
As you are now the owner of this document which should have come to you for free, please
consider making a donation of £1 or more for the upkeep of the (Radar) website which holds
this document. I give my time for free, but it costs me money to bring this document to you.
You can donate here https://blunham.com/Misc/Texas

Many thanks.

Please do not upload this copyright pdf document to any other website. Breach of copyright
may result in a criminal conviction.

This Acrobat document was generated by me, Colin Hinson, from a document held by me. I
requested permission to publish this from Texas Instruments (twice) but received no reply. It
is presented here (for free) and this pdf version of the document is my copyright in much the
same way as a photograph would be. If you believe the document to be under other
copyright, please contact me.

The document should have been downloaded from my website https://blunham.com/, or any
mirror site named on that site. If you downloaded it from elsewhere, please let me know
(particularly if you were charged for it). You can contact me via my Genuki email page:
https://www.genuki.org.uk/big/eng/YKS/various?recipient=colin

You may not copy the file for onward transmission of the data nor attempt to make
monetary gain by the use of these files. If you want someone else to have a copy of the file,
point them at the website. (https://blunham.com/Misc/Texas). Please do not point them at
the file itself as it may move or the site may be updated.

It should be noted that most of the pages are identifiable as having been processed by me.

I put a lot of time into producing these files which is why you are met with this page when you
open the file.

If you find missing pages, pages in the wrong order, anything else wrong with the file or
simply want to make a comment, please drop me a line (see above).

It is my hope that you find the file of use to you.

Colin Hinson
In the village of Blunham, Bedfordshire.

\ce TEXAS INSTRUMENTS

TM 990
E155 Euroboard POWER BASIC

MICROPROCESSOR SERIESTM

Manual Addendum

E155 Euroboard Power BASIC Manual Addendum

TM990/E155 EUROBOARD POWER BASIC

MANUAL ADDENDUM

This addendum in conjunction with the 'TM990 Power BASIC

Reference Manual' (MP308) constitute the Reference Manual

for TM990/E155 Euroboard Power BASIC.

Texas Instruments Ltd March 1982

E155 Euroboard Power BASIC Manual Addendum

IMPORTANT NOTICES

Texas Instruments reserves the right to make changes at any
time in order to improve design and supply the best product
possible.

TM990/E155 EUROBOARD POWER BASIC (part number TM990/E4051)
software product is copyrighted by Texas Instruments
Limited. All rights reserved. Property of Texas
Instruments Limited.

This software may not be reproduced in any form for resale
that is used in a development system context without prior
written permission from Texas Instruments Limited. However,
source or object programs may be copied for any end-use
application other than for a software development system.
'TM990/E155 Euroboard Power BASIC Manual Addendum' is
copyrighted by Texas Instruments Limited. All rights
reserved. Printed in England. No part of this publication
may be reproduced in any manner including storage in a
retrieval system or transmittal via electronic means, or
other reproduction in any forn or by any method electronic,
mechanical, photocopying, r3cording or otherwise, without
prior written permission of Texas Instruments Limited.

Information contained in thew publications is believed to
be accurate and reliable. However, responsibility is
assumed neither for its use -tor for any infringement of
patents or rights of othert that may result from its use.
No license is granted b_• impl,_cation or otherwise under any
patent or patent right of Texts Instruments or others.

Copyright Texas Instruments Limited 1982

Texas Instruments Ltd March 1982

E155 Euroboard Power BASIC Manual Addendum

INDEX

1 INTRODUCTION
1.1 List of Features
1.2 Summary of Features
1.3 Hardware Requirements
1.4 Installation
1.5 Memory Expansion
1.6 Operation
1.7 Introduction to the Power Basic Language

2 GENERAL PROGRAMMING INFORMATION
2.1 Power BASIC Interpreter Operation Overview
2.2 Power BASIC Program
2.3 Character Set
2.4 Editing Source Lines
2.5 Automatic Line Numbering
2.6 Hexadecimal Constants
2.7 Variables
2.7.1 Variable Names
2.7.2 Variable Declarations
2.7.3 Integer Variables
2.7.4 Floating Point Variables
2.7.5 Character Strilg Variables
2.7.6 Array Variable;
2.8 System Initialisa:ion

3 DETAILED DESCRIPTIONS OF MODIFICATIONS
3.1 LOAd/SAVe Command -3
3.1.1 733ASR Terminal.
3.1.2 763/765 Bubble Memory Terminal
3.1.3 Audio Cassette (CUTS Standard)
3.1.4 EPROM
3.2 RENumber Command
3.3 PROgram Command
3.4 NEW Command
3.5 CLEar Command
3.6 ADR Function
3.7 CALL Statement
3.8 Interrupts
3.8.1 Enable Statemeit
3.8.2 Imask Statement
3.8.3 Assembly Language Hardware Interrupt Handlers

Texas Instruments Ltd March 1982

E155 Euroboard Power BASIC Manual Addendum

INDEX

4 QUICK REFERENCE
4.1 GENERAL
4.2 POWER BASIC COMMANDS
4.3 POWER BASIC STATEMENTS
4.4 OPERATORS
4.5 ARITHMETIC FUNCTIONS
4.6 CRU FUNCTIONS
4.7 MEMORY FUNCTIONS
4.8 MISCELLANEOUS FUNCTIONS
4.9 STRING OPERATIONS
4.10 INPUT OPTIONS
4.11 PRINT OPTIONS
4.12 FLOATING POINT XOP PACKAGE

Texas Instruments Ltd March 1982

E155 Euroboard Power BASIC Manual Addendum

1 INTRODUCTION

Euroboard Power BASIC has been specially developed from TI's
Development Power BASIC to exploit the advanced features of
the high—speed TMS9995 microprocessor (such as the internal
RAM and the on—chip decrementer) on the TM990/E155
microcomputer board, and to allow access to the capabilities
of the TM990/E board range of microcomputer modules.

While supporting all the facilities contained in Development
Power BASIC with the Software Enhancement Package (see
section 1 of the Power BASIC Reference Manual for a
description of these products), plus a number of new
features, this version of the interpreter runs approximately
75% faster than Development Power BASIC (already one of the
fastest BASICs commercially available).

This addendum gives an overview and operation guide for
Euroboard Power BASIC, and a detailed description of those
features which are different Erom Development Power BASIC.
Reference is made to the Power BASIC Reference Manual
(MP308) for a detailed exp_anation of common features.
Section 1.7 below is an Introduction to the Power BASIC
language, for-those unfamilia - with BASIC.

1.1 List of Features

o indicates a new feature.

* indicates a modfied feature.

The numbers indicate the section that deals with the
particular command/statemen:/function/operation. If the
section number is preceded by either 'o' or '*' then those
sections appear in this addendum, otherwise they refer to
sections in the Power BASIC Reference Manual.

re• c wc..tz ; I' OR - <03>
f/

Rctuf.ct • • — 4 RAJ X a0) %Ai
Com an

Sevi

CLEar o 3.5 CONtinua 4.2 LISt 4.3
LOAd * 3.1 NEW * 3.4 PROgram * 3.3
RENumber o 3.2 RJN 4.7 SAVe * 3.1
SIZe 4.9

Statements

BAUD 5.8.4 BASE 5.10 CALL * 3.7
DATA 5.7 DEF 5.4 DIM 5.3
ELSE 5.6.2 ENABLE o 3.8.1 END 5.6.8
ERROR 5.6.6 ESCAPE 5.13 .., FOR 5.6.5
GOSUB 5.6.3 GOTO 5.6.1(;1 / IF 5.6.2

Texas Instruments Ltd PAGE 1 March 1982

E155 Euroboard Power BASIC Manual Addendum

IMASK * 3.8.2 INPUT 5.8.1';1-0IRTN 5.9.3
LET 5Ae1 NEXT 5.6.5 NOESC 5.13
ON 5.6.4 POP 5.6.3 PRINT 5.8.265SX
RANDOM 5.12 READ 5.7 REM 5.2
RESTOR 5.7 RETURN 5.6.3 STOP 5.6.7
TIME 5.11 TRAP 5.9.2 UNIT 5.8.3

Functio

ABS 7.2.1 ADR o 3.6 ATN 7.2.2
BIT 7.4.7 COS 7.2.3 CRB 7.4.1
CRF 7.4.2 EXP 7.2.4 INP 7.2.5
LOG 7.2.6 MEM 7.4.6 MWD 7.4.9
NKY 7.4.3 RND 7.4.8 SIN 7.2.3
SQR 7.2.7 SYS 7.4.4 TIC 7.4.5
TAte S sg 2.1 (V4i)

String Operations

ASC 7.3.1 Assign 6.2 Compare 5.6.2
Concat 6.3 Convert 6.9/10 Delete 6.7
Insert 6.6 LEN 7.3.2 MCH 7.3.3
Pick 6.4 Replace 6.5/8 SRH 7.3.4

The following sections of the Power BASIC Reference Manual
refer to other members of.tle Power BASIC family. You may
wish to delete these sections to avoid confusion.

All of section 2, except for Figure 2-12
3.12
4.4 to 4.6
4.8
5.9
5.14

1.2 Summary of Features

Apart from the standard features of BASIC (LET, GOTO, GOSUB,
etc), Euroboard Power BASIC allows the user to access
control equipment in real time (timing is provided by the
TIC function) by either menory-mapped I/O (MEM and MWD
functions) or via TI's standard bitwise Communications
Register Unit (BASE statement, CRB and CRF functions).
Further, it also allows the user to write interrupt service
routines in the Power BASIC language and to associate each
of these routines to a particular interrupt level (TRAP,
IMASK, ENABLE and IRTN statements). Previously written
assembly language routines (either burnt into EPROM or built
in RAM using the MWD function) can be invoked from an
application program and have full access to the Power BASIC
variables (CALL statement).

Euroboard Power BASIC provides full character handling

Texas Instruments Ltd PAGE 2 March 1982

E155 Euroboard Power BASIC Manual Addendum

facilities (character assignment, replacement, insertion,
deletion, pick, comparison and concatenation operators, plus
character search, match and conversion functions), better
control structures (ELSE, ON and ERROR statements), varied
print formats (with hexadecimal and full decimal
formatting), complete error message reporting, and floating
point arithmetic (with 11 sigiificant digits).

Applications programs can b. loaded from (LOAD command) or
saved to (SAVE command) tie following: ASR733 digital
cassettes; 763/765 bubble mem)ry terminal files; or low cost
audio cassettes.

The RENumber command causes the complete stored program to
be renumbered (to allow a nulber of additional statement
lines to be inserted into the program) and automatically
updates the program to tare account of the new line
numbers.

A fully tested and debugged application program can be burnt
into TMS25xx EPROMs (PROgrim command). With these EPROMs
installed in a target system, the application program can
either be automatically ex ecuted on system power-up (by
locating the EPROMs at a stars address of hex 4000) or as
and when required using the "address" option of the LOAD
command.

Audio cassette operation aid EPROM programming require
additional special purpose hardware.

1.3 Hardware Requirements

The minimum hardware configiration to run E155 Power B ASIC
is as follows:

E-bus chassis and backplane
Power supply
TM990/E155 cpu module
TM990/E358 EIA interfl,:e module
RS-232-C compatible terminal and cable

1.4 Installation

The TM990/E155 cpu board Dins be configured as follows:

EPROM Select (jumpers J2 any J5):
J2 E6 - E7 EPROM type = TMS2564
J5 E15 - E16 EPROM type = TMS2564

ROM Speed Select (jumper J3;:
J3 E8 - E9 One wait state

Texas Instruments Ltd PAGE 3 March 1982

E155 Euroboard Power BASIC Manual Addendum

Automatic Wait State (jumper J4)
J4 E12 - E13 One wait state

The Euroboard Power BASIC interpreter consists of two
TMS2564 EPROMs that are installed on the E155 cpu module.
The EPROM marked "U7" must be installed in socket U7, and
the EPROM marked "U6" must be installed in socket U6. With
the EPROM held so that the small nick in the casing at one
end is at the top, pin 1 of the EPROM is in the top left
hand corner. The EPROM should be installed so that pin 1
corresponds to the small "1" marked on the circuit board.
As a check, the small nick in the EPROM will then be at the
end closest to the E-Bus connector.

The EIA card should be configured for a CRU base address
(R12 contents) of hex 80; if a second EIA card is to be
included in the system, it must be configured for a CRU base
address (R12 contents) of hex 180.

The E358 EIA card is configured as follows:

Interrupt Request (J1):
J1 E3 - E4 Asserted to INTEN-

Current Loop/RS-232-C (J2, J7 and J8):
J2 E7 - E8 RS-232-C
J7 E22 - E21 Current loop circuit disabled
J8 E25 - E24 RS-232 protective ground

Bus Time-out Processor (J3 and J6):
J3 E10 - E9 Processor ON
J6 E19 - E18 Generates READY-

Reset Switch (J4):
J4 E13 - E12 Connected to PRES-

BUSCLK (J5):
J5 E16 - E15 BUSCLK- asserted to TMS9902

The CRU address switch should be set to hex 80 as follows:

CRU Address Switch: S1 S2 S3 S4 S5 S6
Off On On On On On

A second EIA card can be installed in the system, configured
exactly as above, except that the CRU address switch must be
set for hex 180:

Texas Instruments Ltd PAGE 4 March 1982

E155 Euroboard Power BASIC Manual Addendum

CRU Address Switch: S1 S2 S3 S4 S5 S6
Off Off On On On On

1.5 Memory Expansion

A fully populated /E155 board has on-board RAM from hex E000
to hex EFFF. The top 850 bytes of this, and all the TMS9995
on-chip RAM, is used by the interpreter for its workspaces,
buffers, system variables, etc. The remaining 3.2K bytes of
on-board RAM is available for storing a Power BASIC
application program.

