As you are now the owner of this document which should have come to you for free, please

consider making a donation of £1 or more for the upkeep of the (Radar) website which holds
this document. | give my time for free, but it costs me money to bring this document to you.

You can donate here https://blunham.com/Misc/Texas

Many thanks.

Please do not upload this copyright pdf document to any other website. Breach of copyright
may result in a criminal conviction.

This Acrobat document was generated by me, Colin Hinson, from a document held by me. |
requested permission to publish this from Texas Instruments (twice) but received no reply. It
is presented here (for free) and this pdf version of the document is my copyright in much the
same way as a photograph would be. If you believe the document to be under other
copyright, please contact me.

The document should have been downloaded from my website https://blunham.com/, or any

mirror site named on that site. If you downloaded it from elsewhere, please let me know
(particularly if you were charged for it). You can contact me via my Genuki email page:
https://www.genuki.org.uk/big/eng/YKS/various?recipient=colin

You may not copy the file for onward transmission of the data nor attempt to make
monetary gain by the use of these files. If you want someone else to have a copy of the file,
point them at the website. (https://blunham.com/Misc/Texas). Please do not point them at

the file itself as it may move or the site may be updated.

It should be noted that most of the pages are identifiable as having been processed by me.

| put a lot of time into producing these files which is why you are met with this page when you
open the file.

If you find missing pages, pages in the wrong order, anything else wrong with the file or
simply want to make a comment, please drop me a line (see above).

It is my hope that you find the file of use to you.

Colin Hinson
In the village of Blunham, Bedfordshire.

TABLE OF CONTENTS
SECTION TITLE PAGE

1. RODUCTION

T

1 GeENeraleccesssessscacesscscsescsrssssssssssscsossssnccansnnnnss
2 Manual Organizationeecceceeeccesacsssssessssocsrssssascsnscosass
3 Product INdeX.eeeoesecesacnsassssesvssscssosscssnsonssssccnncens
4 Board CharacterisSticCS.eeccececsesecscscssnsessnonscssssnncssosns
5

0

T

- et el b ad e =3
L
~N OV

General SpecificalionS.ceesvecesecsescnssccccssosscsasccsssss
Reference DoCUMENtS.eccceseassssesvscecscssecocsssssoscnnnsces

Glossar‘y...-.--.o---.-.......-.........-..........-.-.......-

IN
1.
1.
1.
1.
1.
1.
1.

2. INSTALLATION AND OPERATION OF THE TM 990/101MA
2e] GENEraAleveeceeeccccsssssssssssssssassssstscssnststtscnnncsononas
2.2 Required Equipment.cceeeerssesssseecesocasessesocancncososessas
2.2.7 POWEr SUPPLlYccessoesstsssvssnososcccacconasncasanessses .
.2 Terminals and CableS.eesessessescecossessossccanensons
.3 Power Cable/Card Cage.sesssssssssseessecssscccccnanncns
4 Parallel I/0 CONNECLOrs.cteseeseccccnconsocosonsnvenees
2 5 Miscellaneous EQuipment.ceeeseceasssesccesenscccsconnes
NPACKINGZe o e sseoeessesosasescensenscssssssssssssssssssssssossss
ower and Terminal HoOOKUPe:eeseesssssoesssscsesssscssnsscccns
4,1 Power Supply ConnectionS.cececcecesscascscsssasccccses
4.2 Terminal HOOKUP:ceesseessessossssssoscsssossscsnanonss
4
e

GNNNN
[

.3 Five-Switch DIP and Status LED.u.cecsescrccsscescscons
Peration.cececscccssssescassreocssacsescssnssscssssnsnsse ese e
5.1 VerificatioN.sseesssssertascesecsosncncssaccccososoenss
¢5.2 Power-Up/Resel.ceceascascseesccccsassoscsccsccasassnns
2.6 Sample ProgramS..cseessscescesccsccsscscossanss secsecssesanas
2.6.1 Sample Program liceeeeecescosssoccccccoscsccnssnsassssns
2.6.2 Sample Program 2..eeeeecceccccescossasaossasssassscnss
Debug Checklistiveeeeeesseosaseaccecsaconsossssssoccsonsssanse
AMPL Groundinge .cesseseessecssssccsccacencacssscscsnnssascons

NNONNNW
.
P 1 1 11

NNNNNNNNPNNNNNNNNN
= WO OO UVIWNNNONNNN o o -

(@]

.
o0~
o
)
—-—
o

2
2.

N
L}

iy

-

3. TIBUG INTERACTIVE DEBUG MONITOR

371 Generaliceecescsscesccesscssosssenseoss sessesssssessessernene

3.2 TIBUG COMMANASeeeeescesssencassosccsosssocssssscsnssssscassocss

3 2.1 Execute Under Breakpoint (B)iseeeecceessesscscccocnns .

«2 CRU Inspect/Change (Clevecresesesceccsotsacososnassons

+3 Dump Memory to Cassette/Paper Tape (D)ecececccacarnnn .

4 Execute Command (E)eeeeeeceesceesooccssccssscosonsenss

.5 Find Command (F)eeeeevovovences ceesssaassesnenne creses

.6 Hexadecimal Arithmetic (H)ueeeeeveooosnon ceseenssseans
7
8
.9
1
1
1

N
[L |

Wwwwwww ww
I
WO OOV &5W

Load Memory from Cassette or Paper Tape (L)eeeeeeeeens
Memory Inspect/Change, Memory Dump (M)eeeeeeeesossssee 3=10
Inspect/Change User WP, PC, and ST Registers (R)......
.10 Execute in Single Step Mode (S).veeveeen. cetesnaanas oo 3-12
1 TI 733 ASR Baud Rate (T)eeeeeeeceeen cresessnaens esssee 3=13
+12 Inspect/Change User Workspace (W)eeeeeeeesoeooceseoses 3=13
r Accessible UtilitieS.ieeeceoesccssnssconsossaceasoenssoes 3=14
Write One Hexadecimal Character to Terminal (XOP 8)... 3-15
Read Hexadecimal Word from Terminal (XOP 9)..cveeveess 3-15
Write Four Hexadecimal Characters to Terminal (XOP 10) 3-16
Echo Character (XOP 11).iieceerveescsscevscnscsscssensns 3=17
Write One Character to Terminal (XOP 12)ceeeceeccessss 3=17
Read One Character from Terminal (XOP 13)cceecsscccees 3=17

w
1

-

e

w
.
w

]

wwwwwwmmwmmmmmwmm

wwwwwwcwwwuwwwwwww

*
WU WL N -

iii

TABLE OF CONTENTS

SECTION TITLE PAGE
3.3.7 Write Message to Terminal (XOP 14)...cceeeevnnnccnseaas 3=17
3.4 TIBUG Error MessSageS.ceecesccccecsscas cressessassscanes cesess 3-18
4, TM 990/101MA INSTRUCTION SET EXECUTION....ceceeeoe Ceevenescasesces U=1
4,1 General...cececeeeocees. Ssesseessesectcctesasenana cescenasses U=1
4.2 User Memory...... tesseasesenesssesoanna cseseesasstssevensan oo U1
4,3 Hardware Registers.....ceeeceeess . desssscass B=1
4,3.1 Program Counter (PC)l.ueceeeecacss cesscecasescnce ceeneen 4-3
4.3.2 Workspace Pointer (WP).veeeoeevnn cencccoees cetscesccsaas 4-3
4.3.3 Status Register (ST)..... ciersenans cssssaseccttcancena 4.3
U4 SoftwWware RegisterS...eceeiecioccercecceccsscncansans cecaeenes 4y
4.5 Instruction Formats and Addressing ModeS.....ceeeececenvens oo B-7
4.5.1 Direct Register AddressSing....cecececececcceeces veee.. 4-8
4.5.2 Indirect Register Addressing........ cteesnans tecessann 4-8
4.5.3 Indirect Register Autoincrement Addressing........ eess U411
4.5.4 Symbolic Memory Addressing, Not Indexed.......... ceees U=
4.5.5 Symbolic Memory Addressing, Indexed........ cesraccnaas 4-11
4.5.6 Immediate Addressing.......... cesens cresestennan cesaes 4-13
4.5.7 Program Counter Relative Addressing.....c.eeeeeece. cees U4-13
4.6 InstructionS....ceece.c.. cesscseccanane ceeressesaneas teceenans AL
4.6.1 Format 1 INStructionS.....ceeee... ceseccssecserees vees U4-18
4.6.2 Format 2 InstructionS.icceeeececsecesscenceccnccancnnss 4.20
4.6.3 Format 3/9 INStructionS..eceeeeeceeceeenaeans ceccssane 422
4.6.4 Format 4 (CRU Multibit) InstructionS..c.ccecececececes. 424
4.6.5 Format 5 (SHIFT) InstructionS..cecececeeece. cetesreenas 425
4.6.6 Format 6 InstructionS..c.eecee.. ceeascecnnee cerecsiena 427
4.6.7 Format 7 (RTWP, CONTROL) InstructionS....... ceeevecons §-30
4.6.8 Format 8 (IMMEDIATE, INTERNAL REGISTER LOAD/STORE)
Instructions....... tessereesenaas ressesa sreesncssacaan 4.31
4,6.9 Format 9 (XOP) InstructionS......... cisessssessscan aes H4-33
5. PROGRAMMING
5.1 GeNeral..vieieceseeececesccncsenssens ceeeeeees cesesetacens eee 5=1
5.2 Programming Considerations...... creescnan ceseseessensessaanne 5-3
5.2.17 Program Organization...cceceevseecsascs ceacssaas cessss 5=3
5.2.2 Executing TM 990/100MA on the ™ 990/101MMA..ceveiveee. B5=3
5.2.3 Required Use of RAM in Programs......... secreseas esees 5=3
5.3 Programming Enviromment............. cesssreenes sessssse caeees B=l
5.3.1 Hardware Registers...... cesens ceeetssassans seseas eeees 5=l
5.3.2 Address Spac€...... ctecssaccas secescssssssrsssssscsess D=5
5.3.3 Vectors (Interrupt and XOP)eceeeesoooens cessssnas cesss 5=5
5.3.4 Workspace Registers........ ceececesssssaresane Ceeseenena 5-6
5.4 Linking InstructionS..ceeeececeesecsanse Ceessena tecsesessccne . 5-6
5.4.1 Branch Instruction (B)..... cessscsans ceecanas ssesesens 5=T
5.4.2 Branch and Link (BL)eseeconn casssses seeesrsettecncenne 5-7
5.4.3 Branch and Load Workspace Pointer (BLWP).:eeeeesveoenn 5-8
5.4.4 Return with Workspace Pointer (RTWP)...... sesscsesssss B=Q
5.4.5 Extended Operation (XOP)..eeeeeeeeeeann sressasseasnens 5-9
5.4.6 Linked-ListS.ceeceesoacacces O I o)
5.5 Communications Register Unit (CRU)...ceveeeresevonncnnns ceees 5-11
5.5.1 CRU Addressing.scccesersccscccsscccessannnsce esessesessse 5=13
5.5.2 CRU Timingeeseesseseescaccsss secesessesssene tesesssess D=14
5.5.3 CRU InstructionS.......... ceeesen cesaseans seesssasees . 5-14

iv

TABLE OF CONTENTS

SECTION TITLE

5.6 Dynamically Relocatable Code..... ceseccesseasccnsanssscscenan
5.7 Programming Hints...c.ceeieenrecersececnceccacacsoncancncanes
5.8 1Interfacing With TIBUG...cccesescosesnssasssscorosssssacnsanes
5.8.1 Program Entry and Exit..ceccenne teecesecetesevenacenna
5.8.2 I/0 Using Monitor XOP'S........ ceeseasaaes tesescessans
5.9 Interrupts and XOP'S..cceeeeceess cecscccsscassens cessetscenen
5.9.17 Interrupt and XOP Linking Areas....... ceeseresscecnsen
5.9.2 TMS 9901 Interval Timer Interrupt Program..... cssaccss

5.9.3 Example of Programming Timer Interrupts for TMS 9901
and TMS 99028, . ceeeeecescessssossssnssosassance seseves
5.10 Move Block Following Passage of Parameters....... teerssesanss
5.11 Block Compare Subroutin€...cceceese. ceescsasesessssscenns cenes
5.12 Unit ID DIP-Switch...... ceesenssasaons ceecscssascenas csesecsn
5.13 CRU Addressable LED..veveeesveceessaseosnnns csesne cesecsnae .o
5.14 Using Main and Auxiliary TMS 9902As for I/0..ceeeccces ceesace

6. THEORY OF OPERATION

6.1 General..... ceenan N Geeesescssnsssessaaneas ceacesee
6.2 Power SpecificationsS........ e eesrasesaasrsassaessscassesanes
6.3 System StruCtUrC.ceciseevenessressasccas ceessssesesaccsssaanes
6.4 System BuSe€S..ecceeee. cescescnas stescscsssencacasans cesececns
6.4.1 Address BuS..cseeeecssccass teseesccaasscancns eseteassas
6.4.2 Data BuS.eceecescsccnnes cesesaesssasss st raestssasnns
6.4.3 CRU BuS.e.... csesssseass secsrssccesssssanss teesrenscca
6.4.4 Control BuSeeeeesveees tesessscastesetsescssenesasacns .
6.5 SysStem ClOCK.«eeeesoesesonsesvosossssassssssccossosssssssssas
6.6 Central Processing Unit.e.ceevescenceess cestesaasna creserrsees
6.7 RESET/LOAD LogiC.eveeseeacs cecscsanee esesecessassiscnanes esess
6.7.1 RESET Function...... ceeean cecsesessasatnesensanns erene
6.7.2 LOAD FunctioN...eeeeceesacss cectsccsccrtctassanas ceeecns
6.7.3 Reset and Load Filtering....c..... cetcscetasscnasecans
6.7.4 CLRCRU SigNal.cetveeeeescccssoscssssscscsesascssnsscoes oo
6.8 External InstruCtionS..eeeceeecsccsasacs cesecssaes cecene P
6.9 Address Decoding..ceeeeessscrsassossccns Creeressecererssensnse
6.9.1 Memory Address DecOdiNg..ceeeeevesceccsscssasssnunasss
6.9.2 CRU Se€leCt.eeeeeesseerscesasssscssssnsssnnsaa ceccasenss
6.10 Memory Timing Signals...... esseaaresssseesesessestannse ceses
6.10.17 Read¥eeeeecessscans ceesessann cesesssenes ceessan crssas
6.10.2 Wait....... e
6.10.3 MEMCYC-...... cesssaase tesssseancas essscaresssase cesee
6.11 Read-Only Memory..ceesceceecsss tressesessensassaas ceeeces ceves
6.12 Random Access Memory....ceceesesecas Cesseseasecesaaseseseannn
6.13 Buffer Control.cceesececcesass ceessassen D Y
6.13.1 Address and Data Buffers........ ceecerserenaan cesesea
6.13.2 Control BufferS..eeecscsesssces tecessessssanans cesees
6.13.3 HOLD-, HOLDA, and DMA..eceeuene ssessscsass ceseeseaces
6.14 Interrupt Structure...eeeeeescesees cerecessscscsctsenncnana e
6.15 Parallel I/O and System Timer........ sesene cesans Cescecccaces
6.15.1 Parallel I/0....... ceecsacesccnnna Ceessesaevetassanen
6.15.2 System Timer.......... cecanan cerecan cecescasessscnns .
6.16 Main Communications Port..c.ec.... teecscsans ceeaes ctesececnas
6.16.1 EIA Interface..eececescecceccnncens S, tesacennna
6.16.2 TTY Interface..... cresees s sceseasissssese s easasanna

1
e PNEEEE WS

(> Ne]

0\010'\0\0\?\0'\0\0\0\

TABLE OF CONTENTS

SECTION TITLE

o 0o Co G0 0O OO x> NN

6.16.3 Multidrop Interfac€..ceeceec.. tteeeesserresttetencnnns
6.17 Auxiliary Communications POPt..ccceeccecececescocceassscosaccss

6.18 Unit ID SWitCheeeeeeerersoaososcsscsscccososenccaasscsonnoses
6.19 Status INdiCatOreeeveeescecccscescocceccsscnccnscsacssoncesas
OPTIONS
7.1 General....... G meesessarrsressesrstcesssssncsssensanaannonns
T.2 Onboard Memory EXpansSioN..cceescesesesssesscersccccscossscsscns
T+2.7 EPROM EXDanSiONecesseescsscssssessoessccssscsoccconnens
T.2.2 RAM EXDANSiON.ecestcecsescsssssessossssscsossssssssanses
Te3 Slow EPROM.:.vieeeroncenocessasccesnsssnncssscsosnsoas csesene
7.4 Serial Communication INLErrUPt...c.eeecescecsccscscsccsccanonns
7.5 RS-232-C/TTY/Multidrop Interfaces (Main Port, P2)e.ciceeeeecn.
7.5.1 TTY Interfacl.ccececescasces cecsereerssscsesesesssenas
7.5.2 RS-232-C InterfacCecececececsscas cesssesssesanae cesesns
7.5.3 Multidrop Interface...cececes. ceesessesrsesaans cresans
.6 External System RESET/LOAD....ceceeenen cesrescessscresssanans
.7 Remote CommunicationS...eeceeceae Cesvesesesecccarcsscsessanns
.8 Memory Map Change..eeeeees. Ceesereesasevaceareresrecnns ceeees
.9 TM 990/402 Line-by-Line Assembler........ cesesassasscseeveans
.10 TM 990/301 Microterminal.seeeeeeesscececovecooncnaconnnannncns
¢11 OEM ChasSiSeeesceeessoscccsssnssssasssscsscosesssssnvosssscencasse

PPLICATIONS

T General.eceeeececcsccesasnense cresecessscesssccnse s T
2 Offboard RAM...eeeeeeeceeeoreoscsoncansoonanees Cececscenennnn
3 Offboard TMS 9907Teveecececcenss Ceececsecenenescnsennnenn ceeen
.4 Offboard Eight-Bit I/0 POrte.eeceseeecocscosess cerececscaneans
5

6

Extra RS-232-C Terminal POrt..ceecceceeerecssoncrosssssoccees
Direct Memory Access (DMA) Applications...... cessessesssssans
8.6.17 DMA System Timing.e.eeeeeeocececsscosonseses cereceanes
8.6.2 Memory Cycle Timing.ceeseescssccocsncacsnccoconancanns
8.6.3 DMA System GuidelineS...cececereeeessocsocceseses ceves
8.6.4 Multiple-Device Direct Memory Access Controller.......
EIA Serial Port Applications...... secscaresans seesessesensene
8.7.1 Cable Pin AssignmentS.....cec... tesesssssasasss ceeesas
8.7.2 Modem (Data Set) Interface Signal DefinitionS.........

8.7

APPENDICES

WIRING TELETYPE MODEL 3320/5JE FOR TM 990/101MA
EIA RS-232-C CABLING

ASCII CODE

BINARY, DECIMAL, AND HEXADECIMAL NUMBERING
PARTS LIST

SCHEMATICS

990 OBJECT CODE FORMAT
P1, P2, P3, AND P4 PIN ASSIGNMENTS
TM 990/301 MICROTERMINAL

AUHIOQOEEHOO WD

EXAMPLE PROGRAMS

vi

PAGE

6-37
6-38
6-40
6-40

R N
- 001~ ~]~3] O\ s e
NN

~J~J~J~J~J~J~J1J~J~J-J~J~J~J~J

\L\
w N

7-13

oooooooo?ooooooooo
=] =] ON b e s
-

1
—_
—_

8-12

o
I

——

-3

8-17
8-19

CRU INSTRUCTION AND ADDRESSING EXAMPLES USING TMS 9901

LIST OF ILLUSTRATIONS

FIGURE TITLE PAGE
1-1 TM 990/101MA Major ComponentS.ccececcscccecssssscesscnsanansas 1-1
1-2 TM 990/101TMA DimensSioNS.ececcscecesecsssssosssssoscossassscsccssse 1=2
1-3 Main and Expansion EPROM and RAM...ccceeesecsccesccssasascecss 1=-5
2-1 Power Supply HOOKUP.eeseeseesosscscssssssncossscscassssasanasnss 2=
2-2 TM 990/101MA Board in a TM 990/510A Card Cag€.cecececccsssscss 2=5
2-3 T43 KSR Terminal HOOKUD:eeoeososscasoascccssccsssscscscsssssese 2=D
2-4 Connector P2 Connected to Model TU3 KSRuseeesoeveonsossccsenss 2=0
2-5 Connector P2 Connected to TTY Devic€ecsevsacees cescccscnssscss 2=T
3-1 Minimum Memory Requirements for TIBUG...cceeecccocccsascesasnss 3=2
3-2 CRU Bits Inspected by C Command..ceeesceecessscsssncsssosssesss 3=U
3-3 733 ASR Module Assembly Switch Panel...ccceeecssccrcrescaceases 3=7
3-4 Tape TabSeeeesessoscsscssasns P e
41 MemOry MapDeeeeeeeoeosvsossccscnacenansncccane cececsrsassasnases U=2
42 Status Register..ceeeessssssssscsssssssssssscssasssscsssasnnnes 43
4-3 Workspace ExXample.eeeeecessccocecosssassocense ceesccnas ceeennses U=6
-y TM 990/101MA Instruction FormatS..cececeeeescccccevesnccssscess 4=T
4.5 Direct Register Addressing EXampleS..cessssssssscosscsssoosses 4=9
4-6 Indirect Register Addressing Example€....... cresssense esevennsss U4=10
4-7 Indirect Register Autoincrement Addressing Example...... eesees B=10
4.8 Direct Memory Addressing EXampleS...eeececceccccsces ceeeesansss B=12
4-9 Direct Memory Addressing, Indexed Example....cccc.. cessssesess 4=13
4-10 BLWP EXample.ececsessescescscosassscansssonssen cetescescsssasee 4.29
4-11 XOP Example.eeceseesoscss seeesscssssesrssessacsssccnaceas eeeeess 435
5-1 Source Listinge.esessccscsessccccsccsscana cecscsecssssssasssans D=2
5-2 Example of Separate Programs Joined by Branches to Absolute

AddresseS.cececsceccss e R
5-3 Linked List Exampleé.sceecsssscase ceccese cesessese ececsscscsses D=11
5-4 CRU Base and Bit AddresSsSeS....sssescesesssssscsssasssssssnssss 5=13
5-5 TMS 9900 CRU Interface Timing.seeececesscccesssaes ceessssssces H=15
5-6 LDCR INStruction.eeeececcccceccaccscosconsese T 1
5-7 STCR Instruction..eeeeeseececs tecescessecesetstsstesssesnesnnnne oo 5-17
5-8 Addition of Displacement and R12 Contents to Drive CRU Bit

AJAreSS.eeeeessosconossssssssosvsssossssssvccssonsnne ceesssesss 5-18
5-9 Example of Program with Coding Added to Make it Relocatable... 5-19
5-10 Examples of Non Self-Relocating Code and Self-Relocating Code. 5-20
5-11 Interrupt Sequence..ceaece.. Ceccsccssreesteetese st enreseenene .. 5=26
5-12 Six-Word Interrupt Linking Aread..ccceccececasssocescsnans seeee 5227
5-13 Seven-Word XOP Interrupt Linking Area..ccesececccccssssssss cees 5-29
5-14 Enabling and Triggering TMS 9901 Interval Timer...cccceeeeeses 5=31
5-15 Example of Code to Run TMS 9901 Interval Timer...... seseacesss H=33
5-16 Example Program Using Timer Interrupts 3 and 4..eeeeeeeeeeees. 5-38
5-17 Move Block of Bytes Example Subroutin@...cecececscccecescasses 5=-50
5-18 Compare Blocks of Bytes Example Subroutin€eseccesesscssscssses 5=51
5-19 Reading the DIP Switch..... ceescssssssnns cteescessssesssnsnnan 5-53
5-20 Example Code to Check Board ID at DIP Switch (Multidrop)...... 5-54
5-21 Coding Example to Ascertain System Configuration Through Dip

Switch Settings...eeevenn.. cernserseanes sseesesssssasssacssnss H=5Y
5-22 Coding Example to Blink LED On and Off..cceececsnvscossassssses H=55
5-23 Example Program to Converse Through Main/Auxiliary TMS 9902As. 5-57

vii

LIST OF ILLUSTRATIONS

FIGURE TITLE : PAGE

TM 990/101MA Block Diagram...sesesecesecscsososcssscsscacacsne O
Crystal-Controlled OperatioN..ccceeseseceessssessscscasscscaces b
TMS 9900 Pin FUNCLiONS...cececeiocsesescssnsssssssssssscsavans b
TMS 9900 Data and Address FlOW...eccecscsssscoscosseassscscnses O
TMS 9900 CPU FlOWChArt..eeeeeeeeecesscsssesssossssancssccsasas O
RESET and LOAD LOZiC.eeescacessasssesscscssosssssnaascsacacccce O
TM 990/101MA Memory AddresSSing...csecssesesssscsscesscsccsscnss O
Memory Address Decode PROM....ccecesccsccsscccssosoncasncccoecs D=
6
6
6
6
6
6
6
6

Decoding Circuitry for CRU I/0 AddressesS.....ceecceecccccccoccs
0 TMS 9900 Memory Bus Timing..eccecece. csessesesssscscsesssnrsens
1 Read-0nly MemoOry..ceeceesceccsctsscasssssssascssascssosccscscscccns
-12 Random AccCeSS MemOry.eeecceecoccecessosossossssscsasscscscsscsscnss
6-13 TMS 9901.ceeececccnannen cessecssssene ceeassssrasssssessarsesss
6-14 Serial I/0 Port EIA InterfacC.cecssccececcscsccssccssccscoascsacnas
6-15 Serial I/0 Port TTY Interface...cceeeececceassscosscsvecssnnans
6-16 Multidrop Interface.ccesscesssssscesassosssccccsssccssccnssons

0\0\0\0\0\0\?\0\0\0\0\0\
- s O~V EWN -

|
WWWWNMNMNNN 2w w0
O~ NRWO OO ORNRWN -

Jumper Placement..cccccececcecescasccsscosescsensccncascsssncns
Memory and Capacitor Placement....ceceeececceccecaces ceevecens
Memory Expansion MApS..ceececccccciesssssstsctscsssnscsnsscsacns
Four Interrupt-Causing Conditions at TMS 9902A..ccceevecceccas
Multidrop System....ccceevacecane ceescsesesescssescssnessesecens .
Multidrop Cabling..eeceeecescecsossccosessacasosssnsasssacnnes
Master-Slave Full Duplex Multidrop System..c.eececccsss ceseses
Half-Duplex Multidrop Systemecceceseecsessccacscasces casseaces
Line-by-Line Assembler Output.ccccecceccscsccccccnssnnscncsscns
TM 990/301 Microterminal.ce.ceeececoceccocsoscssoscosnscsccasocscns
TM 990/510A OEM ChasSSiS.eseeccssccascscsssccsssssoccssacccsase =16
OEM Chassis Backplane SchematiC...ecececccscseccssovccncssncsosce

[}
—) —
Ul B -

NN NN

I
e = O O~ OOV EWN -

R e B e I I IS I IR
I
N O

-
1
—

-~

[}
EFWN =

Major Components used in I/0..cccececccccccceccsccccccccncncce
Offboard MemMOrYeceseeeesceosscessccssscsssscsscssosssscascsocens
Circuitry to add TMS 9901 Offboard..ccceceeceseccscccscosccccs
8-Bit 9905/06 POrt.ecevececsccassscsosecscscccsncascssscsncscssne
RS=232=C POrf.ecsceesnsssccssoscnanaens cesesassescsenssssascenns
DMA Bus CONtroleeevecescssosaaccsscsssascvesoscvosssossssvsscccs
CPU HOLD- and HOLDA Timing.s.seeesccccocooocanscoosasovsesassanses
DMA System Timing..eeccececscccscscesscscsssasscssscsssccnscnccss
Memory Cycle Timing....... ceescsesesssrcscnassecsesssessasrsone
DMA System Block Diagrameecesecesccecsssocssosvsscsascacsssscsanse
DMA Device CONtroller...cccecececsescsosocsscoassssccscssensasss 0=13
DMA CONEIOllereeeeeceeceecseocescsossssascsscsssscsscssssseases O=1H
DMA Controller TimiNng...c.oeeecsssocssssscsssassscccscssscacsae 8-16
Cable CONNECtioNS..ceceeeeeossscssessscssscsscssscssscassnsses 8=17

111 |
[T | L L
S\OQO\U'IJ‘:WN

?ooooooooo?ooooooooo
-—d b
[SSIV)

o

]
— =P oo~

—_

—)
E— VO \V)

viii

LIST OF TABLES

TABLE TITLE PAGE

—_
1
-

TM 990/101MA Configurationso......-..................-........ 1-u

n
1
-

Board Jumper Positions as Shippedeccccececscecccsccscscscseses 2-3

TIBUG CoOmMAndS..escesssocasssssccsasccssesscssassssoscsssccnanssas 3=1
Command Syntax ConventioNnS.ceececssscscccesscscssscosccscansascns 3-3
User Accessible UtilitieS.eescceesesosescssescsscssescscscsnoanas
TIBUG Error MesSsSageS.cisescecssssesscsscscscsssss ceesessssennas

]
W -

-18

Status Bits Affected by Instructions..ceeceececereee cesescnnss
Instruction Description TermsS.ccesceececcscesesccasscsssssoncs
Instruction Set, Alphabetical IndeX..eceveescccsssssnsccaseases
Instruction Set, Numerical IndeX..ceeeeeccccceccoscescsasssasncne
Comparison of Jumps, Branches, XOP'S..... ceecscsessasssscssans

1
W = wd a1
OoOuU =

-l‘—'-l'—'J:‘J:’-::‘ Wi W w

-l:'-l:‘-l‘-‘f’-l: w w

[
U EWN o

Assembler Directives Used in ExampleS..ccececceccsccscssccssscnnne
Register Reserved ApplicationN.cecieccececacescsccccsccsccscsnsns
TM 990/101MA Predefined CRU AddresSSeS.ciecssesssocesascscnssas
Alternate Programming ConventionS....ceeesecssscesscsacass cees
Preprogrammed Interrupt and User XOP Trap Vectors..ceeeeececes
Interrupt and User XOP Linking AreaS....cceceees cseeseavens ces
Interrupt Example Program Description..i.escecssecsccescccasaas
ASRFLAG ValueS.eeeesesssessscsascasnonns cesresscscsacsssons .o

U‘lU'Ikﬂ\lJ'lkﬂU'lU'l\.n
O~I U &E=mWN =

1
QWM NN = O
O Ul & N

Device Supply Voltage Pin AssignmentS...ccoceecesss cescessenen
Bus Signals..eeceess sessrscsscsnasas ceseeteccsccsesasennrannse
Control Bus FUNCtioNS.essseesceveescscscsccssssscccsscosoccncses
External InstructionS.s.icsscscccscessscsscesscosscssosssnosoase
TM 990/101MA CRU Map..... etessstersstessesccscesssssansscnnans
Implicit Decoded CRU Bit AdAresSSeS..seecesscesscscccesssscesses 0=25
Onboard Device CRU AdAreSS.sececsrscscesscssccocscscsacosanne .. 6=25
Data Buffers....... ceeessssessssses ceerserenacnnns ceeessvsssss 6=30
Interrupt CharacteristicS.ciceecrcceceraresccccercscnsscsnosss 0=31
Dedicated Interrupt Descriplion..cceieececececccecasscosennens 6-31
DTR Hardware and Software OptionS.eeeecceccccescccacccocsoesoss 6=H0

OOV OVON U'IklnkﬂU'!U'IU'IU'IU'I

O‘\O\O\O\O\(I}\O\C\O\O\O‘\
= 2 VOO~ UL&EWN =
- O

Master Jumper Table.sssceeccessosccsesessascscnnnnas I O
Jumper Pins by Board Dash Number (Factory Installation)....... 7-5
Slow EPROM...... Ceseesceccsrosscarnsenenae csecsacna cesseesssean T=7
Multidrop Jumper Table...... ceseescssseseccscscsssvessessvssses [=10

1 1
EZWN -

103/113 Data Set Cableeeeeeeseeesacansanassocososs Cesecceasens 8-17
202/212 Dat Set Cableceeeeeeeeeeesscscsessnnnnnns ceececenenan . 8-18
2071 Data Set Cableeeieeeeeeeeesesennesscnacsns ceceseecsessesess 8-18
Data Terminal Cable...eeeeeceesvcscccascosvanscans ceeessensess 8=19

@®Em =3
EWN -

ix

SECTION 1
INTRODUCTION
1.1 GENERAL |

The Texas Instruments TM 990/10iMA is a self-contained microcomputer on a
single printed-circuit board. The board's component side is shown in Figure
1-1, which also highlights major features and components. Figure 1-2 shows
board dimensions. This microcomputer board contains features found on
computer systems of much larger size, including a central processing unit
(CPU) with hardware multiply and divide, programmable serial and parallel I/0
lines, external interrupts, and a debug-monitor to assist the programmer in
program development and execution. Other features include:

e TMS 9900 microprocessor based system: the micrdprocessor with the
minicomputer instruction set - software compatible with other members
of the 990 family.

e 1K X 16 bits of 2114 random-access memory (RAM) expandable onboard to
2K X 16 bits.

e 1K x 16 bits of TMS 2708 erasable programmable read-only memory
(EPROM), expandable onboard to 2K X 16 bits. Simple jumper
modifications enable substitution of the larger TMS 2716 EPROMs (16K
bits each) for the smaller TMS 2708s (8K bits each). Four TMS 2716s
permit EPROM expansion to 4K x 16 bits.

e Three board configurations are available. The characteristics of each
configuration are explained in section 1.3.

e Buffered address, data, and control lines for offboard memory and 1/0
expansion; full DMA capabilities are provided by the buffer
controllers. .

e 3 MHz crystal-controlled clock.

e One 16-bit parallel I/O port, each bit is individually programmable.

e Modified EIA RS-232-C serial I/0 interface, capable of communication
to both EIA-compatible terminals and popular modems (data sets).

e A local serial I/0 port, with interfaces for an EIA terminal and
either a Teletype (TTY) or a twisted-pair balanced-line multidrop
system (interface choices are detailed in section 1.3).

e Three programmable interval timers.

e 17 prioritized interrupts, including RESET and LOAD functions.
Interrupt 6 is level triggered (active LOW) and edge-triggered (either
polarity) and latched onboard.

¢ A directly addressable five-position DIP switch and an addressable
light emitting diode (LED) for custom system applications.

¢ PROM memory decoder permits easy reassignment of memory map config-
urations; see Figure 1-3 for memory map of the standard board.

1-1

-1

AUXILIARY MAIN
PARALLEL |)/o PORT (P3) PORT (P2)
PORT (P4
A(- — A n'n\ A -
@ ® C
RESET R e
SWITCH s':—_—'_—>(_j “o nzv‘?—- m; §° BV, o J@L T — " ED_ : I} :DEE‘L_ wﬂ
12 MHz -'_‘mj? ‘ {1 i i [El ‘ﬁdﬁﬁrn JE IR
W1 S S Sa'® s [0 e s o Y51y 2
CRYSTAL — Bmﬁ 3 - W unm 1 v2? - ' oEssuae | AL TN
\ * 22 £z 5 . R TERM ™™™ LMODEM & 2 \LE
"]
s | e O S | '“E
5 SWIT 1 Rom T UZ0 L vze e g:g T ueo
1.D. DIP — .o ‘;:]——F’:z]ﬁ : =
S— 1[J g) St
ﬂﬁ)ﬁ 1 uzs ' 1 u3s
gacs
' '= — | | I3
1U24 Eg ULz 1 uas
TIM9904A 5 v

CLOCK DRIVER —j

748287 MEMORY

DECODE PROM —

TM89900 —

TMS89901 —|

TEST POINT 1 —

cn /{1 c22
.
[
4

5 MADE IN US.A,

uso
I =
lez—1 0 EL:]{[]E
5 use 5 ::E:éfr_ ‘.".T’%XIA::‘ INSTnuueun)
i ﬁ
uas
U‘% z
v cn 55 S
. l =] mvl1
N~ 1,
+{3 1 \\ . 5 2t J

~— LED

-—TM8989802A FOR
AUXILIARY PORT

~—TM89902A FOR
MAIN PORT

CONNECTOR P1 /

Z

FIGURE 1-1.

ADDRESS 'B
AND’
DATA BUFFERS

[RAM SOCKETS

T™ 990/101MA MAJOR COMPONENTS

EPROM SOCKETS

SNOISNAWIA VWIOT/066 WL "Z-1 H4NDId

(76°L0)
00" LL
L (7L°9L) |
| 9¢°9 |
o @
wn O
~ o
2 |@ @ |
_) y
(A (96°¢) | (££°9)
I sYtY oovti 0L=2

NOTE
Top dimensions are in inches and bottom dimensions, in parenthesis, are in

centimeters.

1-3

1.2 MANUAL ORGANIZATION

Section 1 covers board specifications and characteristics. A glossary in
section 1.7 explains terms used throughout the manual.

Section 2 explains how to install, power-up, and operate the TM 990/101MA
microcomputer with the addition of a data terminal, power supplies, and
appropriate connectors.

Section 3 explains how to communicate with the TM 990/101MA using the TIBUG
monitor. This versatile monitor, complete with supervisor calls and operator
communication commands, facilitates the development and execution of software.

Section 4 describes the instruction set of the TM 990/101MA, giving examples

of each class of instruction and providing some explanation of the TMS 9900
architecture.

Section 5 explains basic programming procedures for the microcomputer, giving
an explanation .of the programming environment and hardware-dependent features.
Numerous program examples are included for using the various facilities of the
TM 990/101MA.

Section 6 is a basic theory of operation, explaining the hardware design
configuration and circuitry. This section provides explanations of the bus
structure, the control logic, and the various subsystems which make up the
microcomputer.

Section 7 describes various options available for the microcomputer, both
those suppplied onboard and those which Texas Instruments offers for offboard
expansion of* the system.

Section 8 features various hardware applications which can be built using the
™™ 990/101MA. :

1.3 PRODUCT INDEX

The TM 990/101MA microcomputer is available in three different configurations,
which are specified by a dash number appended to the product name; e.g., TM
990/101MA-1. These configurations are listed in Table 1-1. A memory map is
shown in Figure 1-3.

TABLE 1-1. TM 990/101MA CONFIGURATIONS

T™ 990/101MA EPROM RAM Main Serial Port Option
Dash No. | Socketed Program (EIA Terminal I/F Stand)
-1 2 TMS 2708 TIBUG Monitor 4y 2114 TTY
(1K x 16) (1K x 16)
-2 2 TMS 2716 Blank § 2114 Multidrop
(2K x 16) (1K x 16)
-3 4 TMS 2716 Blank 8 2114 ' TTY
(4K x 16) (2K x 16)

1-4

MAIN EPROM*

0000
0800 \ 07FF

7& ________ OFFF

EXPANSION _/
EPROM

EXPANSION

RAM _\

FOO00 N ——————— -4

F800 - FIFF
X FFFF

/ T™ 990/101MA
MAIN RAM :

*EPROM’s pragrammed with TIBUG monitor.

FIGURE 1-3. MAIN AND EXPANSION EPROM AND RAM

1.4 BOARD CHARACTERISTICS

Figure 1-1 shows the major portions and components of the microcomputer. The
system bus connector is P1, which is a 100-pin (50 each side) PC board edge
connector spaced on 0.125 inch centers. Connector P2 is the main serial port
and P3 is the RS-232-C auxiliary serial port. Both connectors are standard
25-position female jacks used in RS-232-C communications. The parallel 1/0
port is PC board edge connector P4, which has 40 pins (20 each side) spaced on
0.1-inch centers. ‘ '

Figure 1-2 shows the PC board silkscreen markings which detail the various
components on the board as well as the board dimensions and tolerances.

1.5 GENERAL SPECIFICATIONS

Power Consumption: +5V +12V =12V
Typ Max Typ Max Typ Max
TM 990/ 10 1MA-1 1.0 2.2 0.20 0.40 0.10 0.40
TM 990/101MA-2 1.0 2.2 0.20 0.40 0.10 0.40
T 990/101MA-3 1.1 2.6 0.25 0.50 0.10 0.50

Clock Rate: 3 MHz

Baud Rates (Set by TIBUG): 110, 300, 600, 1200, 2400, 4800, 9600, 19200

Memory Size: The TM 990/101MA-1 microcomputer is shipped with:

RAM: Four 2114 (1K X 4 bits each)
EPROM: Two TMS 2708 (1K X 8 bits eath), préprogrammed with TIBUG.

Total Memory Capacity:
RAM: Eight 2114's (1K X 4 bits each)
EPROM: Four TMS 2708's (1K X 8 bits each) or
Four TMS 2716's (2K x 8 bits each)

Board Dimensions: See Flgure 1-2.

Parallel I/0 Port (PM): One 16-bit port, uses TMS 9901 programmable systems
interface.

Serial I/0 Port (P2 and P3): Two asynchronous ports:
Main port (P2) has two interfaces: RS-232-C answer mode and either a TTY
or a balanced-line differential multidrop interface.

Auxiliary port (P3) meets "RS—232-C‘specification interface, capable of
either originate or answer mode. :

Both serial ports use TMS 9902A asynchronous communication controllers,

but the auxiliary port will readily accept the TMS 9903 synchronous

communication controller. Simply plug in the TMS 9903 for synchronous
systems. -

1.6 REFERENCE DOCUMENTS

The following documents prov1de supplementary information to the TM 990/101MA
User's Manual.

e TMS 9900 Microprocessor Data Manual

e TMS 9901 Programmable Systems Interface Data Manual

e TMS 9902A Asynchronous Communication Controller Data Manual
e TMS 9903 Synchronous Communicatioe;Controller Data Manual

e TMS 990 Computer, TMS‘9900 Microprocessor Assembly Language
Programmer's Guide (P/N 943441-9701)

e TM 990/301 Microterminal

e TM 990/4Q1 TIBUG Monitor Listing

e TM 990/402 Line-by-Line Assembler User's Guide

e TM 990/502 Cable Assembly (RS-232-C)

e TM 990/503A Cable Assembly (TI Terminal T43 or T45)
e TM 990/504A Cable Assembly (Teletype)

e TM 990/506 Cable Assembly (Modem cable for /101 board)

1-6

e TM 990/5104/520A/530 Card Cage
e TM 990/511 Extender Board User's Guide

¢ TM 990/512/513 Prototyping Board User's Guide

1.7 GLOSSARY

The following are definitions of terms used with the TM 990/101MA. Applicable
areas in this manual are in parentheses.

Absolute Address: The actual memory address in quantity of bytes. Memory
addressing is usually represented in hexadecimal from 00004¢ to FFFF¢g for the
T™ 990/101MA. .

Alphanumeric Character: Letters, numbers, and associated symbols.

ASCII Code: a seven-bit code used to represent alphanumeric characters and
control (Appendix C).

Assembler: Program that translates assembly language source statements into
object code.

Assembly Language: Mnemonics which can be interpreted by an assembler and
translated into an object program (section 4.6).

Bit: The smallest part of a word; it has a value of either a 1 or O.

Breakpoint: Memory address where a program is intentionally halted. This is
a program debugging tool.

Byte: Eight bits or half a word.

