
:_ ,M; t5[lf -T. ~ ee_ OM PM v tai mm ger
R_ rr EIé e_7 ige le ®

.._ _ r mt imett Mr• W R mm...9-
®

COLLINS
MICROSOFTWARE

TEXAS INSTRUMENTS
HOME COMPUTER
STARTER PACK 1
CASSETTE SOFTWARE

WITH MANUAL

An integrated pack containing a series of programs on cassette that develop and graphically
display major ideas covered in the accompanying book. Enables any user to progressively

understand and make full use of this computer.

TEXAS INSTRUMENTS
HOME COMPUTER

Starter Pack 1
PK McBride

Er-

COWNS
MICROSOFTWARE

Contents

© William Collins Sons & Co. Ltd., 1983
1103213-0000

123456789

Produced and printed by Contract Books Ltd,
1983. All rights reserved, no part of this
publication may be reproduced, stored in a
retrieval system, or transmitted in any form or by
any means, electronic, mechanical,
photocopying, recording, or otherwise, without
the prior permission of the copyright owner.

Introduction 4

1 Getting started 6
2 Hands on 11
3 Hello, hello 13
4 Going round in circles 16
5 Coloured paper 20
6 Questions and answers 22
7 Introducing flowcharts 27
8 Working out sums 31
9 The number stores 33

10 Comparing numbers 35
11 Random numbers 38
12 Keeping count 42
13 Times tables and other things 45
14 Sound effects 49
15 Remember, remarks can remind you 54
16 Neater printing 56
17 Running totals 59
18 The character set 63
19 Graphics 67
20 Putting things in the right place 72
21 Coloured pictures 76
22 Branching programs 80
23 Keyboard tricks and games 86

Appendices
A ASCII codes 91
B BASIC words 93
C Using the cassette 95
D Some common errors 101

2 3

Introduction

This Pack is the first of a series of five which together form a
complete course in programming in TI BASIC using the
TI-99/4A home computer.

BASIC (Beginners All-purpose Symbolic Instruction Code)
is one of the easiest computer languages to learn, and the
language of almost all home computers. TI BASIC is a
version specially developed for Texas Instruments. It is
slightly different from other forms of the language in that it
has a number of special routines built into it to make
programming easier. However, you will find that once you
have learned TI BASIC, you can easily transfer to the
versions that other machines use. You will also find that the
programming skills you have mastered will make it easier to
learn other computer languages if you ever want to.

This Pack teaches the techniques and routines needed for
writing a wide variety of programs using simple BASIC.
Note that simple does not have to mean short. The program
TRANSPORT on the cassette uses little more than those
BASIC commands that are covered in this book.

Starter Pack 2 will take your understanding of BASIC a lot
further, and will help you to explore deeper into the Colour
and Sound capabilities of the 99. By the time you have
finished that part of the course, you will have all the skills
needed to write programs as complex as any that you see on
the cassettes in these Packs.

The two Gamewriter's Packs deal with the particular
techniques needed for writing many types of computer
games, and include a number of example games.

The last part of the course, the Record Keeper's Pack looks
at the way in which computers handle information, and will
enable you to use the 99 for keeping your accounts, records

of collections, lists of addresses or other information. It also
deals with the analysis and presentation of statistics on
the 99.

Using the book

Work steadily through the book, trying out all the short
demonstration programs that are included and writing your
own programs using techniques as they are covered. Take
your time, and play with each new idea until you are sure
that you have mastered it.

Don't worry if things go wrong. It happens all the time
when you are learning. You will find a list of common errors
in Appendix D which should help you to sort out any
problems.

Don't be afraid to experiment. TI BASIC will not let you
make many mistakes, and nothing you type in will damage
the computer. At the very worst, you can always switch off
and start again.

Remember that you are learning a language, and that the
best way to do this is by using it. Remember also that there
are often several different ways of saying the same thing in
any language. BASIC is the same. What matters at this stage
is that the computer does what you want it to do.

Using the cassette

The programs on the cassette are intended to be used with
particular chapters in the book. KEYS (chapter 23),
CHARLIES (chapter 20) and TRANSPORT (chapter 22)
demonstrate the uses of particular techniques. EFFECTS
(chapters 5, 13 & 22) and GRAPHICS (chapter 19) are
demonstrations, and also utilities. You may wish to use
some of the colour and sound special effects in your own
programs, and GRAPHICS provides you with a set of 32
graphics characters which you can use to make your own
pictures on screen.

For advice about the use of a cassette recorder, see
Appendix C at the back of the book.

4 5

Figure 1
ON/OFF switch

6 7

1
Getting started

Set your computer up using the instructions in the "READ
THIS FIRST" handbook that came with the machine. Check
that the computer and T.V. are connected as shown in
figure 1, and that both are plugged into the mains and
switched on. The little red light at the front right of the 99
should be on.

mains

C:1 C2

i i
,

to aerial
socket

modulator

efr TEXAS INSTRUMENTS

I■ ell•in..•.1M•

----13••-1.•

• MI ill MI IIB MI Ill ••1111

• ZI • WI al IN ZI • MI •
■ • ■

Choose a channel of your T.V. set that is not used for
anything else (if possible) and tune it into the computer. You
should get the master title screen (figure 2). The background
colour is cyan (pale blue.)

11M13113111%
TEXAS INSTRUMENTS

HOME COMPUTER

READY-PRESS ANY KEY TO BEGIN

© 1981 TEXAS INSTRUMENTS

111111111111111111111111111M

Figure 2

Press any key and you will move to the starting screen
(figure 3). If you ever have a Solid State Software module
plugged into the 99, this is the time that you will pick
whether to use the module, or to work in TI BASIC.

TEXAS INSTRUMENTS
HOME COMPUTER

PRESS
1 FOR TI BASIC

Figure 3

Press 0 now and you will hear a short high beep and the
screen will change to figure 4. If you haven't heard any
beeps, it's because you haven't turned up the T.V. volume.
All the sounds from the computer are directed through the
T.V. loudspeaker.

•
•

Key P
Normal — small
SHIFT — large
FCTN —

EXAMPLES
Key 4
Normal — 4
SHIFT — $
FCTN — CLEAR

the same) and press the letter. To lock onto the large capitals,
press down the ALPHA LOCK key. This affects the letters
keys only. The number keys will still give you the number,
unless you hold SHIFT when you press them.

Try typing a few things on the screen to get the feel of the
SHIFT and ALPHA LOCK keys. It doesn't matter if it doesn't
make sense to the computer. The 99 is programmed to ignore
anything it doesn't understand. Press the ENTER key after
typing in your name, or other message, and it will give you
the nonsense beep, and print up * INCORRECT
STATEMENT.

T R Y

D H ENTER

SHIFT C V B M
>

SHIFT

I @ # $ % A & * () +
1 2 3 4 5 6 7 8 9 0 =

ALPHA
LOCK CTRL

FCTN

Figure 5

When you are typing in your programs later, it makes no
difference whether you use large or small capitals. The 99
will automatically turn all BASIC words into large capitals.
You may find it useful to leave the ALPHA LOCK on, and
turn it off only when you particularly want small letters.

The keyboard
The keyboard of the 99 is more or less the same as that of a
normal typewriter, and like a typewriter each key can do
more than one thing.

Each letter key can give you either a large or a small capital
letter. The small capitals are what will normally appear. To
get the large capitals, hold either SHIFT key (they are both

Figure 4

The 99 is now ready to start work. Are you?

Trouble tuning in?
If you cannot find the picture from the computer check that
all the leads from the TI-99 to the modulator and onto the
T.V. are plugged in. Now try this. Turn up the volume on
the T.V. until you get a reasonably loud hiss. Now keep
tapping the 99's space bar while you tune in the set. Every
time you tap this key the computer will beep. These beeps
can be picked up over a wider range than the picture's
signal. Once you hear the beeps you will know that you are
nearly there.

Just one point though — all that tapping has moved you
past the master title page. To get back to this hold down the
FunCTioN key (FCTN) and press M (QUIT).

PROCD ERASE CLEAR BEGIN REDO BACK QUIT DEL AID INS

8 9

There are two other keys which change the way the
number and letter keys behave. FCTN (FunCTioN, on the
right of the space bar) gets you to the symbols printed on the
fronts of the keys, and also to the words on the slide-in
overlay above the number keys. Hold FCTN and press El
and you get QUIT which takes you back to the master title
page.

The CTRL (ConTRoL on the left of the space bar) key does
nothing — at the moment. We will put it to use later on.

Last, but by no means least, there is the ENTER key. Press
this when you have finished typing your instruction, or
message, or whatever. The 99 will do nothing until you
ENTER.

2
Hands on

Some people only buy computers so that they can get their
name on the television screen. Just in case you are one of
those people, this is the first thing we will do

Type in:

PRINT

Disappearing screens
If your picture suddenly disappears, don't worry. This is
simply the 99 looking after your T.V. for you. If you leave the
computer turned on, but do not use it, then after about
10 minutes it shuts off the screen display. This prevents
damage to the T.V. screen. To get the picture back — press
any key.

Check your spelling carefully. If you have made a mistake
then press ENTER. The 99 will print up "* INCORRECT
STATEMENT". Ignore it and start again. PRINT tells the
computer to put something on the screen. Any words you
want written there must be put in quotes. Press FCTN and
OP to get the quote marks and type in your name. Now press
FCTN and ❑P again to put another set of quotes at the end.
You should have something like this:

PRINT"ROGER"

Now press ENTER and the screen should look something
like figure 6.

Figure 6

10 11

You will always get the DONE message when the 99 has
finished a job. PRINT some more messages and names.
Don't forget the quotes. If you get an * INCORRECT
STATEMENT message, then check that the quotes are there,
and that PRINT is spelt correctly. Start again, and do it right
this time.

NOTE: SPACES.
Obviously you can put spaces between words in your
messages. You can also leave a space between PRINT and
the first quotes. In fact, it is a good habit to get into. All
BASIC words on the 99 must be followed by a space, or some
sort of punctuation (",;:), with a few odd exceptions.

3
H2I1O, ilEilO

Time for a program, but first, is your screen cluttered up
with old messages? If it is then type in :

CALL CLEAR

This CALLs up a special built-in routine that wipes the
screen clean. The 99 has a number of these built-in routines,
and we will meet more of them later.

Now type in:

10 PRINT "HELLO" (and press ENTER)
20 PRINT "GOODBYE" (and press ENTER)

Make sure that you leave a space between the number and
the word PRINT. If you miss it out the 99 will be confused.
All commands start after a space. The numbers are very
important. They tell the 99 not to do anything yet, and they
keep the instructions in the right order.

Check your typing and then add:

RUN (and press ENTER)

There will be a short pause, while the computer checks the
program, then the screen will turn light green while it prints.
The screen returns to cyan when the program has finished.
You should get a screen like figure 7.

RUN told the 99 to go to the first numbered line, do what it
said, and move onto the next line, do that, move on until it
reached the end.

If there is a mistake in your program, then you will get a
message which says "* INCORRECT STATEMENT IN ...".
Look closely at the line numbered whatever-it-was and try
and see what you have done. Have you mistyped "PRINT"?

12 13

10 PRINT "HELLO"
20 PRINT 'GOODBYE"
HELLO
GOODBYE

Figure 7

It is also possible that you used a letter O and not zero in the
line number. If you have then the 99 will read the number 1
or 2 and try and make sense of the letter O that comes after
it.

Whatever the mistake, the best thing to do now is to
retype the line. When you ENTER the line, that new (good)
line will replace the old (bad) line in the 99's memory. The
rest of the program is left as it was. To see the new program
type in:

LIST (and press ENTER)

The program will be listed on the screen.
You can RUN a program as often as you like. When you

get tired of "HELLO" and "GOODBYE" then write a new
PRINTING program

First type in

NEW (and press ENTER)

NEW wipes out the old program, ready for a new one. It also
clears the screen and prints up the READY message.

