT 120
FORWARD 30
END

TO ROCKET
RECTANGLE 80 30
LEFT 90
RECTANGLE 15 15
BACK 30
RIGHT 90
RECTANGLE 15 15
FORWARD 80
ROCKTOP
END

Here are some examples that use a
triangle procedure.

TO TRI
REPEAT 3 [FORWARD 70 RIGHT 120]
END

Projects in Turtle Geometry / 37

A triangle procedure designed to allow
variable size and an example that
uses it.

TO TRIANGLE :SIZE
FORWARD :SIZE
RIGHT 120
FORWARD :SIZE
RIGHT 120
FORWARD :SIZE
RIGHT 120
END

This procedure is different in design but
has a similar result.

TO FLUFF :SIZE
IF :SIZE < 10 STOP
TRIANGLE :SIZE
FLUFF :SIZE — 10

Some more triangle examples.

TO NEWTRIANGLE :SIZE
LEFT 30
TRIANGLE :SIZE
RIGHT 30
END

TO CREEP :SIZE
PENUP
FORWARD :SIZE
PENDOWN
END

And one more.

38/TI LOGO

TO LOOPS :SIZE
NEWTRIANGLE :SIZE
CREEP :SIZE
RIGHT 60
LOOPS :SIZE
END

TO NEWLOOP :SIZE
IF :SIZE < 20 STOP
NEWTRIANGLE :SIZE
CREEP :SIZE/2
RIGHT 60
NEWLOOP :SIZE —5
END

TO LEFTANT
LEFT 15
FORWARD 30
LEFT 120
FORWARD 15
BACK 15
RIGHT 120
BACK 30
RIGHT 15
END

TO RIGHTANT
RIGHT 15
FORWARD 30
RIGHT 120
FORWARD 15
BACK 15
LEFT 120
BACK 30
LEFT 15
END

TO ANTS
RIGHTANT
LEFTANT
END

Projects in Turtle Geometry / 39

TO BUTTERFLY
RIGHT 60
WING
RIGHT 180
WING
RIGHT 120
ANTS
RIGHT 150
TRIANGLE 30
END

TO WING
TRIANGLE 80
TRIANGLE 60
TRIANGLE 40
TRIANGLE 20
END

RCP and LCP are abbreviations for "Right Circle Piece" and "Left Circle
Piece." RARC and LARC stand for "right arc" and "left arc." A circle can
be made from pieces of either left or right arcs, leaving the turtle at the
left-most or right-most point of the circle.

TO RCP :R
RIGHT 15
FORWARD :R/2
RIGHT 15
END

TO LCP :R

LEFT 15
FORWARD :R/2
LEFT 15
END

TO RARC :R
REPEAT 3 [RCP :R]
END

TO LARC :R
REPEAT 3 [LCP :R]
END

TO RCIRCLE :R
REPEAT 12 [RCP :R]
END

TO LCIRCLE :R
REPEAT 12 [LCP :R]
END

40 / T I LOGO

Examples Using Circle Procedures.

TO SHRINKRCIRCLE :SIZE
IF :SIZE < 4 STOP
RCIRCLE :SIZE
SHRINKRCIRCLE :SIZE — 2
END

TO RSLINKY:SIZE
RCIRCLE :SIZE
PU RT 90 FD 10 LT 90 PD
RSLINKY :SIZE
END

TO SPINSLINK :SIZE
RCIRCLE :SIZE
RIGHT 20
SPINSLINK :SIZE
END

TO GROWCIRCLE :SIZE
REPEAT 4 [RCP :SIZE]
GROWCIRCLE :SIZE + 1
END

Projects in Turtle Geometry / 41

Examples using RARC and LARC.

TO RAY :SIZE
RARC :SIZE
LARC :SIZE
RARC :SIZE
LARC :SIZE
END

TO SUN :SIZE
RAY :SIZE
RIGHT 160
SUN :SIZE
END

POLY procedures have variable size
and angle. Here are some examples.

TO POLY:SIDE :ANGLE
FORWARD :SIDE
RIGHT :ANGLE
POLY:SIDE :ANGLE
END

SIDE= 50 ANGLE = 160

SIDE =60 ANGLE = 80 SIDE =80 ANGLE =144

42 / T I LOGO

SIDE = 20 ANGLE = 40 SIDE =100 ANGLE =156

POLYSTEP is a piece of a POLY
procedure. Here are some examples
using it.

TO POLYSTEP :SIDE :ANGLE
FORWARD :SIDE
RIGHT :ANGLE
END

TO TWOPOLY:SIDE1 :ANGLE1 :SIDE2 :ANGLE2
POLYSTEP :SIDE1 :ANGLE1
POLYSTEP :SIDE2 :ANGLE2
TWOPOLY:SIDE1 :ANGLE1 :SIDE2 :ANGLE2
END

SIDE1 = 30 ANGLE' =60 SIDE2 = 60 ANGLE2 = 210

SIDE1 = 30 ANGLE] =90 SIDE2 = 50 ANGLE2 =135

Projects in Turtle Geometry 143

SIDE] =25 ANGLE] =190 SIDE2 = 50 ANGLE2 = 200

TO POLYSTEP :SIDE :ANGLE
FORWARD :SIDE
RIGHT :ANGLE
END

TO POLYSPIRAL :SIDE :ANGLE :INC
POLYSTEP :SIDE :ANGLE
POLYSPIRAL (:SIDE + :INC) :ANGLE :INC
END

SIDE =1 ANGLE = 45 INCREMENT= 1

More programs using POLYSTEP. You
may need to change the incrementing
value inside of the procedure, that is,
the value being added to the side each
time the program recurses.

SIDE =1 ANGLE =45 INCREMENT= 3

44 1 T1 LOGO

SIDE = 5 ANGLE =120 INCREMENT = 3

SIDE= 5 ANGLE =144 INCREMENT= 3

Here's an example that begins by
defining a shape and uses it to make a
more interesting shape.

TO DESIGN
FORWARD 20
RIGHT 90
FORWARD 20
RIGHT 90
FORWARD 10
RIGHT 90
FORWARD 10
RIGHT 90
FORWARD 20
RIGHT 90
FORWARD 5
RIGHT 90
FORWARD 5
RIGHT 90
FORWARD 10
END

)jects in Turtle Geometry / 45

TO DESIGN4
DESIGN
DESIGN
DESIGN
DESIGN
END

or

TO DESIGN4
REPEAT 4[DESIGN]
END

And two more shapes.

TO CRYSTAL
DESIGN
LEFT 45
FORWARD 35
CRYSTAL
END

TO JENGU
DESIGN
DESIGN
LEFT 90
JENGU
END

46ITI LOGO

Here are some programs using INSPI.
Try various inputs.

TO INSPI :SIDE :ANGLE
POLYSTEP :SIDE :ANGLE
INSPI :SIDE (:ANGLE +10)
END

SIDE =10 ANGLE =1

SIDE =10 ANGLE =10

SIDE =7 ANGLE = 3

TO VEE
LEFT 45
FORWARD 10
BACK 10
RIGHT 90
FORWARD 10
BACK 10
LEFT 45
END

TO BRANCH
FORWARD 15
VEE
FORWARD 15
VEE
FORWARD 10
BACK 40
END

Projects in Turtle Geometry / 47

SIDE= 7 ANGLE =5

Here is a sequence of procedures that
start with a leaf (VEE) and end with a
forest (TREES).

TO BUSH
LEFT 60
REPEAT 6 [BRANCH RIGHT 20]
BRANCH
LEFT 60
END

0 0

481TI LOGO

TO GREENTREE
FORWARD 50
BUSH
BACK 50
END

TO MOVE
PENUP
RIGHT 90
FORWARD 80
LEFT 90
PENDOWN
END

TO TREES
REPEAT 3 [GREENTREE MOVE]

MOVE
GREENTREE
MOVE
GREENTREE
END

Here are some project ideas using the
procedures you have already seen. Feel
free to make up your own projects.

Illiiiniinilnnininr

C

Projects in Turtle Geometry / 49

Animation / 51

CHAPTER 4

Animation

4.1. Sprites

We've seen how to use Logo to draw with the turtle. In this chapter, we show
how to use sprites to make pictures that move. Sprites, like turtles, are
graphical objects. Like turtles, they respond to commands FORWARD and
RIGHT. But unlike turtles, sprites can change their color and their shape,
and, most importantly, sprites can be set in motion. We begin by introducing
the Logo commands for dealing with sprites, both one at a time and in
groups, and give some simple procedures that control sprites. In Section 4.2
we show how you can define your own shapes for sprites to supplement the
shapes that are built into Logo. Section 4.3 introduces tiles. Tiles, like
sprites, can be given various shapes and colors, but they cannot move. They
are useful for making elaborate backgrounds for screen graphics. In Section
4.4 we combine sprites, tiles, and Logo programming in the design of a
simple movie.

A sprite, like a turtle, is an object that lives on the computer display
screen. Like a turtle, a sprite has a position and a heading, and responds to
the commands FORWARD, BACK, RIGHT, and LEFT. Unlike turtles, sprites
can be given various colors and shapes. You control a sprite's color by means
of the SETCOLOR command (abbreviated SC), using any of the 16 color
names (or color numbers) given in the chart on page 14. You can also tell a
sprite to CARRY a given shape. Logo comes with five predefined shapes for
sprites, given in the following chart below. You can also define your own
shapes using the MAKESHAPE command as described in Section 4.2.

1 PLANE
2 TRUCK
3 ROCKET
4 BALL
5 BOX

4.1.1. Exploring with Sprites To begin exploring with sprites, type

TELL SPRITE 1

(followed, as are all Logo command lines, by pressing ENTER). This indicates
to Logo that subsequent commands will be addressed to sprite number 1. If
you have been using the turtle, clear it from the screen using the NOTURTLE
command. Next type
HOME

As with the turtle, HOME places a sprite at the center of the screen.' At this
point you won't see anything on the screen, because you have not given the

1HOME does not reset a sprite's heading as it does with the turtle.

52ITI LOGO

sprite a color or a shape. Type

SETCOLOR :RED
CARRY:ROCKET

and you should see a red rocket at the center of the screen.2
The rocket responds to FORWARD and BACK commands. Typing

FORWARD 50

makes the rocket move up. If you type

RIGHT 90

you will not see any change on the screen. However, a subsequent

FORWARD 50

will make the rocket move sideways. As with the turtle, RIGHT and LEFT
change the direction of motion. But unlike turtles, the image of the sprite on
the screen does not rotate: a sprite shape always appears in the same
orientation.

As with the turtle, you can change a sprite's heading by using the
SETHEADING command. For example, typing

SETHEADING 90

will set the sprite's heading towards the right, and the next move it makes will
be in that direction. TI Logo also includes the built-in names NORTH, EAST,
SOUTH, and WEST that you can use together with SETHEADING. For
instance,

SETHEADING :EAST

will give the same result as SETHEADING 90.
The most important difference between sprites and turtles is that sprites

can be set in motion. This is done using the command SETSPEED
(abbreviated SS). Type

SETSPEED 10

and the rocket will move slowly across the screen. Giving the command

SETSPEED 100

will make the rocket go much faster. In general, the SETSPEED command
takes as input a number between —127 and 127.3 Positive speeds make the

2You can also obtain the same effect using the numbers of the color and shape:

SETCOLOR 6

CARRY 3

As described in the note on page 14, the use of the name and the colon reflects the general way in which

names are used in Logo.

3A number outside this range will result in the error message

SETSPEED DOESN'T LIKE {number} AS INPUT

Animation / 53

4.1.2. Practice with Sprites

sprite move in the direction of its heading. Negative speeds make it move in
the opposite direction.

Now type

LEFT 90

This makes the rocket move vertically and illustrates that you can change a
sprite's direction while it is moving. Giving a SETCOLOR command will
change the rocket's color.

More Sprites
Now let's add another sprite to the picture:

TELL SPRITE 2
HOME
SETCOLOR :GRAY
CARRY :TRUCK
RIGHT 90
SETSPEED 5

makes a gray truck move slowly across the screen. Add another sprite:

TELL SPRITE 3
HOME
SETCOLOR :YELLOW
CARRY :BALL
RIGHT 45
SETSPEED 10

Now you have a yellow ball moving diagonally. You can have more than one
sprite carry the same shape. For example, you can add another truck:

TELL SPRITE 4
HOME
SETCOLOR :BLACK
CARRY :TRUCK
RIGHT 90
SETSPEED 8

At this point you should take some time to play with sprites. There are 32
sprites in all, numbered from 0 through 31. Use TELL to pick a sprite,
followed by CARRY, SETCOLOR, and HOME to give it a shape, a color, and
an initial position. Then move it using FORWARD, BACK, LEFT, RIGHT,
and SETSPEED. At any point, the sprite that responds to your command is
the one that you designated by the previous TELL instruction.

Here are some things to note in your exploring:

Overlapping Sprites
When two sprites overlap, the one with the smaller number will appear to

be on top.

Four Sprites on a Line
When you have many sprites on the screen, you will notice that some of

them will flicker or partly disappear. This reflects a restriction built into TI
Logo that at most 4 sprites may appear on a horizontal screen line. When
there are more than 4 sprites on a horizontal line, the portions of the fifth,

54 / T I LOGO

sixth, ... , sprites on the same lines will be masked out. (The sprites that are
masked are the higher numbered sprites.)

FREEZE and THAW
At any point, you can stop all motion by typing the FREEZE command.

The THAW command restores the motion.

Making Sprites Disappear
The CLEARSCREEN will erase the text on the screen, but will not erase

the sprites. To make a sprite vanish, tell it to SETCOLOR 0.

No Pen
Unlike the turtle, sprites cannot carry a pen and cannot leave a trail on the

screen. Pen commands such as PENUP and PENDOWN are always ignored
by sprites.

BIG and SMALL
Typing the command BIG will make all sprites double in size. The SMALL

command restores sprites to their original size. (These commands are not
included in TI Logo I.)

0,96 Coordinates for Sprites
As with the turtle, you can position a sprite on the screen with x,y

coordinates using the SXY command. (See Figure 4.1) You can also obtain a
sprite's position and heading using XCOR, YCOR, HEADING, SHAPE, and

127,0 COLOR. In addition, XVEL and YVEL output the x and y components of the
sprite's velocity. The command SV takes two numbers as inputs and changes
the sprite's velocity by setting the x and y components of the velocity to these
inputs. In all cases, the coordinates in question are those of the sprite
specified by the most recent TELL command.

-127,0

0,-96

Figure 4.1: The x,y coordinate system
for sprites.

4.1.3. Talking to More Than One Sprite
at a Time

Wraparound
When sprites move beyond an edge of the screen, they wrap around to

reappear at the opposite edge. This wraparound behavior extends to other
sprite attributes besides position. For example, color numbers for sprites
"wrap around" after the maximum value of 15; thus SETCOLOR 16 is
equivalent to SETCOLOR 0, SETCOLOR 17 to SETCOLOR 1, and so on.
Shape numbers and sprite numbers behave similarly.

So far we've seen how to control sprites using TELL, but only one sprite at
a time. You can also use TELL to talk to a group of sprites all at once.

Typing

TELL :ALL

directs subsequent commands to all 32 sprites. For instance, you can use the
following procedure to clear all sprites from the screen by setting their color
to 0:

TO CLEARSPRITES
TELL :ALL
SETCOLOR 0
END

You can also give TELL a list of sprite numbers, and subsequent

Animation 1 55

■■■■■■■■Mr'\■■■
■■■■~■■■■■L. .v1111

commands will be directed to those sprites. For instance,

TELL [1 2 3]
CARRY :BALL
TELL [4 5 6]
CARRY :TRUCK

will give a ball shape to sprites 1, 2, and 3, and a truck shape to sprites 4, 5,
and 6. In fact, TELL :ALL is a special case of this, because ALL in TI Logo is
just a name for the list of numbers 0 through 31.

Naming Groups of Sprites
It is often convenient to be able to refer to a group of sprites by name,

■■■W 1■■■■■11.
■■■E► '7■■■/" ..
mum. 'wry AIL

~■ rather than by typing the list of numbers. For example, let's make a squadron
of four planes flying in formation, as shown in Figure 4.2.

.41
i

■■■■~ .► ~~ 4■116111 We'll use sprites 1, 2, 3, and 4 to carry the planes, so we'll give the name
SQUADRON to the list [1 2 3 4]: =Vv. .m► AH\J■■■■

■■\► 1■■■or l■■■■■
■■~1r■■■■► -47111■■ MAKE "SQUADRON [1 2 3 4]
■It 111w■■■■► 411■■
■■\. .i■■/' .► ~■■
■M IF1 " .d■► i~■ This illustrates the general way in which the Logo command MAKE is used to
■■~ .‘. 1■■■i■■ name things. Notice that the name SQUADRON is preceded by a quotation
~~ " .~■~J~■1~■■■■■■ mark. Once we've given the MAKE command, we can refer to the list [1 2 3 4]
■~. ~■■■■■■■■■■■■■ as :SQUADRON. We'll discuss the use of MAKE more fully in Section 6.5.
■■r■■■■■■■■■■■■■

Here is a procedure that initializes the squadron of planes. It first stops all

Figure 4.2: A squadron of four planes flying

in formation.

four sprites (in case they had been moving) and sets them at the center of the
screen, pointing to the right (heading 90). Then it spreads sprites 1 and 2 a bit
horizontally, sprites 3 and 4 a bit vertically, and puts the squadron in motion.

TO SQUAD
MAKE "SQUADRON [1 2 3 4]
TELL :SQUADRON
SETSPEED 0
HOME
SETHEADING 90
CARRY:PLANE
SETCOLOR :BLACK
TELL 1 FORWARD 20
TELL 2 BACK 20
TELL 3 LEFT 90 FORWARD 10 RIGHT 90
TELL 4 LEFT 90 BACK 10 RIGHT 90
TELL :SQUADRON SETSPEED 20
END

Notice how TELL is used to direct commands either to the individual sprites
or to the entire squadron. Once you have given the SQUAD command, you
can fly the squadron around using SETSPEED, RIGHT, and LEFT. (When
SQUAD terminates, the effect of its final command, TELL :SQUADRON,
will cause subsequent commands to still be directed to the entire
SQUADRON.)

EACH and YOURNUMBER
It is often useful to be able to talk to a group of sprites all at once, but to

have each sprite do a slightly different thing. The Logo command EACH
takes a list of commands as input and processes these commands for each
of the sprites you are currently talking to (as specified by the previous

56/TI LOGO

TELL). EACH is most useful in conjunction with the Logo command
YOURNUMBER (abbreviated YN), which outputs the number of the current
sprite.

For example, set your squadron flying across the screen as above, and type

TELL :SQUADRON
EACH [SETSPEED 10 * YOURNUMBER]

The planes will break formation, because they are now going at different
speeds: sprite 1 at 10, sprite 2 at 20, sprite 3 at 30, and sprite 4 at 40. Notice
that the commands for EACH are enclosed in brackets as a list, just as with
REPEAT (Section 1.3.4).

EACH [SETCOLOR YOURNUMBER]

will set the planes to different colors: sprite 1 to color 1 (black), sprite 2 to
color 2 (green), sprite 3 to color 3 (lime), and sprite 4 to color 4 (blue).

Combining EACH and REPEAT yields a clever little procedure to help you
explore with sprites:4

TO SPREAD :COMMANDS
EACH [REPEAT YOURNUMBER :COMMANDS]
END

Try the following

TELL :ALL
SETSPEED 0
HOME
SETHEADING 0
CARRY :BALL
SETCOLOR :RED
SPREAD [RIGHT 10]
SETSPEED 20

The SPREAD points the sprites at 10-degree increments all along a circle.
When you start them all going, the effect is that of a circle of sprites
exploding outward from the center of the screen.5 Notice that the input to
SPREAD is a list of commands. The use of YOURNUMBER as the first
input to REPEAT in SPREAD means that SPRITE 0 will repeat the list of
commands zero times, sprite 1 will repeat it one time, sprite 2, two times, etc.
Remember to type the input to SPREAD as a list, as in
SPREAD [RIGHT 10].

Here's another nice thing to do with SPREAD:

4This example is courtesy of A. diSessa.

5There's an interesting phenomenon lurking here. as soon as the sprites begin to wrap around the borders of

the screen, the pattern starts to look random. But if you say SETSPEED — 20, causing the sprites to reverse

direction, they will eventually all converge at the center of the screen.

INIIIIM11111111111111

MIN11111•11111111M1

MERMEN= .111111111=111111•11

Animation 157

TELL [1 2 3 4 5 6]
SETSPEED 0
SETHEADING 0
HOME
CARRY :BALL
SETCOLOR :RED
SPREAD [FORWARD 30 RIGHT 60]

This positions the 6 sprites at the vertices of a regular hexagon. To see why,
think about the relation between this and the POLY procedure (page 23). By
choosing different numbers of sprites and different angles, you can make
similar patterns based on other regular polygons.

To WHO(m) Are You Talking?
With all these possibilities for TELL, it is useful to be able to check which

sprite or group of sprites you are currently talking to. The Logo command
WHO indicates the sprite or list of sprites to which commands are currently
directed. For example:

TELL SPRITE 1
FORWARD 100
PRINT WHO
SPRITE 1

TELL :SQUADRON
SETSPEED 20
PRINT WHO
1 23 4

If you are talking to the turtle or the background, then WHO will output
TURTLE or BACKGROUND.

4.2. Defining Shapes

Figure 4.3: Appearance of the screen
in response to MAKESHAPE 1.

The shape carried by a sprite can be any of the five shapes built into Logo.
The Logo MAKESHAPE command (abbreviated MS) allows you to create
your own shapes or to modify any of the built-in shapes.

To define a new shape, first decide what number shape you are defining.
The built-in shapes have the numbers given in the table on page 51. In
general, you can have 26 different shapes, numbered 0 through 25.

Suppose you want to modify the PLANE shape (shape 1). Type

MAKESHAPE 1

You will see on the screen a 16 x 16 grid of small squares with the plane
design blacked in on the grid, as shown in Figure 4.3. The background of the
screen has also changed color to indicate that you are now using the shape

editor.
To change the shape, you move the cursor around on the grid, blacking

in new squares and whiting out others. The keys that move the cursor are the
keys marked with arrows: S, D, E, and X. Pressing any of these keys moves
the cursor in the direction of the corresponding arrow. (The cursor wraps
around if you move it past the edge of the grid.) When you move the cursor

NUN MENNEENE
MENEM ••••••• MINIM ••••••
ENEEMEN MENEM

•••••• MEN EN
MENNEN ■ ~~ NE

IMMINEMEN Ell
IMMEMENE NNE
MENNEN MIMI

••••••• MENEM MINE= MIME MIME INENIMMEN
IMES ••••••••

58 / T I LOGO

Figure 4.4: A new PLANE shape

••••••••••••• ••••••••••• ~ • =MENEM= NE MIN MENEM= MEE MEN MENEM ••••
■■■■ ■E■ ■■E= NNE= • MIME= MININEE MENNEN MENNEN MENEM ••••••11 ••••••• ••••••• MENNEN= •••••••••••••••• •••••••••••••••• NEMENNEMENNENIMEN •••••••••••••••• ••••••••••••••••

•••••••••••••••• •••••••••••••••• •••••••••••••••• •••••••••••••••• •••••••••••••••• •••••••••••••••• MENEM= MENNENE MEE= •••••• MENEM MENNEN MIN MEN EMEN NNE MINE ■■■ 1•••••••• • MENNEMENNE • •••••••••••• •••••••••••••• ••••••••••••••

4.2.1. Example: Birds Flying

out of a square, it leaves that square blank. If you hold down the FCTN key
and move the cursor, then the square that the cursor leaves will be blacked
in.6 Try changing the shape of the plane's wings, as shown in Figure 4.4.

When you are finished changing the shape, press the BACK key. Logo exits
the shape editor, and the new shape will be installed as shape number 1
(PLANE). Any sprite you tell to CARRY:PLANE or CARRY 1 will now have
the new appearance.

As an example of defining new shapes, let's make some flying birds. Begin
by using the shape editor to define two shapes corresponding to birds with
wings up and wings down. For these, use two new shape numbers 6 and 7. It
is good practice to assign mnemonic names to the shapes you use and to
work with the names rather than with the numbers directly:

MAKE "UPWING 6
MAKE "DOWNWING 7

Now use the shape editor:

MAKESHAPE :UPWING

and

MAKESHAPE :DOWNWING

to define the shapes shown in Figure 4.5.
Now set up a group of 6 sprites, called BIRDS, to carry these shapes:

TO SETBIRDS
MAKE "BIRDS [1 2 3 4 5 6]
TELL :BIRDS
SETSPEED 0
HOME
SETCOLOR :WHITE
CARRY :UPWING
SETHEADING 45
SPREAD [FORWARD 20]
SETHEADING 90
END

The SPREAD procedure (See Section 4.1.3) gives a useful way to spread the
sprites out along a diagonal. Now you can set the birds in motion:

Figure 4.5: UPWING and DOWNWING shapes
for flying birds. 6Use FCTN on the TI 99/4A, sHiFron the 99/4.

Ni

V
Y

Y
V

Figure 4.6: A line of birds created
by SETBIRDS.

Animation / 59

4.2.2. Two Notes on the Shape Editor

4.3. Tiles

TELL :BIRDS
SETSPEED 20

The result, shown in Figure 4.6, is a line of 6 birds drifting across the screen,
all with their wings up.

Typing

CARRY :DOWNWING

makes the birds put their wings down. Alternating this with

CARRY :UPWING

makes the wings flap. You can define a procedure that continues the
flapping:

TO FLAP
CARRY :UPWING
WAIT 30
CARRY :DOWNWING
WAIT 30
FLAP
END

The Logo command WAIT makes the computer wait for a given number of
sixtieths of a second. In this case the procedure is waiting 1/2 second between
wing beats.

You now have all the ingredients for a simple movie:

SETBIRDS
SETSPEED 20
FLAP

The birds will continue flapping until you stop the procedure by pressing the
BACK key.

When you enter the shape editor using MAKESHAPE, the sprites will still
be visible on the screen. You can take advantage of this fact. Before typing
MAKESHAPE, tell one or more sprites to CARRY the shape you are
defining. Then, as you mark in the grid using the shape editor, you will see
the shape in its actual size carried by the sprite.

When the shape editor is in use, the only keys that have any effect are the
arrow keys, BACK (to exit to Logo) and CLEAR, which clears all the squares on
the grid.

The final kind of graphical object that you can address with TELL in Logo
is called a tile. A tile, like a sprite, can have a color and a shape. Unlike a
sprite, a tile cannot move. Tiles are useful in designing backgrounds for
graphics.

You can have 256 different tiles, numbered 0 through 255. In making
screen backgrounds, you should normally avoid using tiles 0 through 10 and
32 through 95, since these are used to create screen characters as described in
Section 4.3.3. In particular, tiles 0 and 1 are used for the regular cursor and
the shapes editing cursor, and cannot be changed.

To design a tile, you use the Logo command MAKECHAR (abbreviated
MC). This works almost identically to MAKESHAPE (Section 4.2) except

Figure 4.9: Using PUTTILE to place spirals
on the screen.

60/TI LOGO

Figure 4.7: Using MAKECHAR to make a tile
in the shape of a spiral.

that the grid for a tile is only 8 squares on a side—one quarter the size of the
grid for a sprite. For example, you can use MAKECHAR to design a tile that
looks like a small spiral. Let this be, say, tile 96:

MAKECHAR 96

You now obtain a grid on which you can draw the spiral, as shown in Figure
4.7.
Once you have defined a tile, you can give it a color using TELL and
SETCOLOR:

TELL TILE 96
SETCOLOR :RED

4.3.1 Positioning Tiles on the Screen

Figure 4.8: The disp ay screen as a grid of
columns and rows.

To place a tile on the screen you use the PUTTILE command (abbreviated
PT). This takes as input the number of the tile you wish to put on the screen,
followed by the screen position, specified as a column number and a row
number. Figure 4.8 shows how the screen can be viewed as a grid numbered
by columns and rows. There are 32 columns, numbered 0 through 31, and 24
rows, numbered 0 through 23.

The center of the screen is column 16, row 12. Hence, with tile 96 defined
as above, you can place a small red spiral at the center of the screen with

PUTTILE 96 16 12

Figure 4.9 shows more spirals placed on the screen, via

PUTTILE 96 16 12
PUTTILE 96 10 10
PUTTILE 96 20 20
PUTTILE 96 10 20
PUTTILE 96 5 5

Warning
Observe that the column and row numbers used with PUTTILE to place

a tile on the screen are not the same as the x,y coordinates used with SXY

to position sprites and turtles on the screen. You cannot use SXY (or
FORWARD, LEFT, and so on) when talking to tiles. Section 7.4.1 includes
some useful procedures that will aid you in dealing with this problem.

4.3.2. Foreground and Background
Colors

Animation / 61

We saw just above that tiles can be given a color by using the SETCOLOR
command. Actually, each tile has two colors associated with it: a foreground
color and a background color. When you show a tile, the blacked-in squares
(on the MAKECHAR grid) will be shown in the foreground color, and the
other squares on the grid will be shown in the background color. If you do
not specify a background color, as in

SETCOLOR :RED

then only the foreground color will be changed.? To set a background color,
use SETCOLOR with a list of the two color numbers. For instance, to give
the spiral defined above (tile 96) a foreground color of RED (color 6) and a
background color of white (color 15), you type

TELL TILE 96
SETCOLOR [6 15]

If you give this command with the spirals on the screen, as in Figure 4.9,
each will appear as a red spiral within a white square.8

Color Groups
One restriction on tile colors is that every group of 8 tiles must have the

same color. That is, tiles 0 through 7 must have the same color, tiles 8
through 15 must have the same color, and so on. Changing the color of a tile
(either foreground or background color) changes the color of every tile in the
group.

7The background color of a tile is initially defined to be CLEAR (color 0) so that you will not see the

background.

8You can accomplish the same color change using color names instead of numbers by typing

SETCOLOR SENTENCE :RED :WHITE

The Logo command SENTENCE, as we shall see in Section 6.4 is used to construct lists.

Group 1 Group 2 Group 3 Group 4
Code Character Code Character Code Character Code Character

Number Number Number Number

32 (space) 40 (48 0 56 8

33 ! 41 49 1 57 9

34 42 * 50 2 58
35 # 43 + 51 3 59

36 $ 44 52 4 60

37 % 45 53 5 61 =
38 & 46 54 6 62 >
39 47 / 55 7 63 ?

Group 5 Group 6 Group 7 Group 8
Code Character Code Character Code Character Code Character

Number Number Number Number
64 @ 72 H 80 P 88 X

65 A 73 I 81 Q 89 Y
66 B 74 J 82 R 90 Z
67 C 75 K 83 S 91
68 D 76 L 84 T 92
69 E 77 M 85 U 93]
70 F 78 N 86 V 94 A

71 G 79 0 87 W 95

62ITILOGO

4.3.3. Characters as Tiles The characters that Logo prints on the screen are, in fact, defined as tiles,
using tile numbers 32 through 95. The following chart shows the
correspondence between tile numbers and characters, and how these tiles are
arranged in groups:

You can take advantage of this to modify the way in which Logo prints
characters. For instance, typing

MAKECHAR 52

allows you to edit tile 52, which is the numeral 4. If you change it as shown
in Figure 4.10, then all the 4s printed by Logo from then on will have this
new shape. Tiles 2 through 10 are initially used for miscellaneous portions of
the TI master title screen.9

Another thing you can do is use SETCOLOR to change the color in which
characters are printed on the screen.

TELL TILE 48
SETCOLOR :WHITE
TELL TILE 56
SETCOLOR :WHITE

9For instance, tile number 4 is in the shape of West Texas

MIME
1111111111 MEMO =ME
....

Figure 4.10: Using MAKECHAR 52 to define
a new style for the numeral 4.

4.4. Project: A Simple Movie

Animation / 83

will cause all tiles in the same group as 48 and 56 (that is tiles 48 through 55
and 56 through 63, which includes all the numerals and :, ;, <, _, >, ?) to
be printed in white, while the other characters will be printed in black.

Turtle Lines as Tiles
Another way that tiles are used in Logo is to create the lines drawn by the

turtle. Each time the turtle draws inside a small screen square, a tile is
created whose "shape" is the turtle line. As the turtle draws in more and
more squares, it uses more and more tiles, using first tiles 0 through 32 and
then tiles 96 through 255. For this reason, if you have some tiles defined and
then use the turtle, the tile shapes may be destroyed. This also explains the
meaning of the OUT OF INK error message (page 6). The turtle is "out of
ink" when all available tiles have been used.

You can also set a background color when drawing with the turtle.
Typing

TELL TURTLE
SETCOLOR [{colorl} {color2}]

and drawing with the pen down will cause each square the turtle passes over
to be filled in with {color2}, with a thin line in {colorl} drawn through the
square.

In this section, we'll combine what we've learned about sprites and tiles to
create a simple movie. The movie, shown in Color Plate I, shows an ocean
with waves and whitecaps. A boat sails along the ocean and birds fly
overhead. This project also illustrates how a substantial Logo program is
designed and implemented as a cluster of simple procedures.

If you look at Plate I, you'll see that there are five parts to the picture: the
sky, the ocean, the sun, the boat, and the birds.

The sky is simple. We'll simply use the screen background after changing
its color to SKY (color 5). The ocean and the sun will be assembled from
tiles, and the boat and the birds will be sprites.

The Ocean
Let's begin by drawing the ocean. There are two parts: the top row,

consisting of the waves, and the rest of the water. Start with the rest of the
water, using a tile that will give a square of blue water with a small whitecap.
Call this tile WATER and use tile 108:

MAKE "WATER 108
MAKECHAR :WATER

Figure 4.11 shows the water tile that you make with the MAKECHAR
command. The color should be a foreground color of WHITE for the
whitecap (color 15) and a background color of BLUE (color 4) for the water.

84 / T I LOGO

For the top row of waves, use three tiles: WAVE1, WAVE2, and WAVE3,
whose shapes are also shown in Figure 4.11. The color for these tiles is
foreground BLUE, background CLEAR. Since the color is different from the
color for the WATER tile, you must create the waves using tiles in a different
color group. (See Section 4.3.2.) You can use tiles 100, 101, and 102 for the
waves:

....... NMI
...

Figure 4.11: Shapes for water and wave tiles.