DO D7 D8 D15
| M.S. byte | L.S. byte] 7
MSb (most significant bit) LSb (least significant bit)

Carry: A carry occurs when the most significant bit is carried out in an
arithmetic operation (i.e., result cannot be contained in only 16 bits),
(section 4.3.3.4).

Central Processing Unit (CPU): The "heart" of the computer: responsibilites
include instruction access and interpretation, arithmetic functions, I/0
memory access. The TMS 9900 is the CPU of the 101MA.

Chad: Dot-like paper particles resulting from the punching of paper tape.

Command Scanner: A giveh set of instructions in the TIBUG monitor which takes

the user's input from the terminal and searches a table for the proper code to
execute.

Context Switch: Change in program execution environment, includes new program
counter (PC) value and new workspace area.

CRU (Communications Register Unit): The TMS 9900's general purpose, command-

1-7

driven input/output interface. The CRU provides up to 4096 directly
addressable input and output bits (section 5.5).

Effective Address: Memory address value resulting from interpretation of an
instruction operand, required for execution of that instruction.

EPROM: See Read Only Memory.
Hexadecimal: Numerical notation in the base 16 (Appendix D).

Immediate Addressing: An immediate or absolute- value (16-bits) is part of the
instruction (second word of instruction).

Indexed Addressing: The effective address is the sum of the contents of an
index register and an absolute (or symbolic) address (section 4.5.5).

Indirect Addressing: The effective address is the contents of a register
(section 4.5.2).

Interrupt: Context switch in which new workspace pointer (WP) and program
counter (PC) values are obtained from one of 16 interrupt traps in memory
addresses 00001g to 003E{g (section 5.9).

I/0: The input/output lines are the signals which connect an external device
to the data lines of the TMS 9900. .

Least Significant Bit (LSB): Bit having the smallest value (smallest power of
base 2): represented by the right-most bit.

Link: The process by which two or more object code modules are combined into
one, with cross-referenced label address locations being resolved.

Load: Transfer control to operating system using the equivalent of a BLWP
instruction to vectors in upper memory (FFFCq1¢ and FFFE1g). See Reset.

Loader: Program that places one or more absolute or relocatable object
programs into memory (Appendix G).

Machine Language: Binary code that can be interpreted by the CPU (Table 4-4),.

Monitor: A program that assists in the real-time aspects of program execution
such as operator command interpretation and supervisor call execution.
Sometimes called supervisor (Section 3).

Most Significant Bit (MSB): Bit having the most value; the left-hand bit
representing the highest power of base 2. This bit is often used to show sign
with a 1 indicating negative and a 0 indicating positive.

Object Program: The hexadecimal interpretations of source code output by an
assembler program. This is the code executed when loaded into memory.

One's Complement: Binary representation of a number in which the negative of
the number is the complement or inverse of the positive number (all ones
become zeroes, vice versa). The MSB is one for negative numbers and zero for
positive. Two representations exist for zero: all ones or all zeroes.

Op Code: Binary operation code interpreted by the CPU to execute the

1-8

instruction (section 14.5).

Overflow: An overflow occurs when the result of an arithmetic operation
cannot be represented in two's complement (i.e., in 15 bits plus sign bit),
(section 4.3.3.5).

Parity: Means for checking validity of a series of bits, usually a byte. 0dd
parity means an odd number of one bits; even parity means an even number of
one bits. A parity bit is set to make all bytes conform to the selected
parity. If the parity is not as anticipated, an error flag can be set by
software. The parity jump instruction can be used to determine parity
(section 4.3.3.6).

PC Board (Printed Circuit Board): A copper-coated fiberglass or phenolic
board on which areas of copper are selectively etched away,- leaving conductor
paths forming a circuit. Various other processes such as soldermasking and
silkscreen markings are added to higher quality PC boards.

Program Counter (PC): Hardware register that points to the next instruction
to be executed or next word to be interpreted (section 4.3.1).

"PROM: See Read Only Memory.

Random Access Memory (RAM): Memory that can be written to as well as read
from (vs. ROM).

Read Only Memory (ROM): Memory that can only be read from (can't change
contents). Some can be programmed (PROM) using a PROM burner. Some PROMs can
be erased (EPROMs) by exposure to ultraviolet light.

Reset: Transfer control to operating system using the equivalent of a BLWP
instruction to vectors in lower memory (000014 and 00024g). See Load.

Source Program: Programs written in mnemonics that can be translated into
machine language (by an assembler).

Status Register (ST): Hardware register that reflects the outcome of a
previous instruction and the current interrupt mask (section 4.3.3).

Supervisor: See Monitor.

Utilities: A unique set of instructions used by different parts of the
program to perform the same function. In the case of TIBUG, the utilities are
the I/0 XOPs (section 3.3).

Word: Sixteen bits or two bytes.

Workspace Register Area:‘ Sixteen words, designated registers 0 to 15, located
in RAM for use by the executing program (section 4.4).

Workspace Pointer (WP): Hardware register that contains the memory address of
the beginning (register 0) of the workspace area (section 4.3.2).

1-9

SECTION 2
INSTALLATION AND OPERATION OF THE TM 990/101MA
2.1 GENERAL

This section explains procedures for unpacking and setting up the TM 990/101MA
board for operation. This section assumes (1) the TIBUG monitor is resident
on EPROMs as initially shipped from the factory, and (2) that a terminal
suitable for connection to the main communications port is used with the
proper cable assembly.

CAUTION

Be sure that the correct cable assembly is used with your data
terminal. For teletypewriters (TTY), refer to Appendix A. For
RS-232-C compatible terminals, refer to Appendix B for the signal
configuration used by the main I/0 port. Most RS-232-C compatible
terminals, such as a Lear Siegler ADM-1, will require the TM 990/502
cable or equivalent. A TI T43 or TU5 must use a TM 990/503A cable or
equivalent because of the connector on the terminal end of the cable.-
A TI 733 requires the use of a TM 990/505 cable or equivalent. Many
RS-232-C compatible terminals come with their own cables, and
therefore will probably work with no problem.

2.2 REQUIRED EQUIPMENT

The basic equipment required, along with appropriate options, is explained in
the following sections.

2.2.1 Power Supply
A power supply capable of meeting at least the following specifications is

required. A heavier duty supply is recommended, if possible, especially for
supplying the +5 voltage.

VOLTAGE REGULATION CURRENT

+5 V ' 3% 2.2 A
-12 v 3% 0.4 A
+12 V 3% 0.4 A

2.2.2 Terminals And Cables

A 25-pin RS-232 male plug, type DB25P, is required. Ready made cables are
available from TI: see Appendix A or B.

® RS-232-C compatible terminal, including the TI 733 (using its own
cable): see Appendix B to verify cabling you already have, or for
instructions to make a custom cable.

e TI TU43/745: see Appendix B for special cabling required (these
terminals usually come with the correct cable).

e Teletype Model 3320/5JE (for TM 990/101MA-1 and -3 microcomputer
boards only): see Appendix A for required modifications for 20 mA
neutral current-loop operation and proper cable connections.

2-1

NOTE

If you want to make your own cable, be aware that the connector plugs
of various vendors, including TI, do not necessarily use the numbering
schemes on the board edge connector. ALWAYS refer to the board edge
when wiring a connector.

2.2.3 Power Cable/Card Cage

The use of a TM 990/510A card cage or equivalent facilitates operation and
setup. Alternately, one of the following 100-pin, 0.125 inch (center-to-
center) PCB edge connectors may be used to interface with connector P1, such
as with wire-wrap models:

e TI H431111-50 e Amphenol 225-804-50

e Viking 3VH50/9CND5 e Elco 00-6064-100-061-001

2.2.4 Parallel I/0 Connector

If parallel I/0 port P4 is used, a ribbon cable with a U4O0-pin, 0.1-inch center
spacing PCB edge connector is needed. (The TIBUG monitor does not use the
parallel port in its normal processing.) Wire-wrap connector examples are TI
H421111-20 and Viking 3VH20/1JND5.

2.2.5 Miscellaneous Equipment

e Volt-Ohmmeter to measure completed/open connections and to verify
power supply voltages and connections.

e If any custom connections are required, a soldering iron (25-45 watt),
rosin core solder, and wire are needed. Suggested wire sizes are 18
AWG insulated stranded wire for power connections, 24 AWG insulated
stranded wire for I/0 connections.

2.3 UNPACKING

Lift the TM 990/101MA board from its carton and remove the protective
wrapping. Check the board for shipping damages. If any discrepancy is found,
notify your TI distributor.

Verify that data manuals for the TMS 9900, TMS 9901, and TMS 9902A devices are
included.

2.4 POWER AND TERMINAL HOOKUP

These procedures assume that the TIBUG monitor is resident in the required
address space (00004¢ to O7FF16), and that a terminal and cable of the proper
type to match the intended serial interface (TTY, EIA, multidrop) is also
employed.

Check the board and verify that the jumper configuration is as described in
Table 2-1. Table 7-1 (in Section 7, Options) further defines jumper
configurations.

CAUTION

Before connecting or disconnecting a connector to P4, TURN OFF the
power. Incorrect placement of the parallel connector (P4) with
power applied can damage the board.

2-2

TABLE 2-1. BOARD JUMPER POSITIONS AS SHIPPED

Function Stake Pins Used Proper Connection & Description
Interrupt 4 source - E1, E2, E3 E1 to E2 - pin 18, connector P1
Interrupt 5 source E4, E5, E6 E4 to E5 - pin 17, connector P1
Slow EPROM E7, E8, E53 E8 to E53 - No WAIT state
2708/2716 Memory Map E9, E10, EN1 E10 To E11 - Use TMS 2708s
EPROM Enable E12, E13, E14 E13 to E14 - Onboard EPROM
HI/LO Memory Map E15, E16, E17 E16 to E17 - EPROM low, RAM high
EIA Connector Ground E18, E19 E18 to E19% - pin 1 of P3 grounded¥*
Microterminal +5 V E20, E21 Shipped installed on -0001, 3 only*
Microterminal +12 V E22, E23 Shipped installed on -0001, 3 only¥*
Microterminal -12 V E24, E25 Shipped installed on -0001, 3 only¥
Main EPROM type E26 through E30 |E27 to E28, E29 to E30 - TMS 2708s
Expansion EPROM type E31 through E35 E32 to E33, E34 to E35 - TMS 2708s
Teletype E36, E37 Shipped removed. On -0001, 3 only.
If using a TTY, borrow a Micro-
terminal jumper plug for use here.
EIA/MD receive select E38, E39, E40 E39 to E40 - EIA (and TTY) receive
Multidrop Termination E41 through E52 | Shipped installed on -0002 only¥*
Resistors/Duplex Select
P3 Port Terminal/Modem |ES54, E55, E56 E54 to E55 - Terminal use¥*

*Jumper connection is not relevant for TIBUG operation with an RS-2342-C or
TTY terminal.

CAUTION

Be careful to apply correct voltage levels to the TM 990/101MA. Texas
Instruments assumes no responsibility for damage caused by improper
wiring or incorrect voltage application by the user. If power is
being supplied from separate power supplies, the system requires that
-12V be turned on first and be turned off last. There is no required
sequence in turning on the remaining voltages. This does not apply if
the system uses only one power supply.

2.4.1 Power Supply Connections

Figure 2-1 shows how the power supply is connected to the TM 990/101MA through
connector P1, using a 100-pin edge connector. Be careful to use the correct
pins as numbered on the board; these pin numbers may not correspond to the
numbers on the particular edge connector used. Check connections with an

ohmmeter before applying power if there is any doubt about the quality or
location of a connection.

The table in Figure 2-1 shows suggested color coding for the power supply
plugs. To prevent incorrect connection, label the top side of the edge
connector "TOP" and the bottom "TURN OVER".

Figure 2-2 shows the TM 990/101MA in the TM 990/510A card cage. Slot position
is determined by the other boards in the system. See the TM 990/510A/520A/530
Card Cage User's Guide or the TM 990 System Specification for card placement
guidelines.

Slide the microcomputer into the slot, following the guides. Be sure the P1

connector is correctly aligned in the socket on the backplane, then gently but
firmly push the board edge into the edge connector socket.

2-3

\/tTM 990/101MA

iioniooooBoonofinoooinooodonaotonootntinioonotonndd

1
AN

EDGE CONNECTOR

SHRINK SLEEVING

N 18 AWG INSULATED STRANDED WIRE A1
—) —) (=
et
BANANA PLUGS
<succes1 COLOR CODING)
GND +5V THESE AS PER TABLE —12v +12V
o/
VOLTAGE P1PIN® SUGGESTED PLUG COLORS
+5V 3, 4,97, 98 RED
+12v 75,76 BLUE
—12v : 73,74 GREEN
GND 1, 2,99, 100 BLACK

*ON BOARD, ODD-NUMBERED PADS ARE DIRECTLY BENEATH EVEN-NUMBERED PADS.

1.

NOTES

A TM 990/510A Card Cage or its equivalent provides power supply
connections.

If you want to make your own cable, be aware that the connecting
plugs of various vendors, including TI, do not necessarily use

the numbering schemes on the board edge connector. ALWAYS refer
to the board edge when wiring a connector.

FIGURE 2-1. POWER SUPPLY HOOKUP

2-4

20
450
GND ©
120

FIGURE 2-2. TM 990/101MA BOARD IN A TM 990/510A CARD CAGE

Looking on the backside of the backplane find the connections for each of the
supply voltages and connect them to the power supply.

CAUTION

BEFORE connecting the power supply to the microcomputer, use a volt-
ohmmeter to verify that correct voltages are present at the power
supply. After verification, switch the power supply OFF, and then
make the connections to the chassis as shown in Figure 2-2.

2.4.2 Terminal Hookup

Figure 2-3 shows a cable to connect the TM 990/101MA to the TI 743 KSR
terminal through connector P2. The DE15S connector attaches to the terminal;
a DB25P connector attaches to P2 on the board. A table of point-to-point
connections between the connectors is shown in the figure. Figure 2-U shows a

TI 743 connected to a TM 990/101MA in a TM 990/510A card cage, and Figure 2-5
shows a TTY. .

All terminals connected to the microcomputer will have a similar hookup
procedure and point-to-point configuration. For the differences between
terminal cables, see Appendices A and B. Terminals for communication directly
with TIBUG must be connected to the main communications port (connector P2) at
the corner of the board.

2-5

TM 990/101MA

FIGURE 2-4.

4 CONDUCTOR CABLE, 24 AWG

INSULATED STRANDED WIRE

CONNECTIONS
PIN ON DE15S | PIN ON DB25P SIGNAL
13 2 XMIT
12 3 RECV
n 8 DCD
1 7 GND
FIGURE 2-3. 743 KSR TERMINAL HOOKUP

2-6

CONNECTOR P2 CONNECTED TO MODEL 743 KSR

TO 743 DATA

FIGURE 2-5. CONNECTOR P2 CONNECTED TO TTY DEVICE

The jumper marked EIA/MD, pins E38 to EU40, should be in the EIA position, pins
E39 to E40, at all times unless the multidrop interface is used. If
connecting a R3-232 terminal, remove the TTY jumper at E36-E37; if connecting
a Teletype terminal, then insert the TTY jumper at E36-E37.

The TIBUG monitor operates the local I/0 port at one of the following baud
rates:

110, 300, 600, 1200, 2400, 4800, 9600 or 19,200 baud.

There is a 200 ms delay following a carriage return for all baud rates at or
below 1200 baud. The delay allows for printhead travel.

The TMS 9902A asynchronous communication controller is initialized by TIBUG
for a seven-bit ASCII character, even parity, and two stop bits (for

compatibility with all terminals). At the terminal, set the baud rate of the
terminal to one of the above speeds.

TIBUG also uses conversational mode full-duplex communication. Set the
communications mode of your terminal to FULL DUPLEX, and set the OFF/ON LINE
switch to ON LINE, or the functional equivalents.

2-7

2.4.3 Five-Switch DIP and Status LED

A five-switch DIP and a programmable LED are accessed through the CRU.
Programming these is further explained in Sections 5.12 and 5.13 respectively.

2.5 OPERATION

2.5.1 Verification

Verify the following conditions before applying power:

Power connected to correct pins on P1 connector.

Terminal cable between P2 connector (NOT P3) and terminal.
Jumpers in correct positions (see Table 2-1).

Baud rate and communications mode are correctly set at the terminal;
terminal is ON LINE.

2.5.2 Power-Up/Reset
a. Apply power to the board and the data terminal.

b. Activate the RESET switch near the corner of the microcomputer board
(see Figure 1-1). This activates the TIBUG monitor.

c. Press the "A" key on the terminal (it may be more convenient to press
the carriage return key instead; this is also acceptable). TIBUG
measures the time of the start bit and determines the baud rate. A
carriage return time delay of 200 ms will be provided for all baud
rates at or slower than 1200 baud.

d. TIBUG prints the TIBUG banner message and, on a new line, a question
mark. This is a request to input a command to the TIBUG command
scanner . Commands are explained in detail in Section 3, and the
assembly language is described in Section 4.

NOTE

If contrél is lost during operation, return control to
the TIBUG monitor by repeating steps b, ¢, and 4.

2.6 SAMPLE PROGRAMS

The following sample programs can be used immediately to test the micro-
computer board. Other sample programs that can be loaded and executed are
provided in Figures 5-15 (interrupt timer message) and 5-22 (LED blink).
Appendix K contains example programs that demonstrate microcomputer perform-
ance.

2.6.1 Sample Program 1

The following sample program can be input using the TIBUG "M" command
(paragraph 3.2.8), "R" command (paragraph 3.2.9), and "E" command (paragraph
3.2.4).

a. Enter the M command with a hexadecimal memory address of FE004g4.

2-8

b. Enter the following values into memory, typing the new values then using
the space bar as described in paragraph 3.2.8.

Location Enter Value Assembly Language

FEOO - « 2FAO XOP @ >FE08, 14 PRINT MSG
FEO2 FEO08

FEOU4 0460 B @ >0080 GO TO TIBUG
FE06 0080

FE08 4849 TEXT 'HI' MESSAGE
FEOA 0D0A DATA >0DOA CR/LF

FEOC 0700 DATA >0700 BELL/END

Exit the M command with a carriage return after entering the last value above.
The monitor will print a question mark.

c. Use the R command to set the address value "FEOO" into the P register
(program counter). '

d. Use the E command to execute the program.
e. The message "HI" will be print on the printer, followed by a carriége

return, line feed, and a bell. Your terminal printout should resemble the
following:

TIBUE REY.HR

M FEOO
FEOO=D0300 ZFRAD

FEOZ=&200 FEO3

ad4s0

o0
FEGS=0300 $o49
FEOH=02L2 anoR
FEOQC=73101 aron
bi=FFCxE
F=01RC FEQ]
FE HI

You can re-execute your program by repeating steps ¢ and d.

2-9

2.6.2 Sample Program 2

Using steps 1 to 5 in paragraph 2.6.1 above, enter and execute the following
program which has been assembled by the optional TM 990/402 line-by-line

assembler.

Fenn SFA0 S0F 2:FEOZ. 14
FEOZ FEDZ

FEO4 0Od4eD B =00z
FEOE 0210

FEOS 434F ECOMGRATULATIONZ., vOUR FROGEAM WORK I
FENR 4E47

FEOZ S241

FEGE 5455

FE10O 4041

FE1z 54473

FE14 4F4E

FE1s 532

FE1z =053

FE1IR 4FS5

FELIC Szz2n0

FEIE S05z

FEzO 4F47

FEZz Scd1

FEZ4 4Dzn

FEZE S7Y4F

FESE SZ4E

FEZH S22

FEZC O7V0yV +:-0707
FECE 0700 +- 0700

You can re-execute your program by repeating steps ¢ and d in paragraph 2.6.1.

2.7 DEBUG CHECKLIST

If the microcomputer does not respond correctly, turn the power OFF. Do not
turn the power ON again until you are reasonably sure that the problem has

been found.

The following is a checklist of points to verify.

1. Check POWER circuits:

Proper power supply voltages and current capacity.

Proper connections from the power supply to the P1 edge connector.
Check pin numbers on P1. Check plug positions at your power
supply. Look for short circuits. Look for broken connections.
Make sure board is seated in chassis or edge connector socket
correctly. Be certain that the edge connector socket (if used) is
not upside down.

Check TERMINAL circuits:

Proper cable hookup to P2 connector, and to terminal. Verify with
data in Appendices A and B. One of the most common errors is that
the terminal cable is not plugged in.

2-10

Check for power at the terminal. This is another common error -

the terminal is not turned ON.

- Terminal is in ON LINE mode, or equivalent.

- Terminal is in FULL DUPLEX mode, or equivalent. If the terminal
is in HALF DUPLEX mode, it will print everything you type twice,
or it may print garbage when you type. Put the terminal in FULL
DUPLEX mode.

- EIA/MD jumper in EIA position (E30).

- Check BAUD RATE of terminal - it must be 110, 300, 600, 1200,

2400, 4800, 9600, or 19200 BAUD.

3. Check Jjumper plug positions against Table 2-1.
4. Be sure TIBUG EPROM's are in place correctly (U42 and U4y).

5. Check all socketed parts for correctly inserted pins. Be sure there
aren't any bent under or twisted pins. Check pin 1 location.

If nothing happens, feel the components for excessive heat. Be careful as
burns may occur if a defective component is found. If the cause of
inoperation cannot be found, turn power OFF and call your TI distributor.
Before calling please be sure that your power supply, terminal, and all
connectors (use a volt-ohmmeter) are working properly.

2.8 AMPL GROUNDING

Programs can be emulated on a TM 990/ 101MA board using Texas Instruments AMPL
prototyping lab.

When executing program emulation on a TM 990/101MA, PWB 994725C or later,
connect the emulator-cable ground to pin TP1. This pin is locted next to the

TMS 9901 at UT.
i CAUTION |

The target connector MUST be plugged into the TM 990/101MA
with pin 1 connected to pin 1, or damage may result.

SECTION 3
TIBUG INTERACTIVE DEBUG MONITOR

3.1 GENERAL

TIBUG is debug monitor which provides an interactive interface between the
user and the TM 990/101MA. It is supplied by the factory on assembly TM
990/101MA~1 only and is availble as an option, supplied on two 2708 EPROMs.

TIBUG occupies EPROM memory space from memory address (M.A.) 008014 @s shown
in Figure 3-1. TIBUG wuses four workspaces in 40 words of RAM memory. Also
in this reserved RAM area are the restart vectors which initialize the monitor
following single step execution of instructions.

The TIBUG monitor provides seven software routines that accomplish special
tasks. These routines, called in user programs by the XOP machine
instruction, perform tasks such as writing characters to a terminal. XOP
utility instructions are discussed in detail in paragraph 3.3.

All communication with TIBUG is through a 20 mA current loop or RS-232-C
device. TIBUG is initialized as follows:

e Press the RESET pushbutton (Figure 1-2). The monitor is called up
through interrupt trap O.

e Enter the character "A" at the terminal. TIBUG uses this input to
measure the width of the start bit and set the TMS 9902A Asynchronous
Communication Controller (ACC) to the correct baud rate.

e TIBUG prints an initialization message on the terminal. On the next
line it prints a question mark indicating that the command scanner is
available to interpret terminal inputs.

e Enter one of the commands as explained in paragraph 3.2.

3.2 TIBUG COMMANDS
TIBUG commands are listed in Table 3-1.

TABLE 3-1. TIBUG COMMANDS

INPUT RESULTS PARAGRAPH
B Execute under Breakpoint 3.2.1
Cc CRU Inspect/Change 3.2.2
D Dump Memory to Cassette/Paper Tape 3.2.3
E Execute 3.24
F Find Word/Byte in Memory : 3.25
H Hex Arithmetic 3.26
L Load Memory from Cassette/Paper Tape 3.2.7
M Memory Inspect/Change 3.28
R Inspect/Change User WP, PC, and ST Registers 3.2.9
S Execute in Step Mode 3.2.10
T 1200 Baud Terminal 3.2.11
w tnspect/Change Current User Workspace 3.2.12

MEMORY
ADDRESS

0000

INTERRUPT VECTOR (RESET)

INTERRUPT VECTORS 1 TO 15

0040

XOP VECTORS 0 AND 1

0048

XOP VECTOR2TO 7

0060

007E

XOP VECTORS 8 TO 15
MONITOR UTILITIES

0080

07FE

TIBUG MONITOR

TiBUG EPROM AREA
USER EPROM AREA

TIBUG EPROM AREA
USER EPROM AREA

-

¢ TIBUG EPROM AREA

TIBUG RAM AREA

FFBO
MONITOR
<> WORKSPACES
FFFC wp
RESTART VECTORS
FFFE PC
FIGURE 3-1. MINIMUM MEMORY REQUIREMENTS FOR TIBUG

Conventions

used to define command syntax in this paragraph are listed in

Table 3-2.
TABLE 3-2. COMMAND SYNTAX CONVENTIONS
CONVENTION
SYMBOL EXPLANATION
<> Items to be supplied by the user. The term within the angle brackets is a generic term.
{1 Optional item — May be included or omitted at the user’s discretion. {tems not included in brackets
are reguired.

{1 One of several optional items must be chosen.

(CR) Carriage Return

A Space Bar

LF Line Feed

RorRn Register (n = 0 to 15)

WP Current User Workspace Pointer contents

PC Current User Program Counter contents

ST Current User Status Register contents

NOTE
Except where otherwise indicated, no space is necessary
between the parts of these commands. All numeric input
is assumed to be hexadecimal;the last four digits input
will be the value used. Thus a mistaken numerical input
can be corrected by merely making the last four digits
the correct value. If fewer than four digits are input,
they are right justified.
3.2.1 Execute Under Breakpoint (B)

Syntax:
B <address> <(CR)>

This command i1s used to execute instructions from one memory address to
another (the stopping address is the breakpoint). When execution is complete,
WP, PC, and 3T register contents are displayed and control is returned back to
the monitor command scanner. Program execution begins at the address in the
PC (set by using the R command). Execution terminates at the address
specified in the B command, and a banner is output showing the contents of the
hardware WP, PC, and ST registers in that order.

The address specified must be in RAM and must be the address of the
first word of an instruction. The breakpoint is controlled by a software
interrupt, XOP 15, which is executed when program execution is at the break-
point address.

3-3

If no address is specified, the B command defaults to an E command, where
execution continues with no halting point specified.

EXAMPLE:
TH FLOR

BF FFRIU FC SSin
3.2.2 fCRU Inspect/Change (C)
Syntax:

C < CRU address > { ! }< count > < (CR) >

The CRU input bits are displayed right justified in a 16-bit hexadecimal
representation. CRU addresses of the displayed bits will be:

from "CRU Software Base Address"
to "CRU Software Base Address" + 2 (count) -2

"CRU Software Base Address" is the contents of register 12, bits 0 to 15, as
used by the CRU instructions (paragraph 5.5). Up to 16 CRU bits may be
displayed. Following display of the sensed CRU input bits, corresponding CRU
output bits at that address may be specified by keying in a desired hexa-
decimal pattern of 1 to 16 bits, right justified. A carriage return following
data display forces a return to the command scanner. A minus sign (-) or a
space causes the same CRU input bits to be displayed again. Defaults are
000014 for "Software Base Address" and O (count of 16) for "Count" (the latter
is a hexadecimal value of 0 to F with O indicating a decimal 16 bits).

The CRU inspect/change command displays from 1 to 16 CRU bits, right
Jjustified. The command syntax includes the CRU software base address and the
number of CRU bits to be displayed. The CRU address is the 16-bit contents of
R12 as explained in Section 5.5 (vs. the "CRU hardware base address" on bits 3
to 14 of R12); thus the user must use 2 X CRU hardware base address. This is
shown in Figure 3-2 where 1004¢ is specified in the command to display values
beginning with CRU bit 804¢-

? C 100,7 .
0100==007F VALUE DISPLAYED

[o [1]2]3]]s]s|7]e 19|1o|11l12[13|14115ff//

(- v Y
le— 7BITS —>

ZERO FHLLED REQUESTED BOCRUBIT
81

82
83
84
85
86

>007F

FIGURE 3-2. CRU BITS INSPECTED BY C COMMAND

3-4

EXAMPLES:

(1) Examine eight CRU input bits. CRU address is 2046
TCOo20e 2

(02 0=110F F<+— CARRIAGE RETURN ENTERED

(2) Set value of eight CRU output bits at CRU address 20143
new value is 024¢4.

SR P

CHANGE 00FF TO 0002

Jc0=00FF Z<— 2 FOLLOWED BY CARRIAGE RETURN

(3) Check changes in CRU input bit 0.

a3
ooo=00al -
Doag=0001 —l

aoan=noal -
ODOaN=0001 —$
Ooa0=anot -
GO00=1010101 «———— CARRIAGE RETURN ENTERED

MINUS SIGN ENTERED

(4) Check to see if the TMS 9901 is in the interrupt mode (zero) or
clock mode (one).

FUOo100

0100=FFFE «<———— ZERO IN LSB INDICATES INTERRUPT MODE

(5) Check the contents of the I/0 ports on the TMS 9901 (bits 1 to 14).

TLO120.E
O1Z20=000E

3.2.3 Dump Memory To Cassette/Paper Tape (D)
Syntax:

MONITOR PROMPT
D <start address > { I +<stop address > { A }<entry address > { A FIDT =<name> < (>

NOTE
The termination given after IDT is a space bar. A carriage

return or some other termination will cause the instruction
to function incorrectly.

3-5

Memory is dumped from "start address" to "stop address." "Entry address" is
the address in memory where it is desired to begin program execution. After
entering a space or comma following the entry address, the monitor responds
with an "IDT=" prompt asking for an input of up to eight characters that will
identify the program. This program ID will be output. When the program is
loaded into memory using the TIBUG loader, code will be dumped as
non-relocatable data in 990 object record format with absolute load ("start
address") and entry addresses specified. When loading this code once more,
the LOAD will occur at the start address specified in the D instruction. If a
user specifies a starting address while loading the object code previously
dumped, the loader will ignore the user's input and load at the starting
address specified during the 'D' command. Object record format is explained
in Appendix G.

After entering the D command, the monitor will respond with "READY Y/N" and
wait for a Y keyboard entry indicating that the receiving device is ready.

This allows the user to verify switch settings, etc., before proceeding with
the dump.

3.2.3.1 Dump To Cassette Example. The terminal is assumed to be a Texas
Instruments 733 ASR or equivalent. The terminal must have automatic device

control (ADC). This means that the terminal recognizes the four tape control
characters DC1, DC2, DC3, and DCY.

The following procedure is carried out prior to answering the "READY Y/N"
query (Figure 3-3):

(1) Load a cassette in the left (No. 1) transport on the 733 ASR.

(2) Place the transport in the "RECORD"™ mode.

(3) Rewind the cassette.

(4) Load the cassette. If the cassette does not load it may be write
protected. The write protect hole is on the bottom right side of
the cassette (Figure 3-4). Cover it with the tab provided with the

cassette. Now repeat steps 1 through 4.

(5) The KEYBOARD, PLAYBACK, RECORD, and PRINTER LOCAL/OFF/LINE switches
must be in the LINE position.

(6) Place the TAPE FORMAT switch in the LINE position.

(7) Answer the "READY Y/N" query with a "Y"; the "Y" will not be echoed.

3-6

CASSETTE 1 - CASSETTE 2
| — EEE—|
REWIND LOAD/FF © RECORD ——— ¢— PLAYBACK @ REWIND LOAD/FF

s
ik

@ READY " READY @

O = H e

it
STOP STOP <O> PLAYBACK —d t—— RECORD sSTOP STOP
PLAYBACK CONTROL RECORD CONTROL @
CONT BLOCK CHAR
START FWD FWD ON CHARACTER PRINT ON
ERROR c |L
O : ;
T E
STOP REV TAPE FORMAT ERASE OFF
LINE LINE
OFF OFF
LOCAL LoCcAL
KEYBOARD PLAYBACK RECORD PRINTER

wid]

FIGURE 3-3. 733 ASR MODULE ASSEMBLY (UPPER UNIT) SWITCH PANEL

/-— TAPE SIDE UP

o O

Side 1
————— ———
]]
N— WRITE TAB FOR SIDE 2 _/

WRITE TAB FOR SIDE 1

FIGURE 3-4. TAPE TABS

3.2.3.2 Dump To Paper Tape Example

The terminal is assumed to be an ASR 33 teletypewriter. The following steps
should be completed carefully to avoid punching stray characters:

(1) Enter the command as described in paragraph 3.2.3.1. Do not answer
the "READY Y/N" query yet.

(2) Change the teletype mode from ON LINE to LOCAL.
(3) Turn on the paper tape punch and press the RUBOUT key several times,

placing RUBOUTS at the beginning of the tape for correct-reading/
program-loading.

(4) Turn off the paper tape punch, and reset the teletype mode to LINE,
(This is necessary to prevent punching stray characters.)

(5) Turn on the punch and answer the "READY Y/N" query with "Y". The Y
will not be echoed.

(6) Punching will begin. Each file is followed by 60 rubout charactérs.
When these characters appear (identified by the constant punching of
all holes) the punch must be turned off.

3.2.4 Execute Command (E)
Syntax:

E

The E command causes task execution to begin at current values in the
Workspace Pointer and Program Counter.

EXAMPLE: E

3.2.5 Find Command (F)

Syntax:

F < start address > { A }< stop address > { A 1< value > { (CR) 1

The contents of memory locations from "start adddress" to "stop address" are
compared to "value". The memory addresses whose contents equal "value"™ are
printed out. Default value for ."start address" is 0. The default for "stop
address" is 0. The default for "value" is O.

If the termination character of "value" is a minus sign, the search will be
from "start address" to "stop address" for the right byte in "value". If the

termination character is a carriage return, the search will be a word mode
search.

3-8

EXAMPLE:

“F a2} FFFF «——————— CARRIAGE RETURN ENTERED

TF O &
Da0e
aaay
0aac
aann
aoig
nots
anle
noLy

1 FF— «—— MINUS SIGN ENTERED

3.2.6 Hexadecimal Arithmetic (H)
Syntax:
H < number 1> { } 1< number 2> < (CR) >
The sum and difference of two hexadecimal numbers are output.

EXAMPLE:

FH OS00:100 < CARRIAGE RETURN ENTERED
Hl1+HZ=032300 Hil-Ho=ul 00

3.2.7 Load Memory from Cassette or Paper Tape (L)
Syntax:

L < bias> < {CR) >

Data in 990 object record format (defined in Appendix G) is loaded from paper
tape or cassette into memory. Bias is the relocation bias (starting address
in RAM). Its default is 0qg. Both relocatable and absolute data may be loaded

into memory with the L command. After the data is loaded, the module
identifier (see tag O in Appendix G) is printed on the next line.
3.2.7.1 Loading From Texas Instruments 733 ASR Terminal Cassette.

The 733 ASR must be equipped with automatic device control (ADC). The
following procedure is carried out prior to executing the L command:

(1) Insert the cassette in one of the two transports on the 733 ASR
(cassette. 1 in Figure 3-2).

(2) Place the transport in the playback mode.
(3) Rewind the cassette.

(4) Load the cassette.

3-9

(5) Set the KEYBOARD, PLAYBACK, RECORD, and PRINTER LOCAL/LINE switches
to LINE.

(6) Set the TAPE FORMAT switch to LINE.
(7) Loading will be at 1200 baud.
Execute the L command.
3.2.7.2 Loading From Paper Tape (ASR33 Teletype).

Prior to executing the L command, place the paper tape in the reader and
position the tape so the reader mechanism is in the null field prior to the
file to be loaded. Enter the load command. If the ASR33 has ADC (automatic
device control), the reader will begin to read from the tape. If the ASR does
not have ADC, turn on the reader and loading will begin.

Each file is terminated with 60 rubouts. When the reader reaches this area of
the tape, turn it off. The loader will then pass control to the command
scanner.

The user program counter (P) is loaded with the entry address if a 1 tag or 2
tag is found on the tape.

EXAMPLE:
FL 311 {l«————— CARRIAGE RETURN ENTERED
PROGRAM ID FROM TAPE

FROGREAM

3.2.8 Memgry Inspect/Change, Memory Dump (M)
Syntax:
e Memory Inspect/Change Syntax
M < address > < (CR) >
e Memory Dump Syntax
M < start address > { A }< stop address > < (CR) >
Memory inspect/change "opens" a memory location, displays it, and gives the
option of changing the data in the location. The termination character causes
the following:
e If a carriage return, control is returned to the command scanner.
e If a space, the next memory location is opened and displayed.
e If a minus sign, the previous memory location is opened and displayed.

If a hexadecimal value is entered before the termination character, the
displayed memory location is updated to the value entered.

.

Memory dump address directs a display of memory contents from "start address"
to "stop address". Each line of output consists of the address of the first

data word output followed by eight data words. Memory dump can be terminated
at any time by typing any character on the keyboard.

EXAMPLES:

(1N
M FEOO - CARRIAGE RETURN ENTERED
FEQO=FFOF
FEN2=001Z FFFF <—— NEW CONTENTS ENTERED
FEOd4=03211 — <-————— MINUS SIGN ENTERED
FENZ=FFFF =——————— NEW CONTENTS
FED4=0211
FENE=0032 EEHH<—— CARRAGE RETURN ENTERED

(2)
M2 =0
gosa=00zu W= Qe NS D= L D0 &<

DS t=unnl

3.2.9 Inspect/Change User WP, PC, and ST Registers (R)
Syntax:

R <(CR)>
The user workspace pcinter (WP), program counter (PC), and status register
(ST) are inspected and changed with the R command. The output letters WP, PC,
and ST identify the values of the three principal hardware registers passed to
the TMS 9900 microprocessor when a B, E, or S command is entered. WP points to
the workspace register area, PC points to the next instruction to be executed
(Program Counter), and ST is the Status Register contents.
The termination character causes the following:

® A carriage return causes control to return to the command scanner.

® A space causes the next register to be opened.

Order of display is W, P, S.

EXAMPLES :

(N

TH
W=0020 1100} «—— SPACE ENTERED
P=0000 Z 11} -«-———CARRIAGE RETURN ENTERED

(2)

Tk

Li=0i1 a0 :j— SPACE ENTERED
P=0c 00
Z={111} «————— SPACE OR CARRIAGE RETURN ENTERED

3.2.10 Execute in Single Step Mode (S)
Syntax:
S

Each time the S command is entered, a single instruction is executed at the
address in the Program Counter, then the contents of the Program Counter,
Workspace Pointer, and Status Register (after execution) are printed out.
Successive instructions can be executed by repeated S commands. Essentially,
this command executes one instruction then returns control to the monitor.

EXAMPLE:
TF
W=FFLS SPACES ENTERED
il S /_ WORKSPACE POINTER
o2 TR PROGRAM COUNTER
v FFiZ& FE Hém STATUS REGISTER
s FFIE FE D4 =1-3ils}
7 FFCE FEOZ =La1ls]
7 FFCE FEOC ZE DA
NOTE

Incorrect results are obtained when the S command causes execution of
an XOP instruction (see paragraph 4.6.9) in a user program. To avoid
this problem, use the B command (breakpoint) to the XOP vectors to
execute any XOP's in a program (rather than the S command) with the
appropriate XOP parameter previously loaded into Ri11 of the XOP work-
space.

R
R

v

3.2.11 TI 733 ASR Baud Rate (T)
Syntax:
T

The T command is used to alert TIBUG that the terminal being used is a 1200
baud terminal which is not a Texas Instruments' 733 ASR (e.g., a 1200 baud
CRT). To revoke the T command, enter it again.

T is used only when operating with a true 1200 baud peripheral device. Note
that T is never used when operating at other baud rates.

In TIBUG the baud rate is set by measuring the width of the character 'A'
input from a terminal. When an 'A' of 1200 baud width is measured, TIBUG is
set up to automatically insert three nulls for every character output to the
terminal. These nulls are inserted to allow correct operation of the T™M
990/101MA with Texas Instruments 733ASR data terminals.

3.2.12 Inspect/Change User Workspace (W)
Syntax:

W [REGISTER NUMBER] < (CR}>

The W command is used to display the contents of all workspace registers or
display one register at a time while allowing the user to change the register
contents. The workspace begins at the address given by the Workspace Pointer.

The W command, followed by a carriage return, causes the contents of the
entire workspace to be printed. Control is then passed to the command
scanner.

The W command followed by a register number in hexadecimal and a carriage
return causes the display of the specified register's contents. The user may
then enter a new value into the register by entering a hexadecimal value. The
following are termination characters whether or not a new value is entered:

® A space causes display of the next register.

e A minus sign causes display of the previous register.

e A carriage return gives control to the command scanner.

EXAMPLES:
(1)
Il CARRIAGE RETURN ENTERED
N=F3342 F1=0034 RI=FASA RI=U0280 RE4=FESE RFS=009% RFe=1300 R7F=
S=FAARD RE3=3600 FA=0ERE RE=0000 RC=0100 RFD=0084 RESFR30 RF=C

(2)

Thl 2 - CARRIAGE RETURN ENTERED
Fo=02384 34565

F3=001E 100

pa=160S SPACE ENTERED

*S=035 10 S00F

Re=F200 {1 «——— CARRIAGE RETURN ENTERED

3.3 USER ACCESSIBLE UTILITIES

TIBUG contains seven utility subroutines that perform I/0 functions as listed
These subroutines are called through the XOP (extended
This instruction is covered in
In addition, locations for XOP's 0 and 1 contain
for utilities that drive the TM 990/301 microterminal, and XOP 15 is

in Table 3-3.
operation) assembly language instruction.
detail in paragraph 4.6.9.

vectors

used by the monitor for the breakpoint facility.

TABLE 3-3. USER ACCESSIBLE UTILITIES

XOP FUNCTION PARAGRAPH
8 Write 1 Hexadecimal Character to Terminal 3.3.1
9 Read Hexadecimal Word from Terminal 3.3.2
10 Write 4 Hexadecimal Characters to Terminal 3.3.3
11 Echo Character 3.3.4
12 Write 1 Character to Terminal 3.35
13 Read 1 Character from Terminal 3.3.6
14 Write Message to Terminal 3.3.7
NOTE

All characters are in ASCI! code.

NOTES

Initially, TIBUG will conduct I/0 through the TMS 99024 connected
to connector P2: in this mode, 00801g is in TIBUG's R12 located
at memory address (M.A.) FFDE g. To change this configuration
change the contents of M. A. FFDE(g before executing the I/0 XOP.
For example, to use the auxiliary TMS 9902A at P3, change M.A.
FFDE g contents to 01801¢- CRU programming is discussed in
paragraph 5.5.

The write character XOP (XOP 12) activates the REQUEST TO SEND
signal of the TMS 9902A. This signal is never deactivated by
TIBUG so that modems may be used.

Most of the XOP format examples here use a register for the
source address, however, all XOP's can also use a symbolic memory
address or any of the addressing forms available for the XOP
instruction.

3.3.1 Write One Hexadecimal Character To Terminal (XOP 8)

Format: XOP Rn,8
The least significant four bits of user register Rn are converted to their
ASCII coded hexadecimal equivalent (O to F) and output on the terminal.
Control returns to the instruction following the extended operation.

EXAMPLE:

Assume user register 5 contains 203Cq4. The assembly language (A.L.) and
machine language (M. L.) values are shown below.

