
As you are now the owner of this document which should have come to you for free, please 
consider making a donation of £1 or more for the upkeep of the (Radar) website which holds 
this document. I give my time for free, but it costs me money to bring this document to you.  
You can donate here https://blunham.com/Misc/Texas 

Many thanks. 

Please do not upload this copyright pdf document to any other website. Breach of copyright 
may result in a criminal conviction. 

This Acrobat document was generated  by me, Colin Hinson, from a document held by me. I 
requested permission to publish this from Texas Instruments (twice) but received no reply.  It 
is presented here (for free) and this pdf version of the document is my copyright in much the 
same way as a photograph would be. If you believe the document to be under other 
copyright, please contact me. 

The document should have been downloaded from my  website https://blunham.com/, or any 
mirror site named on that site. If you downloaded it from elsewhere, please let me know 
(particularly if you were charged for it).  You can contact me via my Genuki email page: 
https://www.genuki.org.uk/big/eng/YKS/various?recipient=colin 

You may not copy the file for onward transmission of the data nor attempt to make 
monetary gain by the use of these files. If you want someone else to have a copy of the file, 
point them at the website. (https://blunham.com/Misc/Texas).  Please do not point them at 
the file itself as it may move or the site may be updated. 

It should be noted that most of the pages are identifiable as having been processed by me. 

_______________________________________ 

I put a lot of time into producing these files which is why you are met with this page when you 
open the file.  

If you find missing pages, pages in the wrong order,  anything else wrong with the file or 
simply want to make a comment, please drop me a line (see above). 

It is my hope that you find the file of use to you. 

Colin Hinson 
In the village of Blunham, Bedfordshire. 

 



SPDU37C 

Link Editor 

User's Guide 

sto 
, TEXAS 
INSTRUMENTS 



Link Editor 
User's Guide 

,to 
TEXAS 

INSTRUMENTS 



IMPORTANT NOTICE 

Texas Instruments (TI) reserves the right to make changes in the 
devices or the device specifications identified in this publication 
without notice. TI advises its customers to obtain the latest version 
of device specifications to verify, before placing orders, that the 
information being relied upon by the customer is current. 

TI warrants performance of its semiconductor products, including 
SNJ and SMJ devices, to current specifications in accordance with 
TI's standard warranty. Testing and other quality control techniques 
are utilized to the extent Ti deems such testing necessary to support 
this warranty. Unless mandated by government requirements, 
specific testing of all parameters of each device is not necessarily 
performed. 

In the absence of written agreement to the contrary, TI assumes no 
liability for TI applications assistance, customer's product design, 
or infringement of patents or copyrights of third parties by or arising 
from use of semiconductor devices described herein. Nor does TI 
warrant or represent that any license, either express or implied, is 
granted under any patent right, copyright, or other intellectual 
property right of TI covering or relating to any combination, machine, 
or process in which such semiconductor devices might be or are 
used. 

Copyright © 1985, Texas Instruments Incorporated 



Contents 

Section 

1 Introduction 
1.1 Description 
1.2 Program Definition 

Page 

1-1 
1 -2 
1 -2 

2 Link Editor Files 2-1 
2.1 Link Control File 2-2 
2.2 Object Modules 2-2 
2.3 Libraries 2-2 
2.4 Linked Output File 2-3 
2.5 Listing File 2-3 

3 Linker Commands 3-1 
3.1 Entering a Command  3-2 
3.2 Linker Command Set 3-2 
3.3 Individual Command Descriptions 3-5 

4 Linking Examples 4-1 
4.1 Simple Linking 4-2 
4.2 ROM/RAM Partitioning 4-5 
4.3 Partial Linking 4-6 
4.4 Library Creation 4-10 

5 Link Editor Error Messages 5-1 

A Glossary A-1 

iii 



Illustrations 

Figure Page 

4-1. Source for Module Alpha  4-1 
4-2. Source for Module Beta  4-2 
4-3. Source for Module Gamma  4 2 
4-4. Listing File for a Simple Link  4-4 
4-5. Listing File for ROM/RAM Partitioning  4-6 
4-6. Listing and Object Files for a Partial Link  4-8 
4-7. Listing and Object Files for Relinking the Partial Link Output  4-9 
4-8. Source File for Sequential Library Creation  4-11 

Tables 

Table Page 

3-1. Linker Syntax Symbols   3-2 
3-2. Linker Command Set Summary   3-3 

iv 



1. Introduction 

The Link Editor combines separately generated object modules with associated 
procedures and overlays to form a single, linked, relocatable object module that can 
be installed and executed on various computer systems. The object code is generated 
by assemblers supplied with the TMS7000, TMS99000, or TMS320 software 
development systems. The link editor is currently available for the T1990 (DX10), 
VAX (VMS and Berkeley UNIX 4.1 and 4.2), and TI/IBM PC (MS/PC-DOS) oper-
ating systems. 

This manual describes the Link Editor, its files and control commands, and gives 
examples of various linking procedures. Included in this document are the following 
major topics: 

• Introduction (Section 1) 
Description 
Program definition (phase and task) 

• Link Editor Files (Section 2)• 
Link control file 
Object modules 
Libraries 
Linked output file 
Listing file 

• Linker Commands (Section 3) 
Entering a command 
Command set summary (listed according to function) 
Individual command descriptions (alphabetized) 

• Linking Examples (Section 4) 
Simple link 
RAM/ROM partitioning 
Partial link 
Library creation 

• Link Editor Error Messages (Section 5) 

• Glossary (Appendix A) 



Introduction 

1.1 Description 

The Link Editor provides symbol resolution for external references and definitions 
created by the REF and DEF assembler directives. Without this function, all modules 
would have to be compiled or assembled at once, and modules written in different 
languages could not be mixed. 

The Link Editor builds a list of symbols from the REF tags in the object modules that 
are included in the linking process. The Link Editor then resolves references by 
matching DEF tag symbols with the REF tags and inserting the correct values for 
these symbols in the linked object code. 

The Link Editor can position the three defined segments (program, data, and 
common) to prescribed boundaries for eventual ROM/RAM partitioning. Program, 
data and common segments are defined by the PSEG, DSEG, and CSEG assembler 
directives, respectively. If these directives are not used, the entire object module is 
tagged as a program segment. 

When PSEG, DSEG, and CSEG tags are encountered in the included modules, the 
Link Editor reorganizes segments from each module into three segments in the linked 
output. The first segment contains the PSEGs of all included modules, the second 
segment contains the DSEGs, and the third segment the CSEGs of all included 
modules. The beginning location for each segment can be user-defined. 

The Link Editor also allows overlays and procedure/task segmentation. However, if 
the system being used loads only one module at a time, procedure/task segmentation 
and overlays cannot be used because they produce multiple output modules. 

1.2 Program Definition 

To use the Link Editor, each program must be defined as a phase or a task. Below 
are the definitions of each. 

Phase The smallest functional unit that can be loaded as a logical entity during 
execution in an overlay structure. 

Each phase is identified by a name and a level number. The root phase 
is at level 0 and is that portion of the program that must remain memory 
resident. Other phases (level 1 and above) that do not have to be 
simultaneously memory-resident can overlay each other. 

Task A complete program containing both variable data and executable code 
or the variable data portion of a program (for procedure/task segmen-
tation). 

1 -2 



2. Link Editor Files 

Executing the Link Editor utility begins by accessing the Linker and then responding 
to prompts for the link control file, linked output file, and listing file. The Link Editor 
utility uses the following five files in the linking process: 

• Link control file 
• Object modules 
• Libraries 
• Linked output file 
• Listing file 

Each file is given a pathname so that when that pathname is entered, the Link Editor 
can search for that file. The pathnames for the link control file, object modules, 
declared libraries, the linked output file, and the listing file are in the listing file. An 
example of pathname structure (default value) for the link control file is given for four 
of the operating systems currently available for the Link Editor. 

Pathname System 

DS01.SIMPLE.CTL 990/DX10 
[PROJECT.MACK]SEGMENT.CON VAX/VMS 
\UFR\PROJECT\MACK\SEGMENT.CON VAX/Berkeley UNIX 
A:PARTIAL.CTL TI/IBM PC (MS/PC-DOS) 

Each of the link editor files is described in the succeeding subsections. 

2-1 



Link Editor Files 

2.1 Link Control File 

The link control file is an input file that controls the operation of the Link Editor. 
This file contains a set of link control commands called a control stream which 
defines the modules to be linked and how they are to be linked. The Link Editor links 
the object modules in the order specified by the linker commands. See Table 3-2 
for a summary of all the linker commands. 

The link control file must be created ahead of time. Entering a pathname instructs the 
editor to look for a file containing the necessary control commands. 

2.2 Object Modules 

Object modules are the input programs that are to be linked together. They are 
contained in files and must consist of either ASCII or compressed 990-tagged object 
code. The ASCII 990-tagged object code is the type of code generated by assemblers 
supplied with the TMS7000, TMS99000, and TMS320 Software Development 
Systems. The object code consists of ASCII tags followed by data fields. The 
following documents contain a description of object code format: 

• Texas Instruments TMS7000 Assembly Language Programmer's Guide 
(SPNU002B) 

• TMS99000 Assembly Language Programmer's Guide (SPOU001 B) 
• TMS32010 Assembly Language Programmer's Guide (SPRU002B) 
• TMS32020 User's Guide (SPRU003) 

As the Link Editor finishes writing out an object module, it names the module and 
gives the number of object records it contains. When the link terminates normally, 
the last line written reads '*** LINKING COMPLETED' . The date and time at the 
end of the link are printed on the last line. The date and time captured at the 
beginning of the link are printed at the top of every page and on the last card of every 
module in the linked object. 

Object modules can be explicitly user-defined with the INCLUDE command in the 
control file, or automatically included by the Link Editor as a result of a search for 
unresolved references. 

2.3 Libraries 

Libraries are directories or files containing collections of object modules. An object 
library may be either random or sequential. A random library is a directory of object 
modules in separate files, whereas a sequential library is a file containing one or more 
object modules concatenated together. See Section 4.4 for examples of library 
creation. 

Libraries are used to automatically resolve the REF and DEF tag symbols between 
object modules specified in INCLUDE commands. 

Two types of symbol resolution are implemented: 

• Automatic symbol resolution by default (the AUTO command) when the END 
command is detected in the control file unless the NOAUTO command has been 
used. 

2-2 



Link Editor Files 

• Symbol resolution at a user-defined point in the linking process when a 
SEARCH or FIND command is used. The SEARCH command is used with 
random libraries and the FIND command with sequential libraries. 

Libraries defined by the LIBRARY command are searched in the same order they are 
defined. Any additional unresolved references created by modules to satisfy refer-
ences are also resolved automatically. Automatic symbol resolution still occurs at 
the end of the linking process for any remaining unresolved references unless a 
NOAUTO command is in the control file. 

2.4 Linked Output File 

The linked output file is an 80-character output file containing the 990-tagged object 
format load module in the "LINKED OUTPUT" file. This load module appears in 
ASCII or compressed format, depending on the use of the FORMAT command in the 
object link control file. The response to the linked output file name specifies the 
destination of the load module. 

2.5 Listing File 

The listing file consists of a listing that includes the control stream and a link map 
that lists the modules with their origins and lengths. The link map consists of the 
following four sections: 

1) Individual constituent object modules 
2) Common segments 
3) Symbols (external) 
4) Unresolved references (identified even if the NOMAP option has been selected). 

The response to the listing file access name specifies the destination of the listing 
generated during the link edit. The pathnames for the control file, the listing file, the 
linked object file, and declared libraries are in the listing file. Messages are listed for 
detected errors in the listing file. 

The Link Editor creates two temporary files on the work file disk. Therefore, sufficient 
space for two disk or diskette files must be available. 

2-3 



2-4 



3. Linker Commands 

Link control commands define the modules to be linked and how they are linked. 
This section gives some rules for entering a command in the link control file. 

A command set summary of all the linker commands, arranged according to function, 
is provided for easy reference. Each command in the summary table is next described 
individually. Linker syntax and example(s) are also given for each command. The 
commands are listed in alphabetical order. 

3-1 



Linker Commands 

3.1 Entering a Command 

When entering a command in the control file, these rules should be followed: 

• Either the entire command or only the first four characters may be specified. 
• At least one space must separate the command from its parameters. 
• Comments may be entered either on a separate line or following the command 

parameters. 
• All comments must be preceded by a semicolon (;). 
• The command must be contained within the first 72 characters of the line. 

3.2 Linker Command Set 

Table 3-1 lists the symbols used in the syntax definitions of the linker commands. 

Table 3-1. Linker Syntax Symbols 

SYMBOL MEANING 

< > User-defined parameters. 