Your PRINTing program can have as many lines as you
like. Make sure that each line is typed correctly, and is
numbered in the right order. You can number your lines 1, 2,
3, 4, etc, but going up in 10's is usual. There is a very good
reason for this. Suppose you wanted to add "How are you?"
to the "Hello" program. The new line has to go between

"Hello" and "goodbye". If you had numbered them 1 and 2,
then you would have to retype half the program to make
your change.

You will very often find that you want to add to a
program, and numbering in 10's leaves you room to slip
extra lines in easily.

Any time that you want to see your program lines again
(and they may well have disappeared off the top of the
screen after a few RUNS), then type:

LIST (and press ENTER)

The lines are printed up, in the right order, at the bottom of
the screen. Figure 8 shows the "Hello" program, after the
extra line was added.

** DONE *~ `

LIST
..a
10 PRINT ̀ 41ELL0"
15 PRINT "HOW ARE YOU"
20 PRINT 'GOODBYE"

Figure 8

* DONE **

14 15

4
Going round in circles

This program could run forever.

10 PRINT "HELLO AGAIN"
20 GO TO 10

Type it in and run it. You will see that the GO TO in line 20
sends the 99 back to line 10 and prints the message again.
The screen fills, and the flickering that you see on the bottom
line is where the message is being continually reprinted. You
can't see it, but the top line is actually disappearing off the
top of the screen. This will make it clear. Stop the program
by pressing FCTN and ® (CLEAR). You will get the
message:

* BREAKPOINT AT LINE 10 (or 20)

Now add:

15 PRINT "GOODBYE AGAIN"

Run this and you will have a continually moving display.
Break out of that program, (by pressing FCTN and ®) and
NEW it.

Now type in a line to print your name, and put a comma
after the last set of quotes. Add a GO TO line, and you
should have something like this:

10 PRINT "SUSAN",
20 GO TO 10

Run the program and you should see a screen like figure 9.

Normally after a print message, the next message appears on
the next line. If you add a comma though, the next message
is printed half a line further on.

Figure 9

What happens when you put 2, or 3 commas after the
print quotes?

The comma is what is known as a PRINT SEPARATOR.
There are several others and we will find out what they do
in a moment, but rather than retype that first line, we will
EDIT it.

Type in:

EDIT 10 (and ENTER)

Line 10 is printed up at the bottom of the screen. Notice the
flashing block, called the CURSOR. We can move this over
the character we want to change by pressing FCTN and
Hold those keys down for a moment and the 99's automatic
repeat comes into play. The cursor whizzes along the line,
until you lift your fingers off. If you overshoot, then
press FCTN and E<- which moves the cursor left. Type a
semi colon (;) over the first comma, and spaces over any
other you have there, then ENTER the new line.

You should now have something like this:

10 PRINT "SUSAN";
20 GO TO 10

Run this. Where is the next message printed after a semi-
colon?

16 17

Try it with 2 or 3 semi-colons. Is it any different?
There is one last print separator and that is the colon. (:)

EDIT line 10 and replace your semi-colons with one colon.
What effect does this have: Try 2, 3 and more.
Try combining the different separators to see what effect

they have.

You will have noticed that whatever the punctuation, all
printing starts from the bottom of the screen and moves up
as new lines are printed. We can hold the printing on the
bottom line by clearing the screen each time round. Add in
this line:

15 CALL CLEAR

Run it now. You should have a flickering name at the bottom
left. CALL CLEAR clears the screen, and puts the print
position back to the bottom.

NOTE: GO TO can also be typed GOTO: the 99 doesn't
mind. This is one of the odd cases where a space can be
missed from a BASIC word.

Even tighter circles

If you type in:

10 GO TO 10

and run it, what happens?
You have got the 99 running round in a very tight, and

totally useless circle. Well, not totally useless. The line can be
used to hold the computer at one point in the program. To
break out of this hold FCTN and press 4 (CLEAR). There will
be times when you are trying to get the layout of the screen
right, and it will be hopeless if as soon as the screen's
printing is done the whole lot gets shuffled up to make space
for the * DONE * message.

100 GO TO 100

will give you time to see what you are doing. When you are
happy with the rest of the program and want to get rid of this
line, then type in:

100

The new line replaces the old line 100. As the new line is an
empty one, it is then ignored.

Here is a program that uses a GO TO line to confuse
people.

10 CALL CLEAR
20 PRINT "TI BASIC READY"
30 PRINT ">"
40 GO TO 40

Type the program in and run it.
The first three lines produce a screen almost like the

normal starting screen (see figure 10). Anyone coming to the
computer now would think that it was ready for use. It all
goes to prove that you should never believe anything you
see on television.

There is one difference between your screen and the
normal starting screen — it is coloured light green, rather than
cyan. Don't worry, we can fix that, and will do in the next
chapter.

Figure 10

18 19

5
Coloured paper

Next time you are just starting a programming session, or
just after you have QUIT (FCTN and ±), look closely at the
title screen. You will be able to count 15 different colours on
the screen. (There are actually 16 colours, but one of these is
Transparent and therefore you can't see it.)

There are two colours at each character space. One of these
is the background colour — which you can think of as the
paper, and the second is the foreground (ink) colour.
Controlling the ink colours of different characters is a bit
fiddly, so we will leave that until later, but it is a simple
matter to change the colour of the screen.

The 99 knows its colours by their numbers, and here they
are.

Colour code Colour
1 Transparent
2 Black
3 Medium Green
4 Light Green
5 Dark Blue
6 Light Blue
7 Dark Red
8 Cyan
9 Medium Red

10 Light Red
11 Dark Yellow
12 Light Yellow
13 Dark Green
14 Magenta
15 Grey
16 White

To change the screen colour you use one of the 99's built in
routines:

10 CALL SCREEN(10)

This will change the screen colour to Light Red (code 10),
but you won't get much time to see it, as the screen will go
back to cyan almost immediately. Hold the program by
adding:

20 GO TO 20

Change the number in brackets in line 10 and see what
you think about the screen colours. You can add variety to
your programs by fixing a different screen colour at the start
of each, or you may decide that there is one colour that you
like best, and you will add a CALL SCREEN line at the start,
to fix that colour.

The actual quality of the screen colours depends very
largely on the type of T.V. set that you own. Some give much
sharper colours than others.

Ready?

You can now alter your trick READY program to make it
more realistic. Add

15 CALL SCREEN(8)

and you will have the normal cyan starting screen.

Easy editing

When you altered the code number in line 10, you probably
did it by typing

EDIT 10

There is another way to get lines back for editing, and it takes
less typing. Type in the line number only

10

and then hold down FCTN and press ❑E T . Line 10 now
appears at the bottom, with the cursor in place ready for
editing.

20 21

STRING STORES

G
Questions and answers

You are already using the computer's memory to store your
program lines. Now we are going to use it to store data —
numbers, names, answers to questions and other bits of
information.

Computers treat words and numbers differently. We will
start with words. This next program asks "WHO'S
THERE?", takes in the name, and prints a friendly "HELLO"
to whoever has answered.

10 PRINT "WHO'S THERE?" FCTN and ~I
FCTN and ❑O

20 INPUT NAME$ SHIFT and

INPUT allows information to be typed into a program.

Figure 11

The $ sign stands for STRING. In the computer's memory are
string stores where words are stored. Think of each string
store as a luggage label (the sort you tie on with string). See
figure 11. You can then mark each label with its own special
name. Here we have called it NAME$. We could have called
it N$, or ANSWER$ or A$. You can use any letter or group of
letters for the string store labels (or STRING VARIABLES as
they are properly called) — but follow these rules.

You must end with a $
you must start with a letter
you must not use spaces

Single letters or short words are best, as they save typing
errors.

Let's finish the program:

30 PRINT "HELLO THERE ";NAME$

(Notice the semi-colon, and the space after THERE. What
happens if you miss it out?)

You may not realise it but there is a very hardworking
Chip in your computer. In figure 12 you can see him
working through this program.

At line 20 (INPUT NAME$) he marks up a label in the
string stores ready for later use
When the name is actually entered, he writes it on the label.

22 23

WHO'S THERE ?
FRED
HELLO THERE FRED
WHO'S THERE ?
MUM
HELLO THERE 1414
WHO'S THERE
SHIRLEY
HELLO THERE SHIRLEY
WHO'S THERE ?
NO-ONE
HELLO THERE NO-ONE

Later, at line 30 (PRINT"HELLO THERE ";NAME$) he goes
back to the store to see what was written there, so that he can
print it out.

Figure 13

Run it a few times and type in different names. (Don't
forget to press ENTER after you have finished typing.)

Figure 13 shows what happens when first Richard, and
then Amanda answers the computer's question.

Whatever is written on a string store label stays the same
until something new is written there, or until the whole
program is wiped clean with NEW. You can see this if you
run the program, and then, after the * DONE * message,
type in (no line number):

PRINT NAME$

You should see the last name that was entered.

Let's add one more line, to keep the program running:

40 GO TO 10

Now invite the rest of the family in, and you should finish
with a screen something like figure 14.

When you run out of relatives and friends,
press FCTN and® CLEAR.

Figure 14

Notice that last INPUT answer. This shows an important
point about computers. They are very stupid and do not
think about what they are doing, unless you make them.
That is what we are going to do now.

Add these two lines to the program.

25 IF NAME$ ="NO-ONE" THEN 50
50 STOP

IF and THEN mean the same in BASIC as they do in ordinary
English. At line 25 the computer will compare the word on
the NAME$ label with "NO-ONE" and IF they are the same
THEN it will jump to line 50. IF they are not the same it will
simply carry on to line 30.

You can change this program to set a trap for a friend.
EDIT line 25 and type a friend's name in place of NO-ONE. If
this name is shorter than "NO-ONE" then you will need to

24 25

Figure 16A

The ends of the program are shown in oval shapes:

START) (STOP

Simple instructions are put in boxes:

PRINT "HELLO THERE ";NAME$

rub out the remaining letters using the DELETE key. (Hold
down FCTN and press n.)

If your friend's name is longer, you will need to make
more space. You can do this by using INSERT (hold
down FCTN and press El) when you run out of room. Now
type in the rest of the name and the second half of the line
will shuffle up to make space.

Change line 50 so that there is a special message for your
friend. Make it quite different from the normal "HELLO
THERE", and make sure that your friend sees a few normal
runs round the loop first. It might also be useful to wipe your
program off the screen by adding this line:

5 CALL CLEAR

Now when the program is run the screen will look like
figure 15 at the start.

7
Introducing flowcharts

As your programs become more complicated, so you will
need to plan them more carefully. To help us with our
program planning, computer scientists have developed
FLOWCHARTS. A Flowchart is a diagram that shows the
different steps a program must take.

Figure 16A shows the flowchart of the "WHO'S THERE?"
program, as it was when we first wrote it.

START

PRINT
"WHO'S THERE?"

INPUT
NAMES

PRINT
"HELLO THERE";
NAMES

STOP

Figure 15

NOTE: Don't be too disappointed if the trick doesn't work.
To make it work, you must have in line 25 exactly the name
which your friend will use. Even if he types the name the
same, but adds a space, it won't work. As far as the
computer is concerned "FRED" and "FRED " are two
different things. To get a "thinking" computer you need a
very clever program.

26 27

PRINT
"WHO'S THERE?"

INPUT
NAME$

PRINT
"HELLO THERE ";
NAMES

PRINT
'WHO'S THERE?"