MAKE "WAVE1 100
MAKE "WAVE2 101
MAKE "WAVE3 102

Now we'll draw the top row of waves on the screen. The idea is to start at
the leftmost column of the screen, placing a sequence of three tiles, WAVE1,
WAVE2, WAVE3, and repeat this over and over for as many columns as there
is room. A good position for the top row of the ocean is row 15, which we'll
call OCEANTOP:

MAKE "OCEANTOP 15

Animation 165

The following procedure draws the top row of the ocean. It is called initially
with the starting column as input:

TO WAVETOPS :COL
IF :COL > 31 STOP
PUTTILE :WAVE1 :COL :OCEANTOP
PUTTILE :WAVE2 :COL+ 1 :OCEANTOP
PUTTILE :WAVE3 :COL + 2 :OCEANTOP
WAVETOPS :COL +3
END

You should compare this recursive "test and stop" procedure form with the
COUNTDOWN or TOWER procedures discussed in Section 2.2. To actually
draw the waves, you can now give the command:

WAVETOPS 0

The rest of the ocean is drawn by using PUTTILE with the WATER tile.
Here are two useful procedures that fill the screen with a given tile, starting
from a specified top row:

TO MAKEROWS :TILE :TOPROW
IF :TOPROW > 22 STOP
MAKEROW :TILE 0 :TOPROW
MAKEROWS :TILE :TOPROW + 1
END

TO MAKEROW :TILE :COL :ROW
IF:COL > 31 STOP
PUTTILE :TILE :COL :ROW
MAKEROW :TILE :COL + 1 :ROW
END

These also use a recursive scheme similar to COUNTDOWN (Section 2.2).
MAKEROW fills in a single row by placing tiles in successive columns until it
reaches column 31. MAKEROWS calls MAKEROW on successive rows until it
reaches the bottom of the screen at row 22. With these procedures, the body
of the ocean can now be drawn as

MAKEROWS :WATER :OCEANTOP + 1

(The top ocean row is one below the wave tops.)
Here, then, is a procedure that draws the complete ocean:'0

TO MAKEOCEAN
TELL TILE :WATER
SETCOLOR [15 4]
TELL TILE :WAVE1
SETCOLOR [4 0]
WAVETOPS 0
MAKEROWS :WATER :OCEANTOP + 1
END

10A11 three tiles names WAVE1, WAVE2, and WAVE3 have their colors set to foreground BLUE, background

CLEAR, by telling any one of them to do so—this is because they are all part of the same color group.

66/TI LOGO

The Sun
The sun in the picture is formed from 4 tiles, each a quarter circle:

MAKE "SUN1 113
MAKE "SUN2 114
MAKE "SUN3 115
MAKE "SUN4 116

Since these are to be yellow, you must pick tiles in a different color group
than either the waves or the water. Figure 4.12 shows the four sun tiles
constructed using MAKECHAR.

The following procedure positions the tiles on the screen:

TO MAKESUN
TELL TILE :SUN1
SETCOLOR :YELLOW
PUTTILE :SUN1 25 7
PUTTILE :SUN2 26 7
PUTTILE :SUN3 25 8
PUTTILE :SUN4 26 8
END

Notice that setting the color of SUN1 sets all 4 sun tiles since they are in the
same color group.

.

...... ■..■
.

Figure 4.12: The sun constructed from four tiles.

Figure 4.13: The BOATSHAPE for the movie.

Animation 167

The Boat
The boat is a single sprite that moves horizontally across the screen. You

can define a BOATSHAPE as shape number 9:

MAKE "BOATSHAPE 9
MAKESHAPE :BOATSHAPE

and construct the shape shown in Figure 4.13.
Use sprite 0 to carry the boat:

MAKE "BOAT 0

Here is the procedure that sets up the boat:

TO MAKEBOAT
TELL :BOAT
SETHEADING 90
SETCOLOR :BLACK
SXY (— 50) (— 50)
CARRY :BOATSHAPE
SETSPEED 5
END

The Birds
Finally, we'll add birds flying across the screen. You do this by

incorporating the bird shapes and the SETBIRDS and FLAP procedures from
Section 4.2.1, with a few small changes.

As before we'll have 6 birds, using sprites 1 through 6:

MAKE "BIRDS [1 2 3 4 5 6]

The bird shapes will be UPWING and DOWNWING as shown in Figure 4.5:

MAKE "UPWING 6
MAKE "DOWNWING 7

The FLAP procedure is the same as before:

TO FLAP
CARRY :UPWING
WAIT 30
CARRY :DOWNWING
WAIT 30
FLAP
END

Setting up the birds will be similar to the SETBIRDS procedure on page
58, with a few changes to make the movie more interesting. First of all,
you can make the birds be different colors. Colors 8 through 15 give a
good set of colors, so we can set each sprite 1 through 8 to the color
7+YOURNUMBER. You can also have the birds travel at slightly different
speeds and at slightly different headings. This latter is conveniently done
using the SPREAD procedure (page 56).

68 / T I LOGO

TO MAKEBIRDS
TELL :BIRDS
CARRY :UPWING
EACH [SETCOLOR 7+YOURNUMBER]
SETSPEED 0
HOME
SETHEADING 90
SPREAD [LEFT 1]
SPREAD [FORWARD 10]
EACH [SETSPEED 5+YOURNUMBER1
END

Putting It All Together
The only thing that remains is to write a procedure that puts all the parts

together. This clears the screen, sets up the sky by changing the
BACKGROUND color to SKY (color 5), draws all the parts of the picture,
and sets the birds flapping:

TO MOVIE
CLEARSCREENANDSPRITES
MAKESKY
MAKEOCEAN
MAKESUN
MAKEBOAT
MAKEBIRDS
TELL :BIRDS FLAP
END

TO CLEARSCREENANDSPRITES
CLEARSCREEN
TELL :ALL CARRY 0
END

TO MAKESKY
TELL BACKGROUND
SETCOLOR :SKY
END

This completes the movie, as well as a substantial Logo project. Notice
how we were able to isolate the different parts of the project by using
separate procedures. Even though the program as a whole is long, the
individual procedures are rather short and could be designed and tested
separately. This is one of the important advantages of Logo's procedural
organization.

To save these procedures and shapes on a cassette tape or floppy disk, see
Section 5.2, "Saving and Retrieving Information." To save both your
procedures and your tile and sprite shapes, be sure to choose option 3.

Workspace, Filing, and Debugging 169

CHAPTER 5

Workspace, Filing, and Debugging

When you use the Logo system, you can think of the computer as having two
memories. The first memory, called workspace, is where Logo keeps track of
the procedures and variables you have defined. Each time you define a
procedure or assign a value to a name, that information becomes part of the
workspace. When you leave Logo by pressing QUIT or by turning off the
computer, the information in the workspace is destroyed. The second and
more permanent memory consists of files that you save on diskette or on
cassette tape. Each file contains a complete workspace.1 The normal way to
use the Logo file system is to work for a while on a project and then, when
you are finished for the day, to save your workspace in a file. The next time
you use Logo, you can read in your saved workspace and continue where you
left off. You can also maintain a number of different files containing the
workspaces for different projects you are working on.

5.1. Managing Workspace

5.1.1. PO

5.1.2. ERASE

5.2. Saving and Retrieving
Information

The Logo system includes commands for examining and deleting various
parts of the workspace. These are useful for keeping track of what
procedures are currently defined and for getting rid of unwanted definitions.

The basic command for examining workspace is PO. If you type PO
followed by the name of a procedure, Logo prints the definition of the
procedure. PO also has a few variants:

PP Prints out the titles of all procedures in workspace.
PN Prints out the names and associated values in the global library.
PA Prints out all the procedures and names in the workspace.

The ERASE command is used to get rid of parts of the workspace.
ERASE followed by a procedure title name removes the definition of the
procedure. ERASE followed by a variable name, as in

ERASE "X

will erase a variable name from the global library. (In this example, the
variable name X.)

The Logo system allows you to save procedure definitions on diskette or
on cassette tape, or to print them on a printer. The Logo commands SAVE
and RECALL are used for storing and retrieving.

1You can also elect to save only the procedures or only the sprite and tile shapes contained in the workspace.

70/TI LOGO

When you give the SAVE command, Logo first displays a menu, as shown
in Figure 5.1, asking you to indicate whether you wish to save (1) only your
procedures and names, (2) only your shapes, or (3) both of these. Press 1, 2,
or 3 to indicate your choice. (You ordinarily choose 3 when saving new
shapes—otherwise choose 1.) Next, Logo asks you to indicate the device used
to save information, as shown in Figure 5.2.

DEVICE

i CASSETTE

2 DISKETTE

[sFlV INr ALL.

SAVE

PRESS FOR

I PROCEDURES

2 SHAPES AND TILES

3 BOTH I AND 2

PRESS 'BACK FOR TI LU611

Figure 5.1: Screen display menu offering

SAVE options.

Figure 5.2: Screen display menu offering

SAVE device options.

5.2.1. Using Cassette Tape Pages 1-8 through 1-12 of the User's Reference Guide that comes with your
TI 99/4 or 99/4A contain detailed information about setting up and using a
cassette recorder to save and recall information. It is particularly important
that you adjust the volume and tone control settings properly the first time
you save or recall procedures, and then mark those settings so that they can
be used again the next time you want to save or recall. If you are using your
cassette recorder only for saving and recalling with your computer, you might
want to tape the volume and tone adjustment wheels in position so that they
do not change accidentally between uses.

To save or recall information using a cassette recorder, first give the SAVE
or RECALL command. Then choose whether to save or recall (1) procedures
only, (2) shapes only, or (3) both shapes and procedures. Then choose (1)
from the device menu (see Figure 5.2) to choose the cassette recorder as the
device for saving or recalling.

Once you choose to use a cassette, the computer will give exact instructions
for using the cassette, telling you which cassette buttons and computer keys
to press, and when. The process is quite straightforward. You use the cassette
recorder's playback mode to recall information, and its record mode to save
information. The computer will tell you whether an error has occurred in
saving or recalling. In case of error, you may have to repeat the entire process
of saving or recalling. The User's Reference Guide that comes with your
computer offers suggestions about what to check in case of errors in saving
or recalling.

5.2.2. Using Diskette In contrast to cassette tape, a single diskette may contain many different
files, and the files are distinguished by the fact that they are named.2

2Before using a blank diskette for the first time to save files, the diskette must be initialized with the TI Disk
Manager cartridge, which is packaged with the disk controller. Place the blank diskette in the drive and
follow the instructions provided with the Disk Manager.

Workspace, Filing, and Debugging 171

When you type SAVE and indicate "(2) diskette" in response to Logo's

query, Logo will next ask you for a file name under which the information
should be stored. This is shown in Figure 5.3. You may use file names up to 8
characters long. If you use the same names as a file that is already on the
disk, the information in the old file will be replaced by the new information

being written.

TYPE= F ESSE

PRES=
OR

PRESS
'SPREE' TO RE LE NRM

'BACK' FOR TI LOGO

p"L1N % NLE "51:ROSES.-_

Figure 5.3: Screen display asking for file name.

If you press the space bar in response to Logo's request for a file name,
then Logo will review the file names on the disk in alphabetical order,
printing another name each time the space bar is pressed. To replace a file,
press ENTER when the file name appears on the screen.3

Keep in mind that the name you give your file has no relation to the names
of the procedures that will be saved in the file. Each time you save a file, all
procedures in the workspace are included.4

When working on large projects, it is a good idea to save your workspace
periodically in a file. Also, as you continue to make modifications, you
should keep on disk the last two or three versions of your project. A
technique for doing this is to include a version number as part of the file
name. For example, if you are working on a project called CIRCLES, save
the information the first time as CIRCLES1. After you have made
modifications, save the updated version as CIRCLES2. You can use the
utilities provided with the Disk Manager to get rid of unneeded versions. As
you work on the project, it's a good idea to always keep around the previous
two or three versions, just in case you mistakenly save a bad version on disk.

Recalling Files From Diskette
If you give the RECALL command and specify "(2) diskette," Logo will

ask you for the name of the file to recall. You may either type in a file name,
or press the space bar to ask Logo to review the names of the files currently
on the diskette. Each time you press the space bar, a new file name appears.

3When reviewing file names like this, you cannot type a new file name. To type a new file name, press BACK to

return to Logo and begin again with SAVE.

4This sometimes causes confusion with beginners. For example, if someone has procedures BOX and HOUSE,
they write both files BOX and HOUSE, thinking that a separate file is needed for each procedure. The result
is that they end up with two files, each containing both procedures. In general, you should name your files
with a name that describes the group of procedures being saved.

72ITI LOGO

5.2.3. Saving and Recalling Using
Other

When you reach the file you want, press ENTER. The information will be
read, and Logo will return to command level.

The third option, (3) other on the device menu, allows you to use a second
or third disk drive.5 If you choose option (3), you will be prompted for
device and file names (Figure 5.4):

5.2.4. Other Uses of the File System

DEV ICE

PRESS FOR
i. CASSETTE
2 DI SKETTE
3 OTHER

Ĺ

Y?E. DEVICE RND.UR FILE NAA
SK2.BDXES_..

PRESS 'RACK' FOR TILOSO
SAVING ALL

Figure 5.4: After choosing option (3), other
on the device menu, you will be prompted
for device and file name.

Your response must include the letters DSK (meaning "disk"), a number (2

or 3), a period (.), and a file name. It must be typed on one line with no
spaces, as shown in the example.

Repeat the same process when you recall information saved using option

(3). You can recall it from a different disk drive if you wish. For example,
you can recall a file saved on disk 2, from disk 1, but you must recall it using
option (3).

Although SAVE and RECALL are almost always used to save and restore
complete workspaces, it is also convenient to be able to manipulate files in
other ways. For example, suppose you want to merge the procedure

definitions in two files to create a larger file. You can do this as follows:

1. Starting with an empty workspace, RECALL the first file.

2. RECALL the second file. Now your workspace contains the definitions in
both files.

3. SAVE your workspace as the new, combined file.

As another example, suppose you want to delete a few procedure
definitions from a file. One way to do this is to RECALL the file, ERASE the
unwanted definitions, and SAVE the new workspace using the same file

name.

5This option will allow access to other types of memory devices as they become available.

Workspace, Filing, and Debugging / 73

5.2.5. Obtaining Hard Copy: the
PRINTOUT Command

The PRINTOUT command allows you to print all the procedures in your
workspace using a TI Thermal Printer or an RS232 printer. To use an RS232
printer you must have an RS232 card in your Peripheral Expansion Box or
an RS232 Expansion unit attached to your computer. When you type
PRINTOUT, you will first be prompted for the name of the device you are
using.

If you are using a TI Thermal Printer, just type TP, and the printer will
begin printing the contents of your workspace. If you have an RS232 printer,
the device name must include the symbols "RS232.BA = " and a baud rate,
all typed without any spaces. For example,

RS232.BA = 9600

9600 is the baud rate in this example — the rate at which information can be
sent to the printer. This will depend on the capabilities of your particular
printer, so you will have to consult your printer manual for this information.

Next, you will be asked for a line length, which must be less than the
longest line length your printer can handle. Again, this will vary from printer
to printer. After you specify the device name and line length, your printer
will begin printing.

5.3. Aids for Debugging One of the main features of Logo as a computer language for education is
that students design and write programs as well as use them. Debugging a
program is a crucial part of the programming process. This section describes
features included in the Logo system to aid in debugging programs.

5.3.1. Pausing Execution with the AID When Logo is running a procedure, pressing the AID key works somewhat
Key like pressing the BACK key—it stops procedure execution. The difference is

that AID stops the procedure "in the context where it is executing" and allows
you to examine the values of local names.

As a simple example, consider the FLAG and RECTANGLE procedures
that we introduced in Section 2.1.2. Suppose that RECTANGLE had a
bug—an extra last line that calls RECTANGLE recursively, so that the
procedure keeps running forever:

74 / T I LOGO

TO RECTANGLE :HEIGHT :LENGTH
FORWARD :HEIGHT
RIGHT 90
FORWARD :LENGTH
RIGHT 90
FORWARD :HEIGHT
RIGHT 90
FORWARD :LENGTH
RIGHT 90
RECTANGLE :HEIGHT :LENGTH
END

Now suppose you inadvertently use this procedure as part of FLAG:

TO FLAG :HEIGHT
FORWARD :HEIGHT
RECTANGLE (:HEIGHT / 2) :HEIGHT
BACK :HEIGHT
END

If you run FLAG 50 you will see the turtle draw part of the flag and then get
"stuck" tracing the same rectangle over and over. If you now press AID, you
will see a message like this:

PAUSE AT LEVEL 10 LINE 8 OF RECTANGLE
L10?

This message tells you that Logo was executing the RECTANGLE procedure,
line 8, when you pressed AID. The meaning of level here is the same as that
typed by error messages and described on page 23: you are 10 levels away
from the typed-in command—your typed command called FLAG which
called RECTANGLE, which called RECTANGLE again, which called
RECTANGLE again, and so on.

The prompt L10? indicates that you are now typing commands within the
context of RECTANGLE at level 10. You are free to type and execute any
Logo command just as if you were at top level. The big difference is that
now the variable names you use will refer to names in the private library of
the procedure in which you paused. In the current example, the private
libraries for FLAG and RECTANGLE are as shown in Figure 2.5 on page 20,
so that we could examine RECTANGLE'S private variables:

L10? PRINT :HEIGHT
25
L10? PRINT :LENGTH
50

5.3.2. TRACEBACK

5.3.3. The DEBUG Option

Workspace, Filing, and Debugging 175

This ability to examine local variables can be useful when you are trying to
track down bugs.

Pressing BACK from within such a "pause break" causes Logo to return to
top level and wait for a new command. Also, executing a command that
causes an error will return Logo to top level.6

When you are within a pause, you can use the TRACEBACK command to
find out "where you are." For instance, typing TRACEBACK in the example
above yields:

L10? TRACEBACK
WE'RE NOW INSIDE RECTANGLE, FLAG

In general, TRACEBACK indicates the chain of procedures from where you
are currently back to the top level. In this case, the pause happens inside
RECTANGLE, which was called by FLAG, which was called at command
level.

Normally, when Logo encounters an error, it halts execution, types an error
message, and returns to command level. Alternatively, you can direct Logo to
enter a pause when an error is encountered, so that you can examine the
values of local variables, as with AID. The DEBUG command acts as an
"on-off" switch that controls this option. Turn on the option by typing
DEBUG:

DEBUG
ON

Logo's response indicates that the debug option is now on.
With the option turned on, suppose the RECTANGLE had another bug—a

misspelling in the second line:

TO RECTANGLE :HEIGHT:LENGTH
FORWARD :HEIGHT
RIGXT 90
FORWARD :LENGTH
RIGHT 90
FORWARD :HEIGHT
RIGHT 90
FORWARD :LENGTH
RIGHT 90
RECTANGLE :HEIGHT:LENGTH
END

Executing FLAG 20 now results in the following error:

TELL ME HOW TO RIGXT
AT LEVEL 2 LINE 2 OF RECTANGLE

L2?

6Unless the DEBUG option has been set. See Section 5.3.3 below.

761 T I LOGO

As with using AID, we can now type commands at level 2, for example, to
print the values of local variables (although examining local variables isn't
much help in dealing with this particular bug).

Typing DEBUG when the debug option is on, turns the option off:

DEBUG
OFF

Numbers, Words, and Lists 177

CHAPTER 6

Numbers, Words, and Lists

6.1. Numbers and Arithmetic

In the previous chapters, we used turtle geometry to introduce the basic
techniques for writing Logo procedures. We now move away from graphics
to discuss Logo programs that work with "data." Like most computer
languages, Logo provides operations for manipulating numbers and
character strings, which in Logo are called words. One significant difference
between Logo and other simple programming languages is that Logo also
provides the ability to combine data into structures called lists. This chapter
introduces these three kinds of data objects—numbers, words, and
lists—together with simple programs that manipulate them. The most
important concept in working with Logo data is the notion of a procedure
that outputs a value. This is introduced in Section 6.2 below. We also discuss
the use of Logo variables for naming data and give a more complete
explanation of testing and conditionals than the one provided in Section
2.2.2. The material presented here provides enough background to complete
many programming projects such as the ones described in Chapter 7.

We have already seen examples of using numbers in turtle programs.
Logo provides the basic arithmetic operations of addition, subtraction,
multiplication, and division, denoted by + , — , *, and /, respectively. In
combined arithmetic operations, multiplications and divisions are performed
before additions and subtractions, unless you use parentheses to make the
grouping explicit:

PRINT 3 + 2 * 5
13

PRINT (3 + 2) * 5
25

TI Logo deals with integers only. The division operation / truncates its
quotient to be an integer:

PRINT 5/2
2

Warning
TI Logo can only handle integers in the range ± 32767 (that is, in the range

between —215 and 215). If you do a computation that exceeds this range (e.g.,
adding 32767 plus 1), the answer returned will be incorrect but there will be
no error message:

PRINT 32767 + 1
— 32767

Using the arithmetic operations presented above, you can write procedures
that manipulate numbers. For example,

TO PSQUARE :X
PRINT :X * :X
END

prints the square of its input, and

TO PAVERAGE :X :Y
PRINT (:X + :Y) / 2
END

prints the average of its two inputs:

PSQUARE 100
10000
PAVERAGE 1 3
2

These procedures may be instructive, but they are not very useful.
PSQUARE, for example, just prints the square of its input. Having
computed the square, there is nothing more you can do with it. Yet the whole
power of the procedure concept is that you should be able to use procedures
as building blocks in defining more complex procedures. You can make
complex turtle programs by combining the designs drawn by simple
procedures. But there is no way to combine PSQUARE and PAVERAGE
to obtain, for instance, the square of the average of two numbers.

What is needed is some way for a procedure not only to compute some
result, but also to make that result accessible to other procedures. In Logo,
this is accomplished by the OUTPUT command. To see how it works,
compare the PSQUARE procedure above with the following:

TO SQUARE :X
OUTPUT :X * :X
END

When SQUARE runs, it returns its result as an output that is to be used as an
input to whatever command called SQUARE. For example, you can type

PRINT SQUARE 3
9

in which case the output of SQUARE is passed to PRINT to be printed. More
significantly, you could type

PRINT (SQUARE 3) + (SQUARE 4)
25

Here SQUARE is called twice, and the results are combined by + before
being passed to PRINT. You can do the same thing with computing averages
by defining a procedure:

TO AVERAGE :X :Y
OUTPUT (:X + :Y) / 2
END

78 / T I LOGO

6.2. Outputs

AVERAGE

PRINT SQUARE
gets its . its
input from ,npu input from

x 5 x

outputs
25

6

outputs

Figure 6.1: Procedure calls in executing PRINT
SQUARE (AVERAGE 4 6).

Numbers, Words, and Lists / 79

6.2.1. Combining Operations The OUTPUT command is just what is needed to combine operations. For
instance, you can find the square of the average of two numbers:

PRINT SQUARE (AVERAGE 4 6)
25

or the average of the squares:

PRINTAVERAGE (SQUARE 4) (SQUARE 6)
26

Alternatively, you can define a procedure to return this value to be used in
further processing:

TO AVERAGE.OF.SQUARES :X :Y
OUTPUT AVERAGE (SQUARE :X) (SQUARE :Y)
END

As with any procedure, once you have defined a procedure that outputs
some result, that procedure becomes part of Logo's working vocabulary and
can be used just as if it were a primitive command. For instance, Logo has
no primitive absolute value function. But if you define one:

TO ABS :X
IF :X < 0 THEN OUTPUT (— :X)
OUTPUT :X
END

then you can use this ABS operation in performing further computations.
When a procedure executes an OUTPUT instruction, it returns the

indicated output to the procedure that called it, and no further commands
within the procedure are executed. Thus, for example, only one of the two
OUTPUT instructions in ABS will be executed each time ABS is called.

To help you visualize outputs, Figure 6.1 shows a diagram, similar to the
diagrams in Section 2.1.2, for the procedure calls involved in executing the
command line

PRINT SQUARE (AVERAGE 4 6)

SQUARE and AVERAGE each have a private variable X, but since these are
in different private libraries, there is no conflict.

As shown in the diagram, you can regard inputs and outputs as
communication channels between procedures. If procedure A calls procedure
B then A can use inputs to communicate values to B. B's output enables it to
communicate values back to A.

A very common error in Logo programming is to attempt to make a
procedure output without using the OUTPUT instruction. For example, you
might attempt to define AVERAGE as

TO AVERAGE :X :Y
(:X + :Y) / 2
END

Calling this procedure, say

AVERAGE 4 6

80/TI LOGO

would result in the error message

TELL ME WHAT TO DO WITH 5
AT LEVEL 1 LINE 1 OF AVERAGE

when the procedure was executed. In general, you should say what Logo is
supposed to do with generated values—print them, output them, or whatever.

6.2.2. Example: Remainders and One useful operation you can create with OUTPUT is a REMAINDER
Random Numbers procedure, which outputs the remainder of its two arguments:

TO REMAINDER :NUM :DIV
OUTPUT :NUM - (:NUM / :DIV) * :DIV
END

The procedure works by taking advantage of the fact that division in Logo
truncates the quotient. Therefore, when you take :NUM / :DIV and multiply
the result by :DIV, you obtain the largest multiple of :DIV that is less than
:NUM. Subtracting this from :NUM yields the remainder.

You can use REMAINDER to implement another useful procedure called
RAND, which takes a positive number n as input and outputs a random
number between 0 and n - 1. RAND uses the Logo built-in operation
RANDOM, which returns a single digit (0-9) selected at random:

PRINT RANDOM
5
PRINT RANDOM
2

To implement RAND, you can begin by writing a procedure RANDOM4,
which outputs a four-digit random number. (We'll only worry about using
RAND with inputs less than 10,000.)

TO RANDOM4
OUTPUT RANDOM + 10 * RANDOM + 100 * RANDOM

+ 1000 * RANDOM
END

Now, to obtain a random number less than some number n, you simply need
to take the remainder by n of the number returned by RANDOM4:

TO RAND :N
OUTPUT REMAINDER RANDOM4 :N
END

6.3. Words In Logo, strings of characters are called words. Logo provides operations
for manipulating words: combining words into longer words and breaking
words into parts. As with numbers, words may be passed among procedures
as inputs and outputs.

To indicate a word in Logo, you type the character string prefixed by a
quotation mark, as in:

PRINT "WHOOPIE
WHOOPIE

Numbers, Words, and Lists / 81

Notice that (unlike the rule in English) the quotation mark goes only at the
beginning of the word. The word itself is taken to be all of the characters
between the quotation mark and the following space or the end of the line.
Beware that if you put a quotation mark at the end of a word, that quotation
mark will be taken to be part of the word:

PRINT "A"
A"

Logo provides the following operations for extracting parts of words:

FIRST Outputs the first character of its word input. Abbreviated F.
LAST Outputs the last character.
BUTFIRST Outputs a word containing all but the first character.

Abbreviated BF.
BUTLAST Outputs a word containing all but the last character.

Abbreviated BL.

Here are some examples:

PRINT FIRST "ABCD
A
PRINT BUTFIRST "ABCD
BCD
PRINT LAST BUTLAST "ABCD
C

In the third example, the thing that is printed is the LAST of the BUTLAST of
ABCD which is the LAST of ABC which is C.

For constructing larger words from smaller ones, Logo provides the
WORD operation. This takes two words as inputs and combines them to
form a single word:

PRINT WORD "NOW "HERE
NOWHERE

Sample Procedures That Use Words
The following recursive procedure is a word analogue of the

COUNTDOWN procedure on page 24:

TO TRIANGLE :WORD
PRINT :WORD
IF :WORD = FIRST:WORD THEN STOP
TRIANGLE BUTFIRST :WORD
END

TRIANGLE "LOLLIPOP
LOLLIPOP
OLLIPOP
LLIPOP
LIPOP
IPOP
POP
OP
P

82/TI LOGO

Whereas COUNTDOWN reduced a number to smaller numbers by
successively subtracting 1, TRIANGLE reduces a word to smaller words by
successively removing the first character. The process stops when the word
has been reduced to a single character, that is, to a word that is equal to its
own first character.

TRIANGLE illustrates the use of words as inputs to procedures. As an
example of words as outputs, consider the simple procedure DOUBLE,
which takes a word as input and outputs the word concatenated with itself:

TO DOUBLE :X
OUTPUT WORD :X :X
END

PRINT DOUBLE "BOOM
BOOMBOOM

Observe the importance of using OUTPUT: you can operate on a word using
DOUBLE and use the result as an input to other operations:

PRINT DOUBLE DOUBLE "BOOM
BOOMBOOMBOOMBOOM

TRIANGLE DOUBLE "ABC
ABCABC
BCABC
CABC
ABC
BC
C

Warning: Words and Numbers
In TI Logo, you can form words whose characters are all digits. But

these are not treated as numbers, even though they look like numbers. For
example, the arithmetic operations will not accept something like "25 as
an input. Conversely, the word-manipulating operations do not work on
numbers. This distinction between words and numbers can be confusing,
because error messages that result from inappropriate inputs do not
distinguish between numbers and words:1

PRINT FIRST "25
2

PRINT FIRST 25
FIRST DOESN'T LIKE 25 AS INPUT

PRINT "25 + 5
+ DOESN'T LIKE 25 AS INPUT

PRINT 25 + 5
30

1To add to the confusion, the built-in operation WORD?, which tests whether its input is a word, returns
TRUE for numbers.

Numbers, Words, and Lists / 83

6.4. Lists Many languages force the programmer to work with text in terms of
character strings. A long text must be viewed as a long character string that
is manipulated on a character-by-character basis. One of the advantages
of Logo is that it allows you to manipulate sequences of words on a
word-by-word basis. In Logo, a sequence of words is called a list. A list may
be indicated by separating the words in the list by spaces and enclosing them
in square brackets:2

PRINT [THIS IS A LIST]
THIS IS A LIST

Notice that the words in the list are not quoted and that the surrounding
brackets are not printed. The spaces between the words serve only to delimit
the words. Extra spaces are ignored:

PRINT [EXTRA SPACES]
EXTRA SPACES

The Logo operations FIRST, LAST, BUTFIRST, and BUTLAST that we
introduced for use with words also operate on lists. When used with lists,
these operations pick out the first or last word of the list, rather than the first
or last character, as they do with words.

PRINT FIRST [THIS IS A LIST]
THIS

PRINT FIRST BUTFIRST [THIS IS A LIST]
IS

PRINT BUTLAST [THIS IS STILL A LIST]
THIS IS STILL A

PRINT BUTFIRST [THIS]
(blank line)

Note that in the last example, taking all but the first word of a list that has
only one word produces a list containing no words, called the empty list. It
can be typed into Logo as [].3

In Logo, a list is never considered to be equal to a word. For example, a
word is not considered equal to a list that contains that single word, even
though Logo prints these in the same way:

PRINT "BUBBLE
BUBBLE

PRINT [BUBBLE]
BUBBLE

PRINT "BUBBLE = [BUBBLE]
FALSE

2Logo lists are used not only for making sequences of words, but also for creating data structures in general.

See Section 11.1. Remember to delimit lists with square brackets [] and not parentheses 0.

3In the current implementation of TI Logo, taking the BUTFIRST or BUTLAST of a single character word

(i.e., removing all characters from a word) results in the empty list.

841 T I LOGO

SENTENCE is the operation for putting lists together, analogous to
WORD for words. SENTENCE (abbreviated SE) takes words or lists as
inputs and assembles these into one list:

PRINT SENTENCE [THIS IS] [HOW SENTENCE WORKS]
THIS IS HOW SENTENCE WORKS

PRINT SENTENCE "THIS [IS TOO]
THIS IS TOO

PRINT SENTENCE "THIS "ALSO
THIS ALSO

Sample Procedures That Use Lists
Here are the list procedures analogous to the word procedures TRIANGLE

and DOUBLE of Section 6.3. Notice that we have changed the stop rule for
TRIANGLE to test for an empty input.

TO TRIANGLE.LIST :X
IF :X = [] STOP
PRINT :X
TRIANGLE.LIST BUTFIRST :X
END

TO DOUBLE.LIST :X
OUTPUT SENTENCE :X :X
END

TRIANGLE.LIST [THIS IS A LIST]
THIS IS A LIST
IS A LIST
A LIST
LIST

PRINT DOUBLE.LIST (HUP 234]
HUP 234 HUP 234

TRIANGLE.LIST DOUBLE.LIST [DING DONG]
DING DONG DING DONG
DONG DING DONG
DING DONG
DONG

The main thing to observe in these examples is that lists, like numbers and
words, can be passed between procedures as inputs and outputs.

The following list procedures make use of the Logo command READLINE
(abbreviated RL), which makes it easy to write interactive programs using
lists. READLINE waits for you to type in a line (terminated by ENTER) and
outputs the typed-in line as a list.

TO BOAST
PRINT [WHO'S THE GREATEST?]
IF READLINE = [ME] THEN PRINT [OF COURSE!] STOP
PRINT [NO, TRYAGAIN]
BOAST
END

Numbers, Words, and Lists / 85

BOAST
WHO'S THE GREATEST?
>MIGHTY MOUSE
NO, TRY AGAIN
WHO'S THE GREATEST?
>ME
OF COURSE!

Note the prompt > printed in the example above. Logo prints this prompt to
remind you that it is waiting for you to respond to a READLINE. Bear in

mind that READLINE always outputs a list. If you type a single word, the
output of READLINE will be a list containing that one word.

Here's another example:

TO CHAT
PRINT [WHAT'S YOUR NAME?]
PRINT SENTENCE [HELLO] READLINE
PRINT [TYPE SOMETHING YOU LIKE]
PRINT SENTENCE [I'M GLAD YOU LIKE] READLINE
END

Notice how the second line of the procedure is constructed: the list being
PRINTed is a SENTENCE of two things—the list [HELLO] and the list
output by READLINE.

CHAT
WHAT'S YOUR NAME?
>LUCY
HELLO LUCY
TYPE SOMETHING YOU LIKE
> PICKLE JELLO
I'M GLAD YOU LIKE PICKLE JELLO

6.5. Naming We have seen different kinds of naming in Logo programs: the use of
names to refer to inputs to procedures and the idea of naming procedures
themselves. In Chapter 4, we also saw that the Logo command MAKE can be
used to give names to things.

Consider the following example:

MAKE "NUMBER 5
PRINT :NUMBER
5

In the first line you tell Logo that you are going to call the number 5 by the
name NUMBER. The first input to MAKE is the name and the second input
is the thing you are naming. The effect of the command is to establish a
relationship between the word NUMBER and the number 5. We express this
by saying that "5 is the thing associated with NUMBER." In the line

PRINT :NUMBER

86/TI LOGO

you can see how : recovers the thing associated with the name, just as it
recovers the value associated with an input to a procedure. Here are more
examples:

MAKE "COLR "YELLOW
PRINT "COLR
COLR

PRINT :COLR
YELLOW

MAKE "SLOGAN [I LOVE BANANAS]
PRINT :SLOGAN
/ LOVE BANANAS

PRINT SENTENCE (BUTLAST:SLOGAN) :COLR
/ LOVE YELLOW

In these examples, and in most programs, the name is specified as a literal,
quoted word. This is not the only possibility:

MAKE (WORD "PART "1) [DO MI SOL]
PRINT :PART1
DO MI SOL

Here is a tricky example:

MAKE "FLOWER "ROSE
PRINT :FLOWER
ROSE

MAKE :FLOWER [IS A ROSE IS A ROSE]
PRINT :FLOWER
ROSE

PRINT :ROSE
IS A ROSE IS A ROSE

In the third command line, the name associated with [IS A ROSE IS A
ROSE] is not the literal word FLOWER, but rather the thing associated with
FLOWER, that is, the word ROSE. Therefore,

MAKE :FLOWER <something>

has the same effect as

MAKE "ROSE <something>

The Logo function THING returns the thing associated with its input. The
use of : is actually an abbreviation for THING in the case where the input to
THING is a quoted literal word. But THING can be used in more general
circumstances.

MAKE "NAME1 [JOHN Q. CITIZEN]
PRINT :NAME1
JOHN Q. CITIZEN

Plate 1

Plate 2

Plate 3

Changing background and pen colors can have a dramatic effect. Plate 1 shows
POLY design drawn in black on a standard (cyan) background. Plate 2 shows
the same design drawn in white on a black background. (Chapter 2.)