Additional RAM, in the form of memory expansion boards (eg
/E250 and /E251 memory boards), may be included in the
target system. However, for the Power BASIC interpreter to
recognise that the additional RAM is available for its use,
the memory boards must be configured so that the RAM is
contiguous from hex DFFF down towards low memory. See the
User's Guide for the appropriate board module(s) for details
of how to configure memory at the required address.

Note: The /E155 cpu module requires all memory expansion
boards in the system to generate the READY- signal. This is
done by setting the READY-/AREADY- jumper (jumper J4 on the
/E250 board, for example) to the READY- position.

Note: Addresses above the TMS9995's internal RAM (hex FOFC
to hex FFF9) are reserved for memory mapped devices.

1.6 Operation

When the Power BASIC EPROMs have been installed and all
jumpers correctly set, insert all the circuit boards into
the chassis (with the power off). All boards should be
inserted with the components on the right hand side. Press
the boards firmly home, to ensure that all connections are
properly made.

Connect an RS-232-C compatible terminal, set for FULL DUPLEX
operation at any of the following baud rates (Power BASIC
will automatically measure the correct baud rate when it is
switched on):

110 300 1200A 2400 4800 9600 19200

A Note that at 1200 baud, printer output is padded with a
time delay to reduce the effective transfer rate to 300
baud. Transfer to and from digital cassette tape occurs at
the full rate of 1200 baud. This is compatible with the
operation of the TI 733 ASR terminal.

Texas Instruments Ltd PAGE 5 March 1982

E155 Euroboard Power BASIC Manual Addendum

Ensure that the terminal is switched on. Then switch on the
power to the Euroboard chassis, press the reset switch on
the E358 EIA card, and press the "RETURN" key (sometimes
marked "carriage return" or "CR") on the terminal. Power
BASIC will respond with the message:

EUROBOARD BASIC REV x.x.x
* READY

[If there is no response, and the procedure described above
has been followed exactly, check that the terminal used
provides a "Data Terminal Ready" (DTR) signal (HIGH on pin
20 of the EIA connector). If the terminal does not provide
this signal, the cable should be wired to connect pin 6 of
the EIA connector to pin 20.]

Euroboard Power BASIC is now ready to accept commands and
program statements.

1.7 Introduction to the Power BASIC Language

This section gives a brief introduction to the Power BASIC
language and how to use it. If you are already familiar
with BASIC, you may wish to skip to section 2.

The following is best read with a Euroboard Power BASIC
system available, set up and initialised as described
above.

Type in SIZE followed by the "RETURN" key. Power BASIC will
respond with details of the memory space allocated to
program and variable storage, and the space free for new
input:

SIZE
PRGM:012H BYTES
VARS:OH BYTES
FREE:0C94H BYTES

The figures are given in hexadecimal notationA; the actual
numbers will depend on how much memory there is in the
system.

SIZE is an example of a Power BASIC command. It is carried
out immediately it is keyed in. Commands provide such
functions as listing, storing, loading and executing Power
BASIC programs. A full list of commands is given in section
4.2 of this Addendum.

Apart from commands, the other type of input that can be

A See the Software Development Handbook (MPA29, 2nd
edition), section 8.13.2.1, for a description of the
hexadecimal number system.

Texas Instruments Ltd PAGE 6 March 1982

E155 Euroboard Power BASIC Manual Addendum

entered at the keyboard is statements. A statement is an
instruction to do something, but it is not carried out
immediately. Type the following statement, which is an
instruction to add two numbers together and print the
result:

30 PRINT A+B

followed by "RETURN".

If you make a mistake typing, there are two things
you can do: (1) press the "RUBOUT" key to
backspace, one by one, over the characters that
are wrong, and then type them again; or (2) press
the escape key (marked "ESC"), and then type the
whole line again.

Power BASIC will perform some checks on the line
after you have entered it (ie, after you have
pressed "RETURN"), and it may discover an error
that you have overlooked. If so, it will print an
appropriate error message, type the line again,
and position the terminal cursor or printhead
where it thinks the error is - so that you can
type over it. Here is an example:

30 PRINT A.B
ILLEGAL CHARACTER

30 PRINT A.B

cursor or printhead positioned here

Overtype the mistake with the correct characters,
and then press "RETURN". Again, you can use the
RUBOUT key to backspace over the line, or press
ESC and type the whole line again.

A statement is normally preceded by a line number ("30"), to
distinguish it from a command. Statements with a line
number are not carried out immediately; they are stored in
memory for future use. Several statements can be entered
and stored, and then executed together as a program. The
line numbers determine the order in which the statements
will be carried out (it does not matter in which order the
statements were actually entered).

In the statement just entered, "A" and "B" are variables:
they stand for values which can be set up, referred to, and
changed by program statements. In fact, A and B represent
storage locations in the computer memory.

The types of values that can be used in Power BASIC programs

Texas Instruments Ltd PAGE 7 March 1982

E155 Euroboard Power BASIC Manual Addendum

are

integers (whole numbers 1, 2, 3, etc) up to 32,767 and
down to -32,768.

floating point numbers (ie decimals such as 12.34 and
0.001234)

strings (ie sequences of characters enclosed in quotes
"THIS IS A STRING")

Variables are described more fully in section 2.7 below.

In fact, Power BASIC could not execute statement 30 as it
is, because A and B do not yet have any values to add
together or print. Variables must be given a value before
they can be referred to. If we tried to execute statement
30 as it is, Power BASIC would print an error message:

UNDEFINED VARIABLE AT 30

Until a variable has been assigned a value, Power BASIC does
not even know of the variable's existence, and is certainly
not prepared to do any calculation with it.

To solve this problem, two more statements can be added to
the program, with appropriate line numbers to ensure they
are executed before statement 30:

10 A=5
20 INPUT B

Statement 10 is an assignment statement that introduces the
variable "A" to Power BASIC, and assigns the value of 5 to
it. Once this statement has been executed, A can be
referred to in any statement and will have the value 5
(unless it has been changed in the meantime). Further
assignment statements can be used to change the value of A.

Statement 20, when executed, introduces the variable B, and
causes Power BASIC to ask for a value for it, and to wait
while a number is entered at the keyboard.

Note that neither of these things has actually happened
yet. What we have done is to input some statements, to form
a program that will be executed at some future time, when we
give Power BASIC the command to do so. Despite having
entered the new statements, "A" and "B" are still undefined
- and will continue to be undefined until we run the
program.

To look at the program you have just entered, type

LIST

Texas Instruments Ltd PAGE 8 March 1982

E155 Euroboard Power BASIC Manual Addendum

(followed by "RETURN"). LIST is another command, like
SIZE. Power BASIC will list the program stored in its
memory, in the order in which it will be executed:

10 A=5
20 INPUT B
30 PRINT A+B

If your listing does not look like this, simply
re-type the line that is wrong. If you have
entered a wrong line number, first type the wrong
line number followed immediately by "RETURN" to
erase the line, and then enter the correct line.
LIST again to check.

So far, we have simply constructed a program - a list of
statements - in Power BASIC's memory. To carry out
(execute) this program, type the command

RUN

(followed by "RETURN").

Power BASIC will perform statement 10, assigning the value
of 5 to the new variable A. (Of course, you will not
observe anything while this is happening).

Halfway through executing statement 20, Power BASIC will
output a prompt (?) to the terminal, and will wait for you
to enter a value for the new variable B. Type a number,
followed again by "RETURN". Power BASIC will add the values
of A and B together and print the result, then return to
wait for the next command. The whole sequence looks
something like this:

RUN
? 256
261

STOP AT 30

"256" is the value entered for "B"; Power BASIC has printed
"261", which is 256 plus the value assigned to A - correct!
Try RUN again, this time entering a different number - say
one with a decimal point.

You can also change the program and re-run it, for example
to set A to a different value, or to replace "A+B" with a
different mathematical formula. (As with most computer
languages, "*" is used for "multiply" and "/" for divide;
"+" and "-" have the usual meaning. See section 3.8 of the
Power BASIC Reference Manual for a full description of
operators and expressions).

Texas Instruments Ltd PAGE 9 March 1982

E155 Euroboard Power BASIC . Manual Addendum

You can change, or edit, the program simply by
retyping the appropriate line, or adding a new one
with a suitable line number. Power BASIC also
provides a simple line editor, that allows single
characters to be changed, inserted or deleted
without retyping the whole line. Section 2.4
below gives the commands available for editing
single lines. Section 3.5 of the Power BASIC
Reference Manual gives some examples of use of the
line editor.

Note that the assignment statement "A=5" is not simply a
statement of fact, as it would be in mathematics ("A equals
5"). In Power BASIC it stands for an action: "make A equal
to 5". Thus a statement such as "A=A+5" is quite legal and
meaningful in Power BASIC (provided A has already been
assigned a value); try it, and see what it does.

The assignment statement is sometimes also called the LET
statement in BASIC, because it can also be written (eg)

15 LET A=A+5

One useful thing to note is that a statement entered without
a line number is not stored, but is carried out immediately,
like a command. For example, if you want to know the
internally stored value of a variable at any time, simply
type (eg)

PRINT A

In fact, PRINT is used so frequently that it has a
one—character abbreviation (namely, a semicolon). The above
statement can also be written

;A

The following is a more complex program, which can be used
to explore some of the additional features of Power BASIC.
To prepare for entering this program, type the command

NEW

which will erase all statements and variables from Power
BASIC's memory, 'ready for a new program. Then type the
following:

Texas Instruments Ltd PAGE 10 March 1982

E155 Euroboard Power BASIC Manual Addendum

10 DIM A(4.)
20 $A(0)="THE NUMBER IS"
30 INPUT "INPUT NUMBER", N
40 IF N—INP(N)<>0 THEN PRINT $A(0);N;:: GOTO 60
50 GOSUB 100 ! EVEN OR INTEGER
60 PRINT ", ITS SQUARE IS";N*N;", AND ITS SQUARE ROOT IS";
70 IF N<0 THEN PRINT " UNDEFINED":: GOTO 30
80 PRINT SQR(N)
90 GOTO 30
100 IF INP(N/2)*2=N THEN PRINT $A(0);" EVEN";::RETURN
110 PRINT $A(0);" ODD";
120 RETURN

Correct any typing errors as described above. Ensure that
you get all the punctuation exactly right. Power BASIC will
find some errors — for example, if you leave out one quote
mark (") it will be detected, because quote marks always
come in pairs surrounding a text string — "THE NUMBER IS".
Other errors may not be detected until you run the program.

LIST the program as a final check. You may notice that line
10, for example, is listed as

10 DIM A[4]

This is perfectly correct; Power BASIC makes no distinction
between parentheses () and square brackets []. Your program
is stored internally by Power BASIC in a condensed and
encoded form, to take up as little space as possible. (For
this reason, Power BASIC programs are very compact). When
you enter a statement, a part of Power BASIC called the
editor takes your input and converts it into this coded
form. The editor is also responsible for translating the
coded program back into an understandable form and printing
it, when you type LIST. While you are entering, changing or
listing program statements you are using the editor.

When you type RUN, another part of Power BASIC, called the
interpreter, takes over from the editor. The interpreter
fetches the stored program statements, one by one, and
carries out the coded instructions. (Later on in this
manual and in parts of the Power BASIC Reference Manual,
"interpreter" is used to refer to the whole of the Power
BASIC system including the editor.)