[ ] Optional parameters. They may be omitted. 

{ } Alternative parameters, one of which must be entered. 
The preceding parameter may be repeated. 

( ) Indicates "contents of". 
<acnm> An access name for a file or library must be entered for the 

parameter. 
<base> The starting location of a segment, expressed as either a decimal 

or hexadecimal number up to five digits in length. 
<level> The level of a phase. 
<name> The name of a specified area. Consists of one to eight alphanu-

meric characters, the first of which must be alphabetic. 
(<name>) The name of a member in a library. 
<value> The number of lines, between 16 and 60, to be printed on a page. 

Replaces the default value of 60. 
> Represents hexadecimal, as does also a leading zero. 

Words shown in capital letters and special characters not listed 
here must be entered as shown. 

The link command set summary of Table 3-2 is arranged according to function and 
alphabetized within each functional grouping. Of the four groups, the first group 
consists of basic commands that are required to perform basic Link Editor functions. 
The second group consists of ROM/RAM partitioning commands. The third group 
includes those miscellaneous commands that perform auxiliary link editor functions, 
such as specifying default conditions and procedure/task segmentation. The fourth 
group consists of the partial link commands. 

3-2 



Linker Commands 

Table 3-2. Linker Command Set Summary 

BASIC COMMANDS 

Command Function 

END Indicates the end of the control stream. This is a required 
command. 

FIND Specifies a search of only sequential libraries for unresolved 
references at this point in the control stream. 

FORMAT Defines' the format of the linked output module as ASCII or 
COMPRESSED code. The default is ASCII object code. 

INCLUDE Defines one or more modules to be included in the linking process. 
At least one INCLUDE command is required in each control stream. 

LIBRARY Defines a random library directory. 

PHASE Defines the level and name of a phase in a program. Either the 
PHASE or the TASK command must appear in each control stream. 
Multiple phases are allowed when overlays are used. 

SEARCH Specifies a search of defined random libraries for unresolved 
references at this point in the control stream. 

TASK Defines a phase to be installed and executed as a task or stand-
alone program. A name is assigned the task. 

ROM/RAM PARTITIONING COMMANDS 

Command Function 

ALLOCATE Controls the relative positioning of the program, data, and common 
segments (PSEG, DSEG, and CSEG assembler directives, respec-
tively). 

COMMON Specifies the starting location of the common segment in the linked 
output. 

DATA Specifies the starting location of the data segment in the linked 
output. 

PROGRAM Specifies the starting location of the program segment in the linked 
output. 

3-3 



Linker Commands 

Table 3-2. Linker Command Set Summary (Concluded) 

AUXILIARY FUNCTION COMMANDS 

Command Function 

ADJUST Aligns a phase or a module within a phase on a specified boundary. 

AUTO Specifies automatic symbol resolution at the end of the control 
stream (default condition). 

DUMMY Suppresses generation of the linked output file. Useful for error 
identification or when only a listing file is required. 

ENTRY Specifies a symbol for an entry tag to be produced. 

NOAUTO Inhibits automatic symbol resolution, allowing the user to explicitly 
control library searching for unresolved references. 

NOMAP Suppresses the output of the link map listing by omitting the 
module, common, and symbol maps from the listing. 

NOPAGE Inhibits page ejects between the link maps of each phase. 

NOSYMT Omits symbol tables from included modules in the linked output 
file (default condition). 

PAGE Causes page ejects between link maps for each phase (default 
condition). 

PROCEDURE Defines a phase of the link edit structure which can be installed 
as a procedure. Used for procedure/task segmentation only. An 
alternate version of this command can be used to support levels 
1 and 2. 

REPLACE Replaces one external symbol name for another in the next object 
file read in. 

SYMT Includes symbol tables in linked output files. 

PARTIAL LINK COMMANDS 

Command Function 

ALLGLOBAL Declares all external definitions in included modules as global 
symbols for subsequent relinking (default condition). 

GLOBAL Identifies the symbols defined in included modules to be processed 
as global symbols for subsequent relinking. 

NOTGLOBAL Declares either specified externally defined symbols or all externally 
defined symbols in included modules as local symbols. 

PARTIAL Performs a partial link and outputs either ASCII or compressed 
object code. The output of a partial link must be linked again 
without the PARTIAL command before the program can be loaded 
and executed. 

3-4 



Linker Commands 

3.3 Individual Command Descriptions 

Each command in the linker command set summary is described in the following 
pages. Information, such as linker syntax, a description, and example(s), is given for 
each command. The commands are listed in alphabetical order. 

3-5 



ADJU Specify Alignment of Phase Command ADJU 

Syntax ADJUST [<n>] 

where <n> = a decimal number less than 16 specifying a power-of- 
two bytes. A value greater than 15 causes an error. 
When the parameter is omitted or equal to zero, align-
ment is on the next word boundary. 

Description The ADJUST command specifies the alignment of a phase or of a module within 
a phase on a specified boundary. 

When the ADJUST command appears immediately before a PHASE command, 
the next phase and all subsequent phases of the same level and with the same 
parent node are aligned on the specified boundary, relative to the beginning of 
the program. 

If the ADJUST command follows a PHASE command but precedes all INCLUDE 
commands in the phase, the effect is the same as above. When the ADJUST 
command follows a PHASE command but precedes an INCLUDE command, the 
next module in that phase is aligned on the specified boundary, relative to the 
beginning of the phase. 

3-6 



ALLG Declare Global Symbols Command ALLG 

Syntax ALLGLOBAL 

Description The ALLGLOBAL (partial linking) command declares all external definitions in 
included modules as global symbols. ALLGLOBAL is a default condition. 

Global symbols are externally defined in the linked output module and therefore 
may be re-linked in a subsequent linking process. 

3-7 



ALLO Allocate Relative Positioning of Segments Command ALLO 

Syntax ALLOCATE 

Description The ALLOCATE command controls the relative positioning of program, data, and 
common segments (PSEG, DSEG, and CSEG directives, respectively). ALLO-
CATE has no parameters. 

ALLOCATE directs the Link Editor to reserve space for all outstanding data and 
common segments as if no more object modules were to be included in the link. 
The primary purpose of the ALLOCATE command is to aid the user in sharing 
non-reentrant procedures between different tasks. 

The ALLOCATE command only works if all read/write data is contained in data 
segments (DSEGs) or common segments (CSEGs). 

3-8 



AUTO Automatic Symbol Resolution Command AUTO 

Syntax AUTO 

Description The AUTO command specifies automatic symbol resolution using defined libraries 
at the end of the linking process. The AUTO command has no parameters and 
is optional. It is the default condition. 

3-9 



COMM Set Starting Location Counter for CSEG Command COMM 

Syntax COMMON {<base>[,<name>] [,<name>]...} 

Description 

Example 1 

Example 2 

Example 3 

Example 4 

where <base> = the starting location of the common segment. It can 
be expressed as either a decimal or hexadecimal number 
up to five digits in length. 

<name> = the name of the common segment. Any unnamed 
common segment begins after the last data area 
encountered. The commons are allocated in the order 
in which the definitions appear in the object module. 

The COMMON command defines the starting address for the specified common 
segment (CSEG). Commons that are loaded at the specified address must be 
specifically identified within this command. The COMMON command is only valid 
when used with the PROGRAM command and is ignored if used alone. 

More than one COMMON command may be used, and a continuation can be 
performed by repeating the command using a previously named common instead 
of a starting address. The COMMON command cannot be used in partial links. 

COMMON 01000,COMA Begin common COMA at location 
>1000. 

COMM >1000,COMA Results are the same as the 
preceding example. 

COMMON COMA,COMB Begin common. COMB immediately 
following COMA. 

COMM 4096,COMA,COMB Results are the same as the 
two preceding examples. 

3-10 



DATA Set Starting Location Counter for DSEG Command DATA 

Syntax DATA <base> 

Description 

Example 1 

Example 2 

where <base> = the starting location of the data segment. It can be 
expressed as either a decimal or hexadecimal number 
up to five digits in length. 

The DATA command defines the absolute starting address for the data segment 
(DSEG) in the linked output. The DATA command is only valid when used with 
the PROGRAM command and is ignored if used alone. 

The DATA command may appear more than once in the control stream, but the 
first DATA command must appear before the first INCLUDE command. If the 
DATA command is omitted, the starting location for.each data area defaults to the 
end of the corresponding program area. 

The DATA command cannot be used in partial links. 

DATA 01000 Begin data segment at location >1000. 

DATA 4096 Same as the preceding example. 

3-11 



DUMM Suppress Generation of Linked Output File Command DUMM  

Syntax DUMMY 

Description The DUMMY command supresses generation of the linked output file. This 
command is useful for error identification or when only a listing file is needed. 
DUMMY has no parameters. 

3-12 



END Specify End of Control Stream Command END 

Syntax END 

Description The END command specifies the end of the control stream. The command is 
required in every control stream. 

3-13 



FORM Define Format of Linked Output Module Command FORM 

Syntax FORMAT {ASCII,COMPRESSED} 

Description The FORMAT command defines the format of the linked output module. 

The format specified may be either ASCII or COMPRESSED object code. In ASCII 
format, each integer value in the object is represented as a four-byte character 
string. ASCII format is also called 990-tagged object format and is the default 
condition. Compressed format is more efficient to use since each integer value 
is represented as a two-byte word. 

3-16 



GLOB Identify Global Symbols Command GLOB 

Syntax GLOBAL [symbolname][,symbolname]... 

Description 

where symbolname = a symbol which is to be processed as a global symbol. 
It is defined at assembly time and consists of six char-
acters or less, the first of which must be alphabetic. 

The GLOBAL command is a partial linking command, identifying the symbols 
defined in included modules to be processed as global symbols. Global symbols 
are externally defined in the output module that may be relinked. 

Each parameter specifies a symbol that is to be processed as a global symbol. 
The command may include several parameters and may appear more than once 
in the command stream. If no parameters are specified, the command functions 
as an ALLGLOBAL command. 

Symbols defined by the GLOBAL command are not affected by the NOTGLOBAL 
command (no parameters) that declares all symbols to be local. 

3-17 



INCL Specify Modules To Be Included in Link Command INCL 

Syntax INCLUDE {<acnm>[,<acnm>]...,(<name>)[,(<name>)]...} 

where <acnm> = the access name of a file containing the object 
module(s) to be included in the linking process. 

Description 

Example 1 

Example 2 

Example 3 

(<name>) = a member in a library. 

The INCLUDE command specifies modules to be included in the linking process. 
This command is required in the control stream. More than one INCLUDE 
command may be used as needed. 

A PROCEDURE, TASK, or PHASE command must precede the first INCLUDE 
command. 

If the <name> parameter is used, enclose only the file name or module name of 
the object modules (rather than the entire access name) in parentheses. The 
specified <name> must be of a file contained in a defined random library. The 
Link Editor searches the defined libraries for the specified module. 

If no parameters are given, in-line text format (not compressed) object code is 
assumed. The in-line object (see Example 3) is delimited by either end-of-file 
or by a record with '/*' in columns one and two. This method is suitable, for 
example, when the control file is read in from a card reader (in which case, 
end-of-file is denoted by a '/*' card). 

INCLUDE (X) Search defined random libraries for 
a file named X and include the 
module(s) in that file. 

INCLUDE TEST.MPO Include the module TEST.MPO from the 
default directory on a PC/MS-DOS 
system. 

INCLUDE 
KOO6CCARTMOND50020LBL2B150021LBL2B240000LBL2C240000LBL2D2A00207F1E7F 
BCE26BCE26BFE80E00000000BFE80E00010000BCE1BB0201B0388B4802B48A97F1E1F 
BFFEEBCE27BCE5OBCEO4BCE05BCE01B567BB568CBCE0OBCEOFBCE1FB807AB81A87F048F 

CARTMOND 4/10/85 10:53:14 ASM32020 PC 1.0 85.092 
/* 

3-18 



LIBR Define Random Library Directories Command LIBR 

Syntax 

Description 

Example 1 

Example 2  

LIBRARY <acnm> [,<acnm>]... 

where <acnm> = the access name of the directory that is to be defined 
as a library. 

The LIBRARY command defines random library directories. Random libraries 
must consist of a directory, and the files in the directory must contain 990-tagged 
object modules. Sequential libraries, consisting of a sequential file of object 
modules, are indicated using the FIND command. 

LIBR VOLl.AOBJ,VOLl.BOBJ Define directories AOBJ and 
BOBJ as random libraries 
using DX10 pathnames. 

LIBR A:*.EXT Define drive A: as a random 
library of files with 
extension .EXT on a 
PC/MS-DOS system. 