When we actually wrote the program it looked like this:

10 PRINT "WHO'S THERE?"
20 INPUT NAMES
30 PRINT "HELLO THERE "; NAMES

We didn't write START and STOP into our program, because
we didn't need to. Somtimes you will need to write in STOP.
It is a good habit to use them in your flowcharts, as they do
make things clearer.

Here you see the flowchart for the second version of the
program, where we had added a GO TO 10 line, so that it
looped round to the beginning after each run.

START

Figure 16B

Figure 17

Notice that there are two lines leading from the diamond.
The computer goes one way if the INPUT word is the one it
is looking for, and the other way if it isn't.

Here's that version of the program. Compare it with the
flowchart.

10 PRINT "WHO'S THERE ?"
20 INPUT NAMES
25 IF NAME$ ="NO-ONE" THEN 50
30 PRINT "HELLO THERE "; NAMES
40 GO TO 10
50 STOP

In the third version of the program we added an The flowchart in figure 18A is for a program that asks if a
IF. ..THEN... line. Here we are asking the computer to person likes computers. If the answer is "YES" the computer
make a decision. To show this on a flowchart we use a prints a special message; any other answer gets a different
diamond shape. message. Work out the program lines using the flowchart.

28 29

PRINT "I
LIKE PEOPLE"

PRINT "DO YOU
LIKE COMPUTERS?

PRINT "DO YOU
LIKE COMPUTERS?

STOP

Figure 18A

Figure 18B is the same program with a little extra added.
Now it checks to see if the answer is "YES" or "NO". If the
answer is neither of these, it goes back to the INPUT line.
Change your program to make it run this way.

STOP

Figure 18B

8
Working out sums

You can use the 99 as a calculator. If you tell it to PRINT and
follow this with the sum WITHOUT QUOTES then it will
simply print the answer. Try this. Type in:

PRINT 2+2 SHIFT and

Press ENTER and you should have a screen like figure 19.

Figure 19

Try some sums of your own. Remember NO QUOTES. (See
what happens when you do put quotes round the sum.)

The symbols
ADD (+) SHIFT and M
SUBTRACT (—) SHIFT and 3
MULTIPLY (*) SHIFT and 3
DIVIDE (I) E only

30 31

The 99 can also do far more complicated mathematics. If you
are interested in this you will find out more about it in
Pack 2.

WARNING!!
When you want the add sign, take great care to
press SHIFT and [J. If you press FCTN and Ei you will get
QUIT and lose your program!

9
The numoer stores

You have already met the String Stores (or VARIABLES)
where the computer keeps a note of words. There is another
set of variables for numbers. You can think of number stores
as a set of pigeon holes, like figure 20. Notice that the
number stores are simply labelled with a single letter, or a
group of letters, or letters followed by a number.

A AGE Al WEIGHT

HEIGHT CLASS Z Z1

Figure 20

This program shows the use of those stores:

10 PRINT "HOW OLD ARE YOU
20 INPUT AGE
30 PRINT "YOU ARE ";AGE

When you run the program, the number you type in at
line 20 is stored in the box marked AGE. Here is what
happens when first Richard, and then his grandfather type
in their ages.

Tri

32 33

A Al AGE

A AGE
10 PRINT "FIRST NUMBER"

Al 20 INPUT N1
30 PRINT "SECOND NUMBER"
40 INPUT N2
50 PRINT N1;"+";N2
60 INPUT A (A for Answer)
70 IF A=N1+N2 THEN 100
80 PRINT "WRONG.TRY AGAIN"
90 GO TO 60
100 PRINT "WELL DONE"

When Richard answers

When Grandfather replies

10

Comparing numbers

IF and THEN can also be used for checking numbers. They
are a key part of any SUMS program. Here is the simplest
type of sums program, where one person INPUTS two
numbers and a second person INPUTS the answer. The
computer then checks to see if it is right.

Figure 21

You will see that a variety of store names have been used in
figure 20. What name you give to a store is up to you, as long
as you follow these simple rules.

Don't use spaces in the name (HOW MANY won't work)
Don't use the $ sign
Keep the name to less than 16 letters
Don't use any BASIC words. (check with the list in

Appendix B)
If the 99 doesn't like the name it will either tell you

"* INCORRECT STATEMENT" when you try to enter the
line, or you will get a "* BAD NAME" when you try to run
the program.

The name you give to a store should mean something to
you, and single letters or short words save typing errors. N1
for the first number; WT for weight; AGE; COST and so on.

Notice how in line 70 we get the computer to find the right
answer by adding the two numbers together.

You can merge lines 10 and 20 into one line:

10 INPUT "FIRST NUMBER ":N1

This will print the words "FIRST NUMBER" instead of a
question mark in front of the INPUT cursor. Note the colon
(:) after the prompt: before the store name. You might like to
merge the other two PRINT and INPUT pairs into prompted
INPUTS. If you want a question mark to appear, you must
write it into the prompt. It will make for a neater screen if
you also include a final space in the prompt to separate it
from whatever is typed in.

34 35

INPUT "GUESS":G

Greater or less?

When you compare numbers, you can also get the computer
to check if one number is greater or less than the other. The
signs > (SHIFT and 3) and < (SHIFT and 3) are used for
this.

9 > 7 means 9 is greater than 7
2 < 5 means 2 is less than 5

We can get a game out of this sort of comparison. The first
player types in a number, without the other player seeing.
The screen is cleared, and then the second player tries to
guess what the number was. This is what the program's
flowchart looks like.

STOP

Figure 22

And here is the program:

10 INPUT "NUMBER ?":N (Note you can't use
NUMBER as a store
name)

20 CALL CLEAR
30 INPUT "HAVE A GUESS ":G
40 IF G>N THEN 60
50 IF G<N THEN 80 ELSE 100
60 PRINT "TOO BIG"
70 GO TO 30
80 PRINT "TOO SMALL"
90 GO TO 30

100 PRINT "THAT IS RIGHT"
110 STOP

Look closely at line 50. If G is less than N then the computer
jumps to line 80, otherwise (ELSE) it jumps to line 100.

IF. . .THEN. . .ELSE. . . is very useful if you have two
different jumps for the computer. You would get the same
effect if you missed off the ELSE 100, and wrote in an extra
line:

55 GO TO 100

Notice also that you do not need a line to check if the Guess
is the same as the Number. If it is neither greater nor less,
then it must be the same.

This sort of game is O.K. if you have a second player at
hand, but what if you haven't? You can turn the computer
into the second player, and that is what we will do next.

36 37

11
Random numbers

First a small detour. So far, when you have wanted to put a
number in a store you have used an INPUT line. You can
also give a value to your variables by writing it into the
program. Try this:

10 LET A= 99
20 PRINT A

Line 10 means "put 99 in the store labelled A".
The "LET" is not actually needed. If you change line 10 to:

10 A=99

the program works just the same. Use LET if it makes the
line easier to find in a long program, but miss it out if you
want to save a little bit of memory space.

0 and 10. All we really want right now is the whole number.
We can get rid of the decimal part by using the INT
command. This chops the decimals off, leaving just the
INTEGER (the whole number). Change line 20 again:

20 PRINT I NT (X* 10) (don't forget the brackets)

Run the program again, and you should get something like
figure 23.

Figure 23

This line puts a RANDOM NUMBER into a store marked X.

10 X=RND

RND is short for RaNDom number. Add another two lines:

20 PRINT X
30 GO TO 10

Run the program, and BREAK when the screen starts to fill.
You will see a lot of long numbers, all of 10 figures, and all

between 0 and 1. These are not nice numbers to try and
guess, but we can make them friendlier. Change line 20 to
this:

20 PRINT X*10

Run it again, and you will see the same numbers, but with
the decimal point moved up so that they are now between

Run it again, and you will get exactly the same set of
numbers. They are not exactly random are they?

This is because the random numbers are actually part of a
very long sequence. The problem is, every time you run the
program the sequence starts again at the beginning. Do not
despair, there is an answer. Add an extra line at the
beginning.

5 RANDOMIZE (watch your spelling!)

Now run it again a couple of times. Better? RANDOMIZE
gets the computer to pick a different place in the sequence to
get the Random number from.

Change the number guessing game in chapter 10 so that
the computer picks the number you must guess. Don't forget
to add a RANDOMIZE line!

38 39

PRINT "YOU
ARE OLDER
THAN ME,"
NAMES

STOP

If you make line 10:

10 N =INT(RND*20)

you will be guessing at a number between 0 and 19. You will
never get 20 because the INT command always rounds the
number down to the nearest whole number. If you want
your numbers in the range of 1 to 20 then make line 10:

10 N=INT(RND*20)+1

You can use random numbers in sums practice programs.
The routine below is the basis of such a program. Here, the
sums are of the subtraction type, and numbers up to 20 are
used.

10 N1=INT(RND*20)+1
20 N2=INT(RND*20)+1
30 IF N2>=N1 THEN 10 (this makes sure that

the second number is
always smaller)

40 PRINT N1;" — ";N2;"="
50 INPUT A
60 IF A = N1—N2 THEN 90
70 PRINT "WRONG"
80 GO TO 40
90 PRINT "RIGHT"

100 GO TO 10 (this program goes on for ever)

Notice the double check in line 30:

IF N2>=N1 THEN...

> = means 'is greater than or equal to'
You can combine other comparisons.

<= means 'is less than or equal to'.
<> means 'is greater than or less than'.

That last one is very important. If a number is greater or less
than another, then it is not equal to. Use <> when you want
to check that two numbers are not the same.

Write a program of your own that will compare the user's
age with your own, and print out a message something like

this — "YOU ARE OLDER THAN ME, JIM"
Here is a flowchart to help you.

STOP

Figure 24

40_ 41

12
Keep inç count

In chapter 5 we had a version of the "WHO'S THERE?"
program that made the computer say "HELLO THERE" to
each new person, until "NO-ONE" was typed in. We can
add a few more lines to that program so that the computer
keeps a count of how many people there are. To do this we
need to use another number store in which to keep count.
We can watch a counter at work in this program.

10 LET C=0 (C for Count)
20 PRINT C (so you can see C)
30 LET C=C+1
40 GO TO 20

You can see Chip keeping count in figure 25.

He starts by labelling a store, and putting a zero there.

LET C=0

Then, each time round the loop, he changes the number in
the C store, to make it one more.

LET C=C+1

After 10 trips it looks like this.

Figure 25

We can combine this with the original "WHO'S THERE?"
like this. The new lines are numbers 5, 35 and 50

5 LET C=0
10 PRINT "WHO'S THERE ?"
20 INPUT NAME$
25 IF NAME$="NO-ONE" THEN 50
30 PRINT "HELLO THERE ";NAME$
35 LET C=C+1
40 GO TO 10
50 PRINT "THERE ARE ";C;"PEOPLE HERE."

c

II

CHIP

42 43

Notice how the add-one-on line (35) is fitted into the loop so
that it only works if there is some-one there. If it was fitted in
between 10 and 25 somewhere, then it would also count
"NO-ONE"! At line 50 the computer goes back to the C store
and prints whatever number it finds there.

You could also add a counter to the number guessing
game, so that when the number is guessed right the
computer tells you how many guesses it took.

NOTE: You already know that you can miss out a LET
statement, and that "C=0" will work without it. You could
miss out the whole of the line and the program would still
work. If you don't open up a store, then Chip will do it for
you automatically. Prove this to yourself. Type in (no line
number):

PRINT N

What do you get? Now try "PRINT A", "PRINT B",
"PRINT COUNT". The computer assumes you want number
stores with those names, and labels them up. The value in
the store will always be 0 at the start.

It is a good habit though to write in a "LET C=0" line.
When you get to write more complicated programs you will
find it very useful to have the point where the store is set up
clearly marked by such a line.