Plates 3 and 4 show the effects of changing background and pen colors for a
POLYSPI design. The figure in plate 3 was drawn in black on a yellow
background. The figure in plate 4 was drawn in white on orange. (Chapter 2.)

Plate 4

Plate 6

Plate 7

Plate 8

A group of truck-shaped sprites, spread in a circle on the screen. (Chapter 4.)

Plate 5

An expanded view of the sailboat-shaped sprite used in the MOVIE project
described in Chapter 5, as seen while using the sprite editor. The normal size
of the sprite is seen at the right.

The completed MOVIE project described in Chapter 5 shows a boat moving
across the water while a group of birds flap their way across the sky.

The FLOWERMOVIE project described in Chapter 7 shows how to make
a group of flowers sprout from the ground as bulbs, grow up to different
heights, and burst into full bloom.

CHANGE

calls ,honges only rts

Figure 6.2: Private libraries for DEMO and

CHANGE.

TO DEMO :X
PRINT :X
CHANGE :X
PRINT :X
END

DEMO

Numbers, Words, and Lists / 87

PRINT THING "NAME1
JOHN Q. CITIZEN

PRINT THING (WORD "NA "ME1)
JOHN Q. CITIZEN

PRINT THING (FIRST [NAME1 PLACE1])
JOHN Q. CITIZEN

There is also the Logo predicate THING?, which takes a word as input and
outputs TRUE if the word has something associated with it.

PRINT THING? "NAME1
TRUE

PRINT THING? "NAME2
FALSE

6.5.1. Local and Global Names In Section 2.1.2 we saw that the names of inputs are private to the
procedures using them. Different procedures reference names in different
private libraries, and two procedures may use the same names for different
purposes without any conflict. The same holds true if the procedure uses the
MAKE command to change the value associated with some input name. This
is illustrated in the following example.

TO CHANGE :X
MAKE "X :X + 1
PRINT :X
END

DEMO 1
1 (printed in DEMO)
2 (printed in CHANGE)
1 (printed in DEMO)

The important point to notice is that when the value of X is printed in
DEMO the second time, it is still 1, even though CHANGE "changed" X to 2.
The reason is that DEMO and CHANGE each have their own meaning for X
in different private libraries, as shown in Figure 6.2. When CHANGE uses
the MAKE statement it changes its X, but not DEMO's.

When you use a MAKE statement at command level, you are also
associating a value with a name in some library. But this is not a library
associated with any procedure. Rather it is a library associated with the
command level. Definitions in this library are sometimes called global
variables. Just as the private libraries of two procedures are distinct, names
in procedure libraries will not conflict with names in the global library.
Compare the following example to the one above.

88/TI LOGO

6.5.2. Free Variables

MAKE "X 1
CHANGE :X
2
PRINT :X
1

One of the reasons that procedures are so important is that they provide a
way to design complex programs in small pieces. But whenever you design
something by breaking it into pieces, you eventually have to deal with the
issue of how these pieces can interact. The importance of the private library
mechanism is that it guarantees that the names used by different procedures
will refer to different things and hence that the only way procedures can
interact is through inputs and outputs. This guarantee provides a good
handle on controlling the complexity of the entire program.

Sometimes, however, it is convenient for procedures to interact other than
through inputs and outputs. For example, if the computation performed by a
procedure depends on a large number of parameters, it may be cumbersome
to specify them all as inputs each time the procedure is called. Again, using
only inputs and outputs to pass information may require passing
"superfluous" inputs through many levels of nested procedures until they
reach the procedure that actually needs them. For these reasons it is useful to
be able to have the computation performed by a procedure depend not only
on the information provided explicitly by the inputs, but also on information
that is implicit in the context in which the procedure is used.

Consider the following procedure:

TO NEW.PRICE :P
OUTPUT :P + :OVERHEAD
END

Suppose you would like to be able to use this procedure in such a way that
the price computed depends on some OVERHEAD that is obtained from the
context in which the procedure is used. For example:

MAKE "OVERHEAD 50
PRINT NEW.PRICE 100
150
MAKE "OVERHEAD 25
PRINT NEWPRICE 100
125

You might also want to have the context determined by a procedure, as in

TO TRY:OVERHEAD
PRINT NEW.PRICE 100
PRINT NEW.PRICE 200
END

TRY 100
200
300

TRY 50
150
250

Numbers, Words, and Lists / 89

The name OVERHEAD in the NEW.PRICE procedure is what is technically
known as a free variable. A free variable is a name that is used in a
procedure, but not as a name for an input. As the NEW.PRICE example

shows, Logo procedures can have free variables. The presence of free
variables leads to the following rule for finding the value associated with
a name in a Logo procedure:

• If the name is one of the names of the inputs to the procedure, the value
can be found in the procedure's private library.

• Otherwise, see if the name is in the library of the procedure that called the
current procedure.

• Otherwise, see if the name is one of the names in the procedure that called
that procedure, and so on, all the way through to the global library.

Free variables provide a powerful mechanism for passing information
between procedures. But their indiscriminate use leads to obscure programs
and may result in intractable program bugs. This is especially true if you use

MAKE to change the value of a free variable, since the actual variable
affected may appear arbitrarily far back in the nest of procedure calls.

6.6. Conditional Expressions and We saw in Section 2.2.2 the use of conditional expressions IF ... THEN . . .

Predicates in Logo programs. This section provides more information about conditional
expressions.

IF and THEN can be augmented by the Logo primitive ELSE. For
example, the following procedure tells whether a number is positive or
negative:

TO SIGN :N
IF :N < 0 THEN OUTPUT "NEGATIVE ELSE OUTPUT "POSITIVE
END

PRINT SIGN 57
POSITIVE
PRINT SIGN (10 — 20)

NEGATIVE

IF... THEN ... ELSE expressions are often confusing for beginning

programmers, due to the need to work with a single statement that specifies
both a test and the actions to be taken depending on the outcome of the test.
Logo therefore includes another form of conditional that separates the
testing from the actions. This form is TEST... IFT... IFF. The TESTused
in a procedure checks some condition. Subsequent procedure lines that begin
with IFT and IFF are executed or not, depending on the result of the TEST.

Here's another way to write the SIGN procedure using TEST:

TO SIGN :N

TEST :N < 0
IFT OUTPUT "NEGATIVE
IFF OUTPUT "POSITIVE

END

A procedure can include more than one TEST, and any IFT or IFF
statements always refer to the most recent TEST. Also, the result of a TEST
is kept private within a procedure, so the use of IFT and IFF within a
procedure is not affected by any TESTs performed in a subprocedure.

901TI LOGO

Predicates; TRUE and FALSE
The conditions checked by IF and TEST are known as predicates. We

already introduced the Logo predicates >, <, and = for working with
numbers. Section 12.6 gives a complete list of the predicates built into Logo.
It is also easy to define new predicates, because a predicate in Logo is
nothing more than a procedure that outputs either the word TRUE or the
word FALSE. For instance, you can transform the SIGN procedure given
above into a predicate that outputs FALSE if the input is less than 0 and
TRUE otherwise:4

TO POSITIVE? :X
IF :X < 0 OUTPUT "FALSE ELSE OUTPUT "TRUE
END

As another example, the following predicate takes a word as input and tests
whether it begins with a vowel:

TO BEGINS.WITH.VOWEL? :X
IF (FIRST:X) = "A OUTPUT "TRUE
IF (FIRST:X) = "E OUTPUT "TRUE
IF (FIRST:X) = "I OUTPUT "TRUE
IF (FIRST :X) = "0 OUTPUT "TRUE
IF (FIRST:X) = "U OUTPUT "TRUE
OUTPUT "FALSE
END

Once a predicate has been defined, it can be used with IF or TEST just as
if it were one of the predicates built into Logo. Here is a procedure that adds
"a" or "an" to a word, as appropriate:5

TO ADD.A.OR.AN :X

TEST BEGINS.WITH.VOWEL? :X
IFT OUTPUT SENTENCE "AN :X
IFF OUTPUT SENTENCE "A :X
END

PRINTADD.A.OR.AN "COMPUTER
A COMPUTER
PRINTADD.A.OR.AN "ELEPHANT
AN ELEPHANT

4It is a good programming habit to name predicates with names that end with a question mark. As far as the

Logo system is concerned, though, the question mark has no special significance. It is treated as an ordinary

character.

5Later on, when we see how to take advantage of Logo lists as data structures, we will learn more flexible

ways of computing functions like BEGINS.WITH.VOWEL Compare the alternative version of the

ADD.A.OR AN procedure that is used in the ANIMAL program of Section 11.3.2.

Numbers, Words, and Lists 191

You can regard IF and TEST as operations that take an input that must be

either TRUE or FALSE. In fact, the primitive predicates built into Logo are
themselves operations that output TRUE or FALSE:6

PRINT 3 > 5
FALSE
PRINT "XYZ = "XYZ
TRUE

For combining predicates, Logo includes the operation BOTH, which takes
two inputs that must be either TRUE or FALSE and outputs TRUE if both
inputs are TRUE and FALSE otherwise. There is also EITHER, which
outputs TRUE if at least one of its inputs is TRUE, and NOT, which outputs
TRUE if its input is FALSE, and FALSE if its input is TRUE.

PRINT BOTH (1 < 2) (2 > 3)
FALSE
PRINT EITHER (1 < 2) (2 > 3)
TRUE
PRINT NOT (2 + 2 = 4)
FALSE

For example, here are three equivalent ways to write a predicate
BETWEEN?, which tests whether a specified number is in a given range:

TO BETWEEN? :X :LOW :HIGH
IF :X < :LOW OUTPUT "FALSE
IF :X > :HIGH OUTPUT "FALSE
OUTPUT"TRUE
END

TO BETWEEN? :X :LOW :HIGH
IF EITHER (:X < :LOW) (:X > :HIGH) OUTPUT "FALSE
OUTPUT"TRUE
END

TO BETWEEN? :X :LOW :HIGH
IF BOTH (NOT (:X < :LOW)) (NOT (:X > :HIGH)) OUTPUT "TRUE
OUTPUT "FALSE
END

BOTH and EITHER are themselves predicates that output TRUE or

FALSE. This means that the second two versions of BETWEEN? can also
be written in another way, in which the TRUE or FALSE output by BOTH

and EITHER is output directly to the procedure that calls BETWEEN?:

6TI Logo II includes special TRUE and FALSE which output the words TRUE and FALSE, respectively. Thus,

in TI Logo II you can use TRUE and FALSE with or without quotes, as you prefer; for example,

IF .X = 5 OUTPUT "TRUE

and

IF .X = 5 OUTPUT TRUE

are both valid. In the first release of TI Logo, only the first form will work.

92/TI LOGO

TO BETWEEN? :X :LOW :HIGH
OUTPUT BOTH (NOT (:X < :LOW)) (NOT (:X > :HIGH))
END

TO BETWEEN? :X :LOW :HIGH
OUTPUT NOT EITHER (:X < :LOW) (:X > :HIGH)
END

6.7. Details on Logo Syntax This section collects some information about how Logo interprets the
command lines that you type to it. This includes such information as where
to include spaces and parentheses in command lines and how Logo groups
sequences of commands.

6.7.1. How Logo Separates Any Logo line is interpreted as a sequence of words. In general, you must
Lines into Words separate words by spaces. For example, if you mean to type

FORWARD 100

and instead type

FORWARD100

Logo will respond with the error message

TELL ME HOW TO FORWARD100

because it will interpret FORWARD100 as a single word and look for a
procedure with that name.' As a general rule, it is a good idea to type each
line with spaces between the different elements. For example:

PRINT(3 + 4)*5
35

Logo does, however, understand that parentheses and arithmetic operators
are normally meant to break words, so

PRINT (3 + 4)*5
35

works, too. In fact, if you define a procedure that includes a line such as the
previous one, and later print out the procedure, you will find that Logo has
inserted spaces into the line.

6.7.2. Using Parentheses We have already seen some complex Logo expressions; for example, the
following line is from the AVERAGE.OF.SQUARES procedure in Section
6.2.1.:

OUTPUTAVERAGE (SQUARE :X) (SQUARE :Y)

In this line, the OUTPUT command takes one input, which is the result of
AVERAGE. AVERAGE in turn takes two inputs:

70f course, you may have actually defined a procedure whose name was FORWARD100, in which case Logo

would run that procedure.

Numbers, Words, and Lists 193

(SQUARE :X)

and

(SQUARE :Y)

Notice that parentheses perform grouping by enclosing the operation
together with its inputs. That is, you should write

(SQUARE :X)

and not

SQUARE (:X)

to indicate that :X is the input to SQUARE.8
In fact, this expression would work perfectly well if you wrote it without

any parentheses at all,

OUTPUT AVERAGE SQUARE :X SQUARE :Y

because when Logo interprets the line, it breaks things up according to the
following method. The first word it sees is OUTPUT, and this requires one
input. So Logo scans the line trying to find that input. The next thing it runs
into, though, is AVERAGE, which requires two inputs of its own. So Logo
now scans to find two inputs for AVERAGE and runs into SQUARE, which
requires one input which Logo finds as :X. This completes the input to
SQUARE and also completes the first input to AVERAGE. Logo now looks
for the second input to AVERAGE, and the next thing it sees is another
SQUARE, which requires one input. Logo finds this as :Y. Now SQUARE
has its input. This completes both inputs to AVERAGE, which completes the
entire input to OUTPUT.

Generalizing this method, you can see that as long as Logo knows how
many inputs each procedure needs, and as long as each procedure name is a
prefix operator (i.e., it is written to the left of its inputs), then you don't
need parentheses at all in writing Logo commands. On the other hand,
parentheses help considerably in enabling the human eye to see the pattern.
So unless you are very practiced, you should not write a complex expression
without parentheses for fear of not being able to read it the next day.

The above rule for parsing expressions is modified for infix operators (i.e.,
operators that are written between their inputs, rather than to the left of
them). In a line such as

AVERAGE 3 + 2 7

the 3 is combined with the 2 by + before any unit is assigned as an input to
AVERAGE, so the line gets broken up as:

AVERAGE (3 + 2) 7

BThis rule can be confusing, since the latter expression is more like SQUARE (X), which is what is used in
mathematics or in languages like BASIC or Pascal Keep in mind that parentheses in Logo are used to

indicate grouping, not as special symbols for delimiting the list of inputs to functions.

94/TI LOGO

which gives 6. The general rule is that the infix arithmetic operators + , — , *,
and / have higher priority than prefix operators.

The infix predicates > , <, and = have lower priority than prefix
operators. So

AVERAGE 3 5 > AVERAGE 2 4

must be combined as

(AVERAGE 3 5) > (AVERAGE 2 4)

or you will get an error message.
Logo's rules for parentheses are designed to enable you to write simple

expressions without worrying about parentheses. For complex expressions, it
is better to use parentheses to avoid confusion.

SENTENCE with a Variable Number of Inputs
Although we haven't mentioned it yet, the SENTENCE operation can take

a variable number of inputs, as in the following example,

PRINT (SENTENCE [THE BIG] [BAD] [WOLF])
THE BIG BAD WOLF

which uses one SENTENCE operation to combine three things into a list.
The fact that SENTENCE is combining three things rather than its usual two
is indicated by the parentheses grouping SENTENCE together with its inputs.
In this way, SENTENCE can take any number of inputs.

Examples
Here are a few examples illustrating the rules discussed above, including

some common errors and their explanations:

PRINT SENTENCE "A "B "C
AB
TELL ME WHAT TO DO WITH C

The default number of inputs to SENTENCE is 2, so SENTENCE combines
A and B, and the result is printed by PRINT. Now Logo is faced with the rest
of the line, and it runs across the symbol "C. Since there are no outstanding
operations that need inputs, Logo complains that there is nothing to do with
the "C.

PRINT (SENTENCE "A "B "C)
ABC

Here parentheses are correctly used to group the three inputs to SENTENCE.

PRINT (SENTENCE "A "B "C)
TELL ME MORE

The problem here is that there is no space separating the "C from the closing
parentheses. Logo therefore interprets "C) as a two-character word which is
the third input to SENTENCE and goes on to search for more inputs.
Remember that when you indicate a word with a quotation mark, you must
use a space to separate it from the rest of the line.

6.7.3. The Minus Sign

Numbers, Words, and Lists 195

PRINT SENTENCE ("A "B "C)
TELL ME WHAT TO DO WITH "B

The problem here is that when you use parentheses to indicate grouping, you
should group an operation together with its inputs. The parentheses are being
used in this example as they would be used in BASIC, to surround the inputs
alone. But Logo always tries to interpret a parenthesized expression as a
complete unit, which does not make sense in this case.

If the minus sign is preceded by a space and followed by a number, then TI
Logo tries to interpret it as a negation sign. Otherwise, minus is interpreted
as subtraction, in the context where that makes sense. Here are some
examples:

PRINT 1 — 2
—1 (infix subtraction)
PRINT 1 — 2
— 1 (infix subtraction)
PRINT 1 —2
1
TELL ME WHAT TO DO WITH — 2
(Logo interpreted the — as negation, and got stuck.)
PRINT — 2
—2 (negation)
PRINT — 2
—2 (negation)

In the last example, even though there is a space after the — , no value was
pending that could be regarded as an input to — on the left, so Logo
interpreted the — as negation.

When used in lists, the minus sign written before a number is regarded as
signaling a negative number. Otherwise — is regarded as a separate word in
the list:9

PRINT FIRST [-2 3]
—2

PRINT FIRST [— 2 3]

PRINT FIRST [2 — 3]
2
PRINT FIRST [—X 3]

In the third example, the list has three words: 2, — , and 3. In the fourth
example, the list also has three words: — , X, and 3.

9In the first release of TI Logo, the minus sign is always interpreted as a separate word in a list This makes it

impossible to directly type in lists containing negative numbers. Such lists must be constructed using

SENTENCE

More Logo Projects / 97

CHAPTER

More Logo Projects

This chapter presents four open-ended projects, suitable for beginning
students. The first project is a simple arithmetic quiz program similar to the
drill and practice computer systems used in some schools. The next project
shows how to use lists to write programs that generate "random" sentences.
We then reprint a paper by Papert and Solomon [11] that describes a simple
game-playing program and discusses ideas about how to involve students in
planning and carrying out complex projects. Finally, we use sprites and tiles
to design a movie more elaborate than the one discussed in Section 4.4.

7.1. Arithmetic Quiz Program Here's a simple arithmetic drill and practice program:

QUIZ
HOW MUCH IS 37 + 64
>101
GOOD
HOW MUCH IS 29 + 46
>87
THE ANSWER IS 75
HOW MUCH IS 21 + 11
>32
GOOD
and so on.

Designing a quiz program that works like this is a good programming
project for elementary school students.' Here is one of many possible
versions. It uses the RAND procedure discussed on page 80.

TO QUIZ
MAKE "NUM1 RAND 100
MAKE "NUM2 RAND 100
MAKE "ANSWER :NUM1 + :NUM2
PRINT (SENTENCE [HOW MUCH IS] :NUM1 [+] :NUM2)
MAKE "REPLY READNUMBER
TEST :REPLY = :ANSWER
IFT PRINT [GOOD]
IFF PRINT SENTENCE [THE ANSWER IS] :ANSWER
QUIZ
END

TO READNUMBER
OUTPUT FIRST READLINE
END

'And designing such a program is probably a better educational experience than using such a program, which

is unfortunately much more typical of how computers are currently used in schools.

98/T1 LOGO

7.2. Random-Sentence Generators

You use READNUMBER rather than READLINE directly because
READLINE outputs a list. If the user types in a single number, READLINE
outputs a list containing that number as its only item.2 To obtain the number
itself, you extract the first item from the list returned by READLINE.

You can also modify READNUMBER to check that the response is actually
a number:

TO READNUMBER
MAKE "IN FIRST READLINE
TEST NUMBER? :IN
IFT OUTPUT :IN
IFF PRINT [PLEASE ANSWER WITH A NUMBER]
IFF OUTPUT READNUMBER
END

The behavior of QUIZ is now:

QUIZ
HOW MUCH IS 6 + 14
> BO
PLEASE ANSWER WITH A NUMBER
>20
GOOD
etc.

Observe that the recursive call in the final line of the procedure makes the
procedure keep asking until the user responds with a number.

QUIZ is a good programming project because it has a simple core, yet there
are so many extensions and variations. Some of these are as follows:

• Allowing the user to keep trying a question until getting the correct answer

• Keeping score

• Progressing to harder and harder problems when the score is good

• Giving advice

You can have lots of fun with programs that print random sentences. In
designing such programs, it is very useful to have as a building block a
procedure PICKRANDOM that takes a list as input and outputs an item
selected at random from a list; for example:

PRINT PICKRANDOM [EENEY MEENEY MINEY MO]
MEENEY
PRINT PICKRANDOM [EENEY MEENEY MINEY MO]
MO

PICKRANDOM is not built into Logo as a primitive, but it can be
implemented by using lists and recursion, an aspect of Logo programming
that we have not yet discussed. PICKRANDOM is implemented in terms of a

2Thus, if you set ANSWER to be the list returned by READLINE, ANSWER would never be equal to the sum

of NUM1 and NUM2, which is a number. For example, if the user types 7 followed by ENTER, the value
returned by READLINE will be the list [71, not the number 7.

More Logo Projects 199

procedure PICK, which outputs the nth item in a given list:3

TO PICKRANDOM :X
OUTPUT PICK (1 + RAND (LENGTH :X)) :X
END

PICK is defined as follows:

TO PICK :N :X
IF :N = 1 OUTPUT FIRST :X
OUTPUT PICK (:N — 1) (BUTFIRST:X)
END

We will study programs such as these in Chapter 10, and we will explain how
PICK and PICKRANDOM work in Section 10.2.1. In the meantime you can
regard PICKRANDOM (and give it to beginning students) as a black box.

Once you have PICKRANDOM, it is easy to generate simple random
sentences of the form {noun} {verb} by picking words at random from lists
of nouns and verbs:

TO CHATTER
MAKE "NOUNS [DOGS CATS CHILDREN TIGERS]
MAKE "VERBS [RUN BITE TALK LAUGH]
BABBLE
END

TO BABBLE
PRINT SENTENCE (PICKRANDOM :NOUNS)

(PICKRANDOM :VERBS)
BABBLE
END

CHATTER
CATS LAUGH
TIGERS TALK
CHILDREN BITE
TIGERS BITE
DOGS TALK

You can make the sentence generator more interesting by occasionally
telling the computer to ask for a new noun or verb to be typed in and added
to the corresponding list. For nouns this can be done with

TO LEARN.NOUN
PRINT [TEACH ME A NEW NOUN]
MAKE "NOUNS SENTENCE :NOUNS READLINE
END

3In the first release of TI Logo, LENGTH must also be implemented as a procedure:

TO LENGTH :X
IF :X = [] OUTPUT O

OUTPUT 1 + LENGTH BUTFIRST:X
END

00 / T I LOGO

Observe that this uses the SENTENCE operation to combine the typed-in
word with the list of current nouns. There is a similar LEARN.VERB
procedure for verbs.

Now you can modify BABBLE to ask for a new noun or verb every so
often (1 chance in 10):

TO BABBLE
IF (RAND 10) = 0 LEARN.NOUN
IF (RAND 10) = 0 LEARN.VERB
PRINT SENTENCE (PICKRANDOM :NOUNS)

(PICKRANDOM :VERBS)
BABBLE
END

The behavior of the program is now

CHATTER
CHILDREN TALK
TIGERS RUN
TEACH ME A NEW VERB
> WALK
DOGS RUN
CATS BITE
TEACH ME A NEW NOUN
> BANANAS
DOGS WALK
BANANAS BITE

There are many extensions to this project, including making more complex
sentences by adding other parts of speech such as adjectives and adverbs,
matching singular verbs with singular nouns and plural with plural, and
generating random "poetry." Papert [15] describes the experience of one
13-year-old while engaged in such a project:

One day Jenny came in very excited. She had made a discovery. "Now I know
why we have nouns and verbs," she said. For many years in school Jenny had
been drilled in grammatical categories. She had never understood the differences
between nouns and verbs and adverbs. But now it was apparent that her
difficulty with grammar was not due to an inability to work with logical
categories. It was something else. She had not been able to make any sense of
what grammar was about in the sense of what it might be for... But now,
as she tried to get the computer to generate poetry, something remarkable
happened. She found herself classifying words into categories, not because she
had been told she had to but because she needed to. In order to "teach" her
computer to make strings of words that would look like English, she had to
"teach" it to choose words of an appropriate class. What she learned about
grammar from this experience with a machine was anything but mechanical
or routine. Her learning was deep and meaningful. Jenny did more than learn
definitions for particular grammatical classes. She understood the general idea
that words (like things) can be placed in different groups or sets, and that doing
so could work for her. She not only "understood" grammar, she changed her
relationship to it.

More Logo Projects / 101

7.3. Nim: A Game-Playing Program

7.3.1. The Sub-Goal Plan

This section is a slightly modified version of a paper written by Seymour
Papert and Cynthia Solomon, which was originally published as an MIT
Artificial Intelligence Laboratory Memo [141. It illustrates some ideas about
how to initiate beginning students into the art of planning and writing a
program complex enough to be considered a project rather than an exercise
on using the language or simple programming ideas.

The project is to write a program to play a simple game ("one-pile Nim"
or "21") as invincibly as possible. The project was developed by Papert and
Solomon for a class of seventh-grade students taught during 1968-69 at the
Muzzey Junior High School in Lexington, Mass. This was the longest
programming project these students had encountered, and the intention was
to give them a model of how to go about working under these conditions. To
achieve this, the teachers worked very hard to develop a clear organization of
sub-goals, which they explained to the class at the beginning of the
three-week period devoted to this particular program. You would not expect
beginners to find as clear a sub-goal structure as this one; but once they have
seen a good example, they are more likely to find clear sub-goals in the
future for other problems. Thus the primary teaching purpose was to develop
the idea of splitting a task into sub-goals. The intent was to provide the
students with good models of various ways in which this can be done and
to have them experience the heuristic power of this kind of planning (as
opposed to jumping straight into writing programs).

A sub-goal structure can be imposed on a problem in several ways. One
way is by "chopping," that is, by recognizing that the final program has
distinct functions that can be performed by separate subprocedures. But this
is not the only way. Many heuristic programs can be simplified rather than
chopped. We illustrate this by first writing a procedure to play the entire
game of Nim, but in a "dumb way." Once we have done so, we can study its
performance, decide why it plays badly and strengthen its play. Thus the
successive partial solutions to the problem appear as making a procedure
progressively "smarter."

Describing the evolution of the program in this way has the additional
benefit of allowing one to make an analogy valuable in two senses: by using
themselves as models, students acquire a fertile source of ideas about
programming; on the other hand, the experience of debugging programs
can have a therapeutic effect in leading them to see their own mistakes as
emotionally neutral bugs rather than as emotionally charged errors.

The key idea for subdivision of the problem is to write a series of
programs, each of which is "smarter" than the previous one. The first
program knows nothing about the strategy of play. It does not generate
moves, but asks each of two human players in turn what move to make. For
example, it may act as a scorekeeper, just keeping track of the number of
sticks without bothering about whether the move is legal. From scorekeeper
the machine can advance to referee. This means that it checks the move for
legality and eventually declares the game over and announces the winner.
After we have a working mechanical referee, we start making a mechanical
player. The first version of a player chooses legal, but not necessarily good
moves. Indeed, it generates a move randomly, uses its ability as a referee to
decide if it is legal, and then either accepts it or generates another random
move.

When this works, the child may make the program smarter and smarter by
adding features or by writing a completely new version until finally—if all
goes well—a player with an infallible strategy is evolved.

02/T1 LOGO

A natural form for programs of intermediate smartness is the following:
the program has a list of simple situations in which it knows how to play; in
other situations it plays randomly. In other words, it plays by the form of
strategy used by most children in most strategic games.

In working with a class, a good moment should be seized to prod the
students into noting and discussing the analogy between this very simple
heuristic program and themselves—particularly, how the program gets to be
smarter through more or better knowledge. Seeing the program as a cognitive
model is a valuable and exciting experience for the students. They can easily
be drawn into discussion about how meaningful such models are. To keep the
discussion alive, the teacher should be equipped with arguments and
examples to counteract extremist, and so sterile, positions. For example, if
the students feel that the program is too simple to be a model of human
thinking, the teacher might discuss whether a toy airplane is a useful model
of a jet-airplane. Does it work by the same principles: Can you learn about
airliners by studying toy models? On the other hand, if a class swings over to
the position that there really is no difference, the teacher can ask questions
about whether the program could learn by itself without a programmer. If
this is too enthusiastically accepted it is well for the teacher to ask: "How
much do you learn without being told?" Ideally, the teacher should merely
guide the discussion without having to say any of this. But awareness of such
argument will permit more sensitive guiding. An interesting exercise and base
for discussion is to have the students study various programs of intermediate
smartness, classify their bad moves by degrees of stupidity, and give the
program grades (or say why they think doing so is silly!).

The stratification of the project has the good feature of allowing students
to find their own levels. A slower child who gets only as far as the random
player, nevertheless has the taste of success if his program does what it does
well. Tendencies to feel inferior should be counteracted by the teacher's
attitude and by the teacher's encouraging individual variations so that no
child's final program is a mere subset of a more advanced one. The teacher's
computer culture can be very relevant in this delicate kind of situation.
Although the richness of programming permits students to generate many
fertile ideas, sensitive filtering by the teacher can enormously improve the
achievement-to-frustration ratio.

First Steps with the Students
A move in Nim consists of taking one, two, or three matchsticks from a

given pile. Two players move alternately. The player who takes the last stick
wins.

The first step is to see that everyone knows the rules and understands what
the first program does, for example, by imitating its function or by writing
imaginary scripts. In the course of discussing this the teacher introduces some
names so the class can talk about what the program is doing.

Here is an example of a script:

THE NUMBER OF STICKS IS 8
JOAN TO PLAY WHAT'S YOUR MOVE?
2
THE NUMBER OF STICKS IS 6
BILL TO PLAY WHAT'S YOUR MOVE?
3
THE NUMBER OF STICKS IS 3
JOAN TO PLAY. WHAT'S YOUR MOVE?
3
JOAN IS THE WINNER!

More Logo Projects / 103

Later in the project the teacher can insist that the students consider what
happens when a player replies to WHAT'S YOUR MOVE? by 5 or COW. In the
beginnning the teacher should discourage all but the most competent students
from worrying about "funny" answers before getting the program to work
with normal answers.

Examining the script you see that there must be names for:

• The current number of sticks—say STICKS

• The move—say MOVE

• The next player—say PLAYER

• And, a little more subtle, the other player—say OPPONENT

To be sure that everyone understands, they are asked to fill in these "Logo
things" for successive rounds, following the previous script.

Round No. :STICKS :PLAYER :OPPONENT :MOVE
1 8 JOAN BILL 2
2 ? ? JOAN 3
3 3 ? ? ?

7.3.2. A Simple Scorekeeper If this is the first game-playing program, the teacher builds up to it by
asking some standard questions:

• What shall we call the procedure? (Let's say NIMPLAY)

• What must NIMPLAY do?

• What must NIMPLAY know?

Possible answers are

• Announce the remaining number of sticks.

• Announce the player to move.

• Get the move and make all the modifications.

• Recurse.

To do this, NIMPLAY must remember :STICKS, :PLAYERS, and
:OPPONENT from the previous round and get :MOVE by asking for it. The
first three things must be passed from one call to NIMPLAY to the next, so
they should be inputs. On the other hand, :MOVE comes from the human
player, so it does not need to be an input. If you look ahead, you may notice
that later on :MOVE will sometimes come from a procedure—that is, when
the machine gets to be smart enough to make its own moves. So to keep the
door open for changes, the problems of getting :MOVE and using it are
separated. The standard way to do this is to plan on a subprocedure—say,
called GETMOVE.

Now students can write NIMPLAY:

TO NIMPLAY :STICKS :PLAYER :OPPONENT
When in doubt, have lots of inputs.

PRINT SENTENCE [THE NUMBER OF STICKS IS] :STICKS
Announce the number of sticks.

04 / T I LOGO

PRINT SENTENCE :PLAYER [TO PLAY. WHAT'S YOUR MOVE?]
MAKE "NEWSTICKS :STICKS — GETMOVE

Pretend GETMOVE has already been written.
NIMPLAY :NEWSTICKS :OPPONENT :PLAYER

Recursion line. Notice how :PLAYER
and :OPPONENT are reversed.

END

TO GETMOVE
MAKE "MOVE READNUMBER

See READNUMBER procedure on page 97.
OUTPUT:MOVE
END

From Scorekeeper to Referee
As referee the program has some new tasks:

• To decide whether the game is over

• To declare the winner if it is over

• To make sure that :PLAYER takes 1, 2, or 3 sticks each time

The first two tasks are achieved by adding a test and a stop line to
NIMPLAY. For example,

TEST :NEWSTICKS = 0
IFT PRINT SENTENCE :PLAYER [IS THE WINNER!]
IFT STOP

The third task can be accomplished by giving GETMOVE a "try-again"
form, using the MEMBER? predicate which takes an item and a list as inputs
and checks whether the item is in the list. MEMBER? can be given to
students as a black box. The implementation of MEMBER? is explained on
page 143.

TO GETMOVE
PRINT [YOU MAY TAKE 1, 2, OR 3 STICKS]
MAKE "MOVE READNUMBER
TEST MEMBER? :MOVE [1 2 3]
IFF OUTPUT GETMOVE If the TEST is FALSE, try again.
OUTPUT :MOVE
END

With these changes, NIMPLAY is certainly a referee—but still has some
rough edges. For example, when :STICKS is 2, GETMOVE gives permission
to take 1, 2, or 3 sticks! And if :PLAYER takes 3 sticks, :STICKS becomes
negative, and the game will go on forever, because of a "slip-by" bug.
However, we shall leave it as an exercise to remedy these minor failings.

In presenting this section to students, the teacher may want to work
through one of the two major modifications with the class and let the
students struggle with the other. The slip-by bug we would leave to the class
to discover and cure. Those who miss it at this stage will find its presence
more obtrusive later. If so, a profitable discussion may develop on the
question of why the bug was not found—perhaps because the human player
always makes reasonable moves so that :STICKS never becomes negative

7.3.3. A Mechanical Player

Strategic Play

More Logo Projects / 105

even though the machine allows it. Later we shall see that when the machine
makes its own moves, it is not to be so cooperative unless it is told to be.

Examples of individual frills to a referee program are: timing moves,
declaring the winner a move or two ahead (!), allowing a player to take a
move back, printing a score sheet, giving advice (!), establishing and
imposing handicaps (!), and changing the rules.

How can the machine choose a move? The simplest way is by using
PICKRANDOM.4 For example, you could allow GETMOVE to make the
choice:5 if a person is to play, use READNUMBER; if the machine is to play,
use PICKRANDOM. But it has to be told whether the player is human or the
computer. So it must have an input.

TO GETMOVE :PLAYER

TEST :PLAYER = [COMPUTER]
IFT MAKE "MOVE PICKRANDOM [1 2 3]
IFF PRINT [YOU MAY TAKE 1, 2, OR 3 STICKS]
IFF MAKE "MOVE READNUMBER

as before

At this stage the slip-by bug may become serious. One way to kill it is to tell
GETMOVE about :STICKS and have it try again if :MOVE comes up greater
than :STICKS. To do this you change the title line to:

TO GETMOVE :PLAYER :STICKS

and add a pair of lines after the two MAKEs.