A.L. XOpP R5,8 SEND 4 LSB’S OF R5 TO TERMINAL

5 6 7 8 9 10 11 12 13 14 15
MJ"[b o 1 o 1 1 l i 0o o o l o o l o 1 o 1l > 2E05

Terminal Output: C

3.3.2 Read Hexadecimal Word From Terminal (XOP 9)

Format: XOP Rn,9
DATA NULL ADDRESS OF CONTINUED EXECUTION IF
NULL IS ENTERED
DATA ERROR ADDRESS OF CONTINUED EXECUTION IF

NON-HEX NO. ENTERED
(NEXT INSTRUCTION) EXECUTION CONTINUED HERE IF VALID HEX
NUMBER AND TERMINATOR ENTERED

Binary representation of the last four hexadecimal digits input from the
terminal is accumulated in user register Rn. The termination character is
returned in register Rn + 1. Valid termination characters are space, minus,
comma, and a carriage return. Return to the calling task is as follows:

e If a valid termination character is the only input, return is to the
memory address contained in the next word following the XOP
instruction (NULL above).

e If a non-hexadecimal character or an invalid termination character is
input, control returns to the memory address contained in the second
word following the XOP instruction (ERROR above).

e If a hexadecimal string followed by a valid termination character is
input, control returns to the word following the DATA ERROR statement
above.

EXAMPLE:

AL XOoP R6,9 READ HEXADECIMAL WORD INTO R6
DATA >FFCO RETURN ADDRESS, IF NO NUMBER
DATA >FFC6 RETURN ADDRESS, IF ERROR
M.L. 0 1 2 3 4 5 6 7 8 9 10 1112 13 14 15
MA. FFBO[0 0 1 0 1 1] 1 0 0 1] 0 0] 0 1 1 0] >2E46
FFB2M 1 17 1 1 1 1 1 1 1 0 0 0 0 0 0| >FFCO
FFBAL 1 17 1 1 1 1 1 1 1 o 0 0 1 1 0| >FFCé

If the valid hexadecimal character string 12C is input from the terminal
followed by a carriage return, control returns to memory address (M.A.) FFB616
with register 6 containing 012Cq¢ and register 7 containing 0D001g.

If the hexadecimal character string 12C is input from the terminal followed by
an ASCII plus (+) sign, control returns to location FFC6{g. Registers 6 and 7
are returned to the calling program without being altered. The plus sign (+)
is an invalid termination character.

If the only input from the terminal is a carriage return, register 6 is

returned unaltered while register 7 contains 0D004g. Control is returned to
address FFCO4g4.

3.3.3 Write Four Hexadecimal Characters To Terminal (XOP 10)

Format: XOP Rn, 10
The four-digit hexadecimal representation of the contents of user register Rn
is output to the terminal. Control returns to the instruction following the

XOP call.

EXAMPLE:

Assume register 1 contains 2C464¢4.
XOP WRITE HEX NUMBER

A.L. R1,10

0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
o] o o]o o o 1] >2em

Terminal Output: 2CU6

3.3.4 Echo Character (XOP 11)
Format: XOP Rn, 11

This is a combination of XOP's 13 (read character) and 12 (write character).
A charcter in ASCII code is read from the terminal, placed in the left byte of
Rn, then written (echoed back) to the terminal. Control returns to the
instruction following the XOP after a character is read and written. By using
a code to determine a character string termination, a series of characters can
be echoed and stored at a particular address:

CLR R2 CLEAR R2

Li R1,> FEOO SET STORAGE ADDRESS

XOP R2, 11 ECHO USING R2

cl R2.> 0D0O WAS CHARACTER A CR?

JEQ $+6 YES, EXIT ROUTINE

MOVB R2,*R1+ NO, MOVE CHAR TO STORAGE
JMP $-10 REPEAT XOP

3.3.5 Write One Character To Terminal (XOP 12)
Format: XOP Rn,12

The ASCII character in the left byte of user register Rn is output to the
terminal. The right byte of Rn is ignored. Control is returned to the
instruction following the call.

3.3.6 Read One Character From Terminal (XOP 13)
Format: XOP Rn, 13
The ASCII representation of the character input from the terminal is placed in

the left byte of user register Rn. The right byte of register Rn is zeroed.

When this utility is called, control is returned to the instruction following
the call only after a character is input.

3.3.7 Write Message To Terminal (XOP 14)
Format: XOP @MESSAGE, 14

MESSAGE is the symbolic address of the first character of the ASCII character
string to be output. The string must be terminated with a byte containing
binary zeroes. After the character string is output, control is returned to
the first instruction following the call.

Assuming the following program:

MEMORY

ADDRESS OP CODE A.L. MNEMONIC
(Hex) (Hex)
FEOO 2FAO XOpP ® > FEEQ,14
FEOQ2 FEEC
FEO4
FEEO 5445 TEXT ‘TEST
FEE2 5354
FEE4 00 BYTE O

During the execution of this XOP, the character string 'TEST' is output on the

terminal and control is then returned to the instruction at location FEO44q.
TEXT is an assembler directive to transcribe characters into ASCII code.

3.4 TIBUG ERROR MESSAGES

Several error messages have been included in the TIBUG monitor to alert the
user to incorrect operation. In the event of an error, the word 'ERROR' is
output followed by a single digit representing the error number.

Table 3-4 outlines the possible error conditions.

TABLE 3-4. TIBUG ERROR MESSAGES

ERROR CONDITION
0 Invalid tag detected by the loader.
1 Checksum error detected by the loader.
2 Invalid termination character detected.
3 Null input field detected by the dump routine.
4 Invalid command entered.

In the event of errors 0 or 1, the program load process is terminated. If the
program is being input from a 733 ASR, possible causes of the errors are a
faulty cassette tape or dirty read heads in the tape transport. 1If the
terminal device is an ASR33, chad may be caught in a punched hole in the paper
tape. In either case repeat the load procedure.

In the event of error 2, the command is terminated. Reissue the command and
parameters with a valid termination character.

Error 3 is the result of the user inputting a null field for either the start
address, stop address, or the entry address to the dump routine. It also
occurs if the ending address is less than the beginning address. The dump
command is terminated. To correct the error, reissue the dump command and
input all necessary parameters.

SECTION 4
TM 990/101MA INSTRUCTION SET EXECUTION

4,1 GENERAL
This section covers the instruction set used with the TM 990/101MA including
assembly language and machine language. This instruction set is compatible
with other members of the 990 family.
Other topics include:

e Hardware and software registers (sections 4.3 and 4.4)

e CRU addressing (section 4.7)

e Interrupts (section 4.10).
The TM 990/101MA microcomputer is designed for use by a variety of users with
varying technical backgrounds and available support equipment. Because a TM
990/101MA user has the capability of writing his programs in machine language
and entering them into memory using the TIBUG monitor, emphasis is on binary/
hexadecimal representations of assembly language statements. The assembly
language described herein can be assembled on a 990 family assembler. If an
assembler is used, this section assumes that the user will be aware of all

prerequisites for using the particular assembler.

It is also presumed that all users learning this instruction set have a
working knowledge in:

® ASCII coded character set (described in Appendix C).
® Decimal/hexadecimal, binary number system (described in Appendix D).
Further information on the 990 assembly language is provided in the Model 990

Computer/TMS 9900 Microprocessor Assembly Language Programmer's Guide (P/N
943441-9701).

4.2 USER MEMORY

Figure U4-1 shows the user RAM space in memory available for execution of user
programs. Note that the memory address value is the number of bytes beginning
at 0000; thus, all word addresses are even values from 000016 to FFFEq¢4.

Programs in EPROMs can be read by the processor and executed; however, EPROM
memory cannot be modified (written to). Therefore workspace register areas
are in RAM where their values can be modified. Restart vectors and TIBUG work-
spaces use the last 40 words of RAM memory space as shown in Figure 4-1.

4.3 HARDWARE REGISTERS

The TM 990/101MA uses three major hardware registers in executing the
instruction set: Program Counter, Workspace Pointer, and Status Register.

FEAg

FFAE

FFBO
FFF

ADDRESS (HEX)

BYTE 0000

MEMORY BYTE 0001
ADDRESS
0000 r 2
INTERRUPTVECTORS e [~ — — — ——— ———
003E - FIRST
0040 1024
XOP VECTORS EPROM
Zit;:g::m 7€ TM™S 2708 WORD
EPROM
TIBUG 0080 1K X 16
MONITOR
07FE
0800 SECOND
™S 2708 _17 " WORD
1K X 16 * .
~ EPROM
INTERRUPT :’:::
AND XOP LINK AREA ° 1
~ - } . } MEMORY
g . ‘ EXPANSION
~
~
~ e -
SECOND
~
U
~N
. WORD
USER F7FE ~_ 1KX16 RAM*
- AVAILABLE F800 <~)
-
- RAM RAM FIRST
~~ - 2114 1024
~~ 1K X 16 ~ WORD
=~ ~ Oy PP > RAM
~~ -]
FFFE- _

RESERVED 40 WORDS FOR
TIBUG MONITOR WORKSPACE
FILES AND RESET VECTORS

* NOT SUPPLIED WITH
TM 990/101MA-1 OR -2.

AT FFFC AND FFFE

ADDRESS (HEX)
0000-003F
0040-0047
0048-005F
0060-007F
0080:07FF
FEA8-FFAF
FFBO-FFFB
FFFC-FFFF

DEDICATED MEMORY

PURPOSE_

Vectors for interrupts 0 (RESTART) to 15
Vectors for XOP’s 0 and 1 {Microterminal 1/0)
Vectors for XOP’s 2 to 8 (Programmed by User)
Vectors for XOP’s 8 to 15 (TIBUG utilities)
TIBUG monitor

Interrupt and XOP linking area

Four overlapping monitor work spaces

Restart {load) vectors

BOARD MEMORY MAP

MEMORY TYPE

0000-07FF*
0000-OFFF*
0800-OFFF*
1000-1FFF*
FOOO-F7FF
F800-FFFF

ENABLE SIGNAL COMMENT

ROM (2708)
ROM (2716)
ROM (2708}
ROM (2716)
RAM (2114)
RAM (2114)

ROM1 TiBUG monitor area

ROM1 Main EPROM, blank TMS 2716
ROM2 Expansion EPROM

ROM2 Expansion EPROM, blank TMS 2716
RAM2 Expansion RAM

RAM1 Standard RAM

*EPROM pairs (e.g., U42, U44 and U43, U45) must be of the same type — both TMS 2708’s or both TMS 2716's. The
two EPROMpairs, main and expansion, may be of different type if the appropriate jumper settings are made. This
situation means selecting the 2716 memory map jumper option.

FIGURE 4-1.

y-2

MEMORY MAP

4.3.1 Program Counter (PC)

This register contains the memory address of the next instruction to be
executed. After an instruction image is read in for interpretation by the

processor, the PC is incremented by two so that it "points" to the next
sequential memory word.

4,3.2 Workspace Pointer (WP)

This register contains the beginning memory address of the register file
currently being used by the program under execution. This workspace consists
of 16 contiguous memory words designated registers 0 to 15. The WP points to
register 0. Paragraph 4.4 explains a workspace in detail.

4,3.3 Status Register (ST)

The Status Register contains relevant information on preceding instructions
and current interrupt level. Included are:

) Results of logical and two's complement comparisons (many instruc-
tions automatically compare the results to zero).

. Carry and overflow.

' 0dd parity found (byte instructions only).

) XOP being executed.

° Lowest priority interrupt level that will be currently recognized

by the processor.

The status register is shown in Figure i§-2,

8 10 12 13 14 15

AT
[L> l A>| EQ l c IOV 1 oP l X [\\ RESERVED \\\ INTERRUPTMASK J
AN N NN N
OV OVERFLOW

OP ODDPARITY
X XOP BEING EXECUTED

L> LOGICALLY GREATER THAN

A> ARITHMETICALLY GREATER THAN
EQ EQUAL

C CARRY

FIGURE 4-2. STATUS REGISTER
4,3.3.1 Logical Greater Than

This bit contains the result of a comparison of words or bytes as unsigned
binary numbers. Thus the most significant bit (MSB) does not indicate a
positive or negative sign. The MSB of bytes being logically compared
r?gresents 27 (128), and the MSB of words being logically compared represents
215 (32,768).

4,3.3.2 Arithmetic Greater Than
The arithmetic greater than bit contains the result of a comparison of words
or bytes as two's complement numbers. In this comparison, the MSB of words or

bytes being compared represents the sign of the number, zero for positive, or
one for negative.

4-3

4,3.3.3 Equal
The equal bit is set when the words or bytes being compared are equal.
§,3.3.4 Carry

The carry bit is set by a carry out of the MSB of a word or byte (sign bit)
during arithmetic operations. The carry bit is used by the shift operations to
store the value of the last bit shifted out of the workspace register being
shifted.

4,3.3.5 Overflow

The overflow bit is set when the result of an arithmetic operation is too
large or too small to be correctly represented in two's complement
(arithmetic) representation. In addition operations, overflow is set when the
MSB's of the operands are equal and the MSB of the result is not equal to the
MSB of the destination operand. In subtraction operations, the overflow bit is
set when the MSB's of the operands are not equal, and the MSB of the result is
not equal to the MSB of the destination operand. For a divide operation, the
overflow bit is set when the most significant sixteen bits of the dividend (a
32-bit value) are greater than or equal to the divisor. For an arithmetic left
shift, the overflow bit is set if the MSB of the workspace register being
shifted changes value. For the absolute value and negate instructions, the
overflow bit is set when the source operand is the maximum negative value,

4,3.3.6 0dd Parity

The odd parity bit is set in byte operations when the parity of the result is
odd, and is reset when the parity is even. The parity of a byte is odd when
the number of bits having a value of one is odd; when the number of bits
having a value of one is even, the parity of the byte is even.

4,3.3.7 Extended Operation

The extended operation bit of the Status Register is set to one when a
software implemented extended operation (XOP) is initiated.

4,3.3.8 Status Bit Summary

Table 4-1 lists the instruction set and the status bits affected by each
instruction.

4.4 SOFTWARE REGISTERS

Registers used by programs are contained in memory. This speeds up context-
switch time because the content of only one register (WP hardware register)
needs to be saved instead of the entire register file. The WP, PC, and ST
register contents are saved in a context switch.

A workspace is a contiguous 16 word area; its memory location can be
designated by placing a value in the WP register through software or a
keyboard monitor command. A program can use one or several workspace areas,
depending upon register requirements.

More than three-fourths of the instructions can address the workspace register

4.y

file;

workspace registers exclusively.

Figure 4-3 is an example of a workspace file in high-order memory (RAM). A
workspace in ROM would be ineffective since it could not be written into. Note

that several registers are used by particular instructions.

all shift instructions and most immediate operand instructions use

TABLE 4-1. 'STATUS BITS AFFECTED BY INSTRUCTIONS

MNEMONIC | L>| A> | EQ c |ov]| or X MNEMONIC [L> | A> | EQ c|ov|op X
A X X X X X - - LDCR X X X — - 1 —
AB X X X X X X — L X X X - - - -
ABS X X X X X - - LIMI - - - - - - -
Al X X X X X - — LREX - - - - - - -
ANDI X X X - - - — LWPI - - - — - — -
B — - - — - - - MOV X X X - - - -
BL — - - - - — - MOVB X X X - - X -
BLWP - - - - - - - MPY - - - - - - -
c X X X - - — — NEG X X X X X - —
cB X X X - - X - ORI X X X - - - -
ct X X X - - - - RSET — - - - - - -
CLR — - — - - - — RTWP X X X X X X X
coc - — X — — - - S X X X X X - -
czC — — X — — — — SB X X X X X X -
DEC X X X X X — — SBO — - — — - - -
DECT X X X X X — - sBz - - - - - — -
DIV - - - - X - - SETO - — - — - — -
IDLE — - - — - - — SLA X X X X X - -
INC X X X X X - — socC X X X - - - -
INCT X X X X X - - socs X X X — - X -
INV X X X — — - - SRA X X X X - - —
JEQ - — — — - — - SRC X X X X - - -
JGT - - — — — — — SRL X X X X - — -
JH — - — - - - - STCR X X X — — 1 -
JHE - - - - - - STST - - - - — - -
JL — - — — - - - STWP — - — - - - -
JLE - — — — - - - SWPB - - - - - - -
JLT - - - - - - - szc X X X - - - -
JMP - — — - - — - S$zcB X X X - - X -
JNC - - - — - - — B - — X - - — -
INE — — - — — — — X 2 2 2 2 2 2 2
JNO - - - — — - — XOP 2 2 2 2 2 2 2
Joc - - - - - - - XOR X X X — — - -
JOP - - - — - - —

NOTES

. When an LDCR or STCR instruction transfers eight bits or less, the OP bit is set or reset as in byte instructions. Otherwise these

instructions do not affect the OP bit.
The X instruction does not affect any status bit; the instruction executed by the X instruction sets status bits normally for that

instruction. When an XOP instruction is implemented by software, the XOP bit is set, and the subroutine sets status bits normally.

45

MEMORY

ADDRESS
WP REGISTER (HEXADECIMAL)
12 15
SHIFT

FCO02
FCo4
FCO06
FCO8
FCOA
FCoC
FCOE
FC10
FC12
FC14
FC16
FC18
FC1A
FC1C

FC1E

FIGURE 4-3.

R1

R 2

R3

R4

RS

R6

R7

R8

WORKSPACE EXAMPLE

—————— A N

BITS 12-15 USED BY
SHIFT INSTRUCTIONS

USED BY XOP'S AND BRANCH RETUF

USED IN CRU ADDRESSING
USED IN CONTEXT

SWITCHING (XOP,
BLWP, RTWP)

4.5 INSTRUCTION FORMATS AND ADDRESSING MODES

The instructions used by the TM 990/101MA are contained in 16-bit memory words
and require one, two, or three words for full definition. The first word (or
the single word) of an instruction will describe the purpose of the
instruction while the succeeding one or two words will be numbers that are
referenced by the initial instruction word. A word describing an instruction
is interpreted by the Central Processing Unit (CPU) by decoding the various
fields within the 16 bits. These fields are shown in Figure 4-4 for the 9900
instruction set which is also categorized into nine instruction formats as
shown in the figure.

In order to construct instructions in machine language, the programmer must
have a knowledge of the fields and formats of the instructions. This knowledge
is often very important in debugging operations because it allows the
programmer to change bits within an instruction in order to solve an execution
problem.

FORMAT 0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 GENERAL USE

1 opcobE [B | Tp | DR [1s | SR ARITHMETIC

2 OP CODE [SIGNED DISPLACEMENT JUMP

3 OP CODE WR Ts SR LOGICAL

a OP CODE c Ts SR CRU

5 OP CODE] c R SHIFT

6 OP CODE [1s SR PROGRAM

7 OP CODE NOT USED CONTROL

8 OP CODE N R IMMEDIATE

9 OP CODE i DR | Ts SR MPY, DIV, XOP
OP CODE OPERATION CODE

8 BYTE INDICATOR (1=BYTE)

Tp DESTINATION ADDRESS TYPE*

DR DESTINATION REGISTER

Ts SOURCE ADDRESS TYPE*

SR SOURCE REGISTER

c CRU TRANSFER COUNT OR SHIFT COUNT
R REGISTER

N NOT USED

*TpOR Tg ADDRESS MODE TYPE
00 DIRECT REGISTER
o1 INDIRECT REGISTER

10 { PROGRAM COUNTER RELATIVE, NOT INDEXED (SR OR DR = 0)

PROGRAM COUNTER RELATIVE + INDEX REGISTER (SR OR DR>0)
1n INDIRECT REGISTER, AUTOINCREMENT REGISTER

FIGURE 4-4. TM 990/101MA INSTRUCTION FORMATS

47

The fields within an instruction word contain the folowing information (see
Figure 4-4):

® Op code which identifies the desired operation to be accomplished when
this instruction is executed.

® B code which identifies whether the instruction will affect a full
16-bit word in memory or an 8-bit byte. A one indicates a byte will
be addressed, while a zero indicates a word will be addressed.

e T fields identified by TD for the destination T field and TS for the
source T field. The T field is a two-bit code which identifies which
of five different addressing modes will be used (direct register,
indirect register, memory address, memory address indexed, and
indirect register autoincremented). These modes are described in
detail in paragraphs 4.5.1 through U4.5.5. The source T field is the
code for the source address and the destination T field is the code
for the destination address. As shown in Figure 4-4, only five
instruction formats use a T field.

e Source and destination register fields which contain the number of the
register affected (0 through 15).

e Displacement fields that contain a bias to be added to the program
counter in program counter relative addressing. This form of
addressing is further described in paragraph 4.5.7.

e Fields that contain counts for indicating the number of bits that will
be shifted in a shift instruction or the number of Communication
Register Unit (CRU) bits that will be addressed in a CRU instruction.

4.5.1 Direct Register Addressing (T=00,)

In direct register addressing, execution involves data contained within one of
the 16 workspace registers. In the first example in Figure 4-5, both the
source and destination operands are registers as noted in the assembly
language example at the top of the figure. Both T fields contain 005 to denote
direct register addressing and their associated register fields contain the
binary value of the number of the register affected. The 110, in the op code
field identifies this instruction as a move instruction. Since the B field
contains a zero, the data moved will be the full 16 bits of the register (a
byte instruction addressing a register would address the left byte of the
register). The instruction specifies moving the contents of register 1 to
register 4, thus changing the contents of register 4 to the same value as in
register 1. Note that the assembly language statement is constructed so that
the source register is the first item in the operand while the destination
register is the second item in the operand. This order is reversed in the
machine language construction with the destination register and its T field
first and the source register and its T field second.

4.5.2 Indirect Register Addressing (T=015)

In indirect register addressing, the register does not contain the data to be
affected by the instruction; instead, the register contains the address within
memory of where that data is stored. For example, the instruction in Figure
4-6 specifies to move the contents of register 1 to the address which is
contained in register 4 (indirect register 4). Instead of moving the value in

4-8

register 1 to register U4 as was the case in Figure 4-5, the CPU must first
read in the 16-bit value in register 4 and use that value as a memory address
at which location the contents of register 1 will be stored. In the example,
register 4 contains the value FDOO1g. This instruction stores the value in
register 1 into memory address (M.A.) FD0O4g4.

Indirect register addressing is specified in assembly language source code by
preceding the register number with an asterisk (¥). For example, A *R1,¥R2
means to add the contents of the memory address in register 1 to the contents
of the memory address in register 2, leaving the sum in the memory address
contained in register 2.

In direct register addressing, the contents of a register are addressed. In
indirect register addressing, the CPU goes to the register to find out what
memory location to address. This form of addressing is especially suited for
repeating an instruction while accessing successive memory addresses. For
example, if you wished to add a series of numbers in 100 consecutive memory
locations, you could place the address of the first number in a register, and

EXAMPLE 1

ASSEMBLY LANGUAGE:
MOV R1,R4 MOVE THE CONTENTS OF R1 (SOURCE) TO R4 (DESTINATION)

SOURCE OPERAND

T CODE FOR
DESTINATION OPERAND DIRECT REGISTER
REGISTER 4 T CODE FOR
DIRECT REGISTER
REGISTER 1
MACHINE LANGUAGE: e
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15

1 1 0 0 0 0 0 1 1] 0 0 0 0 0 o 1 > C101

OP CODE B To DR Ts SR
M.A.
FCO00 RO
FC02 R1 *—_|
FCO4 R2 PLACE R1 BINARY
FCO6]R3 IMAGE IN R4
FCO8 R4
FCOA R5
EXAMPLE 2
ASSEMBLY LANGUAGE:

A R4,R10 ADD THE CONTENTS OF R4 (SOURCE) AND R10 (DESTINATION)

MACHINE LANGUAGE:
1 2 3 4 5 6 7 8 g 10 11 12 13 14 15

L‘l 0 1lOI0 0l1 0 1 010 0[0 1 00]>A284

OP CODE B To DR Tg SR

FIGURE 4-5. DIRECT REGISTER ADDRESSING EXAMPLES

4-9

ASSEMBLY LANGUAGE:
MOV R1,«R4 MOVE THE CONTENTS OF Rl (SOURCE) TO ADDRESS IN R4 (DESTINATION)

MACHINE LANGUAGE:
1 2 3 4 5 6 7 8 9 10 1 12 13 14 15

0
L1 1 010[0 1[0 1 0 0]0 010 0 0 1 1>C501

OP CODE B To DR Ts SR
M.A.
FCOO RO
FCO2 R1 -]
FCO4 R2
FCo6 A3 PLACE R1 BINARY
FCO8 R4 FDooO IMAGE IN MA FD00¢g
FCOA RS

(INDIRECT R4)

NN

FDOO -
FDO2

FIGURE 4-6. INDIRECT REGISTER ADDRESSING EXAMPLE

ASSEMBLY LANGUAGE:
MOV R1,*R4+ MOVE THE CONTENTS OF RI TO ADDRESS CONTAINED IN R4,
INCREMENT ADDRESSBY 2

MACHINE LANGUAGE:
o 1 2 3 4 5 6 7 8 9 10 1" 12 13 14 15

1 1 0 ¢} 1 1 0 1 0 o 0 0 0 0 0 1 > CDO1

OP CODE B Tp DR Tg SR

BEFORE AFTER

M.A.

FCOO = RO

FCO2 R1 0000 0000

FCO4 R2

FCO6 R3

FCO8 R4 FFOO FFO2

FFOO AAAA 0000

FIGURE 4-7. INDIRECT REGISTER AUTOINCREMENT ADDRESSING EXAMPLE

execute an add indirect through that register, causing the contents of the
first memory address (source operand) to be added to another register or
memory address (destination operand). Then you could increment the contents of
the register containing the address of the number, loop back to the add
instruction, and repeat the add, only this time you will be adding the
contents of the next memory address to the accumulator (destination operand).
This way a whole string of data can be summed using a minimum of

4-10

instructions. Of course, you would have to include control instructions that
would signal when the entire list of 100 addresses have been added, but there
are obvious advantages in speed of operation, better use of memory space, and
ease in programming.

4,5.3 Indirect Register Autoincrement Addressing (T=115)

Indirect register autoincrement addressing is the same as indirect register
addressing (section 4.5.2) except for an additional feature - automatic
incrementation of the register. This saves the requirement of adding an
increment (by one or two) instruction to increment the register being used in
the indirect mode. The increment will be a value of one for byte instructions
(e.g., add byte or AB) or a value of two for full word instructions (e.g., add
word or A).

In assembly language the register number is preceded by an asterisk (*¥) and
followed by a plus sign (+) as shown in Figure 4-7. Note in the figure that
the contents of register 4 was incremented by two since the instruction was a
move word (vs. byte) instruction. If the example used a move byte instruction,
the contents of the register would be incremented by one so that successive
bytes would be addressed (the 16-bit word addresses in memory are always even
numbers or multiples of two since each contains two bytes). Bytes are also
addressed by various instructions of the 990 instruction set.

Note that only a register can contain the indirect address.

4,5.4 Symbolic Memory Addressing, Not Indexed (T=102)

This mode does not use a register as an address or as a container of an
address. Instead, the address is a 16-bit value stored in the second or third
word of the instruction. The SR or DR fields will be all zeroes as shown for
the destination register field in the first example of Figure L-8. When the T
field contains 105, the CPU retrieves the contents of the next memory location
and uses these contents as the effective address. In assembly language, a
symbolic address is preceded by an at sign (@) to differentiate a numerical
memory address from a register number. All alphanumeric labels must be
preceded by an € sign; numerical values preceded by an € sign will be
assembled as an absolute address (the Line-By-Line Assembler does not
recognize alphanumeric symbols but does recognize absolute memory addresses).

In the second example in Figure U4-8, both the source and destination operands
are symbolic memory addresses. In this case, the source address is the first
word following the instruction and the destination is the second word
following the instruction in machine language.

4.5.5 Symbolic Memory Addressing, Indexed (T=102)

Note that the T field for indexed as well as non-indexed symbolic addressing
is the same (102). In order to differentiate between the two different modes,
the associated SR or DR field is interrogated; if this field is all zeroes
(0000,), non-indexed addressing is specified; if the SR or DR field is greater
than, zero, indexing is specified and the non-zero value is the index register
number. As a result, register 0 cannot be used as an index register.

In assembly language, the symbolic address is followed by the number of the

index register in parentheses. In the example in Figure 4-9, the source
operand is non-indexed symbolic memory addressing while the destination

4-11

operand is indexed symbolic memory addressing. In this case, the destination
effective address is the sum of the FF021g value in the source memory address
word plus the value in the index register (000445). The effective address in
this case is FF061¢ as shown by the addition in the left part of the figure.

Note that only symbolic addressing can be indexed.

EXAMPLE 1

ASSEMBLY LANGUAGE:
MOV - R1,@>FF00 MOVE THE CONTENTS OF Rl TO ADDRESS >FF00

NOTE
The > sign indicates hexidecimal representation.

MACHINE LANGUAGE:
OP CODE B Tp DR Ts SR
o 1 2 3 4 S5 & 7 8 8 10 11 12 13 14 15
1st WORD 11 o | 0 [10 l ¢ 0 o o] o o l o o o0 1
2nd WORD 11 1 11 1 1 o © 0 ©o 0 0 0 o©
M.A.
RO
R1 [N
R2
x PLACE R1 BINARY
IMAGE IN
FEFE MA >FF00
FFOO -
EXAMPLE 2

ASSEMBLY LANGUAGE:
MOV @>FFOA@>FF08 MOVE THE CONTENTS OF >FFOA TO >FF08

MACHINE LANGUAGE:
OP CODE B To DR Ts SR

(-]
B
(-]
o
o

1st WORD 1 1 010[1 OIO 0 0 011

2nd WORD 1 1 1 1 1 1 1 1 0 (1} 0 (1] 1 0 1 0

3rd WORD k 1 1 1 1 1 1 1 1 0 0 0 o 1 0 o o

BEFORE AFTER

M.A.
FFO8 FFFF 0000
FFOA 0000 0000

FIGURE 4-8. DIRECT MEMORY ADDRESSING EXAMPLES

4-12

> C801

> FF00

>C820

>FFOA (SOURCE)

>FF08 (DESTINATION

ASSEMBLY LANGUAGE:
MOV @>FF00,@>FF02(R1) MOVE THE CONTENTSOF >FF00TO >FF02+ RI CONTENTS

MACHINE LANGUAGE:
OP CODE B Tp DR ' Ts SR
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 0 0 1 0 0 0 0 1 1 0 0 0 0 0 >C860

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 >FF00 (SOURCE)

1 1 1 1 1 1 1 1 0 0 0 0 0 0 1] >FF02 '(DESTINATION)

BEFORE AFTER

M.A
RO
R1 0004 0004
R2
>FF02 (D} \ \\ \
+ 0004 (R1)
—_— FFO0 FFEE FFEE
>FF06
FFO2 0000 0000
\—-’FFM 0000 0000
FFO06 0000 FFEE

FIGURE 4-9. DIRECT MEMORY ADDRESSING, INDEXED EXAMPLE
4.5.6 Immediate Addressing
This mode allows an absolute value to be specified as an operand; this value

is used in connection with a register contents or is loaded into the WP or the
Status Register interrupt mask. Examples are shown below:

LI R2, 100 LOAD 100 INTO REGISTER 2
CI R8, >100 COMPARE R8 CONTENTS TO >100, RESULTS IN ST
LWPI >3C00 SET WP TO MA > 3C00

4.5.7 Program Counter Relative Addressing

This mode allows a change in Program Counter contents, either an unconditional
change or a change conditional on Status Register contents. Examples are shown
below:

JMP $+6 JUMP TO LOCATION, 6 BYTES FORWARD

JMP THERE JUMP TO LOCATION LABELLED THERE

JEQ $+4 IF ST EQ BIT = 1, JUMP 4 BYTES (MA + 4)

JMP >3E26 JUMP TO M.A. >3E26 (LINE-BY-LINE ASSEMBLER ONLY)

The dollar symbol ($) means "from this address"; thus, $+6 means "this address
plus 6 bytes."

4,6 INSTRUCTIONS

Table U4-2 lists terms used in describing the instructions of the TM 990/101MA.
Table 4-3 is an alphabetical list of instructions. Table 4-4 is a numerical
list of instructions by op code. Examples are shown in both assembly language
(A.L.) and machine language (M.L.). The greater-than sign (>) indicates

hexadecimal,
TABLE 4-2. INSTRUCTION DESCRIPTION TERMS
TERM DEFINITION
B Byte indicator {1 = byte, 0 = word)
C Bit count
DR Destination address register
DA Destination address
10P Immediate operand
LSB(n) Least significant (right most) bit of (n)
M.A. Memory Address
MSB(n) Most significant {left most) bit of (n)
N Don’t care
PC Program counter
Result Result of operation performed by instruction
SR Source address register
SA Source address
ST Status register
STn Bit n of status register
Tp Destination address modifier
Ts Source address modifier
WR or R Workspace register
WRn or Rn Workspace register n
{n) Contents of n
a—>b a is transferred to b
(a) ~>b Contents of a is transferred to be
[n] Absolute value of n
+ Arithmetic addition
— Arithmetic subtraction
AND Logical AND
OR Logical OR
@ Logical exclusive OR
n Logical complement of n
> Hexadecimal value

4-14

Sl-h

TABLE 4-3. INSTRUCTION SET, ALPHABETICAL INDEX

ASSEMBLY MACHINE STATUS REG. RESULT

LANGUAGE LANGUAGE BITS COMPARED

MNEMONIC OP CODE FORMAT AFFECTED TO ZERO INSTRUCTION PARAGRAPH
A AQ000 1 0-4 X Add {word) 46.1
AB B0O0O 1 05 X Add (byte} 4.6.1
ABS 0740 6 0-2 X Absolute Value 4.6.6
Al 0220 8 04 X Add Immediate 46.8 .
ANDI 0240 8 02 X AND Immediate 46.8
B 0440 6 - Branch 4.6.6
BL 0680 6 - Branch and Link (R11) 46.6
BLWP 0400 6 — Branch; New Workspace Pointer 4.6.6
C 8000 1 0-2 Compare {word) 4.6.1
CB 9000 1 0-2,5 Compare {byte) 4.6.1
Cl 0280 8 0-2 Compare Immediate 4.6.8
CKOF 03C0 7 — User Defined 4.6.7
CKON 03A0 7 — User Defined 4.6.7
CLR 04C0 6 - Clear Operand 4.6.6
coC 2000 3 2 Compare Ones Corresponding 4.6.3
czC 2400 3 2 Compare Zeroes Corresponding 4.6.3
DEC 0600 6 0-4 X Decrement (by one) 4.6.6
DECT 0640 6 0-4 X Decrement (by two) 46.6
DIV 3C00 9 4 Divide 46.3
IDLE 0340 7 — Computer Idle 4.6.7
INC 0580 6 0-4 X Increment (by one) 4.6.6
INCT 05C0 6 0-4 X Increment (by two) 4.6.6
INV 0540 6 0-2 X Invert {One’s Complement) 4.6.6
JEQ 1300 2 - Jump Equal (§T2=1) 4.6.2
JGT 1500 2 - Jump Greater Than (ST1=1), Arithmetic 46.2
JH 1800 2 - Jump High {STO=1 and ST2=0), Logical 4.6.2
JHE 1400 2 - Jump High or Equal (STO0 or ST2=1}, Logical 4.6.2
JL 1A00 2 - Jump Low (STO and ST2=0), Logical 46.2
JLE 1200 2 - Jump Low or Equal (ST0=0 or ST2=1), Logical 4.6.2
JLT 1100 2 - Jump Less Than (ST1 and ST2=0}, Arithmetic 4.6.2
JMP 1000 2 - Jump Unconditional 4.6.2
JNC 1700 2 - Jump No Carry (ST3=0) 46.2
JNE 1600 2 — Jump Not Equal {ST2=0) 46.2
JNO 1900 2 - Jump No Overflow (ST4=0) 4.6.2
Joc 2 - Jump On Carry (ST3=1) 4.6.2

1800

9l-t

TABLE 4-3. INSTRUCTION SET, ALPHABETICAL INDEX (CONCLUDED)

ASSEMBLY MACHINE STATUS REG. RESULT

LANGUAGE LANGUAGE BITS COMPARED

MNEMONIC OP CODE FORMAT AFFECTED TO ZERO INSTRUCTION PARAGRAPH
JOoP 1C00 2 - Jump Odd Parity (ST5=1) 4.6.2
LDCR 3000 4 0-2,5 X Load CRU 46.4
LI 0200 8 - X Load Immediate 468
LiMI 0300 8 12-15 Load Interrupt Mask immediate 4.6.8
LREX 03E0 7 12-15 Load and Execute 4.6.7
LWPI 02EQ 8 - Load Immediate to Workspace Pointer 46.8
MOV C000 1 0-2 X Move (word} 4.6.1
MOovB D000 1 0-2,5 X Move (byte) 46.1
MPY 3800 9 ~ Multiply 4.6.3
NEG 0500 6 0-2 X Negate {Two's Complement) 4.6.6
ORI 0260 8 0-2 X OR Immediate 4.6.8
RSET 0360 7 1215 Reset AU 46.7
RTWP 0380 7 015 Return from Context Switch 4.6.7
S 6000 1 0-4 X Subtract (word) 4.6.1
SB 7000 1 0-5 X Subtract {(byte) 4.6.1
SBO 1000 2 - Set CRU Bit to One 4.6.2
SBZ 1E00 2 - Set CRU Bit to Zero 46.2
SETO 0700 6 - Set Ones 4.6.6
SLA 0A00 5 0-4 X Shift Left Arithmetic 4.6.5
soC EQO00 1 0-2 X Set Ones Corresponding {word) 4.6.1
SOCB FO00 1 0-2,5 X Set Ones Corresponding (byte) 4.6.1
SRA 0800 5 0-3 X Shift Right (sign extended) 46.5
SRC 0800 5 0-3 X Shift Right Circular 4.6.5
SRL 0900 5 0-3 X Shift Right Logical 4.6.5
STCR 3400 4 0-25 X Store From CRU 4.6.4
STST 02C0 8 - Store Status Register 46.8
STWP 02A0 8 - Store Workspace Pointer 46.8
sweB 06C0 6 - Swap Bytes 46.6
sZC 4000 1 0-2 X Set Zeroes Corresponding (word) 4.6.1
sz2cB 5000 1 0-2,5 X Set Zeroes Corresponding (byte) 4.6.1
TB 1F00 2 2 Test CRU Bit 4.6.2
X 0480 6 — Execute 4.6.6
XopP 2C00 9 6 Extended Operation 4.6.9
XOR 2800 3 02 X Exclusive OR 46.3

TABLE 4-4,

INSTRUCTION SET, NUMERICAL INDEX

MACHINE
LANGUAGE ASSEMBLY
OP CODE LANGUAGE STATUS BITS
(HEXADECIMAL) MNEMONIC INSTRUCTION FORMAT AFFECTED
0200 u Load Immediate 8 0-2
0220 Al Add Immediate 8 0-4
0240 ANDI And Immediate 8 0-2
0260 ORI Or Immediate 8 02
0280 Cl Compare Immediate 8 0-2
02A0 STwWP Store WP 8 —
02C0 STST Store ST 8 -
02E0 LWPI Load WP Immediate 8 —
0300 LiMI Load Int. Mask 8 1215
0340 IDLE Idle 7 -
0360 RSET Reset AU 7 12-15
0380 RTWP Return from Context Sw. 7 0-15
03A0 CKON User Defined 7 -
03C0 CKOF User Defined 7 -
03EOD LREX L.oad & Execute 7 —
0400 BLWP Branch; New WP 6 —
0440 B Branch 6 -
0480 X Execute 6 -
04C0 CLR Clear to Zeroes 6 -
0500 NEG Negate to Ones 6 0-2
0540 INV Invert 6 02
0580 INC Increment by 1 6 04
05C0 INCT Increment by 2 6 04
0600 DEC Decrement by 1 6 04
0640 DECT Decrement by 2 6 0-4
0680 BL Branch and Link 6 —
06CO0 SWPB Swap Bytes 6 -
0700 SETO Set to Ones 6 -
0740 ABS Absolute Value 6 0-2
0800 SRA Shift Right Arithmetic 5 03
0900 SRL Shift Right Logical 5 0-3
0AQ0 SLA Shift Left Arithmetic 5 G4
0B0O SRC Shift Right Circular 5 0-3
1000 JMP Unconditional Jump 2 -
1100 JLT Jump on Less Than 2 -
1200 JLE Jump on Less Than or Equal 2 -
1300 JEQ Jump on Equal 2 —
1400 JHE Jump on High or Equal 2 -
1500 JGT Jump on Greater Than 2 -
1600 JNE Jump on Not Equal 2 —
1700 JNC Jump on No Carry 2 —
1800 JoC Jump on Carry 2 —
1900 JNO Jump on No Overflow 2 —
1A00 JL Jump on Low 2 —
1B0O JH Jump on High 2 -
1C00 JoP Jump on Odd Parity 2 —
1D00 S8O Set CRU Bits to Ones 2 —_
1EO0O SBZ Set CRU Bits to Zeroes 2 -
1F00 TB Test CRU Bit 2 2
2000 coC Compare Ones Corresponding 3 2

U-17

TABLE 4-4, INSTRUCTION SET, NUMERICAL INDEX (Concluded)

MACHINE
LANGUAGE ASSEMBLY
OP CODE LANGUAGE STATUS BITS
(HEXADECIMAL MNEMONIC INSTRUCTION FORMAT AFFECTED

2400 czc Compare Zeroes Corresponding 3 2
2800 XOR Exclusive Or 3 0-2
2C00 XoP Extended Operation 9 6
3000 LDCR Load CRU 4 0-2,5
3400 STCR Store CRU 4 02,5
38C0 MPY Multiply 9 —
3C00 DIV Divide 9 4
4000 sZC Set Zeroes Corresponding (Word}) 1 0-2
5000 SZCB Set Zeroes Corresponding (Byte) 1 0-2,5
6000 S Subtract Word 1 0-4
7000 SB Subtract Byte 1 0-5
8000 C Compare Word 1 02
9000 CB Compare Byte 1 025
AQ000 A Add Word 1 04
B00O AB Add Byte 1 0-5
C000 MOV Move Word 1 0-2
D000 MOvB Move Byte 1 0-2,5
EQQ00 SOC Set Ones Corresponding (Word) 1 02
FO00 sSOC8 Set Ones Corresponding {Byte} 1 0-2,5

4,6.1 Format 1 Instructions
These are dual operand instructions with multiple addressing modes for source

and destination operands.

GENERAL FORMAT:

0 1 2‘ 3 4 5 6 7 8 9 10 n 12 13 14 15

OP CODE B b DR Tg SR

If B
If B

1, the operands are bytes and the operand addresses are byte addresses,
0, the operands are words and the operand addresses are word addresses.