13
Tmes tables
and other things
One of the beauties of computer programming is that there is
never a single right answer to anything. There are always
several ways of getting the same result. You can see this in
the following examples. Each of these programs produces a
screen like figure 26.

Figure 26

Here is the first:

10 LET N =1 (N for Number)
20 LET T=2 (T for Two Times)
30 PRINT N,T (comma for half screen spacing)
40 LET N=N+1
50 LET T=T+2
60 IF N=11 THEN 80
70 GO TO 30
80 STOP

Notice that the stores N and T are given values of 1 and 2
when they are first opened. In the next version, only one
number store is used, but the number is doubled in the
PRINT line, so that the result is the same.

44 45

10 LET N=1
20 PRINT N,N*2
30 IF N=10 THEN 60
40 LET N=N+1
50 GO TO 20
60 STOP

Two points to note here.
1 You can do more or less anything to a number in a store,

add, subtract, multiply or divide by any other number.
2 Here the IF. ..THEN... line that gets you out of the

loop comes directly after the PRINT line, so it stops after
10. In the first of these programs, the line came after the
add-one-on line, and the computer jumped out of the
loop when N was 11 (but before it printed it). The result is
still the same.

And here is yet another way of doing the same thing. This
uses a different type of loop.

10 FOR N=1 TO 10
20 PRINT N,N * 2
30 NEXT N

This is called a FOR. ..NEXT... loop. What happens here is
that the computer takes every number from 1 to 10 in turn,
and does the same thing to each. When it runs out of
numbers, it stops. You do not need an IF. ..THEN... line
to check that a certain number has been reached.

FOR. . .NEXT. . . loops are very useful wherever you
want something to happen for a set number of times. When
the line reads "FOR. . .TO. . ." the computer will always
work through the numbers one at a time, but we can make it
take bigger, or smaller steps if we add a little more. Look at
this:

10 FOR N=0 TO 20 STEP 2
20 PRINT N
30 NEXT N

Type it in and run it. Now change line 10, so that when you
run the program you finish up with a screen like figure 27.

Figure 27

See what happens when you change line 10 to:

10 FOR N=0 TO 10 STEP .5

You can also STEP backwards.

10 FOR N=10 TO 0 STEP —1
20 PRINT N
30 NEXT N
40 PRINT "BLAST OFF"
50 PRINT
60 GO TO 50

What happens when you run it?
You probably found that the program went through too

fast for you to see it very well. We can slow things down by
using a delay loop. What we are doing here is asking the 99
to do nothing, but it does nothing so quickly that we need to
ask it to do nothing lots of times to get any real delay. Add in
these lines:

22 FOR D=1 TO 100 (D for Delay)
24 NEXT D

46 47

This is what is known as an 'empty loop'. By making the 99
whizz round doing nothing 100 times every time it gets to
that part of the program, we slow things down nicely. You
might like to add another pair of lines after the BLAST OFF
to slow down the scrolling.

NOTE — WATCH YOUR STEP.
Two minor points about using STEPs.
1 It doesn't matter if your last STEP takes you past the last

number in the loop.

FOR N=1 TO 10 STEP 2

will go through 1, 3, 5, 7, 9 and then stop.
2 It does matter if you STEP the wrong way.

FOR N= 1 TO 10 STEP —1

will work once only (when N is still 1). After the first
STEP N will be 0, which is outside the range of the loop.

And a last point about FOR. . .NEXT. . . loops. The
variable name need not be a single letter.

FOR TIMES = 1 TO 10

will work, as will

FOR T = 1 TO 10.

14
Sound effects

The 99 can produce a variety of sounds, both musical and
otherwise. You have probably already had a look at the
EFFECTS program, but if you haven't, load it in now and
have a listen to some of the possible sound effects you can
get from the 99.

These effects are all produced using the CALL SOUND
routine. To make it work you need to tell the computer three
things about each sound you want — how long it is to last,
what type of sound you want, and how loud it should be.

Duration
A sound can last anything between 1/1000th of a second, and
44 seconds. Each unit of time for the computer is 1/1000th of
a second, so the number to type in for one second of a sound
is 1000.

Type or pitch
Sounds can be of two types, noises, and musical tones. We
will look at these in the programs below.

Volume
You can fix the volume by typing in a number between 0 and
30.0 is the loudest, and 30 is completely silent. (Sometimes
silent noises are useful!) As the sounds are actually produced
through your T.V. set, you can further adjust the volume by
using the T.V. controls.

The three numbers fit together like this:

CALL SOUND(1000,200,10)

48 49

This sound lasts for 1 second, has a pitch of 200 Hertz
(which is just above the G below middle C) and has a volume
level of 10.

Noises

There are 8 types of noises available, and they have code
numbers between —1 and —8. Note that they are negative
numbers. Musical tones are positive numbers. You can listen
to these sounds by running the 8 numbers through a loop.

10 FOR N= —1 TO —8 STEP —1 (you must
STEP
backwards
through
negative
numbers)

20 CALL SOUND(1000,N,10)
30 NEXT N

Type this in and run it.

Noises —1, —2 and —3 are all steady beeps of different
pitches. —4 gives you short regular beeps.

—5, —6 and —7 produce what is known as 'white noise'.
You have probably come across it as a sound effect on games
of the space invader type. —8 is also a 'white noise', but this
comes as a series of short crackles.

These noises can be combined with musical tones to
produce different effects.

Musical tones

These will be dealt with in much more detail in Pack 2, but
let us have a quick look at the range of sounds that can be
produced. Type this in:

10 FOR P = 110 TO 40000 STEP 100 .

(P for Pitch)
20 CALL SOUND(100,P,10)
30 NEXT P

That really is 40000 in line 10! The 99 can make sounds as
high as 44733 Hertz. This is way above anything any person
can hear. Because the range is so huge we will include a
STEP in line 10. Without it this program would take over an
hour to run!

When you run this program have your fingers poised over
the FCTN and CLEAR keys. Break into the program at the
point where you can no longer hear the tone. (There will still
be the 'click' which marks the end of each separate sound.)
Now type in:

PRINT P (no line number)

What number do you get? It should be something between
10000 and 18000. Different people have different top limits to
their hearing, and children can usually hear very high
sounds better than older adults.

By fixing the time and pitch of the notes carefully, you can
get the 99 to play tunes. This is very fiddly though without
using more complicated programming techniques, and we
will leave it until Pack 2. If you do fancy struggling through
some short tunes, here are the numbers you need for the
notes of the scale of C.

Pitch (frequency in Hertz)
262
294
330
349
392
440
494
523

Note
C
D
E
F
G
A
B
C

These can be combined to give chords of 2 or 3 notes. Fix the
time for the chord, and then the pitch and volume of each
note.

CALL SOUND(1000,262,5,330,5)

This plays one second of C (at level 5) and E (at level 5).

50 51

The next line plays 2 seconds of F, A and C, all at level 8.

CALL SOUND(2000,349,8, 440,8,523,8)

You can also combine musical tones and noises. This sounds
like a car horn.

CALL SOUND(1000,523,5,-1,5)

Your maximum at any one time is three notes and one noise.

Fading away
If you control the volume of the sound by a loop, you can
produce a fading effect, though not a completely smooth
one. Try this:

10 FOR V = 0 TO 30
20 CALL SOUND(100,262,V,330,V,392,V)
30 NEXT V

Now change line 20 to this:

20 CALL SOUND(500,-5,V)

Could that be bursts of fire from a rocket ship as it climbs into
the distance? Change line 10 to:

10 FOR V = 30 TO 0 STEP —1

and your noise gets steadily louder.
Look again at the sounds section on EFFECTS and take

note of the lines which produce the particular effects.
Experiment with some sounds of your own.

One point that you should notice from that program, and
which you could put to good use yourself, is this — the 99 can
do other things (printing on screen, for example) while a
sound is being produced. The only thing it can't do is to
produce another sound. You can make this work for you. If
you want the program to wait until the end of a sound before
it goes on to the next part, then put a silent noise at the end
of your sound.

10 CALL SOUND(1000,262,10)
20 CALL SOUND(1,262,30)
30 PRINT"NEXT ITEM"

Line 10 produces one second of middle C. Line 20, with the
volume set to 30 (silence) produces 1/1000th of a second of
nothing. (There still must be a figure for pitch, even though
nothing sounds).

Try those three lines, and then take out line 20, and try
again.

52 53

15
Remermer,
remarks can remind you
If you LIST any of the programs on the cassette, you will find
in them a number of lines that start with REM. These lines all
have some sort of note or REMARK written in them:

100 REM THESE LINES PRINT THE ANSWERS

... or something similar.

The computer ignores the REM lines. The only reason they
are there is to make the program easier to read.

There are three times when easy reading is important in a
program LIST.
1 When you are DE-BUGGING the program — that is

sorting out the various mistakes that almost always find
their way into everybody's programs.

2 When you come back to the program after a few weeks,
or months. You will almost certainly have forgotten
which store was used for which reason, and how the
different routines fastened together. If there are no REMs
to help you, it will take much longer to make any changes
or additions.

3 When someone else looks at your program. That is the
main reason why the REMs are in the programs on the
cassette.

The REMarks should be close to the lines they refer to.

100 LET C=0
101 REM C IS THE COUNTER

250 GO TO 500
251 REM WRONG GUESSES GO TO 500

A REM line can be as long as any other line in a program —
that is, it can actually take up to 4 lines of print on the screen.
Like everything else in a program though, REMs take up
memory space, so keep them short if you are writing a
lengthy program.

54 55

16
Neater printing

You are already using PRINT SEPARATORS (;,:) in your
PRINT lines, to give some sort of spacing on the screen. You
have probably got double spacing in your lines of print by
including two colons at the end. In case you haven't try this:

10 FOR N=1 TO 10
20 PRINT " A FRIENDLY MESSAGE"
30 NEXT N

Run it, then EDIT 20, and add two colons at the end.

20 PRINT "A FRIENDLY MESSAGE"::

Now run it.
The extra spacing improves the appearance of the screen

and makes reading it a little easier.
Now here's another way to improve your print layouts.

Suppose you have written a program to print out a variety of
times tables (x 2, x3). You want the screen to look like
figure 28.

You could get this layout with a PRINT line like this

30 PRINT N;" ";N * 2;" ";N * 3

— except that it wouldn't quite work. When the computer
printed two-figure numbers it would push the spacing
slightly out of line.

Here is a program which does it, very neatly. It uses the
TAB instruction. TAB is short for TABULATOR, and is used
for printing TABLES.

10 PRINT "NUMBER"; TAB(15);" x2";TAB(25);"x3"

TAB(15) means 'start at Column 15'. Notice the semi-colons

Figure 28

separating the TAB instructions from the things that need
printing (" x 2", "NUMBER", etc).

That first line will give us the headings to the table. Three
more lines will produce the numbers.

20 FOR N=1 TO 10
30 PRINT TAB(5);N; TAB(15);N*2; TAB(25);N*3
40 NEXT N

When typing this in take great care over the punctuation,
brackets and semi-colons, otherwise it won't work. An
"* INCORRECT STATEMENT" message will mean that you
have probably missed out a semi-colon.

Use the grid in figure 29 for working out PRINT lines
using TAB. You will see that the actual range of column
numbers is 1 to 28, but if you type PRINT TAB(30), it will still
work. The computer will see that it is over 28, and take 28 off
to produce TAB(2). The program below shows how the
computer keeps the TAB numbers within the range allowed.

10 FOR N=1 TO 100
20 PRINT TAB(N);N
30 NEXT N

Run it and watch what happens. Add a delay loop between
20 and 30 to slow it down if you like.

56 57

17
Running totals

You read earlier how you can do anything to a number
variable that you can do to a number. This includes adding
(or subtracting, multiplying or dividing by) the number in
another store. You can see it in this program.