TEST:MOVE > :STICKS
IFT OUTPUT GETMOVE :PLAYER :STICKS

The plan for writing the Nim-playing program in many strata now calls for
it to recognize a few special numbers and know what to do in those cases, but
continue to play stupidly in other cases. However, by this time it is likely that
the class has already discovered the full strategy. It may still be worthwhile to
encourage at least some member to follow the original plan as an instructive
joke. In this section we illustrate a general question-answer technique for
classroom discussion to encourage habits of heuristic neatness in the
students' own thinking.

A good exercise is to observe NIMPLAY in its present condition and to
collect and classify its mistakes. An example of a classification made by a
student is:

• DUMB MISTAKES

* There were 5 sticks and the machine took 2. (If the machine had any

4The PICKRANDOM procedure (page 142) can be written by the teacher and given to students as a
"primitive."

5Notice this anthropomorphism. We find it useful to talk of procedures as agents, of their "state of
knowledge," of "telling them," of having them "talk to" one another. And we present this to students as a
deliberate metaphor that they may find useful.

O8/T1 LOGO

sense, it would leave the opponent with 4.)

* There were 6 or 7 sticks and the machine did not leave 4.

• SUPER DUMB MISTAKES

* There were 2 or 3 sticks and the machine did not take all!

We shall write a procedure to avoid first "super dumb mistakes" and then
"dumb mistakes".

• Question: What program form? Answer: TEST.

• Question: What do we test for? English answer: Whether there are 1, 2, or
3 sticks. Logo answer: TEST MEMBER? :STICKS [1 2 3].

• Question: What is the action if the test is passed? English answer: Take all
the sticks. Logo answer: OUTPUT :STICKS.

• Question: What if it is not passed? English answer: Move just like before.
Logo answer: MAKE "MOVE PICKRANDOM [1 2 3].

Now put this together to make a procedure to make the move:

• Question: What must the procedure know? Answer: :STICKS—so it needs
an input.

TO MAKEMOVE :STICKS
TEST MEMBER? :STICKS [1 2 3]
IFT OUTPUT :STICKS
IFF OUTPUT PICKRANDOM [1 2 3]
END

The procedure is used in place of PICKRANDOM in GETMOVE. So don't
forget to change GETMOVE!

Now extra lines can be added. For example:

TEST :STICKS = 5
IFT OUTPUT 1

The Smart Player
By this time everyone should be very close to understanding the strategy,

for example, in the following form:

• Question: How does the game end? Answer: When a player leaves 0 sticks.

So let's try making the main actor be the number of sticks we leave. If we can
leave 0 that's great. But if we have more than 3 we can't. So we must think
ahead.

• Question: What can we leave to help us leave 0 next time? Answer: 4.
Because the opponent will leave 1, 2, or 3.

• Question: What can we leave so as to be able to leave 4 next time?
Answer: 8.

• Question: So 0, 4, 8 are good numbers to shoot at for leaving. What
others? Answer: 12, 16, . . .

• Question: How could you describe the numbers 0, 4, 8, 12, 16, .. .
Answer: They are all divisible by 4. REMAINDER :NUMBER 4 is 0.

More Logo Projects / 107

• $64 Question: If I give you :NUMBER, how can you use it to find the
next number down divisible by 4? Answer: Subtract
REMAINDER :NUMBER 4.

So there we are! The smart invincible Nim player is made by replacing
MAKEMOVE by SMARTMOVE:6

TO SMARTMOVE :STICKS
MAKE "REM REMAINDER :STICKS 4
IF :REM = 0 OUTPUT 1 It really doesn't matter in this case.
OUTPUT :REM
END

7.3.4. Frills and Modifications Write superprocedures or make additions to the present procedure to
produce transcripts such as the one following.

NIM
DO YOU KNOW HOW TO PLAY NIM?
NO
HERE ARE THE RULES: YOU WILL BE SHOWN A COLLECTION OF X'S.
YOU MAY REMOVE 1, 2, OR 3. THE PLAYER WHO TAKES THE LAST X
WINS. THIS IS PROBABLY TOO VAGUE FOR YOU TO UNDERSTAND, BUT
TRY PLAYING AND I'LL CORRECT YOUR MISTAKES.
ARE YOU READY?
I AM
PLEASE SAY "YES" OR "NO"
YES
OK. NOW TELL ME THE NAME OF THE FIRST PLAYER.
JOAN
NOW THE NAME OF THE OTHER PLAYER.
COMPUTER
HOW MANY STICKS DO YOU WANT TO START WITH?
THIRTY-ONE
I'M A DUMB COMPUTER. TYPE A PROPER NUMERAL.
31
JOAN TO PLAY
THERE ARE 31 STICKS.
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
JOAN, TAKE 1, 2, OR 3.
3
COMPUTER TO PLAY.
THERE ARE 28 STICKS.
XXXXXXXXXXXXXXXXXXXXXXXXXXXX
I TAKE 1
JOAN TO PLAY
THERE ARE 27 STICKS.
XXXXXXXXXXXXXXXXXXXXXXXXXXX
TAKE 1, 2, OR 3.
3

6Use the REMAINDER procedure from page 80.

108/TI LOGO

In addition to such frills, there are unlimited possibilities to play with the
ideas in the procedure after it has been made to work. Here are three
examples to illustrate the idea that the project has not necessarily run out
when the procedure is debugged:

• An interesting simple modification to the rule of the game is to change the
1-2-3 rule to a 1-2 rule or a 1-2-3-4-5 rule. Write a procedure that asks what
rule is to be used and then plays by that rule.

• Our stop rule was: the player who takes the last stick wins. Change this to:
whoever takes the last stick loses. (The latter is the traditional form.)

• The game can be embedded in a more complex one, such as moving
counters along marked paths on a board. If there is just one linear path,
the problem is identical, but if branches are allowed, interesting
complexities arise.

7.3.5. A Listing of the NIMPLAY
Procedures

7.4. Growing Flowers

Here is a listing of the final form of the NIMPLAY procedures. Besides the
three procedures listed below, the project also makes use of the REMAINDER
procedure on page 80, the READNUMBER procedure on page 98, and the
MEMBER? procedure on page 143.

TO NIMPLAY :STICKS :PLAYER :OPPONENT
PRINT SENTENCE [THE NUMBER OF STICKS IS] :STICKS
PRINT SENTENCE :PLAYER [TO PLAY. WHAT'S YOUR MOVE?]
MAKE "NEWSTICKS :STICKS — (GETMOVE :PLAYER :STICKS)
TEST :NEWSTICKS = 0
IFT PRINT SENTENCE :PLAYER [IS THE WINNER!]
IFT STOP
NIMPLAY :NEWSTICKS :OPPONENT :PLAYER
END

TO GETMOVE :PLAYER :STICKS
TEST :PLAYER = [COMPUTER]
IFT MAKE "MOVE SMARTMOVE
IFF PRINT [YOU MAY TAKE 1, 2, OR 3 STICKS]
IFF MAKE "MOVE READNUMBER
TEST MEMBER? :MOVE [1 2 3]
IFF OUTPUT GETMOVE :PLAYER :STICKS
TEST :MOVE > :STICKS
IFT OUTPUT GETMOVE :PLAYER :STICKS
OUTPUT :MOVE
END

TO SMARTMOVE
MAKE "REM REMAINDER :STICKS 4
IF :REM = 0 OUTPUT 1
OUTPUT :REM
END

In this section we'll design a movie, shown in Color Plate II. The scene
starts at night, with some bulbs planted in a lawn. The sun rises and the sky
grows light. Then the flowers begin to grow. As the flowers grow, they sprout
leaves and buds. Finally they burst into color and bloom.

This movie is more complex than the one in Section 4.4, because it requires
tighter coordination between sprites and tiles. The grass is made up of tiles,

7.4.1. Coordinates for Sprites and Tiles

lal

0,96

More Logo Projects / 109

and the sun is a sprite. The flowers are made up of both tiles and sprites,
which will require some subtlety in the implementation.

The problem with making shapes by combining tiles and sprites is that the
x, y coordinates used to position sprites on the screen are not the same as the
row and column numbers used to position tiles. Row and column numbers
are interpreted as character positions, shown in Figure 7.1a. Columns are
numbered from left to right, 0 through 31, and rows are numbered from top
to bottom, 0 through 23. On the other hand, sprite and turtle coordinates are
specified in terms of an x coordinate between —127 and 127, and a y
coordinate between — 96 and 96, as shown in Figure 7.1b.

It will be useful, therefore, to have some procedures that convert from one
coordinate system to the other. Here is a procedure that returns the x
coordinate corresponding to a given column:

TO COLX :COL
127,0 OUTPUT (8 * :COL) — 128

END

Similarly, we can convert a row number to a y coordinate:
0,-96

Figure 7.1: Comparison of tile coordinates (a) TO ROWY :ROW
with sprite coordinates (b). OUTPUT (-8 * :ROW) — 96

END

Using these two procedures, we can write a procedure PUTSPRITE, similar
to PUTTILE, which positions a sprite at a given column and row:

TO PUTSPRITE :SPRITE :COLUMN :ROW
TELL :SPRITE
SXY (COLX :COLUMN) (ROWY :ROW)
END

Converting coordinates the other way, it is also useful to be able to find the
row and column position of a sprite. The following procedures return the
column number corresponding to the XCOR of the current object and the
row number corresponding to YCOR:

TO XCOLUMN
OUTPUT (XCOR + 128) / 8
END

TO YROW
OUTPUT (— YCOR + 96) / 8
END

lb)

-127,0

110/T1 LOGO

7.4.2. Defining the Shapes

Figure 7.2: Shape for GRASS tile

LEFTSTEM

RIGHTSTEM

LEFTSTEM1

RIGHTSTEM1

To make the movie, you will need some shapes, both for tiles and sprites.
The grass will be a regular pattern, consisting of a background with a small

"blade" in it, as shown in Figure 7.2. We'll use tile number 8 for this pattern

MAKE "GRASS 8

and give it a foreground color OLIVE and a background color GREEN,
which will color the blade slightly darker than the rest.

We'll also use the tiles for the stems and leaves of the flowers. There are
four different tiles: ordinary left and right halves of a stem, and left and
right halves with leaves on them:

MAKE"LEFTSTEM 100
MAKE "RIGHTSTEM 101
MAKE "LEFTSTEMI 98
MAKE "RIGHTSTEM1 99

These will all be colored OLIVE with a CLEAR background color, so we can
put them all in the same color group. (See page 61.) Figure 7.3 shows the
shapes for these tiles:

As the flowers grow, they evolve through three different shapes—bulbs,
buds, and blooms:

MAKE "BULB 6
MAKE "BUD 7
MAKE "BLOOM 8

la) Ib1

IM::~ 111111111
EM

MN In
11101 OM
IMO OM
IIIII Ill

More Logo Projects / 1

Figure 7.3: Tile shapes flower stems. (c) (di

BULB

BUD

BLOOM

Finally,

use the

Use MAKESHAPE to define these three shapes

you need a shape for the sun. The
BALL shape built into Logo.

as shown in Figure 7.4.

simplest thing to do here is to

IIIIIIIIEIIMIIIIIIMIIIIIIIIII
1111111111INIMMIIIIMIIIIM 111111111111111. IME
IIIMINIM1E111E11M11MM M IIIMINIIIM MUM

IIIIIIIII MIMI
■MUM ~•~M•

11111111 il
E1111111E111E111E111MMIIM MN MOM
Urn
MIN

IMO
NM

NM
OM ~NEU

11111111 NM MN
NUR NEU MI 1111
11111111 IMI IIIII

EM ME
IMO IN OM
MIME MU NM
IMO NM MIN

(a)

(c)
Figure 7.4: Sprite shapes for the flowers

(b(

7.4.3. The Grass

7.4.4. Planting the Bulbs

7.4.5. Sunrise

To make the grass, you need to lay down a solid block of tiles, starting
from some row on the screen and working downwards. This is exactly the
way that the WATER was handled in the movie in Section 4.4, and you can
use the same MAKEROWS procedure that we used there. For MAKEROWS,
you must specify the tile number and the top of the block. Row 14 is a good
position at which to start:

MAKE "GRASSTOPROW 14

TO MAKEGRASS
TELL TILE :GRASS
SETCOLOR SENTENCE :OLIVE :GREEN
MAKEROWS :GRASS :GRASSTOPROW
END

Planting a bulb is simply a matter of positioning a sprite that is carrying
the BULB shape. The following procedure positions a given sprite at a given
column and row. Notice how the PUTSPRITE procedure (page 109) comes in
handy.

TO PLANTBULB :SPRITE :COLUMN :ROW
PUTSPRITE :SPRITE :COLUMN :ROW
TELL SPRITE :SPRITE
SETCOLOR :GREEN
CARRY :BULB
END

Now you can plant all the bulbs. Use sprites 0 through 5 to make six
flowers. Choose column numbers to spread the flowers out on the screen,
and position the bulbs two rows above the top grass row.7

TO PLANTBULBS
MAKE "BULBROW :GRASSTOPROW — 2
PLANTBULB 0 5 :BULBROW
PLANTBULB 1 8 :BULBROW
PLANTBULB 2 12 :BULBROW
PLANTBULB 3 20 :BULBROW
PLANTBULB 4 16 :BULBROW
PLANTBULB 5 24 :BULBROW
END

To make the sunrise, you need only have a sprite move upwards carrying
the BALL shape, while the sky changes color: from BLACK to BLUE to SKY
to CYAN. You can use sprite number 10 for the sun, starting it near the top
row of grass towards the right of the screen.

7Thts is because a sprite is 2 character positions high, and the inputs supplied to PUTSPRITE specify the

position of the top-left corner of the shape.

More Logo Projects / 113

MAKE "SUN 10

TO SUNRISE
COLORBACKGROUND :BLUE
TELL SPRITE :SUN
SXY 75 20
CARRY :BALL
SETCOLOR :YELLOW
REPEAT 30 [FORWARD 1 WAIT 10]
COLORBACKGROUND :SKY
REPEAT 30 [FORWARD 1 WAIT 10]
COLORBACKGROUND :CYAN
END

7.4.6. Growing the Flowers Now you must grow the bulbs into flowers. The first step is to set the color
of the tiles for the stem:

TO MAKESTEM
TELL TILE :LEFTSTEM
SETCOLOR (SENTENCE :OLIVE :CLEAR)
END

The color of the stems is OLIVE, slightly darker than the GREEN of the
grass and the bulbs. Note that since all the stem pieces are in the same color
group, you need only set the color of one of the pieces. (See Section 4.3.2.)

To make the flower grow, you want to make it appear that a stem is
growing, pushing up the flower shape carried by a sprite. In order to
accomplish this, you can use a trick: lay down a section of the stem in the
same position as the sprite shape. Since sprites cover tiles, you will not see
the stem at this point. Now move the sprite slowly upwards 8 units (the
height of a tile). As the sprite moves, more and more of the stem will be
uncovered. Every time the STEM procedure is repeated, the tiles will be
placed in a higher position and the flower will grow by an amount equal to
one tile unit. Here is the procedure that accomplishes this:

TO STEM
PUTTILE :LEFTSTEM XCOLUMN YROW +1
PUTTILE :RIGHTSTEM XCOLUMN + 1 YROW + 1
REPEAT 8 [FORWARD 1]
END

The procedures for finding the row and column of a sprite (Section 7.4.1)
come in handy here in positioning the tiles. The extra unit added to the row
coordinate is because sprites are 2 tile spaces high, and you should place the
tile under the lower half of the sprite. The right half of the stem also needs
an extra unit added to its column coordinate.

To make the flower sprout leaves, you simply need to replace an ordinary
stem shape by one of the stem shapes with leaves on it. Pick a height on the
stem a little below the top. Here are procedures that sprout a leaf to the left:

TO LEFTLEAF
PUTTILE :LEFTSTEM1 XCOLUMN YROW + 2
END

4/TI LOGO

and a leaf to the right:

TO RIGHTLEAF
PUTTILE :RIGHTSTEM1 XCOLUMN+1 YROW+3
END

The + 2 and + 3 added to the row determine how far below the current sprite
position the leaf will sprout.

Now you can grow a complete flower. Start with a sprite shaped like a
BULB, grow some stem, change the sprite shape to a BUD, sprout a leaf,
grow more stem, sprout another leaf, change the bud's color, and change the
shape to a BLOOM. The procedure that does this takes as inputs the sprite
number, the number of stem segments to grow, and the flower's color:

TO GROW :S :LENGTH :COLOR
TELL SPRITE :S
REPEAT :LENGTH [STEM]
CARRY :BUD
LEFTLEAF
REPEAT :LENGTH [STEM]
RIGHTLEAF
WAIT 30
SETCOLOR :COLOR
WAIT 30
CARRY :BLOOM
END

By calling this procedure repeatedly, you can grow all the flowers:

TO GROWFLOWERS
MAKESTEM
GROW 0 3 :WHITE
GROW 4 4 :YELLOW
GROW 5 3 :RUST
GROW 1 4 :RED
GROW 3 2 :ORANGE
GROW 2 3 :PURPLE
END

The action of GROWFLOWERS is illustrated in Figure 7.5.

More Logo Projects 1115

MEMEMMIUMMEMINIMEMMEMMEMEMEMMEMMO
EMMEMMEMEMMENIIIMME■MMEMMliMMEMMEMM
MEMEMOMMOMMEMMEMM MMEMMEMMOMMEMM
MINNIMMOMMEMMOMMEMMEMMEMMEMOMMEIMM
MMEMMEMEMOMMEMMMMEMMOMEMEMEMMOMM
MMEMEMMOMMOMEMMMINIMMEMEMEMEMMEMM
MMEMMOMMMEMMEMMEMOMMEMMEMEMOMMEM
MEMMEMEMMMMMMEMMOMEMMEMMEMMOMMEM
INOMMIIMMINIMMINIMMOMEMMMOMMEMMOMMEM
MEMMEMMEMEMMEMMOMMIMMOMMEMMOMMEM
MEMMEMMEMEMtMOMMIMMEMMMMEMMOMME
MEMEIIIMEIpOMOlilEMMlUEMElllEMMn\MMUOMEM
MtiMEfllMi W EiMEiliIIMfaEMiliMINIiMOMtiOM
=M! Mr MEW 7MOlME 7M[SfIIMMUMM

(a)