4-18

OP CODE RESULT STATUS
| MNEMONIC 0 1 2 3 MEANING COMPARED BITS NESCRIPTION
[TOO AFFECTED
i A 10 1 0 Add Yes 04 (SA)+{DA) —~ (DA}
. aB 10 1 1 Addbytes Ves 05 {SA)+(DA] -~ (DA)
c 10 0. 0| Compare No 0-2 Compare (SA] to (DA) and set
. E appropriate status bits
" CcB 10 0 1 Compare bytes No 0-2,5 Compare (SA) to (DA) and set
fi } approprtate status bits
MOV 110! 0! Move Yes 0-2 {SA) —~ (DA)
MQOvB 110 1 Move bytes Yes 0-2,5 (SA) — (DA)
S 0 1 1 i 0 i Subtract Yes 04 (DA} — (SA) > (DA)
S8 o 1t 1 1 Subtract bytes Yes 0-5 (DA) — (SA) ~ (DA}
SOC T 11 i 0 Set ones corresponding Yes 0-2 {DA) OR (SA) — (DA)
SOCB [| Set ones corresponding bytes Yes 0-2,5 {DA) OR {SA)} = (DA)
SZC 010 0 Set zeroes corresponding Yes 0-2] (DA) AND (SA) — (DA)
szcB 10 ‘ 1 Set zeroes corresponding bytes Yes 0-2,5 l (DA) AND (SA) — (DA)
EXAMPLES
(1) ASSEMBLY LANGUAGE:

(2)

A @>100,R2

MACHINE LANGUAGE:

ADD CONTENTS OF MA >100 & R2, SUM IN R2

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 ¢ 1 /lo0oje o0 o 1 6|1 o]0 o o0 o0 ~ADAD

6 o o ©o oo © o0 1 0 O 0 o0 © o0 o0 O >0100
ASSEMBLY LANGUAGE:

CB R1,R2 COMPARE BYTE R1 TO R2, SET ST
MACHINE LANGUAGE:

0o 1 2 3 4 s 6 7 8 9 10 11 12 13 14 15

1 0 o |1 o o|/o0o o 1 o|o0o ofo0o o o 1 >9081

NOTE

In byte instruction designating a register, the left
byte is used. In the above example, the left byte (8
MSB's) of R1 is compared to the left byte of R2, and the

ST set to the

results.

4.6.2 Format 2 Instructions

4,6.2.1 Jump Instructions

Jump instructions cause the PC to be loaded with the value (PC+2 (signed
displacement)) if bits of the Status Register are at specified values.
Otherwise, no operation occurs and the next instruction is executed since the
PC was incremented by two and now points to the next instruction. The signed
displacement field is a word (not byte) count to be added to PC. Thus, the
jump instruction has a range of -128 to 127 words (-256 to 254 bytes) from the

memory address following the jump instruction. No ST bits are affected by a
jump instruction.

GENERAL FORMAT:
0 1 2 3 4 5 6 7 8 9 10 n 12 13 14 15

OP CODE SIGNED DISPLACEMENT (WORDS) J
MNEMONIC Op CODE MEANING ST CONDITION TO CHANGE PC
012345867
JEQ 00010011 Jump equal ST2=1
JGT 0001TO0O1T O Jump greater than ST1=1
JH 00011011 Jump high STO=1and ST2=0
JHE 00010100 Jump high or equal STO=1o0rST2=1
JL 0001171010 Jump low STO=0andST2=0
JLE 0001 00110 Jump low or equal STO=00rST2=1
JLT 00010001 Jump less than ST1=0and ST2=0
JMP 0001 0O0O00O0 Jump unconditional unconditional
JNC 00010 v 1 1 Jump no carry ST3=0
JNE 00010110 Jump not equal ST2=0
JNO 00011 0G0C1 Jump no overflow ST4=0
JOoC 00011000 Jump on carry X ST3=1
JOP 00011100 Jump odd parity | ST5 = 1

In assembly language, $ in the operand indicates "at this instruction".
Essentially JMP $ causes an unconditional loop to the same instruction
location, and JMP $+2 is essentially a no-op ($+2 means "here plus two
bytes"). Note that the number following the $§ is a byte count while
displacement in machine language is in words.

4-20

EXAMPLES :

(1} ASSEMBLY LANGUAGE:
JEQR $+4 IF EQ BIT SET, SKIP 1 INSTRUCTION

MACHINE LANGUAGE:

0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 1 >1301

JEQ $+4 IF STATUS REGISTERBIT2=1
PC POINTS TO —™ D SKIP NEXT INSTRUCTION

The above instruction continues execution 4 bytes (2 words) from the
instruction location or, in other words, two bytes (one word) from the Program
Counter value (incremented by 2 and now pointing to next instruction while JEQ

executes). Thus, the signed displacement of 1 word (2 bytes) is the value to
be added to the PC.

(2) ASSEMBLY LANGUAGE:
JMP § REMAIN AT THIS LOCATION

MACHINE LANGUAGE:

0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15

Efo o 0 1 0 o0 o0 o0 l 1T 1 1 1 1111] >10FF

PC —1 WORD —»1 JMP $ D CONTINUOUS LOOP

PC POINTS TO —» TO JMP $ (>FF=—1WORD)

This causes an unconditional loop back to one word less than the Program
Counter value (PC + FF = PC-1 word). The Status Register is not checked. A
JMP $+2 means "go to the next instruction" and has a displacement of zero (a
no-op). No-ops can substitute for deleted code or can be used for timing
purposes.

4,6.2.2 CRU Single-Bit Instructions

These instructions test or set values at the CRU. The CRU bit is selected by
the CRU address in bits 3 to 14 of register 12 plus the signed displacement
value. The selected bit is set to a one or zero, or it is tested and the bit
value placed in equal bit (2) of the Status Register. The signed displacement
has a value of -128 to 127. CRU addressing is discussed in detail in paragraph
5.5. CRU multibit instructions are defined in paragraph 4.6.4.

4-21

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

General Format: OP CODE SIGNED DISPLACEMENT
STATUS
OP CODE
MNEMONIC MEANING BITS DESCRIPTION
01234567
AFFECTED)
SBO 00011101 Set bit to one — Set the setected CRU output bitto 1.
SBZ 00011110 Set bit to zero — Set the selected CRU ocutput bit to 0.
T8 00011111 Test bit 2 If the selected CRU input bit = 1, set ST2.

EXAMPLE
R12,BITS3TO 14 = >100

ASSEMBLY LANGUAGE:
SBO0 4 SET CRU ADDRESS >104 TO ONE

MACHINE LANGUAGE:

(o 0o o 1 1 1 o0 1 l o 0 o0 o0 0 1 o0 o0 | >wpoa

4,6.3 Format 3/9 Instructions

These are dual operand instructions with multiple addressing modes for the
source operand, and workspace register addressing for the destination. The MPY
and DIV instructions are termed format 9 but both use the same format as
format 3. The XOP instruction is covered in paragraph 4.6.9.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

General Format: OP CODE DR (REGISTER ONLY) Ts SR T

RESULT | STATUS

OP CODE COMPARED BITS
MNEMONIC 012345 MEANING TOO AFFECTED DESCRIPTION
CcoC 001000 | Compare ones No 2 Test (DR) to determine if 1's are in each
corresponding N bit position where 1's are in {SA). If so,
set ST2.
czc 001001 |Compare zeros No 2 Test (DR) to determine if Qs are in each
corresponding bit position where 1's are in (SA). If so,
set ST2.
XOR 001010 |Exclusive OR Yes 02 (DR} @ (SA)—>(DR) -
MPY 001110 |Multiply No Multiply unsigned (DR} by unsigned

{SA} and place unsigned 32-bit product
in DR {most significant) and DR + 1
{least significant). If WR15 is DR, the
next word in memory after WR15 will
be used for the least significant half of
the product.

DIV 001111 |Divide No 4 If unsigned {SA) is less than or equal to
unsigned (DR}, perform no operation
and set ST4. Otherwise divide unsigned
(DR) and (DR) by unsigned (SA).
Quotient = (DR}, remainder > (DR+1).
if DR-15, the next word in memory
after WR15 will be used for the
remainder.

Exclusive OR Logic 1®0 -1
o®o0 o
1Ot 0

Y4-22

EXAMPLES

(1) ASSEMBLY LANGUAGE:
MPY R2,R3

MACHINE LANGUAGE:

MULTIPLY CONTENTS OF R2 AND R3, RESULT IN R3 AND R4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 1 1 1 0 o 0 1 1 o 0 0 0 1 0 >38C2
BEFORE AFTER
R2 0002 0002
R3 0003 0000 32-81T
R4 N 0006 RESULT

The destination operand is always a register, and the values multiplied are
16-bits, unsigned. The 32-bit result is placed in the destination register and
destination register +1, zero filled on the left.

(2} ASSEMBLY LANGUAGE:

Div @>FEO00,R5 DIVIDE CONfENTS OF R5 AND R6 BY VALUE AT M.A. > FE00

MACHINE LANGUAGE:

0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
0 0 1 1 1 1 0 1 o 1 1 0 0 0 0 0 >3D60
1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 >FEOQO

BEFORE AFTER
M.A. > FEOO 00605 0005
RS 0000 0003

R6 0011 0002 |-=—— REMAINDER

The unsigned 32-bit value in the destination register and destination register
+1 is divided by the source operand value. The result is placed in the
destination register. The remainder is placed in the destination register +1.

4-23

(3} ASSEMBLY LANGUAGE:
COC RI10,R11 ONES IN R10 ALSO IN R11?

MACHINE LANGUAGE:

0 0 1 0 1] 0 1 o 1 1 0 0 1 0 1 (] >22CA

Locate all binary ones in the source operand. If the destination operand also
has ones in these positions, set the equal flag in the Status Register;
otherwise, reset this flag. The following sets the equal flag:

R10 1 0 1 0 1 o 1 0 0 0 0 0 1 1 V] 0 >AAOC

R11 1 1 1 o 1 1 1 1 1 1 0 0 1 1 o 1 >EFCD

Set EQ bit in Status Register to 1.

4,6.4 Format 4 (CRU Multibit) Instructions

General Format: OP CODE C Ts SR

The C field specifies the number of bits to be transferred. If C = 0, 16 bits
will be transferred. The CRU base register (WR 12, bits 3 through 14) defines
the starting CRU bit address. The bits are transferred serially and the CRU
address is incremented with each bit transfer, although the contents of WR 12
are not affected. Ts and SR provide multiple mode addressing capability for
the source operand. If 8 or fewer bits are transferred (C = 1 through 8), the
source address is a byte address. If 9 or more bits are transferred (C = 0, 9
through 15), the source address is a word (even number) address. If the source
is addressed in the workspace register indirect autoincrement mode, the
workspace register is incremented by 1 if C = 1 through 8, and is incremented
by 2 otherwise.

NOTE

CRU addressing is discussed in detail in paragraph 5.5. CRU single
bit instructions are defined in paragraph 4.6.2.2

424

RESULT STATUS
MNEMONIC OP CODE MEANING COMPARED BITS DESCRIPTION
012345 TO O AFFECTED
LDCR 001100 |Load communcation Yes 0257 Beginning with LSB of (SA), transfer the
register specified number of bits from {SA)} to
the CRU.
STCR 001101 |Storecommuncation Yes 0-2,5% Beginning with LSB of {SA), transfer the
register specified number of bits from the CRU to
(SA). Load unfilled bit positions with 0.

tST5 is affected only if 1 < C <8,

EXAMPLE

ASSEMBLY LANGUAGE:
LDCR @>FE0038 LOAD 8 BITS ON CRU FROM M.A. >FE00

MACHINE LANGUAGE:

0 o 1 1 o 0 1 0 0 0 1 0 0 0 0 0 >3220

1 1 1 1 1 1 1 o 0 0 0 0 0 0 0 0 >FEQO0

NOTE

CRU addressing is discussed in detail in paragraph 5.5.

4,6.5 Format 5 (SHIFT) Instructions

These instructions shift (left, right, or circular) the bit patterns in a
workspace register. The last bit value shifted out is placed in the carry bit
(3) of the Status Register. If the SLA instruction causes a one to be shifted
into the sign bit, the ST overflow bit (4) is set. The C field contains the
number of bits to shift.

General Format: OP CODE C R

If C = 0, bits 12 through 15 of RO contain the shift count. If C = 0 and bits
12 through 15 of WRO = 0, the shift count is 16.

4-25

RESULT STATUS
MNEMONIC Op CODE MEANING COMPARED BITS DESCRIPTION
012345867
TO O AFFECTED
SLA {1 00 00 1 0 1 0 | Shiftleftarithmetic Yes 0-4 Shift (R) left. Fill vacated bit
positions with 0.
SRA 00 00 1 0 O O | Shiftright arithmetic Yes 0-3 Shift (R) right. Fill vacated bit
) positions with original MSB of (R).
SRC 0000 1 0 1 1 | Shiftrightcircular Yes 0-3 Shift (R) right. Shift previous LSB
into MSB.
SRL 0000 1 0 0 1 | Shift right logical Yes 0-3 Shift (R) right. Fill vacated bit
positions with O's.

EXAMPLES

(1) ASSEMBLY LANGUAGE:
SRA R12 SHIFT R1 RIGHT 2 POSITIONS, CARRY SIGN

MACHINE LANGUAGE:

0 1 2 3 4 5 6 7 8~ 9 10 11 12 13 14 15

0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 >0841

R1 BEFORE 1 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 >8FOF

R1 AFTER 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 >E3C3

| S SIGN BIT CARRIED IN

(2} ASSEMBLY LANGUAGE:
SRC R54 CIRCULAR SHIFT R5 4 POSITIONS

MACHINE LANGUAGE:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 1 0 0 o 0 1 0 0 0 1 0 1 >0845

R5 BEFORE | 0 0 0 0 1 0 0 1 o 0 0 0 1 1 1 1 >090F

R5 AFTER AT 1 1 1 1 0

4-26

(3) ASSEMBLY LANGUAGE:

RO

R1 (BEFORE)

R1 (AFTER)

SLA R1,0 SHIFT COUNT IN RO
SHIFT COUNT
(] 1 2 3 4 5 6] 7 8 9 |10 | 1 12 | 13 | 14 | 15
| rpzpEgaspeprpege|e] BN
1 1 0 0 1 1 o 0 1 1 0 (1} 0 0 1 1 >CCC3
T T
1 1 1 1 1, 1 1 1 1 1 1 1 1 1 1 1
/”r
—
T T T
1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
\-—\~
VACATED BITS ZERO FILLED
4,6.6 Format 6 Instructions
These are single operand instructions.
0 1 2 3 4 5 6 7 8 9 0 11 12 13 14 15
OP CODE Ts SR

General Format:

The Tg and S fields provide multiple mode addressing capability for the source operand.

RESULT STATUS
MNEMONIC OP CODE MEANING COMPARED BITS DESCRIPTION
0123456789 B
TO 0 AFFECTED
B 00000 0001 Branch No - SA - (PC)
BL 0000011010 |Branchand link No {PC) > (R11); SA = (PC)
BLWP 00000 0 0 0 0 |Branch and load No {SA) >{WP); (SA+2) =>(PC);
wor kspace pointer {old WP) — (new WR 13},
{old PC) — (new WR14);
{old ST} — (new WR15);
the interrupt input (INTREQ) is not
tested upon completion of the
BLWP instiuction.
CLR 00000 001 1 | Clear operand No 0000 > (SA)
SETO 00000 1 1 0 0 | Set to ones No FFFF1g " (SA)
INV 0000010101 |inven Yes 072 [SA) - (SA) {ONE'S complement)
NEG 00000 01 0 0 | Negate Yes 04 ~(SA) * (SA)TWO’'S complement)
ABS 00000 1 1 0 1 |Absolute value® No 04 {(SA)] = {SA)
SWPB 09000 1 0 1 1 |Swap bytes No (SA), bits O theu 7 -~ (SA}, hits
8 thiu 15; (SA), tits 8 thru 15
(SA}, bits O thru 7.
INC 00000 11 0 {increment Yes 0-4 (SA) + 1 -{SA)
INCT 00000 0111 Increment by two Yes 0-4 (SA) + 2 -{SA)
DEC 00000 1 00 0 | Decrement Yes 04 {SA) -1 -I(SA)
DECT 0000O 10 0 1 | Decrement by two Yes 0-4 (SA) - 2 -iSA)
x 1 00000 0 01 0 | Execute No Execute the instruction at SA.

*Operand is compared to zero for setting the status bit (i.e., before execution).

11§ additional memory words for the execute instruction are required to define the operands of the instruction focated at SA, these
words will be accessed fram PC and the PC will be updated accordingly. The instruction acquisition signal {1AQ) will not be true
when the TMS 9900 accesses the instruction at SA. Status bits are affected in the normal manner for the instruction executed.

NOTE

Jumps, branches, and XOP's are compared in Table U4-5.

4-27

EXAMPLES

(1) ASSEMBLY LANGUAGE:
B *R2 BRANCH TO M.A. IN R2

MACHINE LANGUAGE:

o o o o o0 1 © o6 o 1}l0 1|0 o 1 o |>045

R2 F D D O

N\

B *R2 PC (AFTER)
N N\
| NEXT INSTR. |

—

M.A. >FDDO

(2} ASSEMBLY LANGUAGE:
BL @>FF00 BRANCH TO M.A. >FF00, SAVE OLD PC VALUE (AFTER EXECUTION) IN R11

MACHINE LANGUAGE:

o 0 © o0 o 1 1 0 1 0 1 o | o o o0 o >04A0

1 1 1 1 1 1 1 1 o 0 0 0 0 0 0 0 >FFOO0

R11 F C€C 0 4 «+—— OLD PC VALUE
M.A. >FCO00 BL @ >FF00 PC F F 0 0]} (AFTER}
>FC02 F F 0 O
>FCO04

>FF00 NEXT INSTR.
TO RETURN
EXECUTE
B*R11

8 *R11
(3) ASSEMBLY LANGUAGE:
BLWP @>FD0OO BRANCH, GET NEW WORKSPACE AREA

MACHINE LANGUAGE:

1 1 1 1 1 1 0 1 o 0 0 0 0 0 0 0 >FDOD

4-28

This context switch provides a new workspace register file and stores return
values in the new workspace. See Figure 4-10. The operand (>FDO0 above) is
the M.A. of a two-word transfer vector, the first word the new WP value, the
second word the new PC value. The processor does not test the interrupt
request line (INTREQ-) following a BLWP instruction.

BLWP @>FD0O BRANCH WITH NEW WORKSPACE

M.A.>FC00 N RO

» CALLING PROGRAM

] BEFORE BLWP OCCURS
‘7 FCcoo | wp

TRANSFER{ >FD00 F F 00 (NEW WP) FC8a PC

>FC80 | BLWP @ >FDOO

F F 20 (NEW PC) N ST

AFTER BLWP
OCCURS
FFO0O wp

VECTORS

A N

>FFO00 RO 4
FF20 PC
N ST
RETURN FCO00 = (OLDWP) R13
VALUES FC84 = (OLD PC}) R14

OLD ST CONTENTS R15 > NEW EXECUTION AREA

>FF20 NEXT INSTR.

RTWP

~/
RTWP RETURNS EXECUTION TO CALLING

PROGRAM STARTING AT M.A. >FC84

FIGURE 4-10. BLWP EXAMPLE

Essentially, the RTWP instruction is a return to the next instruction that
follows the BLWP instruction (i.e., RTWP is a return from a BLWP context
switch, similar to the B*R11 return from a BL instruction). BLWP provides the
necessary values in registers 13, 14, and 15 (see Figure 4-10).

4-29

TABLE 4-5. COMPARISON OF JUMPS, BRANCHES, XOP'S

MNEMONIC PARAGRAPH DEFINITION SUMMARY

JMP 4.6.2 One-word instruction, destination restricted to +127, —128 words from Program
Counter value.

B 46.6 Two-word instruction, branch to any memory location.

BL 46.6 Same as B with PC return address in R11.

BLWP 4.6.7 Same as B with new workspace; old WP, PC and ST contents {return vectors) are in
new R13, R14, R15.

XOP 46.9 Same as BLWP with address of parameter {source operand) in new R11. Sixteen XOP
vectors outside program in M.A. 40, to 7E 4; can be called by any program.

4.6.7 Format 7 (RTWP, CONTROL) Instructions

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

General Format: OP CODE N

External instructions cause the three most-significant address lines (AO
through A2) to be set to the levels described in the table below and cause the
CRUCLK 1line to be pulsed, allowing external control functions to be
interpreted during CRUCLK at AO, A1, and A2. The RSET instruction resets the
I/0 lines on the TMS 9901 to input lines; the TMS 99024 is not affected. RSET
also clears the interrupt mask in the Status Register. The LREX instruction
causes a delayed load interrupt, delayed by two IAQ cycles after LREX
execution. The load operation gives control to the monitor. Note, that
although included here because of its format, the RTWP instruction is not

classified as an external instruction because it does not affect the address
lines or CRUCLK.

CKOF- and CKON- can be used by monitoring pins 9 and 10 respectively of U25.
See sheet 2 of the schematics in Appendix F.

STATUS ADDRESS
MNEMONIC OP CODE MEANING BITS DESCRIPTION BUS*
012345678910 AFFECTED A0 A1A2
IDLE 00000011010Q Idle - Suspend TMS 9900 L HL
instruction execution until
an interrudt, LLOAD, or
RESET occurs
RSET 00000011011 Reset 1/0 & SR 12—15 0—>ST12 thru ST15 L HH
CKOF 00000011110 User defined — H HL
CKON 00000011101 User defined — H L H
LREX 00000011111 l.oad interrupt Control to TIBUG H HH
RTWP 00000011100 Return from 0-15 (R13) —{(WP)
Subroutine (R14) - (PC)
- {R15) = (ST)

These outputs from the TMS 9900 go to a SN74LS138

4-30

as shown in Figure 5-6.

ASSEMBLY LANGUAGE: -
RTWP RETURN FROM CONTEXT SWITCH

MACHINE LANGUAGE:

0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15

0 0 0 0 0 0 1 1 1 0 0 o 0 0 0 0 >0380

RTWP RETURN TO PREVIOUS WP (R13), PC {(R14)}, ST (R15) VALUES
R13 FCoO
R14 FC824 AFTER
R15 STATUS FCoOoO we
\ \ FC8a PC
STATUS ST
M.A. >FF40 RTWP

EXECUTION BEGINS AT M.A. >FC84
WITH RO AT M.A. >FCO0.

4,6.8 Format 8 (IMMEDIATE, INTERNAL REGISTER LOAD/STORE) Instructions

4,6.8.1 Immediate Register Instructions

0 1 2 3 4 5 6 7 8 .9 14

10 11 12 13 15
General format: OP CODE l N l R -
10P
RESULT STATUS
OP CODE
MNEMONIC MEANING COMPARED BITS DESCRIPTION
012345678910
TO O AFFECTED
Al 0000001000 Add immediate Yes 0-4 (R} + IOP ~>(R)
ANDI 0000001001 Q AND immediate Yes 0-2 (R) AND 1OP > (R)
Cl 0000001010 Compare Yes 0-2 Compare (R} to IOP and set
immediate appropriate status bits
Li 0000001000 O Load immediate Yes 0-2 10P = (R)
OR! 0000001001 1 OR immediate Yes 0-2 (R) OR 10P = (R)
AND Logic: 01,10=0 OR Logic: 0+1,1+0=1
00=0 1+1=1
11=1 0+0=0

4-31

4,6.8.2 Internal Register Load Immediate Instructions

0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
General format: OP CODE T N
1OP
OP CODE
MNEMONIC MEANING DESCRIPTION
0123456 7 89 10
LWPI 0O0000CO0T1T 01T 1 1 Load workspace pointer immediate IOP — (WP), no ST bits affected
LIMI 0000O0O0OCTT 1TO0OO0OT O Load interrupt mask tOP, bits 12 thru 15 =ST12
thru ST15

4.6.8.3 Internal Register Store Instructions

0 1 2 3 4 5 6 7 8 9 10

1M 12 13 14 15

General format: r OP CODE

[~ | R]

NO ST BITS ARE AFFECTED,

OP CODE
MNEMONIC MEANING DESCRIPTION
01234567189 10
STST 0000010111 O Store status register {ST) — (R}
STWP 0000O0O011YO0O 1T 0 1 Store workspace pointer (wp) ~(R)
EXAMPLES
(1) ASSEMBLY LANGUAGE:
Al R2>FF ADD >FF TO CONTENTS OF R2
MACHINE LANGUAGE:
0 1 2 3 4 5 6 7 8] 10 1 12 13 14 15
0 1] 1] [¢] (4] 4] 1 0 1] 0 1 1] J o 0 1 0 >0222
0 1] 0 0 ' 0 [¢] 0 0 ' 1 1 1 1 1 1 1 1 >00FF
BEFORE AFTER
R2 000F 010€E
(2) ASSEMBLY LANGUAGE:
Cl R2>10E COMPARE R2 TO >10E
MACHINE LANGUAGE:
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 o 0 0 (1) 1 (4] 1 4] 0 0 { ¢} 0 1] >0282
T L 0
0 0 0 0 0 o 0 1 (o] (] 1) 0 1 1 1 0 >010E

R2 contains “after’” results { > 10E) of instruction in Example (1) above; thus the ST equal bit becomes set.

4-32

(3) ASSEMBLY LANGUAGE:
LWPI >FCO0 WP SET AT >FC00 (M.A. OF RO)

MACHINE LANGUAGE:

1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 [0 0 0 0 1 0 1 1 1 0 0 0 0 0 >02E0
T T T

1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 >FC00

(4) ASSEMBLY LANGUAGE:
STWP R2 STORE WP CONTENTS IN R2

MACHINE LANGUAGE:

o o o6 oo o ©0 1t 0 1 ©0 1t 0|0 0o 1 o | >02a2

This places the M.A. of RO in a workspace register.

4,6.9 Format 9 (XOP) Instructions

Other format 9 instructions (MPY, DIV) are explained in paragraph 4.6.3
(format 3).

0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15

General Format: | 0 (] 1 0 1 1 D (XOP NUMBER) Tg SR

The TS and SR fields provide multiple mode addressing capability for the

source operand. When the XOP is executed, ST6 is set and the following
transfers occur:

(40,4 + 4D) — (WP) First vector at 40, 4
(42,4, + 4D) — (PC) Each vector uses 4 bytes (2 words)
SA = (new R11)

{old WP} — (new WR13)
(old PC) ~ (new WR14)
{old ST) = (new WR15)

The TMS 9900 does not test interrupt request (INTREQ-) upon completion of the
XOP instruction.

4-33

An XOP is a means of calling one of 16 subtasks available for use by any
executing task. The EPROM memory area between M.A. 4016 and TEqg 1s reserved
for the transfer vectors of XOP's 0 to 15 (see Figure 4-1). Each XOP vector
consists of two words, the first a WP value, the second a PC value, defining
the workspace pointer and entry point for a new subtask. These values are
placed in their respective hardware registers when the XOP is executed.

The old WP, PC, and ST values (of the XOP calling task) are stored (like the
BLWP instruction) in the new workspace, registers 13, 14, and 15. Return to
the calling routine 1is through the RTWP instruction. Also stored, in the new
R11, is the M.A. of the source operand. This allows passing a parameter to the
new subtask, such as the memory address of a string of values to be
processed by the XOP-called routine. Figure U4-11 depicts calling an XOP to
process a table of data; the data begins at M.A. FFOO16, This XOP example
uses XOP vectors that point directly to the XOP service routine WP and PC. The
™ 990/101MA comes with interrupt and XOP vectors pointing to linking areas
that point to the service routine. The use of these linking areas is
explained in subsection 5.9.

XOP's 0, 1 and 8 to 15 are used by the TIBUG monitor, calling software
routines (supervisor calls) as requested by tasks. This user-accessible
software performs tasks such as write to terminal, convert binary to hex
ASCII, etc. These monitor XOP's are discussed in Section 3.3. XOP vectors 2
through 7 are programmed with memory vector values, but reserved for the user.
See Section 5.9 for an explanation of the Interrupt/XO0P linking area.

434

ASSEMBLY LANGUAGE:
X0P @>FF00,4

MACHINE LANGUAGE:

0o 1 2 3 4 s 6 7 8 9 10 11 12 13 14 15
o o 1 o0 1 1]l0 1 o o1 oo o o o |>02
T 1 1 1 1 1 1 1790 © o o o o o o |>rFoo
MA.
(" >o0040 XOP 0 WP AFTER
>0042 XOP 0 PC FCOO . WP
X0P \ : \ FC20 PC
VECTORS 3 >0050 FCoOO N ST
>0052 FCc2o0
e |

3

N
\

CALLING INSTR.

XOoP @>FF00,4

(" >Fcoo RO
FFOO R11-<—— PASSED PARAMETER (SOURCE OPERAND)
R12
XOP 4 OLD wep R13 RETURN VECTORS
PROGRAM oLD PC R14 TO CALLING TASK
oLD SR R15
>FC20 1ST INSTR.
NOTE
ATWP THIS EXAMPLE DOES NOT USE THE XOP
- LINKING AREAS EXPLAINED IN SUBSECTION
5.9. THIS XOP EXAMPLE PRESUMES THE XOP
\ VECTORS HAVE BEEN PROGRAMMED INTO
MEMORY (M.A. 0050, AND 0052,.) BY THE
16 16
TABLE OF >FF00 USER.
VALUES TO
BE PROCESSED
FIGURE 4-11, XOP EXAMPLE

4-35

SECTION 5

PROGRAMMING
5.1 GENERAL

This section is designed to familiarize the user with programming the TM
990/101MA. Explanations about the programming environment, using TIBUG XOP's,
supporting special features of the hardware, and certain programming practices
are included. Programs are provided as examples for the user to analyze and
follow, and possibly combine into the user's system. This section is divided
into, roughly, two areas: the first part gives background information on the
programming environment and shows suggested coding practices for a variety of
situations, and the second part gives specific program examples using special
features of the hardware.

For clarity, source listing examples in this section use assembler directives
recognized by larger assemblers but not recognized by the TM 990/402
Line-By-Line Assembler (LBLA). These directives are not explained in the
section on the 990 instruction set (Section #4), but are explained in detail in
the Model 990 Computer, TMS 9900 Microprocessor Assembly Language Programmer's
Guide. A synopsis of their definitions are given here. These directives are
explained in Table 5-1.

TABLE 5-1. ASSEMBLER DIRECTIVES USED IN EXAMPLES

Label Opcode Operand Meaning

AORG XXXX Assemble code that follows so that it is
loaded beginning at M.A. XXXX. This is

similar to the absolute load (slash) request
of the LBLA.

DATA YYYY Place the value YYYY in this location (if
preceded by the greater-than sign (>) the
quantity is a hexadecimal representation).

DATA LABEL If LABEL represents a memory address, the
memory address value is placed at this
location aligned on an even address (word
boundary).

END Signifies end of program for assembler.
AAAA EQU BBBB Wherever the symbol AAAA is found, substit-
ute the value BBBB.
IDT 'NAME' Program will be identified by NAME.
TEXT 'ABCD123! The ASCII value of the specified string is

assembled in successive bytes.

SOURCE STATEMENT NO.

RELATIVE ADDRESS COMMENT FIELD
OBJECT CODE (ASSEMBLED SOURCE)
LABEL FIELD
OP CODE
/--OPERAND
VA O CLE L

CLEAR FOR DECIMAL TO HEX ROUTI

LI 72 CEFPORM FROMPT MESSOGES

L3 SR FIVE FROMFTZ

L1 ¥ CLEWF+4 REGISTER 2 ADDRESED

WRIT 7 FROMFT USER FOR TIME VALLE
HEXT o) GET IMFUT

DETA NMEXT. ERROR NULL, ERROR RTN AR

RLEIF EREO DECIMAL CHARS TO BINARY

ASSEMBLED OBJECT SHOWS RELATIVE
ADDRESS OF “NEXT” AT 004A1g

FIGURE 5-1. SOURCE LISTING

Figure 5-1 is a part of a source listing used in this section, as assembled by
TI's TXMIRA assembler. Unless specified otherwise by directive, the TXMIRA
assembler will begin assembling code relative to memory address 00004g (second
column). When resolving an address for an instruction, as shown at the bottom
of the figure, the instruction address operator is the same as the relative
address in column two of the listing. Thus, for the label NEXT, the address
00L4A16 is assembled which is the relative address within the listing. This is
useful when determining such addresses as the destination of a labelled BLWP
instruction. Note that the Line-By-Line Assembler does not use labelled
addressing, but assembles the absolute address given.

5-2

5.2 PROGRAMMING CONSIDERATIONS
5.2.1 Program Organization
Programs should be organized into two major areas:

e Procedure area of executable code and data constants (never modified)

e Data area of program data and work areas whose contents will be
modified.

The executable code and constant data section can be debugged as a separate
entity, and then programmed into EPROM. The work area can be placed at
any other in RAM, and that address does not have to be contiguous with the
program code area, and can even be dynamically allocated by a Get Memory
supervisor call of some kind. Even if the program parts are loaded and
executed together, the organization and debug ease are enhanced.

In this programming section, all example programs are coded, with one
exception, in this manner. The only work area is the register set, which is
arbitrarily fixed to a RAM address. The one exception, the Two-Terminal
routine, is coded to reside entirely in RAM because the workspace is a part of
the contiguous extent of code. This method of coding is used in RAM-intensive
systems because the operating system need not manage workspaces as might be
necessary in a system with very little RAM.

5.2.2 Executing TM 990/100MA Programs on the TM 990/101MA

Programs developed on the TM 990/100MA board use a different interrupt and XOop
trap configuration than the TM 990/101MA. This must be taken into
consideration when executing programs on the TM 990/101MA that were developed
for running on TM 990/100MA. On the TM 990/100MA, interrupt vectors are
programmed into PROM for INT3 and INTY4 (vectors FF6844 and FF884 for INT3 and
FFAC4g for INTY). This allows for immediate use of these interrupt traps such
as with the TMS 9901 and TMS 9902A interval timers. XOP vectors on the TM
990/100MA are programmed for XOP's 0, 1 and 8 to 15 for use by TIBUG. User
XOP's (XOP 2-7) are not programmed.

On the TM 990/101MA board, however, all interrupt and XOP vectors are
programmed, and the linking scheme in RAM is different. Consult the interrupt
linking section (paragraph 5.9) for the scheme used. The TM 990/100MA scheme
is described in the User's Guide for that microcomputer.

5.2.3 Required Use of RAM in Programs

All memory locations that will be written to must be in RAM-type memory (this
is important to consider when the program is to be programmed into ROM).
Areas to be located in RAM include all registers as well as the destination
operands of format 1 instructions and the source operands of most format 6
instructions. For example, in the following source lines:

MoV €>0700,68>FC00 MOVE DATA

CLR 8>FC00 CLEAR MEMORY ADDRESS

ABS @>FC00 SET TO ABSOLUTE VALUE

INCT 6>FCo0 INCREMENT BY TWO

S R1, @>FCO0 (>FC00) -R1, ANSWER IN >FCO00

The address FC004g will be written to; thus, it has to be in RAM.

5-3

5.3 PROGRAMMING ENVIRONMENT

The programming environment of a computer is loosely defined as the set of
conditions imposed on a programmer by either or both the hardware and
systems software, but it is also the facilities available to the programmer
because of the design of the hardware and software. The environment in which
a program resides usually determines how that program is coded. This section
gives explanations of the major areas of the TM 990/101MA design from a
programmer's point of view. Note all program examples given are for a full
assembler (e.g., PXRASM, TXMIRA, or SDSMAC vs. the Line-By-Line Assembler) so
that labels can be used for reader comprehension.

5.3.1 Hardware Registers

The TMS 9900 family of processors is designed around a memory-to-memory
architecture philosophy; consequently, the only registers inside the processor
affecting the programmer are the Workspace Pointer (WP) register, the Program
Counter (PC) register, and the Status (ST) register. There are no accumulators
or general purpose registers which reside physically inside the
microprocessor. All manipulations of data are accomplished by using these
three registers as described below.

5.3.1.1 Workspace pointer (WP) Register

The Workspace Pointer is a register which holds the address of a sixteen word
area in memory; this memory area serves as a general purpose register set. A
memory area is designated as a workspace or general purpose register set by
loading the address of the first word (register 0) of the 16-word space into
the WP register. Thus the programmer's register set is in memory, and can be
referred to with register addressing, or if the WP value is known, with memory
addressing. The registers are simply a data area in a program with the
special privileges usually given to processor registers. This approach has
several advantages for the programmer.

1. Register save areas need no longer be kept in programs, since the
actual program registers are already in memory, and are maintained by
the hardware during program linking by the use of a special class of
instructions.

2. Program debugging is greatly heightened since the registers of a
questionable program remain intact in memory during debugging. The
debug monitor has its own set of registers, in memory, and there is
no question of which of many program modules has tampered with the
processor registers, since each program in question can have its own
registers. .

3. Recursive, re-entrant, and ROM resident code is much easier to write
since program calls are handled by special instructions, and new
workspace areas, linked together by the hardware, are available for
use at each program call.

4, Linked-list structuring of workspaces is automatically done by the
hardware, reducing system software overhead.

5. Very fast interrupt handling is possible since only three processor

registers (WP, PC, ST) are stored by the hardware during the
interrupt (instead of a whole register set) usually by a software

5-4

instruction or routine.
5.3.1.2 Program Counter (PC) Register

The Program Counter (PC) register holds the address of the next instruction to
be executed by the processor. As such, it is no different than the PC in any
other processor and is incremented while fetching instructions unless modified
by a program branch or Jjump, or during an interrupt sequence.

5.3.1.3 Status (ST) Register

The Status Register holds the processor status and is the only one of the
three processor registers which has nothing to do with memory, directly. It
is divided into two parts: the status bits, which are set to reflect the
attributes of data being handled by the processor, and the interrupt mask,
which governs the priority structure of interrupt processing. The ST is
organized as shown in Figure 4-2.

5.3.2 Address Space

The TMS 9900 microprocessor addresses 65,536 (64K) bytes (8-bits each).
Although the data bus is 16 bits wide, and the instruction set is mainly word
(16-bits) oriented, the basic unit of address is a byte. The actual memory
architecture is 32,768 (32K) words of two bytes each, and byte processing is
accomplished within the processor after fetching a word from memory. Because
the instruction set is mainly arithmetically oriented, and usually operates on
16-bit words, it is probably best to view the address space as a collection of
words, each containing, usually for I/0 purposes, two bytes.

5.3.3 Vectors (Interrupt and XOP)

This subsection covers the interrupt and XOP environments in general;
programming of interrupts and XOPs i1s covered in detail in Section 5.9.
Interrupt and XOP vectors are located beginning with address 00004¢ and extend
through 007F4g. The first half, addresses 00001 through 003F1g, contain the
interrupt vectors. There are 16 prioritized interrupts. Level 0 is the
highest priority, with a vector pair at 00004¢ and 000245. Level 15 is the
lowest priority, with its vector pair at 003C4g and 003E4g. Level 0 interrupt
is synonomous with the RESET function. A vector pair consists of a workspace
pointer and a program counter, both values identifying the interrupt program
environment.

Before an interrupt can occur, the processor must recognize it as having an
equal or higher priority than the interrupt mask in the Status Register. After
a valid interrupt has occurred, the interrupt vector values are retrieved from
memory, and the hardware equivalent of a BLWP instruction takes place.

There is one additional vector pair, at FFFC4g and FFFEq5, for the LOAD-
function. When signaled, this interrupt always occurs and cannot be disabled
by the Status Register interrupt mask. Note also that RESET being level zero,
cannot be disabled, since its Status Register priority value of zero is always
equal to or higher than any value in the interrupt mask field.

The XOP vectors work in a similar manner. Vector location begins at 004014
and extends through 007F45. These vectors are triggered by execution of the
XOP instruction, with a number from 0 to 15. There is no prioritizing; these
are software-triggered interrupts, and XOP service routines may freely execute

5-5

other XOP's. One additional event happens during the vector action: the source
operand of the XOP instruction is evaluated as an address and placed in the
new Workspace Register 11. This provides a parameter to the XOP routine.

The TIBUG monitor uses several XOP's for I/0 service from the terminal; some
of these are available for the user as explained in subsection 3.3. 1In
addition, the programmer may wish to program interrupt and XOP vectors for
special functions.

5.3.4 Workspace Registers
The actual workspace registers, in memory, provide general working areas for a
program. Some registers can also be used for special purposes; these are

listed in Table 5-2.

TABLE 5-2. REGISTER RESERVED APPLICATION

Register Application

0: Bits 12 - 15 (least significant half-byte) provide the shift count
for shift instructions coded to refer to this register. This
register cannot be used for indexed addressing.

11: Holds return address following execution of a BL instruction.

During XOP service routine, it holds resolved memory address of
argument in XOP instruction.

12: CRU Base Address.

13: During BLWP, RTWP, interrupts, and XOP's: holds old WP contents.
14 During BLWP, RTWP, interrupts, and XOP's: holds old PC contents.
15: During BLWP, RTWP, interrupts, and XOP's: holds old ST contents.

In general, then, registers 1 to 10 are available for unrestricted use,
although the programmer can use the reserved registers for other purposes, if
proper consideration is given.

One advantage of the workspace concept is that one program can request an
almost unlimited number of register sets, or alternately, every little module
in a program system can have at least one set of its own registers. Programs
are usually written to take advantage of the benefits associated with
programming operands in registers.

5.4 LINKING INSTRUCTIONS

These are of vital interest to a programmer for they answer the all important
questions of how to get in and out of a program. These instructions are:

B (paragraph 5.4.1) Branch

BL (paragraph 5.4.2) Branch with return link in R11

BLWP (paragraph 5.4.3) Branch, new workspace, return link in R13 to R15
RTWP (paragraph 5.4.4) Return, use vectors in R13 and R14

XOP (paragraph 5.4.5) Branch, new workspace, vectors in low memory

5.4.1 Branch Instruction (B)

Though not normally considered a program linking instruction, the branch
instruction can be used to link the programs in a known location, such as
TIBUG. Since the Workspace Pointer is not affected by the instruction,
program systems using this convention usually delegate the responsiblity for
establishing workspaces to each program. Thus we may have branches to various
programs as shown in Figure 5-2. Note that each program sets up its own WP

(LWPI instruction). The AORG and EQU directives are explained in paragraph
5-1.

*PGMA PROGRAM *PGMB PROGRAM *PGMC PROGRAM
AORG >0800 AORG >0A00 AORG -~ >1000
PGMB EQU >0A00 PGMA EQU >0800 PGMA EQU >0800
PGMC EQU >1000 PGMC EQU >1000 PGMB EQU >04A00
PGMA LWPI >FF90 PGMB LWPI >FF70 PGMC LWPI >FF50
B, 6PGMB B @pPGMC B @PGMA

6>0080

FIGURE 5-2. EXAMPLE OF SEPARATE PROGRAMS JOINED BY BRANCHES TO ABSOLUTE
ADDRESSES

5.4.2 Branch And Link (BL)

The BL instruction is designed mainly for the calling of subprograms with a
convenient means of returning back to the calling program. Since the
processor puts the address of the next instruction in register 11 (it
effectively transfers the PC to R11) before branching, the return path is

established. To return (using the same workspace) simply execute a B ¥R11 (or
RT instruction).

Note, though, that only one level of subroutine call is possible if only one
workspace area is used, unless register 11 is saved by the first subroutine
wishing to branch and link to a second subroutine.

CALLING PROGRAM FIRST LINK SECOND LINK
BL 6FE0Q FEQO LI R6,47 FDOO CI R5,22
MOV R11,R10 B ¥R11
BL @>FD00

5-T7

The BL subroutine can include XOP instructions to provide special services
needed to accomplish the subroutine function, as in the following example:

RDNUM XOP R1,13 READ A CHARACTER
BL @RDNUM CI R1,>3000 IS IT BELOW A ZERO?
. JL RDNUM YES,GO BACK
. CI R1,>3900 IS IT ABOVE A NINE?
. JH RDNUM YES, GO BACK
XOP R1, 12 ECHO THE CHARACTER
B *11 RETURN

The very simple routine shown above reads a character from the terminal and
checks for a decimal digit 0-9. If the character is acceptable, it is echoed
back to the terminal, and then control is returned to the calling program. If
the character is unacceptable, the routine drops it and requests another; the
bad character is not echoed to show the user that another character must be
typed.