RUN the new program, and enter a number (followed by
"RETURN") in response to the question mark prompt. Press
the escape key ("ESC") to get out of the program (this will
work at any time, even if Power BASIC is not waiting for
input). The result should be something like this:

Texas Instruments Ltd PAGE 11 March 1982

E155 Euroboard Power BASIC Manual Addendum

UN
INPUT NUMBER? 17
THE NUMBER IS ODD, ITS SQUARE IS 289, ITS SQUARE ROOT IS 4.1231056256
INPUT NUMBER? -6
THE NUMBER IS EVEN, ITS SQUARE IS 36, ITS SQUARE ROOT IS UNDEFINED
INPUT NUMBER? 2.35
THE NUMBER IS 2.35, ITS SQUARE IS 5.5225, ITS SQUARE ROOT IS 1.532970971
INPUT NUMBER? (escape key)
TOP AT 30

There are several things to note about this program:

o "A" is a string variable, which holds text rather than
numeric values. Where a variable is used to store
strings, its name is preceded by a "$" (lines 20, 40,
100, 110). String variables are described in section
2.7.5 below.

o A is also an array (sometimes known as a
dimensioned variable), which means that it stands not
for a single storage location, but for several storage
locations grouped together in memory. Arrays are often
used to store text strings, which usually require more
space than is available in a single storage location;
but they can also be used to store groups of numeric
values. Statement 10 (the DIMension statement)
declares to Power BASIC that A is going to be an array
rather than an ordinary variable, and also declares how
big it is. Arrays are described in section 2.7.6
below, and some additional information on string arrays
is given in the Power BASIC Reference Manual, section
3.7.4. (When looking at the Power BASIC Reference
Manual, note that the storage allocation of Euroboard
Power BASIC corresponds to Development Power BASIC and
not Evaluation Power BASIC - ie 48 bits and not 32
bits).

o The INPUT statement can specify a text prompt to be
printed before the question mark (line 30). See the
Power BASIC Reference Manual, section 5.8.1, for a
description of all the available options of the INPUT
statement.

o The IF THEN statement (line 40) allows conditional
execution of an action. When interpreted, this
statement means: "IF the number just entered is not a
whole number THEN print the string stored in the array
$A, followed by the number N, and go to line 60 for the
next statement" (otherwise do nothing, and continue
with line 50). "<>" means "is not equal to"; INP is
described below. See the Power BASIC Reference Manual,
section 5.6.2.

o It is possible to place more than one Power BASIC

Texas Instruments Ltd PAGE 12 March 1982

E155 Euroboard Power BASIC Manual Addendum

statement on a single line, separated by "::" (lines
40, 70, 100). Each statement is executed, in order.
This feature is particularly useful with IF .. THEN
statements: all statements after the THEN, on the same
line, will be executed if the condition is true, and
not executed if it is false.

o Comments can be placed at the end of a statement line,
to make the program clearer, by preceding them with
"I". Everything after the exclamation mark is ignored
by Power BASIC when it executes the statement (line
50). However, comments do take up storage space in
program memory.

o Statements such as GOTO and GOSUB can be used to alter
the normal flow of program execution (which is in order
of increasing line numbers). The GOTO statement in
line 40 will cause the Power BASIC interpreter to go
directly to line 60 to find the next statement to be
executed. The GOSUB statement in line 50 causes a
similar transfer to line 100, but in this case Power
BASIC "remembers" where it was; when the interpreter
finds the RETURN statement in line 120, it goes back to
the end of the GOSUB statement (line 50), and executes
line 60 next. The GOTO is a permanent diversion of
program flow; the GOSUB is a temporary diversion, which
is expected to return to the main program. The
statements 100 to 120, which are executed out of the
main line of the program under control of the GOSUB
statement, are called a subroutine. See sections 5.6.1
and 5.6.3 of the Power BASIC Reference Manual.

o The PRINT statement (lines 40, 60, 70, 100, 110) has a
number of options, to allow output of text and layout
of printed numbers on the page. (Try substituting ","
for ";" in one of the print statements, and see what
happens). See section 5.8.2 of the Power BASIC
Reference Manual for a full description of PRINT.

o SQR (square root) and INP (integer part) are two
examples of the standard functions available in Power
BASIC. See section 7 of the Power BASIC Reference
Manual. It is also possible to define new functions
(Power BASIC Reference Manual, section 5.4).

o This program, as it is written, is an endless loop:
there is no way to exit from the program except by
pressing ESC.

By understanding and experimenting with this program, you
will learn some of the most important features of Power
BASIC. Section 2 below gives key information about BASIC,
in a rather more formal and systematic way than is presented

Texas Instruments Ltd PAGE 13 March 1982

E155 Euroboard Power BASIC Manual Addendum

above. Following that, there are descriptions of the
individual commands, statements, and operations that make up
the Power BASIC language. Features that are specific to
Euroboard Power BASIC are described in this addendum; those
that are common to all members of the Power BASIC family are
described in the Power BASIC Reference Manual. Section 1.1
above has a complete list, with section numbers to refer
to. In addition, section 4 below is a complete Quick
Reference Guide to Euroboard Power BASIC.

Power BASIC is not limited to mathematical operations. In
conjunction with input and output board modules such as the
TM990/E350 and TM990/E351, Power BASIC's real time
facilities can be used for control and monitoring in
experimental, industrial and commercial applications. For
bit-oriented input and output, the CRB and CRF functions and
the BASE statement provide direct input and output of single
bits or fields of information of any size from 1-16 bits,
through the TMS9995 processor's Communications Register Unit
(CRU)A. Memory mapped input and output is also provided
through the MEM and MWD functions. In addition to the
standard board modules in the TM990/E range, custom input
and output modules can be constructed for special purposes.
The E-Bus System Design Handbook (MP402) describes how to do
this.

A Power BASIC program can be designed to respond to external
inputs in two ways: through polling, and via interrupts.
With polled input, the program is written to check (or poll)
relevant input signals (using the CRB, CRF, MEM or MWD
functions) at regular intervals, and to take appropriate
action. With interrupts, certain input signals are wired up
so that the appearance of a signal causes an immediate
transfer (after the interpreter has finished executing the
current statement) to an interrupt subroutine, which
performs any necessary action to service the interrupt.
When the interrupt subroutine has completed, Power BASIC
returns to whatever it was doing before the interrupt
occurred. Euroboard Power BASIC provides 15 prioritised
interrupt lines that can be used in this way. Section 3.8
below describes Power BASIC interrupts.

Having written a Power BASIC program, you may wish to save
it on tape cassette, or program it into EPROM for more
permanent storage. Sections 3.1 and 3.3 below describe how
to do this. Programs in EPROM can be arranged so that, on
power up, Power BASIC will automatically begin executing the
program, rather than printing the banner message and waiting
for input. In this way, stand-alone systems can be
constructed that will work unattended - perhaps controlling
a piece of machinery - without even a terminal being

A See the Software Development Handbook (MPA29, 2nd
edition), section 8.9, or the TMS9995 Data Manual, for a
description of the CRU.

PAnV lA Mnrrh 10R9

E155 Euroboard Power BASIC Manual Addendum

connected if no terminal is required.

For special purposes, subroutines can be written in 9995
assembly language and called up from a Power BASIC program.
Interrupt subroutines can also be written in assembly
language, to make use of the 9995 hardware interrupts. The
TMS9995 Data Manual or the Software Development Handbook
(MPA29) describe 9995 assembly language; section 3.7 below
describes how to call an assembly language program from
Power BASIC, and section 3.8.3 describes assembly language
interrupt handlers.

The Software Development Handbook is a source of further
information on software development, including the design of
software systems. It includes a description of assembly
language for all 9900/99000 family processors, as well as
high level languages and the software development process.

Texas Instruments Ltd PAGE 15 March 1982

E155 Euroboard Power BASIC Manual Addendum

GENERAL PROGRAMMING INFORMATION

This section provides an overview of the characteristics of
Euroboard Power Basic. Some additional information is
contained in section 3 of the Power BASIC Reference Manual.

2.1 Power BASIC Interpreter Operation Overview

The interpreter allows the user to enter statements direct
from the terminal keyboard and to either immediately execute
the statement (if no line number is given) or to store the
statements as part of a program. As soon as a statement is
entered, the interpreter converts it into a compressed and
encoded form (to save user RAM) and in the process performs
a certain amount of syntax checking (ie does the statement
conform to the language specification). During program
entry, the interpreter is able to detect when certain errors
have been encountered; such as mismatched
parentheses/quotes, or missing "THEN" with an IF or ON
statement. (However, as the interpreter does not perform a
full syntax check at this time, it is possible to enter and
store a syntactically incorrect statement line. Any such
statement lines will be discovered, and reported, when
execution mode is invoked.)

Detected errors are immediately reported, and until the
statement is corrected the line can not be stored nor
executed. The necessary modifications to the statement line
can be made using the "edit keys" described below (section
2.4).

What happens next depends on which of the following two
modes the interpreter is in:

o KEYBOARD MODE is automatically entered when Power
BASIC is initialised. In this mode, entering a
numbered line causes that line to be stored in the
appropriate place in the program space. Entering
an unnumbered line causes the statement(s) to be
immediately executed and keyboard mode to be
re-entered as soon as the necessary processing has
been performed.

o EXECUTION MODE is entered by issuing either a RUN,
a CONT or a GOTO statement. This causes the Power
BASIC interpreter to execute the previously stored
program. RUN starts at the lowest line number in
the program; CONT continues from the last line that
was previously interpreted; GOTO proceeds from the
line specified. This mode is terminated by any one
of the following conditions:

Texas Instruments Ltd PAGE 16 March 1982

E155 Euroboard Power BASIC Manual Addendum

o Error condition arising.
o STOP or END statement executed.
o Pressing the terminal's ESCape key.

Note: There are a number of statements which can only be
issued in keyboard mode (these are referred to as
commands).

2.2 Power BASIC Program

A Power BASIC program consists of a number of statement
lines, with each line preceded by a line number (an integer
number in the range 1 to 32767). This line number indicates
the sequence that the statement lines are to be ordered into
before the program can be executed. The lowest line number
present represents the first line and the highest line
number the last line. These statements may either perform
some action, such as adding two variables together and
assigning the sum to a third variable (eg 'A=B+C'), or may
be control statements, that change the execution flow of the
system (such as GOSUB 3000).

To save user RAM, a number of statements can be written on
one line, using the statement concatenation operator (::),
with each statement being executed in turn. The general
syntax for a line is:

line number } statement [:: statement] ! comment }

where { } indicate optional items
[] indicate item is repeated as many times as

required - 0,1,....
Exceptions:

o DATA must be the only statement on a line.

o DEF must be the only statement on a line.

o ON must be the only statement on a line.

o NEXT should be the first statement on a line,
otherwise it may not be located to terminate its
corresponding FOR loop.

o REM takes the remainder of a line as comment.

o STOP must be the last statement on a line.

A full list of the Power BASIC commands/statements is
provided in sections 4.2 and 4.3 of this addendum.

Texas Instruments Ltd PAGE 17 March 1982

E155 Euroboard Power BASIC Manual Addendum

2.3 Character Set

1) Upper and lower case alphabet.
2) Digits 0 to 9.
3) Special characters

! # $ % - ([[) * = - + ; , . ? / <

Note: The THEN keyword can be abbreviated to '::' and PRINT
can be abbreviated to ';'.

2.4 Editing Source Statements

One method of modifying (or editing) a line is to simply
retype the line. However, Power BASIC also supports a
"sophisticated" line editor that allows the user to easily
change previously entered source statements. The available
edit commands are:

ESC Cancel input line
RUBOUT Backspace and remove character
CR or LF Enter the edited line
ctrl H Backspace the cursor one character
ctrl F Forward space the cursor one character
ctrl I n Insert N blanks
ctrl D n Delete N characters

In ctrl E Display the line LN for editing

An attempt to forward space past the last character entered,
or to backspace beyond the first character in the line will
only cause the terminal's bell to be rung.

'ctrl E' means hold down the CTRL (CONTROL) key
while striking the E key.

'ctrl I n' means hold down the CTRL key while
striking the I key, then strike the numeric key
corresponding to the number N.

'In ctrl E' means type the desired line number
(LN) followed by ctrl E.

When the carriage return (CR) or linefeed (LF) key is
pressed, all characters displayed are entered, regardless of
the position of the cursor.

Entering just a line number followed by a carriage return
causes the specified line to be deleted from the stored
program. However, if the specified line does not exist then
an error message is output. Entering a statement with a
line number that already exists causes the original
statement to be replaced by the new one. Changing just the
line number causes a copy of the original statement to be
included in the program with the new line number (the

Texas Instruments Ltd PAGE 18 March 1982

E155 Euroboard Power BASIC Manual Addendum

original statement line remains unchanged).

The editor is automatically invoked when the interpreter
encounters a syntax error in a line being entered via the
terminal.

If an edit operation fails due to lack of memory (ie you get
the error message "STORAGE OVERFLOW"), issue the CLEar
command (see section 3.5 below) and then re-issue the edit
operation. If this doesn't work, more memory needs to be
added to the system (if possible).

2.5 Automatic Line Numbering

The automatic line numbering facility is invoked by
terminating an input line with a linefeed instead of a
carriage return. This causes the interpreter to output the
incremented line number and keyboard mode to be re-entered.
The incremented line number is 10 greater than the last line
number entered. Entering a line containing just a linefeed
initializes the line number to 10. Terminating a line with
a carriage return disables this facility.

2.6 Hexadecimal Constants

A hexadecimal constant is one to four hex digits followed by
the letter H. A hex constant beginning with one of the
letters A - F must be preceded by a zero.

2.7 Variables

A Power BASIC variable can be used to store either an
integer number, a real (floating point) number, or a
character string depending on the context in which the
variable is used. Thus, although a variable may contain a
number (integer or real) it can be used as though it
contained a character string, and vice versa.

Variable storage starts in high memory and builds down
towards low memory as new variables are declared, with each
variable being allocated six consecutive bytes of memory. A
variable's address is that of the word in lowest memory, ie
the word nearest to address zero (in the diagrams below this
word is referred to as the 'first word').