MOOMMEMMEMMEMMEMMEMMEMEMEMMEMEMM
MMEMMEMMOMMEMMEMEMEMMEMMINOMMEMME
MOMMEMOMMMEMEMMEMMEMMEMMMEMEMMOM
MEMEMMINIMMEMMEMMEMEMEMMINIMMEMMME
MEMMEMMOMMINIMMEMMEMEMEMMEMEMOMME
MEMEMMEMMIIIMMEMMEMMEMMEMMIIMEMMEMM
OMMEMMEMOMMEMMEMMEMEMMEMMEMMEMEM
MEMMEMMEMMEMMEMMEMMEMMEMOMMEMMEM
\EMMOwMEMMEMMEMMEMMEMMEMMEM0MME
MEMMINIV"7MMEMMEMMEMMEMEMMOMEMEMME
MEMO 1MMEMMEMMEMMEMMEMOMMEMMEM
~~~~~~I ~r~v~~~©~~~~~~~i~~~i~~~~~ 

I Mr IEe ZECsaMnMME 

(b) 

iiiiiiiiiMiiiiiiiiiiiiiiii~iiiiii 
ii~~iiiiiiiiiiiiiiiiiiiiiiiiiiii 
MMEMMEMMEMMEMMEMMOMMEMMOMMOMMEMM 
MMOMMEMEMMEMEMEMMOMMOOMMEM\EMMEM 
MIN\MIt1 1MMEMMEMMEMMEMMEMMEMMEMMEM 
=OM JMMEMMEMEMMEMMEMMEMMEMMINIM 
MOMnniinnnEnnEnEwOnnEnMnnnINIMMEM 
MMi1MMI ,JMilEMMEMEa aMMEMEMOMMEMEMM 
MMOMEHMOMMIUMMU NIIMMOMMEMMEMMEM 
MMINi1  IMMMIIMMINIMMI liiMMEMEMMEMMEMEM 
iiiiii iiiR~iN~~iii iiiiOMie~~iiiiii  

iiiiiiiii~iiiiiiiiiiiiiiiiiiiiii 
OMMOOMMESEMOMMEMMOMMEMEMINIMMEMME 
iiiiiiiii~niiiii~n7~~~~~~~~iiiii 
~~~~~i~~~l I~~in7~~l I~~~~~~ME 7~~~~~ 
~~~~~~1 I~~1 I~\~I I~~~I I~~~n7~~1 1~~~~~~ 
MEMEMMI i7\i iMEMl 17MM1 IMMl J\MI r7MMEMM 
MEMEMM1 MCP IMMEI IMECI IMMEI IMMEI IMEMMEM 
MMEMM1+ Mtil iMMCI IMOMMEMI ,JMl'' IMEMMEM 
EM••M•IMMUMMEHMEMIIMMCAMEMAMOMMEM 

i iMl i\EMI IEMMI NIMM1 IMMEI IMMEMME 

10 

411/53300 110111. 

19 
30 
31 
22 
23 

Icl  Id) 
Figure 7.5: Illustrations of the 

GROWFLOWERS procedure. 
The "X" marks in each figure 
show the coordinate locations of 
each sprite as the movie 
develops. 

7.4.7. Combining All the Pieces Now it only remains to put everything together. Begin by clearing the 
screen and setting up a BLACK background. 

TO FLOWERMOVIE 
CLEARSCREENANDSPRITES 
COLORBACKGROUND :BLACK 
MAKEGRASS 
PLANTBULBS 
SUNRISE 
WAIT 30 
GROWFLOWERS 

7.4.8. Elaborations 

The CLEARSCREENANDSPRITES procedure, which clears the screen 
and makes the sprites invisible, is given on page 68. 

With this as a beginning, you can extend the movie in all sorts of ways. 
Make a better sunrise, in which the sky changes through all sorts of beautiful 
colors at dawn. Add a nightfall, in which the sun sets, the sky darkens, and 
the flowers close. Add some clouds that drift by overhead or a bee that flits 
from flower to flower. Movies like this are good projects because you can 
add parts little by little until you end up with something quite elaborate. 



Writing Interactive Programs / 117 

CHAPTER 8 

Writing Interactive Programs 

We've already seen examples of Logo programs that use PRINT to print 

information on the display screen and programs that use READLINE to input 
information from the keyboard. This chapter reviews these commands and 
describes more elaborate ways of handling input and output. As an example, 
we show how to create "instant response" Logo systems for very young 
children. We also show how a Logo-based "dynaturtle" can be used to 
introduce elementary school children to computer projects involving motion 
and simple physics. 

8.1. Controlling Screen Output The Logo PRINT command, as used throughout the preceding chapters, is 
the main command for showing information on the display screen. PRINT 
takes a word or a list as an input, types it on the screen, and moves the 
cursor to the next line. Remember that lists are printed without the outer 
brackets. 

The command TYPE is just like PRINT, except that it does not move the 
cursor to a new line after printing. Compare 

TO COUNT:X 
PRINT :X 
COUNT:X + 1 
END 

COUNT 1 
1 
2 
3 

TO COUNT1 :X 
TYPE :X 
TYPE ", 
COUNT1 :X + 1 
END 

COUNT1 1 
1,2,3,... 

The PRINTCHAR (abbreviated PC) takes a number 0 through 255 as input 
and prints the character corresponding to that number. Recall (from Section 
4.3.3) that these 255 characters include Logo's printing characters plus any 
tiles you have defined. Here's a way to use PRINTCHAR to see all of the 
characters that are currently defined: 

TO SHOWCHARS :N 
IF :N > 255 STOP 
PRINTCHAR :N 
SHOWCHARS :N + 1 
END 



118/TI LOGO 

SHOWCHARS 0 

8.2. Keyboard Input The READLINE command is used to read input from the keyboard, as 
shown in Section 6.4. READLINE causes the computer to wait for you to 
type in a line (terminated by ENTER) and then outputs that line as a list. 
Remember that what you type in will always be interpreted as a list. For 
example, if you type in a single word, READLINE returns a list containing 
that word: 

MAKE "ANS READLINE 
>100 
IF :ANS = 100 PRINT "YES ELSE PRINT "NO 
NO 
IF :ANS = [1001 PRINT "YES ELSE PRINT "NO 
YES 

Using READLINE, you can implement a useful procedure that returns a word 
typed at the keyboard, obtained as the first element of the list returned by 
READLINE: 

TO READWORD 
OUTPUT FIRST READLINE 
END 

Compare the use of READLINE in the READNUMBER procedure on 
page 98 

In addition to the "line at a time" input from READLINE, Logo also 
provides "character at a time" input through the command READCHAR 
(abbreviated RC). READCHAR causes the computer to pause and wait for 
you to type in a single character (without ENTER) and then outputs the 
character that was typed: 

MAKE "ANS READCHAR 
X 
IF :ANS = "X PRINT "YES ELSE PRINT "NO 
YES 

8.2.1. Example: Instant Response for The following program uses READCHAR to provide "instant response" 
Very Young Children control of the turtle for drawing: 

TO INSTANT 
COMMAND 
INSTANT 
END 

TO COMMAND 
MAKE "COM READCHAR 
IF :COM = "F FORWARD 10 
IF :COM = "R RIGHT 30 
IF :COM = "L LEFT 30 
IF :COM = "C CLEARSCREEN 
END 



8.2.2. Keyboard Control of an Ongoing 

Process 

Writing interactive Programs / 119 

This program causes the turtle to move in response to individual 
keystrokes: F for go forward, L for left, R for right, and C for clearing the 
screen and starting over. It can form a good tool for using computer graphics 
with very young children. This same instant-response mechanism is also 
useful in designing languages for use by the physically handicapped, for 
which it is important to minimize the number of keystrokes required. 

It is easy to increase the repertoire of this INSTANT language by adding 
additional lines to the COMMAND procedure. For example, if you want the 
S key to make the turtle draw a small square, you define a procedure called 
SQUARE (say, that draws a square of side 20) and add to COMMAND the 
line 

IF :COM = "S SQUARE 

Section 11.2.1 discusses more elaborate extensions to INSTANT. 

Notice that READLINE and READCHAR both make the computer stop 
and wait for something to be typed. Logo also allows you to write programs 
in which the keyboard is used to control an ongoing process. That is, if a 
character is typed at the keyboard, the program is able to respond to the 
character; but if nothing is typed, the program is able to keep running 
anyway. Such programs are implemented in Logo using the RC? command. 
RC? outputs TRUE or FALSE depending on whether a character has been 
typed at the keyboard. When RC? is TRUE, the next READCHAR command 
returns the character that was typed, otherwise READCHAR has to wait until 
a character is typed.' For example, you can modify the INSTANT program so 
that it makes the turtle move forward continually, turning right or left in 
response to the letters R and L typed at the keyboard. We'll call the resulting 
program DRIVE: 

TO DRIVE 
FORWARD 1 
COMMAND 
DRIVE 
END 

TO COMMAND 
MAKE "COM READKEY 
IF :COM = "R RIGHT 30 
IF :COM = "L LEFT 30 
END 

The difference between this program and INSTANT is that the turtle goes 
forward each time, rather than when an F is typed. Whereas the COMMAND 

program used by INSTANT calls READCHAR, the COMMAND program used 

in DRIVE calls READKEY. READKEY is a procedure that, if a character has 
been typed, outputs that character, and otherwise outputs the empty list. 
READKEY is implemented using RC?: 

'More specifically, characters typed at the keyboard are sased in a Input buffer. READCHAR reads characters 

from the buffer one by one. RC? outputs TRUE if the buffer is not empty. If Logo is doing a lot of 

processing in between characters, and if one types characters very fast, a sequence of characters may build up 

in the buffer, and the program may seem to "fall behind" in its responses to the typed characters. 



122/T1 LOGO 

8.3.2. Activities with a Dynaturtle To try out the dynaturtle, type 

STARTUP 
DT 

At first the turtle will stay at the center of the screen. The COMMAND 
procedure allows three different commands at present. Later you can change 
them in any way you like. 

• If you type R the turtle will turn right 30 degrees. 

• If you type L the turtle will turn left 30 degrees. 

• If you type K you will give the turtle a kick in the direction it is heading. 

The turtle will now keep moving in the direction it started until you give it 
another kick in some direction. 

Start the dynaturtle moving by typing 

STARTUP 
DT 

and then typing the K key for "kick." 

• Make the dynaturtle move in a different direction by typing the R or L key. 

• Make the dynaturtle move horizontally across the screen. 

• Make the dynaturtle go faster. 

• Make the dynaturtle go slower without changing direction. 

• Before you start the dynaturtle, place a marker somewhere on the screen. 
(You can use a tile to form the marker.) Then start the dynaturtle and see if 
you can move the turtle to the marker. If the marker is easy for the 
dynaturtle to get to, move it over a little and try again. 

• Start the dynaturtle from the center of the screen. Can you make it stop? 

• Draw a circular "racetrack" on the screen and see if you can "drive" the 
dynaturtle around a track. 

• Move the dynaturtle to the marker, and make it stop there. 

When you try these activities you may find that some of them are harder 
than you thought. The problems you have making the dynaturtle do what 
you want it to do are similar to the problems astronauts would have moving 
around in outer space or maneuvering a rocket to connect up with a space 
platform or land on the moon. 

8.3.3. Changing the Dynaturtle's After some experimentation with the dynaturtle, you may want to make 
Behavior changes in the dynaturtle procedures. Since changes in the dynaturtle's 

behavior are controlled by the COMMAND procedure, you can start by 
changing that procedure as follows: 

TO COMMAND 
MAKE "COM READKEY 
IF :COM = "R RIGHT 30 
IF :COM = "L LEFT 30 
IF :COM = "K KICK 
END 



Writing Interactive Programs / 123 

If you like, you can change the angle the dynaturtle rotates when you type 
R or L by changing the 30 in COMMAND to another number. 

Your COMMAND procedure would now look like this: 

TO COMMAND 
MAKE "COM READKEY 
IF :COM = "R RIGHT 30 
IF :COM = "L LEFT 30 
IF :COM = "K KICK 
IF :COM = "U PENUP 
IF :COM = "D PENDOWN 
END 

Of course, you can change the key names for carrying out the commands 
by changing the letters on the keyboard. Some people like to have the right 
and left keys next to each other on the keyboard. If you choose S for "left" 
and D for "right," then the COMMAND procedure becomes: 

TO COMMAND 
MAKE "COM READKEY 
IF :COM = "D RIGHT 30 
IF :COM = "S LEFT 30 
IF :COM = "K KICK 
IF :COM = "U PENUP 
IF :COM = "D PENDOWN 
END 

Another possible change is to make the force of the kick a variable. If you 
did this, you would have to change the KICK procedure and the STARTUP 
procedure as well as COMMAND. 

TO KICK :FORCE 
MAKE "VX :VX + :FORCE * ( SIN HEADING ) 
MAKE "VY:VY + :FORCE * ( COS HEADING ) 
END 

You would also have to add a line to STARTUP to set the starting value for 
the force: 

TO STARTUP 
TELL TURTLE 
CLEARSCREEN 
MAKE "VX 0 
MAKE "VY 0 
MAKE "FORCE 1 
END 

You can choose any value you want for the starting force. 



24/TI LOGO 

8.3.4. Sines and Cosines 

You would now have to change the KICK line in the COMMAND procedure 
to read 

IF :COM = "K KICK :FORCE 

Also, you could add two more commands (say, H and S for "harder" and 
"softer") that increased and decreased the force. The COMMAND procedure 
would now be 

TO COMMAND 
MAKE "COM READKEY 
IF :COM = "R RT 30 

IF :COM = "L LT 30 
IF :COM = "K KICK :FORCE 
IF :COM = "U PENUP 

IF :COM = "D PENDOWN 
IF :COM = "H MAKE "FORCE :FORCE + 1 
IF :COM = "S MAKE "FORCE :FORCE — 1 
END 

Now try out the dynaturtle with some of these changes, and see what can 
happen. 

Some other possible changes: 

• Add a "reverse kick" command that makes the dynaturtle move more 
slowly. 

• Add commands that make the turtle print its speed, heading, and kick 
force. 

The dynaturtle program makes use of procedures SIN and COS that 
output the sine and cosine of a given angle. Since numbers in TI Logo must 
be integers, sines and cosines cannot be computed in any straightforward 
way. 

The SIN and COS procedures used by the dynaturtle program take an 
angle as input and return integer approximations to 3 times the sine of the 
angle and 3 times the cosine of the angle. The scale factor 3 was chosen to 
allow for enough different values for kicks: —3, —2, —1, 0, 1, 2, 3, and at 
the same time be a good scale for working with the dynaturtle. 

The implementation of these procedures is based on a clever trick.3  Choose 

a sprite, say, sprite 0, and move it invisibly on the screen. If the sprite is 
moving with speed S at heading H, then the x component of its velocity will 
be S times the sine of H, and they component of its velocity will be S times 
the cosine of H. Since Logo includes built-in operations for retrieving the x 
and y components of a sprite's velocity, you can use this "invisible sprite" 
technique to compute sines and cosines: 

3Tricks such as these are sometimes referred to as computer "hacks" because they take advantage of special 

properties of a particular implementation and usually do not generalize in any meaningful way. This hack is 

due to Roger Kirchner of Carleton College. 



Writing Interactive Programs / 125 

TO SIN :H 
MAKE "ACTIVE WHO 
TELL SPRITE 0 
SETSPEED 3 
SETHEADING :H 
MAKE "ANS XVEL 
TELL :ACTIVE 
OUTPUT :ANS 
END 

TO COS :H 
MAKE "ACTIVE WHO 
TELL SPRITE 0 
SETSPEED 3 
SETHEADING :H 
MAKE "ANS YVEL 
TELL :ACTIVE 
OUTPUT :ANS 
END 

The use of ACTIVE here is to allow the procedures to be used without 
fouling up any TELLs that are used outside the procedure. We use WHO to 
find the current active graphics object and then restore this with TELL before 
leaving the SIN and COS procedures. This is really more general than you 
need for dynaturtle, because ACTIVE will always be the turtle. It is also not 
necessary to set sprite 0's speed to 3 each time. The procedures are shown 
here in general form so that you can use them in other applications as well. 



Logo Music / 127 

CHAPTER 9 

Logo Music 

In addition to working with numbers, words, and lists and creating animated 
graphics, you can use TI Logo II to generate music from notes over a range 
of three octaves. You can play one, two, or three voices simultaneously and 
also make sound effects with a noise generator and a drum.You can execute 
other Logo commands while music is playing, thus providing musical 
accompaniment for programs. You can also synchronize music playing 
with other Logo commands.' 

9.1. Playing Melodies The Logo music system has the following basic organization: you first set 
up the entire piece to be played, using commands that store information in 
an area of computer memory called the music buffer. Afterwards, you play 
the music that has been stored in the buffer. Thus, there are two kinds of 
commands in the music system: commands that enter music information in 
the buffer and commands that play the music. When you are entering music 
(using the first kind of command) you will not hear any notes being played. 

The MUSIC command is used to enter notes in the music buffer. MUSIC 
takes as inputs two lists: a list of pitches and a list of durations. The pitches 
are numbered chromatically, with 0 as middle C. For example, in the 
command 

MUSIC [0240] [4 4 4 4] 

the first list of four numbers enters pitches for the four notes C, D, E, C. 
The second lists gives each note a duration of 4 time units. This is the first 
measure of the tune Frere Jacques. 

To actually hear the music played, give the command PLAYMUSIC 
(abbreviated PM). PLAYMUSIC plays the notes that have been entered in the 
buffer. Every time you execute PLAYMUSIC, the notes in the music buffer 
will be played again. 

Each time you use the MUSIC command, additional notes are appended to 
the end of the buffer. So if you again execute 

MUSIC [0240] [4444] 

and then PM, you will hear the set of four notes played twice—the first two 
measures of Frere Jacques. 

When you enter notes using the MUSIC command, the notes are 
designated to be played in one of four voices. The voice designation is 
controlled by the SETVOICE command. If you do not specify any voice, 
music will go to voice 1. SETVOICE 0 clears the music buffer. Section 9.2 
below shows how to use SETVOICE to play notes in harmony. You may also 
want to make use of the following CM procedure (abbreviation for 
"clearmusic") that clears out the music and sets the voice to voice 1: 

'Music commands are not a part of the first release of TI Logo. 



28 / T I LOGO 

TO CM 
SETVOICE 0 
SETVOICE 1 
END 

Logo has a range of slightly over 3 octaves. Pitch 0 is middle C. The 

highest defined pitch is 24 (C two octaves above middle C). The lowest 
defined pitch is —15 (the pitch A one octave plus one third below middle 
C).2  Figure 9.1 shows the correspondence between Logo pitch numbers and 
conventional music notation: 

A A# B C 

—15 —14 —13 —12 

C# D D# E F F# G G# A A# B C 

—11 —10 —9 —8 —7 —6 —5 —4 —3 —2 —1 0 

C# D D# E F F# G G# A A# B C 

1 2 3 4 5 6 7 8 9 10 11 12 

C# D D# E F F# G —  G# , A A# B C 

13 14 15 16 17 18 19 20 21 22 23 24 

Figure 9.1: Correspondence between Logo chromatic pitch numbers and conventional 
music notation. Middle C is assigned to pitch number 0. 

9.1.1. A Simple Tune Now you can complete Frere Jacques, writing separate procedures for the 
different phrases: 

TO F1 
MUSIC [0240] [4444] 
END 

TO F2 

MUSIC [4 5 7] [4 4 8] 
END 

TO F3 
MUSIC [797540] [3 1 2244] 

END 

TO F4 
MUSIC [0 — 5 0] [4 4 8] 
END 

2The valid pitch range is different when using the MAJOR mode. See Section 9.1.3 below. 



Logo Music / 129 

1.  
J  

Figure 9.2: The music for Frere Jacques. 

Observe how the duration numbers specify time units, so that in this piece 
a duration of 4 corresponds to a quarter note, 8 to a half note, 2 to an eighth 
note, 1 to a sixteenth note, and 3 to a dotted eighth note. 

The complete tune is formed by playing each phrase twice: 

TO FRERE 
F1 
F1 
F2 
F2 
F3 
F3 
F4 
F4 
END 

To play the piece, you use the CM procedure and type: 

CM 
FRERE 
PM 

9.1.2. Tuneblocks The technique of writing each phrase as a separate procedure leads to 
tuneblocks, a musical game invented at MIT by Jeanne Bomberger. 

One way to play tuneblocks is to create new tunes by rearranging the parts 
of a given tune. Here is a new tune assembled from the same blocks used in 
Frere Jacques: 

F1 F4 F1 F4 F3 F2 F3 F2 F4 F4 

To experiment with forming new tunes from a given set of blocks, you clear 
the buffer with CM, execute the sequence of procedures for the blocks you 
want to play, then follow with PM. Since each tuneblock is a separate Logo 
procedure, you can break the sequence of procedures into as many Logo 
command lines as you wish. For instance, the commands 

CM F1 F4 F1 F4F3F2F3F2F4F4PM 

and 

CM 
F1 F4 F1 F4 
F3 F2 F3 F2 
F4 F4 
PM 

both play the same tune. 



30/TI LOGO 

Another way to use tuneblocks is as a musical jigsaw puzzle—you supply 
someone with the blocks for a tune, presented in some arbitrary order, and 
ask him to reconstruct the tune. Here, for instance, is a set of blocks: 

TO B1 
MUSIC [2 7] [4 4] 
END 

TO B2 
MUSIC [2 4 5] [2 2 4] 
END 

TO B3 
MUSIC [7 9 7 5] [3 1 2 2] 
END 

TO B4 
MUSIC [4 5 7] [2 2 4] 
END 

TO B5 
MUSIC [4 0] [2 6] 
END 

See if you can guess (and reconstruct) the tune from which these blocks were 
taken. Remember that a given block may be used in the tune more than once. 

Here is a set of blocks for a much more difficult tuneblocks puzzle. See if 
you can construct a tune using these: 

TO C1 
MUSIC [5 4 2] [2 2 4] 
END 

TO C2 
MUSIC [0 —2] [4 4] 
END 

TO C3 
MUSIC[-2 —3 —5][224] 
END 

TO C4 
MUSIC [5 2] [4 4] 
END 

TO C5 
MUSIC[-2021[224j 
END 

TO C6 
MUSIC 1-3 —20][224] 
END 

TO C7 
MUSIC [2 5 3 2] [2222] 
END 



9.1.3. Specifying Notes 

Logo Music / 131 

TO C8 
MUSIC [7 6 7 9] [2222] 
END 

Answers to the two tuneblocks puzzles appear at the end of this chapter. 
In her work at MIT, Bamberger has used tuneblocks and other Logo-based 

music programs to teach music as well as to study people's intuitive notions 
about music and tonality and to track the development of musical 
intelligence. See her papers [2, 3, 4] for details. 

The MUSIC command allows you to create simple melodies by specifying 
lists of pitches and durations. You can also control the loudness, articulation, 
and tempo of the notes with additional commands included in the Logo 
system. 

REST 
The REST command is used to insert rests (silences) into the music. REST 

takes a single number as input and inserts a rest of that duration into the 
music buffer. 

STACCATO vs. LEGATO 
STACCATO and LEGATO are used to control the amount of "dead time" 

that Logo inserts between successive notes. Logo normally plays notes with a 
legato articulation, that is, with only a small separation between successive 
notes. To change this, give the STACCATO command. This will cause all 
subsequent notes to be played detached. The LEGATO command restores the 
slurred articulation.3  

Controlling Volume 
The SETVOLUME command takes a numeric input that controls the 

volume of subsequent notes entered with the MUSIC command. Volume 0 is 
the softest and 15 is the loudest. Each unit from 0 to 15 represents a 2-decibel 
increase in volume. 

Controlling Tempo 
The SETTEMPO command controls the tempo at which music is played. 

SETTEMPO takes as input a number that determines the actual durations of 
subsequent notes as specified in the MUSIC command. When the tempo is set 
to T, a note of duration D will last for (60 / T) x D seconds. When you 
execute the command 

SETTEMPO 100 

each subsequent duration lasts 60/100 or 6/10 second. 

SETTEMPO 300 

reduces the duration to 60/300 or 2/10 second. When Logo is started, the 
default tempo setting is 300. 

3More precisely, when notes are played staccato, they sound for 5/60 of a second, with the remainder of the 
note's duration as dead time. When notes are played legato, they sound for all but the final 5/60 of a second. 



32/TI LOGO 

Here is an example of tempo change using SETTEMPO to produce an 
accelerating trill: 

TO TRILL :TEMPO 
IF :TEMPO > 3000 STOP 
SETTEMPO :TEMPO 
MUSIC [0 2] [1 1] 
TRILL :TEMPO + 20 
END 

CM 
TRILL 10 
PM 

MAJOR vs. CHROMATIC 
These two commands (which take no inputs) control the meaning of 

the pitch numbers used with the MUSIC command. When you specify 
CHROMATIC, pitch numbers designate half steps: 0 is C, 1 is C-sharp, 2 is 
D, and so on. With MAJOR, successive numbers designate notes on the C 
major scale: 0 is C, 1 is D, 2 is E, and so on. For example, here are the 
MUSIC commands for the first phrase of Frere Jacques using 
CHROMATIC: 

MUSIC [0 2 4 0] [4444] 

and using MAJOR: 

MUSIC [0 1 2 0] [4 4 4 4] 

With CHROMATIC, the range of defined pitch numbers is — 15 through 
24. With MAJOR, the range is — 9 through 14. When Logo is started, 
CHROMATIC is the default. Figure 9.3 shows the correspondence between 
Logo pitch numbers and conventional music notation for the MAJOR mode: 

A B C 

—9 —8 —7 

D E F G A B C 

—6 —5 —4 —3 —2 —1 0 

D E F G A B C 

1 2 3 4 5 6 7 

D E F G A B C 

8 9 10 11 12 13 14 

Figure 9.3: Correspondence between Logo pitch numbers and conventional music notation 

for the MAJOR mode. Middle C is again assigned to pitch number 0. 

MAJOR is useful for playing simple tunes in the key of C that require no 
sharps or flats. CHROMATIC is required for more complicated tunes or for 
tunes in other keys. 



9.2. Multiple Voices 

Logo Music / 133 

The NOTE Command 
You can use NOTE as an alternative to MUSIC to enter notes in the music 

buffer. NOTE takes three numbers as inputs: a duration, a pitch, and a 
volume. For example, 

NOTE 5 4 10 

enters into the music buffer a note with duration 5, pitch 4, and volume 10. 
Unlike MUSIC, NOTE is used to enter a single note at a time rather than a 
list of notes. Also, the volume is specified explicitly for each note rather than 
taken from the default volume (as determined by SETVOLUME). 

Comments on Specifying Notes 
The commands listed in this section, such as SETTEMPO, SETVOLUME, 

and so on, have no effect on notes that are already in the music buffer. For 
instance, suppose you create some notes using MUSIC or NOTE, play the 
music with PM, then change the tempo using SETTEMPO and do PM again. 
The second PM will sound the same as the first, because SETTEMPO 
changes the tempo only for notes that will be added to the music buffer after 
the SETTEMPO command. 

The music buffer can hold only a fixed number of notes. If you try to add 
notes when the buffer is full, Logo signals the error 

OUT OF NOTES 

After issuing the PM command, you can execute other commands while 
the music is playing. Note that pressing the BACK key does not stop the 
music. To stop music while it is playing you can reset the buffer with 
SETVOICE 0 or use the CM (clear music) procedure on page 128. Entering 
the editor by defining or editing a procedure (or a shape or tile) will also stop 
playing and clear the music buffer. 

So far, we have been generating music for a single voice only. Logo allows 
you to play music using up to three voices plus a noise generator. To do this, 
simply use SETVOICE to designate the voice for subsequent notes specified 
with MUSIC or NOTE. 

For example, you can make a three-part round of Frere Jacques using 

the basic procedure from page 129. A good tempo setting for this is 400. 

TO FRERE 
F1 F1 
F2 F2 
F3 F3 
F4 F4 
END 

Voice 1 should do FRERE: 

SETTEMPO 400 
SETVOICE 1 
FRERE 

Voice 2 should rest for two repeats of F1 (a total of 32 duration units) and 
then do FRERE: 

SETVOICE 2 
REST 32 



34 / T I LOGO 

9.3. Musical Accompaniment 
to Logo Procedures 

FRERE  

Voice 3 should rest for 64 units and then do FRERE: 

SETVOICE 3 
REST 64 
FRERE 

Now when you type PM you will hear all three voices playing together. 

Rhythm Accompaniment 
In the Logo music system, voices 1, 2, and 3 play tones. Voice 4 is a noise 

generator that can be used to supply rhythm accompaniment. One easy way 
to do this is with the DRUM command. DRUM takes a list of durations 
(similar to MUSIC) and plays a corresponding "drumbeat." For example, 

TO BOOMCHACHA 
DRUM [4 2 2] 
END 

will play a "quarter-eighth-eighth" drum beat. 
You can add this to the Frere Jacques round by using voice 4 for the 

drum. Then the entire round is 

TO FRERE.JACQUES.ROUND 
SETTEMPO 400 
CM 
SETVOICE 1 
FRERE 
SETVOICE 2 
REST 32 
FRERE 
SETVOICE 3 
REST 64 
FRERE 
SETVOICE 4 
REPEAT 24 [BOOMCHACHA] 
END 

PM 

You need not use DRUM only with voice 4. When set to one of the other 
voices, DRUM uses a short, low tone to make the beat. Conversely, you can 
specify "pitches" for voice 4 using MUSIC or NOTE. Depending on which 
"pitch" you choose, voice 4 will generate one of four different sounds. 

We already mentioned that you can continue to execute Logo commands 
while music is playing. In this way you can provide musical accompaniment 
to other Logo procedures. Simply generate some music, start it playing 
with PM, and then start up your other procedures. You can also use the 
LOOPMUSIC command in place of PM. LOOPMUSIC is almost like PM 
except that it plays the music in the music buffer over and over. If you start 
music playing with LOOPMUSIC, the only way to stop it is by resetting the 
buffer with SETVOICE 0 or by entering edit mode. 



Logo Music / 135 

Synchronizing Music to Logo Procedures 
In addition to playing music and executing procedures at the same time, 

you can also synchronize music to Logo procedures; for example, you can 
synchronize music to the motion of sprites on the screen. This is done using 
the PLAYNOTE command. When you issue a PLAYNOTE command, Logo 
will play the next note from the music buffer, and then wait for the duration 
of the note. 

To illustrate how to use PLAYNOTE for synchronizing music and graphics, 
let's return to the birds movie developed in Section 4.4. Recall that this was 
a movie in which a flock of birds moved across the screen, flapping their 
wings. The flapping was accomplished by changing the shapes of the sprites 
that represented the birds: 

TO FLAP 
CARRY :UPWING 
WAIT 30 
CARRY :DOWN WING 
WAIT 30 
FLAP 
END 

To synchronize the flapping to music, the only change you need make is to 
the FLAP procedure, replacing WAIT by PLAYNOTE: 

TO FLAP 
CARRY :UPWING 
PLAYNOTE 
CARRY :DOWNWING 
PLAYNOTE 
FLAP 
END 

Now enter some music in the buffer and run the entire movie as before. The 
result is that the birds beat their wings with each new note. 

PLAYNOTE works with only one voice at a time. If there is more than one 
voice entered in the music buffer, PLAYNOTE will use the current voice 
specified by SETVOICE. 

Answers to the Tuneblocks Puzzles 
The first set of blocks can be assembled to form London Bridge is Falling 

Down. To play the tune, type 

CM 
B3 B4 B2 B4 
B3 B4 B1 65 
PM 

The second set of blocks is taken from a piece by Bela Bartok, based on a 
Slovakian folk tune (Bartok's For Children, Sz. 42): 

CM 
C3 C5 C8 C8 
C3 C5 C8 C8 
C2 C7 C6 C4 
C2 C7 C6 C8 
PM 



36/TI LOGO 

This puzzle is more difficult than the preceding one not only because there 
are more blocks and the tune is less familiar, but also because the harmonic 
structure is not typical of the modalities found in western music. For this 
reason it is correspondingly more difficult for people accustomed to western 
music to assemble the blocks into patterns that "make sense." In solving 
either puzzle, you may be able to create a tune that is as interesting to you as 
the original. Either solving the puzzle or inventing your own tune opens the 
door to exciting musical explorations. 



Inputs, Outputs, and Recursion 1137 

CHAPTER 1 0 

Inputs, Outputs, and Recursion 

One important difference between Logo and other common programming 
languages is that, in Logo, words and lists can be used as inputs and outputs 
to procedures. Therefore, when you program in Logo, you can work in terms 
of operations that act on entire words and lists, rather than only on 
individual numbers and characters. Consider the DOUBLE.LIST procedure 

that was introduced on page 84: 

TO DOUBLE.LIST :X 
OUTPUT SENTENCE :X :X 
END 

PRINT DOUBLE.LIST [DO RE MI] 
DO RE MI DO HE MI 

The importance of making this procedure OUTPUT its result is not merely so 
that you can PRINT the result, but so that you can use the result as an input 
to another procedure that can perform further operations. For instance, if 
you have an operation REVERSE that reverses a list (as we shall discuss in 
Section 10.1 below), then you can produce the reverse of the double of a list 
X by 

REVERSE DOUBLE.LIST :X 

More generally, you can construct complex operations on words and lists as 
successions of procedures, each of which performs a simple operation and 
passes the result to the next procedure. To obtain an operation that removes 
the last word from a list, reverses what is left, and doubles the result, you can 
write: 

DOUBLE.LIST (REVERSE (BUTLAST :X)) 

as in the command 

PRINT DOUBLE.LIST (REVERSE (BUTLAST [A B C D])) 
CBACBA 

which produces the chain of operations shown in Figure 10.1. Building up 
complex operations by combining simpler operations is common 
programming practice in working with numbers. For example, it is natural to 
think of computing (x — 1)2  + 1 in terms of the simpler operations of 
subtracting 1 from a number, squaring the result, and adding 1. Logo enables 
you to use the same kind of strategy in dealing with words and lists. 

The ability to construct complex operations as combinations of simpler 
ones is particularly powerful when combined with another problem-solving 
strategy: One can often solve a problem by first solving a simpler problem of 
the same sort and then making a simple modification to the answer. For 
example, suppose you want to write a procedure that counts the number of 
words in a list. Imagine that you already know how many words are in the 
BUTFIRSTof the list. Then you could solve your original problem by simply 



38/TI LOGO 

10.1. REVERSE 

DOUBLE LIST REVERSE BUTLAST 

/ \ / \ \ 
[CBACBA] [CBA] [ABC] [ABCD] 

Figure 10.1: Chain of inputs and outputs in a sequence of list operations. 

taking the number of words in the BUTFIRST and adding 1. 
Recursive procedures, in general, are the computational analogues of 

strategies that attack problems by reducing them to simpler problems of the 
same sort. Given the ability of Logo procedures to manipulate words and 
lists, this implies that many useful word and list operations can be 
implemented as surprisingly simple recursive procedures. This chapter 
examines a few of them. We consider first a number of procedures involved 
with reversing words and lists. Then we discuss operations that select words 
from lists and test whether a word is a member of a list. Finally, we show 
how the problem of converting numbers from one base to another can be 
solved by a simple recursive strategy. 

TI Logo II includes a built-in operation called REVERSE that reverses 
words or lists.' If the input to REVERSE is a word, then REVERSE returns 
the word with the characters reversed: 

PRINT REVERSE "STRESSED 
DESSERTS 

PRINT REVERSE "RUMPLESTILTSKIN 
NIKSTLITSELPMUR 

PRINT REVERSE REVERSE "RUMPLESTILTSKIN 
RUMPLESTILTSKIN 

If the input to REVERSE is a list, then REVERSE returns a list of the 
elements in reverse order: 

PRINT REVERSE [I AM WHAT I AM] 
AM l WHATAM I 

PRINT REVERSE [HELLO] 
HELLO 

Even though REVERSE is included as a primitive operation in TI Logo II, 
we'll show how you can write such a procedure, since reversing is a good 
illustration of recursive programming. In order not to conflict with the 
built-in REVERSE, we'll write separate procedures for reversing words and 
lists, called REVWORD and REVLIST. 

1For the first release of TI Logo, use one of the procedures, REVLISTor REVWORD, given in Sections 10.1.1 
and 10.1.2, instead of REVERSE. 



Inputs, Outputs, and Recursion / 139 

10.1.1. Reversing Words Consider the problem of writing a procedure REVWORD that reverses a 

word: 

PRINT REVWORD "HELLO 

OLLEH 

Logo's LAST and BUTLAST operations, which encourage thinking about a 
word in terms of its last character and the rest of the word, suggest a 
recursive strategy for implementing the REVWORD procedure. It is based on 
the following idea: suppose you are given a word, say BIRD, and you are 
asked to reverse it. Now imagine that you have somehow managed to 
generate the reverse of all but the last character of the word—RIB. Then all 
you have to do to reverse the original word is to take the last character, D, 
and place it at the front of what you already have—DRIB. This reduces the 
problem of reversing a word to the problem of reversing a shorter word, 
namely, the BUTLASTof the word. That problem reduces in turn to reversing 
a still shorter word, namely, the BUTLASTof the BUTLAST, and so on, with 
shorter and shorter words. You can diagram this process as follows: 

REVWORD "BIRD is D RIB 

or the last character of BIRD added in front of RIB. But 

RIB is REVWORD "BIR which is R F—> IB 

or the last character of BIR added in front of IB. But 

IB is REVWORD "BI which is I B 

or the last character of BI added in front of B. Now put all these together: 

REVWORD "BIRD = D <----, (REVWORD "BIR ) 

= D H R <--> (REVWORD "BI ) 
= D~-->RHI4---* (REVWORD "B) 
=D<-->R4--->IE-->B 

This strategy, reducing the problem of reversing a word to the problem of 
reversing BUTLAST of the word, leads to the following recursive procedure: 

TO REVWORD :X 

OUTPUT WORD (LAST :X) (REVWORD BUTLAST :X) 
END 

However, if you execute this procedure, it will not work. Instead Logo runs 
out of space. The problem is that there is no stop rule. Nothing tells 
REVWORD to stop taking LASTs and BUTLASTs of its input, and the 
procedure runs until Logo runs out of storage. At some point, REVWORD 
should simply output an answer directly without reducing the problem to one 