3-19 



NOAU Inhibit Automatic Symbol Resolution Command NOAU 

Syntax NOAUTO 

Description The NOAUTO command inhibits automatic symbol resolution at the end of the 
linking process. This command allows the user to explicitly control library 
searching for unresolved references through use of the SEARCH and FIND 
commands. NOAUTO has no parameters. 

3-20 



Omit Module, Common, and Symbol Maps 
NOMA from Listing Command NOMA 

Syntax NOMAP 

Description The NOMAP command specifies that the module, common, and symbol maps 
are to be omitted from the listing. This gives some improvement in terms of speed 
and number of symbols that can be processed. The following information is still 
printed on the listing file: 

• Length of task and procedure(s) 
• Unresolved references 
• Release number of the Link Editor 

NOMAP must appear before any PHASE or TASK commands are used. 

3-21 



NOPA Set No Page Ejects Between Link Maps Command NOPA 

Syntax NO 

Description The NOPAGE command sets no page ejects between the link maps for each phase. 
New pages are started for the listing of the first phase and when the number of 
lines per page has been exceeded. 

3-22 



NOSY Omit Symbol Table from Modules Command NOSY 

Syntax NOSYMT 

Description The NOSYMT command omits symbol tables from included modules in the linked 
output file. This provides for more compact object code but does not allow 
symbolic debugging. 

The NOSYMT command may appear anywhere in the control file. However, if 
an overlay structure is used, the NOSYMT command must appear in the root phase 
(phase 0). 

NOSYMT is the default option and is the inverse of SYMT. 

3-23 



NOTG Define Local Symbols Command NOTG 

Syntax NOTGLOBAL [symbolname] [,symbolname]... 

Description 

where symbolname = a symbol which is to be processed as a local symbol. 
It is defined at assembly time and consists of six char-
acters or less, the first of which must be alphabetic. 

The NOTGLOBAL command is a partial linking command, declaring that either 
specified externally defined symbols or all externally defined symbols in the 
included modules are to be processed as local (not global) symbols. 

Local symbols are not externally defined in the partially linked output module and 
thus can only be referenced by modules included in the current partial link. 

The command may include several parameters and may appear more than once 
in the command stream. If no parameters are specified, all symbols are processed 
as local, except those specified in the GLOBAL command. 

3-24 



PAGE Set Page Eject to Separate Link Maps Command PAGE 

Syntax PAGE [value] 

where value = the number of lines to be printed on a page, replacing 
the default value of 60. The value parameter is optional, 
but when present, the value must be between 16 and 
60. 

Description The PAGE command causes page ejects to separate the beginning of each link 
map for each phase. This is the default condition. 

3-25 



PART Perform Partial Link Command PART 

Syntax PARTIAL 

Description The PARTIAL command performs a partial link and outputs either ASCII or 
compressed object code. The output of a partial link is not executable and must 
be linked again without the PARTIAL directive before the program can be loaded 
and executed. 

The PARTIAL command causes the Link Editor to do the following: 

1) Resolve all external references defined by any module included in the partial 
link. 

2) Retain all entry points in the partial link as an entry in the output (subject 
to GLOBAL, NOTGLOBAL, ALLGLOBAL commands). 

3) Retain the common tags and update common numbers. 

4) Output one data section that is the total of all input data sections. 

Partial linking is allowed for single phases only, and the control stream must 
contain either a TASK or PHASE 0 command. If partial linking of overlays is 
required, each phase must be partially linked separately as a phase 0. The phase 
level and name may be redefined in subsequent links. The following commands 
are invalid with partial links: ALLOCATE, PROGRAM, DATA, COMMON, and 
DUMMY. 

3-26 



PHAS Define Phase Level and Name Command PHAS 

Syntax PHASE <level>,<name> 

where <level> = the level of the phase. Levels specified greater than zero 
can be used for overlay structures only. Level 0 defines 
the root (memory-resident) phase. Each subsequent 
PHASE command defines the level and name of an 
overlay. 

<name> = the name of the phase. It consists of one to eight 
alphanumeric characters, the first of which must be 
alphabetic. The name supplied becomes the IDT name, 
placed on the last card of the object module produced 
and on the identification fields of ASCII-formatted 
object records. 

The PHASE command defines the level and name of a phase in a program. 

PHASE 0 and TASK commands are logically identical; one and only one of these 
two commands must appear in each control stream. 

The Link Editor produces an output module for each phase of the program. PHASE 
commands are followed by INCLUDE commands that define the modules included 
in the phase. Multiple phases are allowed when overlays are used. 

Description 

Example 1 

Example 2 

PHASE O,MAIN 

PHAS 2,DISK  

Define phase MAIN at level 0. 

Define phase DISK at level 2. 

3-27 



PROC Define Phase as Procedure Command PROC 

Syntax PROCEDURE {<name>,<Ievel,name>} 

where <name> = the identifier of the procedure to be used. The parameter 
consists of one to eight alphanumeric characters, the 
first of which must be alphabetic. 

Description 

Example 1 

Example 2 

Example 3 

<level> = the level of the phase. 

The PROCEDURE command provides procedure/task segmentation by defining 
a phase of the link edit structure which can be installed as a procedure (a re-en-
trant procedure may be shared among several tasks). The name supplied becomes 
the IDT name, placed on the last record of the object module produced and on 
the identification field of ASCII-formatted object records. This command was 
designed for the DX10, but can be used on other systems, particularly in 
ROM/RAM partitioning for generating load modules with a level of root phase 
0. 

When used, the PROCEDURE command must precede the TASK command, all 
PHASE commands, and the INCLUDE command that defines the procedure 
module. 

The PROCEDURE command is used with the INCLUDE commmand to define the 
procedure. The PROCEDURE command defines the name of the procedure, and 
the INCLUDE command defines the modules that are to be in that procedure. 
Procedures contain the program segment (PSEG), which may be the entire 
program but is usually only the executable code and read-only data. 

A generalization of the standard PROCEDURE command is supported for levels 
1 and 2. In place of a single first procedure, any number of other level-one 
procedures can be defined, any of which can be resident in memory at a given 
time under the user's control. The length of the first procedure area is the maxi-
mum of the lengths of the individual level-one modules. Analogous properties 
apply to second-level PROCEDURES. Modules brought in by automatic call to 
satisfy references in any procedure module will be placed in the root. 

PROCEDURE FORLIB Define procedure FORLIB. 

PROC RUNLIB Define procedure RUNLIB. 

PROCEDURE 2,FILEMG Define a procedure FILMG at level 2. 

3-28 



PROG Define Absolute Starting Counter for PSEG Command PROG 

Syntax PROGRAM <base> 

where <base> = the starting location of the program segment. It can 
be expressed as a decimal or hexadecimal numhP up 
to five digits in length. 

Description 

Example 1 

Example 2 

Example 3 

The PROGRAM command defines the absolute starting address for the program 
segment (PSEG) in the linked output. 

The PROGRAM command may be used more than once. The first PROGRAM 
command must appear before the first INCLUDE command. Use of the PROGRAM 
command by itself or with the DATA and COMMON commands causes the linked 
output to be loaded at the specified address (base). 

PROGRAM 01F00 Begin program segment at location 
>1F00. 

PROG >1F00 Same as the preceding example. 

PROG 7936 Begin program segment at location 
7936 (>1F00). 

3-29 



REPL Replace Oldsym with Newsym Command REPL 

Syntax REPLACE <oldsym(newsym)>[,<oldsym(newsym)>]... 

where oldsym = the currently existing external symbol representing a 
reference, definition, or common name. 

Description 

(newsym) = the new external symbol to replace the oldsym. 

The REPLACE command specifies that in the next file read in, each occurrence 
of 'oldsym' as an external symbol is replaced by 'newsym'. The command applies 
to every module in a file containing multiple modules. It applies only to the first 
file in an INCLUDE command list. If the command immediately precedes a FIND, 
SEARCH, or END command, it still applies to the next single file read in. 

If 'oldsym' is $DATA and an affected module contains a DSEG, the linker converts 
the DSEG to a common with the name 'newsym'. This means that no data 
segment is identified in the listing, and if other instances of the common name 
occur, the common may be extended in length or promoted (moved up to a 
lower-numbered phase). 

Note that data segments can be shared by using the REPLACE command to 
convert them to a common. Appropriately used, this permits a module to share a 
data segment in an ancestor phase and places no restrictions on the order of 
definition of segments with different lengths. 

3-30 



SEAR Search for Unresolved References Command SEAR 

Syntax SEARCH [<acnm>] [,<acnm>]... 

where <acnm> = the access name of random libraries to be searched. 
The order of these access names determines the order 
of the search. If no <acnm>s are specified, the libraries 
defined by the LIBRARY commands define the search 
ordering. 

Description The SEARCH command directs the Link Editor to search for unresolved references 
at any point in the control stream. 

If a SEARCH command is given in a phase other than the TASK or PHASE 0 phase, 
searching is performed only for symbols that are unresolved in that phase. Unre-
solved references that were established in or promoted to other phases are ignored. 

A SEARCH command in a TASK phase causes searching to be done for every 
phase (for the given phase and all its descendant and previous phases). The only 
way the SEARCH command can be applied to more than one phase is by re-en-
tering a phase defined earlier. This is permitted only for the task phase and for the 
purpose of doing SEARCHes and FINDs. 

Example 1 
SEARCH Search defined libraries for 

unresolved references. 

Example 2 
SEARCH A:*.EXE Search drive A: as a library of 

files with extension .EXE on a 
PC/MS-DOS system. 

3-31 



SYMT Include Symbol Tables in Linked Output File Command SYMT 

Syntax SYMT 

Description The SYMT command causes the Link Editor to include symbol tables in the linked 
output file when the linker input files contain such symbols. These symbols were 
provided in the assembler as a result of selecting the SYMLST option (see the 
OPTION directive in the appropriate Assembly Language Programmer's Guide). 
Although symbol tables make the linked module larger, they are useful for 
symbolic debugging. 

SYMT is the inverse of the NOSYMT option. 

3-32 



TASK Define Phase as Task Command TASK 

Syntax TASK [<name>] 

where <name> = the identifier of the task module. The <name> can have 
up to eight characters. The name supplied becomes the 
IDT name, placed on the last record of the object 
module produced and on the ID fields of ASCII-for-
matted records. If the parameter is omitted, the IDT 
name of the first included module is used as the task 
name. 

Description 

Example 1 

Example 2 

The TASK command defines a phase that can be installed and executed as a task 
or standalone program, and assigns a name to the task. 

A task is either a complete program, containing both variable data and executable 
code, or it is the variable data portion of a program (procedure/task segmenta-
tion). The TASK and PHASE 0 commands are logically identical; one and only 
one of these two commands must appear in each control stream. 

When task/procedure segmentation is used, the TASK command must follow all 
PROCEDURE commands and precede all PHASE and INCLUDE commands that 
define the task module. The TASK command can be given after overlays have been 
defined (to re-enter the root phase). 

TASK FORPRG Define task named FORPRG. 

TASK Define task and assign it the IDT name 
of the first included module. 

3-33 



3-34 



4. Linking Examples 

Examples showing how and when to use the link control commands are provided 
in this section. Among the examples are a simple link (Section 4.1), ROM/RAM 
partitioning (Section 4.2), and a partial link (Section 4.3). In addition, examples are 
given for creating random and sequential libraries (Section 4.4). 

Three separately assembled modules, ALPHA, BETA, and GAMMA, are to be linked 
together. Figure 4-1, Figure 4-2, and Figure 4-3 contain the source for each module. 
The first example assumes that each module is contained in a separate file named 
ALPHA, BETA, and GAMMA, respectively, and that the three files are listed under a 
user directory named OBJ on the diskette in drive DS01 on a DX10 operating system. 
The second and third examples are similar, but base their file access on the VAX/VMS 
and TI/IBM PC (MS/PC-DOS) operating systems, respectively. 

TMS99000 assembly language source is used in the three figures, but the code could 
easily have been TMS7000 or TMS320 assembly language. All three assemblers 
produce 990-tagged object code that the Link Editor requires as input. 