5.4.3 Branch and Load Workspace Pointer (BLWP)

This is the most sophisticated linking instruction in that it causes a
complete program environment change (context switch), and automatically links
the old workspace to the new, also preserving the old processor status. As
such, it behaves in the same way as the interrupt sequence or XOP sequence,
and it is therefore possible to vector to an interrupt or XOP service routine
without actually causing an interrupt or executing an XOP. For example,
executing a BLWP @0 will vector to the RESET interrupt handler, which if TIBUG
is resident, causes the user to set the baud rate and start TIBUG again.

Since the TMS 9900 is a linked-list rather than a stack machine, those used to
a stack for systems programming may need some readjustment, but the superior
flexibility of linked-lists is simplified by the fact that the programmer can
move nodes around, whereas in a stack, the nodes are fixed in Last-In
First-Out (LIFQO) order. The transition is made painlessly since the hardware
completes program linking with the execution of one instruction, and very
little effort is required on the part of the programmer.

There are two immediate possibilities to discuss in using the BLWP
instruction. For simple subroutine linking, the following is an example:

CALLING PROGRAM SUBROUTINE
ENTRY .
BLWP @SUBA PCSUBA . ENTRY POINT
RTWP
SUBA DATA WPSUBA WPSUB .
DATA PCSUBA .

Note the double word vector pointed to by the BLWP operand, the values WPSUBA
and PCSUBA. These two DATA statements provide the memory addresses of these
vectors. The latter (PCSUBA) is the entry point, and is well defined.
However, the WP value is shown here without a definition. This raises the
fundamental question: if there are many programs operating together, such as

5-8

TIBUG, possibly a user-written monitor, and a collection of application
programs and subroutines, who is responsible for managing the individual
workspaces? If each individual program is responsible, then the following
definition would be added to the above subroutine:

WPSUBA EQU > FFT70

Note this defines WPSUBA as M.A. FF7016 and ties down one area of memory to
the subroutine; thus, no other program in the system can call this subroutine
without chancing some conflict by using the same workspace. Thus, it is
reserved for one subroutine.

A second approach is to code a value which is designated as a common workspace
for whoever is in control at the time. In the EQU statement above, the value
could be, by agreement, the common workspace. This implies that there are now
two entities - the reserved workspace, which must be carefully mapped out
ahead of time so there is no overlap, and the common workspace, of which there
may be one or more, and whose status is such that any program can use it, but
if control leaves that program, then that workspace is no longer considered
needed, and thus can be used by another program.

Note the previous discussion assumes that the program code is in EPROM. If the
code is to be executed from RAM, then writing the program is simple; put the
workspace at the end of the program as a data area.

In either case, the user is responsible for partitioning his memory such that
workspaces do not overlap or interfere with TIBUG or the XOP's defined by
TIBUG, along with any user defined workspaces.

5.4.4 Return With Workspace Pointer (RTWP)

The RTWP instruction can be used to both return from a program, and to link to
a program. Since the instruction reloads the processor WP, PC, and ST
registers from workspace registers 13, 14 and 15, then the contents of these
registers governs where control will go. If those registers were intiialized
by a BLWP instruction, then the action can be seen as a return, but if special
values are placed in these registers, the action can be viewed as a subroutine
call. Actually, program calls are not limited to a nesting structure, as in
stack architectures, but are generalized so that chains and even rings may be
formed. The TIBUG monitor uses the RTWP instruction in this manner. Using
the "R" command, the user fills TIBUG's registers 13, 14, and 15. Using the
"E" command causes TIBUG to execute a RTWP instruction using the values in
these registers.

Since the RTWP does not affect the new workspace at all, there is no way for
the called program to return to the caller unless the caller had initialized
the new workspace registers before executing the RTWP. This type of program
transfer is thus in a "forward" direction only, and is usually suitable only
for a monitor program in a fixed location such as TIBUG.

5.4.5 Extended Operation (XOP)

The XOP instruction works almost like a BLWP instruction, except that the

address containing the double-word vector area is between 00401¢ and 007Fqg,
and is selected by an argument of from 0 to 15, and that the new workspace
register 11 is initialized with the fully resolved address of the first
operand of the XOP instruction. This means that if the operand is a register,

5-9

the actual memory address is computed and placed in the new register 11.

The XOP instruction is meant as a "supervisor call" or special function
operation. As such, a programmer might wish to implement routines which
perform some standard process such as a character string search or setting the
system timer, as shown by the following code:

CALLING PROGRAM : XOP TRAPS AND SUBROUTINE

¥AT M.A. 0048: FF903 TIMER ROUTINE WP X0pP 2
AT M.A. OOUA: 10AE3 TIMER ROUTINE PC VECTORS

LI RO,11719 AT M.A, 10AE: IDT 'TIMER!

XOP RO,2 ENTRY MOV #11,11 GET VALUE
LI 12,>0100 ADDRESS 9901
SLA 11,1 SHIFT CLOCK COUNT
ORI 11,1 SET CLOCK MODE
LDCR 11,15 START CLOCK
SBZ O SET INTERRUPT MODE
SBO 3 ENABLE INT3 MASK
RTWP

The main program requests 11719 clock counts, which is a desired time of 0.25
second. This number is found by taking the system clock frequency, dividing
it by 64 to find the timer frequency, then reciprocating that to give the
timer interval, then dividing the desired time delay by the timer interval to
find the clock counter value. It is assumed here that XOP 2 is available for
this function. The timer routine translates the request and starts the system
timer. One quarter second later, an interrupt through INT3 will be generated.

TIBUG supplies definitions for XOP's 0, 1, and 8 through 15, leaving 2 through

7 available for the user. X0P's 2 through 7 are programmed according to the
scheme described in subsection 5.9. '

5.4.6 Linked-Lists

A linked list is a data organization where a collection of related data,
called a node, contains information which links it to other nodes. The prime
example here is a workspace register set: it contains sixteen words of data.
If there are many workspaces present at one time connected by BLWP
instructions, then every register 13 contains the address of the previous
workspace, forming a linked list. At the same time, the BLWP also places the
previous program counter value in register 14, providing a means of returning
back to the previous program environment.

For example, the E or execute TIBUG command uses the RTWP instruction to begin
program execution at the WP, PC, and ST values in current registers 13, 14,
and 15. The R or register inspect/change TIBUG command can be used to set up
these registers prior to the execute command. In the example in Figure 5-3,
program PGMA is executed using the TIBUG E command; it later gives control to
program PGMB using the BLWP command. In doing so, the processor forges links
back to PGMA by placing return WP, PC, and ST values in registers 13, 14, and
15 of PGMB. Likewise, PGMB branches to PGMC with return links to PGMB forged
into R13 to R15 of PGMC. Each can return to the previous program by executing
an RTWP instruction, and the processor can travel up the linked list until
PGMA is reached again.

5.5 COMMUNICATIONS REGISTER UNIT (CRU)

Input and output is mainly done on the TM 990/101MA using the Communications
Register Unit or CRU. This is a separate hardware structure with its own data
and control lines. Thus the TMS 9900 microprocessor has one address bus, but
two sets of control and data buses. One set, the memory set, has a 16-bit
parallel bidirectional data bus and three control lines, MEMEN-, DBIN, and
WE-.

The other set, the CRU I/0 set, uses two lines, one line for input (CRUIN),
and one for output (CRUOUT). There is one control line, CRUCLK, used to
strobe a bit being output on CRUOUT. A bit being input on CRUIN has no strobe
and is simply sampled by the microprocessor at its discretion.

CRU devices are run on one phase of the system clocks, and therefore, the rate
of data transfer on the CRUIN line is a function of the system clock. Since
the CPU also uses this system clock, it will sample the CRUIN line at a rate
that is a function of the system clock when doing a CRU read operation
(executing a CRU read instruction - STCR or TB).

PGMA

(4) RETURN (1) cALL PaMB
BLWP
TO PGMA

RTWP

RETURN
LINKS TO
PGMA

(@ cALL PGMC

(3) RETURN ATWP
TO PGMB
RETURN
LINKS TO R13-15
PGMB

FIGURE 5-3. LINKED LIST EXAMPLE

5-11

Thus, the CRU data group consists of three lines - CRUIN, CRUOUT, and CRUCLK.
The address bus supplies CRU address as well as memory addresses; which
operation being performed is determined by the presence of the proper control
signals. Memory operations use address bits 0 through 14 externally, bit 15
is used inside the processor for byte operations. CRU operations, however,
use only bits 3 through 14; bits 0, 1, and 2 are set to zero, and bit 15 or an
address is totally ignored.

When CRU instructions are executed, data is written or read through the CRUOUT
or CRUIN pins respectively of the TMS 9900 to or from designated devices
addressed via the address bus of the microprocessor.

The CRU software base address is maintained in register 12 (bits 0 to 15) of
the workspace register area. Only bits 3 through 14 of the register are
interpreted by the CPU for the desired CRU address, and this 12-bit value is
called the CRU hardware base address. When the displacement is added to the
hardware base address, the result is the CRU bit address further explained in
section 5.5.1.

™ 990/101MA devices driven off of the CRU interface include the TMS 9901
parallel interface and the TMS 9902A serial interface which are accessed
through the CRU addresses noted in Table 5-3. This table also lists the
functions of the other CRU addresses which can be used for onboard or offboard
I/0 use. Addressing the TMS 9901 and TMS 9902A for use as interval timers is
explained, along with programming examples, in sections 5.9.3 and 5.9.4.
Further detailed information on these two devices can be cbtained from their
respective data manuals.

TABLE 5-3. TM 990/101MA PREDEFINED CRU ADDRESSES

) CRU Hardware CRU Software
Function Base Address Base Address
(R12, bits 3-14) (R12, bits 0-15)

Status L.E.D. » 0000 0000
Unit I.D. Switch 0020 0040
TMS 9902A, Main I1/0 (Lower Half) - 0040 0080
TMS 99024, Main I/0 (Upper Half) 0050 - 00AQ
TMS 9901 Interrupt Mask, System Timer 0080 0100
TMS 9901 Parallel I/O 0090 0120
RESET Interrupt & 00A6 014cC
TMS 99024, Auxiliary I/0 (Lower Half) 00CO 0180
TMS 9902A, Auxiliary I/0 (Upper Half) 00D0 01A0
RS-232 Handshaking Signals 00EQ 01C0C
Offboard CRU 0100 0200
NOTES

1. Besides the examples used herein, Appendix J contains examples of
the various CRU instructions programmed to drive the onboard TMS
9901 or monitor signals to the TMS 9901.

2. The CRU software base address is equal to 2X the hardware base
address, or the hardware base address is 1/2 the software base
address.

5.5.1 CRU Addressing

The CRU software base address is contained in the 16 bits of register 12. From
the CRU software base address, the processor is able to determine the CRU
hardware base address and the resulting CRU bit address. These concepts are
illustrated in Figure 5-4.

' 5.5.1.1 CRU Address

The CRU bit address is the address that will be placed on the address bus at
the beginning of a CRU instruction. This is the address bus value that, when
decoded by hardware attached to the address bus, will enable the device so
that it can be driven by the CRU I/0 and clock lines. The CRU bit address is
the sum of the displacement value of the CRU instruction {(displacement applies
to single-bit instructions TS, SBO, and SBZ only) and the CRU hardware base
address in bits 3 to 14 of R12. Note that the sign bit of the eight-bit
displacement is extended to the left and added as part of the address. The
resulting CRU hardware bit address is then placed on address lines A3 to A1l;
address lines A0 to A2 always will be zeroes in CRU instruction execution.

5.5.1.2 CRU Hardware Base Address

The CRU hardware base address is the value in bits 3 to 14 of R12. For
instructions that do not specify a displacement (LDCR and STCR do not), the
CRU hardware base address is the same as the first CRU bit address {see
abcve). An important aspect of the CRU hardware base address is that it does
not use the least significant bit of register 12 (bit 15); this bit is ignored
in deriving the CRU bit address.

5.5.1.3 CRU Software Base Address

The CRU software base address is the entire 16-bit contents or R12. 1In
essence, this is the CRU hardware base address times two. Bits 0, 1, 2, and 15
of the CRU software base address are ignored in deriving the CRU hardware base
address and the CRU bit address.

CRU SOFTWARE BASE ADDRESS (CONTENTS OF R12)

/\/\“—\

ADD
A3 A4 A5 A6 A7 A8 A9 A0 A1l Al12 A13 A4 -— RESS

LINES

R12 | O 0 0

0o o 0 0o 1 o o 0 0 0 0 o o
— T
ZEROES \—’\/‘—\"/mngms

CRU HARDWARE BASE ADDRESS

SIGN - 0 0 0 0o o 1 0 0 1 0 0 0 + DISPLACEMENT*
EXTENDEDO

0
——Nmmmu”
ALL ZEROES FOR
CRU OPERATIONS CRU BIT ADDRESS

*The displacement added to the CRU hardware base address is a signed eight-bit value,
with sign extended, used only when executing one of the single-bit CRU instructions
(T8, SBO, and SBZ).

FIGURE 5-4. CRU BASE AND BIT ADDRESSES

5-13

Because bit 15 of R12 is not used, some confusion can result in programming.
Instead of loading the CRU address in bits 0 to 15 of register 12 (e.g., LI
R12,>80 to address the TMS 9901 at CRU address 8016), the programmer must
shift the base address value one bit to the left so that it is in bits 3 to 14
instead of in bits 4 to 15. Several programming methods can be used to ensure
this correct placement, and all of the following examples place the TMS 9901
bit address of 804¢ correctly in R12.

LI Ri12,>100 PLACES >80 IN BITS 3 TO 14
or
LI R12,>80%2 MULTIPLY BASE ADDRESS BY 2 (NOT RECOGNIZED BY LINE-BY-
LINE ASSEMBLER)
or
LI R12,>80 BASE ADDRESS IN BITS 4 TO 15
SLA R12,1 SHIFT BASE ADDRESS ONE BIT TO THE LEFT

From a programming standpoint, it may be best to view addressing of the CRU
through the entire 16 bits of R12. In this context, blocks of a maximum of 16
CRU bits can be addressed, and in order to address an adjacent 16-bit block, a
value of 002014, must be added or subtracted from R12. For example, with R12

containing 000044, CRU bits 0 to F16 can be addressed. By adding 00204g to
R12, CRU bits 101 to 1F1g can be addresses, etec.

5.5.2 CRU Timing

CRU timing is shown in Figure 5-5. Timing phases (g1 to gli) are shown at the
top of the figure. The CRU address is valid on the address bus beginning at
the start of g2, and stays valid for eight timing phases (two clock cycles).
At the start of the next ¢2 phase, CRUCLK at the TMS 9900 goes high for two
phases to provide timing for CRUOUT sampling. Note that for LDCR and STCR
instructions, the address bus is incremented for each data bit to be output or
input. For input operations, the address is placed on the address bus at the
beginning of phase ¢2, and the input is sampled between phases gl and g¢g1.

5.5.3 CRU Instructions
The five instructions that. program the CRU interface are:

e LDCR Place the CRU hardware base address on address lines A3 to A1,
Load from memory a pattern of 1 to 16 bits and serially transmit
this pattern through the CRUOUT pin of the TMS 9900. Increment
the address on A3 to A1l4 after each CRUOUT transmission.

e STCR Place the CRU hardware base address on lines A3 to Aild. Store
into memory a pattern of 1 to 16 bits obtained serially at the
CRUIN pin of the TMS 9900. Increment the address on A3 to A1l
after each CRUIN sampling.

e SBO Place the CRU hardware base address plus the instruction's signed
displacement on address lines A3 to A14. Send a logical one
through the CRUOUT pin of the TMS 9900.

e SBZ Place the CRU hardware base address plus the instruction's signed
displacement on address lines A3 to A14. Send a logical zero
through the CRUOUT pin of the TMS 9900.

e TB Place the CRU hardware base address plus the instruction's signed

5-14

displacement on address lines A3 to A14. Sample the CRUIN pin of
the TMS 9900, and place the bit read into ST2, the Equal Bit of
the Status register.

NOTE

Examples of single- and multi-bit CRU instruction execution using the
TMS 9901 are presented graphically in Appendix J.

5.5.3.1 CRU Multibit Instruction

The two multibit instructions, LDCR and STCR, address the CRU devices by
placing bits 3 through 14 (hardware base address) of R12 on address lines A3
through A14. A0, A1, and A2 are set to zero for all CRU operations. The first
operand is the source field address and the second operand is the number of
bits in the operation.

If the length is coded as from 1 through 8 bits, only the left byte of the
source or receiving field takes part in the operation, and bits are shifted in
or out from the least significant bit of that left byte. Thus a LDCR R2, 1
outputs bit 7 of R2 to the CRU at the address derived from register R12. An
STCR R5,2 would receive two bits of data serially and insert them into bit 7
and then bit 6 or register 5. The CRU address lines are automatically
incremented to address each new CRU bit, until the required number of bits are
transferred. In an STCR instruction, unused bits of the byte or word are
zeroed. In this last example, bits 0-5 are zeroed, the right byte is
unaffected.

o M_JL_ M. mn mn rn .’ 7’
S N NN o SO o Y o I o T o O o MY M
G N N NI I o T o Y o T o O N o
o | g IR I o Y N o T W o TS o B

]
i | I L I
' P I l |
| b ! |
| | ' |
I i] 1
AD-ATS UNKNOWN [X cRUBIT ADDRESSn ' X CRU ADDRESS n + 1 X - X cruapboressm | X
1
| 1 l l
CRUCLK } [| I 1 | e . '
z | | ! I |
59 | ! [
2E I !
Ea .
2 | | |
° g i l | I
. PP
CRUOUT UNKNOWN 'Y CRUDATA OUTn X crRuDATAOUT A+ IX . X UNKNOWN | X
| I ! X
| | : | i
ok ;
g3 caun OOOOOXOOOXXOPBONT care XXX XXXKX, Bk, care XXXy XXX
&] ‘ | | | INPUT VALID
\ , \ , INPUTBIT m
A4 -V
CRU OUTPUT CRU INPUT

FIGURE 5-5. TMS 9900 CRU INTERFACE TIMING

5-15

An LDCR loads the CRU device serially from memory over CRUOUT timed by CRUCLK.
An STCR stores data into memory obtained serially through CRUIN from the
Figures 5-6 and 5-7 show this operation graphically.

addressed CRU device.

The TMS 9901 is used in the example as the CRU device because it most simply

shows the bit transfers involved.

Ll R12>200 LOAD CRU BASE ADDRESS >100 IN BITS 3T0 14 OF R12

LDCR R56 6 BITS TO CRU |

o 1 2 4 5 6 7 8 10 11 12 13 14 15

o o o o 0o 1 o o o o | 1 1 0 o0 | ~020C

T

o o0 o o o 1 o0 o 6 0o o o0 0 o 0200

o o 1 o o | o0 1 1 o oo 1 o 1 >3185

0 2 7 8 15

RE—=| 1 | 1 { 0 o | 1 10 |1 o | 1 1 1] 1] o
—— [¢ = —0 - CRU Address >100
IGNORE -, 1
- -2
—3
—a
-5 « CRU Address >1

—6
-7
-8
—9
—A
—8
—C
—D
—E
—F

8 BITS OR LESS — BYTE ADDRESS —10

9 BITS OR MORE — WORD ADDRESS — 1
12

NOTE: EXAMPLES OF CRU INSTRUCTIONS ADDRESSING THE

TMS 9901 ARE SHOWN IN APPENDIX J.

FIGURE 5-6.

LDCR INSTRUCTION

LI R12,>120*2 LOAD CRU BASE ADDRESS >120 IN BITS 3T0 14 OF R12
STCR R4,10 10 BITS FROM CRU TO R4
0 1 5 6 7 8 9 10 11 12 13 14 15
°c 0 0 1 o o0 o o 0 1 1 0) >020C
o o0 0 1 0 0 1 0 0 0 o o) >0240
o o 1 1 0 1 0 0 0) 1 o) >3684
() 15
R4 o ol o
ZERO FILL L —~0 «<CRU Address >120
UNUSED LEFT-SIDE BITS . -1
-2
-3
-4
-5
-6
-7
8
-9 «CRU Address >129
- A
NOTES: -8B
8 BITS OR LESS - BYTE ADDRESS - c
9 BITS OR MORE - WORD ADDRESS
THE MULTIPLICATION IN THE DESTINATION OPERAND (> 120%2) D
IS NOT RECOGNIZED BY THE TM 990/402 LINE-BY-LINE ASSEMBLER. €
THIS MULTIPLICATION IS AN EXAMPLE OF THE RELATIONSHIP OF
THE CONTENTS OF THE CRU BASE ADDRESS TO THE CONTENTS rF
OF REGISTER 12. , L 10

EXAMPLES OF CRU INSTRUCTIONS ADDRESSING THE

TMS 9901 ARE SHOWN IN APPENDIX J.

FIGURE 5-7.

STCR INSTRUCTION

5.5.3.2 CRU Single-Bit Instructions

The three single-bit instructions are set bit to zero (SBZ), set bit to one
(SBO), and test bit (TB). The first two are output instructions, and the last
one is an input instruction. All three instructions have only one operand,
which is assembled into an eight-bit signed displacement to be added to the
CRU hardware base address to provide the CRU bit address. The SBZ instruction
sets the addressed bit to zero (zero on CRUOUT) and the SBO instruction sets
the addressed bit to one (one of CRUOUT). The TB instruction reads the logical
value on the CRUIN line and places this value in bit 2 (EQ) of the Status
Register; the test can be proven by using the JEQ or JNE instructions.

The operand value is treated as a signed, eight-bit number, and thus has a
range of values of -128 to +127. This number is added to the CRU hardware
base address derived from bits 3 to 14 of register 12, and the result is
placed on the address lines. This process is illustrated in Figure 5-8.

Notice that after execution of a TB instruction, a JEQ instruction will cause

a jump if the logic value on CRUIN was a one, and the JNE will cause a jump if
the logic value was a zero.

SOFTWARE BASE ADDRESS

/_
/ \
HARDWARE BASE ADDRESS
A\
/ \

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
X X b¢ _ X | w12
DON'T CARE

. SIGNED
\\ \ \ DISPLACEMENT
7
BIT 8 SIGN
EXTENDED <l\/L,
0 1 2 3 4 5 6 7 8 9 10 n 12 13 14
0 0 0 ADDRESS BUS
\ /\ /
-V : v
SET TO ZERO EFFECTIVE CRU BIT ADDRESS
FOR ALL CRU ‘
OPERATIONS

FIGURE 5-8. ADDITION OF DISPLACEMENT AND R12 CONTENTS TO DRIVE CRU BIT
ADDRESS

5.6 DYNAMICALLY RELOCATABLE CODE

Most programs written for the TM 990/101MA will contain references in memory.
These references are given by means of a symbolic name preceded by an at @
sign. Examples are €>FE00 (M.A. FE00.g, recognized by the LBLA) or @SUM
(recognized by a symbol-reading assembler, not the LBLA).

For example, a short program, located at M.A. 090044 to 090F44, adds two
memory addresses then branches to the monitor:

M.A.

0900 MOV @>090C, R1 MOVE VALUE AT M.A. 090C TO R1

0904 A @>090E,R1 ADD VALUE AT M.A. 090E to R1 (R1 = ANSW)
0908 B @>0080 RETURN TO MONITOR

090C DATA 100 FIRST NUMBER

090E DATA 200 SECOND NUMBER

In this program, a number in EPROM is moved to a register in RAM, and another
number in EPROM is added to that register (the destination of an add must be
in RAM in order for the sum to be written to it). If it is desired to move
this entire program to another address (such as to RAM for debugging purposes
to allow data changes as desired), then the locations of the code must be
changed to reflect the new addreses. For example, to relocate the above
example to start at address FC00¢g, each of the addresses of the numbers must
be changed before the program can execute; otherwise, the program will try to
access numbers in M.A. 090C4g and 090Eq g when they have been relocated to M.A.
FCOCq¢g and FCOEq4 respectively.

For a variety of reasons, it may be advantageous to have code that is
"self-relocating," that is, it can be relocated anywhere in memory and execute
correctly. Such "position-independent" or "dynamic-relocating" code is of
great advantage when the code is programmed into EPROM. 1In this manner, the
EPROMs can be installed in any socket, responding to any address, and the
program will still execute correctly. Such programs are possible with the TM
990/101MA by merely beginning the program with the code segment shown below
(register 10 is used in the following examples). Thereafter, memory addresses
can be indexed, relative to the beginning of the program (using R10 as the
index register, in this case). This code is shown in Figure 5-9.

M.A. OPCODE/OPERANDS .- COMMENTS

0000 START LWPI >FEQO RO AT M.A. >FEQO

0004 LI R10,START LOOK AT START ADDR.

0008 JEQ RELOC IF NOT BIASED, NEED RELOCATING
Base 000A CLR R10 LOADER HAS BIAS, CLR BASE REG.
Reg. 000C JMP STARTX GO TO PROGRAM
Setup /J 0O00E RELOC LI R10,>045B B¥R11 OPCODE IN R10

0012 BL R10 PC VALUE RO R11

0014 RELOCX AI R11,START-RELOCX SUBTRACT BYTES TO PROGRAM START

0018 MOV R11,R10 PROGRAM START TO R10

001E STARTX MOV @>001A(R10),R1 MOVE FIRST NUMBER TO R1
Relo~ 10012 A €>001C(R10),R2 ADD 2ND NO. TO R1, ANSW IN R1
catable{0016 B €>0080 RETURN TO MONITOR
Program{001A DATA 100 FIRST NUMBER

001C DATA 200 SECOND NUMBER

FIGURE 5-9. EXAMPLE OF PROGRAM WITH CODING ADDED TO MAKE IT RELOCATABLE

5-19

This coding first sets up a base register which computes the address of the
beginning of the program. This is accomplished by:

e Establishing the beginning workspace register address with LWPI,

e Placing the opcode for the instruction B*¥Ri11 in the designated index
register address (R10 above).

e Execute a branch and link to R10; this places the address of the next
instruction following BL R10 into register 11; a branch to R10 means a
return indirect through R11.

e Compute the beginning address of the program by subtracting 104 from
the address in register 11.

® Move this beginning address to R10, allowing R11 to be further used as
a linking register.

e Index all future relocatable addresses using R10.

There are several considerations. Absolute addresses (e.g., beginning of
monitor at 00801¢) need not be indexed, and other types of memory indexing
should consider the contents of the base register; it may be necessary to add
the contents of the base register to another indexing register. Also, an
immediate load of an address into a register will require that the base
address in the index register be added to the register also. For example:

LI R2,>0980 ADDRESS OF VALUES IN R2
A R10,R2 ADD BASE ADDRESS

Figure 5-10 is an example of a program that searches a table of numbers for a
value. The example is shown in both relocatable and non-relocatable code, for
comparison. Symbolic addressing is used.

*NON SELF-RELOCATING *SELF-RELOCATING
*NO BASE REGISTER USED *R10 IS BASE REGISTER
LI R3,TABLE POINT TO TABLE LI R3,TABLE POINT TO TABLE
* A R10,R3 ADD BASE REG.
*REMAINDER OF CODE NOT INDEXED *REMAINDER OF CODE INDEXED
MOV @COUNT,R2 GET COUNT MOV @COUNT(R10),R2 GET COUNT
SEARCH C R1,*R3+ (R1) IN TABLE? SEARCH C R1,*R3+ (R1) IN TABLE ?
JEQ FOUND YES JEQ FOUND YES ;
DEC R2 NO, DEC COUNTER DEC R2 NO, DEC COUNTER
JNE SEARCH LOOK AGAIN JNE SEARCH LOOK AGAIN
COUNT DATA 6 COUNT DATA 6
TABLE DATA 12,15,59,62,73,92 TABLE DATA 12,15,59,62,73,92

FIGURE 5-10. EXAMPLES OF NON SELF-RELOCATING CODE AND SELF-RELOCATING CODE

5-20

Great care must be taken with B, BL, and BLWP. If linking to other modules is
needed, these modules must be part of a system which is linked together by the
linker program (e.g., TXLINK on the FS990 system), and all modules must be
coded as self-relocating.

When programming the EPROM's, the code must be loaded such that the address
START has the value ZERO, i.e., the code must appear biased at location
00004¢.

5.7 PROGRAMMING HINTS
In any programming environment there are several ways to accomplish a task.

Table 5-4 contains alternate coding practices; some have an advantage over
conventional coding.

TABLE 5-4, ALTERNATE PROGRAMMING CONVENTIONS

CONVENTIONAL ALTERNATE ALTERNATE CODE
PURPOSE CODE CODE ADVANTAGE
Compare REG contents to 0 CI RX,0 MOV RX,RX Saves one word
Increment A REG by U INCT RX C ¥RX+,¥RX+ Saves one word
INCT RX
Access old workspace MOV @N(R13),R1 N is twice the
registers. number of the
old register
wanted.
Swap two registers MOV RX,RHOLD XOR RX,RY Saves a regis-
MOV RY,RX XOR RY,RX ter: "RHOLD"
MOV RHOLD,RY XOR RX,RY not needed.
Clear a register CLR RX XOR RX,RX (None)
CLR RX SUB RX,RX (None)

5.8 INTERFACING WITH TIBUG

The TIBUG monitor provides a starting point for the programmer to consider
when looking for program examples. The monitor contains some basic user
facilities, and the user will probably enter and exit programs through TIBUG.

5.8.1 Program Entry and Exit

To execute a program under TIBUG, use the "R" and "E" commands as explained in
Section 3 of this manual.

Exit from a program to TIBUG can be through:
B 6>0080
TIBUG will print the prompting question mark. Note that the power-up

initialization routine is not entered; instead, contrcl goes directly to
TIBUG's command scanner.

5=21

5.8.2 1/0 Using Monitor XOP's

5.8.2.1 Character I/0

Four XOP's deal specifically with character I/0:
Echo Character = XOP 11

Write Character XOP 12

Read Character XOP 13
Write Message XOP 14

The echo character XOP (XOP 11) is a read character XOP (XOP 13) followed by a
write character XOP (XOP 12). The following code reads in a character from a
terminal. If an A or an E is found, the character is written back to the
terminal and program execution continues; otherwise, the program loops back
waiting for another keyboard entry.

GETCHR XQOP R1,13 READ CHARACTER

CI R1,>4100 COMPARE R1 TO ASCII "A"

JEQ OK IF "A" FOUND, JUMP

CI R1,>4500 COMPARE R1 TO ASCII "E"

JEQ OK IF "E" FOUND, JUMP

JMP GETCHR RETURN TO READ ANOTHER CHARACTER
OK XOP R1,12 WRITE CHARACTER AS ECHO

XOP 14 causes a string of characters to be written to the terminal.
Characters are written until a byte of all zeroes is found.

XOP 13 reads one character and stores it into the left byte of a word; the
right byte is zero filled. The previous coding example could also have been
completed with the following:

OK XOP R1, 14
Instructions are written in hexadecimal form; thus, messages should be grouped

in a block separated from the continuous executable code. Each message must
be delimited by a byte of all zeroes:

**MESSAGES
CRLF BYTE >0D
LF BYTE >0A,>00
MSG1 TEXT 'BEGIN PGMA'
BYTE 0
MSG2 TEXT 'END PGMA'
BYTE 0
MSG3 TEXT '#ERRORS (IN HEX):'
, BYTE 0
MSGH TEXT 'ERROR EXP VALUE='
BYTE 0
MSG5 TEXT ' ,RCV VALUE='
BYTE 0

5-22

Note in the preceding example, that if it is desired +to send a carriage
return and a line feed, use the following: XOP @CRLF,14, But if only a line
feed is wanted, use: XOP @LF, 14.
5.8.2.2 Hexadecimal I/0
Three XOP's handle hexadecimal numbers.

® Write one hexadecimal character XOP 8

e Read a four-digit hexadecimal word XOP 9

e Write four hexadecimal characters X0P 10

Using the message block in paragraph 5.8.2.1, an example code segment might
be:

¥ERROR ROUTINE

ERROR XOP @MSGH, 14 START ERROR LINE
XOP R1,10 PRINT CORRECT EXPECTED VALUE
XO0P éMSG5, 14 MORE ERROR LINE
XQP R2, 10 PRINT ERRORED RCV VALUE
XOP €CRLF, 14 DO CARRIAGE RETURN/LINE FEED
XOP @LF, 14 ONE MORE LF FOR DOUBLE SPACE

XOP 8 is actually called four times by XOP 10, after positioning the next
digit to be written into the least significant four bits of the work register.

The following shows how to input values to a program by asking for inputs from
the terminal.

GET XOP R4,9 CALL TO GET HEX # ROUTINE
DATA NULL,ERROR NO INPUT/BAD INPUT ADDRESSES
0K A R3,R4 ADD OLD NUMBER IN
JMP XXX CONTINUE PROGRAM
NULL LI RY,>3AF1 LOAD DEFAULT VALUE
XOP @DEFMSG, 14 PRINT DEFAULT MESSAGE
JMP OK
ERROR XOP @ERRMSG, 14 PRINT ERROR MESSAGE
JMP GET TRY AGAIN

DEFMSG TEXT 'DEFAULT USED!

BYTE 0
ERRMSG TEXT 'ERROR: USE 0-9, A-F ONLY'
BYTE 0

Note that the XOP 9 routine stores only the last four digits typed before the
termination character (delimiter) is typed. This means if a wrong number is
entered, continue typing until four correct digits are entered; then type a
delimiter (space, carriage return, or minus sign). Typing fewer than four
digits total (but at least one digit) causes leading zeroes to be inserted.
Typing only a delimiter gives control to the first address following the XOP,
and typing an illegal character at any time causes control to go to the
address specified in the second word following the XOP call.

5-23

5.9 INTERRUPTS AND XOPS
5.9.1 Interrupt and XOP Linking Areas

When an interrupt or XOP instruction is executed, program control is passed to
WP and PC vectors located in lower memory. Interrupt vectors are contained in
M.A. 00004 to 003F4g; and XOP vectors are contained in M.A. 00404 to O07F4g.
User-available interrupt and XOP vectors are preprogrammed in the EPROM chip
with WP and PC values that allow the wuser to implement interrupt service
routines (ISK's) and XOP service routines (XSR's). This includes programming
an intermediate linking area as well as the ISR or XSR code.

When an interrupt or XOP is executed, it first passes control to the vectors
which point to the linking area. The linking area directs execution to the
actual ISR or XSR. The linking areas are shown in Table 5-6. The linking area
is designed to leave as much space free as possible when not using all the
interrupts. That is, the most frequently used areas are butted up against the
TIBUG area, the least frequently used areas extend downward into RAM.

Return from the ISR or XSR is through return vectors in R13, R14, and R15 at
the ISR or XSR workspace and at the linking area workspace.

How to program these linking areas is explained in the following paragraphs.
NOTE
Interrupts 3 and 4 are used by the timers on the TMS
9901 and TMS 9902A respectively.

TABLE 5-5. PREPROGRAMMED INTERRUPT AND USER XOP TRAP VECTORS

VECTORS T VECTORS

M.A. Int. WP PC M.A. X0op WP PC
0000 INTO TIBUG TIBUG oous X0P2 FFu8 FF5A
ooou INT1 FF5A FFT7A oouc X0P3 FF3A FFUC
0008 INT2 FFUE FFOE 0050 XOPY4 FF2C FF3E
000C INT3 FF8A FFAA 0054 X0P5 FF1E FF30
G010 INTH FFTE FFO9E 0058 XOP6 FF10 FF22
0014 INT5 FF72 FF92 005C XOPT7 FF02 FF14
0018 INT6 FF66 FF86

001C INT7 FEEE FFOE

0020 INT8 FEE2 FFO2

0024 INTS FED6 FEF6

0028 INT10 FECA FEEA

002Cc INT 11 FEBE FEDE

0030 INT12 FEB2 FED2

0034 INT13 FEAG FEC6

0038 INT 14 FE9A FEBA

003C |} 1INTI5 FESE FEAE

5-24

TABLE 5-6. INTERRUPT AND USER XOP LINKING AREAS

BYTE

M.A. 0-1] 2-3 | 45 [6-7 | 89 [aA-B | ¢-D | E-F
USER RAM AREA

FE90

FEAQ INT15 | INT15 | INT15 | INT15

FEBO | INT15 | INT15 | INT14 | INT14 | INT14 | INT14 | INT14 | INT14
FECO | INT13 | INT13 | INT13 | INT13 { INT13 | INT13 | INT12 | INT12
FEDO | INT12 | INT12 § INT12 | INT12 { INT11 INT 11 INT 11 INT M1
FEEO | INT11 | INT11 INT10 { INT10 | INT10 | INT10 | INT10 | INT10
FEFO | INT9 INT9 INT9 INT9 INT9 INT9 INTS INTS8

FFOO | INT8 INTS INTS INTS INT7 INT7 INTY INT7

FE10 | INT7 INTT XoprT7 Xop7 XOP7 XOPT XOPT XOP7

FF20 | XOP7 XOP6 XOP6 XO0P6 XOP6 X0P6 XOP6 X0P6

FF30 | XOP5 XOP5 X0P5 XOP5 X0P5 X0P5 X0P5 XOPY

FF40 | XOP4 XOPY4 XOPY XOP4 XOorP4 XOPY X0P3 X0OP3

FF50 | XOP3 XOP3 XOP3 XOP3 XO0P3 X0P2 X0op2 X0p2

FF60 | XOP2 X0op2 X0P2 X0p2 INT2 INT2 INT2 INT2

FF70 | INT2 INT2 INT1 INT1 INT1 INT1 INT1 INT1

FF80 | INT6 INT6 INT6 INT6 INT6 INT6 INT5 INT5

FF90 | INT5 INT5 INTS INT5 INTY INTH INTY INTY

FFAO | INTH INTY INT3 INT3 INT3 INT3 INT3 INT3

FFBO}'

FFFB

TIBUG WORKSPACE

5.9.1.1 Interrupt Linking Areas

When one of the programmable interrupts (INT1 to INT15) is executed, it traps
to an interrupt linking area in RAM. Each linking area consists of six words
(12 bytes) as shown in Figures 5-11 and 5-12. The first three words contain
the last three registers of the called interrupt vector workspace (R13, R1Y4,
and R15), and the second three words, located at the interrupt vector PC
address, are intended to be programmed by the user to contain code for a BLWP
instruction, a second word for the BLWP destination address, and a RTWP
instruction code (all three words to be entered by the user). When the ISR is
completed, control returns to this linking area where the return values (to
the interrupted program) are loaded into the linking area's three registers
(R13 to R15), then the BLWP instruction (at the PC vector address) is executed
using the M.A. provided by the user (the BLWP instruction consists of two
words, the BLWP operator and the destination address; the destination address
points to a two-word area also programmed by the user).

Return from the interrupt service routine is through the RTWP instruction
(routine's last instruction). This places the (previous) WP and PC values at
the time of the BLWP instruction (in the six-word linking area) into the WP
and PC registers. Thus, the RTWP code that follows the BLWP instruction wilil
now be executed, causing a second return routine to occur, this time to the
interrupted program using the return values in R13, R14, and R15 of the
interrupt link area. This area is shown graphically in Figure 5-11.

5-25

() INTERRUPT NO. 1 FF5A RO ‘ FIRST REGISTER
RECOGNIZED IN WORKSPACE
7 Z 6-WORD INTERRUPT LINK AREA
M.A. 0000 WP :
0002 PC @
FF5A
gggg TF7A R13 (OLD WP)
ViAo
R14 (OLD PC) XXXX 7 WP YYYY //
//// LLL L /]
. /7 777777777,
, R15 (OLD ST) (:) PC 2222
/ YT IIIV
7 £ r 1777
INTERRUPT EF7A BLWP 1//
~ VECTORS IN /1//7//1 l// /
EPROM FF7C / XXXX /
/7 1 Z 2 22 //
) 7 77 /////
FF7E / RTWP YYYY RO
////1///// A
[]

®
N

R13 FFBA

®

R14 FF7E

R15 {OLD ST}

2ZZZ

INTERRUPTED b
PROGRAM °

RTWP

INTERRUPT SERVICE ROUTINE

1,2 - INTERRUPT EXECUTION TRAPS TO 6-WORD INTERRUPT LINK AREA,
3,4 - BLWP EXECUTED TO 2-WORD VECTORS TO INTERRUPT SERVICE ROUTINE (ISR)

5 RTWP FROM ISR TRAPS BACK TO 6-WORD LINK AREA.
RTWP FROM LINK AREA RETURNS BACK TO INTERRUPTED PROGRAM.

W = LINKAGE PROGRAMMED BY USER

FIGURE 5-11. INTERRUPT SEQUENCE

5-26

Each interrupt linking area is set up so that it can be programmed in this
manner. In summary, each six-word linking area can be programmed as follows:

e Determine the location of the linking area as shown by the WP and PC
vectors in Table 5-5.

e The PC vector will point to the last three words of the six-word area.
The user must program these three words respectively with 0420¢g for a
BLWP instruction, the address (BLWP operand) of the 2-word vector
pointing to the interrupt service routine, and 03804 for an RTWP
instruction as shown in Figure 5-12.

® At the vector address for the BLWP operand, place the WP and PC values
respectively of the interrupt handler.

EXAMPLE USING INT1 LINKING AREA (WP = FF6A, PC = FF7A)

M.A.
FESA e« (ACTUAL ADDRESS OF RO OF INTERRUPT VECTOR
WP)
Z * Z
°
°
FF74 R13 (OLD WP}
FF76 R14 (OLD PC) USED TO SAVE RETURN VALUES (TO
INTERRUPTED PROGRAM)
FF78 R16 (OLD ST)

TO BE EF7A 0420 (BLWP) <——— INT1 VECTOR PC ADDRESS (CONTAINS BLWP)
gzﬁingMED FF7C XXX X <« ADDRESS OF 2 - WORD VECTOR POINTING TO
- 380 RTWRT 9 WP AND PC VALUES OF ISR
RETURN PC VALUE IN ISR POINTS TO THIS

RTWP INSTR.

NOTE

DO NOT USE RO—-R12 OF THE LINKING AREA WORKSPACE,
BECAUSE THE OVERLAPPING STRUCTURE WILL DESTROY
THE CONTENTS OF A LINKING AREA FOR ANOTHER INTER-
RUPT OR XOP.

FIGURE 5-12. SIX-WORD INTERRUPT LINKING AREA

5=-27

Example coding to program the linkage to the interrupt service routine for
INT1 is as follows:

*PROGRAM POINTER TO INT1 SERVICE ROUTINE FOLLOWING BLWP INSTRUCTION
AORG >FFTA INT1 PC VECTOR ADDRESS

DATA >0420 HEX VALUE OF BLWP OP CODE

DATA >FA00 LOCATION OF 2-WORD VECTORS TO ISR (EXAMPLE)

DATA >0380 HEX VALUE OF RTWP OP CODE

*PROGRAM POINTER TO 2-WORD VECTORS TO INTERRUPT SERVICE ROUTINE (EXAMPLE)
AORG >FA00

DATA >FBO0O WP OF INTERRUPT SERVICE ROUTINE (EXAMPLE)

DATA >FAO4 PC OF INTERRUPT SERVICE ROUTINE (EXAMPLE)

*INT1 ISR FOLLOWS (BEGINS AT M.A. FAOY)

The interrupt service routine which begins at M.A. FAO44g Will terminate with
an RTWP instruction.