10 LET T=0
20 INPUT N
30 LET T=T+N
40 PRINT T
50 GO TO 20

Run it, and type in the numbers from 1 to 6. You should get
a screen like figure 30.

? 1
1
? 2
3
? 3
6
? 4
10
? 5
15
? 6

~21

(1+2=3)
(3+3=6)
(6+4=10)
(10+5=15)
(15+6=21)

28 24 27 14 10 11 26 25 22 16 13 12 4 2 5 23 20 18 15 19 17 21 8 9 7 6 3

This program also shows up another minor point about
printing numbers. All positive numbers are printed with a
space in front of them. (Negative numbers have a — sign
there instead). This means that if you want a column of
numbers to start at column 10, you must write PRINT
TAB(9);... to allow for the space. You will also notice that
when the print position gets close to the right hand side, so
that the number should appear half on and half off the
screen, the 99 pushes the print position back to the start of
the line, so that the number can be printed in one.

Figure 29

Figure 30

You could work this kind of totalling into a program that
asked how many sweets you ate each day for a week (or how
many hours each day you spent computing), and gave you a
total for the week at the end.

A flowchart for this sort of program is shown in figure 31.

58 59

FOR D = 1 TO 7

PRINT "DAY";D

INPUT N

= T + N

NEXT D

PRINT 'TOTAL
THIS WEEK=";T

STOP

Figure 31

Notice how in this program you only want a limited number
of INPUTS (7 Days in the week). It makes sense then to
include the INPUT and totalling lines in a FOR. ..NEXT.. .
loop. It is useful to have a prompt printed before the INPUT
line -

PRINT "DAY ";D. A second prompt can then be included
in the INPUT line - INPUT "HOW MANY THAT DAY ?":N.

The following program also uses a totalling type line, but in
reverse. This is a game for two players. You start with a total
of 100, then each player in turn types in a number between 1
and 9. This number is taken from the total, and the winner is
the player who gets the total down to 0.

10 REM TAKING GAME
20 LET T=100
30 INPUT N
40 LET T=T—N
50 IF T=0 THEN 70
60 GO TO 30
70 PRINT "THE WINNER "

This basic game can be improved and altered in several
ways.

You could add a line after the INPUT to make sure that the
number is no more than 9, and a second check line to make
sure that it is no less than 1.

You can vary the rules of the game. Reaching 0 could lose
the game rather than win it. The range of permitted numbers
could also be changed.

It might be useful to add a section at the beginning to print
up the rules of the game.

All these changes could really mess up your line
numbering, so it might be worth looking at another new
command.

Resequence

Try this when you have got a program in the computer. Type
in (no line number):

RESEQUENCE (or RES - the short version works just as
well)

You will find that your program has been renumbered for
you. The lines are still in the right order, and the GO TO's
still go to the right lines, even though they now have new
numbers. These new numbers start at 100 and go up in 10's.

If you don't want your lines to be numbered this way, then
you can control the renumbering.

RES 10,10

Will renumber so that the first line is 10 and the numbering
goes up in 10's.

RESEQUENCE 100,5

Will start from 100 and go up in 5's.
However you want the numbers to run, the general shape

of the command is always:
RESEQUENCE (first line), (interval)
or RES (first line),(interval)

60 61

While we are on the subject of line numbers, here's a tip for
when you are next typing in a program. The 99 will do the
numbering for you if you ask it. All you have to do is type in

NUMBER (or NUM which works the same)

before you begin your program.
As soon as you press ENTER the number 100 will appear.

Type your first line and enter it, and 110 pops up ready for
the next line. New line numbers, spaced in 10's will keep
coming as long as you want them. When you have finished,
press ENTER after the next line number appears, and your
program is ready to run.

If you don't want to start at 100 and work up in 10's, then
you can fix your own numbering style just as you can with
RESEQUENCE.

NUM 10,5

Will start at 10 and go up in 5's.
If you want to add lines to the end of a program, type in

NUM followed by the next line number that you want. It will
then number for you (in 10's) from that point.

You may find this very useful, especially when typing in
programs from the book.

18
The character set

Computers cannot think in words and letters. Numbers are
all they can handle, (and binary numbers at that - see
'Creating your own characters' in Pack 2.)

Humans like to use words. BASIC translates words into
numbers for the computer, and back for us. It does this by
giving each letter and symbol a special code number. These
codes are more or less the same on every computer, and are
known as the ASCII codes. (American Standard Code for
Information Interchange).

If you type in:

10 FOR N=1 TO 127
20 PRINT N, CHR$ (N) (CHR$(N) means the

character with code (N))
30 NEXT N

The complete set will be printed out on screen.
Notice that some of the characters do not appear, or are

printed as blocks of dots at random. This is because some
of the characters carry information for the computer's use
only - where the cursor should move, and things like that.
You will find a complete ASCII list in Appendix A.

You will notice that if you type in:

PRINT CHR$(65)

you get exactly the same as if you type in:

PRINT "A"

so you won't normally bother then to use the ASCII codes to
print characters that you have got on the keyboard. You
might use them though for characters that don't appear on
the keys. We will come to them shortly. The character codes

62 63

8 7 6 9 7 2 6 5 8 6 6 9

6 6 8 2 7 9 7 5 6 9 7 8

8 9 7 9 8 5 8 2 6 7 7 9 6 8 6 9

Chip

Use this program to turn a message into a series of code
numbers. Write down the code numbers and keep them for
later. You will need another program to turn your numbers
back into letters. Here it is:

10 INPUT N (the code Number)
20 PRINT CHR$(N)
30 GO TO 10

Use this to decode your message from earlier. You can also
use it to decode the message that Chip has received.

(extra number outside
brackets)

Figure 32

Why should Chip be worried?

Figure 33

Why should Chip be worried?
You can improve the security of your codes with a bit of

number juggling. Change the encoding program to this:

10 PRINT C$
20 PRINT ASC(C$)+5

30 GO TO 10

are used in writing on the screen when you don't want your
words to scroll up from the bottom.

You will see some printing like this in the cassette
programs, and the techniques are covered in Pack 2.

Character codes are also used for crashproofing inputs,
and for various other special effects. These are dealt with in
Pack 2, and in the Games Packs. Finally, they can be used for
coding messages, if you fancy going into the spying
business. Here's how.

Secret codes
Type this in:

PRINT ASC("A")

and you get — 65, unless you used a small "A", in which case
you get — 97. ASC gives you the ASCII code number of the
letter (or other character) in the quotes. It works with string
variables as well, as you will see with this program.

10 INPUT C$ (any Character)
20 PRINT ASC(C$)
30 GO TO 10

Run this, and enter S,P,Y. You should see this:

64 65

9587938476 978793 84818377

73 828774 95819280 928077

917775907792 91779094817577

Figure 34

Now when you enter "A" you will get 70 and not 65 as your
special code number.

The decoding program needs the opposite.

10 INPUT N
20 PRINT CHR$(N-5) (extra number inside

brackets)
30 GO TO 10

This 'code key number' can be anything you like. It could be
written into the program as a variable, so that the same
program could be used for different coded messages.

Alter the encoder program to this:

5 INPUT "CODE KEY NUMBER":K
10 INPUT C$
20 PRINT ASC(C$)+K
30 GO TO 10

Write a decoder program to work the same way, and then try
and decode this message from Chip. He seems to have left
his code key number lying around. No wonder people keep
breaking his codes!

19
Graphics

Some home computers have sets of block graphics built into
them. The 99 doesn't. There are, however, 32 character
codes available at the end of the ASCII set which can be
defined to print new graphics characters using the CALL
CHAR routine. (See Pack 2). The GRAPHICS program does
just that. LOAD and run the program and you will have, for
your use, the characters shown below. Once the 99 is
switched off, these characters are, of course, lost. They can
be restored by LOADing the program again.

Character Code Character Code Character Code Character Code

128 136 144 152

129 137 145 153

130 138 146 154

131 139 147 155

132 140 148 156
L

133 141 149 157 ~ J

134 142 150 158

135 143 151 I 159 i

Figure 35

66 67

Figure 37

■■1111■■ ~i ■1111■■
■■1111■■■■■1111■■
■■1i11■■■■■1111■■
■■11■■■■■■■11■■
■■11■■■■■■■11■■
■■11■■■■■■■11■■
■■1111■■■■■1111■■
■■1111■►I■►■1111■■
■■I/ ~■■■■■I \■■

Using the graphics set
You can get to the graphics characters in three different
ways. You can use the ASCII codes:

PRINT CHR$(153);CHR$(154)

... will print the two parts of the aeroplane.
You can also find the characters on the keyboard, by

holding down the CTRL key and pressing the letter keys.

PRINT " "
CTRL and Y CTRL and Z

There is a short demonstration written into the program to
give you a few ideas of the sort of things which are possible.
To convert the program for your own use, rub out the lines
indicated by the REMs, and add your own program from line
30 onwards. There is well over 8k of memory left for your
program, but if you do need more (it must be a long
program!) then rub out the demonstration lines. The REMs
will tell you when to stop.

The third way is to use HCHAR or VCHAR commands.
We will come to that later.

Any graphics printing starts on squared paper. Sketch a
rough outline first, and then find the graphics shapes that fit
best with what you want. Figure 37 shows the Mars 12
spaceship.

... prints the aeroplane as well.
Figure 36 shows where the different characters are on the

keyboard.

E A FA
1 2 3 4 5 6 7 8 9 0 = eiv dl ~ ©

0
■

~
A

❑
D
2 ~

H
S ~ 0

SHIFT 0 ~ 3 SHIFT

ALPHA
LOCK

FCTN

ENTER

CTRL SPACE BAR

Figure 36

The picture now needs to be turned into a set of Print
instructions. If you use CTRL and the letter keys, then the
shapes will show up in the print lines. This makes it easier to
check that you are typing it in correctly.

Work from the top down.
100
110
120

PRINT " IC ... MI"

PRINT "n . ■ o"
PRINT " ■■. "

(A , space R P S space A ,)
(A , space P V P space A ,)
(A , space P P P space A ,)

130 PRINT ".... ■■■." (APPPVPPP,)
140 PRINT (APPPPPPP,)
145 PRINT " ■.■■ "

150 PRINT " II ..■ II" (A , space P P P space A ,)
160 PRINT " u (A , space N space 0 space

170 PRINT ".. „
A

A,)
(L M five spaces L M)

Figure 38 shows a patrol vessel of the Korth Imperial Space
Navy. Work out the print lines needed to get this on screen.

68 69

MIZI131131111MHZIMIII
ZIMMI171111rEIZMIZI
MIIM"M111Jr11111111
BBr 1113111J`o1111►11»
■~~~~~~r~~■~~~■
1111 I■rdMIIIIII\ ■► ■\Z
ZIZZINIMMIZI\ZIMMIZZ
IIIIMMAZIrall►•ZZ■■B

Figure 38

You can make your space ships take off up the screen by
writing in a set of empty print lines after the graphics lines.
The easiest way to do this is to use a loop.

200 FOR N= 1 TO 24
210 PRINT (change the line numbers if your

program goes beyond 190)
220 NEXT N

Hold it for a moment at the bottom of the screen by slipping
a delay loop in before the empty print lines.

190 FOR D = 1 TO 500
195 NEXT D

You can slow the travel up screen by including a short delay
between two of the lines of the Print loop.

214 FOR D=1 TO 50
216 NEXT D

Putting a Sound in the loop will also have a slow effect. Use
this, instead of the delay.

215 CALL SOUND(100,-5,5) (change the
numbers to suit
yourself)

The PRINT command will move pictures up the screen very
nicely, but is little use for movement across. You can see it in
this program. It runs a car across the bottom of the screen.