IDT ' ALPHA ' 
* 

REF BETA, GAMMA 
PSEG 

ALPHA EQU 
SETO RO 

LOOP MOV RO , @CVAR 
BL @BETA 
BL @GAMMA 
DEC RO 
JNE LOOP 
IDLE 
PEND 

DSEG 
WRKSPC BSS 16*2 

DEND 
* 

CSEG 'COMDAT'  
CVAR BSS 2 

CEND 
END 

Figure 4-1. Source for Module Alpha 

4-1 



Linking Examples 

IDT ' BETA ' 

DEF BETA 
PSEG 

BETA EQU 
MOV @CVAR , @MYVAR 
RT 
PEND 

DSEG 
MYVAR BSS 2 

DEND 
* 

CSEG 'COMDAT'  
CVAR BSS 2 

CEND 
* 

END 

Figure 4-2. Source for Module Beta 

IDT ' GAMMA ' 
* 

GAMMA 

* 

DEF GAMMA 
PSEG 
EQU 
MOV @CVAR,@MYVAR 
RT 
PEND 

DSEG 
MYVAR BSS 2 

DEND 

CSEG 'COMDAT'  
CVAR BSS 2 

CEND 
* 

END 

Figure 4-3. Source for Module Gamma 

4.1 Simple Linking 

Every control stream must contain either a TASK or PHASE 0 command to define the 
name of the program being linked. In addition, the control stream must contain one 
or more INCLUDE commands to define modules that are being linked. The control 
stream is terminated with an END command. The following is an example control 
stream on the DX10 operating system for linking the three example object modules 
generated for ALPHA, BETA, and GAMMA. 

4-2 



Linking Examples 

PHASE O,SIMPLE 
INCLUDE DS01.OBJ.ALPHA 
INCLUDE DS01.OBJ.BETA 
INCLUDE DS01.OBJ.GAMMA 
END 

The three modules may be specified in one INCLUDE command rather than with three 
separate commands. The directory containing the modules (DS01.OBJ) may also 
be defined as a library. When this is done, only the file name (enclosed in paren-
theses) need be specified. The Link Editor searches the defined library for the required 
files. An example of a control stream using the INCLUDE command is as follows: 

PHASE O,SIMPLE 
LIBRARY DS01.OBJ 
INCLUDE (ALPHA),(BETA),(GAMMA) 
END 

Since ALPHA references BETA and GAMMA, and the directory containing these 
modules has been defined as a library, ALPHA is the only module that must be 
specified in the INCLUDE command, as shown in the following example: 

PHASE O,SIMPLE 
LIBR DS01.OBJ 
INCL (ALPHA) 
END 

At the end of the control stream, the Link Editor automatically searches the defined 
library for unresolved references and includes the modules that satisfy the references 
in the linking process. 

The Link Editor produces a listing of the linking process and writes it to a specified 
file. Figure 4-4 is an example of the listing file produced. The listing file for this 
example consists of three pages. The first page contains a copy of the link control 
stream. The second page lists the parameters used when the Link Editor was 
initialized (access names of the control file, linked output file, and listing file) and 
the format of the linked output. Since the FORMAT command was not included in 
the control stream, the default, ASCII, is used. 

The third page contains the link map, which is generated to facilitate debugging. 
The link map lists the origins and lengths of the phase being linked, the modules 
included in the link, and any common segments. The origins are relative to the 
beginning of the phase. The order in which the included modules are linked is 
indicated by the number listed next to the module name. The link map also lists the 
symbols defined in the included modules, indicating the module in which the symbol 
is defined (number) and the resolved location of the symbol (value). An asterisk 
(*) preceding the symbol name indicates that the symbol is not referenced in the 
included modules. An asterisk to the right means the symbolic value is absolute. 

4-3 



Linking Examples 

DX10/99000 LINKER VERSION v.2.4 85.122 5/20/85 11:15:21 PAGE 1 
COMMAND LIST 

PHASE 0,SIMPLE 
INCLUDE DSO1.OBJ.ALPHA 
INCLUDE DSO1.OBJ.BETA 
INCLUDE DS01.08J.GAMMA 
END 

DX10/99000 LINKER VERSION v.2.4 85.122 5/20/85 11:15:21 PAGE 2 
LINK MAP 
CONTROL FILE = DS01.SIMPLE.CON 

LINKED OUTPUT FILE = DSO1.SIMPLE.LOD 

LIST FILE = DSO1.SIMPLE.MAP 

OUTPUT FORMAT = ASCII 

DX10/99000 LINKER VERSION v.2.4 85.122 5/20/85 11:15:21 PAGE 3 

PHASE 0, SIMPLE ORIGIN = 0000 LENGTH = 004A 

MODULE NO ORIGIN LENGTH TYPE DATE TIME CREATOR 

ALPHA 1 0000 0014 INCLUDE 5/20/85 11:15:21 TMS990 
$DATA 1 0024 0020 
BETA 2 0014 0008 INCLUDE 5/20/85 11:15:21 TMS990 
$DATA 2 0044 0002 
GAMMA 3 001C 0008 INCLUDE 5/20/85 11:15:21 TMS990 
$DATA 3 0046 0002 

COMMON NO ORIGIN LENGTH 

COMDAT 3 0048 0002 

DEFINITIONS 

NAME VALUE NO NAME VALUE NO 

*BETA 0014 2 *GAMMA 001C 3 

**** LINKING COMPLETED 5/20/85 11:15:29 

Figure 4-4. Listing File for a Simple Link 

4-4 



Linking Examples 

4.2 ROM/RAM Partitioning 

Each example module has a program segment defined by the PSEG assembler 
directive, a data segment defined by the DSEG directive, and a common defined by 
the CSEG directive. Program segments generally contain instructions and nonvari- 
able data (read only). Data segments generally contain variable data (read/write) 
and are labeled by the Link Editor as $DATA. Common segments contain variable 
data that may be shared by more than one module. 

The Link Editor automatically reorganizes the output so that all the program segments 
of the included modules are together, followed by the data segments and then the 
common segments. The link control commands PROGRAM, DATA, and COMMON 
can be used to specify the beginning location of each output segment. These 
commands cannot be used with a PROCEDURE command or a PHASE command 
with a level greater than zero. 

The following is an example of the control stream for a VAX/VMS operating system, 
which is used to partition the program and data segments into potential ROM and 
RAM locations. 

PHASE 0,SEGMENT 
PROGRAM >1000 
DATA >2000 
COMMON >3000,COMDAT 
INCLUDE [PROJECT.MACK]ALPHA.MPO 
INCLUDE [PROJECT.MACK]BETA.MPO 
INCLUDE [PROJECT.MACK]GAMMA.MPO 
END 

The example assumes that location >1000 is in ROM and locations >2000 and 
>3000 are in RAM. This control stream causes the program segment of ALPHA to 
begin at location >1000, followed by the program segment of BETA, and then 
GAMMA. The data segment of ALPHA begins at location >2000 and is followed 
by the data segments of BETA and GAMMA. The common segment that is to be 
shared by all three modules begins at location >3000. Note that if the common 
segment is not specifically named in the COMMON command, the segment begins 
immediately following the last data segment. 

Figure 4-5 contains the listing produced by this link. Use of the \PROGRAM, DATA, 
and COMMON commands causes the phase length to be listed as zero and the origins 
to be listed as absolute locations. An asterisk(*) preceding the symbol name indicates 
that the symbol is not referenced in the included modules. An asterisk following the 
value of a symbol name indicates an absolute location. Linking absolute code 
generated by the assembler (AORG assembler directive) also causes the phase length 
to be listed as zero and the origins to be absolute locations. 

4-5 



Linking Examples 

VAX/99000 LINKER VERSION v.2.4 85.122 5/20/85 11:24:46 PAGE 1 
COMMAND LIST 

PHASE 0,SEGMENT 
PROGRAM >1000 
DATA >2000 
COMMON >3000,COMDAT 
INCLUDE [PROJECT.MACK]ALPHA.MPO 
INCLUDE [PROJECT.MACK]BETA.MPO 
INCLUDE [PROJECT.MACK]GAMMA.MPO 
END 

VAX/99000 LINKER VERSION v.2.4 85.122 5/20/85 11:24:46 PAGE 2 
LINK MAP 
CONTROL FILE = [PROJECT.MACK]SEGMENT.CON 

LINKED OUTPUT FILE = [PROJECT.MACK]SEGMENT.LOD 

LIST FILE = [PROJECT.MACK]SEGMENT.MAP 

OUTPUT FORMAT = ASCII 

VAX/99000 LINKER VERSION v.2.4 85.122 5/20/85 11:24:46 PAGE 3 

PHASE 0, SEGMENT ORIGIN = 0000 LENGTH = 0000 

MODULE NO ORIGIN LENGTH TYPE DATE TIME CREATOR 

ALPHA 1 1000 0014 INCLUDE 5/20/85 11:24:46 ASM700 
$DATA 1 2000 0020 
BETA 2 1014 0008 INCLUDE 5/20/85 11:24:46 ASM700 
$DATA 2 2020 0002 
GAMMA 3 101C 0008 INCLUDE 5/20/85 11:24:46 ASM700 
$DATA 3 2022 0002 

COMMON NO ORIGIN LENGTH 

COMDAT 3 3000 0002 

DEFINITIONS 

NAME VALUE NO NAME VALUE NO 

BETA 0014 2 *GAMMA 101C* 3 

**** LINKING COMPLETED 5/20/85 11:24:54 

Figure 4-5. Listing File for ROM/RAM Partitioning 

4.3 Partial Linking 

This section shows how to generate a partial link and then include the output of the 
partial link in a subsequent link. Only ASCII object code can be used in partial linking 
on the TMS320 and TMS7000 devices; both ASCII and compressed code can be 
used on the TMS99000 devices. 

The PARTIAL command is used in the control stream to specify a partial link. In this 
example, modules BETA and GAMMA are to be linked together in a partial link. The 
output of the partial link is not executable and must be linked again without the 
PARTIAL command so that the output of this partial link will then be linked with 

4-6 



Linking Examples 

module ALPHA to produce an executable module. The following is the control 
stream for the partial link, using the TI/IBM PC (PC/MS-DOS) operating systems: 

PARTIAL 
PHASE O,PARTIAL 
INCLUDE A:BETA.MPO 
INCLUDE A:GAMMA.MPO 
END 

All commands pertaining to partial links must be issued before any INCLUDE, 
SEARCH, and FIND commands. The PARTIAL command must be given before the 
first INCLUDE command in the control stream. In a partial link, only one phase is 
allowed and must be defined by the PHASE 0 or TASK command. 

The ALLGLOBAL, GLOBAL, and NOTGLOBAL commands are used with the 
PARTIAL command to define the scope of DEF tags in modules included in the partial 
link. These symbols are specified as either global or local. All externally-defined 
symbols are processed as global symbols. Global symbols are externally defined in 
the partially linked output modules and may be referenced in a subsequent link. Local 
symbols are not externally defined in the partially linked output module; therefore, 
they may be referenced in the current partial link. Since none of these commands 
are included in the control stream, the default, ALLGLOBAL, is used. 

The output of the partial link can now be linked with module ALPHA to produce an 
executable module, using the following control stream: 

PHASE O,MAIN 
INCLUDE B:ALPHA.MPO 
INCLUDE B:PARTIAL.MPO 
END 

The listing and object modules from a partial link using the PARTIAL command are 
given in Figure 4-6. 

The second part of the link, in which the output of the partial link is relinked without 
using the PARTIAL command, is performed next. The listing and object files for 
relinking the output of the partial link are shown in Figure 4-7. 