5.9.1.2 XOP Linking Area

The XOP linking area contains seven words (14 bytes), of which the first two
and the fourth words must be programmed by the user. Each XOP vector pair
contains the pointer to the new WP (in the first word) and a pointer to the
new PC (in the second word) which points to the first instruction to be
executed.

In the seven-word XOP linking area, the first word is the destination of the
XOP PC vector. The last three words are the final three registers (R13, R14,
and R15) of the linking area workspace which will contain the return vectors
back to the program that called the XOP. The third word of the seven-word
area is R11, which contains the parameter being passed to the XOP service
routine. This is shown in Figure 5-13.

For example, when XOP 2 is executed, the PC vector points-to the BLWP
instruction shown at M.A. FF5A4¢ in Figure 5-13. This executes, transferring
control to the preprogrammed WP and PC values at the address in the next word
(YYYY as shown in Figure 5-13). To obtain the parameter passed to R11 of the
vector WP (M.A. FF5E ¢ in Figure 5-13), use the following code in the XOP
service routine: ,

MOV *R14+,R1 MOVE PARAMETER TO R1

This moves the parameter to R1 from the old R11 (the old PC value in R14 was
peinting to this address following the BLWP instruction immediately above it,
effectively to R11), and increments the XOP service routine PC value in its
R14 to the RTWP instruction at M.A. FF6016. Thus an RTWP return from the XOP
service routine will branch back to the RTWP instruction at FF604g which
returns control back to the instruction following the XOP.

5-28

EXAMPLE USING XOP 2 LINKING AREA (WP FF48, PC - FF5A)
M.A. (ACTUAL ADDRESS OF RO OF XOP2
FFa48 VECTOR WP)
? * X
]
[]
FESA 0420 (BLWP) «————— XOP2 VECTOR PC POINTS TO HERE
TOBE FF5C YYYY #———————— POINTS TO XSR WP & PC VECTORS
PROGRAMMED '
BY USER FESE R11 (PARAMETER) |#———— XOP SOURCE ADDR. PARAMETER
FF60 0380 (RTWP) ¢—————— RTWP BACK TO CALLING PROGRAM
FE62 R13 (OLD WP}
frod R14 (OLD PCl USED TO SAVE RETURN VALUES
(TO INTERRUPTED PROGRAM)
FFE6 R15 (OLD ST)

FIGURE 5-13. SEVEN-WORD XOP INTERRUPT LINKING AREA

In summary, the seven-word XOP linking area can be programmed as follows:

Determine the value of the PC vector for the XOP as shown in Table
5-5.

The PC value will point to the first word of the seven-word linkage
area. The user must program three of the first four words of this
area respectively with 042044 for a BLWP instruction, the address of
the two-word vector that points to the XOP service routine, ignore the

third word, and insert 03804¢ for an RTWP instruction in the fourth
word.

At the address of the BLWP destination in the second word, place the
WP and PC values respectively to the XOP service routine.

5-29

An example of coding to program the XOP linkage for XOP 2 as shown in Figure
5-13 is as follows:

*PROGRAM POINTER TO XOP SERVICE ROUTINE AT XOP2 LINK AREA
AORG >FF5A XOP2 PC VECTOR ADDRESS

DATA >0420 HEX VALUE OF BLWP CODE

DATA >FA00 LOCATION OF 2-WORD VECTORS TO XSR (EXAMPLE)
DATA O IGNORE '

DATA >0380 HEX VALUE OF RIWP CODE

¥PROGRAM POINTER TO 2-WORD VECTORS TO XOP2 SERVICE ROUTINE (EXAMPLE) ‘
AORG >FAO0 LOCATION OF VECTORS '

DATA >FBO0 WP OF XOP SERVICE ROUTINE (EXAMPLE)

DATA >FAO4 PC OF XOP SERVICE ROUTINE (EXAMPLE)

*¥XSR CODE FOLLOWS (BEGINS AT M.A. FAOY4)

At the XOP service routine, the following code uses the PC return value (in
R14 of the XOP service routine workspace) to obtain the parameter in R11 (in
the link area) as well as set the return PC value in R14 (in the XOP service
routine workspace) to the RTWP in the link area:

MOV *R14+,R1 MOVE OLD R11 CONTENTS TO R1 OF XOP SERVICE ROUTINE

Now R14 points to the RTWP instruction in the link area. The last instruction
in the XOP service routine is RTWP. RTWP execution causes a return to the
link area where a second RTWP executes, returning control to the next
instruction following the XOP.

5.9.2 TMS 9901 Interval Timer Interrupt Program

A detailed discussion of the TMS 9901 interval timer can be found in the TMS
9901 data manual. There are several possible sequences of coding that can
program and enable the interrupt 3 interval timer, and since the timer has a
maximum period of 349 milliseconds before issuing an interrupt, the programmer
must decide whether to set the interval period in the calling program or in
the code handling the interrupt. If the interrupt period desired is longer
than 349 milliseconds, then it may be advantageous to reset the timer in the
interrupt subroutine which also triggers the interrupt and returns control
back to the interrupted program. In any case, the timer must be initially set
and triggered following the general sequence below:

1. Set the CRU address of the TMS 9901 in bits 3 to 14 of R12.

2. . Set up the interrupt 3 linking area.

3. Enable the clock interrupt at the TMS 9901 (interrupt 3).

4. Set the Status Register interrupt mask to a value of 3 or greater.

5. Set a register to the value of the interval desired (bits 1 to 14)
with bit 15 set to one to enable the clock as shown in Figure 5-14.
This figure shows the code and a representation of the CRU for
setting a time of 250 milliseconds and for setting the TMS 9901 to
the clock mode. The first bit serially brought in on the CRU will be

a value of one in bit 15 of the register which sets the TMS 9901 to
the clock mode; successive bits (1 to 14) then set the clock interval

5-30

value. The final bit brought in triggers the timer.

6. When the interrupt occurs, the interrupt handler must reset the
interrupt at the TMS 9901 before returning to the interrupted

program.
Ll R12,>> 100 CRU ADDRESS OF TMS 9901 (2 X >80 = >>100)
Ll R1, >5B8F CLOCK, >2DC7 COUNTS, AND SET CLOCK MODE BIT
tDCR R1, 16 SET CLOCK VALUE AT CLOCK REGISTER
of1]2f3]als|e]7]s]0]10]11]12]13|14]1s CRU TMS 9801
R[N 1 0 1 1 0 1 1 1 0 0 0 1 1 1 1|>sBsF ADDR ASSIGNMENT
be————— CLK1 TO CLK14 = >2DC7 = 11,719 ————— L——’ 1 80 1 =CLOCK MODE
11,719/46,875Hz = 250MS 1 1 81 CLK1
1 82 CcLK2
®
o
o
—1 1 8E CLK14
8F

NOTE:
THE FIRST SERIAL INPUT FROM CRU (A ONE IN BIT 15 OF R1) SETS CLOCK MODE.
LAST INPUT 7O CLOCK REGISTER (CLK1 TO CLK14) STARTS THE CLOCK.

FIGURE 5-14. ENABLING AND TRIGGERING TMS 9901 INTERVAL TIMER

5-31

The clock decrements the value set in step 5 at the rate of g/64
(approximately 46,875 Hz with a 3 MHz clock). The maximum interval register

value of all ones in 14 bits (16,383) takes approximately 349 milliseconds to
decrement to zero.

The code in Figure 5-15 1is an example of a code to set up and call the TMS
9901 interval timer and also the code of the interrupt handling subroutine.
Note that the calling program first clears the counting register (RO) of the
interrupt workspace. Then it sets up the interrupt masks at the TMS 9901 and
TMS 9900 after setting the TMS 9901 address in R12. Then the calling program
sets an initial value in the timer register (CLK1 to CLK14 as shown in the TMS
9901 data manual). Because the desired output on the terminal is a message
every 15 seconds, a minimum interval is set in the calling program while the
interrupt handler is responsible for setting the time and clearing the
interrupt after it occurs. The handler keeps a count of the intervals to
determine the 15 seconds.

At the bottom of the figure is the interrupt linking area. Since all the code
in this figure is loaded as if at absolute memory address values (using the
AORG assembler directive) data statements are used here at the appropriate
memory address. This program can be loaded and executed by placing the
machine-language assembler output in the third column at the address shown in
the second column. Then execute with the program start at M.A. FD00;¢-

The TMS 9901 can also be used as an event timer by starting the counter at the
beginning of the interval and reading the counter after the event has
occurred. To read the current value in the counter, the TMS 9901 must be
taken out of the clock mode and put into the interrupt mode for at least 21.4
usec (1 TMS clock period). After that, putting the 9901 back into clock mode
and reading the clock/int mask bits gives the current clock value (elasped bit
count divided by 46,875 equals elapsed time in seconds).

5.9.3 Example of Programming Timer Interrupts for TMS 9901 and TMS 9902A

This subsection explains how to use the interrupt vector scheme to program the
TMS 9901 and TMS 9902A timers. These timers use, respectively, interrupts 3
and 4 to trap to interrupt service routines following timer countdown.

The program described in the following paragraphs does the following:

e Initializes the interrupt linking areas for the TMS 9901 and TMS 9902A
timers (interrupts 3 and 4 respectively).

Loads the timers with internal values.

e Triggers the timers which cause interrupts when the countdown is
complete.

e Contains interrupt service routines (ISR's) which execute when
interrupts 3 or 4 are executed.

e Provides modules that perform hexadecimal-to-decimal conversions and
decimal-to-hexadecimal conversions.

The individual modules of this program are summarized in Table 5-7. Please

read these descriptions before continuing. The listing of this example
program is provided in Figure 5-16, sheets 1 to 12.

5-32

TIMER

0001
0002
0003
Q004
0005
0004
0007
0008
Q009
Q010
ootl
Q012
0013
0014
001S
0016
0017
ele)]
0019
0020
0021
o022
0023
00z4

0025
Q024

0027
00za
Q2%

Q020

00321
o032
Q033
0034
Q035
Q034
0037
Q038
Q039

Q0G40
0041
0042
00473
0044

Q045

FIGURE 5-15.

FLioo
FDOO
Fnoz
FDO4
FDO&
Fnog
FDoA
FnoC
FDOE
FOio
FD12
FLi1 4
FDi4&
Fole
FOLA

FEGO
FEOO
FEQZ
FEO4
FEO&
FEOZ
FEOA
FEOC
FEOE
FELOQ
FEL2
FE14
FE1&
FE1&

TXMIRA 936227 ##

Q000
0001
00o0C

OZEQ
FDzZO
Q4E0
FE&O
Q2O
Q100
1EQO
1003
Q32300
Q003
0201
0003
231
10FF

FE&O
FEO4
0300
QOO0
Q280
QO3C
130R
0320
eyl e
0100
0z01
SBYF
23201

09:02:10

22/78 PAGE 0001

* 3 3* * ¥* #* 3# 3% 3* #* 3* * 1 3* 3#* # 3* * *
THIS PROGRAM CALISES AN INTERRIWPT THROUGH INTZ ¥*
EVERY 15 SECONDS WUSING THE INTERVAL TIMER IN THE *
¥ TMS 9901. THE AORG DIRECTIVE CAUSES THE CODE TO BE *
ASSEMBLED BY THE TXMIRA ASSEMBLER BEGINNING AT THE
ADDRESS SPECIFIED (SAME AS SLASH COMMAND OGN THE *
LINE-BY-LINE ASSEMBLER). THIS PROGRAM CAN BE EXE- =
CUTED BY LOADING THE PROGRAM WITH THE TIRUG "M" *
COMMAND AND EXECUTING WITH THE "E" COMMANLD AT PC 3*
¥ ADDRESS >FOOO. LoADd OBJECT IN THIRD COLUMN OF *
¥ THIS LISTING AT ADDRESS IN 2D COLUMN. J.WALSH *
3t 3 3#* +* 3* 3 3 +# 3* +* 3* 3# 3% 3* 3+ 3#* +# ¥# 3+
IDT “TIMER” ’
¥#
REGISTER EQUATES
*
RO EGU O
Ri Ectt 1
R12 EQL 12
3#
PROGRAM CALLING THE INTERRUFT
*
ACRG >FLIOO BEGIN ASSEMBLY AT M.A. >FDO
LWPI >FDZO DEFINE WORKSPACE ADDRESS
CLR @XFE&OD ‘ CLEAR INTERRLUFT REG O
LI R12, 0100 @201 CRU ADDRE=SS IN Riz
SRZ 0O 2901 TO INTERRUFPT MODE
SBO 3 ENABLE INTERRUFT 3=
LIMI = ENABLE INTZ AT TMS 9200
LI R1,Z= 2 ONES TO . TMS 9901
LIOCR R1,1S ENABLE CLOCK AT 9901
MR $ LOOF HERE, WAIT FOR INTERRU
3*
INTERRUFT SUBROUTINE
*
AORG >FEOQOQ BEGIN AZSEMBLY AT M.A.>FEOOQ
DATA >FEAOQ BLWFP WP VECTOR FOR INT
DATA >FEO4 BLWF FC VECTOR FOR INT
LIMI O DISABLE INTERRUPTS
I RO, 40 COUNT = A0 = 15 SECONDS?
JEE >FEZ4 YES, PRINT MESSAGE
INZ RO N, INCREMENT COUNTER
LI R1Z2.,>100 %01 CRU ADDRESS
LI K1, >SRYF CLOCKE COUNT OF 11,719
LOCR R1.,15 AFPFLY COUNT. START COUNTER

EXAMPLE OF CODE TO RUN TMS 9901 INTERVAL

5-33

TIMER (SHEET 1 OF 2)

*

Q

PT

TIMER

0044
0047
0048

0049
0050

0051
Q032

0053

Q054

0055
0056
Q057
0058
0059
00460
0061
0062
0063

TXMIRA 936227 #* 09:03:10

0000 ERRORS

NOTE:

122/7% PAGE 0002

FE1A 1E0QO SBZ 0O 9901 TO INTERRUFPT MOQDE
FEIC 1DO3 S0 3 CLEAR INTERRUPT AFTER EXECUTED
FELIE 0300 LIMI 2 RESET INT MASK AT TMS 9900
FE20 0003
FEZ2 0320 RTWF RETURN TO CALLING PROGRAM
FEz24 ZFAO XoP e>FEZE.14- WRITE MEZSSAGE
FE246 FEZE |
FE28 04C0 CLR RO RESET TIMER COUNT
FEZA 0440 B @>FEOS BEGIN AT INTERRUPT START
FE2C FEO4
FEZE 21 TEXT ‘15 SECONDS HAVE ELAPSED, -
FE2F 35
FE30 20
FE31 53
FE3Z2 45
FE33 43
FE34 4F
FE3S 4E
FE3é 44
FE37 53
FE38 20
FE3%? 42
FE3A 41
FE3B 54
FEZC 45
FE3D 20
FEZE 45
FE3F 4
FE4Q 41
FE41 20
FE42 53
FE43 45
FE44 44
FE4S 2E
FE44& Q707 DATA >0707,2>0707 BELLS
FE43 0707 i
FE4A 00 BYTE © ENDY OF MESSAGE DELIMITER
3%
INTERRUFPT LINK AREA PROGRAMMING
*
FFAA AORG >FFAA BEGIN ASSEMBLY AT M.A. >FFAA
FFAA 0420 DATA 20420 BLWP INSTRUCTION CODE
FFAC FEGO DATA >FEOO "BLWFP VECTORS LOCATION
FFAE 0330 DATA 20380 RTWP INSTRUCTION CODE
END
As an exercise, the user can load and execute this code: {1) load the machine code values shown

in column 3 into the memory locations shown in column 2, or (2) reassemble : if the Line-By-
Line Assembier (LBLA) is used, substitute the slash command for the AORG directive and follow
the DATA and TEXT statement conventions for the LBLA. Execute using the E TIBUG command.

FIGURE 5-15.

EXAMPLE OF CODE TO RUN TMS 9901 INTERVAL TIMER (SHEET 2 OF 2)

5-34

TABLE

5-7. INTERRUPT EXAMPLE PROGRAM DESCRIPTION

Mcdule

Sheet Number
of Fig. 5-16

Program Description

Interrupt Link

User Start

Timer, TMS 9901

Timer, TMS 9902A

Real Time Clock ISR

Keyboard Initial-
ization

Keyboard Scan ISR

Hex/Decimal
Conversions

2 to 4

7T&38

9 & 10

11 & 12

This module sets up the interrupt 1linkage
areas for interrupts 3 and 4, loads vectors
pointing to Module REALCK for interrupt 3
and to Module KYBDSC for interrupt 4. This
is the first program called, and it calls
Module User Start.

"User Start" routine; this is the start of
the general user control program. This
contains mainline code to the timers, and
calls KYINIT before starting the timers.

This module sets TMS 9901 timer to specified
value, starts countdown (countdown complet-
ion causes interrupt through interrupt level

3).

The module sets TMS 9902A timer to local I/0
port to specified wvalue, starts countdown
(countdown completion causes an interrupt
through interrupt 4).

This Real-Time Clock routine is the Inter-
rupt Service Routine (ISR) for interrupt 3.
It accumulates counts at one-fifth second
intervals to keep a real-time clock count;
time values are initialized by User Start.

This module initializes I/0 buffer for key-
board input.

This 1s the Keyboard Scan Routine ISR for
interrupt 4. It polls the keyboard unit for
a new character, and then puts the character

in buffer. Backspace and delete monitoring
is provided.

These modules convert decimal numbers to
hexadecimal equivalents (sheet 11) and hex-
adecimal numbers to decimal equivalents
(sheet 12).

5-35

5.9.3.1 Interrupt Linking Area Set-Up (Figure 5-16, Sheet 1)

This module sets up the interrupt linking areas that point to the two
interrupt service routines for the timers in the TMS 9901 and TMS 9902A. The
workspace for this module is the space just below the INT3 and INTY linking
areas. Since this example uses only interrupts 3 and Y4, the linking areas for
interrupts 1, 2, and 5 through 15 are free space.

5.9.3.2 User Start Program (Figure 5-16, Sheets 2, 3, and 4) ~

This module organizes the other modules into a user program. It sets up
control functions and calls other modules in a prescribed sequence. This
program receives control after the interrupt linking areas are initialized as
described in paragraph 5.9.2.1. It then sets the timing values for the TMS
9901 timer and begins the countdown by a BLWP @TIMEO1. It also calls the key-
board initialization module (BLWP @KYINIT) which calls the TMS 9902A set and
execute module (BLWP @TIMEOQ2).

NOTE

This User Start Program is for example purposes, and is intended

only as a vehicle to demonstrate usage of the following
subroutine modules.

5.9.3.3 TMS 9901 Timer Set Routine (Figure 5-16, Sheet 5)

This module sets and executes the interval timer of the TMS 9901. The calling
routine specifies the number of 21.333-microsecond periocds at 3 MHz to be
counted by loading its own register 0. The TIMEO1 routine then picks this
number (limited to 14 bits) by indirect addressing through R13 (return WP
value = R0). It shifts it while in R9, supplies the correct control bit (bit
0 = 1 by ORing), starts the timer (LDCR instruction) and enables the
interrupt. Control returns to the calling program, which will be interrupted

by the timer interrupt when the count reaches zero. The calling sequence to
the timer set routine is:

LI RO, 9375 1/5TH SECOND INTERVALS
BLWP @TIMEO1 SET TIMER

The interrupt service routine for interrupt 3 is in paragraph 5.9.3.5.

5.9.3.4 TMS 9902A Timer Set Routine (Figure 5-16, Sheet 6)

This module sets and executes the interval timer of the TMS 9902A. The calling
routine specifies (in its own register 0) the number of 64 microsecond periods
(at 3 MHz, with the TMS 9902A's CLKY4M control bit zeroed) to be counted before
generating the interrupt. This routine then picks this number up (through WP
return value in R13, old RO), puts it in the left byte of R9, sets the LDIR
(Load Interval Register) flag to enable loading of the timer value, resets
LDCTRL (Load Control register) to bypass loading the control register, loads
the timer which begins to count, and then enables interrupt 4 on the TMS 9901.
Notice that the user must have a jumper plug between pins E2 and E3 for an
interrupt to occur. Control returns to the calling program which will be
interrupted by the timer sometime later (called ISR described in paragraph

5.9.3.6).

5-36

5.9.3.5 TMS 9901 24-Hour Real-Time Clock Service Routine (Figure 5-16,Sheet 7)

In this module, the TMS 9901 timer is used as a real-time clock; an interrupt
occurs every fifth of a second and a fractions counter is updated. The calling
program initially sets the second-interval counter (R1) to 5. Every five
counts, the seconds counter is updated; every sixty seconds the minutes
counter is updated, etc. Note that since the initial period (one-fifth
second) is long, the execution time of this service routine is trivial from a
system throughput standpoint. Note also that because this timer is associated
with interrupt 3, it has higher priority than the TMS 9902A timer, which will
be used for miscellaneous timing purposes in this example. This ensures the

integrity of the real-time clock recording the elapsed time from system
initialization.

5.9.3.6 TMS 9902A Used to Poll Keyboard Service Routine (Figure 5-16, Sheets 9
and 10)

In this module, the TMS 9902A timer is being used as a general purpose delay
timer. The service routine samples an ASCII encoded keyboard's output, and if
a set time has elapsed and a strobe change occurred, it reads the character.
The time delay and strobe change ensure a new character has been sent from the
keyboard. The strobe for any one character is assumed to last longer than the
interval set in the timer for scanning, and a flag is used in the software to
simulate an edge-triggered data capture condition. The ASCII encoded keyboard
is assumed to be connected to the TMS 9901 through connector Pi.

When the strobe goes from high to low, data is read, and the flag turned on.
Only when the strobe-goes high again is the flag reset and a new character can
be received.

5.9.3.7 Decimal to Hexadecimal Conversion (Figure 5-16, Sheet 11)

This module is a sample decimal to hexadecimal conversion routine. The
calling program places the least significant four digits in its register O,
and the most significant (fifth) digit is right-justified in its register 1.
A BLWP @DECHEX instruction gives control to the conversion routine.

The calling routine isolates each decimal digit and uses it to index a loop
which adds the proper place value (10, 100, 1000, etc.) to the result
register. As each digit is isolated, a table pointer is bumped through the
decimal powers. The resultant hexadecimal number is returned to the caller
routine routine's register 0. The caller's register 1 is not disturbed.

5.9.3.8 Hexadecimal to Decimal Conversion (Figure 5-16, Sheet 12)

This module is a sample hexadecimal to decimal conversion routine. The
calling routine places the hexadecimal number in its own register 0, then
performs a BLWP @HEXDEC. The converted result is placed back in the caller's
register 0 (through address in R13), with a fifth digit (most significant) in
register 1 of the calling program. Both registers in the calling program are
always altered.

The routine repeatedly divides the number by 10, and collects the remainders.

These remainders, properly collected by the shift and SOC instructions, form
the decimal number.

5-37

0001
alele)
Q003
Q004
QOO5S
QOOA
[sYals g
QOoOR
QOO
Q010
o011
001z
o013

0014

Q015
0014
0017

QoL
001
Q020
o021
Q0Z2

OOz
00zZ4
Q025
Q024
Q027
O0OZS
QO
QO30
[ala)cH]
QOZ2

0033

Q000
QOOZ
0004
DO0A

DO0S
0000
QOO
OONE
0010
o001z
0014
Q014
o01e
O01A
Q01
QOLE

Q024 007

O035
QO34
OO=7

FIGURE 5-16.

RISy AY

DO
O0OZE

TXMIRA

QIEO
FF7
0200

Q000

TO&D
OO0E
COAO
0Nl
OzZ03
0420
0204
Q320

0205

0142

Q204

01AZ-

OR00

0004

DRE2ZT w# Q20522 122/7% FAGE Q001

IDT “TESTS

K % ok ow % %ok Kk ok %k

o ok ok kX

INTERRUFT LINEING AREA INITIALIZATION ROUTINE.
THIZ ROUTINE INITIALIZES THE INMTERRUPT LINKING
AREA IN HIGH RAM FOR INTERRUFTS 2 AND 4. '

A "BLWF" INSTRUCTION IS BUILT. WITH THE
ADDRESS OF THE PARTICULAR INTERRUFT ZERVICE
ROUTINE WHICH WILL THEN RECEIVE CONTROL

WHEN THE INTERRUPT I3 ACTIVATED. TO COMPLETE
THE RETURN FATH, A "RTWP" INSTRUCTION IZ

BUILT IN RAM ALS0.

LWFI >FF7& GET WORKSPACE

LIMI O CUT OFF INTERRUFTS

THE FOLLOWING CODE LOJADS THE REGISTERS WITH THE
PROFER VALLEZ FOR INITIALIZING THE RAM AREA.
MOV @ZQ00E, 1 GET INT 3 PC FTR

MOV @:0012,2 GET INT 4 FPC FTR
LI R, 0420 LOAD BLWF OFCOLDE
LI 4, Q320 LOAD RTWF OFCODE
LI 5, INTIVC
LI &, INTAVE
THE FOLLOWING CODE TAKES THE INFORMATION IN THE
REGISTERS AND MOVES IT OUT T INITIALIZE THE

RAM L INKING AREA. FIRST INTERRUFT 3 AREA IS
INITIALIZED., THEN THE INTERRUFT 4 AREA.

INTERRUFT 2 - TMS 9901 TIMER

ADDR OF 97201 TIMER ROUTINE

anDR OF 9902A TIMER ROUTINE

MOV 3, %14+ MOVE "BLWP" DFCODE

MOV S, xl+ MOVE SERVICE ROUTINE ADDRESS
MOV 4,#1+ MOVE "RTWF" OPCODE

INTERRUFT 4 — TM= 9902A TIMER

MOV 3, %2+ MOVE "BLWF" COPCODE

MOV &, #2+ MOVE ZERVICE ROUTINE ADDRESS
MOV 4, #Z+ MOVE "RTWF" FCODE

RETSORE INTERRLUFTS

LIMI 4 ' TURN INTERRLUFPTS BACK ON

EXAMPLE PROGRAM USING TIMER INTERRUPTS 3 AND 4 (SHEET 1 OF 12)

5-38

TE=

X}
=

(21835
0040
o041
Q042
Q043
0044
Q045
D044
0047
QO4=
004w
0050
0051
OS2
0052
OOT4
QOS5
OOSA
QOR7
QOS5
&1y
QD&D
D04A1
Q062
OQ&eT
[S1RY N
Q0OLS
ONbLHA
QO&7
Q0L
Q0L
Q0070
Q071
0072
0073
0074
Q075
Q074
Q077
o078

0079
00S0

0021
Q0az2
0083
00z4
QORS

Q084

FIGURE 5-16.

QO30
Q037
Q0324
(818070
QQ2e
Q03A
Q03
QOZE
0040
0042
0044
Q044
0042
0044
0040

TXMIRA %3

L227

33 D21 05122

&
|
|

Bk N ok % % H ok ok ok K

ook % % & o k%

* %k

*
FF12 KYBDOWF
FEFZ KYBUF

MAIN ROUTINE

THI=
aF o
aF T
L=EDR

INTE

ROUTINE I=
OOE SHOULD
HE VYARIOLWLZ

122/7% FAGE 0002

SMALL SAMFLE OF WHAT TYFE

TO CONTROL THE FUNCTIONS

FPARTS OF THE SYSTEM BEING

IN THIS EXAMFLE. PLEASE KEEF IN MIND
THAT THIS ENTIRE PROGRAMMING EXAMPLE I=
STILL ONLY AN EXAMPLE OF HOW THE FACILITIEZ
OF THE MICROCOMPUTER CAN BE USED: IT IS NOT

NDED TO SERVE AS

SOFTWARE BASE FOR

A LUISER AFPFLICATION FPROGRAM.

THIS MAIN ROUTINE RECEIVES CONTROL AFTER

THE INTERRUPT LINKEING
ALLS THE EEYROARD
INE. AND =ZTARTS

IT
ROT

AREA IS INITIALIZELD.

INITIALIZATION

EBOTH TIMERS GOING.

IT THEN INTERROGATES THE NEW-LINE FLAG
AND "DISFOSESY OF THE USER [ATA RY
TING IT. (OF COURSE. AN APFPLICATION

FRIN
FPROG

WORE

E&
Eit
Bt
E
Eend

Xap

OXoF
DXOP

. DiXar

FFzg2 CLEWF
FF73 COMRG
FF22 MAINRG
3*
*
*
*
3*
*
QZEO USERST
FF23
041
0z207
QORC
0208
0005
Q209
FF3C
2F97 LOOF1L
ZE40
Q04A~7
QOR&”

0420 NEXT
0207~

DXoP

ENTR

LWFI

CLR
LI

LI
LI
WRIT
HEXI
DATA

BLUWF

RAM WoULD L

MORE WITH THE DATA).

AREA DEFINITIONS

SFFiE
»FEF3
>FF2&
>FF73
SFFSE

DEFINITIONS
REALD, 11
WRIT. 14
HEXI. ¥
HEXD, 10

Y POINT

CLEWP

1
7. CKPARM

a0
N

Y, CLEWF+4
*#7

o

NEXT. ERROR

@DECHEX

5-39

KEYROARD ROUTINE WORKSFACE
KEYBOARD BUFFER

REAL-TIME CLOCK WORKSFACE
TRANSIENT ROUTINE COMMON WORKS
MAIN REGES FOR THIS ROUTINE

READ ONE CTHARACTER
WRITE A STRING

HEX # INFUT

HEX # OUTPUT

CLOCK REGES FOR INITIALIZATION

CLEAR FOR DECIMAL TO HEX ROUTI
PROMFT MESSAGES

FIVE FROMPTS
REGISTER 2 ADDRESS

FROMPT USER FOR TIME VALLE
GET INPUT,

NULL, ERROR RTN ADR

DECIMAL CHARS TO BINARY

EXAMPLE PROGRAM USING TIMER INTERRUPTS 3 AND 4 (SHEET 2 OF 12)

TEST
0087
00gs
008y
0070
0091
0092
00932
0094
Q095
00%6&

Q097

0100

0101
0102

0103
0104

0105

o
~N s

oD
[
¢

Q10

0109

0110
o111
0112

0113
0114

0115

01146
0117
0112
0119

004K
Q050
0052
0054
Q054
Q05
0035A
QOoC
005SE
Q&0
00462
0064
00466
0062
006A
00460
QOAE
0070
o072
Q074
0074
Q072
Q0747
O07C
QO7E
Q020
0082
Q024
0086
0023
00ZA
o02C
QOSE
0020
0022
Q04
Q024
003
OOYA
002C
QOYE
Q0AD
00AZ
Q0A4
O0ORL
O0OAZ
O0AA
QOALC
QOAE
OORO
O0ORZ
QOR4
O0ORA
QORSZ

TXMIRA 236227 #%#

CE40
2FAQ
0100~
0z27
Q0OC
04082
1&4F3
2F27
2EC?
ZFA0
0100~
QZ00
249F
0420
0104~
az01
0005
QZEOQ
FFSg2
0420
O1=z4-
CgzZo
FFia
FFiz
13FC
2320
FEF=
OOFE~
1205
2FAD
Q1007
ZF A0
FEFZ=
10F =
0207 TIME
QORC

Qz0os

Q005

Q209

FF3C

2F97 LOOPZ
cOze
0420
Q2527
2ERO
ZFA0
0100~
02z
Q0O
QLOS
1AFS
10E1
Z2FAQ
0100~

WAIT

ERROR

Mav
WRIT

Al
DEC
JNE
WRIT
READ
WRIT
LI
EBLWF
LI
LWFI
BLWF

MOV

JEG

JER
WRIT

WRIT

JMP
LI

LI
LI
WRIT
Moy
BLWF

HEXC
WRIT

Al

DEC
JANE
IME
WRIT

O, #9+
@CRLF

7:12
8
LOCP1
*7

7
@CRLF

0, 9375

@TIMEO1L

1,5

MAINRG

GEYINIT

CKYBIWF > @K YBOWF

WAIT

QKYBUF.@TI

TIME
@LRLF

@EYRUF

WAIT
7, CKPARM

n

P
o

Y, CLEWFR+4

#7
#24, 0
@HEXDEC

(8}
@LRLF
7:12
LooP2

WAIT
@CRLF

0OR: 05222 122778

FAGE 0003

FUT vALUE IN CLOCK REGISTERS

DO CARRIAGE RETURN / LINE FEED

NEXT FROMFT IN TARLE

ONE LESS TO GO

GO BACKE., IF NOT DONE

READLY. GET SET, GO !

USER RESFONSE STARTS CLOCK
NEW LINE

ONE-FIFTH SECOND INTERVALS
SET TIMER

INTERRUFTES / SECOND

NOW LZE THIS ROUTINE-S REGS
START SCANNING KEYROARD
LOGE AT LINE FLAG

NOT COMPLETE LINE YET
TIME REQUEST?

G0 FRINT REAL TIME
FINISH LINE
SFILL THE BUFFER

WAIT FOR MORE TYFED STUFF
PROMPT ZTRINGS NOW HEADIMGE

OF ITEMS

CLOCK REGISTERS 2.3.,4.5%.4
FRINT HEADING

GET TIME PARM FRIIM CLOCE
CONVERT EBINARY TO DECIMAL

FRINT TIME
FINISH LINE

NEXT HEADING

ONE LESS TO GO

GO BACK IF NOT DONME
DONE. GO WAIT
my CR /7 LF

FIGURE 5-16. EXAMPLE PROGRAM USING TIMER INTERRUPTS 3 AND 4 (SHEET 3 OF 12)

5-40

TEST
0120 QO0OBA 1003
0121
0122
0123
0124 O0OBC 52
Q125 007 Q0
Q1246 0002 4
0127 oonz 00
01283 0004 4
0129 OOnF 00
0120 00EQ 44
0121 O0OER Q0
0122 0O0EC i
Q132 OOF7 00
0134 QOFZ 47
0135 QOFD Q0
0124 QOFE =4
01327 0100 on
0101 OA
0102 00

FIGURE 5-16.

TXMIRA 23

#
*
3*

CKPARM

JIMF
DATA

TEXT
BYTE
TEXT
BYTE
TEXT
BYTE
TEXT
BYTE
TEXT
BYTE
TEXT
BYTE

- TEXT

BYTE

122775 FAGE

LizafE
CONSTANTS

“ESECONDES

0

“MINUTE <
0

SHOLIR

[

“OAY NUMBER 7
(8]

“YEAR

Q.

“E0 7

O
T1
0, A, 0

54t 1

QO04

EXAMPLE PROGRAM USING TIMER INTERRUPTS 3 AND 4 (SHEET 4 OF 12)

TEST TXMIRA 93&227 ## oo 22 122/72 FAGE O0OS

0139 3 o e e e e T s
0140 * TMZ 9201 TIMER SET ROUTINE
0141 * THIS ROUTINE SETS THE INTERVAL TIMER ON THE TM39201
0142 * WITH A VALLUE PASSED BY THE CALLING PROGRAM. THE
0143 * VALLIE PASSED IZ SIMPLY AN INTEGER COUNT OF THE
0144 * NUMBER OF 21,3233 MICROSECOND FERIODS DESIRED. THIZ
0143 #* ROUTINE TAKES CARE OF LOADING THE TIMER REGISTER
0144 # FROFERLY. AND ENABLING THE TIMER INTERRUFT.
0147 e e e e e e e e e e e e e e e o o o e e
0142 0104 FF72 TIMEOL DATA HFF7E,ENTOL

Q1046 01037

0149 0108 0200 ENTOL LIMI O TURN OFF INTERRUFTS
010 Q000
Q150 0100 C250 MOV #1322, % GET TIMER VALUE
0151 O1O0E Qz00 (I 12,0100 ADDRESZS 2901
0110 0100 .
Q152 0112 OALlY SLa .1 SHIFT CLOCE COUNT
Q153 0114 02469 ORI 2.1 SET CLOCE MODE
Q114 0001
0154 Q112 2307 LOCR %, 1% START CLIOCE
0155 0114 1EOO =BZ O INTERRUFT MODE
Q1S4 0110 1003 RO = ENABLE INT 2 RER! MASE
Q157 0O11E 03200 LIMI 4 TURN INTERRLFTS BACE ON
0120 0004
Q152 0122 0220 RTWF RETUIRN TO CALLER

FIGURE 5-16. EXAMPLE PROGRAM USING TIMER INTERRUPTS 3 AND 4 (SHEET 5 OF 12)

5-42

TEST TXMIRA T3ILZ27 #% 0T 0S 23 122/75 FAGE 000&
O140 o s e e i it i ks i S it S 1 o o i e i et et s
0161 3# TMS 9902A INTERVAL TIMER SET ROUTINE
0162 * THIS PROGRAM SETS THE INTERVAL TIMER OF THE TM= 9902A
0163 # SING THE VALUE FASSED BY THE CALLING FROGRNAM.

01&4 # THE FROGRAM LOADS THE VALUE PROPERLY AND ENARLES
0145 #* THE APFROFRIATE INTERRUPT.

0144 B o e e e e e e
01467 0124 FF7& TIMEOZ DATA >FF73,ENTOZ
0126 0128~

0142 0128 0200 ENTOZ LIMI O CUT OFF INMTERRUFTES

0124 0000
QL& Q120 C2ED MOV #1Z2,9 GET TIMER VALLUE
0170 O1ZE Q&L SWFB % . FLIT IN LEFT BYTE FOR LICR
0171 0130 OZOC LI 12, 0080 FOINT TO 9902A

01322 0020
0172 0134 1DOD SRO 13 ZET LIDIR TO LOAD VALLE
0172 0134 1EOQOE =BZ 14 REZET LDCTRL. BYPASS CONTROL R
0174 01328 2209 LIOCR 2.8 - LOADl TIMER. BEGIN COUNT
Q175 0126 1014 ZBRO 20 ZET TIMENB FOR INTERRUFT
0176 Q120 OALC =LA 12,1 POINT TO 2201
0177 Q1ZE 1EOQO SRZ O SET INTERRUFT MODE
0173 0140 1004 SBO 4 ENABLE INT 4 MASK
Q177 0142 0200 LIMI 4 GIVE BACK INTERRUFTS

0144 0004 .
0120 01446 0230 RTWF RETLRN

FIGURE 5-16. EXAMPLE PROGRAM USING TIMER INTERRUPTS 3 AND 4 (SHEET 6 OF 12)

5-43

TEST TXMIRA 926227 %% QEIOTIZEE 122773 FAGE 0007

0192

0173

0194 0148 FF232 INT2VC DATA CLEWF, INZPC
014A 0140

UNIT. WP TO A YEAR. LEAF YEARS DONST COUNT.

1=z e s o e
01273 * ™= @901 REAL TIME CLOCK ROUTINE
0124 * THIZ ROUTINE IS ACTIVATED WHEN THE TMS 9901
0135 #* INTERVAL TIMER COUNTS DOWM TO ZERD, CALZING
01324 * INTERRUFT 2. THIZ ROUTINE COUMTES THE NUMEBER
0127 * OF ONE-FIFTH SECOND INTERVALS QCCURRING AND
0122 # UPDATES THE AFFROFRIATE COUNTER. AT THE END
o1 * OF A SECOND. THE MINUTE COUNTER IS CHECEED.
0120 * AND UFPDATED IF NECESSARY. THIS FROCEDURE IS
o191 ¥* REFEATED FOR EACH SUCCESSIVELY LARGER TIME
#
3*

0195 014C 0200 INZPC LI 12,0100 FOQINT 7O %201
014E 0100
01946 0150 1EOQOQ SBZ O INTERRUFT MODE

0197 O1%2 1003 SBO 2 ACENOWLEDGE INTERRUFT
0192 0154 0401 DEC 1 OOCE FRACTION COUNTER
0199 01546 14615 JNE RETURN NOT DONME WITH A SECONDC YET
Q200 * NEW SECONL
0201 01358 0201 LI - 1,53 NEW SECOND COUNTIIOWN
015A 0005
0202 0150 0582 INC 2 ADD ONE SECOND TO CLOCE
Q203 O01%E 0232 Cl 2560 &0 SECONDS YET?
0160 0030
Q204 0142 14&0F JNE RETURN NO, G0 RETURN
Q205 # NEW MINUTE
0204 01464 04C2 CLR 2 NEW MINUTE: CLEAR SECONDE
Q207 0146 0323 ING 3 ADD ONE MINUTE
0202 01468 0283 1 . 40 L0 MINUTEZ YET?
QOl&A 0020
0209 016C 140A JINE RETURN N, RETLIRN
0210 * NEW HOUR
0211 O1&4E O4C3E CLR = MEW HOUR: CLEAR MINUTEZ
0212 0170 0524 INGC 4 ADD ONE HOUR
Q213 0172 0224 CI 4,24 MIONIGHT YET?Y
0174 0013
0214 0176 140% JNE RETURN NC
0215 #* NEW DAY
0216 0178 0585 INC S ’ ADD ONE DAY
0217 O17A 0285 C1 Ta 364 END OF YEART
017C Ql4E
0218 017E 1401 JNE RETURN NG, RETLRN
0219 * NEW YEAR
0220 0180 0584 INC & NEXT YEAR

0221 0122 03230 RETURN RTWF

FIGURE 5-16. EXAMPLE PROGRAM USING TIMER INTERRUPTS 3 AND 4 (SHEET 7 OF 12)

5-U44

TEST TXMIRA 93&227 #*% 0220522 122/78 FPAGE 00032

Q223 B o e e e e e e e e e e e e s o o e
0224 * KEYROARD INITIALIZATION ROUTINE
0225 #* THIS ROUTINE INITIALIZES THE WORE AREA USED BY THE
022¢ # FEYROARD SCANNING ROUTINE WHEN THE TM= 9902A TIMER
0227 #* TIMES OUT. THE TMS 9902A TIMER IS DEDRICATED TO TIMING
0228 * THE INTERVAL BETWEEN KEYEROARD SCANS. IT IS SET
0229 * IN THIS ROUTINE. AND THE KEYBOARD CHARACTER BLUFFER
0230 #* .18 CLEARED OUT, AS WELL AS THE AFFROFRIATE FLAGS RESE
0231 e e e e e e e et e e
0232 0124 FF1& KEYINIT DATA KYBODWF.EYENT

0186 01833~

Q0233 01238 0209 KYENT LI .27 # WORDS IN BUFFER
01234 0025

0224 01gC 0208 LI &, EYRUF FEYROARD INFLUT BUFFER
0O13E FEF3

Q235 0190 04FS LOOP CLR #&+ WIFE TwWO BYTES QUT

02346 0192 0609 DeECc ® # OF WORDEZ LEFT

0237 0194 1&FD JNE LOOP GO BACE

0238 0194 0402 CLR 2 CLEAR INDEX FTR: NEW LINE

0229 0198 0403 CLrR = CLEAR STROBE FLAG

0240 019A 04CO CLR O CLEAR NEW-LINE FLAG

0241 019C 0401 CLR 1 CLEAR DATA AREA

0242 O19E 0200 LI 0,203 75 SCANT / SECOND
01A0 OO0O

0243 O1AZ2 0420 ELWFP @TIMEOZ GO START TIMER
01A4 01247

0244 O1A&L OZR0 RTWF DONE

FIGURE 5-16. EXAMPLE PROGRAM USING TIMER INTERRUPTS 3 AND 4 (SHEET 8 OF 12)

5-U5

2R O1AE
O1AA

Qzé&Y
Q270 GlAT
O1AE
0271 01RO
0272
P O1RY
O1R4
D274 O1R4A
027 OlR=
0274 O1LRBA
O1RC
= 0O1EE
010

0z

O10C
v1 O1DE
2 O1LEOQ

FIGURE 5-16.