2.7.1 Variable Names

A variable name is either an alphabetic character followed
by a number in the range 0 to 127 (eg Z100) or an alphabetic
string up to three characters long (eg A, ST, and LST). The

Texas Instruments Ltd PAGE 19 March 1982

E155 Euroboard Power BASIC Manual Addendum

variable name can not be identical to a Power BASIC keyword,
nor can it form the beginning of a keyword. The following
variable names are not valid:

LIS Begining of LISt (a Power BASIC statement)
MEM A Power BASIC function
TOT First 2 letters are the Power BASIC keyword TO
12B First character is not alphabetic
ABCD More than 3 characters
1130 Number greater than 127
A.B '.' not allowed in variable names

Note: There is a maximum of 140 different variable names in
any one Power BASIC program.

2.7.2 Variable Declarations

Variables are not explicitly declared in BASIC. Instead a
variable is implicitly declared by assigning a value to a
valid variable name. For example, to declare the variable
TST and assign it the value 100 the following statement can
be used:

TST=100

A value can be assigned to a variable by either a READ (read
a value from a DATA statement), an INPUT (accept input from
the terminal) or a LET statement. The statement 'TST=100'
is an implied LET, as are all statements of the form:

<variable>=<expression>

where <expression> may contain function calls:

FRD=SIN(PI*NUM)

The above statement assumes that the variables PI and NUM
have already been declared (assigned a value).

2.7.3 Integer Variable

If a number can be represented in a 16-bit twos complement
form, it is stored in integer format. Integer numbers in
the, range -32768 to +32767 will be stored in this way.

Low memory High memory
1 1 1 1
1<-- All zeros -->1 2s complement 1<-- All zeros -->1
1 1 1 1
First word Third word

Texas Instruments Ltd PAGE 20 March 1982

E155 Euroboard Power BASIC Manual Addendum

Integer numbers outside this range (up to approximately 11
decimal digits) will be recognised as integers and printed
out in integer format, even though they will be stored
internally in floating point format (see below). Integer
numbers greater than this will be treated as real numbers
and will be printed out in floating point format (eg
1.234E11).

2.7.4 Floating Point Variables

Floating point format allows a real number in the range
10E-75 to 10E+74 to be stored. (-E- represents the
multiplier 10, the integer number following is the power to
which 10 is raised. 2.5E24 means 2.5 times 10 to the power
24. Real constants can be entered in this format if
desired.) This representation provides approximately 11
decimal digits of accuracy (a real constant should consist
of no more than 11 digits).

A floating point number is represented internally as a
fraction multiplied by a power of 16 (this power is known as
the characteristic), and is stored as:

Characteristic
I I

Sign 117 bit I<
bit I I

First word

40 bit Mantissa >I

Third word

Bit 0 (the most significant bit) is the sign bit and
represents the sign of the floating point number: 0 for
positive, 1 for negative. Bits 1 to 7 hold the
characteristic coded in Excess 64 notation (the
characteristic is incremented by 64; this gives the
characteristic a range of 0 to 127 representing a true
exponent range of -64 to +63). The remaining 40 bits
contain the normalised mantissa (the mantissa is normalised
if its first hex digit is non-zero). Negative fractions are
stored in true form with the sign bit set to one and not in
twos complement notation.

2.7.5 Character String Variables

A character string is a string of characters enclosed within
single or double quotes. Paired double quotes can be used
to enclose single quotes and vice versa.

A variable is specified as containing a character string by
preceeding the variable name with a dollar sign ($). In
this form, a variable should be used to store up to 5
characters, as the last byte is used to terminate the string
and contains the null character (zero). This is necessary

Texas Instruments Ltd PAGE 21 March 1982

E155 Euroboard Power BASIC Manual Addendum

to ensure that the variable defined immediately before the
string variable does not get corrupted.

1 1 1 1 1 1 1
1 BYTE 1 1 BYTE 2 1 BYTE 3 1 BYTE 4 I BYTE 5 1 NULL 0 1
1 1 1 1 1 1
First word Third word

Non-printable characters may be included in a character
string by writing their hexadecimal ASCII representation
enclosed in angle brackets (<>). The angle brackets are
stored along with the character string and are only
interpreted when the string is being input from a terminal,
read from a DATA statement, or when the string is being
printed. Note: Attempting to use the character sequence
'0' in a string via an INPUT, READ or PRINT statement will
cause problems. If these characters are required then the
sequence '<3C><3E>' should be used.

2.7.6 Array Variables

An array is a number of variables (stored consecutively in
memory) that is referenced by a single variable name.
Individual variables (or array elements) are accessed by
following the variable name with a number that identifies
the position of the variable within the array. The number
(this is known as an array subscript) is enclosed in
parentheses or square brackets (internally the parentheses
are converted into and stored as square brackets).

To allocate the array STR with 10 elements the following
statement is required:

DIM STR(9)

The elements are referenced by

STR(0), STR(1), STR(9).

The size parameter supplied to the DIMension statement is
one less than might be expected, as Power BASIC
automatically allocates space starting from element zero.

Although an array may be used to hold character strings, it
is declared (in the DIMension statement) without the dollar
sign. Individual bytes of a character string array can be
accessed by following the array subscript with a semicolon
(;) and the number of the required byte, starting from 1.
For example, $STR(1;3) references the third byte of array
element STR(1); this corresponds to the letter 'I' in the
diagram below, which shows storage of the string
"ABCDEFGHIJ".

Texas Instruments Ltd PAGE 22 March 1982

E155 Euroboard Power BASIC Manual Addendum

High Memory 1

5th byte - 0 6th byte - 0)
)

3rd byte - 'I' 4th byte - 'J')<-- Element
) STR(1)

1st byte - 'G' 2nd byte - 'H')

5th byte - 'E' 6th byte - 'F')
)

3rd byte - 'C' 4th byte - 'D')<-- Element
) STR(0)

1st byte - 'A' I 2nd byte - 'B')
1

1 Low Memory

Power BASIC allows an array to be declared with any number
of dimensions. However, for most practical applications, a
two dimensional array is usually sufficient.

Note: The variable A and the array variable A(0) refer to
two completely different variables.

2.8 System Initialisation

On power-up, the Euroboard Power BASIC interpreter
"autosizes" memory to determine how much RAM is available
for system use. This autosizing stops as soon as a
read/write mismatch is encountered, or when address hex 4000
is reached.

The interpreter allows two EIA cards to be inserted in the
system; the first, port A, at CRU base address (R12
contents) hex 80 and the second, port B, at hex 180. The
baud rate of the first port is determined automatically as
described below. If a second EIA card is present, this is
set to operate at 300 baud (when the initialisation has
completed, this can be reset using the BAUD command).

If a Power BASIC application program has been "burnt" into
EPROM(s) with the 'run flag' set (see PROgram command
below), and installed at address hex 4000 then this program
is immediately executed; with the first EIA card, if it is
present, initialised to 300 baud. (Note that the auto-baud
sequence is not performed in this case).

When no application program is present, an auto-baud
sequence operation is performed on the first EIA card. This
operation consists of waiting until the user presses the A
key and then measuring the length of time taken for the

Texas Instruments Ltd PAGE 23 March 1982

E155 Euroboard Power BASIC Manual Addendum

"start bit" to be received. From this, the actual baud rate
of the terminal is evaluated and the EIA card is initialised
to this baud rate. (Note: A carriage return delay of
approximately 250 milliseconds is provided for devices
operating at 1200 baud or less. Further, when operating at
1200 baud, output to a terminal is padded with a time delay
to reduce the effective transfer rate to 300 baud.)

The system variables/pointers are then set according to the
values determined by the auto-sizing operation. The
following banner message is then output to port A:

EUROBOARD BASIC REV x.n.m
*READY

Where x = Language level
n = Release number
m = revision number

At this stage, Euroboard Power BASIC is in keyboard mode
waiting for user commands.

Note: The input scanning routine allows data to be entered
through either EIA port. If data is available at both ports
then port A has precedence.

Texas Instruments Ltd PAGE 24 March 1982

E155 Euroboard Power BASIC Manual Addendum

3 DETAILED DESCRIPTIONS OF MODIFICATIONS

This section describes features which are unique to
Euroboard Power BASIC. Other features are described in
sections 4-7 of the Power BASIC Reference Manual. A
complete list of features and where to find them is given in
section 1.1 of this Addendum. Section 4 below gives a
complete "quick reference guide" to Euroboard Power BASIC.

3.1 LOAd/SAVe Commands

Power BASIC programs may be stored on "tape" using the SAVE
command. Previously stored programs can be copied into
memory using the LOAD command; programs that have been
programmed into TMS25xx EPROMs can also be "loaded" into
memory. Euroboard Power BASIC supports the following
devices:

o Texas Instruments ASR733 digital cassettes
o Texas Instruments 763 and 765 Bubble memory

terminals
o Audio cassettes through an EIA port (this requires

an EIA-to-CUTS standard conversion module)

The general format for these two commands is:

LOAD <exp> or SAVE <exp>

Where <exp> may be any valid Power BASIC expression. If no
expression is present then the device is assumed to be an
ASR733 digital cassette. The value of <exp> has the
following meaning:

Value
0
1
2

other

Device
ASR733 digital
763/765 bubble
Audio cassette
LOAD - TMS25xx
SAVE - error

cassette
memory file
through port B
EPROM(s)

3.1.1 733 ASR Terminal

To save a Power BASIC program on 733 digital cassettes
perform the sequence shown below:

o Ensure that the switches on the bottom row of the
ASR switch panel are set as:

KEYBOARD to LINE
PLAYBACK to LINE
RECORD to LINE

Texas Instruments Ltd PAGE 25 March 1982

E155 Euroboard Power BASIC Manual Addendum

PRINTER to LINE

o Insert the cassette tape on which the program is to
be SAVEd into either cassette transport. Make sure
that the tabs on the bottom of the cassette tape are
not in the write protect position.

o Verify that the terminal is ON-LINE.

o Set the RECORD CONTROL switch to OFF.

o Set the selected cassette transport to RECORD.

o Set the TAPE FORMAT switch to LINE.

o Momentarily press the REWIND switch on the selected
cassette transport.

o When the END indicator lamp lights up, press the
LOAD/FF switch on the selected cassette transport.
The READY indicator lamp should light up after a few
seconds.

o If the 733 ASR does have
Control (ADC) option, type in
carriage return. Euroboard
the necessary device control
(DC2 - RECORD ON) and stop
cassette transport.

the Automatic Device
"SAVE" followed by a
Power BASIC will issue
characters to start

(DC4 - RECORD OFF) the

o If the 733 ASR does not have the ADC option, the
user must manually start and stop the cassette. To
do this type in "SAVE" (don't enter the carriage
return yet), set the RECORD CONTROL switch to ON and
then enter the carriage return. When the cassette
finally stops, the RECORD CONTROL switch must be set
to OFF.

When the save operation has completed, Euroboard Power BASIC
automatically returns to keyboard mode and causes the
printer to advance the paper to a new line.

A detailed description of each of the switches on the
cassette transport is given in section 4 of the Model
733ASR/KSR Data Terminal Installation And Operation Manual
(part number 945259-9701). Figure 4-2 of this manual (or
Figure 2-12 of the Power BASIC Reference Manual) gives the
actual layout of these switches.

To load a Power BASIC program from 733 digital cassettes
perform the following sequence:

Texas Instruments Ltd PAGE 26 March 1982

E155 Euroboard Power BASIC Manual Addendum

o Ensure that the switches on the bottom row of the
ASR switch panel are set as:

KEYBOARD to LINE
PLAYBACK to LINE
RECORD to LINE
PRINTER to LINE

o Insert the cassette tape from which the program is
to be LOADed into either cassette transport.

o Verify that the terminal is ON-LINE.

o Set the RECORD CONTROL switch to OFF.

o Set the selected cassette transport to PLAYBACK.

o Set the TAPE FORMAT switch to LINE.

o Momentarily press the REWIND switch on the selected
cassette transport.

o When the END indicator lamp lights up, press the
LOAD/FF switch on the selected cassette transport.
The READY indicator lamp should light up after a few
seconds.

o If the 733 ASR does have the Automatic Device
Control (ADC) and the Remote Device Control (RDC)
options, type in "LOAD" followed by a carriage
return. Euroboard Power BASIC will issue the
necessary device control characters to start (DC1 -
PLAYBACK ON) and stop (DC3 - PLAYBACK OFF) the
cassette transport. With the RDC option, the
cassette transport will accept the BLOCKFOWARD
(DLE 7) control characters to start the cassette and
read the next record.

o If the 733 ASR does not have the ADC option, the
user must manually start and stop the cassette. To
do this type in "LOAD" followed by a carriage return
and momentarily press the PLAYBACK CONTROL CONT
switch to START.

If the 733 ASR does not have the RDC option, it may not be
possible to load a Power BASIC program from cassette at 1200
baud. If this is the case, then the terminal must be set to
operate at 300 baud. In either case it will be necessary to
perform a manual start/stop operation as described above.

When the load operation has completed, Euroboard Power BASIC

Texas Instruments Ltd PAGE 27 March 1982

E155 Euroboard Power BASIC Manual Addendum

automatically returns to keyboard mode and causes the
printer to advance the paper to a new line. At this point,
the program has been loaded into memory. If any errors
occurred, the appropriate error message will be output
followed by the statement line in error. As the statement
line can not be correctly stored it will be ignored, and the
loading operation will continue from the next statement line
stored on the cassette tape.