4-7 



Linking Examples 

PC/CrossWare Family Linker v.2.4 85.122 5/20/85 11:34:46 PAGE 1 
COMMAND LIST 

PARTIAL 
PHASE 0,PARTIAL 
INCLUDE A:BETA.MPO 
INCLUDE A:GAMMA.MPO 
END 

PC/CrossWare Family Linker v.2.4 85.122 5/20/85 11:34:46 PAGE 2 
LINK MAP 
CONTROL FILE = A:PARTIAL.CON 

LINKED OUTPUT FILE = A:PARTIAL.MPO 

LIST FILE = A:PARTIAL.MAP 

OUTPUT FORMAT = ASCII 

PC/CrossWare Family Linker v.2.4 85.122 5/20/85 11:34:46 PAGE 3 

PHASE 0 PARTIAL MODULE ORIGIN = 0000 LENGTH = 001A 

MODULE NO ORIGIN LENGTH TYPE DATE TIME CREATOR 

BETA 1 0000 000A INCLUDE 5/20/85 11:34:46 ASM320 
$DATA 1 0000 0002 
GAMMA 2 000A 000A INCLUDE 5/20/85 11:34:46 ASM320 
$DATA 2 0002 0002 

COMMON NO ORIGIN LENGTH 

COMDAT 1 0000 0002 

DEFINITIONS 

NAME VALUE NO NAME VALUE NO 

BETA 0000 1 *GAMMA 000A 2 

LENGTH OF REGION FOR TASk = 001A 

NUMBER OF RECORDS FOR MODULE PARTIAL = 3 

TOTAL RECORDS WRITTEN = 3 

**** LINKING COMPLETED 5/20/85 11:34:54 

a. Listing File for a Partial Link 

K0014PARTIAL M0004$DATA 0000M0002COMDAT00025000BETA 5000AGAMMA 7F115F 
A0000B0700BC820N00000002T0000B045BA000AB0700BC820N00000002T00027F27FF 
B045BI0000BETA I000AGAMMA 7F92AF 

PARTIAL 5/20/85 11:36:48 LINK990 v2.4 85.122 

b. Object File for a Partial Link 

Figure 4-6. Listing and Object Files for a Partial Link 

4-8 



Linking Examples 

PC/CrossWare Family Linker v.2.4 85.122 5/20/85 11:34:46 PAGE 1 
COMMAND LIST 

PHASE 0,TEST 
INCLUDE A:ALPHA.MPO 
INCLUDE A:PARTIAL.MPO 
END 

PC/CrossWare Family Linker v.2.4 85.122 5/20/85 11:34:46 PAGE 2 
LINK MAP 

CONTROL FILE .= A:TEST.CON 

LINKED OUTPUT FILE = A:TEST.LOD 

LIST FILE = A:TEST.MAP 

OUTPUT FORMAT = ASCII 

PC/CrossWare Family Linker v.2.4 85.122 5/20/85 11:34:46 PAGE 3 

PHASE 0 MAIN MODULE ORIGIN = 0000 LENGTH = 004E 
MODULE NO ORIGIN LENGTH TYPE DATE TIME CREATOR 

ALPHA 1 0000 0014 INCLUDE 5/20/85 11:44:46 ASM320 
$DATA 1 0028 0020 
PARTIAL 2 0014 0014 INCLUDE 5/20/85 11:44:46 ASM320 
$DATA 2 0048 0004 

COMMON NO ORIGIN LENGTH 

COMDAT 1 004C 0002 

DEFINITIONS 
NAME VALUE NO NAME VALUE NO 

*BETA 0014 2 *GAMMA 001E 2 

LENGTH OF REGION FOR TASK = 004E 

NUMBER OF RECORDS FOR MODULE PARTIAL = 3 

TOTAL RECORDS WRITTEN = 3 

**** LINKING COMPLETED 5/20/85 11:44:54 

a. Listing File for Relinking the Partial Link Output 

K004EMAIN A0000B0700BC800C004CB06A0C0014B06A0C001EB0600B16F87F258F 
B0340A0014B0700BC820C004CC00488045BB0700BC820C004CCOO4AB045B7F2D5F 
I0000ALPHA I0014PARTIAL I001BETA I001EGAMMA 7F433F 

MAIN 5/20/85 11:46:48 LINK990 v2.4 85.122 

b. Object File for Relinking the Partial Link Output 

Figure 4-7. Listing and Object Files for Relinking the Partial Link Output 

4-9 



Linking Examples 

4.4 Library Creation 

The linker can accommodate two object library types: random and sequential. 

A random library can be created almost automatically. Whenever one or more object 
files are placed in the same directory or sub-directory, that directory becomes a 
random library. Some examples of random libraries are as follows: 

PROJ.A2710.OBJ (DX10), where the example indicates a 
directory containing object file members 
named (e.g.,, SIN, COS, SUB2, HEAPSORT, 
etc.). 

DUAO:[USER07.PROJ2710. PARTS] (VAX), where the example indicates a 
directory containing object file members 
named (e.g., PART1.OBJ, INITIAL.OBJ, 
CLEAN U P.0 BJ, etc.). 

A:*. M PO (MS-DOS), where the name indicates a drive 
and all files with the extension .MPO (e.g., 
QUICK.MPO, BTREE.MPO, SHELL.MPO, 
etc.). 

The creation of sequential libraries is more involved. Since sequential libraries offer 
no advantages over random libraries, their use will probably be restricted to those 
users of systems not supporting random libraries, i.e., not supporting multilevel 
directories or "wild-card" file specifications. 

A sequential library is a single file and consists of a "dictionary," followed by one 
or more concatinated object modules. The user must order the elements in a 
sequential library so that no object segment contains an external reference to a 
preceding segment. The concatinated object files may be created by assembling a 
source file created by concatinating the source files of several proposed members 
of the sequential library. Such a source file might appear as shown in Figure 4-8. 

4-10 



Linking Examples 

IDT 'TRESRT' 
TITL 'THIS IS THE FIRST LIB MEMBER' 
DEF TRESRT,QUICK 

QUICK EQU $ 

TRESRT EQU $ 

END 

IDT 'ELEM' 
TITL 'STILL IN SEQ LIB' 
DEF ELEM 

END 
* 

IDT 'LASTPROG' 
TITL 'ET CETERA' 

END 

Figure 4-8. Source File for Sequential Library Creation 

The assembler output contains all modules within the same file, yet distinct. The use 
of a text editor allows the creation of such a file by appending the object files that 
result from independent assembly of the proposed library members. The dictionary 
structure must be created by use of the text editor. It precedes the first object module 
and must match the following pattern: 

First line, the library 'IDT' record: 01111aaaaaaaaF 

where 0 = tag 
1111 = length of the dictionary 
aaaaaaaa = library name 
F = end-of-record tag 
user-defined information out to 80th character 

Example: 00000SEQL1B01F 04/10/85 08:15:00 

One entry for each object module included in the library: 
F11111aaaaaaaa; 

where F = tag 
I = IDT marker 
1111 = length of PSEG of module 
aaaaaaaa = IDT of the module 
';' = record end marker 

Example: Fl00CEFASTSORT; 

4-11 



Linking Examples 

For each DEF within a module: FEtllllaaaaaa{,tllllaaaaaa}; 

where F = tag 
E = tag 
t = type of DEF ("A" = absolute, "R" = relative) 
1111 = value of the DEF'd symbol 
aaaaaa = 6-character name of symbol DEF'd in this module 
, = if more (up to five DEFs allowed per record 
; = if no more 

Example: FEA0050PACK ,ROOACUNPAK ,A0E08ENCODE; 

For each REF within the module: FR]]]]]aaaaaa{,]]]]]aaaaaa). 

where F = tag 
R = tag 
']]]]]' = five blanks 
aaaaaa = 6-character name of symbol REF'd 
, = if more (up to five REFs allowed per record) 
; = if no more 

Example: FR]]]]]EXREF ,]]]]]ESYM ,]]]]]X]]]]] 

For each COMMON segment contained within the module: 
FC1111aaaaaa{,1111aaaaaa}; 

where F = tag 
C = tag 
1111 = length of COMMON segment 
aaaaaa = 6-character COMMON segment name 

Example: FC01 4000MNAM,0266$13LANK; 

For each DATA segment defined within the module: 
FD1111]]]]]]{,1111]]]]]]).; 

where F = tag 
D = tag 
1111 = length of DATA segment 
']]]]]]' = six blanks 
up to five DSEGs allowed, separated by commas 
terminated by ; 

Example: FD001 0]]]]]],0032]]]]]] 

This set of records is repeated for each object module in the library. The final record, 
just prior to the first record of the first library member, must contain a colon in the 
first character position. The remainder of this colon record is not specified. It can 
be used for date, time, and other user-defined information. 

4-12 



5. Link Editor Error Messages 

Messages are listed for detected errors in the listing file. Linker error messages are 
named and described below. 

When the error-message description indicates that a malfunction of the link editor 
has occurred, please contact the Texas Instruments Customer Response Center 
(CRC) hotline number, 1-800-232-3200, extension 2171, for assistance. 

'(' EXPECTED: The REPLACE command expects a parenthesis. 

ADDRESS SPACE HAS OVERFLOWED IN THIS MODULE: The maximum 
address required to represent this module is >10000 or greater. No valid object 
module can be produced for this phase. The linker continues to produce the map, 
but with increased likelihood that it will abort from internal errors. 

ADDRESS SPACE TRUNCATED FOR TAG = X IN THE SEGMENT START-
ING AT YYYY: The 320-specific tags have a seven-bit address field that has 
overflowed. 

ALIGNMENT VALUE MUST BE IN THE RANGE 0..15: The value in the 
ADJUST command is out of range. 

AN ACTIVE BUFFER SHOULD HAVE BEEN CLOSED: A buffer that needs to 
be closed is still marked as active. 

ATTEMPT MADE TO WRITE TO A NIL SEGMENT: The linker attempted to 
write to a nonexistent segment. Indicates a malfunction of the link editor; call hotline 
immediately. 

ATTEMPT MADE TO WRITE TO INACTIVE SEGMENT: The linker has 
attempted to write to an unopen segment. Indicates a malfunction of the link editor; 
call hotline immediately. 

ATTEMPT TO ACTIVATE AN ALREADY ACTIVE SEGMENT: The linker has 
attempted to open a segment that is already active. Indicates a malfunction of the 
link editor; call hotline immediately. 

ATTEMPT TO ACTIVATE NIL SEGMENT: The linker has attempted to open a 
nonexistent segment. Indicates a malfunction of the link editor; call hotline imme-
diately. 

ATTEMPT TO ALLOCATE AFTER DSEG OF CSEG DEFINED: The ALLOCATE 
command has been given after data and/or common segments have been encount-
ered. 

ATTEMPT TO MOVE NON-COMMON SEGMENT: An attempt has been made 
to move a segment that is not a common. Indicates a malfunction of the link editor; 
call hotline immediately. 

ATTEMPT TO ORDER A NIL SEGMENT: A common that was never defined 
cannot be placed in the stream of commons. Indicates a malfunction of the link 
editor; call hotline immediately. 

ATTEMPT TO REDEFINE COMMON ORIGIN: Directives to place a common 
origin provide information that conflicts with information that has been already 
determined. 

BAD CHAIN FOR XXXX TO YYYY: In a partial link, the reference chain for XXXX 
points to the address YYYY that is outside the scope of the segment. 

5-1 



Link Editor Error Messages 

BAD INDEX - COMMAND FORMAT NOT RECOGNIZED: In a partial link, 
an error was detected in the control record such that the current index is negative. 

BAD TAG IN CHAIN FOR XXXX AT YYYY: In a partial link, an invalid tag was 
encountered in the processing of the reference chain. If this error occurs, the object 
module has been damaged. 

CANNOT ORDER COMMONS FROM DIFFERENT MODULES: Commons 
that are overlayed in procedures of the same phase level cannot be ordered together. 
This usually occurs in a partial link. 

CAN'T ASSIGN LUNO TO LIBRARY: The DX10 system assigns a luno (logical 
unit number) to each library identified in a LIBRARY or SEARCH command. This 
message indicates that an error code was returned, and the library was not entered 
into the library table for later use. (Luno's are assigned so that later references to 
library members will be resolved more quickly by the operating system. In addition, 
this permits early identification of error when a library is incorrectly specified.) If using 
a DOS system, this message indicates that the limit has been exceeded in the number 
of files that can be opened at one time. 

CAN'T OPEN FILE: A file that should be opened cannot be opened. The system 
return code is identified in the immediate preceding warning. 

CAN'T OPEN LIBRARY: The DX10 system reads in the directory of each library 
specified in the LIBRARY commands, except the last. This message indicates that 
an error code was returned or an attempt made to open the directory. (A luno has 
already been assigned to the library. If this message occurs, it is probably because 
the luno has not been assigned to the directory file.) The library's directories are read 
in to permit the linker to minimize the number of abortive file-open operations during 
automatic call. 

CHAIN TO UNINITIALIZED LOCATION FOR XXXX AT YYYY: The reference 
chain for value XXXX points from YYYY to an insignificant address. Processing of 
the chain is discontinued. 

COMMAND NOT VALID WITH PARTIAL LINK: The specified command is not 
valid in producing a partial link. 

COMMAND ONLY VALID WITH PARTIAL LINK: The GLOBAL, NOTGLOBAL, 
and ALLGLOBAL commands must follow a PARTIAL command in a control stream. 

COMMON HAS NOT BEEN PLACED VALIDLY: An attempt has been made 
to place a common at two or more locations. 

COMMON NAME TRUNCATED: The common name has been truncated to six 
characters. This is a trivial warning and processing proceeds with the truncated name. 

COMMON NUMBER INVALID: The common number given an M tag is not in 
the valid range. 

COMMON ORIGIN HAS ALREADY BEEN SET: An attempt has been made to 
define a common origin already set with a previous COMMON command. 

COMMON ORIGIN INVALID: The origin for a common is not valid. 

COMMON ORIGIN WAS NOT DEFINED: The first common name specified in 
a COMMON command was never defined in the link. 

COMMON SEGMENT HAS NO SYMBOL DEFINED: A symbol has been given 
for a common segment, but the segment itself does not exist. 