TAMIRA 9346227

s i e e e —

* FEYR

+# THIS

* COINN
1708
EDGE
THI=
IMN T
ACEN
1% =
iy NE
WHIC
INAL

3% SRR e i 122/ 78 FOGE 000w

OARD SCANNING ROUTIME

FROUTIME SCANS AN ASCII-ENCODED EEYROARD
ECTED DIRECTLY To THE FPARALLEL /0 FORT, F4.
RITS O-7 ARE ASCII DATA. AND RIT 2 IS AN
~TRIGGERED (HIGH-TO-LOW) STROBE.

ROUTIME 15 ENTERED WHEN THE INTERVAL TIMER
HE TM= 9902A TIMES CJT. THE INTERRUFT IS
OWLEDGED . AND THE STATE OF THE STRORBE FLAG
ENSED. IF PREVICGIELY INACTIVE AND MOW ACTIVE,
W THARACTER HAS AFFEARED ON THE I/0 FORT,

‘H IS READ IMMEDIATELY. IF THE STROEBE IS
TIVE. OR IF PREVICGUILY ACTIVE AND STILL ACTIVE,

THE I/0 PORT IS IGNORED. WHEN A NEW CHARACTER

I READ. THE ZTROBE FLAG I% ZET. AND IS RESET

L3
k-3
-3
.tf.
H
&
-3
E-3
E-3
THEN
3
* NLY
#* CHAR
* AT
THE
#* IT 1
* WHIC
THE
FFiz INT4YD DATA
O1ACT
#* AOORE
0200 INAFC LI
GOS0
ini4 =R
ATIDR
OZ00 [

Moy
JER
TR
ANE
LR
1015 . AME
4 STRO
=AM TR
JEG

STCR
ANDI

1

JE
[}
LEE
MOVE

INC
I

SETO =

AFTER THE =ZTROBE GOES INACTIVE.

ACTERST ARE COLLECTEDRN IN THE KEYRBOARD RUFFER
WHEN A CARRIAGE RETURM IS INFUT, OR WHEN
BUFFER I% FULL. THE NEW-LINE FLAG IS ZET.
SOASSUMED THERE IS A ROUTINE SOMEWHERE

HOINSFECTE THE NEW-LINE FLAG. AND LUSET

COLLECTED DATA FOR SOME PURPOSE.
EYRIOWF . INAFLC

TURM OFF IMTERRUFT
FOINT TO 9902

FESET INTERRUFT
THE TMZ 2901, AND POLL THE KEYBOARD STATUE
2, 01320 FARNLLEL I/0 2901

ES

= CHECE STROBE FLAG

AN RESET: ZCAN KEYBUOARD

Lo, AT STRORE

iBA!r STILL LOW FROM LAST CHAR
HIGH: DONE WITH 0oL CHAR

uqul} SIMZE N0 OCHAR, RETLRN

BE FLAG WAT REZET. S0 ZCAN EEYROARD

= LK AT STROBE

GORACE HIGH: NO CHAR YET

3 SET STROBE FLAG, NEW CHAR

1.5 GRAE BYTE FROM EEYEOARD

1, =7F00 STRIF FARITY BIT

|_.1 [y "] x‘lj o Y]

1, 20200 BACESFACE?Y

= GO D0 BACKZSFACE
1,527F00 DELETE LLINE?

nEL GO DELETE LINE
1, @EYBUF{2) FUT CHAR IM BUFFER

£ CHAR FTR TO NXT LOC
2,72 END OF BUFFERT

EXAMPLE PROGRAM USING TIMER INTERRUPTS 3 AND 4 (SHEET 9 OF 12)

5-146

TEST TXMIRA 9326227 #+# 0210522 122/7% FAGE 0010
Q1lEZ Q043
0292 01E4A 13202 JER LINE YES, FORCE LINE DIONE
OzZ94 O1lEL 0221 CI 1, 20000 CARRIAGE RETURN 7
O1ES ODOO
0295 OLEA 132082 JER LINEX YEZ., SET END-OF-LINE
OZ%6A OLEC 0220 GORBACE RTWR DONE
0z27 3 SFECIAL CHARACTER HANDLING ROUTINES
0293 QlEE 0402 BRI DEC 2 MIVE INDEX BACE
029 O1F0 10FD JMEP GORACEK,
Q1FZ ©4C2 DEL CLR 2 CLEAR INDEX
Q1F4 10CA JMP RETURN
20 # BUFFER OVERFLOW HANDLINMNG ROUTINE
0302 01FA DE8AO LINE MOVE @CRX.@EYEBRUF(2) FORCE < CRX>
O1F3 020z~
OlFA FEFZ
0304 OLFC 052z LINEX INC 2 BLIMF FOINTER FOR NULL BYTE
Q205 OIFE A0 MOVE @CRX+1,@EYBUF(Z) NULL OUT END OF LINE
QZ00 02097
Q202 FEFZ2
Q204 0204 0700 CR SETO O : TURN LIMNE FLAG ON
Q0307 02046 10BD JMEP RETURN
03202 O0zZ0z ODOO CRX DATA >ON00

FIGURE 5-16. EXAMPLE PROGRAM USING TIMER INTERRUPTS 3 AND 4 (SHEET 10 OF 12)

5-47

TEST

0310
0311
0312
0313 020A
020C
0314 020E
0315 0210
0316 0212
0317 0214
0216
0318 0218
021A
0319 021C
0320 021E
0321 0220
0322 0222
0224
0323 0226
0324 0228
0325 022A
0326 0220
0327 022E
0328 0230
0329 0232
0330 0234
0331 0236
0233
0332 023A
0333 0230
0334 023E
0335 0240
0336 0242
0337 0244
0338 0244
0339 0248
0244
024C
024E
0250

FIGURE 5-16.

TXMIRA 936227 *#

FF78
020E~
co3n
cosD
044D
0202
0004
0203
0248~
04C4
C173
c180
0246
QOOF
Ciss
1303
ALOS
0606
1&6FD
040
0&02Z
146F4
0241
DO0OF
1204
C153
AL0S
04601
1&FD
C744
0380
0001
O00A
0044
O3ES
2710

%

08:05: 22

122/78 PAGE 0011

*

*

P————
DECHEX

DECH1

DECH2

DECH?Z=

DECH4

DECHS

DECHS

MULT

DECIMAL TO HEXADECIMAL CONVERSION ROUTINE

DATA >FF78,DECHI1

Mav
MOV
DECT
LI

LI

CLR
Mav
MGV
AND1I

MoV
JEG
A
DEC
JNE
SRL
nec
JNE
ANDI

JEG
MoV
A
DEC
JNE
MOV
RTWP
DATA

#13+,0
#13,1
12

2.4

FMULT

4
#3+,5
0,6

&, >F

&6
DECH4
-4

6
OECH=
0.4
DECH2
1,2F

DECH&
#3,5
5.4

1
DECHS
4,#13

GET 4 LSD’S
GET 1 MSD
RESTORE OLD WP
SET UP COUNTER

ADORESS OF MULTIPLY TABLE

CLEAR SUM

"GET MULTIPLIER
COFPY QOVER INPUT
STRIP WANTED DIGIT

IS NEW DIGIT ZERC 7
YES. SKIP ADDITIONS

ADD INTO SUM

DECREMENT COLUINTER

IF NOT DONE, JUMP BACK
MOVE NEXT DIGIT DOVER
DECREMENT DIGIT COUNTER
IF NOT ALL DIGITS, JUMP
LOOK AT MSD ONLY

IF ZERG, EXIT

GET 10 K VALLUE

ADD IT ON

DECREMENT THE COUNTER
IF NOT ZERO, JUMP

PUT DATA IN OLD REGS.
RETURN

1,100,100, 1600, 10000

EXAMPLE PROGRAM USING TIMER INTERRUPTS 3 AND 4 (SHEET 11 OF 12)

5-48

TEST . TXMIRA 9386227 ## O 05: 22 122778 FAGE 0012

0341 O RS — - _—

0242 # HEXADECIMAL TO DECIMAL CONVERSION ROUTINE
0343 e e e e e T —————

0344 0252 FF72 HEXDEC DATA >FF78.HEXDI1
0254 0256”7

0245 02546 CORD HEXDL MOV #13+,2 GET HEX VALLE
03244 0253 0400 CLR - O CLEAR RETURN VALUE
0247 025A 0204 LI 4,4 SET WP COUNTER

O25C 0004
0348 02SE 0205 L1 5,10 DIVISOR IS 10

0260 000A
034% 0242 OBR40 HEXDZ SRC 0.4 MAKE ROOM FOR NEW DATA
0350 02464 COZB2 MOV 2,2 IS QUOTIENT > 0 ?
03E1 02446 13200 JEG HEXDS IF NG, JUMP
Q352 0263 COC2 MoV 2,32 SET UP FOR NEXT DIVIDE
03253 0246A 04C2 CLR 2 CLEAR UPFER HALF OF DOUBLEWORD
0354 026C 3CES DIV 5,2 DIVIDE BY 10
0285 024E EQOZ S0 Z.0 PUT NEW DATA IN O
0356 0270 0604 DEC 4 DECREMENT COUNTER
0357 0272 1&F7 JNE HEXDZ IF NOT DONE. JUMP BACK
0358 0274 0OB4O SRC 0.4 MOVE DATA OVER 1 NIBBLE
0359 0274 CO4Zz HEXDE MOV 2,1 SET UP MSD
Q360 0272 C741 MOV 1,%#13 PUT DATA IN CALLER REG.1
03261 027A 0440 DECT 1= aLD WP ADDRESS
03262 027C C740 MOV Q,#13 PUT DATA IN CALLER REG.O
0362 027E 0280 RTWF EXIT
03464 0230 0B40 HEXDZ SRC 0,4 MOVE DATA QVER
0365 0282 04604 DEC 4 DECREMENT COUNTER
03646 0284 14FD JNE HEXD3Z IF NOT DONE, CONTINUE SHIFTING
03467 02846 10F7 JMP HEXD4 GO XFER DATA AND EXIT
Q3463 *
03469 * FROGRAM END
Q370 #*
0371 ENL

0000 ERRORS

FIGURE 5-16. EXAMPLE PROGRAM USING TIMER INTERRUPTS 3 AND 4 (SHEET 12 OF 12)

5-49

5.10 MOVE BLOCK FOLLOWING PASSAGE OF PARAMETERS

The coding in Figure 5-17 is an example of a called subroutine that will move
a block of data from one location to another. The three parameters of (1)
move-from address, (2) move-to address, and (3) length of block are provided
to the subroutine either through registers 0 to 2, or by the three words
following the calling program's BLWP instruction, or by a combination of both.
The block move subroutine first interrogates the words following the calling
program's BLWP instruction; if a zero is found, it looks in a register for a
parameter. In Figure 5-17, the calling program provides the move-from and
block length parameters in registers, and the move-to parameter in the second

word following the BLWP instruction.

LI RO,>F100 MOVE-FROM Address

LI R2,125 MOVE 125 BYTES

BLWP @MVBLK BRANCH TO SUBROUTINE
DATA O MOVE-FROM ADDR IN RO
DATA >F200 MOVE-TO ADDRESS

DATA O BYTE COUNT IN R2

(a) Calling Program

DATA

MVBLK >FF90,MVBLK1 WP, PC OF SUBROUTINE
MVBLK1 MOV 13,12 SAVE WP
MOV #*1U+,1 GET "FROM" ADR
JNE MVBLK2 NON-ZERO: PARM IN-LINE
MOV *13+,1 PICK UP FROM REG INSTEAD
MVBLK2 MOV *14+,2 GET "TO"™ ADR
JNE MVBLK3 PARM IN-LINE CODE
MOV #¥13+,2 GET FROM REGS
MVBLK3 - MOV *14+,3 GET LENGTH
JNE MVBLKY . IN-LINE PARM
MOV ¥*13,3 GET FROM REGS
MVBLK4 MOVB *1+,%2+ MOVE BYTE
DEC 3 ONE LESS TO GO
JNE MVBLKY NOT DONE YET
MOV 12,13 RESTORE WP
RTWP RETURN TO CALLING PROGRAM

(b) Move Block Subroutine

FIGURE 5-17. MOVE

BLOCK OF BYTES EXAMPLE SUBROUTINE

5-50

5.11 BLOCK COMPARE SUBROUTINE

Figure 5-18 shows a sample block-compare subroutine which accepts three
parameters from the calling program, in the same manner as the block-move
subroutine (paragraph 5.10.1). This compare subroutine inspects two strings,
comparing successive bytes until an unequal byte is found or until the
specified string length is exhausted. The Status Register bits in register 15
are updated accordingly, and the subroutine returns to the calling routine
with the altered status bits, which may be used immediately for conditional
Jjumps.

The sample calling program is at the top of Figure 5-18. Note that the
conditional jumps follow directly after the calling code, so the calling
program simply compares (through the subroutine) and jumps, in the normal
programming manner.

LI RO,>F100 FIRST BLOCK START ADDRESS

LI R1,>F200 SECOND BLOCK START ADDRESS
BLWP @CMBLK BRANCH TO SUBROUTINE

DATA O START ADDR. IN RO (1ST BLOCK)
DATA O START ADDR. IN R1 (2ND BLOCK)
DATA 100 COMPARE 100 BYTES

JLE $+10 IF LESS THAN OF EQUAL, JUMP
JGT IF GREATER THAN, JUMP

(a) Calling Program

CMBLK DATA >FF90,CMBLK1 WP, PC OF SUBROUTINE
CMBLK1 MOV 13,12 SAVE WP

MOV *14+,1 GET "A" ADR

JNE CMBLK?2

MOV ®¥13+,1 . GET IN CALLER REG
CMBLK2 MOV 44,2 GET "B" ADDR

JNE CMBLK3

MOV *13+,2 GET FROM IN CALLER REG
CMBLK3 MOV *14+,3 GET LENGTH

JNE CMBLKY

MOV *¥13+,3 GET FROM REG
CMBLKH4 CB 14, %24 LOOK AT STRINGS

JNE CMBLK5 FOUND UNEQUAL

DEC 3 ONE LESS BYTE

JNE CMBLKY STILL MORE TO LOOK AT
CMBLK5 STST 15 STORE FINAL STATUS

RTWP RETURN TO CALLING PROGRAM

(b) Compare Block Subroutine

FIGURE 5-18.

COMPARE BLOCKS OF BYTES EXAMPLE SUBROUTINE

5-51

5.12 UNIT ID DIP-SWITCH

The Unit ID switeh is a very versatile piece of hardware. The practical uses
of this small device are limited only by the imagination. The proper way to
read the switch settings is shown in Figure 5-19.

One example use of the switch is in a multidrop environment where each board
on the communications line is assigned an ID number through the settings on
the switch. The same software can be used in all the boards in the systenmn,
instead of having to maintain up to 32 separate copies, each unique only in an
I.D. field. Figure 5-20 shows an example program segment in a communications
routine.

Another example for use is in systems configuration. Whereas the main
communications port (P2) is designed for use specifically for a terminal, the
auxillary communications port (P3) is a general purpose RS-232 port and can be
connected to modems, serial line printers, device interfaces such as cassette
or floppy disk controllers, etc., as well as terminals. The switch can be set
to indicate the nature and baud rate of the device attached to the remote
port. Figure 5-21 shows a program segment example.

5.13 CRU ADDRESSABLE LED

The light-emitting diode (LED) DS1 on the TM 990/101MA is addressable through
the CRU at software base address 00004g. Writing a zero to the LED turns it
on and writing a one turns it off. Figure 5-22 show a sample routine to blink
the LED on and off once a second, using the TMS 9901 timer. The LED is on for
one-quarter second and off for three-quarters of a second.

5.14 USING MAIN AND AUXILIARY TMS 9902As FOR I/0

The TIBUG XOP routines (XOP 8 to 14) are written to accomplish input and
output through a TMS 9902A. When the TIBUG monitor is entered, the address
for all I/0 is directed to the main TMS 9902A (through connector P2). Any
time a user program branches back into TIBUG at address 00801¢ or when a RESET
function is activated, the CRU address is set to the main TMS 9902A. However,
a user may use all of the above-mentioned XOP calls to program any TMS 99024
in the system by first moving the software base address of the desired TMS
9902A into R12 of the I/0 routines; this register is located at M.A FFDEq 4.
In other words, move the software base address for the TMS 9902A (board
addresses shown in Table 5-3) into memory address FFDE4qg. Figure 5-23 is an
example where both serial I/0 ports of the TM 990/101MA are activated for
conversation to each other. Two terminals are assumed to be connected, one to
each port, and the operators may type messages to each other. This principle
can be expanded to support any of a number of TMS 9902A-controlled serial I/O
ports. (A variety of custom line interfaces may be used with a TMS 9902A.)

The write character XOP service routine first ensures that the Request-to-Send
signal is active. This signal is not deactivated by TIBUG so that modem users
will retain their data carrier. If a modem user wishes to drop the data
carrier, the affected TMS 9902A must be addressed by the user program, and
then the Request-to-Send signal is deactivated through the CRU.

Only the main TMS 99024, at CRU software base address 008016 is initialized by
TIBUG; other TMS 9902As in a system must be initialized by the user. Note the
first portion of the example program in Figure 5-23. Part of TIBUG's
initialization is to sense the baud rate of the attached terminal. If the baud

5-52

rate is 110, 300, or 1200 baud, then the XOP routine waits 200 milliseconds
after transmitting a carriage return. In addition, 1200 baud causes every
character transmitted to be followed by 25 milliseconds of delay time. Only
at 2400 and 9600 baud are characters transmitted without delays.

For 110, 300, and 1200 baud, the monitor ASRFLAG is set to one to cause a wait
state following writing of a carriage return. If the TIBUG I/0 XOP routines
are used for other I/0 ports, the state of the monitor's ASRFLAG will also
govern delay loops used by the Write Character XOP. The user should then swap
out the contents of the ASRFLAG as listed in Table 5-8.

SWITCH 5 LSB WHEN READ
T SET TO ON, ZERO READ (GROUNDED) ;
N 2 3 4 Y4
0
N

0
F

A |

\ l
_ SET TO OFF, ONE READ

SWITCH 1 MSB WHEN READ

NOTE

If all five switch settings are stored (using CRU), switch 1 would be
the MSB and switch 5 would be the LSB. For example, if switch 1 was
set to OFF, and the other set to ON, storage of the five settings
would be represented by 104g or 10000,. Code to store the switch
contents in register 0 is shown below.

*READING THE DIP SWITCH

CLR RO CLEAR HOLDING AREA
LI R12,>40 DIP SWITCH ADDRESS
STCR RO,5 SWITCH VALUES IN REGISTER 0O

FIGURE 5-19. READING THE DIP SWITCH

5-53

F MILTIOROF SYZTEM WITH DIF SWITOH
REGISTER 1 CONTAIMS DESIRED ID YALUE

CLRORG CLEAR HOLDIMG AREN
LT 1240 OIF SWITOH ADDRESE

18

TR RO D SWITOH YALUES IH REG. O
N . I MEZEAGE FoR MET

JEG PROCES YED. G0 PROCEDZ IT

BLWF SCLRBLUF MO, SLEAR RUFFER

]

RTUWF RETURN BACK TO BESCHEDULE

FIGURE 5-20. EXAMPLE CODE TO CHECK BOARD ID AT DIP SWITCH FOR
MULTIDROP ENVIRONMENT

EYZTEM:= COMFIGURATION EXaAMPLE
CLE RO CLEAR HOLDING ARES
L 12240 LGIF SWITCH CRL ADDREZE

STOR RO, S SWITCH VALUES IN REG, O

LT Ri, L0 LOAD "1t BIT FOR WALKIMNG COMEA
CIC RL,ED T% REMOTE FORT UEED?

ANE NOTUZD NG, JUME OUT OF ROUT INE

SHL Rl.1 SET T 208 FOR CHECE

CIC R1LRO InE: IS TERMINAL CONNECTEDT
JEG TERMNL YES, IIE, IDA. IDS - BALD RATE
SRL Ris1 N, SET TO 304 FOR CHECE

I RisRO I0E: MODEM CONNECTED?

JER MODEM YEZ, IDd, IDS = MODEM TYFE

SR Ri.1 NG, SET TO 02 TO CHECE IDa
£I0 K1, RO In4: I/0 DEVICE CONTROLLERT
JER 10ODEY YES, IS, 1 = TAFE, O = FLOFFY
SRL Rl MO, SET TO 201 TO CHECK 104
I R1.RO INS: SERIAL LINE PRINTER?

JED FRNTR YES

YOF @SYSERR. 14 MO, FRINT ERROR MESSAGE

(8]

* BECAUSE WRIONG SWITCH SETTINGS

FIGURE 5-21. CODING EXAMPLE TO ASCERTAIN SYSTEM CONFIGURATION
THROUGH DIP SWITCH SETTINGS

5-54

EL INE

0001
0002
00032
0004
0005
QOCs
Q007
000
000?
Q010
Q011
0012
00132
0014
D015
00164
Q017
o01e

001y
O0Z0

0021
o022

Q023
0024
Q025
D024
o027
o0z

0Oz

00320

TXMIRA

FCOO

OZEOD
FFQO
CO&O
QOOE
0zZ0Z2
2420
L B
Q202
FLOO
cCcaz
Q202
0OZ20
C44z

FCOO
FCOZ
Fzo4
FCO6
FCog
FZOA
FCOC
FCOE
Fi10
Folz
Fz14
FC1l4
Foig

FC1A
Foic
FULE
FCZO

FoR2

0200
alnlals]
Q200
0100
OZO=
000
Q204
0200
Q205
s OO03
3104

1000
Q300
0003
1OFF

ok &k % % ok ok ok ok %k ok ok %

##

PBLLZT ww 16: 02828 121/72 FAGE 00QO01
IDT “BLINK”
#* # # * #* %* 3 # #* # # * # *

SETS UP THE INTERRUFT LINKING AREA AMD THE
201, 1T EXECUTES THE TIMER. WHEN THE
DOWN, AN INTERRUFT IS EXECUTED THROUGH
WHICH TRANSFERS CONTROL TO THE ISR AT

THIZ FROGRAM
TIMER AT THE TME
THE TIMER COLUNTS
INTERRUPT TRAF =

THE BOTTOM OF THIS LISTING. THE CALLING PROGRAM AND ISR
USE THE SAME WORKSPACE (2FF00),., THIS FROGRAM 15 CODED
AT ABSOLUTE ADDRESSES UWSING THE AORG ASSEMBLER DIRECTIVE
THUS, IT CAN BE CODED USING THE LINE-BY-LINE ASSEMELER
WITH THE SLASH COMMAND LISED INSTEAD OF THE ADRSG COMMAND.
3* 3 +# -3 +# L3 3* +* # H#* 3t +* ¥* Ll
CALLING PROGRAM

ACRG FCOO0 EEGIN CODE AT M.A. FCO0
SET UP INTZ LINKING AREA

LWFI FFO0 WORKSPACE ADDR {(FOR BOTH FIGME)

MOV @3000E, 1 INTZ FOCOVECTOR TO R1

LI 22 0420 FLACE BLWF MACH. CODE IN RZ

MOV 2,1+ MOVE BLWF CODE TO LINE ARER

LI 2, >FD00 ALDDRESS OF VECTORS TO ISR

MOV Z, a1+ MOVE VECTOR ADDR TO LINE ARER

I 2 ORS0 FLACE RTWF MACHINE CODE IN R3

MOV 2,1 MOVE RTWF TO LINE ARER
LOAD AND EXECUTE TIMER AT TMS 2901

LIMI O NISABLE INTERRUFTE

LI 12, 20100 TMS 2901 CRU ADDRESS

() Ty 0300 CLOCE MODE, COUNT = 1

LI 4, =800 INTERRUFT MODE. ENABLE INTS:

LI a3 INITIALIZE TIMER COUNTER

LICR 4,4 ENARLE INTZ AT 9901

LOCR 2,2 ETART CLOCE AT 9901

CLR 12 FOINT TG L.E.D.

SBEOO TURM L.E.D. OFF

LIMI = ENABLE INT3 AT THE 2200

JMP % WAIT HERE FOR INTERRUFT

FIGURE 5-22. CODING EXAMPLE TO BLINK LED ON AND OFF (SHEET 1 OF 2)

5-55

BLINK

QO2Y
0040
0041
0042
0043z

O0A4

Q0045

Q044
0047

Q004AL
Q047

QOS50
0051
Q052
O0S3
0054
0055
0054
D057

QOS2
005
[a187:X4)
0041

QOLAZ

O0LZ
0044

0000 ERRORS

NOTE:

FIGURE 5-22.

FROoO
FROO
FDoz
FLi04
FLOOA
Fooz
FRoA
FLiOC
FOOE
FOi0
Folz
FD14
FLil &
Foiz
FO1A
FOic
FOLE

FOoz20
Fozz
Foz4
Foiz&
FOza
FLOZ2A
FDzC
FOZE
FDz0
Fhzz
FD324
FLizéa

TXMIRA 7246227 #% 1asnzeda
*
INTERRWUFT ZSERVICE ROUTINE
#*
ARG FFD00
FFOO DATA »FFO0, >FI04
Fno4
Q200 LIMI ©
Q000
QzoC LI 12,0100
0100
1003 =3 2T
Q209 LI P, 13625
2007)
DALY SLA 7.1
Q247 ORI 2.1
Q001
I30Y LOCR %, 15
1EOQO SRZ O
Q4ACT CLR 12
QL0 LDEC 5
SET L.E.INL TO ON OR OFF
o145 MOV T3
1406 JNE S FFIZO
1E0QD ZBZ O
Q205 LI 5,3
0003
Q200 LIMI 3
QOO=
OZE0 RTWF
10600 SRDO
QZO0 LIMI =
0003
O30 RTWF
ENL

As an exercise, the user can load and execute this code:
{1) load the machine code values shown in column 3 into
the memory locations shown in column 2, or (2) reassemble;
if the Line-By-Line Assembler (LBLA) is used, substitute the
slash command for the AORG directive and follow the
DATA and TEXT statement conventions for the LBLA. Ex-
ecute using the E TIBUG command.

121773 FAGE O00Z

BEGIN CODE AT M.A.
WF, PC OF ISR

HFLOO

DISABLE INTERRUFTZ

TMS 7901 CRU ADDRESS
CLEAR INTERRUFT AT 9%01
1/4 SECOND COUNT FOR TMES 9201
SHIFT clLoCk COUNT

SET CLOCE MODE

START CLOCE

SET INTERRUFT MODE AT
L.E.IN, CRU ADDRESEZ
DECREMENT COUNTER

A

STATUS

REIG.

- .
oes

ZERDT

ND, TURN OFF L.E.D.
YEZ, TURN ONM L.E.D.
RELOAI INTERRUFPT COUNT

ENABLE INTZ
RETLRN TO FROGRAM
TURN OFF L.E.D
ENABLE INTZ

RETURN TO FROGRAM

CODING EXAMPLE TO BLINK LED ON AND OFF (SHEET 2 OF 2)

5-56

TWOTRM

0001
Q002
0003
0004
0005
000&
0007
000g
0002
0010
0011
001z
o013
0014
0015
0014
0017
o018
0019
Q020
0021
0022
Q023

0024

0025
0024
Q027
0023

002y
QO30
0031
0032
0033
0034
el
0034
0037

0oza
003Y
0040
0041
0042
0043
0044
0045
0044

0047
0043
004w

Q000
Q002
0004
Q006

0002
000A
0OO0OC
OO0E
0010
0012
Q014
0014
0012
001A
0010
OO1E
0020

0022

o0z4
0026
0023
Q0OZA
QOZL
Q0ZE
0030
0Oz2
00z4
Q036
[al8)Ci]

TXMIRA P36227 ## ogr11:39 122/77¢ PAGE 0001

IDT “TWOTRM”

TWD TERMINAL PROGRAM EXAMPLE
THIS ROUTINE INITIALIZES THE AUXILIARY 1/0 FORT
OF THE TM990/101MA MICROCOMPUTER. BROTH SERIAL
FORTS ARE THEN USED IN A CONVERSATIONAL MOLDE
WITH EACH DTHER. THE PROCEDURE IS TO INSPECT
THE RECEIVE BUFFER BIT IN THE ADDRESSED TMS9902A
TO SEE IF A CHARACTER HAS BEEN ASSEMBLED
IN THE UART. IF S0, IT IS ECHOED TO THE
ORISINATING TERMINAL. AND THEN TRANSMITTED
T THE OTHER TERMINAL. THEN THE OTHER
TERMINAL IS INSPECTED FOR A CHARACTER, ETC.
THE POINTS TO NOTE ARE:
1) THE AUXILIARY TMS9902A MUIST BE INITIALIZED.
2) THE OLD "ASR"-FLAG MUST BE SAVED,
AND A NEW ONE DETERMINED FOR THE
NEW TERMINAL (AUXILIARY PORT).
2) EVERY WRITE OPERATION CONSISTS OF
MOVING THE DESIRED ADDRESS TO TIBUG,
‘AND MOVING THE DESIRED "ASR"-FLAG TO TIBUG.

e
#
#*
#
#*
#*
#
*
#*
#
#
#
#
#*
3*
#*
#*
#*
#
3#
P e
OZEQ
QOCC”
Qz0C
0120
#*
1D1F
1000
2220
QORL”
1EOD
04c0
Q4cz

1FOF T3TZP
12FE
0530 SPLOOF
1FOF
14FD
0201
Q0AZ"

‘ #*

3*

240 BOLOODF
1202
(415705 |
1OFLC
=2=11 MATCH
-OS1
ozel
01A0
1103
1603
0702

FIGURE 5-23.

LWPI REGS LISE SPARE SPACE AT END OF PROG
LI 12,20180 AUXILIARY PORT ADDRESS
INITIALIZE AUXILIARY =ERIAL FPORT

sp2 21 RESET UART

NOF RESET TIMING L[DELAY

LDCR eCcTL.2 LOAD CONTROL CHARACTER

SRZ 13 BYFAZE INTERVAL REGISTER

LR 0 BALD RATE LOOP COUNTER

LR 2 ASR FLAG FOR THIS FPORT

TR 15 LOOKE AT RIN

JEI TESTSP WAIT FOR USER TO TYFE SOMETHIN
INC © LP BALID LOOP COUNTER

TR 15 RIN NOW HAS A SPACE:

ONE S SPLIDGP DOROF OUT N A MARE

LI 1, TABLE BALII RATE TAEBLE

NOW INSFECT BAULD RATE TARLE FOR A LOOF
COUNT WHICH MATCHES. THEN LOADY BAUD RATE.

C O, %1+ Logk, AT ATBLE LOOP COUNT

JLE MATCH IF < OR = WE HAVE A MATCH
INCT 1§ . Sk IF BAD BAUD RATE. NEXT LOOF
JMF o BOLOOP LOoK AT NEXT LOOP COUNT

LOCR #1,12 LOAnD BAUD RATE CONTROL VALLUE
MIy #1,1 GET VALLUE ITSELF

CI 1.201A0 1200 BAULDN ?

QLT HIRATE MO, HIGHER BAUD RATE

JNE BEGIN NO, LOWER BALUD RATE

SETO 2 SET LOCAL ASR FLAG

EXAMPLE PROGRAM TO CONVERSE THROUGH

MAIN AND AUXILIARY TMS 9902As (SHEET 1 OF 3)

5-57

TWOTRM

o050
Q051
0052
0053

0054

QOS5

Q054
0057

QO58

005w
QO&D
00&1
Q04LZ
O0OLZ
Q0L4
0L
Q04

OOLT7

0070

Q071
0072

Q073
0074
QO75
Q074
0077
Q0073
Q7%
00g0

0031
Qo2

TXMIRA 936227 ## 02111139 122/73 FAGE Q002

003A 1001 JMP EERIN AND FRINT BEGIN MESSAGE
003C 0552 HIRATE INC MARE NO <CR> DELAY

- THE AHXILIARY PORT IS NOW UF, PRINT GREETING.
OO3E C320 BEGIN MOV @X180,@X0OPCRU AUX. PORT ADR. To TIRUG
0040 QOAD”
0042 FFDE
0044 COEQ MOV @ASRFLG, S SAVE MAIN PORT ASR-FLAG
0044 FFF4
0043 CE02 MOV 2. @ASKFLG ALY, FPORT ASR-FLAG
004a FFF4
004C 2ZF40 XQF 0,13 READ BY OLD IMIT. CHAR.
O04E ZFAO XOF @RGNM=G, 14 PRINT BEGIN MESSAGE
0050 O0BR7 _
QOS2 CEZ0 MOV @X&0, @XOFCRU MAIN FORT ADR TO TIRLG
Q0S4 QOYE " .
0054 FFDE
0058 C203 MOV 2, @ASRFLG MAIN FORT ASR-FLAG
00SA FFF4
QOSC ZFAO XOF @BGNMSG, 14 FRINT BEGIN MESSAGE HERE, TOO
00SE OOR7~

* THIS 1% THE MAIN LOOF.

#* FIRST ADDRESS MAIN PORT, THEN THE AUXILIARY PORT
0040 220 LOOF MOV @XS0,12 ADDRESS FOR MAIN FORT
D04LZ OOPE~
Q0044 1F1S TR z1 CHARACTER TYPED HERE 7
Q0hs 160R JNE NEXT NO, TRY DOTHER PORT
00LS CEOC MOV 12, @eXOFPCRU YES, GIVE ADDRESS TO TIBUG
00LA FFLDE
006C CEOZ MOV 3, @ASRFLG MOVE ASR-FLAG
Q0LE FFF4
Q070 ZECO XOF 0,11 READ/ECHO CHAR TO ORIGINATING
0072 CR2ZO0 MOV @X1R0,@XOPCRL AXILIARY PORT ADDRESS
0074 00RO~ : ’
0074 FFDE
0078 CS0Z MOV 2, @ASRFLG AUXILIARY FORT ASR-FLAG
0077 FFF4
007C ZFOO XOF 0,12 WRITE CHARACTER TO OTHER TERMI
Q07E £320 NEXT MOV exi120,12 ADDRESS FOR AUXILIARY PORT
0020 00A0~ '
0082 1F1S TE 21 CHARACTER TYPED HERE 7
0084 14ED JNE LoOP N3, TRY MAIN FPORT
Q084 CROC MOV 1%, @XOPCRU YES, GIVE ADDRESS TO TIBUG
0033 FFDE
008A CROZ MOV 2, @ASRFLG MOVE ASR~FLAG
0030 FFF4 :
Q0SE ZECO XOF 0,11 READ/ECHD CHAR TO CORIGINATING
Q090 820 MOV @X320,eXOPCRU MAIN FORT ADDRESS
0092 O0%E~
0094 FFDE >
00946 CROZ MOV 3, @ASRFLG MAIN FORT ASR~FLAG
003 FFF4
009A ZFOO XOF 0,12 WRITE CHARACTER TO MAIN TERMIN
QO9C 10E1 JMP LOOP

* [ue— T SS S MS AT T S S Gt W WA Shle At P o ———— bt —— " S —— T S it e — — . St S S — — Y —p— ——

FIGURE 5-23.

EXAMPLE PROGRAM TO CONVERSE THROUGH

MAIN AND AUXILIARY TMS 9902As (SHEET 2 OF 3)

5-58

TWOTRM

008z
0084
0085
0036
0087
0033
(s1e1237
Q090
0091
Q092
Q093

Q074
QOP5

Q094

007

008

OO

Q0000 ERROR=

O0O%E
00AD

Q0OAZ
Q0A4
Q0OAA
00AS
OOAA
QOALC
O0AE
OOBO
QORZ
OOR4
QOBR&
QOR7
QORS
QORY
QO3
QOCY
OOCA
QOCC
QOCE
Q0L
Qone
o0ong
(818) 873
QOLS
QODA
OO
QOnE
QOEQ
QOOEZ
QOE4
O0E&
QOE&
QOEA

TXMIRA 9346227 #% 03:11:32%

0080
0180
FFF4
FFDE
0010
00324
0040
QOnO
0070
O1A0
0200
0400
0400

QL3233

&2
ohn
(874]
42
on
0A
QO
QOO0
Q000
QOO0
alalels]
QOO0
OO0
0000
QOO0
Q000
[s1nlsls]
Q000
Q000
0000
0000
OO00
QOO0

FIGURE 5-23.

* . DATA
*
X80 DATA
X180 DATA
ASRFLG EQL!
XOPCRU EQU
TABLE DATA
DATA
OATA
DATA
DATA

CTL BYTE
BGNMEG BYTE

TEXT
BYTE

REGZ DATA

ENL

AREA

>0080
>0130
>FFF4
>FFDE
>10,2>324

>40, 10

70, >1A0
2200, >4T0
4060, 2ARE

>L2

00, 20A

“BEGIN OPERATION-
>00, 20A, 200

™
M
~
~
0

MAIN PORT
AUXILIARY
TIRBLUG ASR
TIBUG XOF
2600 BAUD
2400 BAUD
1200 BAUTD
200 RALD

110 BAUD

PAGE 0003

R1Z BASE ADDRESE
PORT R12 BASE ADDORES
FLAG ADDRESE

R12 ADDREST

9902A CONTROL.

07 c” C), c” c’) c” C)'l c)‘) 0" (..)1 (:)'I (.)7 C” 01 C)’ (:)

EXAMPLE PROGRAM TO CONVERSE THROUGH

MAIN AND AUXILIARY TMS 9902As (SHEET 3 OF 3)

5-59

TABLE 5-8. ASRFLAG VALUES

ASRFLAG
Value¥*

Recommended Baud Rate

Description/Recommendations

Positive No.

Zero

Negative No.

2400, 9600
110, 300
1200

No delays. Use for CRT's, modems.

Carriage Return Delay only. Use for
hardcopy terminals.

Carriage Return and Character padding
delays. Use with "T" command if

terminal is not a TI 733.

¥ASRFLAG located in RAM at M.A. FFFi4q-

5-60

SECTION 6
THEORY OF OPERATION

6.1 GENERAL
This section presents the theory of operation of the TM 990/101MA micro-
computer. Information in the following manuals can be used to supplement
material in this section:

e TMS 9900 Microprocessor Data Manual

e TMS 9901 Programmable Systems Interface Data Manual

e TMS 9902A Asynchronous Communications Controller Data Manual

e TTL Data Book, Second Edition

e Bipolar Microcomputer Components Data Book

e The MOS Memory Data Book.

Figure 6-1 shows a block diagram of the TM 990/101MA, highlighting the four
major buses:

e Address bus

¢ Control bus

¢ Data bus

e Communications Register Unit (CRU) bus.

In normal operation the TMS 9900 microprocessor commands the address bus and
most of the control bus; the data bus is bidirectional, driven by both the
microprocessor and the memory devices. The two-line CRU bus is not
bidirectional; the serial output line is microprocessor driven and the serial
input line is driven by the CRU device.

The major features of the TM 990/101MA microcomputer bcard are the clock
driver, the microprocessor, the TMS 9901, the two TMS 9902As and peripheral
circuitry, the bidirectional and normal backplane buffers, the EPROM, the RAM,
the additional CRU devices, and the miscellaneous signals. These features are
discussed in the following paragraphs of this section.

6.2 POWER SPECIFICATIONS

Approximate power values required by the TM 990/101MA-1 are listed in the
following table:

Current -12 V +5 V +12 V Watts
Typical 0.1 A 1.0 A 0.20 A 5.0 W
Maximum 0.40 A 2.2 A 0.4 A 19.7 W

c-9

— st ‘o,
1 2k BYTE 2K BYTE
2114’s 2114"s BUFFER
—N CONTROL
1/ {four) (four)
MEMORY "T
ADRESS [2716 y y
DECODE [N
™S ™S
"\ 2708 2708 :J>
/2716 12716 misc
P/ - CONTROL
9 DATA ADDRESS SIGNAL
@ T T .2708 BUFFERS BUFFERS and
or ,——-——-,—/ 2716 CRU
3 BUFFERS
S ™S ™S N
MEMORY |© 2708 2708 A .
12 MH:z CONTROL . /2716 12716 L
" H 16 [} MiSC. -
3MHz DATA BUS S CONTROL
™ CLOCK I
CONTRO
9904A i l LBUS MisC.
RESET | ADDRESS BUS 15 CNTL
™S
9900
3
CRU BUS
CRU RS-232 o
s ADDRESS TERMINAL
RESET DE
LOAD pECO «
S| semria
RESET I [I l ™s £ PORT
W
/LREX 2902A TTY or ol Z A
— -INTERRUPTS MULTIDROP g
o
INT1-INT15 14 ™S ~—l <
2901 I
EDGE INTG MICROTER- |
INT6+ _ | TRIGGER > MINAL
LOGIC
INTE—
e
|
INT6L - ‘T
™S
9902A
L RS-232
/9903 TERMINAL B
9 7 - g B
4
o
5| semiaL
> DTR | -t 3 PORT
v 1 z B
SHARED I/0 DEDICATED /O ¥]
I EDGE CONNECTOR I DIP E
SWITCH
LED
PARALLEL POR -E.D.
ALLEL PORT

SYSTEM EDGE CONNECTOR

The -5 V supply is derived on the board by the UAT305 regulator from the -12 V
line supplied from offboard. The -5 V supply is used primarily by the TMS
9900 microprocessor and the TMS 2708/2716 EPROMs for back-biasing the
substrate, and by the multidrop interface as a supply voltage. The -12 V
supply is used for the EIA line drivers as well as for supplying the voltage
to the -5 V regulator.

The +12 V supply is used by the TMS 9900 microprocessor and the TMS
2708/2716 EPROMs as the main voltage supply since these are MOS parts. The
+12 V also is used for the EIA line drivers.

All integrated circuits on the board, except the EIA line drivers, use the +5
V supply, and because of the heavy load this voltage is not derived by an
on-board regulator but must be supplied from off the board. The MOS parts use
this supply for TTL compatibility, and, in fact, the TMS 9901, 99024, 9903,
and 2114 use only this voltage for supply since they contain internal charge
pumps, eliminating the need for -5 or +12 V in their operation.

Table 6-1 lists the pin assignments of each integrated circuit for the supply
voltages each uses.

TABLE 6-1. DEVICE SUPPLY VOLTAGE PIN ASSIGNMENTS

Supply Voltages to Pin Numbers

Device -12 V -5V GND +5 V +12 V

TMS 9900 1 26,40 2,59 27

TMS 9901 16 4o

TMS 9902A 9 18

TMS 9902A/03 socket 9 20

TIM 990L4A 3, 10 20 13
2114 9 18

T™MS 2708/2716 21 12 24 19

THLS241, T4LS245 10 20

75188 1 7 14

75189 7 14

75154 8 15

75107 13 7 14

75112 : 11 7 14

T4LS138, 153, 251, 259; TuS287 8 16

TULSXX T 14

6.3 SYSTEM STRUCTURE

The block diagram in Figure 6-1 shows the system structure of the TM 990/101MA
microcomputer board. The microcomputer design centers around five buses:
power, control, address, data, and CRU. The major blocks of the system are
the processor, the miscellaneous control signals, address decoding, onboard

memory, the TMS 9901,and two TMS 9902A serial ports, and the miscellaneous CRU
devices.