of reversing a still shorter word. For example, if the word to be reversed is a 
single character, then REVWORD of the word is the word itself, so you can 
add to REVWORD the stop rule: 

IF FIRST :X = :X THEN OUTPUT :X 



40 / T I LOGO 

where FIRST :X being equal to :X signals that :X consists of a single 
character. So here is the complete procedure: 

TO REVWORD :X 
IF FIRST :X = :X OUTPUT :X 
OUTPUT WORD (LAST :X) (REVWORD BUTLAST :X) 
END 

10.1.2. Reversing Lists Similar reasoning can be applied to produce a procedure REVLIST that 
takes a list as input and returns the list of words in reverse order, as in 

PRINT REVLIST [OH SAY CAN YOU SEE] 
SEE YOU CAN SAY OH 

As before, the problem reduces to combining the LAST of the input list with 
REVLIST of the BUTLAST; however, since you will be combining lists rather 
than words, you should use SENTENCE rather than WORD to form the 
combination. The stop rule checks for the list being reduced to the empty list, 
in which case the procedure returns the empty list. 

TO REVLIST :X 
IF :X = []THEN OUTPUT[] 
OUTPUT SENTENCE (LAST :X) (REVLIST BUTLAST :X) 
END 

You can combine REVWORD and REVLIST to obtain a procedure 
REVALL that takes a list as input and returns a list of the words in reverse 
order, with each word reversed, as well: 

PRINT REVALL [OH SAY CAN YOU SEE] 
EES UOY NAC YAS HO 

All you need to do to implement REVALL is to modify REVLIST so that it 
REVWORDs the LAST word of its input before combining that with the 
result of reversing the BUTLAST: 

TO REVALL :X 
IF :X = []THEN OUTPUT[] 
OUTPUT SENTENCE (REVWORD LAST :X) (REVALL BUTLAST :X) 
END 

10.1.3. Designing Recursive Procedures The reasoning that led to these procedures is typical of most recursive 
procedures that involve words and lists: 

• There is a reduction step that reduces the problem to a similar problem on 
a shorter word or list (usually the BUTFIRSTor BUTLAST of the input). 

• There is a stop rule that checks for some simple case (usually the input 
being reduced to a single element, or to the empty word or the empty list).2  

2Notice that in the actual procedure, the stop rule is written before the reduction step. But when you 

formulate a recursive solution, you most likely discover the reduction step first and then design an 

appropriate stop rule 



Inputs, Outputs, and Recursion / 141 

REVWORD  x BIRD 

IF FIRST :X = .X THEN OUTPUT X 
r —t 

OUTPUT WORD LAST :X REVWORD BUTLAST .X I 

outputs DRIB 

2WORD  

  

 

x BIR  

10.2. Recursive Procedures that 
Manipulate Lists 

10.2.1. The PICK Procedure 

IF FIRST .X= :X THEN OUTPUT :X 

✓ OUTPUT WORD LAST •X I REVWORD BUTLAST :% X I 
L _J 

outputs RIB 

X BI 

IF FIRST :X= :X THEN OUTPUT :X 

OUTPUT WORD LAST :X I  REVWORD BUTLAST •X I 
L J 

\--outputs IB 

X B 

IF FIRST :X= :X THEN OUTPUT :X 

outputs B 

Figure 10.2: Procedure calls in executing REVWORD "BIRD. 

Note the use of recursion and the fact that each procedure must explicitly 
OUTPUT its result to the procedure that calls it, as noted on page 79. Figure 
10.2 shows the pattern of inputs and outputs that results from executing 

REVWORD "BIRD 

Logo's list operations FIRST, LAST, BUTFIRST, and BUTLAST are the 
basic ways to reduce lists to simpler lists. List operations can often be 
implemented by means of recursive strategies that reduce the problem of 
performing some operation on a list to the problem of performing a similar 
operation on the BUTFIRST (or BUTLAST) of the list. This section presents 
two operations that can be implemented in this way. 

One of the most useful operations to have in working with lists is the 
ability to select an item from a list. Consider the problem of writing a 
procedure PICK that takes a number and a list as inputs and outputs the 
designated item from the list: if the number is 1, PICK outputs the first 
item in the list; if the number is 2, PICK outputs the second item in the list; 
and so on. 

There is a recursive strategy for computing PICK in terms of the operations 
FIRST and BUTFIRST. You can reduce the problem of picking an item from 
a list to the problem of picking an item from the BUTFIRST of the list: the 
nth item of a list is the same at the (n — 1)st item of the BUTFIRST of the 
list. The recursive plan is: 

2' REVWDRD 

2WORD  



142 / T I LOGO 

• Reduction Step: to PICK the nth item from a list, PICK the (n — 1)st item 
from the BUTFIRSTof the list. 

• Stop Rule: if n = I, then output the FIRST item in the list. 

This strategy can be expressed as the following Logo procedure: 

TO PICK :N :X 

IF :N = 1 OUTPUT FIRST :X 

OUTPUT PICK (:N — 1) (BUTFIRST:X) 

END 

Figure 10.3 shows the chain of procedure calls and the inputs and outputs in 
executing: 

PICK 3 [A B C D] 

where picking the 3rd item of [A B C D] reduces to the picking the 2nd item 
of [B C D] which reduces to picking the 1st item of [C D], which is C.3  

By combining PICK with RAND (page 80) you get a useful operation that 
selects an item at random from a list of possibilities. 

TO PICKRANDOM :X 

OUTPUT PICK (1 + RAND (LENGTH :X)) :X 

END 

This procedure uses the LENGTH operation that is included in TI Logo II. 
LENGTH takes a list as input and returns the number of items in the list.4  

N 3 

X CA BC D3 

IF :N.1 OUTPUT FIRST :x 
,— 

OUTPUT I PICK (:N-1)(BUTFIRST:X) I 
L _ J 

N 2  

X iCB C D] 

IF :N 1 OUTPUT FIRST :X 

OUTPUT LICK (_N-1)(BUTFIRST:X) I 

PICK 

outputs C 

PICK 

PICK 
N 1 

X [C 03 

\-- outputs C 

IF:N=1 OUTPUT FIRST :X 

outputs C 

Figure 10.3: Procedure calls in 
executing PICK 3 
[A B C Di. 

3If you call PICK with N larger than the length of the list, then the procedure will return the empty list. For 

example, trying to pick the 5th item of [A B C D] reduces to the 4th item of [B C D], the 3rd item of [C D], 
the 2nd item of [D], and finally PICK is called with N equal to 1 and X equal to the empty list. At this point 

PICK tries to compute FIRST of X. In the first release of TI Logo FIRST of the empty list returns the empty 
list. 

4LENGTH can also take a word as input, in which case it returns the number of characters in the word. 
LENGTH is not included in the first release of TI Logo, but it can be implemented as a recursive Logo 

procedure (see note in Section 7.2). 



10.2.2. The MEMBER? Predicate 

Inputs, Outputs, and Recursion / 143 

Observe the inputs to PICK and RAND: if the length of the list is n, then 
RAND (LENGTH :L) returns a number selected at random between 0 and 

n — 1. You should add 1 to this to produce a random number between 1 and 

n, which becomes the input to PICK. 

The MEMBER? predicate takes a word and a list as inputs and checks 
whether the word is a member of the list, outputting TRUE or FALSE 
accordingly. The recursive strategy here is that it is easy to check if the 
desired word is the FIRST item in the list. If it is, then MEMBER? should 
output TRUE. If not, you check to see if the word is in the BUTFIRST of the 
list, and so on. If the list ever becomes empty, you have run out of elements 
to check the word against, so MEMBER? should output FALSE. The 
resulting procedure is 

TO MEMBER? :WORD :LIST 
IF :LIST = [ ] OUTPUT "FALSE 
IF :WORD = (FIRST:LIST) OUTPUT "TRUE 
OUTPUT MEMBER? :WORD (BUTFIRST:LIST) 
END 

Converting to Pig Latin 
As an example of using MEMBER? and recursion, you can write a 

program that converts a sentence to pig latin. For each word in the sentence, 
you must move the leading consonants to the end of the word and add "ay" 
as in 

Isthay entencesay isay inay igpay atinlay. 

Since you need to strip off consonants, it is useful to have a predicate that 
checks whether a word begins with a vowel. That's easily done: 

TO BEGINS.WITH.VOWEL? :W 
OUTPUT MEMBER? (FIRST :W) [A E I 0 U] 
END 

Notice that this outputs TRUE or FALSE because MEMBER? outputs TRUE 
or FALSE. 

Here's a program that converts a single word to pig latin: 

TO PIG :W 
TEST BEGINS.WITH.VOWEL? :W 
IFT OUTPUT WORD :W "AY 
IFF OUTPUT PIG WORD (BUTFIRST :W) (FIRST :W) 
END 

The cleverness in PIG is the recursive call that ensures that PIG will keep 
stripping letters off the front of the word until it reaches a vowel. To better 
understand this point, you should draw a diagram that gives the sequence of 
recursive calls in computing 

PRINT PIG "STRING 
INGSTRAY 



144/TI LOGO 

10.3. Radix Conversion 

Now, if you work word by word, you can convert an entire sentence. The 
trick is to think recursively again: 

TO PIGL :S 
IF :S = [ ] OUTPUT [ ] 
OUTPUT SENTENCE (PIG FIRST :S) (PIGL BUTFIRST :S) 
END 

PRINT PIGL [THIS IS ANOTHER RECURSIVE PROCEDURE] 
ISTHAY ISAYANOTHERAY ECURSIVERAY OCEDUREPRAY 

The strategy used in PIGL is a standard way to "do something to every 
item in a list." The idea is to reason as follows. Suppose you have already 
converted the words in the BUTFIRSTof the list. Then you need only 
SENTENCE this with the result of converting the first word in the list, and 
you are done. In this way, the problem of converting the entire list reduces to 
converting BUTFIRSTof the list, which reduces to BUTFIRSTof that list, 
and so on, and so on. Finally the problem is reduced to that of converting 
the empty list, for which the answer is empty. 

As a final example of a problem that seems difficult but has a simple 
recursive solution, we consider the problem of converting an integer written 
in base 10 notation to some other base, say, base 8. For instance, we would 
like to find that 65 base 10 is written as 101 in base 8, 100 base 10 is 144 base 
8, 1000 base 10 is 1750 base 8, and so on. 

There is a clever recursive strategy for solving this problem. Suppose that n 
is some integer and that you want to find the string of digits that represents n 
in base 8. Think about what such a representation means. For example, to 
say that 100 base 10 is written as 144 base 8 means that 

100 = 1 x 8 x 8 + 4 x 8 + 4 = 144base8 

The key insight is that it is easy to find the last digit of the string of digits 
that represents n: this is just the remainder when n is divided by 8: 

REMAINDER 100 8 is 4 

Now suppose you take the string of digits that represents n and strip off the 
last digit. In terms of base 8 representation, that corresponds to shifting 
everything one place to the right and dropping the last digit. But this 
corresponds precisely to dividing the number by 8 and dropping the 
remainder. That is to say, if you take the string of digits that represents n in 
base 8 and leave off the last digit, what you are left with is the string of digits 
that represents the integer quotient of n by 8, written in base 8: 

QUOTIENT 100 8 is 12, and 12 represented in base 8 is 14 

So now you have a simple description of the string of digits that represents 
n in base 8 

• The LAST digit is the remainder of n by 8. 

• The BUTLAST of the string is the base 8 representation of integer quotient 
of n by8. 

So the problem of representing n in base 8 reduces to representing the 
quotient of n by 8 in base 8, which reduces further, and so on. The 
reductions stop when you reach a quotient that is less than 8, which is 
represented in base 8 as a single digit. 



Inputs, Outputs, and Recursion / 145 

Here is how to generate n in base 8: 

• If n<8, the result is the digit for n.5  

• Otherwise 

* Find the digits that represent the quotient of n by 8, and 

* Append to these the remainder of n divided by 8. 

Using the Logo WORD operation to glue numbers together, this strategy 
translates into the procedure: 

TO BASE8 :N 
IF :N < 8 OUTPUT DIGIT:N 
OUTPUT WORD BASE8 (:N/ 8) 

DIGIT REMAINDER :N 8 
END 

The DIGIT procedure is used to take a single-digit number and convert it to 
the corresponding character. If you start with a list of these characters:6  

MAKE "DIGITLIST (SE "0 "1 "2 "3 "4 
„5 "6  „7 "8 „9 ) 

then you can implement DIGIT as: 

TO DIGIT:N 
OUTPUT PICK :N + 1 :DIGITLIST 
END 

(Note the 1 added to N: the first digit in the list, for example, is the digit 0.) 
Of course, there is nothing special about base 8. You can convert to any 

base less than 10 in the same way: 

TO BASE :N :B 
IF :N < :8 OUTPUT DIGIT:N 
OUTPUT WORD BASE (:N/:B) :B 

DIGIT REMAINDER :N :B 
END 

For example 

PRINT BASE 1000 2 
1111101000 

For bases larger than 10, you can use the same strategy, except that you 
will need "digits" representing the single-digit numbers larger than 10. For 
instance, in base 16 you can represent 10 by the letter A and 11 by the letter 
B, and so on.5  All you need to do is add more items to DIGITLIST: 

5Remember that in TI Logo, you must distinguish between a number, say 5, and a character, say "5. For doing 

arithmetic, you use numbers, and for doing word operations, you use characters. In this case we are 

assembling the converted number using word operations, so the digit used must be the character "5 rather 
than the number 5. 

6This is the "hexadecimal" notation commonly used for specifying computer memory addresses. 



148/TI LOGO 

MAKE "DIGITLIST (SE "0 "1 "2 "3 "4 
115 ,,6 17 118 „9 

"A"B"C"D"E"F) 

PRINT BASE 20000 16 
4E20 

PRINT BASE 20000 12 
B6A8 



Advanced Use of Lists 1147 

CHAPTER 11 

Advanced Use of Lists 

We've seen how words can be grouped together into Logo lists. But lists in 
Logo can be used for more than just collecting words. For example, the 
random-sentence generator of Section 7.2 picked its nouns from a list: 

MAKE "NOUNS [DOGS CATS CHILDREN TIGERS] 

Suppose, however, you want to make sentences using "nouns" that aren't 
single words. For example, you may want to make sentences about dogs, 
cats, children, tigers, and pack rats. You can't do this by adding the two 
words PACK RATS to the above lists as in 

MAKE "NOUNS [DOGS CATS CHILDREN TIGERS PACK RATS] 

because making a sentence whose nouns are words picked at random from 
this list of six items would give results including things like 

PACK LAUGH 
RATS RUN 

What you need to do is to take the two words PACK RATS and group these 
together as a single item within the list of nouns. You can do this in Logo by 

MAKE "NOUNS [DOGS CATS CHILDREN TIGERS [PACK RATS]] 

What you have now is a list of five items. The first four items in the list are 
words: DOGS, CATS, CHILDREN, TIGERS. The fifth item in the list is itself 
a list [PACK RATS] consisting of two words, PACK and RATS. When you 
pick items from the list NOUNS, you may get a single word like DOGS, or 
you may get the two-word list [PACK RATS]. This new value of NOUNS 
gives the desired results in the sentence generating program of Section 7.2: 

DOGS BITE 
PACK RATS LAUGH 

The general point here is that in Logo the items in a list can be, not only 
words, but also other lists. 

11.1. Hierarchical Structures If you think of a list of words as a simple list (or one-level list), then the 
NOUNS list above can be considered to be a two-level list, that is, a list with 
an element that is itself a list. But there is no reason to stop there. In general, 
you can have lists whose items are themselves lists whose items are lists, and 
so on. This general notion of a list in Logo provides lots of power and 
flexibility in dealing with complex structures. For example, Figure 11.1 



PRESIDENT VICE-PRESIDENT 

EXECUTIVE 

SENATE 

LEGISLATIVE 

HOUSE 

JUDICIAL 

COURT 

481 T1 LOGO 

11.1.1. List Operations 

Figure 11.1: Hierarchical Organization of U.S Government. 

shows a tree structure that represents part of the organization of the U.S. 
government. 

From our point of view, the important thing about this structure is that it 
is a hierarchy; that is, it consists of parts that themselves consist of parts, 
and so on. You can represent the tree structure in Figure 11.1 as the Logo list 

[ [EXECUTIVE [PRESIDENT VICE-PRESIDENT]] 
[LEGISLATIVE [SENATE HOUSE]] 
[JUDICIAL [COURT]] ] 

This is a list of three items.' The first item, which is the list 

[EXECUTIVE [PRESIDENT VICE-PRESIDENT]] 

is itself a list of two items, of which the first is the word EXECUTIVE and 
the second is a list of two words, and so on. 

Logo's use of lists is adapted from the programming language Lisp, which 
was developed for research in artificial intelligence. Lists have proved to be 
indispensable in programs that deal with symbol manipulation and complex 
data structures, and their presence in Logo and Lisp is largely responsible for 
the fact that programming in these languages is very different from working 
in languages like BASIC and Fortran. In those languages, complex data 
structures must be encoded in terms of numbers, character strings, and 
arrays. Lists, however, allow many kinds of complex hierarchical structures 
to be represented directly, and therefore lists play a major role in computer 
applications dealing with complex data structures. In particular, they are the 
workhorse of most programs that are heavily involved with symbolic 
expressions, rather than just numerical data. The projects in Section 11.3 
illustrate how lists are used in this way. However, this hardly scratches the 
surface of what can be done. The book by Winston and Horn [19] provides 
many examples of the uses of lists in symbol manipulation in the context of 
the language Lisp. 

We've already seen how to use the Logo operations FIRST, LAST, 
BUTFIRST, BUTLAST, and SENTENCE for working with "simple" lists of 
words. These same operations extend to work with complex lists, as well. For 
example, suppose you create a complicated list: 

MAKE "TRY [[A B C] D [E F]] 

[Note how the list is printed, lining up its three elements in order to make its structure more readable. 



Advanced Use of Lists / 149 

TRY is a list of three items, the list [A B C], the word D, and the list [E F]. 

PRINT :TRY 
(A BC]D1EF] 

Note how TRY is printed. Logo always prints lists without the outermost pair 
of brackets. 

The operations FIRST and LAST output, as usual, the first and last items 
in a list. In a complex list these items may themselves be lists: 

PRINT FIRST:TRY 
AB C 
PRINT LAST: TRY 
EF 

BUTFIRST outputs the list consisting of all elements by the first, and 
BUTLAST outputs the list consisting of all elements but the last: 

PRINT BUTFIRST :TRY 
D [E F] 
PRINT BUTLAST :TRY 
[A B C] D 

Keep in mind that the operations output, in general, new lists, to which 
you can apply further operations. For example, 

FIRST FIRST:TRY 

is the first item of the first item of TRY, which is the first item of [A B C], 
which is A. 

FIRST LAST:TRY 

is the first item of the last item of TRY, which is the first item of [E F], which 
is E. 

FIRST BUTFIRST :TRY 

is the first item of the butfirst of TRY, which is the first item of [D [E F]], 
which is D. (In general, FIRST of BUTFIRSTof any list is the second item of 
the list.) 

FIRST BUTFIRST LAST:TRY 

is the FIRST of the BUTFIRSTof the LAST of TRY, which is the FIRST of 
the BUTFIRSTof [E F], which is F. 

The four operations FIRST, LAST, BUTFIRST, and BUTLAST are used for 
extracting pieces of lists. To combine lists into more complex lists, we have 
the Logo operation FPUT. FPUT takes two inputs, of which the second must 
be a list. It puts its first input at the beginning of its second input; that is, it 
outputs a list whose FIRST is the first input and whose BUTFIRST is the 
second input: 



50/TI LOGO 

PRINT FPUT "A [D E F] 
ADEF 
PRINT FPUT [A] [D E F] 
[A]DEF 
PRINT FPUT [A B C] [D E F] 
[AB C]DEF 

LPUT is similar to FPUT, except that it installs its first input as the last 
item in the list: 

PRINT LPUT "A [D E F] 
DEFA 
PRINT LPUT [A] [D E F] 
DEF[A] 
PRINT LPUT [A B C] [D E F] 
DEF[ABC] 

The Logo operation SENTENCE, which we previously used to combine 
words into lists, can also be used with more complex lists. if SENTENCE is 
given a number of lists as inputs, it combines all of the elements of the lists 
into a single list: 

PRINT SENTENCE [A [B C]] [D E F] 
A[BC]DEF 

This description of SENTENCE makes sense only when all of the inputs to 
SENTENCE are themselves lists. In order to make this consistent with our 
previous definition of SENTENCE for combining words into lists we extend 
the definition as follows: if one of the inputs to SENTENCE is a word, then 
you replace that word by the one-item list containing that word, and then 
apply the definition of SENTENCE given above. For example: 

(SENTENCE "A "B "C ) 

gives the same result as 

(SENTENCE [A] [B] [C]) 

which is the list [A B C]. 

SENTENCE "A [B [C D]] 

gives the same result as 

SENTENCE [A] [B [C D]] 

which is the list [A B [C D]]. In general, SENTENCE :X :Y gives the same 
result as FPUT :X :Y if :X is a word and :Y is a list.2  

Using FPUT, you can construct a useful operation called LIST that takes 
two inputs and combines them into a list of two items. LIST works by first 

21f you are interested only in combining words into lists to be printed (as in most elementary Logo programs), 

then SENTENCE is the only operation you need for constructing lists However, when you are interested in 

using lists as hierarchical data structures, you need the finer control provided by FPUT and LPUT. For 

example, it is always true that X if the first item of FPUT :X 'Y. But this is not the case with SENTENCE. 

For instance, if 'X is [A B C] and Y is ID E], then the first item of SENTENCE 'X :Y is the word A. 



Advanced Use of Lists / 151 

combining its second input with the empty list using FPUT. This creates a one 
element list whose only element is the original second input. Next, the first 
input of LIST is combined with this one-element list to produce a 
two-element list. 

TO LIST :A :B 
OUTPUT FPUT :A (FPUT :B [ ]) 
END 

PRINT LIST [A B] [C D] 
[A B] [C D] 

11.1.2. Example: Association Lists One particularly simple form of list is a list of pairs, which can be used to 
represent simple tables in which values are associated to things: 

MAKE "TABLET [[COLOR PURPLE] 
[SIZE HUGE] 
[WEIGHT [1 TON]]] 

Such a list of pairs is called an association list. The first item in each pair is 
referred to as the key, and second item is the corresponding value. The most 
important function for operating on tables represented as association lists is 
LOOKUP, which outputs the value corresponding to a given key: 

PRINT LOOKUP "SIZE :TABLE1 
HUGE 

LOOKUP is implemented by means of an auxiliary function called ENTRY, 
which outputs the pair in which the key occurs, or outputs the empty list if 
there is no such pair in the table. LOOKUP then outputs the second item in 
the ENTRY, or signals an error if the key was not found. ENTRY is 
implemented by scanning down the list in the usual fashion:3  

TO ENTRY :KEY :TABLE 
IF :TABLE = [ ] OUTPUT [ 
IF :KEY = (FIRST FIRST :TABLE) OUTPUT (FIRST :TABLE) 
OUTPUT ENTRY :KEY (BUTFIRST :TABLE) 
END 

LOOKUP is implemented as 

TO LOOKUP :KEY :TABLE 
MAKE "PAIR ENTRY :KEY :TABLE 
IF :PAIR = [ ] PRINT [ERROR: KEY NOT IN TABLE] 
OUTPUT LAST :PAIR 
END 

Another use for association lists that arises in symbol manipulation is for 
substituting values from a table. The following SUBST procedure takes a list 
and a table as inputs. For each item in the list that is a key in the table, it 
replaces the key by the corresponding value. For example, with TABLE1 as 
above, you would have: 

3This is very similar to the MEMBER? procedure on page 143. 



152 / T 1 LOGO 

PRINT SUBST [HE IS COLOR AND WEIGHS WEIGHT] :TABLE1 
HE IS PURPLE AND WEIGHS [1 TON] 

To define SUBST, we'll begin by writing a procedure SUBST.ITEM that 
takes an item and a table as input. If the item is a key in the table, then 
SUBST.ITEM outputs the associated value. Otherwise it outputs the original 
item. Notice that this is almost the same as LOOKUP except that it returns 
the original item instead of signaling an error if the item is not in the table. 

TO SUBST.ITEM :ITEM :TABLE 
MAKE "SUBST.PAIR (ENTRY:ITEM :TABLE) 
IF :SUBST.PAIR = [ ] OUTPUT :ITEM 
OUTPUT LAST :SUBST.PAIR 
END 

The SUBST procedure itself is implemented by performing SUBST.ITEM 
on each item in the list, and outputting the list of the results: 

TO SUBST:LIST:TABLE 
IF :LIST = [ ] OUTPUT [ ] 
OUTPUT FPUT (SUBST.ITEM (FIRST:LIST) :TABLE) 

(SUBST (BUTFIRST :LIST) :TABLE) 
END 

Properties 
One way to think of an association list is as a collection of the attributes, 

or "properties," of some object: 

MAKE"SUPERGRAPE 
[[COLOR PURPLE] [SIZE HUGE] [WEIGHT [1 TON]]] 

These attributes can be recovered by using the LOOKUP procedure given 
above. More abstractly, we can forget about the list of pairs, and imagine 
that we have a procedure PUTPROP, which associates a given property value 
to a given symbol. For example, 

PUTPROP "SUPER.GRAPE "COLOR "PURPLE 

would associate to the symbol SUPER.GRAPE a COLOR property whose 
value is PURPLE. A corresponding procedure GETPROP would be used to 
retrieve a property value, so that, for example, 

GETPROP "SUPER.GRAPE "COLOR 

would return PURPLE. A typical program that uses properties to manage 
information might contain a line such as 

PRINT (SENTENCE [THE COLOR OF] 
:ITEM 
[IS] 
(GETPROP :ITEM "COLOR )) 

PUTPROP and GETPROP are readily implemented in terms of 
association lists, but in some applications, it is better to use other methods 



11.2. Programs as Data 

Advanced Use of Lists / 153 

for representing properties. In particular, if there are many attributes in a 
table, performing a LOOKUP will be slow, due to the need to scan a long list. 
An alternative way to implement properties in Logo, which allows fast access 
to large tables, is as follows. To associate a property to a symbol, you 
combine the symbol, the property, and a separator character (e.g., #) to form 
a new word. Then assign to this word the designated property value. For 
example, to perform the association 

PUTPROP "SUPER.GRAPE "COLOR "PURPLE 

you execute the MAKE command: 

MAKE "SUPER.GRAPE#COLOR "PURPLE 

In general, PUTPROP is implemented using this scheme as: 

TO PUTPROP :SYMBOL :PROPERTY :VALUE 
MAKE WORD :SYMBOL 

(WORD "# :PROPERTY) 
:VALUE 

END 

and the corresponding GETPROP procedure is: 

TO GETPROP :SYMBOL :PROPERTY 
OUTPUT THING WORD :SYMBOL 

WORD "# :PROPERTY 
END 

Note that these procedures rely on Logo's ability to assign a value to a 
symbol that is the result of some computation, rather than typed in literally 
as is almost always the case with MAKE. Compare the "tricky use of MAKE" 
shown on page 86. 

One important kind of hierarchical structure that arises in programming is 
the structure of a program itself. A Logo procedure can be thought of as a 
list of lines each of which is a list of words. Using Logo lists, you can write 
programs that manipulate other programs. The basic Logo primitives that 
enable you to do this are RUN, which executes a list as a Logo command 
line; DEFINE, which constructs a procedure from list data: and TEXT, which 
outputs the representation of a procedure. This section explains how these 
operations work in the context of an extended example—increasing the 
capabilities of the simple INSTANT program that was introduced in Section 
8.2.1. 

11.2.1. The RUN Command The Logo command RUN takes a Logo list as input and executes the list as 
if the list were a command line typed at the keyboard. For example: 

RUN [PRINT [HELLO THERE] 
HELLO THERE 
RUN LIST "PRINT [HELLO THERE] 
HELLO THERE 
MAKE "COMMAND "PRINT 
MAKE "INPUT [HELLO THERE] 
RUN LIST :COMMAND :INPUT 
HELLO THERE 



54/T1 LOGO 

Example: Extending the INSTANT Program 
Another situation in which RUN is useful is where you want to build up a 

list of commands to be executed later. As an example, consider the INSTANT 
program of Section 8.2.1: 

TO INSTANT 
COMMAND 
INSTANT 
END 

TO COMMAND 
MAKE "COM READCHAR 
IF :COM = "F FORWARD 10 
IF :COM = "R RIGHT 30 
IF :COM = "L LEFT 30 
IF :COM = "C CLEARSCREEN 
END 

Suppose you want to add an "undo" feature to the system. That is, typing 
F, L, and R at the keyboard will cause the turtle to move forward, left, and 
right as before. In addition, typing U will cause the turtle to undo its 
previous move. 

You can implement the undo operation as follows. As the user of the 
INSTANT system gives commands, the INSTANT program will not only move 
the turtle, but will also remember the turtle motions that were done by saving 
them in a list. Then, when the user wishes to undo the last command, 
INSTANT will clear the screen, remove the last command from the list, and 
reprocess the remaining commands.4  

To implement this strategy let's assume you store the turtle commands in a 
list called HISTORY. For example, if the user types F and then R, HISTORY 
will be 

[(FORWARD 10][RIGHT 30]] 

Notice that HISTORY is a list of lists, in which each entry is the Logo 
command that should be run to cause the appropriate turtle motion. 

The main operation needed now is to take a turtle command and not only 
do it, but also add it to the HISTORY list. This can be accomplished by 

TO RUN.AND.RECORD :ACTION 
RUN :ACTION 
MAKE "HISTORY (LPUT :ACTION :HISTORY) 
END 

LPUT is used to add the new command as the last item in HISTORY. 
Now change the COMMAND procedure to RUN.AND.RECORD the 

appropriate response to each key: 

4There are, of course, many other ways to implement the undo operation. One advantage of the way chosen 

here is that it extends nicely to allowing the user of the INSTANT system to define programs, as we shall see 
in Section 11.2.2. 



Advanced Use of Lists / 155 

TO COMMAND 
MAKE "COM READCHAR 
IF :COM = "F RUN.AND.RECORD [FORWARD 10] 
IF :COM = "R RUN.AND.RECORD [RIGHT 30] 
IF :COM = "L RUN.AND.RECORD [LEFT 30] 
IF :COM = "C RUN.AND.RECORD [CLEARSCREEN] 
END 

Now, to undo the last command, you remove the last item from HISTORY, 
clear the screen, and run the rest of the commands: 

TO UNDO 
IF :HISTORY = [ ] STOP 
MAKE "HISTORY BUTLAST :HISTORY 
CLEARSCREEN 
RUN.ALL :HISTORY 
END 

Note the first line of UNDO, which says that if the HISTORY list is empty, 
there is nothing to undo. Also note that with this implementation, repeatedly 
executing UNDO keeps removing more and more items from HISTORY, 
starting with the last one, the one before that, and so on. 

The subprocedure RUN.ALL takes a list of commands as input and runs all 
the commands in the list in sequence. (Each command in the list must itself 
be a list.) RUN.ALL uses a recursive strategy. It RUNs the first command in 
the list and then processes the BUTFIRSTof the list. 

TO RUN.ALL :COMMANDS 
IF :COMMANDS = [ ] STOP 
RUN FIRST:COMMANDS 
RUN.ALL (BUTFIRST :COMMANDS) 
END 

Now all you need to do is add a line to the COMMAND procedure so that 
pressing U causes an UNDO operation: 

TO COMMAND 
MAKE "COM READCHAR 
IF :COM = "F RUN.AND.RECORD [FORWARD 10] 
IF :COM = "R RUN.AND.RECORD [RIGHT 30] 
IF :COM = "L RUN.AND.RECORD [LEFT 30] 
IF :COM = "C SETUP 
IF :COM = "U UNDO 
END 

The complete INSTANT program now simply clears the screen and 
repeatedly calls COMMAND. You also need to initialize HISTORY to be 
empty: 

TO SETUP 
MAKE "HISTORY [ ] 
TELL TURTLE 
CLEARSCREEN 
INSTANT 
END 



158 / T 1 LOGO 

11.2.2. The DEFINE Command 

TO INSTANT 
COMMAND 
INSTANT 
END 

SETUP has been added to COMMAND in place of RUN.AND.RECORD 
[CLEARSCREEN]; now when you clear the screen by typing C, HISTORY is 
reinitialized as well. 

In addition to using Logo list operations to generate individual command 
lines that can be RUN, you can also write procedures that define other 
procedures. This is done with the DEFINE command. DEFINE (short form 
DE) takes two inputs. This first is the name of the procedure to be defined. 
The second input is a list of lists organized as follows. The first sublist gives 
the inputs to the new procedure, and there is one additional sublist for each 
procedure line. For example, 

DEFINE "TRY [[:X :Y][PRINT :X][PRINT :Y]] 
PO TRY 
TO TRY :X :Y 
PRINT :X 
PRINT :Y 
END 

DEFINE "GREET [[ ] [PRINT [HELLO]]] 
PO GREET 

TO GREET 
PRINT [HELLO] 
END 

Observe that if the procedure is to have no inputs (as in GREET above), 
the DEFINE list must include an initial empty list for the input specification. 
Note also that there is no END included in the list of procedure lines. 

Example: Another Extension to INSTANT 
Most of the time, of course, you use TO rather than DEFINE to create 

Logo procedures. DEFINE is reserved for those situations in which you want 
procedure definition to happen within a program. As an example of this, 
we'll consider another extension to the INSTANT system of Section 11.2.1. 
This time, we'll allow the user of INSTANT to name drawings and to recall 
them by name. For example, we may use the letter S for saving drawings. 
Typing S (for "save") will cause the program to ask the user for a name 
for the drawing. Later on, the user can ask for a previous drawing to be 
reshown, say by typing P for "picture." More than one drawing can be saved 
at once, each with its own name. 

You can implement this by having the INSTANT system save a drawing by 
defining the drawing as a procedure, using the name chosen by the user. The 
list of lines in the procedure is precisely the HISTORY list that you have been 
using to keep track of what is on the screen. Here is the procedure that 
implements this "learning" process: 



Advanced Use of Lists / 157 

TO LEARN 
PRINT [WHAT DO YOU WANT TO CALL] 
PRINT [THIS PICTURE?] 
MAKE "NAME (FIRST READLINE) 
DEFINE :NAME (FPUT [ ] :HISTORY) 
END 

The reason for taking the NAME of the procedure to be FIRST of 
READLINE is that READLINE always outputs the typed line as a list, and 
DEFINE needs the procedure name to be specified as a word. Also, note that 
the second input given to DEFINE is FPUT [ ] :HISTORY, since you need to 
include an empty input list for the procedure being defined. Also, you should 
make LEARN clear the screen and reinitialize HISTORY to prepare for a new 
drawing. 

The behavior of LEARN is now: 

WHAT DO YOU WANT TO CALL 
THIS PICTURE? 
>BOX 

There is now a procedure called BOX, which, when run, draws the picture 
that currently appears on the screen. 

Now you must add a command that asks for an input line and runs it. This 
is accomplished by 

TO ASK 
PRINT [WHAT PICTURE DO YOU WANT] 
PRINT [TO SHOW?] 
RUN.AND.RECORD READLINE 
END 

Notice that the input READLINE line is both run and recorded. Note also 
that any Logo command could be input and executed, not just a call to a 
procedure created by LEARN. 

Finally, you need only add the appropriate lines to the COMMAND 
procedure so that it will recognize the characters S (for save) and P (for 
picture) and run the appropriate procedures. 

The Complete INSTANT System 
Here is a complete listing of the INSTANT system developed in the 

preceding sections: 

TO SETUP 
MAKE "HISTORY [ ] 
TELL TURTLE 
CLEARSCREEN 
INSTANT 
END 

TO INSTANT 
COMMAND 
INSTANT 
END 



58IT1 LOGO 

TO COMMAND 
MAKE "COM READCHAR 
IF :COM = "F RUN.AND.RECORD [FORWARD 10] 
IF :COM = "R RUN.AND.RECORD [RIGHT 30] 
IF :COM = "L RUN.AND.RECORD [LEFT 30] 
IF :COM = "C SETUP 
IF :COM = "U UNDO 
IF :COM = "S LEARN 
IF :COM = "P ASK 
END 

TO RUN.AND.RECORD :ACTION 
RUN :ACTION 
MAKE "HISTORY (LPUT :ACTION :HISTORY) 
END 

TO UNDO 
IF :HISTORY = [ ] STOP 
MAKE "HISTORY BUTLAST:HISTORY 
CLEARSCREEN 
RUN.ALL :HISTORY 
END 

TO RUN.ALL :COMMANDS 
IF :COMMANDS = [ ] STOP 
RUN FIRST:COMMANDS 
RUN.ALL (BUTFIRST :COMMANDS) 
END 

TO LEARN 
PRINT [WHAT DO YOU WANT TO CALL] 
PRINT [THIS PICTURE?] 
MAKE "NAME (FIRST READLINE) 
DEFINE :NAME (FPUT [ ] :HISTORY) 
SETUP 
END 

TO ASK 
PRINT [WHAT PICTURE DO YOU WANT] 
PRINT [TO SHOW?] 
RUN.AND.RECORD READLINE 
END 

There are many possible modifications and improvements to this system. 
For a good exercise in manipulating lists, consider the following problem. A 
typical HISTORY list to be assembled into a procedure might look like: 

FORWARD 10 
RIGHT 30 
LEFT 30 
FORWARD 10 
RIGHT 30 
RIGHT 30 
RIGHT 30 
FORWARD 10 
FORWARD 10 



Advanced Use of Lists / 159 

It would be nice if, before the HISTORY list is made into a procedure, it 
could be "compressed" so that the procedure that is defined would consist of 
the command sequence 

FORWARD 20 
RIGHT 90 
FORWARD 20 

Write a procedure COMPRESS that will perform this kind of transformation 
on a list of turtle commands. Once you have COMPRESS, the LEARN 
procedure can be rewritten as: 

TO LEARN 
PRINT [WHAT DO YOU WANT TO CALL] 
PRINT [THIS PICTURE?] 
MAKE "NAME (FIRST READLINE) 
DEFINE :NAME (FPUT [ ] (COMPRESS :HISTORY)) 
SETUP 
END 

11.2.3. The TEXT Command In some instances, it is useful to have an "inverse operation" to DEFINE, 
that is, to be able to take a procedure that is already defined and to extract 
the text of the procedure so that it can be manipulated as a list. This is done 