3.1.2 763/765 Bubble Memory Terminal•

The bubble memory terminal must be configured as follows:

LINE MODE:
OPTIONS ON:
OPTIONS OFF:
ABM:
RECORD FILE:
PLAYBACK FILE:
TRANSMIT EOL:
RECEIVE EOL:
KEY:

EIA/ 1200 BAUD/ EVEN PARITY/ FULL DUPLEX/
EDC/ DC3/ DC1.3/ DC2.4/
PCHECK/ ABMPRT/ AUTOABM/ EOTDIS/ BUFFER/

<record file name>
<playback file name>
<carriage return symbol>
CRLF

<carriage return symbol> refers to the symbol produced by
the bubble memory terminal whenever the carriage return key
is struck. (Note: When setting the TRANSMIT EOL parameter,
the <carriage return symbol> must be enclosed within double
quotes.)

The STATUS (or ST) command should be used to check that the
terminal is configured correctly. If any of the
configuration parameters is incorrect then use the CHANGE
(or CG) command to modify the appropriate parameter (eg
CHANGE SPEED TO 1200, or CG PORT TO EIA, etc). When the
terminal has been correctly configured, it needs to be
on-line before Power BASIC can communicate with it; this is
performed by the ONLINE (or ON) command. By this time the
ON LINE and COMM indicator lights (lower right hand side of
the keyboard) should be on.

Note: Although the baud rate of the bubble memory terminal
is user selectable up to 9600 baud, the actual throughput of
the terminal is limited to 240 characters per second (2400
baud). However, at speeds above 1200 baud the printer will
lose characters and it may even "lock up" (if this happens
it is necessary to use the ESCape key to return to keyboard
mode).

Files are allocated within the bubble memory terminal using
the CREATE (or CF) command. When a file is created, the
user specifies:

o File name (a maximum of six alphanumeric characters,

Texas Instruments Ltd PAGE 28 March 1982

E155 Euroboard Power BASIC Manual Addendum

the first character must be alphabetic) which can not
be KEY or TO.

o Format to be used, either C (continuous) or L
(line). In line format one statement line will be
stored in one physical record (if the record size is 70
characters and the statement line only needs 20
characters, the remaining 50 characters worth of
storage will not be used). In continuous format a
number of statement lines can be stored in one physical
record.

o Maximum number of physical records that the file can
hold (files can not be extended or reduced once
created).

o Record size (ie the maximum number of characters
that can be stored in one record) up to 80 characters.
If this parameter is not specified a record size of 80
characters is assumed.

For example, to create the file BAS001, using line format,
to hold 150 records the following is required:

CREATE BAS001 L 150 <skip key>

The CATALOG (or CL) command can be used to list the
characteristics of all the existing files (it also shows how
much space is left).

After a SAVE operation, the Power BASIC program will be
contained in <record file name>. A LOAD operation will
cause the contents of <playback file name> to be stored in
program memory (assuming that the file contains a valid
Power BASIC program). <record file name> and <playback file
name> can be the same file.

Power BASIC programs can be created when the bubble memory
terminal is not connected to the /E155 microcomputer module
(ie when it is off-line) using the EDIT (or ED) command.
Please note that if this is done then the file must be
terminated with a line that only contains the escape
character.

Any errors encountered while loading a Power BASIC program
will cause the error line and the appropriate error message
to be output to the terminal (the whole line will be thrown
away as it can't be stored correctly) and processing will
continue from the next input line.

While accessing a bubble memory file, the keyboard is
disabled until the operation has completed.

NOTE: The STATUS, CHANGE, CREATE, EDIT, ONLINE, and CATALOG

Texas Instruments Ltd PAGE 29 March 1982

E155 Euroboard Power BASIC Manual Addendum

commands refer to the commands available under the bubble
memory terminal's internal monitor and not to Euroboard
Power BASIC. The terminal's monitor can be entered at any
time by striking the CMD key (top right hand side of the
keyboard); when this is done the COMMAND indicator lamp
should light up and the monitor should reply with a "filled
in arrow" symbol. Also note that the terminator key for a
monitor command is the SKIP key and not the CR key. For
further information on the operation of the bubble memory
terminal refer to 'Model 763/765 Memory Terminals Systems
Manual' (part number 2203665-9701) and/or 'Model 763/765
Memory Terminals Operating Instructions' (part number
2203664-9701).

Bubble Memory
Connector P1

1
2
3
4
8
9
11
14
15

EIA Card

1
5
3
6
20
6
4
2
7

The necessary cable configuration to connect a bubble memory
terminal with a Euroboard EIA card is shown above. The
terminal's connector P1 is used. Note that connector P1 is
protected by a flap that is located immediately below
connector P2.

3.1.3 Audio Cassette (CUTS Standard)

Computer User's Tape Standard (CUTS) is a universal standard
for audio cassette interfaces that is designed to operate at
300 baud. Logic level '1' is defined by a 2400Hz signal and
logic level '0' is defined by a 1200Hz signal.

The circuit in Figure 1 implements the CUTS audio cassette
interface and connects directly to the second EIA port
(configured at CRU address hex 180); power is conveniently
taken from the EIA connector itself. This circuit can be
built up and connected to a second TM990/E358 card (see
section 1.4 above for the appropriate jumper settings).
Alternatively, a custom card can be built which contains
both the EIA serial terminal interface and the audio
cassette interface. A circuit for the serial terminal
interface is given in the E-Bus System Design Handbook
(MP402), section 7.2.

Texas Instruments Ltd PAGE 30 March 1982

11

+5V

22K

11 RC O6

22n +5V
eta C Vcc14

5 74121 _I 10
312.5pS

1 Gib

2

+5V

ig RE CEI VE DATA
of LED

1K

PR
0

mem +12V

74 74
4 RS232

CLR
•

 RCV

tt +5V
75188

aest -12V

1K

RECORD DATA
Or LED

2100K 189

5n6

EIA PINS USED:
CND 1OR 7
RS232RCV 2
RS232 XMT 3
+ 12V 12
- 12V 13
+ 5V 14

s
l
u
e
m
n
a
l
s
u
i

s
v
x
a
y

Z
8
6
1

1.1
3
1
E
N

100n

CLR

0

J 8 3

74 LS107
0

7 100n

CLR

13

J

12

300 BAUD EIA I/F TO AUDIO CASSETTE

RS232
XMT

+12V

8

1/2TL072

-12V

E
1
5
5
 E
u
r
o
b
o
a
r
d

P
o
w
e
r

B
A
S
I
C

m
n
p
u
a
p
pv

T
e
n
u
e
N

1K

0/F

100 R

10K

0

7518 9

13
12

10

6

10K
7/7

E155 Euroboard Power BASIC Manual Addendum

The connections marked AUX and EAR plug into the input and
output sockets of the cassette tape recorder.

Note: Although the circuit above does not show it, it is
necessary to wire pin 6 of the EIA connector to pin 20 to
provide the DTR signal.

The procedure for recording information on an audio cassette
is: allow the tape to run for several seconds (say 10
seconds) to give a good leader; record the data; leave a
trailer (say 5 seconds).

Having built the audio tape interface it is necessary to
determine the correct volume control setting for each
recorder to be used. This is performed (from Euroboard
Power BASIC) by entering and executing the following
sections of code:

a) Write the sequence "U* U*" to the cassette

100 BAUD 1,5 ! 2nd port to 300 Baud
110 UNIT 2 ! Output to 2nd port only
120 PRINT "U*"; ! Alternate '1's and 'O's
130 K=NKY(0) ! Key pressed?
140 IF K=0 THEN GOTO 120 ! N - loop
150 UNIT 1 ! Back to main port
160 STOP

When RUN, this program will continually write "U* U*"
to the cassette until a key is pressed on the terminal

b) Read the tape back

210 BAUD 1,5 ! 2nd port to 300 baud
220 BASE 0180H ! Point to 2nd port
230 IF CRB(21)=0 THEN GOTO 230 ! Wait for character
240 A=CRF(7) ! Get character
250 $B=%A%0::PRINT $B; I Print character
260 CRB(18)=O::GOTO 230 ! Reset RBRL and loop
270 STOP

The recorder may take a little while to settle down after
changing the volume setting; the correct setting has been
found when the read routine above is consistently receiving
'U*' characters (say several correct lines). When satisfied
that the volume control has been correctly set, press the
ESC key to escape from the read routine and return to
keyboard mode.

Note: When the read routine receives a character from the
audio cassette drive it immediately prints it at the

Texas Instruments Ltd PAGE 32 March 1982

E155 Euroboard Power BASIC Manual Addendum

terminal connected to port A. To ensure that characters are
not lost from port B when a carriage return is output to
port A, the baud rate for port A must not be less than 300
baud.

To save a Power BASIC program on audio cassette perform the
following sequence:

o Insert the AUX plug into the cassette recorder's AUX
(or MIC) socket.

o Ensure that the EAR plug is not installed.

o Start the cassette recorder running in record mode.

o Wait a few seconds to ensure a good leader.

o Type in the command 'SAVE 2' followed by carriage
return.

o When the save operation has completed, Euroboard
Power BASIC automatically returns to keyboard mode
and causes the printer to advance the paper to a new
line.

o Leave the cassette recorder running for a few
seconds to generate a suitable trailer.

Remove the AUX plug.

To load a Power BASIC program on audio cassette perform the
following sequence:

o Insert the EAR plug into the cassette recorder's EAR
socket.

o Ensure that the AUX plug is not installed.

o Position the cassette recorder's read head directly
over part of the leader.

o Start the cassette recorder running in playback
mode.

o Type in the command 'LOAD 2' followed by carriage
return.

o When the load operation has completed, Euroboard
Power BASIC automatically returns to keyboard mode
and causes the printer to advance the paper to a new
line.

o Turn off the cassette recorder and remove the EAR

Texas Instruments Ltd PAGE 33 March 1982

E155 Euroboard Power BASIC Manual Addendum

plug.

If an error occurs during the load operation then the whole
input line is thrown away, as it can't be stored correctly
(processing continues with the next input line), and when
the operation has completed the message 'TAPE READ ERROR'
will be output. LIST the program to find the missing
line(s).

While the interpreter is accessing an audio cassette, the
UNIT flag is temporarily reset to disable all keyboard
output. All input to port A is ignored except for the
escape key (ESC) which can be used to abort the operation.

When using an audio cassette the baud rate of port B should
be set to 300. This is automatically done on power-up.
However, if you have been using this port with a faster (or
slower) device it will be necessary to execute the
'BAUD 1,5' Power BASIC statement.

3.1.4 EPROM

When the value of <exp> supplied to a LOAD command is
greater than 2, the interpreter assumes that the "stored"
Power BASIC program has actually been programmed into EPROMs
and that the value of <exp> specifies the start address of
that program.

The program's start address is calculated from:

Program's Start Address = EPROM Address + Offset

where "EPROM Address" is the memory address of the first
EPROM containing the program within the system memory map.
"Offset" is the offset within this EPROM to the actual
program and should be the same value as that supplied to the
PRO command's "EPROM START ADDRESS:" prompt when the program
was being burnt into EPROM (see section 3.3 for details
about the PRO command).

For example, a "LOAD 05862H" command would indicate that
"EPROM Address" is hex 5000 (ie the program's EPROM is
located at system memory address hex 5000) and that "Offset"
is hex 862 (ie the program that we are interested in is
located at an offset of hex 862 bytes within the EPROM).

When a Power BASIC program is burnt into EPROM a number of
system pointers are also burnt into the EPROM. These
pointers allow the program (when loaded) to be listed and
executed while still resident in EPROM without having to
copy it into RAM. However, this does mean that it is not
possible to change a program that has been "loaded" from

Texas Instruments Ltd PAGE 34 March 1982

E155 Euroboard Power BASIC Manual Addendum

EPROM; attempting to do this will cause unpredictable
results to occur.

The interpreter does not attempt to verify that the address
supplied actually contains an EPROM-based Power BASIC
program. If this is not the case, attempting to access the
"loaded" program (in any way) may cause upredictable results
to occur.

If the "auto-run" option was selected when the program was
burnt into EPROM (ie the answer to the "RUN?" prompt was
"Y") then the interpreter will automatically execute the
Power BASIC program when it has been "loaded". Otherwise
the interpreter will return to keyboard mode when the
operation has completed.

3.2 RENumber Command

The general format for this command is:

REN

This command renumbers the stored Power BASIC program so
that on completion the first line number is 10 with an
increment of 10 between successive lines. The line numbers
contained within the program code are automatically updated
to reference the new line numbers.

The command is implemented using a two-pass approach. On
the first pass, the command determines how much "free RAM"
exists in the system and where it is. This area of memory
is then used to dynamically build a table of line number
references. The whole program is scanned and every time a
line number is encountered within the program an entry is
added to this table. Each table entry consists of the line
number and the address in the program memory where it was
found. If there is insufficient free RAM to complete this
table, then the table area is reset to its original state,
the error message 'STORAGE OVERFLOW' is output to the
terminal and an immediate return is made to keyboard mode.