COMMON SYMBOL IS NOT VALID: The given common symbol is not legal. 

5-2 



Link Editor Error Messages 

COMMON SYMBOL WAS NEVER DEFINED: A common segment was not 
found corresponding to the common symbol. 

COMPRESSED FORMAT NOT SUPPORTED FOR 320 Er 7000 INPUT 
MODULES: The linker only recognizes ASCII-formatted input modules for these 
object codes. 

CONFLICTING COMMON SYMBOL FOUND: A common symbol that is not 
consistent with previous commons has been detected. 

CURRENT SEGMENT HAS NOT BEEN DEACTIVATED: The segment that 
should be closed has been left active. 

DUPLICATE SYMBOL DEFINITION ENCOUNTERED: Two definitions have 
been encountered for the same external symbol. 

ENTRY NAME TRUNCATED: The entry name has been truncated to six char-
acters. This is a trivial warning and processing proceeds with the truncated name. 

EXTERNAL REFERENCE INDEX OUT OF RANGE: The index number specified 
by an E tag in an input object module is not valid. 

EXTERNAL SYMBOL TRUNCATED: A symbol specified in a GLOBAL or 
NOTGLOBAL command exceeds six characters in length. 

FATAL ERROR DETECTED -- *LINKER ABORTING*: An error that the linker 
cannot recover from has been detected. The user should repeat the process. If the 
message occurs again, then either check the procedures used or call the hotline for 
assistance. 

FIRST PHASE HAS ALREADY BEEN DEFINED: A NOMAP command has 
appeared after a TASK or a PHASE command has been issued in the control stream. 

HEAP ERROR ENCOUNTERED IN PASS2: A heap error was detected while 
trying to allocate data space for the second pass. Indicates a malfunction of the link 
editor; call hotline immediately. 

ILLEGAL INTERMEDIATE TAG ENCOUNTERED AT XXXX: An encoded tag 
was encountered that was not valid. Indicates a malfunction of the link editor; call 
hotline immediately. 

ILLEGAL TAG FOUND IN INTERMEDIATE FILE; TAG=X: An invalid tag was 
found in the intermediate file. Indicates a malfunction of the link editor; call hotline 
immediately. 

INTERMEDIATE FILE OVERFLOW: The maximum number of records for inter-
mediate object representation has been exceeded. Obtain more file space by making 
individual object modules smaller or call the hotline for assistance. 

INTERMEDIATE RECORD NUMBER INVALID: The record index for the 
intermediate storage is not in the legal range. 

INTERNAL LINKER ERROR IN AUTOCALL: An error has occurred in the 
automatic-call algorithm. This error should never occur. If it does, unresolved 
references may be the result of modules not having been read in; in other respects, 
the object module produced should be good. Relink using specific INCLUDES for 
the missing modules or call the hotline for assistance. 

INVALID ATTEMPT TO MOVE FIRST COMMON: The linker has attempted 
to move a common that was specified as the first common by a COMMON command. 
Indicates a malfunction of the link editor; call hotline immediately. 

5-3 



Link Editor Error Messages 

INVALID ATTEMPT TO READ BUFFER: The linker has attempted to activate a 
buffer that is not of the correct type. Indicates a malfunction of the link editor; call 
hotline immediately. 

INVALID LEVEL FOR PHASE: The level argument to a PHASE command is not 
appropriate. The first phase established must be a TASK or a phase of level 0. If the 
current level is N, a new phase must have level < N+1. 

INVALID PROCEDURE LEVEL: The level for procedures must be 1 or 2. 

INVALID PROCEDURE SPECIFIED: An illegal procedure has been declared. 

INVALID SYMBOL NAME FOR REPLACE: The REPLACE command has 
encountered an illegal symbol name. 

INVALID VALUE FOR LINES PER PAGE: The argument to a page command 
is not recognized as a positive integer or is out of the range of 16 to 60 lines per page. 

LAST COMMON IN LIST IS NIL: The last common in a list of ordered commons 
does not exist. Indicates a malfunction of the link editor; call hotline immediately. 

LAST MODULE FOR PHASE IS NIL: The linker cannot find the information 
about the current phase. Indicates a malfunction of the link editor; call hotline 
immediately. 

MAP RECORD INDEX IS OUT OF RANGE: The map record is full or the index 
has been changed to an invalid value. Indicates a malfunction of the link editor; call 
hotline immediately. 

MEMBER NAME TOO LONG: The member name exceeds eight characters. The 
command is not processed. 

MEMBER NAME TRUNCATED: The member name has been truncated to eight 
characters. This is a trivial warning and processing proceeds with the truncated name. 

MINIMUM NUMBER OF LINES PER PAGE IS 16: A PAGE N command may 
not specify a value of N less than 16. 

MODULE LENGTH IS ZERO: The length for the module has been incorrectly 
specified as zero. 

MODULE ORIGIN IS NOT ZERO: The origin for a module must be zero before 
the relocation is applied. 

NIL COMMON SEGMENT WAS ACTIVATED: An attempt was made to activate 
a common segment that does not exist. 

NIL SEGMENT FOR M TAG SYMBOL: An M tag definition applies to a segment 
that does not exist. Indicates a malfunction of the link editor; call hotline immediately. 

NO PHASE IS DEFINED: No PROCEDURE, TASK, or PHASE 0 has been defined. 
A command has been given which requires that object modules be read in or that 
some phase be active. 

NO TASK PHASE IS DEFINED: No TASK or PHASE 0 has been defined. A valid 
set of linked object modules cannot be produced. 

NOTGLOBAL MUST PRECEDE A GLOBAL COMMAND: The GLOBAL 
command is only valid if it is preceded by a NOTGLOBAL command with no 
parameter. 

5-4 



Link Editor Error Messages 

OBJECT CARD INDEX ERROR DETECTED: After writing an object record, the 
index into the record was not equal to one. Indicates a malfunction of the link editor; 
call hotline immediately. 

ORIGIN CANNOT BE WRITTEN TO INACTIVE SEGMENT: The linker has 
attempted to write origin information to a segment that is not open. Indicates a 
malfunction of the link editor; call hotline immediately. 

OVERWRITTEN BLOCKS FOR XXXX TO YYYY: Absolutely placed object code 
overlaps at the given address. 

OVERWRITTEN SEGMENTS STARTING AT XXXX IN MODULE 
NNNNNNNN: Overlapping segments have been detected starting at location 
XXXX. The link map specifies which segment starts at that point. This is flagged 
as a warning. 

PARTIAL COMMAND INVALID IN CONTEXT: The PARTIAL command was 
specified in the control stream after a command that is inconsistent with partial links 
(e.g., DUMMY, PROGRAM, DATA, COMMON, ALLOCATE, PROCEDURE, PHASE 
1, etc.) 

PHASE LEVEL EXPECTED: The level argument to a PHASE command must be 
a zero or a positive integer. 

PHASE LEVEL SPECIFIED IS NOT VALID: The level specified in a PHASE 
command is not in the valid range. 

PHASE NAME TRUNCATED: The phase name has been truncated to eight 
characters. This is a trivial warning, and processing proceeds with the truncated 
name. 

PHASE SEQUENCE IS NOT VALID: The order in which the phases have been 
declared is not legal. 

PREMATURE END OF CONTROL FILE: The control file has ended before an 
END command was encountered. No further processing is done. 

PROCEDURE CANNOT HAVE BROTHERS: A procedure cannot have phases 
at the same level defined with it. 

PROCEDURE NAME TRUNCATED: The procedure name has been truncated 
to eight characters. This is a trivial warning, and processing proceeds with the 
truncated name. 

PROC 1 MUST BE DUMMIED TO DUMMY PROC 2: In order to dummy the 
second procedure, the first procedure must also be dummied. 

PROC 1 SYMBOL NUMBER IS NOT ZERO: The symbol number for the 
procedure must be zero. 

PROC 2 SYMBOL NUMBER IS NOT ZERO: The symbol number for the 
procedure must be zero. 

RELOCATABLE ADDRESS IS NOT VALID;SEGMENTS SHOULD RF 
PLACED AT ABSOLUTE LOCATIONS: Certain TMS320-specific tags reqr ,e 
that segments to which they refer be placed at absolute addresses. 

SEGMENT BUFFER HAS BEEN DAMAGED: The current segment does not 
contain the expected information. Indicates a malfunction of the link editor; call 
hotline immediately. 

5-5 



Link Editor Error Messages 

SEGMENT ORIGIN IS ZERO: The origin for a segment has erroneously changed 
to zero. Indicates a malfunction of the link editor; call hotline immediately. 

TASK OR PHASE 0 IS ALREADY DEFINED: A PROCEDURE command cannot 
be given once a task phase has been defined. 

TASK OR PHASE 0 MUST BE DEFINED BEFORE OVERLAY: An overlay has 
been defined before the task or root phase. 

THE CURRENT SEGMENT IS NIL: The segment that is being examined does 
not exist. indicates a malfunction of the link editor; call hotline immediately. 

THE INPUT OBJECT MODULE HAS BEEN DAMAGED: Unexpected or invalid 
tags and values have been encountered in the input object module. 

THE MAP RECORD IS NIL: An attempt has been made to place information into 
the map record when the record does not exist. Indicates a malfunction of the link 
editor; call hotline immediately. 

THE OVERWRITTEN BLOCKS ARE NOT COMPATIBLE: The types of the 
overlapping blocks are not the same, and a valid object module cannot be proauced. 

THE PHASE TYPE IS NOT TASK, OVLY, OR PROC: This error should never 
occur, because the only valid types are TASK, OVLY, and PROC. 

THE SEGMENT TYPE IS NOT PSEG, DSEG, OR CSEG: The only valid segment 
types are PSEG, DSEG, and CSEG. 

TOO MANY SYMBOLS HAVE BEEN DEFINED: The statically allocated arrays 
that contain the values for symbols (mostly external symbols and phase lengths, 
origins, etc.) have overflowed. The number of symbols allowed in a symbol table is 
1110. 

UNABLE TO PROPERLY ORDER COMMONS: The linker cannot order the 
commons as specified. 

UNEXPECTED TAG: The input object module is not of the expected format. It 
may not really be an object module. Processing stops. 

UNRECOGNIZED FORMAT: The argument to the FORMAT command is not 
recognized. 

UNRECOGNIZED COMMAND: The command on the most recent line is not 
recognized as a linker command. The line is ignored. 

UNSUPPORTED INTER-SEGMENT LINK FOR XXXX FROM YYYY TO 
ZZZZ: This message is printed by the second pass, and applies to the moauie in 
the linked output that is next identified. An external reference chain has pointed from 
one PSEG, DSEG, or CSEG into another. XXXX is the value of the external symbol 
to be filled in. (The second pass cannot identify it by symbol name. The name can 
often be found by examining the symbol definitions. A symbol with a value of zero 
may be an unresolved reference.) YYYY, the address where the chain starts, identifies 
the offending module. ZZZZ is the address to which the chain points. The only 
deficiency in the linked object is that incorrect values remain where the value of 
external symbol XXXX should have been inserted. 

5-6 



A. Glossary 

This Glossary includes terms used in this manual or related documents. The defi-
nitions provided apply to link editors in general. 

Absolute Address: An address that designates a specific physical location in 
memory. 

Access Name: A uniquely identifying name by which a directory or file can be 
accessed. An access name may include a device name, a directory name, or a file 
name. 

Address: An expression, usually numerical, that designates a location in a storage 
or memory device. 

ASCII Object Code Format: The default format for object code produced by the 
assembler or link editor. The format consists of an ASCII tag character followed by 
one or two ASCII fields. The first field is numeric in value, and the optional second 
field contains a symbol. Refer to the appropriate Assembly Language Programmer's 
Guide for further information. 

Assembler: A system utility that translates assembly language instructions 
(symbolic source code) into machine language instructions (binary object code) so 
they can then be executed by the hardware on a step-by-step basis. 

Base: A reference value. 

Base Address: The value to which a relative address is added to obtain an absolute 
address. 

BNPF Formatted File: A file containing object code in binary form, where P 
denotes a logic 1 and N denotes a logic 0. Data for each word begins with a B, 
followed by the bit values and ending with an F. 

Compressed Object Code Format: An optional format for object code where 
numeric fields are expressed in binary rather than ASCII to conserve space. 

CRU: Communications Register Unit - A command-driven, bit-addressable, 
input/output interface. The processor instruction can set, reset, or test any bit in the 
CRU array or move data between the memory and CRU data field. 

CSEG: An assembler directive that defines the beginning of a common data 
segment. 

Debug: To detect, locate, and remove mistakes in software or malfunctions in the 
hardware. 