with the Logo command TEXT, which takes a procedure name as input and 
outputs the text of the procedure in the same format as is used in DEFINE. 

For example, assume that CORNER is defined as 

TO CORNER :A :8 
FORWARD :A 
RIGHT :B 
END 

Then TEXT "CORNER is the list 

[[:A :B] [FORWARD :A] [RIGHT:B]] 

Using TEXT, you can write procedures that examine and manipulate other 
procedures. 

11.2.4. Adding New Programming The ability to use list operations to construct lists, and then to RUN these 
Constructs lists as commands, allows you to add new programming constructs to the 

basic Logo language. For instance, suppose you would like to have a WHILE 
command that can be used to keep repeating something over and over as long 
as some condition is true, as in: 

WHILE [XCOR < 20] [FORWARD 1] 

Logo does not include WHILE as a primitive command. But you can use 
RUN to define your own WHILE command as a procedure that takes two 
lists as inputs. The first list specifies a condition to be tested, and the second 
list specifies an action to be repeated over and over as long as the condition 
remains true. The WHILE procedure first tests if the condition is true by 
RUNning the condition list. If the result is true, the WHILE procedure RUNs 
the action list. This sequence is repeated over and over: 



160ITI LOGO 

TO WHILE :CONDITION :ACTION 
IF NOT (RUN :CONDITION) STOP 
RUN :ACTION 
WHILE :CONDITION :ACTION 
END 

As a more complex example, you can implement a FOR procedure that 
works as follows: 

FOR [COUNT 1 5] [PRINT:COUNT * :COUNT] 
1 

4 

9 
16 
25 

The FOR procedure takes two lists as inputs. The first list is a "FOR list" 
that specifies a loop variable together with its initial and final values. The 
second input specifies an action that should be executed for all values of the 
loop variable between the initial and final values. To implement FOR, you 
extract from the FOR list the name of the variable and the initial and final 
values, and pass these on to a subprocedure FOR.LOOP, which does the 
actual work of looping. It is convenient to write separate, short procedures 
to extract the parts of the FOR list: 

TO VAR :FLIST 
OUTPUT FIRST :FLIST 
END 

TO INITIAL :FLIST 
OUTPUT FIRST BUTFIRST:FLIST 
END 

TO FINAL :FLIST 
OUTPUT LAST :FLIST 
END 

Then the FOR procedure is written as: 

TO FOR :FLIST :ACTION 
FOR.LOOP (VAR :FLIST) 

(INITIAL :FLIST) 
(FINAL :FLIST) 
:ACTION 

END 

The FOR.LOOP procedure takes as inputs the variable, the initial and 
final values, and the action to be RUN. It uses MAKE to set the variable to 
the initial value and RUNs the action. Then it repeats the sequence, with the 
initial value incremented by 1. As a stop rule, FOR.LOOP tests to see 
whether the initial value has become greater than the final value. Here is the 
procedure: 



11.3. More Projects Using Lists 

11.3.1. Example: The DOCTOR 
Program 

Advanced Use of Lists / 161 

TO FOR.LOOP :VAR :INITIAL :FINAL :ACTION 
IF :INITIAL > :FINAL STOP 
MAKE :VAR :INITIAL 
RUN :ACTION 
FOR.LOOP :VAR (:INITIAL + 1) :FINAL :ACTION 
END 

Note that in the second line of FOR.LOOP, you say MAKE :VAR, rather than 
MAKE "VAR, because the name of the variable being set is the value 
associated with VAR, rather than the literal word VAR. For example, in 
executing the command 

FOR [COUNT 1 5] [PRINT:COUNT * :COUNT] 

the value of VAR is the word COUNT, and COUNT is the variable you want 
to set using the MAKE command. Compare the "tricky use of MAKE" shown 
on page 86. 

This section presents two open-ended projects that make use of Logo's 
capability to manipulate lists. The first project is a highly simplified version 
of a famous program called DOCTOR that was developed in the early 1960s 
by Joseph Weizenbaum. The Logo implementation here uses the association 
list mechanism that was explained in Section 11.1.2. The second program is a 
Logo version of a well-known computer "learning" program called ANIMAL, 
which demonstrates how to use hierarchical list structures to keep track of 
information. 

The DOCTOR program engages in a "conversation" with the computer 
user, in which it mimics a nondirective style of psychotherapy. Here is a 
sample conversation:5  

DOCTOR 
WHAT SEEMS TO BE THE PROBLEM 

>EVERYONE HATES ME 
YOU SAY EVERYONE HATES YOU 

>WHEN I ENTER A ROOM NO ONE WILL LOOK ME IN THE EYE 
MANY PEOPLE HAVE THE SAME SORTS OF FEELINGS 

>THEY LAUGH AT ME BEHIND MY BACK 
YOU SEEM TO THINK THEY LAUGH AT YOU BEHIND YOUR BACK 

> EVEN MY MOTHER HATES ME 
YOU FEEL THAT EVEN YOUR MOTHER HATES YOU 

>EVEN WHEN I WAS A BABY SHE SAID I WAS ALWAYS BAD 
PLEASE CONTINUE 

5In order to simplify the program, all punctuation has been omitted. As usual, the computer's typeout has 
been italicized to distinguish it from the user's responses. 



62 / T I LOGO 

How the DOCTOR Program Works 
Although at first glance, the DOCTOR program seems to understand and 

reply to the user's remarks, in reality it is doing nothing of the sort. In fact, 
the program has two simple methods for generating a response. The first 
method is to ignore what the user types and simply respond with some sort of 
hedge like PLEASE CONTINUE or MANY PEOPLE HAVE THE SAME 
SORTS OF FEELINGS. The second method involves taking the user's reply, 
changing some common words like "I," "me," and "am" to the 
corresponding second-person words and appending the transformed response 
to some qualifying phrase such as YOU SAY or YOU SEEM TO THINK. The 
program chooses one of these methods at random for each response. 

We'll examine these two methods in turn. The first is very simple. What 
the program prints is just a phrase picked at random from a suitable list of 
hedges such as 

MAKE"HEDGES 
[ [PLEASE GO ON] 

[PLEASE CONTINUE] 
[MANY PEOPLE HAVE THE SAME SORTS OF FEELINGS] ] 

The part of the program that implements the first method is just6  

TO HEDGE 
PRINT PICKRANDOM :HEDGES 
END 

The second method is more complicated. You must take the user's typed-in 
response, change the "I" words to the corresponding "you" words, and 
append this to a randomly selected qualifier. To perform the "I-you" change, 
you can use the SUBST procedure in Section 11.1.2, where the substitution 
TABLE of pairs is made up of first-person pronouns and their second-person 
counterparts: 

MAKE "PRONOUNS [[I YOU] [ME YOU] [MY YOUR] [AM ARE]] 

TO CHANGE.PERSON :PHRASE 
OUTPUT SUBST :PHRASE :PRONOUNS 
END 

So if the collection of qualifiers is given by 

MAKE "QUALIFY [[YOU SEEM TO THINK] 
[YOU FEEL THAT] 
[YOU SAY]] 

then the second type of response to the user's input is generated by 

TO RESPOND :USER.INPUT 
PRINT SE (PICKRANDOM :QUALIFY) 

(CHANGE.PERSON :USER.INPUT) 
END 

6We use here the PICKRANDOM procedure (page 143). Notice that although we designed PICKRANDOM to 
pick a random word from a list of words, the generality of the Logo list operations FIRST and BUTFIRST 

ensures that the same procedure also works to pick a random element from any list. 



Advanced Use of Lists / 163 

Now you can put both methods together. You can select between the 
methods at random, using the test IF (RAND 2) = 0 to generate TRUE or 
FALSE with equal chances.? You can also terminate the conversation if the 
user types GOODBYE: 

TO DOCTOR.LOOP 
MAKE "USER.INPUT READLINE 
IF :USER.INPUT = [GOODBYE] 

PRINT [COME SEE ME AGAIN] STOP 
IF (RAND 2) = 0 HEDGE ELSE RESPOND :USER.INPUT 
DOCTOR.LOOP 
END 

All that is missing now is a procedure DOCTOR to start things going. This 
should initialize the lists QUALIFY, HEDGES, and PRONOUNS used above, 
print an opening remark, and call DOCTOR. LOOP: 

TO DOCTOR 
MAKE "QUALIFY [[YOU SEEM TO THINK] 

[YOU FEEL THAT] 
[YOU SAY]] 

MAKE "HEDGES [[PLEASE GO ON] 
[PLEASE CONTINUE] 
[MANY PEOPLE HAVE THE SAME SORTS OF 
FEELINGS]] 

MAKE "PRONOUNS [[I YOU] [ME YOU] [MY YOUR] [AM ARE]] 
PRINT [WHAT SEEMS TO BE THE PROBLEM] 
DOCTOR.LOOP 
END 

Extending the Program 
The previous program is only a simple sketch. One immediate extension 

you'll want to make is to increase its repertoire of HEDGES and QUALIFY, 
so that the responses are more varied. Another idea is to upgrade the 
RESPOND procedure not only to change first person words to second 
person, but also second person to first. For instance, if the user types 

YOU ARE NOT BEING VERY HELPFUL TO ME 

the program should respond with something like 

YOU FEEL THAT I AM NOT BEING VERY HELPFUL TO YOU 

Another idea is this. Every so often, the program should save away the user's 
response. Then, a few exchanges later, the program could say something like 
"Earlier you said that ..." Still other ideas are to have the program select 
special responses, when the user mentions certain words, like "computer." 

By including more and more of these features, you can make the program's 
conversations quite elaborate. The responses of Weizenbaum's original 
DOCTOR program have been occasionally mistaken for those of a real 
person, and this has led some people to advocate using such programs in the 

7Use the RAND procedure from Section 6.2.2 



184 I T 1 LOGO 

11.3.2. The ANIMAL Program 

treatment of psychiatric patients. Others, including Weizenbaum, maintain 
that this would be extremely unethical. For a further discussion of these 
points see Weizenbaum's book [18]. 

ANIMAL is a well-known computer program that asks the user to think of 
an animal and then tries to guess what animal it is by asking yes-or-no 
questions. Here is a sample session with the program: 

ANIMAL 
THINK OF AN ANIMAL. I WILL 
TRY TO GUESS IT 
DOES IT HAVE LEGS? 
> YES 

IS ITA CAT? 
> YES 

LOOK HOW SMART I AM! 
LET'S TRY AGAIN. . . 
THINK OF AN ANIMAL. I WILL 
TRY TO GUESS IT 
DOES IT HAVE LEGS? 
> NO 

DOES IT CRAWL? 
> YES 

IS ITA SNAKE? 
> YES 

LOOK HOW SMART I AM! 
LET'S TRY AGAIN. . . 

The cleverness of the program is that it learns from its mistakes. Here is 
what happens when it guesses incorrectly: 

DOES IT HAVE LEGS? 
> NO 

DOES IT CRAWL? 
> YES 

IS ITA SNAKE? 
> NO 

OH WELL, I WAS WRONG. 
WHAT WAS IT? 
> EARTHWORM 



Advanced Use of Lists / 165 

PLEASE TYPE IN A QUESTION 
WHOSE ANSWER 
IS YES FOR AN EARTHWORM AND 
NO FOR A SNAKE 
>DOES IT LIVE UNDERGROUND? 
LET'S TRY AGAIN. . 

The next time the program runs across this situation it will behave like this: 

DOES IT HAVE LEGS? 
>NO 

DOES IT CRAWL? 
> YES 

DOES IT LIVE UNDERGROUND? 

So the program becomes smarter and smarter as it is used more and more. 

How the ANIMAL Program Works 
The key to the program is its knowledge structure. This can be thought of 

as a tree, as shown in Figure 11.2. The tree is made up of "nodes," where 
each node consists of a QUESTION to ask, a YES.BRANCH to follow if the 
answer to the question is yes, and a NO.BRANCH to follow if the answer is 
no. 

DOES IT HAVE LEGS? 

YES NO 

CAT DOES IT CRAWL? 

YES NO 

SNAKE FISH 

Figure 11.2: Knowledge tree for the ANIMAL program. 

The basic operation of the program is to begin at the top node of the tree 
and work its way down, following the YES.BRANCH or the NO.BRANCH 
according to the answer to the QUESTION. If the program reaches a node 
that consists of only a single item, it guesses that as the animal. 

When the program guesses incorrectly, it "gets smarter" by expanding the 
tree. It asks the user for the correct response and a question that 
distinguishes the correct response from the incorrect response. It then 
replaces the old single-item node by a new node made up of the user's 
question, the correct response as the YES.BRANCH and the old incorrect 



168 / T I LOGO 

response as the NO.BRANCH. For example, to learn the difference between 
a snake and an earthworm, the program expands the tree, replacing the 
SNAKE node by a node whose QUESTION is DOES IT LIVE 
UNDERGROUND?, whose YES.BRANCH is EARTHWORM, and whose 
NO.BRANCH is SNAKE.8  

That's all there is to it. 

Using Lists 
The ANIMAL program can be conveniently written in Logo, because lists 

are just the right tool for representing the knowledge tree. You can think of 
the tree as a list called KNOWLEGE that has three elements: a QUESTION, a 
YES.BRANCH, and a NO.BRANCH. Of course YES.BRANCH and 
NO.BRANCH may themselves be lists that have the same structure. And so 
you have sublists and sublists, until you finally reach branches that are 
words, which give the actual animals to be guessed. 

Here is a Logo list that represents the tree shown in Figure 11.2: 

[ [DOES IT HAVE LEGS?] 
CAT 
[ [DOES IT CRAWL?] 

SNAKE 
FISH]] 

When snake is distinguished from earthworm, the list becomes 

[ [DOES IT HAVE LEGS?] 
CAT 
[ [DOES IT CRAWL?] 

[ [DOES IT LIVE UNDERGROUND?] 
EARTHWORM 
SNAKE] 

FISH] ] 

With the program's knowledge structured in this way, you can extract the 
QUESTION, YES.BRANCH, and NO.BRANCH parts of a given node by 
using the following procedures: 

TO QUESTION:NODE 
OUTPUT FIRST :NODE 
END 

TO YES.BRANCH :NODE 
OUTPUT FIRST (BUTFIRST:NODE) 
END 

TO NO.BRANCH :NODE 
OUTPUT LAST :NODE 
END 

To construct a node from the three constituent parts, we can use the LIST 
procedure given in section 11.1.1, as follows: 

80f course, if the user types in wrong information, then the program will get stupider instead of smarter. 

Also, the program we shall describe below does not check for Inconsistent responses on the part of the user. 

Extending the program to do so is a good project. 



Advanced Use of Lists / 167 

TO MAKE.NODE :QUESTION :YES.BRANCH :NO.BRANCH 
OUTPUT FPUT :QUESTION (LIST :YES.BRANCH :NO.BRANCH) 

The Main Procedure 
Here is the procedure that starts the program: 

TO ANIMAL 
PRINT [THINK OF AN ANIMAL. I WILL] 
PRINT [TRY TO GUESS IT] 
CHOOSE.BRANCH :KNOWLEDGE 
PRINT [LET'S TRYAGAIN...] 
ANIMAL 
END 

It prints the instructions, does the guessing, and continues this over and over. 
The real work is done by the CHOOSE.BRANCH procedure, which is meant 
to be called with a node as input. It is initially called with the node that is the 
entire KNOWLEDGE list of the program: 

TO CHOOSE.BRANCH :NODE 
IF (WORD? :NODE) GUESS :NODE STOP 
MAKE "RESPONSE ASK.YES.OR.NO  (QUESTION :NODE) 
IF :RESPONSE = [YES] 

CHOOSE.BRANCH (YES.BRANCH :NODE) STOP 
CHOOSE.BRANCH (NO.BRANCH :NODE) 
END 

CHOOSE.BRANCH implements precisely the technique explained above. It 
asks the question associated with the node and then continues with the 
YES.BRANCH or the NO.BRANCH according to the result of the question. 
When it reaches a node that is a single word, it uses that as its guess. (The 
GUESS procedure, which actually makes the guess, is discussed below.) 
Notice how the "continues with . . ." part of the strategy is implemented by a 
CHOOSE.BRANCH calling itself recursively using the appropriate branch as 
the new node. 

Asking Questions 
The following procedure is used to ask a yes-or-no question. It takes the 

question as input and returns either [YES] or [NO]. 

TO ASK.YES.OR.NO  :QUESTION 
PRINT :QUESTION 
MAKE "INPUT READLINE 
IF :INPUT = [YES] OUTPUT [YES] 
IF :INPUT = [NO] OUTPUT [NO] 
PRINT [PLEASE TYPE "YES" OR "NO" ] 
OUTPUT ASK.YES.OR.NO  :QUESTION 
END 

If the user responds with something other than YES or NO, the procedure 
repeats the question, using the same "try again" method as with the 

READNUMBER procedure on page 98. 



188 I T 1 LOGO 

"A" or "An" 
One nicety that the program must handle when making guesses is to 

distinguish between animal names that begin with vowels and those that do 
not. If the guess if "snake," the program should ask "Is it a snake?" while, if 
the guess is "earthworm," the program should ask "Is it an earthworm?" 
The following procedure helps to do this. It takes a word as input and 
outputs a sentence consisting of the word preceded by "a" or "an" as 
appropriate: 

TO ADD.A.OR.AN  :WORD 
TEST MEMBER? (FIRST:WORD) [A E I 0 U] 
IFT OUTPUT SENTENCE "AN :WORD 
IFF OUTPUT SENTENCE "A :WORD 
END 

The program uses the MEMBER? procedure described on page 143. 
Compare the BEGINS.WITH.VOWEL? procedure on page 143. 

Making a Guess 
When CHOOSE.BRANCH reaches a node with only a single animal, it 

calls the GUESS procedure with that animal as input. 

TO GUESS :ANIMAL 
MAKE "FINAL.QUESTION 

(SE [IS IT] (ADD.A.OR.AN  :ANIMAL) [?]) 
MAKE "RESPONSE ASK.YES.OR.NO  :FINAL.QUESTION 
IF :RESPONSE = [YES] 

PRINT [LOOK HOW SMART I AMI] STOP 
GET.SMARTER :ANIMAL 
END 

GUESS first formulates the appropriate "Is it (a or an) ... ?" question and 
gets the response. If the guess is correct, the program brags about how smart 
it is and stops, returning eventually to the ANIMAL procedure, which starts 
the next round. If the guess is wrong, the program must grow smarter. 

Getting Smarter 
Getting smarter consists, first of all, of asking the user for the right animal 

and for a question that distinguishes the right animal from the wrong one. 
Observe how the "a or an" choice is needed to construct the request for a 
question. 

TO GET.SMARTER :WRONG.ANSWER 
PRINT [OH WELL, I WAS WRONG.] 
PRINT [WHAT WAS IT?] 
MAKE "RIGHT.ANSWER (LAST READLINE) 
PRINT [PLEASE TYPE IN A QUESTION] 
PRINT [WHOSE ANSWER] 
PRINT (SENTENCE [IS YES FOR] 

(ADD.A.OR.AN  :RIGHT.ANSWER) [AND] ) 
PRINT (SENTENCE [NO FOR] 

(ADD.A.OR.AN  :WRONG.ANSWER)) 
MAKE "QUESTION READLINE 
EXTEND.KNOWLEDGE :QUESTION 

:RIGHT.ANSWER 
:WRONG.ANSWER 

END 



Advanced Use of Lists / 169 

Once the new question and the two answers are in hand, the program 
proceeds to extend its knowledge. The KNOWLEDGE list is extended by 
replacing the old node—consisting of just the old answer—by a branching 
node consisting of a new question with the new animal as the YES.BRANCH 
and the old question as the NO.BRANCH. 

TO EXTEND.KNOWLEDGE :NEW.QUESTION :YES.ANSWER :NO.ANSWER 
MAKE "KNOWLEDGE 

REPLACE :KNOWLEDGE 
:NO.ANSWER 
(MAKE.NODE :NEW.QUESTION 

:YES.ANSWER 
:NO.ANSWER) 

END 

Finally, there is the procedure that does the actual replacement. This takes 
as inputs: 

• A list that represents a tree of 
QUESTION—YES.BRANCH—NO.BRANCH nodes 

• A node to be replaced 

• The thing to replace it with 

The output of REPLACE is a copy of the tree with the old node replaced by 
the designated replacement. 

TO REPLACE :TREE :NODE :REPLACEMENT 
IF :TREE = :NODE OUTPUT :REPLACEMENT 
IF WORD? :TREE OUTPUT:TREE 
OUTPUT (MAKE.NODE QUESTION :TREE 

REPLACE (YES.BRANCH :TREE) 
:NODE 
:REPLACEMENT 

REPLACE (NO.BRANCH :TREE) 
:NODE 
:REPLACEMENT) 

END 

REPLACE is the most difficult procedure in the ANIMAL program. It uses a 
recursive strategy somewhat as in the SUBST procedure (Section 11.1.2), but 
more complicated. The idea is that if the tree itself is the node to replace, you 
output the replacement. Otherwise, the new tree should be formed from the 
original tree's QUESTION, together with the result of performing the 
replacement recursively in the YES.BRANCH and the NO.BRANCH. This 
reduces the substitution to operations on smaller and smaller subtrees of the 
original. Finally, when you reduce to nodes that are individual words, you 
should output the words themselves. 

Running the Program 

Figure 11.3 shows the structure of procedure calls for the entire ANIMAL 
program. 



170/TI LOGO 

ASK.YES.OR.NO  

ANIMAL 

I 
CHOOSE.BRANCH 

1 
GUESS 

I 
GET .SMARTER _ j 

EXTEND. KNOWLEDGE 

I 
REPLACE 

QUESTION 
YES.BRANCH 
NO.BRANCH 

ADD.A.OR.AN  

Figure 11.3: Structure of procedure calls in the ANIMAL program. 

To run the program, you initialize the KNOWLEDGE list to any animal 
you like, and run the ANIMAL procedure. For example, 

MAKE "KNOWLEDGE "FISH 
ANIMAL 

When you are done with your session, you can save your workspace, which 
will include the final value of the KNOWLEDGE tree. Thus when you read in 
the program to play with it the next time, the wisdom gained during previous 
sessions will not be lost. 

Modifications 
ANIMAL is a lot of fun to use as it is, especially as you begin to input 

funny animals and outrageous questions. There are also many good projects 
that arise from extending the program's capabilities. One idea is to vary the 
responses that the program gives. Another is to have the program request not 
a literal yes-or-no question, but rather a fact that distinguishes between the 
two animals. Then the program can use this fact to generate its own 
question. This requires that you build in some knowledge about grammar, 
somewhat like the capabilities in the DOCTOR program. Finally—and this is 
really open-ended—you can try to make the program smart enough to 
distinguish legitimate responses from wisecracks. Here is a sample dialogue 
with a more sophisticated animal program:9  

DOES IT HAVE HORNS? 
YES 

IS /TA BUFFALO? 
NO 

WELL, I'M NOT TOO SHARP TODAY. I GIVE UP 
JUST WHAT KIND OF BEAST DID YOU HAVE IN MIND? 
A GAZELLE 

TELL ME SOMETHING ABOUTA GAZELLE THAT IS NOT TRUE ABOUTA 
BUFFALO 
A GAZELLE IS GRACEFUL 

9The dialogue given here is with a program by B. Greenberg [11]. 



Advanced Use of Lists / 171 

THAT WAS FUN. WANT TO TRYAGAIN? 
MAYBE 
HEY, CAN YOU GIVE ME AYES OR NO ANSWER 
YES 

DOES IT HAVE HORNS? 
NO 

IS ITA BUTTERFLY? 
NO 

WELL, I'M NOT TOO SHARP TODAY. I GIVE UP JUST WHAT KIND OF 
BEAST DID YOU HAVE IN MIND? 
A PIG 

TELL ME SOMETHING ABOUTA PIG THAT IS NOT TRUE ABOUTA 
BUTTERFLY 
A PIG IS SLOVENLY 

THAT WAS FUN. WANT TO TRYAGAIN? 
YES 

DOES IT HAVE HORNS? 
NO 

IS THIS ANIMAL SLOVENLY? 
YES 

IS ITA PIG? 
YES 

HEY, HEY, I SURE AM CLEVER, HUH? 
THAT WAS FUN. WANT TO TRYAGAIN? 
YES 

DOES IT HAVE HORNS 
YES 

IS THIS ANIMAL GRACEFUL? 
YOU ARE NOT GRACEFUL 
HEY CAN YOU GIVE ME AYES OR NO ANSWER? 
NO 

IS ITA BUFFALO? 
NO 

WELL, I'M NOT TOO SHARP TODAY. I GIVE UP 
JUST WHAT KIND OF BEAST DID YOU HAVE IN MIND? 
BULL 

TELL ME SOMETHING ABOUTA BULL THAT IS NOT TRUE ABOUTA 
BUFFALO 
WHY DON'T YOU TELL ME SOMETHING, YOU ELECTRONIC MORON? 
AW, BE SERIOUS. I ASKED YOU A REAL QUESTION 
IT WOULD MARRY A COW 



Glossary of Logo Primitive Commands / 173 

CHAPTER 12 

Glossary of Logo Primitive Commands 

This chapter lists the primitive commands included in the TI Logo system 
together with their abbreviations and examples of how many of them are 
used. As in the rest of this book, when we wish to emphasize the distinction 
between what the user types and what the computer responds, we have 
printed the latter in italics. 

12.1. Graphics Commands These are Logo's commands for controlling the graphics screen using the 
turtle, sprites, and tiles. 

BACK Abbreviated BK 
Example: 

BACK 100 
(turtle moves backward 100 units) 

Takes one number as input and moves the active turtle or sprite that many 
units in the opposite direction from which it is facing. 

BACKGROUND Abbreviated BG 
Example: 

TELL BACKGROUND 
SETCOLOR :RED 
{screen background will now be red} 

Used with TELL to direct graphics commands to the background. 

BIG Takes no input. Changes all sprite 32 x 32 units on a side, rather than their 
usual 16 x 16 size. See SMALL and SIZE. (Not included in the first release 
of TI Logo.) 

CARRY Example: 

CARRY :TRUCK 
{active sprite now has the TRUCK shape (number 2)} 

Takes one numeric input in the range 0 through 25. (Numbers outside this 
range will be reduced modulo 26, that is, reduced to the remainder after 
dividing by 26.) Tells the active sprite to "carry" the corresponding shape. 

CLEARSCREEN Abbreviated CS 
Takes no inputs. Clears the screen. 

COLOR Takes no inputs. Outputs the color number of the active sprite or tile. If the 
turtle is active, outputs the turtle's pen color. 

COLORBACKGROUND Abbreviated CB 
Example: 

COLORBACKGROUND :BLUE 
is equivalent to 
TELL BACKGROUND SETCOLOR :BLUE 

except that it does not alter the active sprite, as does using TELL. 
COLORBACKGROUND takes one numeric input in the range 0 through 15. 



74/TI LOGO 

(Numbers outside this range will be reduced modulo 16, that is, reduced to 
the remainder after dividing by 16.) It sets the screen background to the 
corresponding color. 

DOT Example: 

DOT 30 30 

Takes two numeric inputs, x and y coordinates, and places a dot at the 
designated point on the turtle screen. 

EACH Example: 

TELL :ALL 
EACH [SETHEADING 10 * YOURNUMBER] 

Takes a list of commands as inputs, and runs the list for each active sprite. 

The operation YOURNUMBER when used within the list returns the number 
of the sprite. 

FORWARD Abbreviated FD 
Example: 

FORWARD 50 
{turtle or sprite moves forward 50 units} 

Takes one numeric input. Moves the currently active turtle or sprite the 
designated number of units in the direction in which it is facing. Draws a line 
if the turtle's pen is down. 

FREEZE Takes no inputs. Stops motion of all sprites on the screen. Motion is resumed 
with THAW. 

HEADING Example: 

SETHEADING HEADING + 10 
{rotates the turtle 10 degrees clockwise} 

Takes no inputs. Outputs heading of the currently active turtle or sprite as a 
number between 0 and 360. 

HIDETURTLE Abbreviated HT 
Takes no inputs. Makes the turtle pointer disappear. 

HOME Takes no inputs. Moves the turtle to the center of the screen, pointing 
straight up. Moves the active sprite to the center of the screen without 
changing the heading. 

LEFT Abbreviated LT 
Example: 

LEFT 90 
{turtle rotates 90 degrees counterclockwise} 

Takes one numeric input. Rotates the currently active turtle or sprite that 
many degrees counterclockwise. 

LOOKLIKE Takes one numeric input. Synonym for CARRY. 

MAKECHAR Abbreviated MC 
Takes one numeric input in the range 0 through 255. (Numbers outside this 
range will be reduced modulo 256. that is. reduced to the remainder after 



Glossary of Logo Primitive Commands / 175 

dividing by 256.) Enables you to define or edit the corresponding character 
shape. See Section 4.3. 

MAKESHAPE Abbreviated MS 
Takes one numeric input in the range 0 through 25. (Numbers outside this 
range will be reduced modulo 26, that is, reduced by the remainder after 
dividing by 26.) Enables you to define or edit the corresponding sprite shape. 
See Section 4.2. 

NOTURTLE Takes no inputs. Exits turtle mode. 

NUMBEROF Example: 

PRINT NUMBEROF WHO 

Takes one input. Usually used in conjunction with WHO to return the 
number of the active sprite. 

PENDOWN Abbreviated PD 
Takes no inputs. Causes the turtle to leave a trail when it moves. 

PENERASE Abbreviated PE 
Takes no inputs. Causes the turtle to erase (that is, change to the background 
color) any points that it passes over. 

PENREVERSE Abbreviated PR 
Takes no inputs. Causes the turtle to reverse any point it passes over. The 
effect is that the turtle will draw, unless it is retracing a line, in which case the 
line will be erased. 

PENUP Abbreviated PU 
Takes no inputs. Causes the turtle to move without leaving a trail. 

PUTTILE Abbreviated PT 
Example: 

PUTTILE 100 16 12 
{tile number 100 appears at the center of the screen} 

Takes a tile number and row and column numbers as inputs. Places the tile at 
the designated row and column. 

RIGHT Abbreviated RT 
Example: 

RIGHT 45 
{turtle rotates 45 degrees clockwise} 

Takes one numeric input. Rotates the active turtle or sprite that many degrees 
clockwise. 

SETCOLOR Abbreviated SC 
Example: 

TELL SPRITE 5 
SETCOLOR :RED 
{sprite 5 is now red} 
TELL TILE 100 
SETCOLOR [6 15] 



76/TI LOGO 

(tile 100 now has foreground color red 
and background color white} 

For sprites, takes as input a number in the range 0 through 15. (Numbers 
outside this range will be reduced modulo 16, that is, reduced to the 
remainder after dividing by 16.) Changes the active sprite to that color. The 
COLOR of the turtle is the color in which it draws. With tiles or the turtle 
SETCOLOR can also take as input a list of two color numbers, which specify 
the foreground and background colors. 

SETHEADING Abbreviated SH 
Example: 

SETHEADING 180 
{turtle now faces straight down} 

Takes one numeric input. Rotates the active sprite or turtle to point in the 
direction specified. The input is interpreted as a number in degrees. Zero is 
straight up, with heading increasing clockwise. 

SETSPEED Abbreviated SS 
Example: 

TELL SPRITE 10 
SETSPEED 100 

Takes as input a number in the range —127 through 127. Sets the speed of 
the active sprite. 

SHAPE Takes no input. Returns the shape number of the active sprite. 

SHOWTURTLE Abbreviated ST 
Takes no inputs. Makes the turtle pointer appear. 

SIZE Takes no inputs. Outputs 16 if sprites are currently SMALL and 32 if they are 
BIG. (Not included in the first release of TI Logo.) 

SMALL Takes no inputs. Makes sprites 16 x 16 units in size. See BIG. (Not included 
in the first release of TI Logo.) 

SPEED Takes no inputs. Outputs the speed of the currently active sprite. 

SPRITE Example: 

TELL SPRITE 5 
SETSPEED 100 

Takes one numeric input in the range 0 through 31. Used with TELL in order 
to direct graphics commands to a sprite. 

SV Example: 

TELL SPRITE 5 
SV 30 30 

Takes two numeric inputs, which are used to set the x and y velocity 
components of the active sprite. 

SX Takes one numeric input. Moves the currently active sprite or turtle 
horizontally to the specified coordinate. 



Glossary of Logo Primitive Commands / 177 

SXV Takes one numeric input. Sets the x velocity component of the active sprite. 

SXY Example: 

SXY 80 50 
{turtle moves to position (80,50)1 

Takes two numeric inputs. Moves the currently active sprite or turtle to the 
specified point, where (0,0) is center of screen. 

SY Takes one numeric input and moves the currently active sprite or turtle 
vertically to the specified coordinate. 

SYV Takes one numeric input. Sets they velocity component of the active sprite. 

TELL Examples: 
TELL SPRITE 1 
TELL TILE 50 
TELL TURTLE 
TELL BACKGROUND 
TELL [1 5 8] 
TELL 10 

Used to direct subsequent graphics commands to an object, which becomes 
the "active object." If used with a list of numbers, commands are directed to 
all sprites in the list. TELL used with a number (as in the final example 
above) designates a sprite. 

THAW Takes no inputs. Restores motion that was stopped by FREEZE. 

TILE Example: 

TELL TILE 100 
SETCOLOR :RED 

Used with TELL in order to designate an active tile. 

TURTLE Takes no inputs. Used with tell in order to specify the turtle. 

WHERE Takes no inputs. If the turtle is the currently active object, outputs a list of 
three numbers: the x-coordinate, y-coordinate, and heading. 

WHO Takes no inputs. Outputs the currently active graphics object (as specified by 
the previous TELL). 

XCOR Example: 

SETX XCOR + 10 
{moves the turtle 10 units to the right) 

Takes no inputs. Outputs the x coordinate of the turtle or currently active 
sprite. 

XVEL Takes no inputs. Outputs the x velocity component of the currently active 
sprite. 

YCOR Takes no inputs. Outputs the y coordinate of the turtle or currently active 
sprite. 



78 / T I LOGO 

YOURNUMBER Abbreviated YN 
Takes no inputs. Outputs the number of the currently active sprite. Normally 
used inside a command list with EACH. 

YVEL Takes no inputs. Outputs they velocity component of the currently active 
sprite. 

12.2. Numeric Operations These are Logo's built-in facilities for performing operations with 
numbers. Numbers handled by Logo must be integers in the range —32767 
through 32767. 

+ Example: 

PRINT 5 + 2 
7 

Takes two numbers as inputs, and outputs their sum. 

— Example: 

PRINT 5 — 2 
3 
PRINT 1 + (-2) 
—1 

With two numeric inputs, outputs their difference. With one numeric input, 
outputs its negative. 

* Example: 

PRINT 5 * 2 
10 

Takes two numeric inputs, and outputs their product. 

/ Example: 

PRINT 5/2 
2 
PRINT 6/2 
3 

Outputs its first input divided by its second. Truncates any fractional part. 

DIFFERENCE Example: 

PRINT DIFFERENCE 10 6 
4 

Takes two numeric inputs. A prefix operation equivalent to —. 

PRODUCT Takes two inputs. A prefix operation equivalent to *. 

QUOTIENT Takes two inputs. A prefix operation equivalent to /. 

RANDOM Takes no input. Outputs a random number in the range 0 through 9. 

SUM Takes two inputs. A prefix operation equivalent to +. 



Glossary of Logo Primitive Commands / 179 

12.3. Word and List Operations In addition to numbers, Logo also includes operations for dealing with 
words (strings of characters) and lists (structured collections of data). 

BUTFIRST Abbreviated BF 
Example: 

PRINT BUTFIRST [THIS IS A LIST] 
IS A LIST 
PRINT BUTFIRST "ABRACADABRA 
BRACADABRA 

If input is a list, outputs a list containing all but the first element. If input is 
a word, outputs a word containing all but the first character. BUTFIRST of 
the empty list returns the empty list. BUTFIRST of a single-character word 
returns the empty list. 

BUTLAST Abbreviated BL 
Example: 

PRINT BUTLAST [THIS IS A LIST] 
THIS IS A 
PRINT BUTLAST "ABRACADABRA 
ABRACADABR 

If input is a list, outputs a list containing all but the last element. If input is a 
word, outputs a word containing all but the last character. BUTLAST of the 
empty list returns the empty list. BUTFIRST of a single-character word 
returns the empty list. 

FIRST Abbreviated F 
Example: 

PRINT FIRST [THIS IS A LIST] 
THIS 
PRINT FIRST "ABRACADABRA 
A 

If input is a list, outputs the first element. If input is a word, outputs the 
first character. FIRST of the empty list returns the empty list. 

FPUT Example: 

PRINT FPUT [A B] [C D] 
[A Ell CD 

The second input must be a list. Outputs a list consisting of the first input 
followed by the elements of the second input. 

LAST Example: 

PRINT LAST [THIS IS A LIST] 
LIST 
PRINT LAST "ABRACADABRAX 
X 

If input is a list, outputs the last element. If input is a word, outputs the last 
character. LAST of the empty list returns the empty list. 



80 / T I LOGO 

LENGTH Example: 

PRINT LENGTH "ELEPHANT 
8 
PRINT LENGTH [ALPHA BETA GAMMA] 
3 
PRINT LENGTH [A [B C D] [E F]] 
3 

If input is a word, outputs the number of characters in the word. If input is a 
list, outputs the number of items in the list. (Not included in the first release 
of TI Logo.) 

LPUT Example: 

PRINT LPUT "Z [W X Y] 
WX YZ 
PRINT LPUT [A B] [C D] 
C D [A B] 

Second input must be a list. Outputs a list consisting of the elements of the 
second input followed by the first input. 

REVERSE Example: 

PRINT REVERSE "APPLESAUCE 
ECUASELPPA 
PRINT REVERSE [ALPHA BETA GAMMA] 
GAMMA BETA ALPHA 
PRINT REVERSE [A [B C] [D E]] 
(D E] [B C] A 

If input is a word, outputs the characters of the word in reverse order. If 
input is a list, outputs a list of the items in reverse order. (Not included in the 
first release of TI Logo.) 

ROTATE Example: 

PRINT ROTATE "APPLESAUCE 
PPLESAUCEA 
PRINT ROTATE [ALPHA BETA GAMMA] 
BETA GAMMA ALPHA 
PRINT ROTATE [A [B C] [D E]] 
[B C] (D E] A 

If input is a word, outputs the word with the first character moved to the 
end; that is, outputs 

WORD (BUTFIRST :X) (FIRST :X) 

If input is a list, outputs the list with the first item moved to the end; that is, 
outputs 

LPUT (FIRST :X) (BUTFIRST :X) 

(Not included in the first release of TI Logo.) 



Glossary of Logo Primitive Commands / 181 

SENTENCE Abbreviated SE 
Example: 

PRINT SENTENCE "HELLO "THERE 
HELLO THERE 
PRINT SENTENCE [THIS IS] [A LIST] 
THIS IS A LIST 
PRINT (SENTENCE "THIS [IS] [A LIST]) 
THIS IS A LIST 
PRINT SENTENCE [[HERE IS] A] [NESTED LIST] 
[HERE IS] A NESTED LIST 

Takes a variable number of inputs. (The default is two.) If inputs are all lists, 
combines all their elements into a single list. If any inputs are words, they are 
regarded as one-word lists in performing operation. 

WORD Example: 

PRINT WORD "MISH "MASH 
MISHMASH 

12.4. Defining and Editing 
Procedures 

Takes two inputs. Outputs a word that is the concatenation of the characters 
of its inputs (which must be words). 

TO and EDIT are the most commonly used operations for creating and 
changing procedures. But Logo includes some other operations that allow 
more advanced manipulation of procedure definitions. 

DEFINE Abbreviated DE 
Example: 

DEFINE "PTSUM [[:X :Y] [PRINT:X] [PRINT:X + :Y]] 

defines the procedure 

TO PTSUM :X :Y 
PRINT:X 
PRINT:X + :Y 
END 

Takes two inputs. First is a name, and second is a list whose elements are a 
list of inputs and a list for each line, and defines a procedure accordingly. 
Note that you normally use TO rather than DEFINE in order to define 
procedures. DEFINE is useful for writing procedures that define other 
procedures, as in the extended INSTANT system described in Section 11.2.1. 

EDIT Example: 

EDIT SQUARE 
{sets up procedure SQUARE for editing) 

Enters the procedure editor with a given procedure. If no input is specified, 
enters the editor with a blank screen. 

END Terminates a procedure definition that is typed into the editor. It is not 
necessary to type END at the end of the final definition, but if you are 