However, if the first pass does complete successfully (ie
there was sufficient memory available) then, and only then,
is the second pass executed. This approach ensures the
integrity of the stored program (ie it can not get corrupted
due to starting to update the program and not being able to
complete the operation).

If there are any line numbers in the form of expressions (eg
TRAP 5 TO 50*A4), this is detected by the first pass, and
the following warning message is output (it is not possible
to update these references automatically):

Texas Instruments Ltd PAGE 35 March 1982

E155 Euroboard Power BASIC Manual Addendum

** UNCONVERTED STMT REF AT NEW LINE xx **

where xx is the line containing the unconverted reference.

When the renumbering is complete, check the line(s)
indicated and convert the statement references by hand. All
other references will be converted correctly.

In the second pass, each line number entry in the table is
checked to determine whether or not the line it references
actually exists. If it does, that line's new value is used
to update the memory locations that reference the line.
When a line is referenced that does not exist then the
following warning message is output:

** NON-EXISTENT STMT REF xx AT NEW LINE yy **

where xx is the line that does not exist.
yy is the line with the reference to xxx.

When all table entries have been done, the free RAM area is
put back to its original state and a return is made to
keyboard mode.

If the SIZe command is executed immediately before and then
again straight after executing the RENumber command, there
may be a slight discrepancy between the two program sizes
shown. This is nothing to worry about; it is the result of
an internal reorganisation and does not affect the operation
of the stored program.

If the program to be renumbered is very large, or requires a
vast amount of data storage (for instance, very large
arrays) then it is possible that the command will fail due
to the limited amount of temporary storage space available.
This can be overcome by either of the following sequences:

o Issue the CLEar command.
o Re-issue the REN command.

or o SAVE the program.
o Execute the NEW command.
o LOAD the program.
o Re-issue the REN command.

If these do not work then the only thing to do is to add
another memory expansion board to the system (if possible).

3.3 PROgram Command

The general form for this is:

PRO

Texas Instruments Ltd PAGE 36 March 1982

E155 Euroboard Power BASIC Manual Addendum

This command allows the user to "burn" the stored Power
BASIC program into TMS25xx series EPROMs using the EPROM
programming board. These EPROMs can then be inserted into
the target system and will either be automatically executed
on system power-up (if the EPROMs are installed starting at
address hex 4000 with the 'auto-run' flag set), or can be
executed when required using the LOAD (see section 3.1) and
RUN commands.

Before the program is burnt into EPROM it is a good idea to
perform the following sequence:

o SAVE the program.
o Execute the NEW command.
o LOAD the program.

This ensures that all temporary Power BASIC variables (ie
variables that are currently defined but not actually
required by the program) are deleted from the interpreter's
"variable name table".

The PROgram command is prompt driven (ie it outputs prompt
messages to the terminal and waits for correct user
response). For all of these prompts (except the 'EPROM
TYPE' and 'EPROM START ADDRESS' prompts) a 'Y' (yes) or 'N'
(no) response is required, and only these two characters are
echoed back to the terminal. However, the ESCape key can be
used to terminate the programming session. This outputs the
following message.

PROGRAMMING TERMINATED

Any other response causes the prompt to be re-displayed.

The first prompt is:

RUN?

This is asking whether the 'auto-run' flag, contained in the
first word of the first EPROM, is to be set (see above).

Power BASIC then asks for the EPROM-type with the following
prompt:

EPROM TYPE (2516, 2532, 2564, 2528)?

If the response is an invalid EPROM type, the above prompt
is re-displayed. When a valid response is given, the EPROM
programming board is configured to the specified type. (If
the response is incorrect then the user must strike the ESC
key and then re-issue the command.)

The Power BASIC interpreter then checks to ensure that the

Texas Instruments Ltd PAGE 37 March 1982

E155 Euroboard Power BASIC Manual Addendum

on-board dc/dc converter is working. If not, the message

EPROM PROGRAMMER NOT FOUND

is output and the command terminates.

When the programming board is configured, the following
prompt is output

EPROM START ADDRESS:

A response of a carriage return will cause programming to
start from the first location within the EPROM. Usually,
this is what is required.

However, it is possible to burn two or more (small) programs
into a single EPROM. To burn a second or subsequent program
into an EPROM, specify the address within the EPROM where
programming is to start, followed by a carriage return.
This address must be greater than the address of the last
byte of the last program to be burnt into that EPROM. It is
important that this value is entered correctly. If an
'illegal' value is entered (eg A8 instead of 0A8H, or *, or
MMMM) then a start address of 0 is assumed. See section 2.6
above for the correct format of hexadecimal constants. If
the value is a floating point number, or if it is outside
the EPROM's range (eg 02000H for a TMS2516) then the prompt
is re-issued.

Before the carriage return key is struck, the value can be
modified using the RUBOUT key. All other control characters
are ignored.

Note: The value entered is forced to a word boundary so
that, if (eg) the value 07FH is entered, programming will
start from EPROM location 07EH - the preceding word
boundary.

The next prompt is

SPLIT INTO MS AND LS BYTES?

If the EPROM is to be used with a memory board that has an 8
bit wide data path (eg TM990/E250) then the answer to this
prompt should be 'N'. However, if the memory board has a 16
bit wide data path (eg TM990/E255) then the answer should be
'Y'.

This is followed by the prompt

MOUNT EPROM
EPROM READY?

When the first/next EPROM has been mounted in the EPROM

Texas Instruments Ltd PAGE 38 March 1982

E155 Euroboard Power BASIC Manual Addendum

socket the programming cycle starts. This is indicated by
the message

PROGRAMMING

If the response to the 'SPLIT INTO MS AND LS BYTES?" prompt
was yes then the message output will be either

PROGRAMMING MS BYTE
or PROGRAMMING LS BYTE

The most significant byte (MS - bits 0 to 7) is programmed
first.

During this cycle the keyboard is continuously scanned. The
only character that is recognised during this stage is the
ESCape key (all others are ignored), which causes the
programming cycle to shutdown gracefully and the termination
message to be displayed.

After the programming cycle has completed (either the EPROM
is full or all the Power BASIC program has been burnt into
EPROM) the message

VERIFYING

is output and the programmed EPROM is verified. If the
EPROM's contents do not match the memory contents, the
message

VERIFY ERROR!

is output and the 'MOUNT EPROM' phase is re-entered.

If any of the Power BASIC program remains to be burnt into
EPROM, the 'MOUNT EPROM' phase is re-entered. Otherwise the
message

PROGRAMMING COMPLETE

LAST BYTE PROGRAMMED WAS xxxx

is output at the terminal and the command terminates.
"xxxx" is the address of the last location within the EPROM
that was programmed. This value should be carefully
recorded if any further programs are to be burnt into the
same EPROM: add 2 to obtain the correct reply to the next
"EPROM START ADDRESS" prompt (see above).

3.4 NEW Command

The general form for this command is:

Texas Instruments Ltd PAGE 39 March 1982

E155 Euroboard Power BASIC Manual Addendum

NEW <exp> or NEW

Either form will erase any stored Power BASIC program, and
reinitialise the memory. After a NEW command, any
previously entered statements and all variables stored will
be lost.

This command allows the user to specify the lower limit of
RAM that is to be used by the Power BASIC interpreter. The
Power BASIC environment will consist of all memory from the
TMS9995's internal RAM down to this limit (<exp>). Any
memory that resides below this limit will be temporarily
deallocated from the Power BASIC environment; however, it
can still be accessed via the MWD and MEM functions.

The interpreter requires a certain amount of memory to
operate: the top 850 bytes of the /E155's on board RAM and
all of the TMS9995's internal RAM. If <exp> lies within
this region (or even above it) or if it specifies an address
that was below the limit found by the interpreter during the
autosizing phase on power-up then the error message 'INVALID
MEMORY LIMIT' is output and the command is ignored.

When the NEW command is issued without an <exp> parameter,
the lower RAM limit will revert to that found on power-up.

3.5 CLEar Command

The general form for this command is:

CLE

This command deallocates all the memory occupied by Power
BASIC variables (ie it clears and returns the memory to the
interpreter) without affecting any stored program.

However, after issuing this command, an attempt to access
the contents of a Power BASIC variable or its address (eg in
a PRINT statement, CALL statement or on the right hand side
of a LET statement) will result in the error "UNDEFINED
VARIABLE".

3.6 ADR Function

The ADR function returns the address of the specified
variable, string variable, array element or byte offset in
an array element. This is used in conjunction with the LET
(assignment), PRINT and CALL statements.

The general form for this is:

ADR(<variable>)

Texas Instruments Ltd PAGE 40 March 1982

E155 Euroboard Power BASIC Manual Addendum

Valid uses are:—

B = ADR(<var>)
PRINT #, ADR(<var>)
CALL ,ADR(<var>)

where <var> can be one of the following:
A, $A, A(index), $A(index), or $A(index ; offset)

Although the following yields a valid address, the data that
it references is of no real value as it will be somewhere
within the internal evaluation stack and is thus subject to
change.

B = ADR(<expression>)

Sections 2.7.3 to 2.7.6 above describe Euroboard Power
BASIC's variable storage mechanism. This function (unless
explicitly overridden) returns the address of the first byte
(ie lowest memory address) for the specified variable.

The ADR function has been included to allow an area of RAM
that belongs within the Euroboard Power BASIC environment
(eg elements of a dimensioned array) to be accessed as
though it were temporarily outside the environment. The
following program illustrates this.

1000 DIM TMP(50)
1010 B = ADR(TMP(0))
1020 C = B
1030 MWD(B) = 020CH
1040 B = B + 2
1050 MWD(B) = 0600H
1060 .

2500 CALL "ANY",C, !

300 byte area
B refs that area
Save address
'LI R12,>600' instruction
Next word
2nd word of instruction

Execute stored program

Operations of this kind should be executed with care, to
prevent corruption of stored Power BASIC programs.

3.7 CALL Statement

The general format for this statement is:

CALL <name>,<address>,<parms>

Where <name> is a string (this is not used by the
interpreter but it must be present). <address> is the
address in memory of the assembly language routine's entry
point. <parms> is the list of parameters to be passed over
to the called routine, and each parameter can be any valid
Power BASIC expression.

Texas Instruments Ltd PAGE 41 March 1982

E155 Euroboard Power BASIC Manual Addendum

The CALL statement handler has been modified from that in
Development Power BASIC to invoke the specified assembly
language routine via a BLWP instruction. The BLWP vector is
built in RAM using a special workspace and the routine's
entry point (<address> above). This workspace is allocated
from the Euroboard Power BASIC environment but is only ever
used by the CALL statement handler.

This allows up to 12 parameters (as opposed to only 4 in
Development Power BASIC) to be passed to the called
routine. RO to Rll of the workspace contain the 16 bit
parameter values, the actual number of parameters passed
over is stored in R12, and R13 to R15 contain the Power
BASIC context.

Before storing a parameter in the appropriate register, the
parameter is evaluated and the result is fixed into a 16 bit
value. If the called routine requires a floating point
number, or a string (from either a simple variable or a
dimensioned variable) then the ADR function should be used
to give the address of the particular variable or array
element. (Note: In this implementation of the call handler,
the parenthesis mechanism for passing a variable's address
has been removed.) Sections 2.7.3 to 2.7.6 above describe
Euroboard Power BASIC's variable storage mechanism.

A return to Euroboard Power BASIC is made by executing an
RTWP instruction in the called routine. Care must be taken
to ensure that R13, R14 and R15 of the special workspace are
not modified, otherwise execution of the interpreter could
become erratic.

3.8 Interrupts

Euroboard Power BASIC supports a "pseudo interrupt"
mechanism that polls 16 dedicated CRU input lines at the end
of each statement. This means 15 Power BASIC interrupts
('level l' to 'level 15') are available, whereas the TMS9995
microprocessor itself only implements 6 interrupts. (The
TMS9995 hardware interrupts are also available, for assembly
language subroutines outside the Power BASIC environment).

As the interpreter can not respond to an interrupt until the
currently executing statement is completed, this method of
handling "interrupts" introduces no overhead. Software
control also allows very flexible interrupt handling for
application programs.

If any of the interrupt signals (which are prioritized) is
present, Power BASIC will perform the interrupt subroutine
associated with that signal, and then return to the main
program. The TRAP statement (below) associates an interrupt

Texas Instruments Ltd PAGE 42 March 1982

E155 Euroboard Power BASIC Manual Addendum

signal with its appropriate Power BASIC interrupt
subroutine.

Two separate methods are available for masking/enabling
individual interrupt signals. First, the ENABLE statement
allows each individual interrupt signal to be "switched" on
or off. Power BASIC will not recognise any interrupt signal
that is not enabled.

Second, the interrupts are prioritized (level 1 highest
priority, level 15 lowest priority). A high priority
interrupt can interrupt a lower priority interrupt routine,
but not vice versa. The Power BASIC interpreter maintains
an interrupt mask that determines what priority of
interrupts will be serviced. The mask is automatically set
on receiving an interrupt, to disable all interrupts of the
same or lower priority until the interrupt subroutine has
completed. By setting the mask level appropriately in the
main program (using the IMASK statement) the user can enable
certain interrupts and disable others.