DEF: An assembler directive that causes specified symbols to be tagged as external 
definitions in the object module. Defined symbols then are available to other modules 
and separately assembled modules can be linked. 

Default: A value used for a parameter when no other value is supplied by the user. 

Device: Physical equipment such as a diskette drive or VDT. 

Device Name: A character string assigned by the system to specify a physical 
device (e.g., LP01 is the device name for a line printer). 

A-1 



Appendix A 

Directory: An index file that contains the information necessary to locate other files 
listed in that directory and to describe the characteristics of those files. It does not 
contain user data. 

Directory Name: A character string assigned by the user that identifies a directory. 
The directory name is part of the access name for all files indexed in that directory. 
The directory name for a diskette directory can be either the volume name assigned 
to the diskette or the device name of the drive in which the diskette is residing. 

Diskette Directory: The directory that contains all user directories and all files 
not included in a user directory on a diskette. 

Diskette Name: Either the volume name assigned to the diskette or the device 
name of the drive in which the diskette is residing. 

DSEG: An assembler directive that defines the beginning of a data segment. 

Entry Point: In a software program, any place to which control can be passed in 
a particular software module. 

EPROM: Erasable programmable read-only memory - an MOS semiconductor 
memory storage element that can be programmed after packaging with a fixed 
(read-only) program. Programmed data can be erased by exposing the EPROM to 
ultraviolet light. The EPROM can then be reprogrammed. 

File: A collection of data generated by the user or the system. 

File Access Name: An access name that specifies a text or data file. 

File Management: Process of organizing data on a storage device and managing 
transfer of that data between main memory and the storage device. 

File Manager: A set of file management utilities. 

File Name: A character string assigned by the user to identify a file. The file name 
is part of the access name for the file. 

File-Oriented Device: A device that can be used for processing or storing files, 
such as a diskette drive or a line printer. 

Host System: The system that is monitoring and controlling operation of the target 
system. 

Initial Value: The value initially displayed or supplied by the system for a param-
eter. 

I/O: Input/Output. 

Library: A directory or file used by the link editor, consisting of object modules that 
may be included in the linking process. 

Link Editor: A system utility used to link object modules that have been separately 
assembled or compiled to produce an object module that can be loaded into the target 
memory and executed. 

Listing File: A file generated by the show directory utility, assembler, and link 
editor, which contains information pertaining to execution of the utility or the results. 

Memory Word: Data consisting of 16 bits (2 bytes). 

Microprocessor: An integrated circuit that can be programmed with stored 
instructions to perform a wide variety of functions. 

A-2 



Appendix A 

Object Code: Output from an assembler or compiler that is itself executable 
machine code or is suitable for processing (i.e., linking) to produce executable 
machine code. 

Operating System: Software that controls the execution of all programs, routines, 
tasks, etc. that execute in a computer. 

Operator Interface: The means by which the user communicates with the system. 

Overlay: Parts (phases) of a program which share memory and are loaded into 
executable memory during program execution. 

PROM: Programmable read-only memory - a bipolar semiconductor memory 
storage element that can be programmed after packaging with a fixed (read-only) 
program. 

PROM Personality Card: An interchangeable part that snaps onto the front of 
the PROM programmer console. There are four types of personality cards, each of 
which is used to program or read a particular class of PROM or EPROM devices. 

PROM Utility: A system utility used in conjunction with the PROM programming 
hardware to store data in or read data from a PROM or EPROM. 

PROM Word: A group of data in a PROM or EPROM that can be accessed by 
one address. The number of bits per each PROM word depends on the type of PROM 
or EPROM being used. 

Prompt: A display on a terminal that requests the user to enter some information. 

Prompt Response: The value entered for a prompt. This vaiue is passed as a 
parameter to the utility that has been invoked. 

PSEG: An assembler directive that defines the beginning of a program segment. 

RAM: Random-access memory; a memory storage element from which data can 
be read or to which data can be written as required by the user application. 

Random Library: A directory, used by the link editor, which lists files that contain 
object modules that may be included in the linking process. 

REF: An assembler directive that causes specified sysmbols to be tagged as external 
references in the object code. The link editor resolves external references by matching 
REF tags with DEF tags from other modules. 

Relative Address: An address that is relative to the beginning of a program. The 
value of a relative address is added to the base address to obtain an absolute address. 

Relocatable Code: A program or routine that can be moved from one portion of 
memory to another and have the necessary address references adjusted so that it can 
be executed from its new location. 

Response Field: The area immediately following a command prompt in which the 
user may enter a parameter. 

ROM: Read-only memory; a fixed program semiconductor storage element that 
has been hard-coded by the manufacturer with a permanent program. 

Sequential File: A file consisting of variable-length logical records that must be 
accessed sequentially. 

Sequential Library: A sequential file used by the link editor, consisting of 
concatenated object modules that were generated by previous partial links and may 
be included in the current linking process. 

A-3 



Appendix A 

Source code: Code input to a compiler or assembler in order to generate machine 
executable code. Source code can be written in assembly language or in some 
high-level language, such as Pascal. 

Source Module: A file generated by using the text editor, which contains source 
statements (i.e., assembly language or high-level language statements) for all or part 
of a software program. 

Symbol Resolution: A function of the link editor utility, consisting of matching 
REF and DEF tag symbols to form different modules and inserting the correct 
locations for these symbols in the linked object code. 

Target System: The system under development. 

Text Editor: A system utility used to create and edit text and data files. 

Text Formatter: A system utility used to format text files for purposes of readability 
and printing. 

User Directory: A directory created by the user and listed under the diskette 
directory. 

Utility: A software program executed by the operating system to perform a special 
function. 

VDT: Video display terminal 

Volume Name: A character string assigned by the user to a particular storage 
device. 

A-4 



Index 

A 

ADJU 
Specify Alignment of Phase 
Command 3-6 

ALLG 
Declare Global Symbols Command 3-7 

ALLO 
Allocate Relative Positioning of Segments 
Command 3-8 

AUTO 
Automatic Symbol Resolution 
Command 3-9 

C 

COMM 
Set Starting Location Counter for CSEG 
Command 3-10 

commands (see linker commands) 

D 

DATA 
Set Starting Location Counter for DSEG 
Command 3-11 

description 1-2 
DUMM 

SuppreSs Generation of Linked Output File 
Command 3-12 

E 

END 
Specify End of Control Stream 
Command 3-13 

entering a command 3-2 
ENTR 

Specify a Symbol for an Entry Tag 
Command 3-14 

error messages 5-1 
examples 4-1 

library creation 4-10 
partial linking 4-6  

ROM/RAM partitioning 4-5 
simple linking 4-2 

F 

FIND 
Search Sequential Libraries for Unresolved 

References Command 3-15 
FORM 

Define Format of Linked Output Module 
Command 3-16 

G 

GLOB 
Identify Global Symbols Command 3-17 

INCL 
Specify Modules To Be Included in Link 
Command 3-18 

L 

LIBR 
Define Random Library Directories 
Command 3-19 

libraries 2-2 
link control file 2-2 
link editor files 2-1 

libraries 2-2 
symbol resolution 2-2 

link control file 2-2 
linked output file 2-3 
listing file 2-3 

link map 2-3 
object modules 2-2 

link map 2-3 
linked output file 2-3 
linker command set summary 3-2 
linker commands 3-1 

Index-1 



Index 

ADJUST (Specify Alignment of 
Phase) 3-6 

ALLGLOBAL (Declare Global 
Symbols) 3-7 

ALLOCATE (Allocate Relative Positioning 
of Segments) 3-8 

AUTO (Automatic -Symbol 
Resolution) 3-9 

command set summary 3-2 
COMMON (Set Starting Counter for 
CSEG) 3-10 

DATA (Set Starting Counter for 
DSEG) 3-11 

DUMMY (Supress Generation of Linked 
Output File) 3-12 

END (Specify End of Control 
Stream) 3-13 

entering a command 3-2 
ENTRY (Specify a Symbol for an Entry 
Tag) 3-14 

FIND (Search Sequential Libraries for 
Unresolved References) 3-15 

FORMAT (Define Format of Linked Output 
Module) 3-16 

GLOBAL (Identify Global Symbols) 3-17 
INCLUDE (Specify Modules To Be 
Included in Link) 3-18 

LIBRARY (Define Random Library Direc- 
tories) 3-19 

NOAUTO (Inhibit Automatic Symbol 
Resolution) 3-20 

NOMAP (Omit Module, Common, and 
Symbol Maps from Listing) 3-21 

NOPAGE (Set No Page Ejects Between 
Link Maps) 3-22 

NOSYMT (Omit Symbol Table from 
Modules) 3-23 

NOTGLOBAL (Define Local 
Symbols) 3-24 

PAGE (Set Page Eject to Separate Link 
Maps) 3-25 

PARTIAL (Perform Partial Link) 3-26 
PHASE (Define Phase Level and 
Name) 3-27 

PROCEDURE (Define Phase as 
Procedure) 3-28 

PROGRAM (Define Absolute Counter for 
PSEG) 3-29 

REPLACE (Relate Oldsym with 
Newsym) 3-30 

SEARCH (Search for Unresolved Refer- 
ences) 3-31 

SYMT (Include Symbol Tables in Linked 
Output File) 3-32 

TASK (Define Phase as Task) 3-33 
listing file 2-3 

N 

NOAU 
Inhibit Automatic Symbol Resolution 
Command 3-20 

NOMA 
Omit Module, Common, and Symbol 

Mapsfrom Listing Command 3-21 
NOPA 

Set No Page Ejects Between Link Maps 
Command 3-22 

NOSY 
Omit Symbol Table from Modules 
Command 3-23 

NOTG 
Define Local Symbols Command 3-24 

O 

object modules 2-2 

P 

PAGE 
Set Page Eject to Separate Link Maps 
Command 3-25 

PART 
Perform Partial Link Command 3-26 

partial linking 4-6 
PHAS 

Define Phase Level and Name 
Command 3-27 

PROC 
Define Phase as Procedure 
Command 3-28 

procedure/task segmentation 1-2,3-28,3-33 
PROG 

Define Absolute Starting Counter for PSEG 
Command 3-29 

program definition 1-2 

R 

random libraries 
creation 4-10 
definition 2-2,3-19 
search using SEARCH command 3-31 

REPL 
Replace Oldsym with Newsym 
Command 3-30 

ROM/RAM partitioning 4-5 

Index-2 



Index 

S 

SEAR 
Search for Unresolved References 
Command 3-31 

segment 
positioning 1-2, 3-8 

sequential libraries 
creation 4-10 
definition 2-2 
search using FIND command 3-15 

simple linking 4-2 
symbol resolution  

automatic resolution 2-2 
inhibit resolution 3-20 
user-defined resolution 2-3 

SYMT 
Include Symbol Tables in Linked Output 
File Command 3-32 

T 

TASK 
Define Phase as Task Command 3-33 

Index-3 



TI Worldwide 
Sales Offices 
ALABAMA: Huntsville: 500 Wynn Drive. Suite 514. 
Huntsville. AL 35805, (205) 837-7530. 

ARIZONA: Phoenix: 8825 N. 23rd Ave., Phoenix. 
AZ 85021, (602) 995-1007. 

CALIFORNIA: Irvine: 17891 Cartwright Rd., Irvine, 
CA 92714, (714) 660-1200; Sacramento: 1900 Point 
West Way, Suite 171, Sacramento, CA 95815, 
(916) 929-1521; San Diego: 4333 View Ridge Ave., 
Suite B., San Diego, CA 92123, (619) 278-9601; 
Santa Clara: 5353 Betsy Ross Dr., Santa Clara, CA 
95054, (408) 980-9000; Torrance: 19505 Hamilton St., 
Bldg. A, Suite 1, Torrance. CA 90502, (213) 217-7010: 
Woodland Hills: 21220 Erwin St.. Woodland Hills, 
CA 91367, (213) 704-7759. 

COLORADO: Aurora: 1400 S. Potomac Ave.. 
Suite 101, Aurora. CO 80012, (303) 368-8000. 

CONNECTICUT: Wallingford: 9 Barnes Industrial 
Park Rd., Barnes Industrial Park. Wallingford, 
CT 06492, (203) 269-0074. 

FLORIDA: Ft. Lauderdale: 2765 N.W. 62nd St., 
Ft. Lauderdale. FL 33309, (305) 973.8502; Maitland: 
2601 Maitland Center Parkway, Maitland, FL 32751. 
(305) 660-4600; Tampa: 5010 W. Kennedy Blvd.. 
Suite 101, Tampa, FL 33609, (813) 870-6420. 