100 FOR C=1 TO 27 (Column)
110 PRINT TAB(C);"+ ." (CTRLEJandW)
120 CALL C LEAR (to keep the printing on the

bottom line)
130 NEXT C

Runs across the screen? More like bounces! Do not despair,
help is at hand.

70 71

20
Putting things
in the right place
So far, everything you have printed on the screen has
scrolled up from the bottom. It is possible to put any
character you like, letter, number, symbol or graphic
anywhere you like on the screen. To do this we use one of
two special routines, CALL HCHAR and CALL VCHAR. If
you have not yet looked at the CHARLIES program, now is
the time to do it.

Type this in:

10 CALL CLEAR
20 CALL HCHAR(12,16,42)

You should see a single asterisk in the middle of the screen.
How did it get there? Look carefully at the three numbers in
brackets in line 20. The first number (12) is the row; the
second number (16) is the column; and the third number (42)
is the ASCII code for asterisk.

The screen is divided into 24 rows and 32 columns for
these routines. The numbering is shown in figure 39.

The question mark at the bottom of the figure was put there
by this line.

CALL HCHAR(22,16,63)

Two lines were needed to get the "HI" at the top.

CALL HCHAR(1,15,72)
CALL HCHAR(1,16,73)

What three lines would you need to get the "END"?

Remember (Row, Column, Code number)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

1 H 1

2

3

4

5

6

7

8

9
10

11

12

13

14

15

16

17

18 ZZZZ ZZZZ

19

20

21

22 ?

23 END

24

Figure 39

you might think that you need 10 lines to produce that
sleepy line of Z's. You don't.

The HCHAR sub-program is specially designed to allow
you to get lines of the same character. To do this, you need to
tell the computer where to start, what character to print, and
how many you want. (If you don't tell it how many, it only
prints one, which is what happened earlier.)

CALL HCHAR(18,10,90,10)

produces the line of Z's.
HCHAR is short for HORIZONTAL CHARACTER

REPETITION and the lines are always Horizontally across
the screen. To get a Vertical line, you need VCHAR
(VERTICAL CHARACTER REPETITION).

72 73

Figure 41

100 CALL CLEAR
110 CALL HCHAR(8,11,144,10) character 144

from the
GRAPHICS set
use 35 or 42 if
GRAPHICS not
there

(one character
only, VCHAR
works just as well)

CALL
CALL
CALL
CALL

VCHAR(8,12,144,9)
VCHAR(8,20,144,9)
HCHAR(18,11,144,10)
HCHAR(11,13,144)

120
130
140
150

Try this:

CALL VCHAR(1,16,42,24)

You should have a line of asterisks down the middle of the
screen.

HCHAR and VCHAR can be used together to draw
pictures. The short program below produces the picture in
figure 40. (If you have got the GRAPHICS program loaded in
at the moment, change the code number from 42 to 144. Your
'box' will then have solid edges, rather than asterisks.)

100 CALL CLEAR
110 CALL HCHAR(5,5,42,10)
120 CALL VCHAR(6,5,42,9)
130 CALL VCHAR(6,14,42,9)
140 CALL HCHAR(15,5,42,10)

XXX XXX XXXX
X X
k K
X X
X ' X
X X
X X
X X
X X
XXXXXXXXXX

160 CALL HCHAR(11,18,144)
170 CALL VCHAR(11,15,144,3)
180 CALL VCHAR(11,16,144,3) }
190 CALL HCHAR(15,14,144,4)

(nose)

(mouth)

Figure 40 Figure 42

Change the Row and Column numbers so that the same box
is drawn in the middle of the screen. Now add five more
lines to get the robot's face in figure 41.

Check your program with the one in figure 42. Don't
worry if your row and column numbers are slightly different.

74 75

21
Coloured pictures

You saw earlier in 'Coloured Paper' how to change the
screen colour, and you read then how each character space
has two colours, its foreground (ink) colour, and a
background (paper) colour. These colours can be any of the
available 16.

For colour changing purposes the characters are grouped
in sets of 8. To fix the colour of any one character, you have
to fix the colour for all the characters of that set. However,
the sets can all be very different from each other, which
means that you can have 16 different colour combinations on
screen at any one time. The program below shows this, but
first, the character sets.

Set number ASCII codes
1 32-39
2 40-47 }
3 48-55
4 56-63
5 64-71
6 72-79
7 80-87
8 88-95
9 96-103

10 104-111
11 112-119
12 120-127
13 128-135
14 136-143
15 144-151
16 152-159

all punctuation signs or
symbols
- numbers 0 to 7
8, 9 and punctuation

large capital letters

X, Y, Z, a few symbols

lower case letters

blanks for your own
characters.
These are the ones used by
the GRAPHICS program

Next, the routine that changes the colour. It is one of the

TI BASIC sub-programs. To change the colour of Set 3
(numbers) to Red ink (code 9) on yellow paper (code 12) you
would use this line:

CALL COLOR (3,9,12) (note the spelling of COLOR.
This is the American way)

And now, to save you turning back to the 'Coloured Paper'
chapter.

Colour code
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Colour
Transparent
Black
Medium Green
Light Green
Dark Blue
Light Blue
Dark Red
Cyan
Medium Red
Light Red
Dark Yellow
Light Yellow
Dark Green
Magenta
Grey
White

At last, the program to explore these colours.

10 PRINT (a very long message using as
many different characters as
possible.)

20 INPUT "SET": S (S = number of the character
set)

30 INPUT "INK ": I (I = code for foreground
colour)

40 INPUT "PAPER ":P (P = code for background
colour)

50 CALL COLOR(S,I,P) (watch the spelling)
60 GO TO 20

76 77

Run this and see how the colours change. You will notice
that the actual characters remain the same (apart from
scrolling steadily up the screen) while their colours are
changed. You can fix the colours for a set of characters at any
point in a program that you like. The character does not have
to be on screen at that time. You can also make characters
disappear by giving them the same colours as the screen.
Some of the special effects you can achieve using the CALL
COLOR routine are covered in the EFFECTS program.
Others will be dealt with in Pack 2.

For the moment you may wish to try some coloured
pictures using the GRAPHICS program's characters. They
have been grouped to keep the same kind of character in
each set for ease of colour changing. Fix the colours of each
set separately, or make them all the same colour using this
routine:

FOR S = 13 TO 16
CALL COLOR(S,16,1)
NEXT S

This makes them white (16) on a transparent (1)
background. After these numbers to suit your pictures.

And finally, before we leave colour, you might like to try this
routine from the EFFECTS program. It prints all the
characters from 32 to 126 on the screen 7 times, so that the
screen is more or less full. It then goes through the entire
range of colour combinations, changing the colours of every
set. Notice how the FOR. . .NEXT. . . loops are nested
together. Whenever you have more than one loop running at
any time, you must always close the last loop first.

FOR T= 1 TO 7
FOR N=32 TO 126

(we'll do it 7 times.)
(the range of
characters we can
print) T loop

10
20

N loop 30 PRINT CHR$(N); (the semi-colon is
VITAL)

NEXT N (last loop first) 40
NEXT T 50
FOR P= 1 TO 16 (Paper =

background)
60

FOR I=1 TO 16 (Ink = foreground) 70
P loop

Hood— r 80
I FOR S=1 TO 16 (every Set)

Sloop 90 CALL COLOR(S,I,P)
I-100 NEXT S (last loop first)

110 NEXT I
120 NEXT P (first loop last)

Run it. Fascinating, isn't it?

78 79

'Does it eat carrots?' — must be a rabbit.
'Does it bark?' — must be a dog if it does, and a cat if it

doesn't.

Obviously, this is a very crude program, and you can think
of all sorts of animals that it will not work for, but by adding
more questions you could cover a wider selection of animals.
The ideal PETS program would have a branch that lead to
every possible type of pet. It could then be used to find out
the name of an animal that the user did not already know
himself. (You, the programmer, must have known it to be
able to include it.)

"FISH" "DON'T KNO

Yes

C) START

NPUT "HOW
ANY LEGS?'; L

REM
4 LEGS

Ye REM
2 LEGS

"RABBIT"

STOP)

Yes

"BIRD"

Yes

STOP) (STOP

STOP

Figure 43

22
Branching programs

Computers are much used for sorting and classifying
information. They usually do this through some form of
'branching program' — that is, a program where the
computer can go along any one of many different paths. At
each dividing point on those paths is a question, and the way
the computer goes depends upon the answer to that
question. In figure 43 you can see the flowchart for a
branching program that can identify (some) common pets.
While the program itself is fairly long (see figure 44), it is
actually made up of a series of simple stages. This is one of
the attractions of branching programs. You can write very
long and detailed programs that will sort a great many
objects into their types, and it does not require any
complicated programming skills. What it does take is an
understanding of your subject, and a lot of patience.

Have a look at the way the PETS program was put
together.

The first thing to decide was what categories the animals
were to be sorted into. To keep it simple the program would
only classify cats, dogs, rabbits, birds, monkeys and fish.

We now need a few key questions. The obvious one to
start with was 'How many legs has it?'. There are 4 possible
answers to this:

4 — so it must be either a cat, a dog, or a rabbit
2 — which leads to either a bird or a monkey
0 — so it must be a fish
Any other — the program won't recognise.

The key question for the 2-legged beast was whether or not it
had feathers, to sort 'bird' from 'monkey'. There were 3
possible 4-legged animals, so 2 key questions are needed.

80 81

10 REM PETS
20 INPUT "HOW MANY LEGS HAS IT GOT ?":L
30 IF L=4 THEN 80
40 IF L=2 THEN 210
50 IF L=0 THEN 290
60 PRINT "I DON'T KNOW ONE WITH ";L;" LEGS"
70 STOP
80 REM 4-LEGGED BEASTS
90 INPUT "DOES IT EAT CARROTS?(Y/N)":A$
100 IF A$="Y" THEN 120
110 IF A$="N" THEN 140 ELSE 90
120 PRINT "IT'S A RABBIT"
130 STOP
140 INPUT "DOES IT BARK ?(Y/N)":A$
150 IF A$="Y" THEN 170
160 IF A$="N" THEN 190 ELSE 140
170 PRINT "IT'S A DOG"
180 STOP
190 PRINT "IT'S A CAT"
200 STOP
210 REM 2-LEGGED BEASTS
220 INPUT "HAS IT GOT FEATHERS ?(Y/N)":A$
230 IF A$="Y" THEN 250
240 IF A$="N" THEN 270 ELSE 220
250 PRINT "IT'S A BIRD"
260 STOP
270 PRINT "IT'S A MONKEY"
280 STOP
290 PRINT "IT'S A FISH"
300 STOP

Figure 44

Note: INPUT routines
Notice how the INPUT routines starting at lines 90, 140 and
220 all follow the same style. The INPUT prompts include
the acceptable answers (Y for Yes, N for No). This allows for
much easier checking. If you let the user reply anyway he

wanted, then you could have all sorts of replies
"Y","YES","SOMETIMES","ONLY IF I LET IT",
"N","NO"."NEVER". etc. You need an IF. ..THEN... line
to check every acceptable answer. Life is much easier if you
are only looking for "Y" and "N".

As the program stands, any answer apart from "Y" or "N",
will simply sent the computer back to the INPUT line.

You should also notice that each INPUT is taken into the
same string store (A$). There is no special reason for this.
You could just as well have used three different stores for the
different questions. There is, however, no harm in using the
same store several times, for different things, as long as you
don't want to keep the answer for later use in the program. It
is in fact quite useful to always use the same variable names
for the same things in all your programs, so that, when you
look through an old program and see A$ you will know it is
used for a "Y/N" answer. N$ could be the user's name; N the
number in a FOR... NEXT... loop; S the score in a game;
G the number of goes you have had.