The new mechanism is implemented as a 16 bit STCR operation
at a CRU base address (R12 contents) of hex 120. Bit 0 of
this read (input pin 0) is ignored. The remaining 15 bits
are interpreted as "interrupt lines". These CRU "interrupt
lines" can be implemented using one of the EBUS I/O boards
(eg the /E350 or /E352) that is configured for a CRU base
address (R12 contents) of hex 100.

As an interrupt is active low, a value of zero ('0') on an
input pin indicates the presence of an interrupt, while a
value of one ("1') on that input pin indicates the absence
of an interrupt.

To use this new interrupt mechanism the user must:

1) Allocate a Power BASIC subroutine to a particular
interrupt level using the TRAP statement (as
Development Power BASIC)

2) "Enable" all necessary interrupts, using the ENABLE
statement (not in Development Power BASIC)

3) Set the interpreter's internal interrupt
appropriate level, using the IMASK
(modified from Development Power BASIC)

4) The last statement in the interrupt
should be an IRTN statement (no change).

mask to an
statement

subroutine

5) Before the IRTN statement is executed the user must
reset the device that generated the interrupt,
otherwise the interrupt subroutine is liable to be
re-entered immediately.

Texas Instruments Ltd PAGE 43 March 1982

E155 Euroboard Power BASIC Manual Addendum

When building systems from E-Bus modules, note that Power
BASIC "interrupts" are implemented as CRU read operations,
and are not transmitted over E-Bus as interrupt codes.

3.8.1 ENABLE Statement

This statement allows the user to specify whether an
interrupt is to be "enabled" or "disabled". (Although an
interrupt is "enabled" the interpreter will not recognise it
until the internal interrupt mask has been set to allow it
through.)

(The use of this statement is analogous to
enabling/disabling interrupt mask bits in the TMS9901.)

The general format for this statement is:-

ENABLE <interrupt level 1>,....,<interrupt level n>

Where <interrupt level i> can be an expression. A positive
value indicates that the level is to be "enabled" while a
negative value means that the level is to be disabled.
Note: Only the least significant hex digit is used to
determine the interrupt level. For example

ENABLE 6,3,15,-10,-11,0105H

Is translated to mean that interrupt levels 3, 5, 6 and 15
are to be "enabled" and that levels 10 and 11 are to be
"disabled".

3.8.2 IMASK Statement

The IMASK statement does not actually affect the processor's
status register (ST) which is permanently set to 4 (this
allows the user to "hook in" assembly language interrupt
handlers for interrupt levels 1, 2 and 4 - see section 3.8.3
below).

This statement determines whether or not an "enabled"
interrupt is recognised by the interpreter. When the IMASK
value is "0" the interpreter does not interrogate the
"interrupt lines". All other values cause the "interrupt
lines" to be read; any "enabled" interrupts are compared
against the stored IMASK value and if one of them is of a
higher priority then that interrupt is serviced.

Consider the following statements:

Texas Instruments Ltd PAGE 44 March 1982

E155 Euroboard Power BASIC Manual Addendum

10 TRAP 3 TO 3000
20 TRAP 6 TO 6000
30 TRAP 10 TO 10000
40 ENABLE 6,3,10
50 IMASK 10

If after executing the ENABLE statement "interrupt line" 10
is low, then the Power BASIC subroutine starting at line
10000 will be executed.

Recognising an interrupt causes the existing IMASK value to
be saved along with the current ELSE flag and CRU base
address on a 16 level deep stack; a new IMASK value is
generated that is one less than the interrupt level being
serviced (this effectively inhibits further interrupts at
that level until the present one has been completed) and the
specified interrupt subroutine is executed.

Once the interrupt subroutine has been completed the
original IMASK value, ELSE flag and CRU base address are
restored from the stack and program execution continues from
where it was interrupted.

Issuing an IMASK statement in an interrupt subroutine causes
the interpreter's status to be reset to the IMASK value but
only while the subroutine is being executed. In interrupt
subroutines the IMASK statement should not be used to permit
the same or lower priority interrupts to be recognised as
this can cause the interrupt stack to overflow.

Note: The "interrupt lines" are not scanned when the user is
operating in keyboard mode. Interrupts are now scanned
AFTER a statement has been executed. This allows the user
to ESCape from the program, to inspect and/or modify Power
BASIC variables and to continue execution without problems.
Further, when the interpreter has recognised an interrupt,
the "interrupt lines" are ignored until the first statement
of the interrupt subroutine has been executed. This ensures
that the user is able to inhibit all other interrupts (using
IMASK 0) if he so wishes.

3.8.3 Assembly Language Hardware Interrupt Handlers

When the system is powered up the following instructions are
written into RAM (starting at location hex EF6C)

OEF6C BLWP @>0000 (for interrupt level 1)
OEF70 RTWP
OEF72 BLWP @>0000 (for interrupt level 2)
OEF76 RTWP
OEF78 BLWP @>0000 (for interrupt level 4)
OEF7C RTWP

Texas Instruments Ltd PAGE 45 March 1982

E155 Euroboard Power BASIC Manual Addendum

If the BLWP vector address is not modified by the user then
when the processor recognises a level 1, 2 or level 4
interrupt a RESTART (interrupt level 0) operation will be
performed.

By changing the BLWP vector address (possibly using the MWD
function) the user can cause assembly language routines to
trap the hardware interrupts of the TMS9995.

It is not intended that actual hardware interrupts are
handled by a Power BASIC interrupt routine. However, it is
possible for an assembly language routine to cause an
interrupt routine to be executed. This can be done in
either of two ways:

o If a TMS9901 Programmable Systems Interface is
located at a base address of hex 100 (R12 contents),
then writing a zero (SBZ instruction) to the
appropriate pin will cause the interpreter to "see"
an interrupt on that line.

o By setting the appropriate bit in the memory word at
hex address EED2 to a '1'. (Bit 15 corresponds to
interrupt level 1, and bit 1 corresponds to
interrupt level 15.) This word is masked onto the
16-bit value read from the CRU "interrupt lines" so
that it appears that a "polled" interrupt has been
generated.

Note: Before an assembly language routine does initiate a
Power BASIC interrupt routine it should first ensure that
the real hardware interrupt is cleared. Further, both of
the above mechanisms are subject to the normal interrupt
sequence (ie the IMASK value must be set to allow that
interrupt level through and the interrupt must be enabled).

Texas Instruments Ltd PAGE 46 March 1982

E155 Euroboard Power BASIC Manual Addendum

4 QUICK REFERENCE

4.1 GENERAL

Character Set

1) Upper and lower case alphabet.
2) Digits 0 to 9.
3) Special characters

! " # $ % ([]) * : = - + ; , . ? / <

Abbreviations

for THEN
for PRINT

Hexadecimal Constants

A hexadecimal integer constant is one to four hex digits
followed by the letter H. A hex constant begining with one
of the letters A - F must be preceded by a zero.

Variable Names

A variable name starts with an alphabetic character
optionally followed by up to two additional alphabetic
characters or a number in the range 0 to 127. The variable
name may not be the same as a Power BASIC keyword; nor can
it form the begining of a keyword.

Edit Commands

CR Enter line into program source
LF Enter line into program source and enable

the auto-numbering facility
ESC Cancel input line, return to keyboard mode
DEL/RUBOUT Backspace and delete character
Ctrl D n Delete N characters
Ctrl I n Insert N blanks
Ctrl H Backspace 1 chaaracter
Ctrl F Forwardspace 1 character

In Ctrl E Display line LN for editing

Texas Instruments Ltd PAGE 47 March 1982

E155 Euroboard Power BASIC Manual Addendum

4.2 POWER BASIC COMMANDS

Power BASIC commands may not appear within a program.

Command Function

CLEar Return and clear all memory occupied by
Power BASIC variables to the interpreter

CONtinue Continue execution from last break

In LISt

LOAd exp

NEW exp

List current program from specified line
LN=Null, Line=First line number
LNONull, Line=LN

Load BASIC program from specified device
EXP=Null, Device=733 digital cassette
EXP=O, Device=733 digital cassette
EXP=1, Device=Bubble memory terminal
EXP=2, Device=Audio cassette
EXP=Address, Device=2532 EPROM

Clear system for new program
EXP=Null, RAM limit set by autosizing
EXP#Null, RAM limit=EXP

PROgram Burn current program into 25xx EPROM(s)

RUN Clears all variable space, pointers, and
stacks and executes current program from
first line number

SAVe exp Save current program on specified device
EXP=Null, Device=733 digital cassette
EXP=O, Device=733 digital cassette
EXP=1, Device=Bubble memory terminal
EXP=2, Device=Audio cassette

SIZe Display size of current program

RENumber Renumber current program.

Texas Instruments Ltd PAGE 48 March 1982

E155 Euroboard Power BASIC Manual Addendum

4.3 POWER BASIC STATEMENTS

Power BASIC program lines are of the form:

{ line number statement [:: statement] { ! comment }

Where } Indicate optional items
Indicate item is repeated as many times
as required — 0,1,....

Exceptions:

DATA must be the only statement on a line
DEF must be the only statement on a line
ON must be the only statement on a line
NEXT should not be preceded by ':: statement(s)
REM must not be followed by ':: statements(s)
STOP must be the last statement on a line

BAUD expl , exp2
Sets the baud rate of the serial I/O port(s) of the TMS9902
Asynchronous Communications Controller.

EXP1=0, port=A (CRU address hex 080)
EXP100, port=B (CRU address hex 0180)
EXP2=0, baud rate=19200
EXP2=1, baud rate=9600
EXP2=2, baud rate=4800
EXP2=3, baud rate=2400
EXP2=4, baud rate=1200
EXP2=5, baud rate=300
EXP2=6, baud rate=110

BASE exp
Sets CRU base address to EXP for subsequent CRU operations.

CALL 'name' , add { , parm }
Transfers control to the assembly language subroutine NAME
located at ADD. Up to 12 parameters, PARM, are allowed in
the statement (each separated by commas); these are passed
to the subroutine in RO to R11 of the call handler's
workspace. R12 contains the count of the number of
parameters supplied. The /E155 Power BASIC interpreter's
environment is saved in R13, R14 and R15.

DATA item [, item]
Defines an internal data block for access by READ. ITEM is
either an expression or a string.

DEF FNi { (arg) }= statement
Defines a single line arithmetic statement containing a
maximum of 3, single letter, dummy variables ARG (each
separated by commas). i is the function identifier. When
calling FNi the dummy arguments are replaced by the actual

Texas Instruments Ltd PAGE 49 March 1982

E155 Euroboard Power BASIC Manual Addendum

parameters, which may be any Power BASIC variable, array
element or expression.

DIM var (num [, num])
Allocates user space for the dimensioned array VAR. NUM is
the number of elements in a dimension; each dimension starts
at element O.

ELSE statement [:: statement]
When the most recently executed IF THEN statement is false,
all subsequent ELSE statements up to the next IF THEN
statement are executed; otherwise they are ignored.

ENABLE exp [, exp]
Enables/disables the specified 'polled interrupt' level. If
EXP is negative then the specified level is disable. Used
in conjunction with the IMASK statement.

END
Terminates program execution and return to keyboard mode.

ERROR In
Specifies a Power BASIC subroutine, starting at line LN,
that is to be executed via a GOSUB statement when an error
occurs.

ESCAPE
Enables the ESCape key to interrupt program execution.

FOR var = expl TO exp2 STEP exp3 }
The FOR statement is used with the NEXT statement to open
and close a program loop. Both identify the same FOR
variable VAR. EXP1 is the start value, EXP2 is the end
value and EXP3 is the stepsize. If STEP is omitted, a
stepsize of 1 is assumed.

GOSUB In
Transfers control to a Power BASIC subroutine starting at
line LN. The address of the statement following is stored
on the GOSUB stack.

GOTO In
Transfers control to line LN.

IF cond THEN statement [:: statement]
The statement(s) following the THEN keyword are executed if
the condition COND is true.

IMASK exp
Sets the internal interrupt mask to EXP (in the range 0 to
15). Must be used in conjunction with the ENABLE
statement.

Texas Instruments Ltd PAGE 50 March 1982

and store
is

and a
(??)

Input
data
mark

E155 Euroboard Power BASIC Manual Addendum

IRTN
Is used to return from an interrupt routine; it restores the
program environment existing prior to taking the interrupt.

(;)
INPUT item [, item]

Take input (numeric or string) from the
it into next variable ITEM in the INPUT
prompted with a question mark (?) for
colon (:) for character data. A double question
signifies an illegal number.

terminal
list.
numeric

{ LET } var = exp
Evaluate EXP and store the result in the variable, string
variable or array element VAR.

NEXT var
Delimits a FOR loop. The variable VAR must match the FOR
variable.

NOESC
Disables ESCape key on the terminal.

GOSUB
ON exp THEN GOTO line [, line]

Transfer control, via a GOSUB or a GOTO statement, to the
line specified by the value of the expression (when EXP=i
use the ith LINE in the list). If EXP is outside the
specified range (less than 1 or greater than the number of
LINEs in the list) then drop through to the next statement
line.

POP
Removes the top item from the GOSUB stack.

PRINT exp [, exp]
Prints (without formatting) the value of EXP.