GEORGIA: Norcross: 5515 Spalding Drive, Norcross, 
GA 30092, (404) 662-7900 

ILLINOIS: Arlington Heights: 515 W. Algonquin, 
Arlington Heights, IL 60005. (312) 640-2925. 

INDIANA: Ft. Wayne: 2020 Inwood Dr.. Ft. Wayne, 
IN 46815, (219) 424-5174; Indianapolis: 2346 S. 
Lynhurst, Suite J-400, Indianapolis, IN 46241, 
(317) 248-8555. 

IOWA: Cedar Rapids: 373 Collins Rd. NE, Suite 200, 
Cedar Rapids, IA 52402, (319) 395-9550. 

MARYLAND: Baltimore: 1 Rutherford Pl., 
7133 Rutherford Rd., Baltimore, MD 21207. 
(301) 944-8600. 

MASSACHUSETTS: Waltham: 504 Totten Pond Rd., 
Waltham, MA 02154, (617) 895-9100. 

MICHIGAN: Farmington Hills: 33737 W. 12 Mile Rd., 
Farmington Hills, MI 48018, (313) 553-1500. 

MINNESOTA: Eden Prairie: 11000 W. 78th St., 
Eden Prairie, MN 55344 (612) 828-9300. 

MISSOURI: Kansas City: 8080 Ward Pkwy., Kansas 
City, MO 64114, (816) 523-2500; St. Louis: 
11861 Westline Industrial Drive, St. Louis, 
MO 63141, (314) 569-7600. 

NEW JERSEY: Iselin: 485E U.S. Route 1 South, 
Parkway Towers, Iselin, NJ 08830 (201) 750-1050 

NEW MEXICO: Albuquerque: 2820-D Broadbent Pkwy 
NE, Albuquerque, NM 87107, (505) 345-2555. 

NEW YORK: East Syracuse: 6365 Collamer Dr., East 
Syracuse, NY 13057, (315) 463-9291; Endicott: 112 
Nanticoke Ave., P.O. Box 618, Endicott, 
NY 13760, (607) 754-3900; Melville: 1 Huntington 
Quadrangle, Suite 3C10, P.O. Box 2936, Melville, 
NY 11747, (516) 454-6600; Pittsford: 2851 Clover St., 
Pittsford, NY 14534, (716) 385-6770; Poughkeepsie: 
385 South Rd., Poughkeepsie, NY 12601. 
(914) 473-2900. 

NORTH CAROLINA: Charlotte: 8 Woodlawn Green, 
Woodlawn Rd., Charlotte, NC 28210, (704) 527-0930; 
Raleigh: 2809 Highwoods Blvd., Suite 100, Raleigh. 
NC 27625, (919) 876-2725. 

OHIO: Beachwood: 23408 Commerce Park Rd., 
Beachwood, OH 44122, (216) 464-6100; Dayton: 
Kingsley Bldg., 4124 Linden Ave., Dayton. OH 45432, 
(513) 258-3877. 

OKLAHOMA: Tulsa: 7615 East 63rd Place, 
3 Memorial Place, Tulsa, OK 74133, (918) 250-0633. 

OREGON: Beaverton: 6700 SW 105th St., Suite 110, 
Beaverton, OR 97005, (503) 643-6758. 

PENNSYLVANIA: Ft. Washington: 260 New York Dr.. 
Ft. Washington, PA 19034, (215) 643-6450; 
Coraopolis: 420 Rouser Rd., 3 Airport Office Park, 
Coraopolis. PA 15108, (412) 771-8550. 

PUERTO RICO: Hato Rey: Mercantil Plaza Bldg.. 
Suite 505, Hato Rey, PR 00919. (809) 753-8700. 

TEXAS: Austin: 12501 Research Blvd., 
P.O. Box 2909, Austin, TX 78723, (512) 250-7655; 
Richardson: 1001 E. Campbell Rd.. 
Richardson, TX 75080, 
(214) 680-5082; Houston: 9100 Southwest Frwy.. 
Suite 237. Houston, TX 77036, (713) 778-6592; 
San Antonio: 1000 Central Parkway South. 
San Antonio, TX 78232, (512) 496-1779, 

UTAH: Murray: 5201 South Green SE, Suite 200. 
Murray, UT 84107, (801) 266-8972. 

VIRGINIA: Fairfax: 3001 Prosperity, Fairfax, VA 
22031, (703) 849-1400, 

WASHINGTON: Redmond: 5010 148th NE, Bldg B. 
Suite 107, Redmond, WA 98052, (206) 881-3080. 

WISCONSIN: Brookfield: 450 N. Sunny Slope, 
Suite 150, Brookfield, WI 53005, (414) 785-7140. 

CANADA: Nepean: 301 Moodie Drive, Mallorn 
Center, Nepean, Ontario, Canada, K2H9C4, 
(613) 726-1970. Richmond Hill: 280 Centre St. E.. 
Richmond Hill L4C1B1. Ontario. Canada 
(416) 884-9181; St. Laurent: Ville St, Laurent Quebec. 
9460 Trans Canada Hwy.. St. Laurent, Quebec. 
Canada H4S1R7. (514) 334-3635. 

ARGENTINA: Texas Instruments Argentina 
S.A.I.C.F.: Esmeralda 130, 15th Floor, 1035 Buenos 
Aires, Argentina, 1+394-3008. 

AUSTRALIA (& NEW ZEALAND): Texas Instruments 
Australia Ltd.: 6-10 Talavera Rd., North Ryde 
(Sydney), New South Wales, Australia 2113, 
2 + 887-1122; 5th Floor, 418 St. Kilda Road, 
Melbourne, Victoria, Australia 3004, 3 + 267-4677; 
171 Philip Highway, Elizabeth. South Australia 5112, 
8 + 255-2066. 

AUSTRIA: Texas Instruments Ges.m.b.H.: 
Industriestrabe 6/16, A-2345 BrunnlGebirge, 
2236-846210. 

BELGIUM: Texas Instruments N.V. Belgium S.A.: 
Mercure Centre, Raketstraat 100, Rue de la Fusee, 
1130 Brussels, Belgium. 2/720.80.00. 

BRAZIL: Texas Instruments Electronicos do Brasil 
Ltda.: Rua Paes Leme, 524-7 Andar Pinheiros, 05424 
Sao Paulo, Brazil. 0815-6166. 

DENMARK: Texas Instruments A/S, Mairelundvej 
46E, DK-2730 Herlev, Denmark, 2 - 91 74 00. 

FINLAND: Texas Instruments Finland OY: 
Teollisuuskatu 19D 00511 Helsinki 51, Finland, (90) 
701-3133. 

FRANCE: Texas Instruments France: Headquarters 
and Prod. Plant, BP 05, 06270 Villeneuve-Loubet, 
(93) 20-01-01; Paris Office, BP 67 8-10 Avenue 
Morane-Saulnier, 78141 Velizy-Villacoublay, 
(3) 946-97-12; Lyon Sales Office, L'Oree D'Ecully, 
Batiment B, Chemin de la Forestiere, 69130 Ecully, 
(7) 833-04-40; Strasbourg Sales Office, Le Sebastopol 
3, Quai Kleber, 67055 Strasbourg Cedex, 
(88) 22-12-66; Rennes, 23-25 Rue du Puits Mauger, 
35100 Rennes, (99) 31-54-86; Toulouse Sales Office, 
Le Peripole-2, Chemin du Pigeonnier de la Cepiere, 
31100 Toulouse, (61) 44-18-19; Marseille Sales Office, 
Noilly Paradis-146 Rue Paradis, 13006 Marseille, 
(91) 37-25-30. 

TEXAS 
INSTRUMENTS 

Creating useful products 
and services for you 

GERMANY (Fed. Republic of Germany): Texas 
Instruments Deutschland GmbH: Haggertystrasse 1, 
D-8050 Freising, 8161+80-4591; Kurfuerstendamm 
195/196, D-1000 Berlin 15, 30 + 882-7365; III, Hagen 
43/Kibbelstrasse, .19, D-4300 Essen, 201-24250; 
Frankfurter Allee 6-8, D-6236 Eschborm 1, 
06196 +8070; Hamburgerstrasse 11, D-2000 Hamburg 
76, 040+220-1154, Kirchhorsterstrasse 2, D-3000 
Hannover 51, 511 +648021; Maybachstrabe 11, 
D-7302 Ostfildern 2-Nelingen, 711+547001; 
Mixikoring 19, D-2000 Hamburg 60, 40+637+0061; 
Postfach 1309, Roonstrasse 16, D-5400 Koblenz, 
261 + 35044. 

HONG KONG (4- PEOPLES REPUBLIC OF CHINA): 
Texas Instruments Asia Ltd., 8th Floor, World 
Shipping Ctr., Harbour City. 7 Canton Rd., Kowloon, 
Hong Kong, 3 + 722-1223. 

IRELAND: Texas Instruments (Ireland) Limited: 
Brewery Rd., Stillorgan, County Dublin, Eire, 
1 831311. 

ITALY: Texas Instruments Semiconduttori Italia Spa: 
Viale Delle Scienze, 1, 02015 Cittaducale (Rieti), 
Italy, 746 694.1; Via Salaria KM 24 (Palazzo Cosma), 
Monterotondo Scalo (Rome), Italy, 6 +9003241; Viale 
Europa, 38-44, 20093 Cologno Monzese (Milano), 
2 2532541; Corso Svizzera, 185, 10100 Torino, Italy, 
11 774545; Via J. Barozzi 6, 40100 Bologna, Italy, 51 
355851. 

JAPAN: Texas Instruments Asia Ltd.: 4F Aoyama 
Fuji Bldg., 6-12, Kita Aoyama 3-Chome, Minato-ku, 
Tokyo, Japan 107, 3-498-2111; Osaka Branch, 5F, 
Nissho lwai Bldg., 30 Imabashi 3- Chome, 
Higashi-ku, Osaka, Japan 541, 06-204-1881; Nagoya 
Branch, 7F Daini Toyota West Bldg., 10-27, Meieki 
4-Chome, Nakamura-ku Nagoya, Japan 
450, 52-583-8691. 

KOREA: Texas Instruments Supply Co.: 3rd Floor, 
Samon Bldg., Yuksam-Dong, Gangnam-ku. 
135 Seoul, Korea. 2 +462-8001. 

MEXICO: Texas Instruments de Mexico S.A.: Mexico 
City, AV Reforma No. 450 — 10th Floor, Mexico, 
D.F., 06600, 5+514-3003. 

MIDDLE EAST: Texas Instruments: No. 13. 1st Floor 
Mannai Bldg., Diplomatic Area, P.O. Box 26335, 
Manama Bahrain, Arabian Gulf, 973+274681.,  

NETHERLANDS: Texas Instruments Holland B.V., 
P.O. Box 12995, (Bullewijk) 1100 CB Amsterdam, 
Zuid-Oost, Holland 20+5602911. 

NORWAY: Texas Instruments Norway AIS: PB106, 
Refstad 131, Oslo 1, Norway, (2) 155090. 

PHILIPPINES: Texas Instruments Asia Ltd.: 14th 
Floor, Ba- Lepanto Bldg., 8747 Paseo de Roxas, 
Makati, Metro Manila, Philippines, 2+8188987. 

PORTUGAL: Texas Instruments Equipamento 
Electronico (Portugal), Lda.: Rua Eng. Frederico 
Ulrich, 2650 Moreira Da Maia, 4470 Maia, Portugal, 
2-948-1003. 

SINGAPORE (+ INDIA, INDONESIA, MALAYSIA, 
THAILAND): Texas Instruments Asia Ltd.: 12 Lorong 
Bakar Batu, Unit 01-02, Kolam Ayer Industrial Estate, 
Republic of Singapore, 747-2255. 

SPAIN: Texas Instruments Espana, S.A.: C/Jose 
Lazaro Galdiano No. 6, Madrid 16, 1/458.14.58. 

SWEDEN: Texas Instruments International Trade 
Corporation (Sverigefilialen): Box 39103, 10054 
Stockholm, Sweden, 8 - 235480. 

SWITZERLAND: Texas Instruments, Inc., Reidstrasse 
6, CH-8953 Dietikon (Zuerich) Switzerland, 
1-740 2220. 

TAIWAN: Texas Instruments Supply Co.: Room 903, 
205 Tun Hwan Rd., 71 Sung-Kiang Road, Taipei, 
Taiwan. Republic of China, 2 + 521-9321. 

UNITED KINGDOM: Texas Instruments Limited: 
Manton Lane, Bedford, MK41 7PA, England, 0234 
67466: St. James House, Wellington Road North, 
Stockport. SK4 2RT. England, 61+4427162. BK 


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69