Branching by numbers
Suppose your program had a key question which asked
"What is the animal covered in?", and the acceptable
answers were "fur", "feathers" or "scales". You could follow
the INPUT line with check lines like this:

IF A$="FUR" THEN 200
IF A$="FEATHERS" THEN 250
IF A$="SCALES" THEN 300

These lines will work very well, as long as your users can
spell properly. You can avoid the problems caused by poor
spelling, or typing errors, by asking them to enter a number.

PRINT " WHAT SORT OF COVERING HAS IT ?/7

PRINT " ENTER 1 FOR FUR"
PRINT "ENTER 2 FOR FEATHERS"
PRINT "ENTER 3 FOR SCALES"
INPUT C (C for Covering)

82 83

(:::
(2.5 is nearly 3li:)

l'Il go to 300

O
o
o

NEXT JOB

ON C GO TO...

200...(1)

250...(2)

300...(3)

Figure 45

In cases like this the 99 automatically round up or down to
the nearest whole number.

You will find another example of a branching program on
the cassette. It is called TRANSPORT, and it will give you the
names of a number of different vehicles in English, French or
German. All you have to do is to answer the questions which
let the computer classify the vehicle you are thinking about.
It is put together in exactly the same way as the PETS
program. The only complications are those needed for the
three languages.

The check lines are now simpler, and less likely to produce
problems.

IF C=1 THEN 200

Now here's a command which will save a little typing. You
can replace those three check lines by one instruction.

ON C GO TO 200,250,300

What happens now is that the computer goes to 200 if C is 1,
250 if it is 2 and 300 if it is 3.

To make this work the numbers that can be input must
start from 1 and run in sequence. If 4 is entered the computer
will stop with a * BAD VALUE report. To avoid this you will
need check lines, immediately after the INPUT.

100 INPUT C
110 IF C<1 THEN 100
120 IF C>3 THEN 100

Where you have only 3 branches, and you want to prevent
accidental errors, then ON... GO TO... is hardly worth
using, but it can be very handy where there are many
possible places for the computer to go to.

NOTE: If you use ON. ..GO TO... you will not need to
worry about the awkward customer who argues that
chickens have got scales and feathers, and enters 2.5. Chip
will deal with them.

84 85

The next time that you know someone else will be using
the computer, get there first, type this program in, run it,
and leave it. When they ask you what you have been doing,
say you were just checking something out. Watch what
happens when they try to write a program!

10 CALL SCREEN (4)
20 CALL CLEAR
30 PRINT "TI BASIC READY" (the screen now

looks like a
normal starting
screen)

40 CALL KEY(3,K,S)
50 IF S=0 THEN 40
60 PRINT
70 PRINT "JUST A MOMENT" (or any other

suitable message)
80 PRINT
90 PRINT "I AM THINKING"

100 PRINT
110 FOR D=1 TO 5000
120 NEXT D
130 PRINT "NEARLY READY"
140 PRINT
150 FOR D=1 TO 5000 (more thinking time)
160 NEXT D
170 CALL CLEAR
180 PRINT "TI BASIC READY" (starting screen

again)
190 GO TO 190 (this locks everything up)

You can make the joke as elaborate as your imagination will
allow, and time it to last as long as the other user's good
humour! (See the program KEYS).

Lines like those at 40 and 50 can be usefully added to many
programs, where you want to let the user work through the
program at his own pace. Whenever the computer comes to
lines of that sort it will wait for a key contact. You will find
them in most of the cassette programs.

There is one more thing on the CALL KEY brackets that

(thoughtful delay)

23
Keyboard tricks
and games
One of the 99's built-in routines reads the keyboard directly,
without waiting for the ENTER instruction. This allows the
computer to tell if a key is being pressed, and which key it is.
The routine has several different forms, but right now we are
only concerned with two of these. Look at this first:

10 CALL CLEAR
20 CALL KEY(3,K,S)
30 IF S=0 THEN 20
40 PRINT CHR$(K)
50 GO TO 20

Type it in and run it. Here is what is happening. The
computer checks the keyboard, (line 20). It looks to see what
key is pressed (K), and what the Status (S) of the keyboard is.
There are three possible statuses; either no key is pressed, in
which case S=0; or a new key has been pressed (S=1) or the
same key is still being pressed (S= —1). In this program if no
key is pressed the computer just waits until one is. The K
variable here collects the ASCII code of the key which is
touched, and this is turned back into the right letter or
symbol by the CHR$ in line 40. Add an extra line to the
program:

35 PRINT S

Now run it. Hold the same key down and you will see "-1"
printed before the letter as it reappears each time round. This
is the status part of the routine at work. Constant pressing
gives the —1 report. Press the same key repeatedly, but
taking your finger off in between, and you will see "1"
printed for the status report. You will probably realise that
this has important implications for games playing.

86 87

needs to be thought about. That is the 3. We are here using
the third of the different CALL KEY routines. In this form
the whole keyboard is seen in its normal state, with the full
range of characters. Go round the keyboard trying the keys.
Hold SHIFT down and press some more.

There is another version of CALL KEY which splits the
keyboard into two parts. Change line 20 to:

20 CALL KEY(1,K,S)

Now run it. You should notice two things: nothing happens
when you touch the right hand side of the keyboard, and
pressing a key on the left side will give you a status report
(1 or —1) but nothing else.

CALL KEY(1....

Once again the codes for these keys are between 0 and 19. In
figure 46 you can see how the 99 codes the keyboard when it
is working in a half-board mode.

You can use CALL KEY(1... and CALL KEY(2... in the
same program, next to each other. This allows you to use the
99 for two-player games. Here is a simple example of a
split-keyboard game. Play it against a friend, or play your left
hand against the right!

10 FOR D=1 TO 200 (short delay, much needed
on repeats)

20 NEXT D
30 LET A=INT(RND*2)+1 (either 1 or 2 at

random)

1 1g 2 7 3 8 4 9 5 10 i6

19 7 7 8 8 9 9 0 10

//I/ // 6 11~ 18 / 4 5

~ 12 G 17 111/1 J 2 /

C 14 13 B 16 ;IN 15 KZ

SPACE BAR

Figure 46

LET B=INT(RND*2)+1
CALL CLEAR
PRINT A,B

CALL KEY(1,K1,S1)
CALL KEY(2,K2,S2)

IF S2=1 THEN 190
IF S1=1 THEN 140

FOR T=1 TO 10

check left
check right
go if touched)

(ten times round

NEXT T otherwise .. .
GO TO 10 (two more numbers)
IF A=B THEN 170 (are the numbers the

same?)
150 PRINT "LEFT WRONG" (... they weren't)
160 GO TO 10 (for another pair of numbers)
170 PRINT "LEFT RIGHT"
180 GO TO 10
190 IF A=B THEN 220
200 PRINT "RIGHT WRONG " (this routine is the
210 GO TO 10 same as line 140 to
220 PRINT " RIGHT RIGHT" 180, except for the
230 GO TO 10 right side keys)

It's basically computerised 'Snap'. If the two numbers are the
same, then the first player to press a key (any key on his half)

P

11 16 6

K

SHIFT
13 14

FCTN

117
ENTER

CTRL ALPHA
LOCK

SHIFT

collects information from the left only, and it does not use
ASCII codes. The keys are still coded, and you can see these
by changing line 40:

40 PRINT K

The numbers you get will be between 0 and 19.
The right hand side of the keyboard is checked in exactly

the same way, but using the line:

CALL KEY(2,...)

CALL KEY (1 ... CALL KEY (2 ...

40
50
60
70
80
90

100
110
120
130
140

88 89

Appendices
A

ASCI I codes
The set numbers are for use with the CALL COLOR
command. See chapter 21.

Code Character

Set 1 52 4
32 (space) 53 5
33 (exclamation mark) 54 6
34 // (quote) 55 7
35 (hash — number sign)
36 (string — dollar sign) Set 4
37 (per cent) 56 8
38 (and) 57 9
39 (apostrophe) 58 (colon)

59 ; (semi-colon)
Set 2 60 < (less than)
40 ((open bracket) 61 = (equals)
41) (close bracket) 62 > (more than)
42 (asterisk — multiply) 63 ? (question mark)
43 + (plus)
44 (comma) Set 5
45 (minus) 64 @ (at sign)
16 (full stop) 65 A (Upper case capitals)
47 / (divide) 66 B

67 C
Set 3 68 D
48 0 69 E
49 1 70 F
50 2 71 G
51 3

wins. Notice how lines 100 and 110 only accept new key
touches. If a key is held down constantly, the Status (S1 and
S2) report will be —1.

Variations:
1 Add two more number variables to keep track of the

scores. (LEFTS and RIGHTS perhaps). You will also now
need to add some means of escaping from the loops. A
check line after the first CALL KEY will do the job:

85 IF K1=15 THEN 240 (15 is the code for
„A„)

Here are the other lines you will need to add:

175 LET LEFTS= LEFTS+1
225 LET RIGHTS=RIGHTS +1
240 PRINT "LEFT ";LEFTS:" RIGHT ";RIGHTS

2 Instead of boring old numbers, why not make some nice
graphics. Store them at Character 128, 129 and 130. To get
the computer to pick one of those numbers at random use
this sort of line

LET A= INT(RND*3)+128

Obviously, you can have as many characters as you like.
The more there are, the less often the computer will come
up with a matching pair. With only two characters, or
numbers, they will match, on average, half the time.
With three to choose from, one third of the pairs will
match; one quarter with four, and so on.

3 Reduce the time the players have by putting a smaller
number in the loop at line 70.

4 Add a set of instructions so that players who are new to
the game can find out what they are supposed to do.
RESEQUENCE the program, with the first line at 200,
and you have got lots of room before the game itself, in
which you can print out the rules.

90 91

Code Character

Set 6 100 D

72 H 101 E

73 I 102 F

74 J 103 G

75 K
76 L Set 10
77 M 104 H

78 N 105 I
79 0 106 J

107 K
Set 7 108 L
80 P 109 NI
81 Q 110 N
82 R 111 0
83 S
84 T Set 11
85 U 112 P
86 V 113 Q
87 W 114 R

115 S
Set 8 116 T
88 X 117 U
89 Y 118 v
90 Z 119 w
91 [(square bracket)
92 \ (slant) Set 12
93] (square bracket) 120 X
94 A (exponential power) 121 Y
95 — (underline) 122 z

123 { (left brace)
Set 9 124
96 \ (grave) 125 } (right brace)
97 A (Lower case capitals) 126 (tilde)
98 B 127 (this is DELETE)
99 C

The characters at ASCII 128 to 159 (sets 13 to 16) are left blank
to be defined by the user for his own graphics.

B
BASIC words

This is a complete list of the words used in TI BASIC. Almost
half of these have been dealt with in this Pack, the others are
covered in other books in this series. After each word you
will see either a number or an abbreviation. These tell you
where the word is first used. The numbers refer to the
chapters of this book. The abbreviations are : P2 Starter
Pack 2; G1 Game Writer's Pack 1; RK Record Keeper's Pack.

None of these words may be used as variable names.