RANDOM exp
Sets the seed for the random number generator to the value
of EXP.

READ var [, var]
Takes input from the internal DATA block and stores it in
the next VAR in the READ list.

REM text
Inserts comment lines (REMarks) into a user program. The
whole line is taken as a comment.

RESTOR { In }
Resets the DATA pointer to the specified DATA line LN. If
LN is not present, the pointer is set to the first DATA
statement.

Texas Instruments Ltd PAGE 51 March 1982

E155 Euroboard Power BASIC Manual Addendum

RETURN
Return from a Power BASIC subroutine, the return address is
the last entry in the GOSUB stack.

STOP
Terminates program execution and returns to keyboard mode.

TIME { item }
Interrogate/set the 24 hour time of day clock.

ITEM=Null - Output time in HR:MN:SD format
ITEM=$var - Store time in string variable VAR
ITEM=expl,exp2,exp3 - Set clock to specified time

(EXP1=hours; EXP2=mins; EXP3=secs)

TRAP exp TO In
Defines the entry point, LN, of a Power BASIC interrupt
subroutine for 'polled interrupt' level EXP. Level 0 can
not be serviced by the TRAP statement.

UNIT exp
Designates the device(s) to receive all printed output.

EXP=0, disable all output
EXP=1, I/O port=A
EXP=2, I/O port=B
EXP=3, I/O ports A and B

Texas Instruments Ltd PAGE 52 March 1982

E155 Euroboard Power BASIC Manual Addendum

4.4 OPERATORS

Arithmetic Operators

A=B Assignment
A-B Subtraction
A+B Addition
A*B Multiplication
A/B Division
A-B Exponentiation
-A Unary minus
+A Unary plus

Relational Operators

Return values of '1' (TRUE) or '0' (false).

A=B TRUE if equal, else FALSE
A==B TRUE if approximately equal (+ or - 9.5E-7),

else FALSE
A<B TRUE if less than, else FALSE
A<=B TRUE if less than or equal, else FALSE
A>B TRUE if greater than, else FALSE
A>=B TRUE if greater than or equal, else FALSE
AOB TRUE if not equal, else FALSE

Boolean Operators

Return values of '1' (TRUE) or '0' (FALSE). A non-zero
value variable is considered TRUE; a zero-valued variable is
considered FALSE.

NOT A TRUE if FALSE (zero), else FALSE
A AND B TRUE if both TRUE (non-zero), else FALSE
A OR B TRUE if either TRUE (non-zero), else FALSE

Logical Operators

Perform bitwise operations on the operand(s). Operand(s)
are converted into 16 bit integers before the operation.

LNOT A is complement
A LAND B Bitwise AND
A LOR B Bitwise OR
A LXOR B Bitwise exclusive OR

Texas Instruments Ltd PAGE 53 March 1982

E155 Euroboard Power BASIC Manual Addendum

Operator Precedence

1) Expressions in parentheses
2) Exponentiation and negation
3) *,/
4) +,-
5) <=,<>
6) >=,<
7) =,>
8) ==,LXOR
9) NOT,LNOT
10) AND,LAND
11) OR,LOR
12) Assignment (=)

Texas Instruments Ltd PAGE 54 March 1982

E155 Euroboard Power BASIC Manual Addendum

4.5 ARITHMETIC FUNCTIONS

Absolute Value Function - ABS

ABS (exp)
Return the absolute value of EXP.

Arctangent Function - ATN

ATN (exp)
Return the angle (in radians) whose tangent is EXP.

Cosine Function - COS

COS (exp)
Return the cosine of the angle EXP. (EXP in radians.)

Exponential Function - EXP

EXP (exp)
Return the value of the constant 'e- raised to the power of
EXP.

Integer Part Function - INP

INP (exp)
Return the integer part of EXP. If EXP is too large for 16
bit integer format then floating point format is used.

Natural Logarithm Function - LOG

LOG (exp)
Return the natural logarithm of EXP.

Random Number Function - RND

RND
Return a pseudo random number between 0 and 1. The random
number seed is set using the RANDOM statement.

Sine Function - SIN

SIN (exp)
Return the sine of the angle EXP. (EXP in radians.)

Square Root Function - SQR

SQR (exp)
Return the square root of EXP.

Texas Instruments Ltd PAGE 55 March 1982

E155 Euroboard Power BASIC Manual Addendum

4.6 CRU FUNCTIONS

To use the following CRU functions it is first necessary to
set the CRU base address via the BASE statement. (The value
supplied to the BASE statement is twice the actual hardware
base address.)

CRB Function

CRB (exp)
Read the CRU bit specified by the CRU hardware base address
plus EXP (EXP is valid over the range -128 to +127).

CRB (expl)= exp2
Set/reset the CRU bit specified by the CRU base address plus
EXP1. If EXP2=0 then reset ('0') the selected bit,
otherwise set ("1') the bit. EXP1 is valid over the range
-128 to +127.

CRF Functions

CRF (exp)
Read EXP CRU bits from the CRU hardware base address. EXP
is valid over the range 0 to 15. If EXP=0 then 16 bits will
be read.

CRF (expl)= exp2
Output EXP1 bits of the value EXP2 to the CRU lines starting
at the CRU hardware base address. EXP1 is valid over the
range 0 to 15. If EXP1=0 then 16 bits will be output.

Texas Instruments Ltd PAGE 56 March 1982

E155 Euroboard Power BASIC Manual Addendum

4.7 MEMORY FUNCTIONS

BIT Function

BIT (var , exp)
Read the EXPth bit of the variable VAR. EXP should start
from 1 not O.

BIT (var , expl)= exp2
Modify the EXPlth bit of the variable VAR. The selected bit
is set to '1' if EXP2 is non-zero, otherwise -it is set to
'0'. EXP1 should start from 1 not O.

MEM Functions

MEM (exp)
Read the memory byte specified by EXP.

MEM (expl)= exp2
Set the memory byte specified by EXP1 to the value EXP2.

MWD Functions

MWD (exp)
Read the memory word specified by EXP.

MWD (expl)= exp2
Set the memory word specified by EXP1 to the value EXP2.

Texas Instruments Ltd PAGE 57 March 1982

E155 Euroboard Power BASIC Manual Addendum

4.8 MISCELLANEOUS FUNCTIONS

ADR Function

ADR (var)
Returns the address of the specified variable, string
variable, array element, string array element, or byte
offset within a string array element. Should only be used
with the PRINT and CALL statements, and on the right hand
side of an assignment (LET) statement.

NKY Function

NKY (exp)
Samples the keyboard in run-time mode. If EXP=0 then return
the decimal value of the last key struck. (Zero is returned
if no key was struck.) If EXP#O then compare the last key
struck with the decimal value of EXP and return a value of 1
(they are the same) or 0 (they are not the same).

SYS Function

SYS (exp)
Obtain system parameters generated during program
execution.

EXP=O, parameter=input control character
EXP=1, parameter=error code number
EXP=2, parameter=error line number

TIC Function

TIC (exp)
Samples the real time clock and returns the current TIC
value minus the value of EXP. One TIC equals 40
milliseconds (using a TMS9995 processor at 3MHz, as on the
standard TM990/E155 CPU board). TIC (0) obtains the current
value.

Texas Instruments Ltd PAGE 58 March 1982

E155 Euroboard Power BASIC Manual Addendum

4.9 STRING OPERATIONS

<$var> denotes either a literal string, enclosed in
quotes, or a string variable

$<var> denotes a string variable

A varible is specified as being a string variable by
preceeding the variable name by a dollar sign ($).

An individual byte within a dimensioned string variable can
be accessed by following the last array subscript with a
semicolon (;) and the byte position.

Character Assignment. Copy characters into the string
variable until a null (zero) byte is found.

$<var> = <$var>

Character Pick. Copy EXP characters into the string variable
and then terminate the string with a null byte.

$<var> = <$var> , exp

Character Concatenation. Concatenate the strings into the
string variable (in the specified order) and terminate the
completed string with a null byte.

$<var> = <$var> + <$var> [+ <$var>]

Character Replacement. Copy EXP characters into the string
variable (do not add the null byte).

$<var> = <$var> ; exp

Character Insertion. Insert the characters into the string
variable.

$<var> = / <$var>

Character Deletion. Delete EXP characters from the string
variable.

$<var> = / exp

Byte Replacement. Replace the specified byte(s) by the
character equivalent of the ASCII code(s) EXPs.

$<var> = % exp [% exp]

String Comparison. Character strings can be compared by:
IF <$var> <relop> <$var> { , <exp> } THEN <sequence>

where <relop> = relational operator

if the second string is followed by a comma, the expression
following indicates the number of characters to be
compared.

Texas Instruments Ltd PAGE 59 March 1982

E155 Euroboard Power BASIC Manual Addendum

Convert from ASCII to Binary. A character string can be
converted into a number by:

varl = <$var> , var2

VAR1 is where the number will be stored. VAR2 is an 'error
variable' (the delimiting character is stored in the first
byte of this variable).

Convert from Binary to ASCII. A number is converted to a
string simply by assigning the number to a string variable.
The string is automatically terminated with a null
character.

$<var> = exp

Formatted conversions can be made by preceding EXP with the
formatting operator (#) and a string.

$<var> = # <$var> , exp

String Functions

ASC ($<var>)
Returns the ASCII decimal value of the first character in
the specified string.

LEN ($<var>)
Returns the length of the specified string. Zero is
returned if the string is the null string.

MCH ($<varl> , $<var2>)
Return the number of characters that are the same in the two
strings. A zero is returned if no match is found.

SRH ($<varl> , $<var2>)
Return the character position of where the first string is
located in the second. A zero is returned if the search is
unsuccessful.

Texas Instruments Ltd PAGE 60 March 1982

E155 Euroboard Power BASIC Manual Addendum

4.10 INPUT OPTIONS

INPUT feature item [del feature item]

ITEM Either a variable, a string variable, or an
array element

DEL One of:

Delimit ITEMs in the INPUT list
Delimit ITEMs in the INPUT list. Suppress <CR>
<LF> if at the end of the statement line

FEATURE One of:

string Prompt with STRING then get input
? In Upon an invalid input or control charcater, a

GOSUB to the line LN is executed. On return,
the line following the INPUT is executed.

% exp Requires entry of exactly EXP characters - for
one ITEM only

exp A maximum of EXP characters to be entered -
for one item only
Suppress prompting

null Prompt (? for numeric, : for character) and
and then get input

Texas Instruments Ltd PAGE 61 March 1982

E155 Euroboard Power BASIC Manual Addendum

4.11 PRINT OPTIONS

PRINT feature item [del feature item]

ITEM Either a variable, an expression, a string
variable, a string, or an array element

DEL One of:

Delimit ITEMs in the PRINT list and TAB to the
next print field
Delimit ITEMs in the PRINT list. Suppress <CR>
<LF> if at the end of the statement line

FEATURE One of:

string
TAB (exp
exp
, exp
; exp
string

Output STRING
TAB to column specified by EXP
Print EXP in hex free format
Print EXP in hex (word)
Print EXP in hex (byte)
Decimal formatting. STRING can be composed of:
9 Digit holder
0 Digit holder or force 0

Digit holder and floats $
S Digit holder and floats sign

Digit holder before decimal and floats on
negative number
Appears after decimal if negative

E Sign holder after decimal
Decimal point specifier
Comma in output - suppressed if before
significant digit
Translated to decimal point on output

Texas Instruments Ltd PAGE 62 March 1982

E155 Euroboard Power BASIC Manual Addendum

4.12 FLOATING POINT XOP PACKAGE

For use with assembly language routines.

FORMAT XOP GA , OP

where GA - General memory address operand
OP - XOP number

FPAC - Floating Point Accumulator

XOP no. Function

0 LOAD FPAC with 6 byte number addressed by GA
1 STORE FPAC in 6 byte number addressed by GA
2 ADD 6 byte number addressed by GA to FPAC, store

result in FPAC
3 SUBTRACT 6 byte number addressed by GA to FPAC,

store result in FPAC
4 MULTIPLY FPAC by 6 byte number addressed by GA,

store result in FPAC
5 DIVIDE FPAC by 6 byte number addressed by GA,

store result in FPAC
6 SCALE adjusts FPAC's exponent to value of byte

addressed by GA
7 NORMALISE FPAC - 1st hex digit of mantissa is

non-zero. Operand not used
8 CLEAR FPAC. Operand not used
9 NEGATE FPAC - change 1st bit. If FPAC=0 then no

change. Operand not used
10 FLOAT FPAC's 2nd word - 16 bit twos complement

number to floating point. Operand not used

Converting Integer to Floating Point

1) Set words 1 and 3 of 6-byte reserved area to zero.
2) Store integer number in 2nd word of area.
3) LOAD this 6-byte number into FPAC.
4) FLOAT FPAC.
5) STORE FPAC in 6 byte area.

DECNO BSS
FLPT BSS

CLR
CLR
LI
MOV
XOP
XOP
XOP

6
6

@DECNO
@DECNO+4
RO,NUM
RO,@DECNO+2
@DECN0,0
0,10
@FLPT,1

Texas Instruments Ltd PAGE 63 March 1982

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68