defining more than one procedure at a time, the separate procedure 
definitions must be separated by END statements. 



82 / T I LOGO 

TEXT Example: 

TO PTSUM :X :Y 
PRINT :X 

PRINT :X + :Y 
END 

PRINT TEXT "PTSUM 
[:X :Y](PRINT:X](PRINT:X + :Y] 

Takes a procedure name as input and outputs procedure text as a list, whose 
format is as described under DEFINE. 

TO Begins procedure definition. Enters edit mode. 

12.5. Conditional Expressions Logo includes two basic facilities for allowing the user to write programs 
that perform tests and do different things depending on the outcomes. One is 
the IF... THEN ... ELSE construct that is common to many computer 
languages. The other, TEST... IFT... IFF, is less common but often 
simpler to use. 

BOTH Example: 

PRINT BOTH (1 + 1 = 2) (5 = 4) 

FALSE 

Takes two inputs. Each input should be either TRUE or FALSE. Outputs 
TRUE if both are TRUE; otherwise outputs FALSE. 

EITHER Example: 

PRINT EITHER (1 + 1 = 2) (5 = 4) 
TRUE 

Takes two inputs and outputs TRUE if at least one is TRUE; otherwise 
outputs FALSE. 

ELSE Used in . THEN .EN ... ELSE. 

IF Example: 

IF :X =5 THEN STOP ELSE PRINT "HELLO 

Used in the basic conditional form IF {condition} THEN {actionl} ELSE 

{action2}. The {condition} is tested. If it is true, {actionl} is performed. If 
it is false, {action2} is performed. The word THEN is optional. The ELSE 
{action2} part need not be present. 

IFF Executes rest of line only if result of preceding TEST was false. See TEST. 

IFT Executes rest of line only if result of preceding TEST was true. See TEST. 

NOT Example: 

IF NOT (1 = 2) PRINT "HELP 

HELP 

Outputs TRUE if its input is FALSE, FALSE if its input is TRUE. 



Glossary of Logo Primitive Commands / 183 

TEST Example: 

TEST "AB = WORD "A "B 
IFF PRINT "NO 
IFT PRINT "YES 
YES 

Tests a condition to be used in conjunction with IFT and IFF. 

THEN Used with IF... THEN ... ELSE .. . 

12.6. Predicates Used with The conditional expressions of the previous section make use of predicates, 

Conditional Expressions or operations that output either TRUE or FALSE. A predicate can be any 
procedure that outputs the word TRUE or the word FALSE. Here are the 

predicates that are built into Logo. 

> Example: 

IF :X > :Y STOP 

Outputs TRUE if its first input is greater than its second, FALSE otherwise. 

< Outputs TRUE if its first input is less than its second, FALSE otherwise. 

= Example: 

PRINT 20 = 10 + 10 
TRUE 
PRINT "A = [A] 
FALSE 
PRINT [A B] = SENTENCE "A "B 
TRUE 

If both inputs are numbers, compares them to see if they are numerically 
equal. If both inputs are words, compares them to see if they are identical 
character strings. If both inputs are lists, compares them to see if their 

corresponding elements are equal. Outputs TRUE or FALSE accordingly. 

FALSE Outputs the word "FALSE. (Not included in the first release of TI Logo.) 

GREATER Prefix form of >. 

IS Example: 

IF IS 7 3+4 PRINT [YES] 

Takes two inputs. A prefix operation equivalent to = . 

LESS Prefix form of < . 

NUMBER? Outputs TRUE if its input is a number, FALSE otherwise. 

THING? Outputs TRUE if its input has a value associated with it. 

TRUE Outputs the word "TRUE. (Not included in the first release of TI Logo.) 

WORD? Outputs TRUE if its input is a word, FALSE otherwise. 



84 I T I LOGO 

12.7. Controlling Procedure 
Execution GO Example: 

TO TRIANGLE :STRING 
IF FIRST:STRING = :STRING THEN STOP 
LOOP: PRINT:STRING 
MAKE "STRING BUTFIRST :STRING 
GO "LOOP 
END 

Compare this example with the TRIANGLE procedure of Section 6.3. GO 
takes a word as input and transfers to the line with that label. You can only 
GO to a label within the same procedure. Labels are defined by typing them 
at the beginning of the indicated line followed by a colon. GO is very rarely 
used in Logo programming.' 

12.8. Input and Output 

OUTPUT Abbreviated OP 
Takes one input. Causes the current procedure to stop and output the result 
to the calling procedure. 

REPEAT Example: 

REPEAT 3 [PRINT "HELLO ] 
HELLO 

HELLO 
HELLO 

Takes a number and a list as input. RUNs the list the designated number of 
times. 

RUN Example: 

MAKE "X [PRINT] 
RUN SENTENCE :X 5 
5 

Takes a list as input. Executes the list as if it were a typed-in command line. 
The number of characters in the list (i.e., the number of characters you 
would get if you printed it) given to RUN must not exceed the maximum 
number of characters allowed in a top-level command line, which is 255 
characters in the current implementation. 

STOP Causes the current procedure to stop and return control to the calling 
procedure. 

BEEP Takes no input. Starts the computer playing a tone. (Turn the tone off with 
NOBEEP.) 

CHARNUM Abbreviated CN 
Takes a character as input and outputs the code number of that character, as 
defined in the table in Section 4.3.3. 

'GO is occasionally useful, but is easily abused and can lead to obscure programs. In Logo, you can almost 

always avoid the need to use GO by taking advantage of REPEAT and/or procedure calls. Iteration 

constructs WHILE, FOR, and so on, can also be implemented by using RUN, as illustrated in Section 11.2.4. 

As the TRIANGLE procedure above shows, one can, in fact, use Logo to program in a style that is typical of 

most BASIC programs. That would be like pouring ketchup over caviar. 



Glossary of Logo Primitive Commands / 185 

JOY Example: 

PRINT JOY 1 

9 

Takes one input number, specifying joystick 1 or 2. Outputs a number which 
depends on the joystick position as shown: 

2 10 

\ /  
11 5 ►  9 

7 
 0 8 

4 

If the joystick's button is pressed when the command JOY 1 or JOY 2 is 
executed, the number output will be the indicated number plus 16. You can 
use this to create the effect of an on-off button with the joystick. For 
example, 

IF (JOY 1 >10) CLEARSCREEN 

will clear the screen whenever this command is given with joystick 1's button 

pressed down. (The button effect is not included in the original TI Logo.) 

Warning: JOY 1 and JOY 2 will output incorrect values if the ALPHA LOCK 

key is down. 

NOBEEP Takes no inputs. Stops the tone started by BEEP. 

PRINT Example: 

PRINT "HI 
HI 
PRINT [HELLO OUT THERE] 

HELLO OUT THERE 

Prints its input and moves cursor to the next screen line. When PRINT prints 
lists, the outermost pair of brackets is not printed. 

PRINTCHAR Abbreviated PC 
Takes a tile number as input, and prints the corresponding tile (character) at 
the current cursor position. 

RC? Takes no inputs. Outputs TRUE if a keyboard character is pending (i.e., the 
character input buffer is not empty); otherwise outputs FALSE. 

READCHAR Abbreviated RC 
Takes no inputs. Outputs the least recent character in the character buffer, or 
if empty, waits for an input character. 



86 / T I LOGO 

READLINE Abbreviated RL 
Takes no inputs. Waits for an input line to be typed, terminated with ENTER. 

Outputs the line (as a list). 

TYPE Like PRINT, but does not move cursor to the next line after printing. 

WAIT Takes one numeric input and pauses the computer for that many sixtieths of 

a second. 

12.9. Naming 
CALL Example: 

CALL 7 "LUCKYNUMBER 
CALL [ALPHA BETA GAMMA] "TESTWORDS 

Equivalent to MAKE with the order of the inputs reversed. 

MAKE Example: 

MAKE "APPLE 50 
PRINT :APPLE 
50 

Takes two inputs, the first of which must be a word. Assigns the second input 
to be the value associated with the first input. 

THING Example: 

MAKE "APPLE 50 
PRINT THING "APPLE 

50 

Outputs the value of its input (which must be a word). THING "XXX can be 
abbreviated as :XXX. 

12.10. Filing and Managing Workspace consists of all currently defined procedures and all names and 

Workspace their associated values. Workspaces can be stored in files on disk or on 
cassette tape. 

ERASE Example: 

ERASE SQUARE or ERASE "SQUARE 

{gets rid of the procedure named SQUARE} 
ERASE :X or ERASE "X 
{gets rid of the variable named X} 

Warning: ERASE "X erases both a variable and a procedure named X. 

PA Prints all procedures and names. 

PN Prints all currently defined names. 

PO Example: 

PO SQUARE 
TO SQUARE 

REPEAT 4 [FORWARD 50 RIGHT 90] 
END 

Takes a procedure name as input and prints the definition of the procedure. 

PP Prints the tile lines of all currently defined procedures. 



LEGATO 

LOOPMUSIC  

Glossary of Logo Primitive Commands 1 187 

PRINTOUT Takes no inputs. Prints all your procedures on a thermal printer or RS232 
printer. See Section 5.2. (Not included in the first release of TI Logo.) 

RECALL Takes no inputs. Reads information from the cassette tape or the disk. See 
Section 5.2. 

SAVE Takes no inputs. Transmits information to cassette tape or disk. See 
Section 5.2. 

12.11. Music Primitives TI Logo II includes the ability to generate music in up to three-voice 
harmony. You construct music by using commands, such as NOTE, and place 
the notes in a music buffer. Afterwards, you use the command PLAYMUSIC 
to play the notes that have been placed in the buffer. 

CHROMATIC Changes meaning of pitch designations. See MAJOR. 

DRUM Example: 

DRUM [3 4 6 8] 

Takes a list of numbers as input, and signals a "drumbeat" with the 
designated durations between beats. "Beats" are placed in the music buffer 
to be played by PLAYMUSIC. 

Controls "dead time" inserted between notes. See STACCATO. 

Plays the music in the buffer repeatedly. You can continue to execute Logo 
commands while music is playing. To stop music, use SETVOICE 0. 

MAJOR As opposed to CHROMATIC. Changes the meanings of the pitch 
designations. In MAJOR mode, 0 is middle C and each unit is a note on the 
C scale. In CHROMATIC mode, each unit is a half-step. CHROMATIC is the 
default. 

MUSIC Example: 

MUSIC [0357] [4 2 2 8] 
or 
MUSIC [0 3 5 7] 4 

Takes as input two lists: a list of pitches and a list of durations, and places 
these in the music buffer. If the lists are not of the same length, the longer 
one is truncated. If a single number is specified as the duration, that duration 
is used for each of the pitches. Volume is taken as the value specified by the 
previous SETVOLUME command. 

NOTE Example: 

NOTE 387 

Takes three numbers as inputs, specifying the duration, pitch, and volume 
for a note, and places that note in the music buffer. 

This is equivalent to playing a note from the music buffer, and then WAITing 
for the duration of the note. Consecutive PLAYNOTE commands will play 
consecutive notes. This command can function with only one voice at a time. 
If the music buffer contains notes for more than one voice, PLAYNOTE will 
use the notes for the current voice as designated by SETVOICE. PLAYNOTE 
can be used to synchronize music playing with other Logo commands, as is 
illustrated in Section 9.3. 

PLAYNOTE  



88 / T 1 LOGO 

PLAYMUSIC Abbreviated PM 
Plays the music in the buffer. Logo music plays simultaneously while 
commands are executed, so that after giving the PLAYMUSIC command, you 
can proceed to execute other Logo commands while the music is playing. 

REST Takes a number as input and inserts a rest of that duration in the music 
buffer. 

SETTEMPO Takes a number as input and sets the tempo in counts per minute. With a 
tempo of T, a note of duration D will last (60/T) *D seconds. The default 
value of T is 300. 

SETVOICE Takes a number 0 through 4 as input. I, 2, or 3 select one of the three voices. 
Subsequent note commands will be directed to that voice. An input of 4 
selects the noise generator. An input of 0 clears the music buffer. 

SETVOLUME Takes a number 0 through 15 as input and sets the volume. 0, the default 
volume, is the softest, 15 the loudest. 

STACCATO In contrast to LEGATO, the default condition. Controls "dead time" inserted 
between notes. For LEGATO, a dead time of 5/60 second will be used. For 
STACCATO, the note will sound for 5/60 second and the remainder will be 
dead time. For notes of duration less than 6/60 second, (n — 1)/60 will be 
used in place of 5/60. 

12.12. Debugging Aids 
CONTINUE Takes no inputs. Can sometimes be used to resume execution from a paused 

state (entered via AID or DEBUG). 

DEBUG Takes no inputs. Controls an option whereby errors will enter a pause state, 
rather than return to top command level. See Section 5.3. 

TRACEBACK Takes no inputs. When called within a procedure, prints the chain of 
procedure calls from the current procedure back to top level. 

12.13. Editing Commands This section describes the special keys that are used with the procedure 
editor. Each key is used while simultaneously pressing the FCTN key. 

arrow keys Move the cursor one space up, down, right, or left. 

BACK Exits the editor and processes definitions. 

BEGIN Moves the cursor to the beginning of the current line. 

CLEAR Deletes all characters on the current line, from the cursor rightwards. 

DEL Deletes the character at the current cursor position. 

ERASE Deletes the character to the left of the cursor, and moves the cursor one space 
to the left. 

PROC'D Moves the cursor to the right end of the current line. 

12.14. Other Special Keys This section describes special keys used in Logo other than for editing. 

AID Stops procedure execution and enters a pause break. See Section 5.3. 



Glossary of Logo Primitive Commands / 189 

BACK Stops execution and returns control to top level. Also used to exit shape 
editors. 

QUIT Resets the computer, destroying all programs and data in memory. Don't 
press QUIT unless you are finished using Logo. 

ERASE Deletes the character to the left of the cursor and moves the cursor one space 
to the left. 

12.15. Miscellaneous Commands 
BYE Leaves TI Logo. 

CONTENTS Outputs a list of all words currently being used in the workspace. (Not 
included in the first release of TI Logo.) 

.HELP Prints a list of all the keywords in TI Logo. (Not included in the first release 
of TI Logo.) 

.GC Forces a garbage collection, reclaiming unused storage. (Not included in the 
first release of TI Logo.) 

.NODES Outputs the number of currently free nodes. This is a measure of how much 
storage is available in workspace. (Not included in the first release of TI 
Logo.) 

, Causes the rest of the line not to be evaluated. (Can be used to include 
comments in procedures.) 

12.16. Error Messages When Logo encounters an error, it signals that fact by halting program 
execution and printing a message of the form: 

{message} 
AT LEVEL {level}LINE {line} of {procedure} 

For example: 

TELL ME HOW TO FORWAXD 
AT LEVEL 1 LINE 2OFBOX 

In general, {message} is a description of the error, {line} is the line number 
at which the error occurred, {procedure} is the name of the procedure 
containing that line, and {level} tells "how many levels away from top level" 
Logo was running when the error occurred. That is to say, level 0 means that 
Logo was executing a line directly typed in, level 1 means executing a line in a 
procedure that was called at level 0, level 2 means executing a line in a 
procedure that was called at level 1, and so on. 

• TELL ME HOW TO {something} This happens when Logo does not recognize the name of the procedure you 
are trying to run. Common causes are that you forgot to define the 
procedure in question, or that you used the wrong name. Typing errors also 
commonly cause this. For example, if you type FORWAXD 100 instead of 

FORWARD 100, you will get the error TELL ME HOW TO FORWAXD. 

• {something} HAS NO VALUE This happens when you refer to the value of a name, but there is no such 
name in the environment. The causes are similar to those for the "no 
procedure" error message. Another cause is confusion between the local 
variables in a procedure and the global variables. For example, defining and 
running the procedure 

TO INC :X 
OUTPUT :X + 1 
END 



90 / T i LOGO 

creates a variable X that is local to INC, but this does not mean that there is a 
global variable named X. 

• TELL ME MORE A procedure was called with too few inputs. 

• NOTHING BEFORE THE 
{infix-operator} This happens when an infix operator is called with nothing before it. For 

example, 

PRINT * 3 

will give the error NOTHING BEFORE THE *. 

• {primitive} DOESN'T LIKE {data} 
AS INPUT This happens when you try to use an operation with a kind of data that it 

cannot handle. For example, 

PRINT 1 + "X 

results in + DOESN'T LIKE X AS INPUT 

• TELL ME WHAT TO DO WITH 
{data} This occurs in procedures when you generate some data and then don't say 

what to do with it. (In most cases, you probably meant to OUTPUT it.) For 
example: 

TO SQUARE :X 
:X * :X 
END 

SQUARE 5 
TELL ME WHAT TO DO WITH 25 
AT LEVEL 1 LINE 1 OF SQUARE 

People often make this error in writing recursive procedures: 

TO FACTORIAL :N 
IF :N = 0 OUTPUT 1 
:N * (FACTORIAL :N — 1) 
END 

PRINT FACTORIAL 1 
TELL ME WHAT TO DO WITH 1 
AT LEVEL 2 LINE 1 OF FACTORIAL 

The problem here is that FACTORIAL should have an OUTPUT at the 
beginning of its second line. 

• {procedure} DIDN'T OUTPUT This happens when you try to use the value returned by a procedure, but the 
procedure didn't output anything. For example, 

TO PRINT.SQUARE :X 
PRINT :X * :X 
END 

FORWARD PRINT.SQUARE 4 

16 
PRINT.SQUARE DIDN'T OUTPUT 

• OUT OF SPACE This happens when you have used up all available storage. 

• YOU TRIED TO DIVIDE BY ZERO This happens when the QUOTIENT or / operation is called with zero as the 
divisor. 



Glossary of Logo Primitive Commands / 191 

• {object} CAN'T {something} This happens when you try to perform a graphic operation when the current 
object is not of the type that can do that operation. For example, 

TELL TURTLE 
SETSPEED 100 

TURTLE CAN'T SETSPEED 

• OUT OF INK The turtle has used up all available tiles for drawing. To continue drawing, 
you must first clear the screen. 

• STOPPED Occurs when you have pressed the BACK key to stop a procedure. 

• PAUSED Occurs when you have pressed the AID key to temporarily halt a procedure. 

• A LABEL IS OUT OF PLACE 

• THEN IS OUT OF PLACE 

• ELSE IS OUT OF PLACE These three messages all mean that you used the indicated primitive in a 
context in which it doesn't make sense. (A label is signaled by the :.) Some 
lines that would generate such messages are 

PRINT 5 + X: 
FORWARD 100 THEN PRINT 5 

• {something} WAS GIVEN 
INSTEAD OF TRUE OR FALSE A command which needs TRUE or FALSE as input was given another value 

instead. This can occur if you forget to include an = in the input to IF or 
TEST as in this example: 

IF HEADING 0 STOP 

• {primitive} MUST BE IN A 
PROCEDURE This happens, for example, if you use the OUTPUT, STOP, or GO commands 

directly at top level rather than in a procedure. 

• PROCEDURE NOT BEING 
DEFINED This means you tried to use END as a command in a procedure line. (You 

most likely meant to use STOP instead.) Another way to get this error is to 
explicitly include an END command in the list of lines given to DEFINE. 

• WHERE IS THE LABEL This happens if you try to GO to a label that was not defined in the 
procedure. 

• UNEXPECTED ")" Logo has run across a close parentheses for which there was no 
corresponding open parentheses. 

MISMATCHED BRACKETS Logo has run across a close bracket for which there was no corresponding 
open bracket. 

TOO MANY SUBLISTS You tried to type in a list that was too deep (i.e., too many levels of open 
brackets). In the current implementation, the maximum is 14. 

OUT OF NOTES The music buffer is full. You must reset it (using SETVOICE 0) before 
adding more notes. 

• SENTENCE IS TOO LONG Occurs when the output of a SENTENCE command results in a list that has 
too many elements. 



References / 193 

References 

1. Abelson, H. and diSessa, A. Turtle Geometry: The Computer as a 
Medium for Exploring Mathematics. MIT Press, Cambridge, MA, 1981. 

2. Bamberger, J. "The Development of Musical Intelligence I: Strategies for 
Representing Simple Rhythms." Memo 342, MIT Artificial Intelligence 
Laboratory, 1975. 

3. Bamberger, J. "The Development of Musical Intelligence II: Children's 
Representation of Pitch Relations." Memo 401, MIT Artificial Intelligence 
Laboratory, 1976. 

4. Bamberger, J. "Logo Music Projects: Experiments in Musical Perception 
and Design." Memo 523, MIT Artificial Intelligence Laboratory, 1979. 

5. Bowles, K. Problem Solving Using Pascal. Springer-Verlag, New York, 
1977. 

6. diSessa, A. "Unlearning Aristotelian Physics: A Study of 
Knowledge-Based Learning." Cognitive Science (in press). 

7. Feurzeig, W, Papert, S., Bloom, M., Grant, R., and Solomon, C. 
"Programming Languages as a Conceptual Framework for Teaching 
Mathematics." Report 1889, Bolt, Beranek and Newman, Inc., November, 
1969. 

8. Feurzeig, W, Goldenberg, E. P., Lukas, G., Manis, V., Rubenstein, R., 
and Stachel, R. "The Logo-S Language and the Portable Logo System." 
Bolt, Beranek and Newman, Inc., 1980. 

9. Goldberg, A., Robson, D., and Ingalls, D.H.H. Smalltalk-80: The 
Language and Its Implementation. Addison-Wesley, Reading, MA, 1982. 

10. Goldenberg, P. Special Technology for Special Children. University Park 
Press, Baltimore, 1979. 

11. Greenberg, B. "Notes on the Programming Language Lisp." MIT 
Student Information Processing Board, 1978. 

12. Howe, J.A.M., O'Shea, T., and Lane, E "Teaching Mathematics 
through Logo Programming: An Evaluation Study." Department of 
Artificial Intelligence, University of Edinburgh, 1977. 

13. Kay, A. "Microelectronics and the Personal Computer." Scientific 
American (September 1977). 

14. Papert, S. and C. Solomon. "NIM: A Game-Playing Program" Memo 
254, MIT Artificial Intelligence Laboratory, 1970. 

15. Papert, S. Mindstorms: Children, Computers, and Powerful Ideas. Basic 
Books, New York. 1980. 



941T1 LOGO 

16. Papert, S., diSessa, A., Watt, D., and Weir, S. "Final Technical Report 
to the National Science Foundation: Documentation and Assessment of a 
Children's Computer Laboratory." Memos 52, 53, MIT Logo Project, 1980. 

17. Weir, S. "Logo and the Exceptional Child." Kilobaud Microcomputing 5, 
9 (September 1981). 

18. Weizenbaum, J. Computer Power and Human Reason. W. A. Freeman & 
Co., San Francisco, 1976. 

19. Winston, P. and Horn, B. Lisp. Addison-Wesley, Reading, MA, 1981. 



Caring for the Module / 195 

This Solid-State Software' Command Module is designed to be used with 
the Texas Instruments computer. Its preprogrammed solid-state memory ex-
pands the power, versatility, and capability of your computer. 

Copyright ® 1981 Texas Instruments Incorporated 
Command Module program and data base contents copyright ® 1981 Texas In- 
struments Incorporated. 
See important warranty information in next section. 

CARING FOR THE MODULE 
These modules are durable devices, but they should be handled with the 
same care you would give any other piece of electronic equipment. Keep the 
module clean and dry, and don't touch the recessed contacts. 

CAUTION: 
The contents of a Command Module can be damaged by static electricity 
discharges. 

Static electricity build-ups are more likely to occur when the natural 
humidity of the air is low (during winter or in areas with dry climates). To 
avoid damaging the module, just touch any metal object (a doorknob, a 
desklamp, etc.) before handling the module. 

If static electricity is a problem where you live, you may want to buy a 
special carpet treatment that reduces static build-up. These commercial 
preparations are usually available from local hardware and office supply 
stores. 

IN CASE OF DIFFICULTY 
If the module activities do not appear to be operating properly, return to 
the master title screen by pressing QUIT. Withdraw the module, align it 
with the module opening, and reinsert it carefully. Then press any key to 
make the master selection list appear. Repeat the selection process. (Note: 
In some instances, it may be necessary to turn the computer off, wait 
several seconds, and then turn it on again.) 

If the module is accidentally removed from the slot while the module con-
tents are being used, the computer may behave erratically. To restore the 
computer to normal operation, turn the computer console off, and wait a 
few seconds. Then, reinsert the module, and turn the computer on again. 

If you have any difficulty with your computer or the TI LOGO II module, 
please contact the dealer from whom you purchased the unit and/or module 
for service directions. 

Additional information concerning use and service can be found in your 
User's Reference Guide. 



961T1 LOGO 

THREE-MONTH LIMITED WARRANTY 
HOME COMPUTER SOFTWARE MODULE 

Texas Instruments Incorporated extends this consumer warranty only to the 
original consumer purchaser. 

WARRANTY COVERAGE 
This warranty covers the electronic and case components of the software 
module and diskette. These components include all semiconductor chips and 
devices, plastics, boards, wiring and all other hardware contained in this 
module and diskette ("the Hardware"). This limited warranty does not ex-
tend to the programs contained in the software module, the diskette, and 
the accompanying book materials ("the Programs"). 

The Hardware is warranted against malfunction due to defective materials 
or construction. THIS WARRANTY IS VOID IF THE HARDWARE HAS 
BEEN DAMAGED BY ACCIDENT, UNREASONABLE USE, 
NEGLECT, IMPROPER SERVICE OR OTHER CAUSES NOT ARISING 
OUT OF DEFECTS IN MATERIALS OR WORKMANSHIP. 

WARRANTY DURATION 
The Hardware is warranted for a period of three months from the date of 
the original purchase by the consumer. 

WARRANTY DISCLAIMERS 
ANY IMPLIED WARRANTIES ARISING OUT OF THIS SALE, IN-
CLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF 
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE, ARE LIMITED IN DURATION TO THE ABOVE THREE-
MONTH PERIOD. TEXAS INSTRUMENTS SHALL NOT BE LIABLE 
FOR LOSS OF USE OF THE HARDWARE OR OTHER INCIDENTAL 
OR CONSEQUENTIAL COSTS, EXPENSES, OR DAMAGES IN-
CURRED BY THE CONSUMER OR ANY OTHER USER. 

Some states do not allow the exclusion or limitation of implied warranties 
or consequential damages, so the above limitations or exclusions may not 
apply to you in those states. 

LEGAL REMEDIES 
This warranty gives you specific legal rights, and you may also have other 
rights that vary from state to state. 

PERFORMANCE BY TI UNDER WARRANTY 
During the above three-month warranty period, defective Hardware will be 
replaced when it is returned postage prepaid to a Texas Instruments Service 
Facility listed below. The replacement Hardware will be warranted for three 
months from date of replacement. Other than the postage requiremenet, no 
charge will be made for replacement. 

TI strongly recommends that you insure the Hardware for value prior to 
mailing. 



197 

TEXAS INSTRUMENTS CONSUMER SERVICE FACILITIES 
Texas Instruments Service Facility Geophysical Services Incorporated 
P.O. Box 2500 41 Shelley Road 
Lubbock, Texas 79408 Richmond Hill, Ontario, Canada 

L4C5G4 

Consumers in California and Oregon may contact the following Texas In-
struments offices for additional assistance or information. 

Texas Instruments Consumer Service Texas Instruments Consumer Service 
831 South Douglas Street 6700 Southwest 105th 
El Segundo, California 90245 Kristin Square, Suite 110 
(213) 973-1803 Beaverton, Oregon 97005 

(503)643-6758 

IMPORTANT NOTICE OF DISCLAIMER REGARDING THE 
PROGRAMS 
The following should be read and understood before purchasing and/or us-
ing the software module and diskette. 

TI does not warrant that the Programs will be free from error or will meet 
the specific requirements of the consumer. The consumer assumes complete 
responsibility for any decision made or actions taken based on information 
obtained using the Programs. Any statements made concerning the utility of 
the Programs are not to be construed as express or implied warranties. 

TEXAS INSTRUMENTS MAKES NO WARRANTY, EITHER EX-
PRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY 
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 
FOR A PARTICULAR PURPOSE, REGARDING THE PROGRAMS 
AND MAKES ALL PROGRAMS AVAILABLE SOLELY ON AN "AS 
IS" BASIS. 

IN NO EVENT SHALL TEXAS INSTRUMENTS BE LIABLE TO 
ANYONE FOR SPECIAL, COLLATERAL, INCIDENTAL, OR CONSE-
QUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT 
OF THE PURCHASE OR USE OF THE PROGRAMS AND THE SOLE 
AND EXCLUSIVE LIABILITY OF TEXAS INSTRUMENTS, 
REGARDLESS OF THE FORM OF ACTION, SHALL NOT EXCEED 
THE PURCHASE PRICE OF THE SOFTWARE MODULE AND 
DISKETTE. MOREOVER, TEXAS INSTRUMENTS SHALL NOT BE 
LIABLE FOR ANY CLAIM OF ANY KIND WHATSOEVER BY ANY 
OTHER PARTY AGAINST THE USER OF THE PROGRAMS. 
Some states do not allow the exclusion or limitation of implied warranties 
or consequential damages, so the above limitations or exclusions may not 
apply to you in those states. 



198/TI LOGO 

KEYBOARD REFERENCE GUIDE 
Note that the key sequences required to access special functions depend on the type of computer console you have. 

TI-99/4 TI-99/4A  

AID AID Causes the computer to pause. 
(SHIFT A) (FCTN 7) 

BACK BACK ■ Leaves the Save and Recall Modes and returns the computer to the mode it was in. 
(SHIFT Z) (FCTN 9) ■ Stops a procedure. 

■ Leaves the Edit Mode, MAKESHAPE and MAKECHAR. 

BEGIN BEGIN Moves the cursor to the beginning of the line in the Edit Mode. 
(SHIFT W) (FCTN 5) 

CLEAR CLEAR ■ Clears the MAKESHAPE and MAKECHAR grids. 
(SHIFT C) (FCTN 4) ■ Erases what is above and to the right of the cursor in the Edit Mode. 
DELETE DELETE ■ Erases what is above the cursor. 
(SHIFT F) (FCTN 1) ■ Moves a line up one line if the cursor is at the end of the line in the Edit Mode. 
ERASE ERASE ■ Erases what is one space to the left of the cursor. 
(SHIFT T) (FCTN 3) ■ Moves a line up one line if the cursor is under the first character of a line in the 

Edit Mode. 

PROC'D PROC'D Moves the cursor to the end of the line in the Edit Mode. 
(SHIFT V) (FCTN 6) 

T T ■ Moves the cursor up one line in the Edit Mode. 
(SHIFT E) (FCTN E) ■ Blackens a square on the MAKESHAPE and MAKECHAR grids as the cursor 

moves up one square. 

1- ■ Moves the cursor left one space in the Edit Mode. 
(SHIFT S) (FCTN S) ■ Blackens a square on the MAKESHAPE and MAKECHAR grids as the cursor 

moves left one square. 

--> -> ■ Moves the cursor right one space in the Edit Mode. 
(SHIFT D) (FCTN D) ■ Blackens a square on the MAKESHAPE and MAKECHAR grids as the cursor 

moves right one square. 

1 1 ■ Moves the cursor down one line in the Edit Mode. 
(SHIFT X) (FCTN X) ■ Blackens a square on the MAKESHAPE and MAKECHAR grids as the cursor 

moves down one square. 

SPACE SPACE ■ Leaves a blank space in the type in the Sprite and Turtle Modes. 
■ Reviews file names in the Save and Recall Modes. 

Types a left bracket. 
(SHIFT 4) (FCTN R 

OR SHIFT 4) 

(SHIFT 5) (FCTN T 
OR SHIFT 5) 

QUIT QUIT 
(SHIFT Q) (FCTN =) 

Types a right bracket. 

Stops TI LOGO and returns to the master title screen. 



INDEX 

199 

AID key 1, 74, 188 
BACK key 1, 7, 

188, 189 
BEGIN key 1, 
CLEAR key 1, 
C L E A R key in shape editor 59 
DEL key 1, 9,188 
ENTER key 1, 2 
ENTER key, in file system 71 
ERASE key 1,5,9,188,189 
FCTNkey 1,58 
PROC'Dkey 1,10,188 
QUIT key 1, 189 
SHIFT key 1 
* 77, 178 
+ 77, 178 
- 77, 178 
. GC 189 
.HELP 189 
.NODES 189 
/ 77, 178 
: 86, 186 
; 189 
< 25, 183 
= 25, 183 

25, 183 
ALL 54 
ANIMAL program 164 
BACKGROUND 173 
BACK 4, 173 
BEEP 184 
BF 81, 179 
BG 173 
BIG 54, 173, 176 
BK 173 
BL 81, 179 
BOTH 91, 182 
BUTFIRST 81,83, 137, 179 
BUT LAST 81, 83, 137, 179 
BYE 189 
CALL 186 
CARRY 51, 173, 174 
CB 14, 173 
CHARNUM 184 
CHROMATIC 132, 187 
CLEARSCREENANDSPRITES 

68 
CLEARSCREEN 4,54,173 
CM 127 
CN 184 
COLORBACKGROUND 14, 173 
COLOR 14, 54, 173 
CONTENTS 189 
CONTINUE 188 
COS 124 
CS 173 
DEBUG 75, 188 
DEFINE 156, 181 
DIFFERENCE 178 
DOCTOR program 161 
DOT 174  

DRUM 134, 187 
EACH 55, 174 
EDIT 10, 181 
EITHER 91, 182 
ELSE 89, 182 
END 8, 11, 181 
ERASE 69, 186 
FALSE 91, 183 
FD 174 
FIRST 81, 83, 141, 179 
FORWARD 4, 174 
FOR 160 
F P U T 149, 179 
FREEZE 54, 174, 177 
F 81 
GO 184 
GREATER 183 
HEADING 13,54,174 
HIDETURTLE 4, 174 
HOME 13.53.174 
I F F 89, 182 
I FT 89, 182 
IF 25, 89, 182 
INSTANT 154, 156 
IS 183 
JOY 185 
LAST 81, 83, 139, 179 
LEFT 4, 174 
L E F T, for sprites 53 
LEGATO 131, 187, 188 
LENGTH 142, 180 
LESS 183 
LIST operation 150 
LOOKLIKE 174 
LOOKUP 151 
LOOPMUSIC 134, 187 
L P U T 150, 180 
LT 174 
MAJOR 128, 132, 187 
MAKE 55, 85, 186 
MAKECHAR 59, 174 
MAKEROWS 65, 112 
MAKESHAPE 51, 57, 175 
MC 59, 174 
MEMBER? 143 
MS 175 
MUSIC 127, 187 
NOBEEP 185 
NOTE 133, 187 
NOTURTLE 4, 15, 175 
NOT 91, 182 
NUMBER? 183 
NUMBEROF 175 
OP 184 
OUTPUT 78, 184 
PA 69, 186 
PC 117, 185 
PD 175 
PENDOWN 4, 175 
PENERASE 13, 175 
PENREVERSE 13.175  

PENUP 6, 175 
PE 13, 175 
PICKRANDOM 142 
PICK 141 
PLAYMUSIC 127, 188 
PLAYNOTE 135, 187 
PM 127, 188 
PN 69, 186 
POLY 23, 57 
PO 11, 69, 186 
PP 11, 69, 186 
PRINT 2, 117, 185 
PRINTCHAR 117, 185 
PRINTOUT 187 
PRODUCT 178 
PR 13, 175 
PT 60, 175 
PUTSPRITE 109 
PUTT I LE 60, 175 
PU 175 
QUOTIENT 178 
RANDOM 80, 178 
RAND 80 
R C ? 119, 185 
RC 118, 185 
READCHAR 118, 185 
READLINE 84, 118, 186 
READNUMBER 98 
RECALL 70, 187 
REMAINDER 80 
REPEAT 184 
REPEAT command 7 
REST 131, 188 
REVERSE 138, 180 
RIGHT 6, 175 
RIGHT, for sprites 53 
RL 84, 185 
ROTATE 180 
RT 175 
RUN 153, 184 
SAVE 70, 187 
SC 13, 51, 175 
SENTENCE 61, 85, 94, 140, 150, 

181 
SETCOLOR 13, 51, 60, 175 
S ET CO L O R, for tiles 61 
SETHEADING 14, 174, 176 
SETSPEED 52, 176 
SETTEMPO 131, 188 
S E T V O I CE 127, 133, 188 
SETVOLUME 131, 188 
SE 85, 181 
SE 85, 181 
SHAPE 54, 176 
SHOWTURTLE 4, 176 
SH 176 
SIN 124 
SIZE 173, 176 
SMALL 54,173,176 
SPEED 176 
SPRITE command 176 

9,  15, 22, 58, 75, 

10,  188 
10, 188 



2001 T.I. LOGO 

SS 52, 176 
STACCATO 131, 188 
STOP 24, 184 
ST 176 
SUBST 151 
SUM 178 
SV 54, 176 
SXV 177 
S X Y 13, 54, 177 
SX 176 
SY 177 
SYV 177 
TELL 3, 14,51,54,60, 173, 177 
TEST 89, 183 
TEXT 159, 182 
THAW 54, 174, 177 
THEN 25, 183 
THING? 87, 183 
THING 86, 186 
TILE 177 
TO 8, 182 
TRACEBACK 75, 188 
TRUE 91, 183 
turtle mode 4 
TURTLE primitive 177 
TYPE 117, 186 
WAIT 59, 186 
WHERE 177 
WHILE 159 
WHO 57, 175, 177 
WORD? 83, 183 
WORD 80, 81, 181 
XCOLUMN 109 
X C O R 13, 54, 177 
XVEL 177 
Y C O R 13, 54, 177 
YN 56 
YOURNUMBER 55,174, 178 
YROW 109 
YVEL 178 

Abbreviations 6 
Absolute value 79 
Activation 27, 28 
Addition 77 
Arcs 21 
Arithmetic 77 
Arrow keys 10, 188 
Arrow keys, in shape editor 
Association list 151 

Background color 61 
Bamberger, Jeanne 129 
Binary tree 28 
Body 8 
Bowles, K. viii 
Brackets 7 

Cartesian coordinates 13 
Cassette tape 69 
Character input 118 
Characters, as tiles 62 
Circles 21 
Color 13 
Color groups for tiles 61 
Colors, for tiles 61  

Conditional 24, 89 
Coordinates, for tiles and 

sprites 109 
Cursor 2 

Debugging 73, 188 
DiSessa, Andy viii, ix, 120 
Disk files 70 
Diskettes, initializing 70 
Division 77 
Dots 18 
Drescher, Gary viii 
Dynaturtle 120 

Edit mode 15 
Editing commands, summary 188 
Empty list 83 
Error messages 5, 12, 189 
Errors 189 
Errors, typing 5 

Feurzeig, W viii 
Filing 186 
Foreground color 61 
Free variables 88 

Gargarian, Greg ix 
Global variables 87 
Goldberg, A. viii 
Graphical objects 14, 51 
Graphics commands 173 
Gross, Mark viii 

Hard copy 72 
Hardebeck, Edward viii 
Hierarchical structure 147 
How, J. viii 

Infix operators 93 
Input 4, 17 
Integers 77 

Kay, A. viii 
Keyboard 1 

Modes 15 
Multiplication 77 
Music 127 
Music buffer 127 

Names 19, 85 
Nim 101 
Noturtle mode 15 
Number 77 
Numbers, are not words 82 
Numeric Operations 178 

Papert, Seymour viii, ix, 20, 100, 
101 

Level 12, 74 
List operations 179 

57 Lists vii, 7, 83, 147 
Local variables 87 

Parentheses 92 
Pause 74 
Pause break 75 
Physics 120 
Pig Latin 143 
Playnote 187 
Predicate 25, 90, 183 
Prefix operators 94 
Primitive vii, 7 
Printer 72 
Private library 19, 26 
Procedure 7,78 
Procedure editor 9 
Procedure, body 8 
Procedure, title 8 
Prompt 2, 74, 85 

Quiz program 97 

Radix conversion 144 
Random numbers 80 
Recursion 22, 26, 28, 140 
Recursive designs 30 
Reduction step 140 

Sentence generator 98 
Shape editor 57 
Shapes, predefined 51 
Solomon, Cynthia ix, 101 
Spaces in Logo lines 92 
Sprite 51 
Stop rule 29, 140 
Subprocedure 9 
Subtraction 77 
Syntax 92 

Tail recursion 26 
Thermal printer 72 
Tile 51, 59 
Title 8 
Title line 8 
Tree 28 
Tree structure 148 
Tuneblocks 129 
Turtle viii, 3, 4 
Turtle mode 15 

Watt, Dan ix, 121 
Weizenbaum, J. 161 
Word operations 179 
Workspace 69, 186 
Wraparound 6 


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199
	Page 200
	Page 201
	Page 202
	Page 203
	Page 204