ABS
APPEND
ASC
ATN
BASE
BREAK
BYE
CALL
CHR$
CLOSE.
CON
CONTINUE
COS
DATA
DEF
DELETE
DIM
DISPLAY
EDIT
ELSE
END

EOF
EXP
FIXED
FOR
GO
GOSUB
GO TO
IF
INPUT
INT
INTERNAL
LEN
LET
LIST
LOG
NEW
NEXT
NUM
NUMBER
OLD
ON

RK
P2
RK
13
4
P2
4
7
6
11
RK
P2
11
3
P2
3
13
17
17
Appendix C
22

P2
RK
18
P2
P2
P2
P2
3
18
RK
P2
P2
P2
P2
G2
RK
P2
P2
4
10
P2

92 93

OPEN RK C
OPTION P2
OUTPUT RK Usingthe cassette PERMANENT RK
POS P2
PRINT 2
RANDOMIZE 11
READ P2 Connecting the machines
REC RK The 99 has routines built into it to take much of the sweat out
RELATIVE RK of recording programs on tape and loading them back into
REM 15 the computer at a later date. Connect you machinery up
RES 17 properly to start with and then follow a few simple rules.
RESEQUENCE 17 You will need a TI Dual Cassette Interface Cable and a
RESTORE P2 reasonable cassette recorder.
RETURN P2 The machine MUST have
RND 11 Sockets for MICROPHONE
RUN 3

C
EARPHONE (or external speaker)

SAVE
SEG$

Appendix
P

REMOTE CONTROL

RK
Controls for Volume

SEQUENTIAL
SGN

and Tone (you might survive without this)

SIN P2
a DIGITAL TAPE COUNTER is very useful for finding

SQR P2
programs, but is not essential.

STEP 13 The majority of recorders will work perfectly well, but if you
STOP 6 do seem to be having trouble in saving or loading, then
STR$ P2 check with your Texas dealer.
SUB P2 Notice that the cassette lead has two separate cables, one
TAB 16 ending in three plugs, the other ending in two. You are only
TAN P2 interested in the three plug end at the moment. The other
THEN 7 lead is for connecting up a second cassette for particular
TO 13 types of file handling programs. (See the Record Keeper's
TRACE P2 Pack.)
UNBREAK P2 Plug the flat 9-pin end into the socket next to the mains
UNTRACE P2 lead at the back of the 99 and connect the three jack plugs to
UPDATE RK the cassette recorder like this:
VAL P2 RED lead to MICrophone socket
VARIABLE 6 WHITE lead to EARphone socket

BLACK lead to REMote control socket (this is a mini-jack
plug.)

94 95

black REM

red j MIC
EAR

mains

white

9-- T.V. lead

lead for second cassette

For best results position your recorder at least two feet away
from the T.V. set, as the magnetic fields from the T.V. may
interfere with the magnetic fields of the recorder itself and
spoil your recordings.

Tune the tone control of the recorder up to maximum
treble, and turn the volume control about half way up.
Check that your recorder batteries are in good condition, or
that the machine is plugged into the mains, and you are
ready to go.

Loading a program from a cassette

The first thing to do is find your program. When you record
your own programs you will do well to keep a careful noté of
the tape counter position at the start of each new program.
Counter numbers are given on the cassette labels in this
Pack, but use them as a guide only. Tape counters differ
slightly. You will find it worth while to unplug cassette leads
and play through the cassette once, listening to the tape and
noting counter numbers as you go. At the start of each
recording you will hear a steady high tone. This makes sure
that the tape has had time to settle into its proper running
speed. There then follows a minute or so of noisy crackling.
This is the program itself. Aim to start loading your program
at the start of that high tone. Once you have got the counter
numbers noted, reconnect your leads and rewind the tape.

Everything connected properly?
Tape wound to the program you want?

T.V. on and TI BASIC READY?
Type in:

OLD CS1

OLD tells the 99 you want to load an OLD program.
CS1 tells it that you are loading from CaSsette recorder 1.

Press ENTER and you will see:

* REWIND CASSETTE TAPE CS1
THEN PRESS ENTER

You have already rewound, so just press ENTER. You get
this:

* PRESS CASSETTE PLAY CS1
THEN PRESS ENTER

Do it. It doesn't matter how slowly you do this. The tape
recorder is being controlled by the 99, so it won't actually
start to play until you press ENTER. You should now see this

* READING

You should hear, through the T.V. speaker, those noises you
listened to earlier. READING will take a minute or so for
most of the programs on the cassette, so be patient. All being
well, the next message you get will be:

* DATA OK
* PRESS CASSETTE STOP CS1

THEN PRESS ENTER

If things are not well you will get this, after about
20 seconds:

* ERROR — NO DATA FOUND
PRESS R TO READ
PRESS C TO CHECK
PRESS E TO EXIT

There is not a lot of point in asking it to CHECK, because if it
didn't read the first time, it is unlikely to the next. Do your
own checking instead. Are the jacks in the right sockets?
Were you at the right point on the tape? If you started too far

96 97

back on the tape the 99 would have got tired of waiting for
the program.

If the answer to each is yes, then try again with the volume
turned up. As a rough guide to the volume you need try this.
Take out the remote and earphone jacks and play part of the
program to yourself. If you can stand the level of noise, then
it's too quiet.

EXIT from the routine, rewind and start again. If you
continue to have trouble — and it is very unlikely that you will
— then check with your Texas dealer. You may need a new
recorder.

Once the program has been loaded into the 99, then type
RUN and sit back. At first nothing will appear to happen. In
fact the 99 is very busy checking through the program and
sorting itself out ready to run. This takes a few seconds, and
the screen remains cyan at that time. When the program
actually starts to run the screen will normally turn light green
(unless another screen colour has been written into the
program).

The programs on the cassette are all written in TI BASIC
and are intended to be looked at. Some of them have LIST
INDEXES written in. These will tell you which lines to list to
see particular routines. If you wanted the lines from 1000
onwards you would type in:

LIST 1000—

and then wait with your fingers poised over FCTN and 4
(CLEAR). When the lines you want are all on screen, press
and stop the listing.

Saving programs on tape
When you have spent time working out a program and
typing it in and you like it — or you don't like it but haven't
got time to sort out its faults — SAVE it.

Connect up the recorder as before, put in a cassette wound
to a blank spot and note the counter number. Now type in:

SAVE CS1

You will see this:

* REWIND CASSETTE TAPE CS1
THEN PRESS ENTER

Your tape is alright, so press ENTER. You see this:

* PRESS CASSETTE RECORD CS1
THEN PRESS ENTER

Do it. The next message is:

* RECORDING

There is nothing to hear while the program is being
recorded, and nothing to see except for the tape wheels
turning round. The length of time taken to record a program
depends directly on how long the program is. After some
seconds you should see this:

* PRESS CASSETTE STOP CS1
THEN PRESS ENTER

and then:

* CHECK TAPE (Y OR N)?

Press Y (it must be LARGE CAPITAL Y). It is always worth
checking that the program has been recorded properly. More
instructions will appear. Follow these carefully.

* REWIND CASSETTE TAPE CS1 (you did note
THEN PRESS ENTER the counter

* PRESS CASSETTE PLAY CS1 number didn't
THEN PRESS ENTER you?)

* CHECKING

This will take as long as the recording did. The 99 is
comparing the program on tape with the one in its memory.
If they are exactly the same you get this:

* DATA OK
* PRESS CASSETTE STOP CS1

THEN PRESS ENTER

If they are not the same you will get one of these messages:

* ERROR — NO DATA FOUND
* ERROR IN DATA DETECTED

If there is no data for the 99 to find then the first thing to
do is to listen to that bit of the tape to hear if anything was
recorded. Do you need to set recording volume levels on
your recorder? Are your jack plugs in the right sockets?

If there is a program there then adjust the volume controls
and the tone setting (maximum treble) and try checking
again.

If your cassette recorder will load in the programs from the
cassette in this pack, then it should save your own programs
perfectly well. It may just take a little experimenting to get
the levels right.

Error messages
You may occasionally come across some error messages
when using the recorder. They will all start like this:

* I/O ERROR...

I/O means Input and Output. The message will end with
two numbers. The first of these numbers will be either 5 or 6.
The second number will probably be 3 or 6.

I/0 ERROR 5... refers to an OLD command
I/0 ERROR 6.. refers to a SAVE command

If you see:

I/O ERROR 53
Or I/O ERROR 63

then check your typing. The command must be either "OLD
CS1" or "SAVE CS1", typed in large capitals.

If you see

I/O ERROR 56
or I/O ERROR 66

then either your cassette recorder is not connected properly,
or the volume is too low.

D
Some common errors

This is by no means a complete list of the possible error
reports that you might see, but it does include all those that
you might meet using the BASIC commands and statements
that are covered in this book. A more complete account of
errors is given in Pack 2.
* BAD LINE NUMBER — you have probably told the
computer to GO TO a line that doesn't exist. Check the
number after THEN.
* BAD NAME — either you are trying to enter a line which
includes a variable name of more than 15 letters, or the
computer has run up to a CALL... line, and the routine
name is mis-typed, or the name doesn't start with a letter.
* BAD VALUE — check that the numbers you are using in the
line are within the possible ranges for that instruction. In
COLOR lines, all the numbers must be between 1 and 16,
either as Set numbers, or as colour codes. In HCHAR and
VCHAR the ranges are 1 to 24 (for rows) and 1 to 32 (for
columns).

This error can also occur in SOUND lines, and with CHR$
and TAB. Check your typing, and check the numbers again.
* CAN'T DO THAT — either the computer has found a
NEXT... line, and there is no FOR... line to match it
earlier,
— or you are trying to LIST, RUN or SAVE and there is no

program in the memory.
— or you have got COMMANDS and STATEMENTS mixed

up.
There are two sorts of instructions in TI BASIC:

COMMANDS are entered directly, without line numbers.
EDIT, LIST, NEW, NUMBER, OLD, RUN and SAVE are all
commands. You cannot use these in a program line.

100 101

STATEMENTS may only be used in a program, and will
not work if entered directly. FOR, GO TO, IF, INPUT, NEXT
and ON are the ones you have met so far.

Some instructions can be used both as commands and as
statements. PRINT and all of the CALL... routines are
examples of these.
* FOR... NEXT ERROR This error might be reported
during the checking stage, after you have entered the RUN
command, but before the program starts. The computer has
noted a FOR... line, but cannot find a NEXT... to match.
Either the line is missing, or you have used a different
variable name at the other end of the loop.
* INCORRECT STATEMENT The most likely cause here is
that you have missed out the final quotes in a PRINT line.
You might also get this if you have used a BASIC word as a
variable name. There are many other causes, but you are not
likely to come across them at this level.

The only thing to do is to look closely at the line you tried
to enter (it is still there on the screen) and retype it correctly.
You cannot pull the line down for editing, as the 99 never
accepted it.

The report might also occur during a program's run. Look
at the line number given in the report, and list that line by
typing in:

LI ST

followed by the line number. Check the line carefully. If it is
a CALL SOUND line, then perhaps you have tried to use too
many sounds at once. If the line is part of a FOR. ..NEXT.. .
loop, then check that the variable name is right, that you
have included an = sign, and that the numbers that you are
working though are correct. FOR N=1 TI 10 is a fairly
common typing error, and would produce this error report.
* LINE TOO LONG Your maximum line length is always
112 characters, which take up 4 lines on the screen. You are
limited here by the size of the INPUT BUFFER where
information is processed before going into memory. It might
crop up if you are trying to PRINT a very long message. Split

it up into several shorter PRINT lines instead. Short lines are
much easier to edit if you need to later.
* MEMORY FULL You have written an incredibly long
program. The 99 has 16k of memory available. 16k means
16 kilobytes, or 16 x 1024 bytes. (= 16384 bytes). Each letter
in your program takes one byte, and numbers and variables
take a little more, but on average each line of the program
takes up 20 to 25 bytes. So, to fill the memory you would
need to have written a program of about 700 lines or more!

There are other ways in which memory can get swallowed
up, but none that you will come across at the level of this
book.

* WARNING: INPUT ERROR IN. ..TRY AGAIN: You
will see this if you try to enter a letter when a number is
wanted. If the line was:

100 INPUT N

then the 99 will only accept a number entry.

102 103