Functionally, these major blocks represent the processing, memory and I/0
portions of the microcomputer.

6-3

Throughout the remainder of this section, each block's function is discussed,
girouping the explanations into three categories: processing, memory, and I/O.
The first subject is the buses since the buses tie all the blocks together.

The power bus is explained in section 6.2, so the following section deals with
the remaining buses.

6.4 SYSTEM BUSES

The four major buses are subdivided by function in Table 6-2. By referring to
the schematics in Appendix G, each random logic line as well as the bus lines
can all be traced. All bus signals appear on connector P1.

6.4.1 Address Bus

The 16~line address bus consists of lines A0 through A15. Only 15 of these,
A0 through A14, are normally used for addressing memory. Memory access deals
with a 16-bit word, and A15, the byte address bit, is not brought out of the
TMS 9900 since byte operations are handled by fetching a 16-bit word into the
processor, and modifying the addressed byte, rewriting the 16-bit word back to
memory if necessary. Therefore, A15 appears only on connector P1 and 1is
grounded to show a zero offboard, thereby fetching words on even boundaries.

On the board the address lines are routed to the address decoding PROM which,
with MEMEN-, selects onboard memory if the address presented lies within the
limits of the memory map programmed into the PROM.

Lines AO, A1, and A2 are also routed to the TU4LS138 external instruction
decoder where, upon a CRUCLK pulse, the state of the address lines determines
whether a CRU operation (A0, A1, A2 = 0) or an external instruction is
occurring. This leaves A3 through A1l for CRU addressing; A3 through A1l are
routed to the I/0 decode logic and the CRU devices.

6.4.2 Data Bus

The data bus consists of 16 bidirectional lines which are routed from the
processor to the onboard memory and to the bidirectional buffers for offboard
use. DO is the most significant bit, and D15 is the least significant bit.

6.4.3 CRU Bus

The three lines in the CRU bus are CRUIN, CRUOUT, and CRUCLK. Whenever an
address is present on the address bus and MEMEN- is not also active, a CRU
operation is to be assumed. Note that even if some CRU device responds to the
address bus while it changes value or is in any way invalid, no harm is done
because the data presented to CRUIN by the addressed device will be ignored by
the processor. Since the processor will poll CRUIN only when required, CRU
address decoding is simplified.

6-4

TABLE 6-2. BUS SIGNALS

Signal

Functional Device Connections

Address Bus
AO, Atl, A2
A3, A4

A5, A6, AT, A8
A9

A10, A11, A2
A13, A14
(A15.B)

Data Bus

DO-DT
D8-D15

CRU Bus

CRUIN
CRUOUT
CRUCLKB

Control Bus

MEMEN-
DBIN
WE-
MEMCYC-~
READY

Auxiliary Control

¢1—) ¢3‘

EXTCLK.B-, CLK.B-

Address decode PROM, external instruction decode
Address decode PROM, CRU decode logic, TMS 2716 EPROM

CRU decode logic, all memory devices

All memory devices, TMS 9901, TMS 9902A/3, one THLS251
All memory devices, TMS 9901, TMS 9902A73, both TULS251s

Byte indicator: always zero, offboard signal only

Most significant byte, 1 EPROM/byte, 2 211l4/byte
Least significant byte, 1 EPROM/byte, 2 2114/byte

CRU input line, TMS 9901, TMS 9902A/3, T4LS251 (TIM 9905)

CRU output line, TMS 9901, TMS 9902A/3, T4LS259(TIM 9906)

CRU clock, TMS 9901, TMS 99024/3, T74LS251 (TIM 9905),
TULS259 (TIM 9906), Edge-triggered logic

Memory control: address decode PROM

Memory control: RAM decode logic, data bus buffer control
Memory control: RAM decode logic, all 2114 RAMs

Memory control: offboard only

Memory control: slow EPROM logic, offboard WAIT state

Clock: TMS 9901, TMS 9902A/3, RESET/LOAD logic

Clock: offboard only

PRES.B-, RESTART.B- RESET/LOAD logic, TMS 9900, TMS 9901
RST-, LOAD-, IORST.B-

INT1- to INT6-
INT7- to INT15-
HOLD-, HOLDA

IAQ

Interrupt control: dedicated TMS 9901
Interrupt control: shared I/0, TMS 9901
Address, data, memory control for DMA: TMS 9900

Miscellaneous: TMS 9900

6-5

When an address is present on the address bus and MEMEN- is not active and if
A0, A1, and A2 are all zero, the CRUCLK pulse is gated through the external
instruction decoder, and any data on CRUOUT is strobed into the addressed CRU
device. This is a CRU output operation, and it is distinet from an input
operation in that CRUCLK is active during output; whereas, it is inactive upon
input.

As mentioned above, CRU input is achieved by the processor asserting an
address while keeping the MEMEN- signal inactive, and then polling CRUIN at
the appropriate time.

6.4.4 Control Bus

This bus is not as homogenous as the other buses; therefore it is divided into
groups as shown in Table 6-2. Table 6-3 gives a brief explanation of each
function.

TABLE 6-3. CONTROL BUS FUNCTIONS

Signal Active State Group Purpose

MEMEN - Low Memory Enables memory devices, address
(memory enable) on address bus is for memory
DBIN High Memory Shows state of processor's data
(data bus input) bus: high is input to processor,

low is output.

WE- Low Memory Strobe to memory devices for
(write enable) . writing data to memory.

MEMCYC- Low Memory Indicates beginning and end of
(memory cycle) one memory cycle. For successive

memory cycles, MEMEN- can be
active continuously, MEMCYC-
goes inactive between each
separate memory cycle.

READY High Memory Indicates memory is ready with
read data on next clock, or has
disposed of data on write cycle.
Wait states are generated by
pulling this line low.

WAIT High Memory Acknowledges that memory is not
ready, indicating a wait state.

HOLD- Low Processor Requests processor to give up
Activity control of address, data buses,

and MEMEN-, WE-, and DBIN.

HOLDA High Processor Acknowledges that processor has
Activity given up control of buses given
above, and has suspended
activity.

6-6

TABLE 6-3. CONTROL BUS FUNCTIONS (CONCLUDED)

Signal Active State Group Purpose

21, &3 Low - Clock TTL level clocks

EXTCLK.B- Low Clock External TTL clock input to
TIM 99044

CLK.B- Low Clock Output of internal oscillator
of TIM 9904A

PRES.B~ Low Reset/Load Causes reset interrupt

RST-~ Low Reset/L.oad Reset interrupt'input, TMS 9900

RSET- Low Reset/Load External instruction, causes
IORST

IORST- Low I/0 reset to TMS 9901's. Does
not cause reset interrupt.

RESTART.B- Low Reset/Load Causes load function delayed by

LOAD- Low Reset/Load two IAQ or idle pulses. (LOAD is

name of external instruction and
load function pulse)

INT1-15~ Low Interrupt Request for interrupt to TMS
9901
IAQ High Misc. Signifies this memory cycle to

be an instruction fetch.

6.5 SYSTEM CLOCK

The system clock is generated by a crystal and tank circuit tuned to 4 times
the desired system frequency. This network is attached to the TIM 9904A clock
driver, which counts down the input signal from the tank and crystal into four
non-overlapping clock phases at MOS signal levels for the TMS 9900. The

inverse of these phases is output to TTL levels for the remainder of the
systemn.

Also on the TIM 9904A, the reset function is latched and synchronously
presented to the TMS 9900; this ensures synchronization with the correct
phase.

The crystal is a third overtone series-resonant crystal, set in an HC-180
holder (see Figure 6-2).

The TTL clocks are routed the RESET-/LOAD- and MEMCYC logic, as well as to the
P1 connector and the TMS 9901 and TMS 99024/9903's.

; CAUTION 1

If pins 11 and 12 of the TIM 990U4A (g1 and @g2) are shorted, the device
will overheat and go into thermal runaway almost instantly.

6-7

R
XTAL 1 o1 o1
e AAA
QUARTZ 18 12 8
crystaL O XTAL 2 , R,
T XTAL2 —-Q—'VW——L——
19 1 9 TMS 9900
MICROPROCESSOR
TANK 1 TIM99044A 03 B o3
I 1 ctock 8 |—AmA——1 28
«
TANK 2) 9 E=Aam—E—] 25
OSCIN R=150
17
47KQq 20 13 3 10
Vee Voo |GND GND
1 2
+5V +12V

FIGURE 6-2. CRYSTAL-CONTROLLED OPERATION

6.6 CENTRAL PROCESSING UNIT

The TMS 9900 microprocessor is the central processing unit (CPU) for the TM
990/101MA. The responsibilities of the CPU include:

e Memory, CRU and general bus control

e Instruction acquisition and interpretation
o Timing of most control signals and data

o General system initialization.

Figure 6-3 groups the TMS 9900 pins by function. The address bus addresses
memory and the CRU devices, and provides the codes for the exXternal
instructions. The data bus carries all memory data, including instruction
code as well as program data and addresses. Interrupt requests are encoded as
a binary number by the TMS 9901 for presentation to the TMS 9900 micropro-
cessor.,

Memory operations are initiated by placing an address on the address lines
along with MEMEN-, DBIN, and eventually WE-. If the memory cycle is an
instruction fetch, IAQ goes active also. READY is sampled and the memory
cycle is ended one clock cycle after READY is active.

6-8

GOES 70
RESET/LOAD 1
LOGIC

CONTROL BUS GOES

TO MEMORY DECODER, W
MEMORY, EXPANSION
BUFFERS.

FROM SYSTEM CLOCK <

CRU I1/O

FROM TMS 9801
INTERRUPT CONTROL

+5V

+12v

FIGURE 6-3.

27

{(MSB) po

TMS 9900 D1
1AQ D2
D3
HOLD D4
HOLDA D5
READY D6
WAIT D7
WE D8
| MEMEN D9
DBIN D10
D11
o D12
2 D13
3 D14
o4 D15
CRUIN (MSB) A0
CRUOUT Al
CRUCLK A2
A3
INTREQ A4
ICO A5
Ic1 A6
Ic2 A?
ic3 A8
A9
Vg A10
Vee Al
Vee A12
Vpo A13
Vss Vss Ala

TMS 9900 PIN FUNCTIONS

DATA BUS GOES TO
L MEMORY, EXPANSION
BUFFERS

ADDRESS BUS GOES TO
MEMORY AND /0 DECODER,
r MEMORY, EXPANSION
BUFFERS, TMS 9901,

TMS 9902A

CRU operations are initiated by placing an address on the address bus. CRUIN
is sampled for an input operation; otherwise it is ignored, and for an output

operation the datum is placed on CRUOUT and strobed with CRUCLK. Aside from
I/0 purposes, CRU operations also program the operation of such devices as the
TMS 9901, 9902A, and 9903.

Figures 6-U4 and 6-5 show the data flow and operational flowchart of the
microprocessor. Figure 6-6 shows the decoding of the external instructions.
For more information, refer to the TMS 9900 Microprocessor Data Manual.

6.7 RESET/LOAD LOGIC

After the clock and the CRU, the next circuitry most closely associated
with microcomputer operation is the random logic dealing with RESET- and
LOAD-. This block initializes the system and is also used to return control
to TIBUG when using single-step operation (refer to Figure 6-6).

6.7.1 RESET Function

"The RESET switch feeds a latch formed from back-coupled inverters for
debouncing. The PRES.B- signal from connector P1 joins the RESET- switch
signal in a Schmitt trigger gate to assure that multiple reset pulses due to
noise or bounce do not affect the microcomputer. After being inverted again,

the reset signal is routed to the TIM 9904A which then synchronizes it with ¢#3
and then presents the signal to the microprocessor.

The RESET- signal also goes to two flip-flops which generate the IORST-
signal, which clears TMS 9901's and any other devices attached to it
offboard. This IORST- signal is also generated by the external instruction
RSET, but it is important to realize that the RSET instruction in a program
generates only IORST- and not a full RESET interrupt. IORST- can be active for
up to two #3 clock periods.
Reset causes the following to occur:

e Clears I/0 devices on IORST line (onboard TMS 9901)

e Inhibits memory write and CRU operations

® Sets TMS 9900 status register interrupt mask to 000014

e Processor traps to vectors at 00004¢ and 000244
Reset is caused by:

e Actuating the RESET switch on the PC board

o Setting the PRES.B- signal to a logic ZERO state on connector P1.

6-10

HOLD
HOLDA
LCAD
WE
READY
WAIT
VEMER
DBIN
RESET
1AQ

CRUCLK

INTREQ 1CO-IC3

16

INSTRUCTION
REGISTER

16

CONTROL
ROM

~

CONTROL
LOGIC

~foRH2Q0

16

16

T

T2

PROGRAM COUNTER

WORKSPACE REGISTER

16

N2

INTERRUPT
REGISTER

N
—

16

1\/

STATUS
REGISTER

SHIET
COUNTER

16

16

16

SOVIRCE DATA
Rt GISTIR

J

ﬂ

MEMORY
ADDRESS
REGISTER

PO

16

rﬁw

SHIFT REGISTER

FIGURE 6-4,

6-11

CRUIN

TMS 9900 DATA AND ADDRESS FLOW

!

INSTRUCTION

» ; ACQUISITION

RESET SIGNAL

CAUSES IMMEDIATE /

ENTRY HERE INSTRUCTION
EXECUTION
UPDATE PC

Y

Y LOAD
ACTIVE?
N
GET RESET VECTOR
{WP AND PC)
FROM LOCATION 0, 2
STORE PREVIOUS PC, XOP OR BLWP v
WP, AND ST IN NEW INSTRUCTION/
WORKSPACE. SET
INTERRUPT MASK
{ST12-ST15) = 0
INTERRUPT?
LOAD {INTREQ
ACTIVE/ ACTIVE)
N
INTERRUPT N
VALID? (1CO-IC3<
| T12-ST15)
GET LOAD VECTOR
{WP AND PC) FROM
LOCATION FFFC,g,
FFFEq6 GET INTERRUPT LEVEL IDLE v
STORE PREVIOUS PC, VECTOR (WP AND PC) INSTRUCTION?
WP AND ST IN NEW STORE PREVIOUS PC,
WORKSPACE. SET WP, AND ST IN NEW
INTERRUPT MASK INTERRUPT MASK (ST12
{ST12 - ST15) - 0 —ST15) TO LEVEL —1

FIGURE 6-5. TMS 9900 CPU FLOWCHART

6-12

FROM PROCESSOR CIRCUIT

RST- . ‘
741808 TO_OFF BOARD /O CLRCRU-
MEMEN-
TO ON BOARD 1/0 IORST-
g3~
PRE | PRE | PRE
D Q D [o] = D Q
=] ui7 uz0 u20
74LS74 741874 741874
CK Q {ck o} cK Q
CLR CLR CLR
+5V w5y
WAIT
gi-
MEMGCYG-
1AQ U U1 1
74LS04 —q D
{DLE- 7418132
u7
st 74LS04 | 5V
s v »;:::3::>°~_ R6
740508 1KQ U1
- -t)
C18), 3aF L c23 7408132
- r24 ¢+ —| 3 !
P1-94 < FRES:B ~k 1 : } j; OuF I
28 LELECTROLYTIC_; LELEcTnon.vng}
P1-93 « RESTART.B- R e I
P2-16 w—
LREX-

FROM PROCESSOR CIRCUIT

FIGURE 6-6b., RESET AND LOAD LOGIC
6.7.2 LOAD Function

The LOAD function is triggered by either activating RESTART.B- or executing
the external instruction LREX. Both of these are combined in the same way the
RESET function is. The first flip-flop presents the LOAD request to the
second, and the second and third flip-flops count two IAQ or IDLE pulses and
then present the LOAD function request to the microprocessor. The second
flip-flop clears the first one so that only one LOAD is generated even though,
for instance, the RESTART.B- signal may be continuously active.

RESET overrides LOAD because a RESET- signal clears the LOAD flip-flops. This
is important when both requests occur simulataneously.

Load causes the following to occur:

o LOAD function is delayed two instructions (IAQ) or idle pulses (IDLE),
then triggerred

° Processér traps to vectors at M.A. FFFCqg and FFFEq¢.

6-13

Load is caused by the following if RESET is inactive:
e Executing the software instruction LREX

e Setting RESTART.B- to logic ZERO state on connector P1.

6.7.3 Reset and Load Filtering

Installing a 39 microfarad capacitor at C18 will debounce the PRES.B- signal.
This would be adequate for manual actuation by an SPST pushbutton to ground.

A 39 microfarad capacitor at C23 debounces the RESTART.B- signal, suitable for
connection to a manually actuated switch in the same way as above.

These capacitors are user options, and these values are suggested values.

6.7.4 CLRCRU Signal
The CLRCRU (clear CRU) signal is a power-up IORST which resets the edge-

triggered interrupt 6, the status LED, and remote serial port Date Terminal
Ready signal. The status LED is lighted and Data Terminal Ready is inactive.

6.8 EXTERNAL INSTRUCTIONS
The so-called external <instructions are those which, when executed by the

processor, cause address lines A0, A1, and A2 to be set to a state, and CRUCLK
to become active. The instructions and descriptions are listed in Table 6-4,

TABLE 6-4. EXTERNAL INSTRUCTIONS

Instruction Opcode | A0 | A1 { A2 Description

IDLE 0340 0 1 0 Suspends processor until RESET, LOAD,
or interrupt occur. -

RSET 0360 0 1 1 Zeroes TMS 9900 interrupt mask,
generates IORST

CKON 0340 1 0 1 Not used on TM 990/ 101MA

CKOF 03C0 1 1 0 Not used on TM 990/ 101MA

LREX 03E0 1 1 1 Causes LOAD, delayed by two IAQ or

IDLE pulses

6-14

The CKON and CKOF instructions are used by other 990-family systems to control
the system timer. On the TM 990/101MA, the system timer is incorporated into
the TMS 9901; hence, these instructions are not used.

The RSET instruction generates the IORST signal to clear all I/0 devices (on-
board TMS 9901) attached to it. It also clears out the status register
interrupt mask, which allows only a RESET interrupt or a LOAD function to be
granted.

The LREX instruction causes a LOAD function request to be presented to the
processor after two IAQ or IDLE pulses. This means that the LOAD function
occurs after two instructions are executed following the LREX. TIBUG uses
this function to do single step by executing the LREX, a RTWP to the user,
then one user instruction. The LOAD function becomes active and vectors back
to TIBUG, which then prints the processor registers.

IDLE causes the processor to suspend operation; it is, in essence, a HALT
instruction. An interrupt or LOAD terminates the idle state.

In all cases, note that A0, A1, and A2 are nonzero values so that these
instructions are differentiated from a CRU output operation.

6.9 ADDRESS DECODING

This section explains address decoding for both memory and CRU I/0 along with
their memory maps. The memory address map configurations are shown in Figure
6"7 . ’

6.9.1 Memory Address Decoding

6.9.1.1 Memory Address Decoding PROM

The memory map is programmed in a TU4S287 PROM as shown in Figure 6-8. The
PROM is a 256 x 4 bit memory, and each four-bit word (DOY to DO1) is used to
determine memory to be enabled. The most significant bit of the PROM word,
DOY4, is the RAM enable control line. Programming a ZERO on DOY4 will cause RAM
to become active. Since there are two banks of RAM on the board and since
there is no room on the PROM to decode the two banks separately, each bank is
enabled by the state of address line A4. Therefore, all RAM is decoded by the
PROM as a complete block and cannot be separated.

The next two bits of the PROM word (D03 and D02) enable each EPROM bank
separately and directly. EPROMs are enabled by programming a zero.

The least significant bit of the PROM word (DO1) is a negative-logic "OR" of
the other three bits of the PROM word. If any of the other three bits are
zero, this bit must be zero also. This signal indicates to data bus buffer
control whether memory addressed is onboard or offboard; a zero state
indicates onboard memory.

9L-9

0000 EPROM 1
{TNS 2708) 07FE
0800 EPROM 2
(TMS 2708) OFFE
1000
OFF-BOARD
MEMORY
EFFE
FOO00 RAM 2
2114 F7FE
F800 RAM 1
2114 FEFE

a) 2K EPROM (2708's)
2K RAM

0000

1000

2000

FO00

F800

FIGURE 6-~7.

EPROM 1
TMS 2716

EPROM 2
TMS 2716

OFF-BOARD
MEMORY

RAM 2
2114

RAM 1
2114

OFFE

1FFE

EFFE

F7FE

FFFE

b) 4K EPROM (2716's)

2K RAM

1. AIll addresses in hexadecimal.

NOTES

0000 EPROM 1
TMS 2708
0800 EPROM 1
TMS 2708
1000
EPROM 2
TMS 2716
2000
OFF-BOARD
MEMORY
FO00 RAM 2
2114
F800 RAM 1
2114

O07FE

OFFE

1FFE

EFFE

F7FE

FFFE

c) 3K EPROM (2708 & 2716}

2K RAM

2. EPROM selection in each bank is a jumper option.

T™ 990/10IMA MEMORY ADDRESSING

0000

1000

1800

2000

FO00

F800

EPROM 1
TMS 2716

EPROM 2
TMS 2708

EPROM 2
TMS 2708

OFF-BOARD
MEMORY

RAM 2
2114

RAM 1
2114

OFFE

17FE

1FFE

EFFE

F7FE

FFFE

d) 3K EPROM (2708 & 2716)

2K RAM

The memory address decoding PROM is enabled by MEMEN- when active low, and the
lower five input bits are the most significant bits of the address bus (A0 to
A4). The PROM thus selects memory in blocks of 1K words. The upper three
address bits of the PROM have jumper options to choose between TMS 2708s and
TMS 2716s and to select or deselect onboard EPROM, and to configure the memory
map either with EPROM in low addresses and RAM in high addresses, or RAM low
and EPROM high. There are thus eight different address maps in the PROM
controlled by the three jumpers (23 = 8). Each address map consists of 32
four-bit words, showing the state of each 1K word block in memory.

When MEMEN- is inactive, the PROM is disabled.
6.9.1.2 EPROM Selection

There are two basic memory maps for the EPROM - one for the TMS 2708s and the
other for TMS 2716s. These correspond to cases (a) and (b) of Figure 6-7.
Each bank of EPROM actually consists of two EPROM devices, one for bits 0 to 7
of the addressed word, and the other for bits 8 to 15. Beginning addresses are
shown to the left of the figure; ending addresses are shown to the right. Each
EPROM bank is separate and can be programmed into any location by
reprogramming the address decode PROM.

Case {(c¢) and (d) of the memory map in Figure 6-T7 show what happens if the
jumper is is configured to "2716" position, and TMS 2708s are used. Case (c¢)
shows that if a word at address 000044 is accessed, that same word can be read
at 0800q¢. Likewise, both 00021¢ and 08021¢ will address the same word, etc.

On the board, the jumper next to the EPROMs selects the proper pin
configuration for the particular EPROM in use. Note that address line A4 is
routed to the EPROM when the jumper is in the "2716" position.

To deselect, or ignore, onboard EPROM, move the EPROM select jumper to connect
pin E12 to E13. This causes onboard EPROM sockets to disappear completely
from the memory map.

6.9.1.3 RAM Selection

The RAM is treated as one block, since it is decoded with only one output line
from the address decode PROM, There are four RAMs per bank and two banks in
the block. The selection of a specific bank of RAM is decided by the state of
address line A4. Selection is accomplished by the gate array shown in Figure
6-8. Each RAM select is set up by the PROM and Al4, and becomes valid when WE-
goes low for a write, or DBIN goes high for a read. Note that DBIN will
assert at the same time MEMEN- goes low during a read cycle, reference Figure
6-10, but WE- will not assert until some time after MEMEN- goes to 0. The user
should be aware that a chip select will not occur during a write cycle until
after WE- drops. This is to prevent fast RAMs, which sample WE- as soon as
they are selected, from sampling WE- before it goes low during a write cycle.

At this point, the second jumper option becomes meaningful. This option
selects where EPROM and RAM appear in the memory map. In the normal "RAM
HIGH" position, the RAM bank address begins at F00014 and EPROM begins at
0000415. Moving the jumper plug to the alternate position causes "2708"
EPROMs to be at F000 ¢ ("2716" EPROMs begin at E00016), and RAM to be at
000016.

JUMPERS SELECT MAP 0 TO 7 (0005 TO 1115)

WE :::)}EAM1
R23 DBIN
E11 4.7K
e’ AAA +5V -
([RAM 2
E10 [=
o} De
E9 ’
O— - l GATE ARRAY
- 13
E17
O~ 2708/2716- 15
(ADH ()
E16 RAM=~MAP-H| 1 u19
< O ADG —_— u12
€15 EPROMSEL 2| ApE boa 2 FAM
3 BROM?
) A0 ADE Doz |10 FOM2
E14 11 ROM1
o Al 4 apD Do2 p———
7 12 ONBOARDMEM
< o E13 A2 | ADC pol p——m—
A3 81,08
E12 5
. O Al ADA _
52
—4 14 Q) 745287
= MEMEN PROM
TABLE A. ADDRESS IN/DATA OUT
ADDRESS
INPUT
ADH TO
ADA (LSB) MAP PROM OUTPUT (4 BITS EACH)
00 0 66FF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
20 1 66FF FFFF FFFF FFFF FFFF FFFF FFFF CCAA
40 2 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FF66
60 3 CCAA FFFF FFFF FFFF FFFF FFFF FFFF FF66
80 4 .66FF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
A0 5 66FF FFFF FFFF FFFF FFFF FFFF FFFF FFCA
co 6 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FF66
EO 7 CAFF FFFF FFFF FFFF FFFF FFFF FFFF FF66
TABLE B. MAP CONFIGURATION (SET BY JUMPERS)
2708 OR LOW OR
?
2716 USED? HIGH RAM? READ EPROM?
MAP 0 = T™S 2716 Low RAM No EPROM
Map 1= T™S 2716 Low RAM High EPROM
Map 2 = T™S 2716 High RAM No EPROM
Map 3= T™MS 2716 High RAM Low EPROM
Map 4= TMS 2708 Low RAM No EPROM
Map 5 = T™MS 2708 Low RAM High EPROM
Map 6 = TMS 2708 High RAM No EPROM
Map 7 = T™S 2708 High RAM Low EPROM
FIGURE 6-8. MEMORY ADDRESS DECODE PROM

6-18

6.9.1.4 Memory Mapping

The memory map can be changed by the user substituting another user programmed
PROM in the address decoder socket. (The 745287 PROMs are available from your
Texas Instruments distributor.) Using the guidelines in section 6.9.1, the
user can produce many different memory maps. In general, if active output is
desired for any particular input combination, the bit code is set to zero.
Starting at the initial input address to the PROM, the output states desired
are determined. ADA 1s the least-significant address input, and ADH is the
most significant. DO1 is the least significant output bit, and DO4 is the

most significant.
7
i CAUTION

When planning a memory map, or when using any memory offboard (such
as a TM 990/201 or TM 990/206 memory board), the memory devices on
the TM 990/101MA board must not overlap in address space either with
each other or with devices offboard. Onboard memory devices MUST be
mapped into unique locations, and no other offboard devices may
respond to addresses intended for any onboard memory device.

The 74S287 PROMs are field-programmable, fusible-link devices. The PROMs are
delivered in a state of all binary ONEs. By blowing a fuse link during
programming, a ZERO 1s programmed. Once a bit is programmed as ZERO, there is
no way to restore the bit to a ONE. Be careful to program the device
completely; partially programmed devices have been known to have random bit
revert back to the ONE state because the fuse link was not blown completely.

MSB and LSB conventions are those used by the TM 990 family systems hardware
and software for PROM and EPROM programming.

6.9.2 CRU Select

The CRU I/0 decoding is done by a gate array and a TULS138 decoder as shown in
Figure 6-9. Address lines A3 through A9 are decoded, providing eight onboard
select lines, each line addressing a block of 32 CRU bits. These select lines,
ISELO through ISEL7, go to the various onboard CRU devices, with the exception
of the ISEL3 line which is reserved for future use. The INTCRU/EXTCRU line is
defined by the upper four address bits (A3-A6) and MEMEN; the line activates
the 7U4LS138 decoder and deactivates the TULS241 buffer with CRUIN.B and
CRUOUT.B when an onboard CRU address is asserted. At all other times the
buffer is enabled, and the onboard decoder is disabled, allowing some
offboard CRU device to respond. Because of this manner of decoding, over-
lapping CRU addresses offboard will be ignored if they are mapped into
onboard CRU space. Onboard CRU address space thus is reserved; and because
there is no PROM, the CRU address map cannot be changed. Table 6-5 gives the
detailed CRU map for the TM 990/101MA.

MEMEN — g

8
101 y1s
A3 3 .
————-—0 ~
A4 2] u21 12 1 741508
—_—0 131 uts
741502
A5 8 741508
—0 10
AS 9 u21
_
741502
INT CRU/EXTCRU] Us2 15 ISELO—
¢ vob
6 14 {ISELT--
G1 Yip
4 13 ISEL2—-
G2A Y2p
ey 5 12 ISEL3-
- G2B Y3P-
A7 3 11 ISEL4—
c vap—
A8 2 10 ISELS5~
Y5 >
A9 1 o ISEL6—
A Y6 pP—
7 ISEL7—
Y7p S
74L5138 3:8 DECODER
SIGNAL ENABLES
{SELO— L.E.D. Circuit
ISELT-— DIP Switch
{SEL2— R Main TMS 9902A (P2}
ISEL3— Not Used
ISEL4— TMS 9901
ISELE— RESET Edge-Triggered Interrupt
ISEL6— Auxiliary TMS 9902A (P3)
ISEL7— Auxiliary EIA Signals

FIGURE 6-9., DECODING CIRCUITRY FOR CRU I/O ADDRESSES

6-20

™™ 990/ 101MA CRU MAP

CRU

Software Base Bit
Address (Hex) Address (Hex) Function Input Output
0000 1¢ 0000 STATUS LED
0001 RESERVED
001F RESERVED
004016 0020 UNIT ID 4 (LSB) INPUT ONLY
0021 UNIT ID 3
0022 UNIT ID 2
0023 UNIT ID 1 :
0024 UNIT ID O (MSB) INPUT ONLY
0025 GROUNDED
0026 GROUNDED
0027 GROUNDED
0028 RESERVED
TO ’
003F RESERVED
0080 4¢ 0040 SERIAL I/0 RBRO CTRLO
0041 PORT A P2 RBR1 CTRL1
0042 TMS 9902A RBR2 CTRL2
0043 RBR3 CTRL3
oouy RBRY CTRLA4
00Lu5 RBRS CTRL5
0046 RBR6 CTRL6
0047 RBR7 CTRL7
o048 0 CTRLS8
0049 RCVERR CTRLY
004a RPER CTRL 10
004B ROVER LXDR
004cC RFER LRDR
004D RFBD LDIR
OO4E RSBD LDCTRL
004F RIN TSTMD
0050 RBINT RTSON
0051 XBINT BRKON
0052 0 RIENB
0053 TIMINT XBIENB
0054 DSCINT TIMENB
0055 RBRL DSCENB
0056 XBRE NOT USED
0057 XSRE NOT USED
0058 TIMERR NOT USED
0059 TIMELP NOT USED
005A RTS NOT USED
005B DTR NOT USED
005C CTS NOT USED
005D DSCH NOT USED
005E FLAG NOT USED
005F ' INT RESET

6-21

TABLE 6-5.

T™ 990/ 101MA CRU MAP (CONTINUED)

CRU
Software Base

Bit

Address (Hex) Address (Hex) Function Input Output

0060 RESERVED
Q007F RESERVED

010016 0080 TMS 9901 CONTROL BIT CONTROL BIT
0081 PSI INT1 / CLK1 MASK1 / CLK1
0082 INT2 / CLK2 MASK2 / CLK2
0083 INT3 / CLK3 MASK3 / CLK3
0084 INTY4 / CLK4 MASKY / CLK4
0085 INT5 / CLK5 MASKS5 / CLK5
0086 INT6 / CLK6 MASK6 / CLK6
0087 INT7 / CLK7 MASKT7 / CLK7
0088 INT8 / CLKS8 MASK8 / CLKS8
0089 INT9 / INT9 MASK9 / MASK9
0084 INT10/ INT10 MASK10/ MASK10
008B INT11/ INT11 MASK11/ MASK11
008C INT12/ INT12 MASK12/ MASK12
008D INT13/ INT13 MASK13/ MASK13
008E INT14/ CLK14 MASK14/ CLK14
008F INT15/ INTREQ MASK15/ RST2
0090 PO INPUT PO OUTPUT
0061 P1 INPUT P1 QUTPUT
0092 P2 INPUT P2 QUTPUT
0093 P3 INPUT P3 OUTPUT
0094 P4 INPUT P4 OUTPUT
0095 P5 INPUT P5 OUTPUT
0096 P6 INPUT P6 OUTPUT
0097 P7 INPUT P7 OUTPUT
0098 P8 INPUT P8 OUTPUT
0099 P9 INPUT P9 OUTPUT
009A P10 INPUT P10 OUTPUT
009B P11 INPUT P11 OUTPUT
009C P12 INPUT P12 OUTPUT
009D Y P13 INPUT P13 OUTPUT
009E TMS 9901 P14 INPUT P14 OUTPUT

- 009F PSI P15 INPUT P15 QUTPUT

014046 0040 RESERVED
0045 RESET INT6
00AT RESERVED

TO

00BF RESERVED

6-22

TABLE 6-5. TM 990/101MA CRU MAP (CONTINUED)

CRU
Software Base Bit
Address (Hex) | Address (Hex) Function Input Output

018016 00CO SERIAL 1/0 RBRO CTRLO
00C1 PORT B P3 RBR1 CTRL1
00c2 (TMS 9902A) RBR2 CTRL2
00C3 RBR3 CTRL3
ooch RBRY CTRLY
00C5 RBR5 CTRL5
00C6 RBR6 CTRL6
00CT RBR7 - CTRL7
00cC8 0 CTRLS
00C9 RCVERR CTRLY
00CA RPER CTRL10
00CB ROVER LXDR
00ccC RFER LRDR
00CD RFBD LDIR
00CE RSBD LDCTRL
O0CF RIN TSTMD
00D0 RBINT RTSON
00D1 XBINT BRKON
00D2 0 RIENB
00D3 TIMINT XBIENB
00DY DSCINT TIMENB
00D5 RBRL DSCENB
00D6 XBRE NOT USED
00D7 XSRE
00D8 TIMERR
00Dg TIMELP
O0DA RTS
00DB , DCD (NOT DSR)
00DC CTS
00DD : DSCH y
OODE FLAG NOT USED
OQDF ' INT RESET

01C01p 0CEO DTIR DTR
00E1 ‘ DSR .
00E2 RI
00E3
OOEY4
00E5
00E6 RI
00ET 0 DTR
00E8 RESERVED RESERVED
O0E9
QOEA
OOEB
00EC
O0ED
OOEE !
Q0EF PORT B 0 RESERVED

6-23

TABLE 6-5. TM 990/101MA CRU MAP (CONCLUDED)

CRU
Software Base Bit
Address (Hex) | Address (Hex) Function Input * OQutput
01E04¢ 00F0 RESERVED
TO
OOFF RESERVED
020015 0100 OFF-BOARD
TO CRU
0180 OFFF

Ry Ry

PN

Although CRU addresses are decoded into 32-bit blocks, not all CRU
devices use or completely decode the entire 32 bits. This can
result in a CRU device being enabled by addresses other than those
specified. Note the alternate addresses in Table 6-6. This
condition may be referred to as implicit decoding, and should be
considered where it is necessary to debug a CRU scheme.

Note that address lines A0, A1, and A2 do not enter into the decoding. If
an external instruction is being executed, it is true that some CRU device may
be addressed by the line A3 through A14, but since CRUCLK is trapped in the
external instruction decoder, no CRU output can be done. Therefore, since
CRUCLK is absent from the addressed device, it will assume a CRU input
operation, and present a datum to CRUIN, which the processor will ignore. No
harm is done in either case, so lines A0, A1, and A2 are don't care
conditions.

6-24

TABLE 6-6. IMPLICIT DECODED CRU BIT ADDRESSES

Device Normal Address Range Alternate Address
(R12, Bits 3 to 14) Ranges

Status LED 0000 0001 - 001F

Unit ID Switch 0020 - 0027 0028 - 002F, 0030 - 0037,
0038 - 003F

Edge Trig INT6 Clear 0046 00A0 - OOBF

DTR (Input) 00EO 00£4, OOE8, OOEC, OOF0, OOFY4,
00F8, OOFC

DTR (Output) 00EQ 0OE1 - OOFF

DSR (Input) 00E1 00E5, OOE9, O0OED, 0QOF1, OOF9,
OOFD

RI (Input) 00E2 OOFA, OQFE

NOTES

1. The above are CRU bit addresses, not R12 contents.

2. Response to an alternate address (right column) will be the same
as to using the normal adress (middle column); however, the user
should program using only the normal address.

Table 6-7 gives nominal address values for all onboard CRU devices. These are
the nominal values which should be used in programs.

TABLE 6-7. ONBOARD DEVICE CRU ADDRESS

CRU Address Maximum CRU Bit Address Range

(R12, Bits 0-15) Displacement (R12, Bits 3-14)
Device (Hexadecimal) (Decimal) (Hexadecimal)
Status LED 0000 0 0000
Unit ID Switch 0040 i 0020 - 0024
Local TMS 9902A 0080 31 0040 - 0O5F
TMS 9901 Interrupt 0100 15/31% 0080 - 008F
/Timer
TMS 9902A Parallel 0120 15/31% 0090 - Q09F
I1/0
Reset Interrupt 6 014C 0 0046
Remote TMS 9902A 0180 31 00CO - OODF
DTR, DSR, RI 01C0 2 0OE0 - OOE2

¥The TMS 9901 is shown split into its two separately functional parts; each

has a maximum displacement of 15. Together, the device has a maximum
displacement of 31.

6-25

o1

$2

o4

MEMEN

DBIN

AG-A14 X VALID ADDRESS

6.10 MEMORY TIMING SIGNALS

The three memory timing signals are READY, WAIT, and MEMCYC-~. These are
arbitrarily grouped together for a discussion of their theory of operation.

6.10.1 Ready

The READY signal is an input to the TMS 9900 microprocessor which indicates
that during a memory cycle, the memory devices addressed will be ready at the
next ¢g1 clock phase for a successful disposition of data.

The READY signal is sampled by the processor during #1, after MEMEN- has gone
low. If READY is high when sampled, the 9900 CPU will continue the memory
operation in progress as shown by the READ cycle part of Figure 6-10. During
a read cycle if READY is sampled and found to be high, the processor will read
data from the selected memory device(s) on the leading edge of the next g1.
During a write cycle, if READY is sampled on the leading edge of ¢1 and found
high, the CPU will assume that data has successfully been stored in the
selected memory device(s) by the time the next leading edge of g1 occurs. If
the selected memory device(s) cannot meet this timing constraint, the READY
signal can be pulled low, which puts the TMS 9900 CPU into a wait state. The
WAIT signal will go high to signify that the processor is in a wait state, and
CPU operations will be suspended until READY is sampled high. When READY goes
high again, WAIT will drop and the CPU will continue execution from the point
where it stopped. (Refer to the write cycle portion of Figure 6-10.)

"‘»{ |<‘ 333 ns WITH 3MHz CLOCK
11 I Mt I Tl
[1

[| [
' I
PEFL_,_I_\ [1_ [f—[:l_l [
|

S B A N e N o B N

|
|
—

|
. |
I |
|]

WI_HI_LI—‘I_]F_I
I
I

X

VALID ADDRESS

|
|
|
l
1

L | |
READY XX RONTERRE 0 | XXXXXXXX0NT CAREDOOOONXX) 1 XXXXXYoonT care XXX

I
WAIT | | i / | \

1AQ

l l l

r ! '

I
H
!
I l +

DO-D15 cpUDRIVEN X INPUT MODE INPUT X cPUDRIVEN X CPU WRITE DATA CPU DRIVEN
t
1

| ™\
SHOWN ASSUMING THIS
CYCLE IS AN INSTRUCTION
ACOQUISITION CYCLE

\ / \ /
' V —/
MEMORY READ CYCLE WITH NO WAITS MEMORY WRITE CYCLE WITH ONE WAIT

RD = READ DATA

FIGURE 6-10. TMS 9900 MEMORY BUS TIMING

6-26

The READY line can be held low for any amount of time, so the user can use
memory devices with very slow access times. As an example, consider the
memory cycle times for the 2114 memories resident on the CPU board. With a
system clock frequency of 3 MHz, the total time is about 600 nsec between (1)
assertion of DBIN, MEMEN-, and valid address and (2) the actual processor
read. When rise and fall times for these signals plus setup times for the
data are computed, the memory device should have an access time of U490 nsec or
less from valid address. For processor write operations, counting rise and
fall times plus data hold times, the cycle time should be less than 600 nsec
from valid address. 2114 devices will have data available for the processor
to read a maximum of 450 nsec after receiving a valid address. For write
operations, the data must be held valid for at least 200 nsec before the WE-
signal goes high. If Figure 6-10 is examined, the user will notice these
constraints are easily met. If the memory devices do not meet these times,
wait states can be inserted to hold control, address and data lines valid
until the timing criteria for the device is met. Each wait state extends
valid control, address and data information by 333 nsec.

For 3 MHz operation, data must be available during a read cycle 490
nanoseconds after the start of the cycle. For a write operation data must be
captured by the memory devices 600 nanoseconds after the start of the cycle.
If these times cannot be met, the processor can be put in a wait state by
forcing READY.B low for as long as necessary (indefinitely, if need be). After

READY.B becomes high, the memory cycle will occupy one more cloeck cycle and
then be completed. Refer to Figure 6-10.

6.10.2 Wait

The WAIT signal is output by the processor to acknowledge that addressed
memory devices are not ready and that the processor is in a wait state.

Note that if one wait state is required, as is specified by the SLOW jumper,
WAIT can be connected to READY. At the start of the cycle, WAIT is inactive
and thus low. When the processor samples READY, it sees that memory is not
ready because the READY line is low. The processor acknowledges by raising
WAIT to high, and being connected to READY. When the processor samples READY
again, it finds it high and therefore completes the memory cycle. The SLOW
jumper must be inserted for memories which cannot meet the speed requirements
listed in section 6.10.1.

6.10.3 MEMCYC-

It is possible for the TMS 9900 microprocessor to activateée MEMEN- and
accomplish many fetches from memory by shifting the address bus, all while
MEMEN- is still active. The MEMCYC- signal is synchronized to the ¢3 clock
edge after the beginning of the memory cycle, and goes inactive just before
the instant the address bus could change. This signal thus delimits one
complete memory cycle and differentiates between separate memory cycles.

The MEMCYC- signal is used by dynamic memories which must be able to intervene
between memory cycles for burst refresh, if necessary.

6.11 READ-ONLY MEMORY
The two EPROM blocks, shown in Figure 6-11, each contain two devices. Each

device provides an eight-bit output; the two in parallel in each block thus
provide a 16-bit word. TMS 2708 EPROMs contain 1K X 8 bits; therefore, each

6-27

tlock is 1K words. Using TMS 2716 EPROMs, capacity is expanded to 2K words
per block. A fully expanded EPROM section thus contains 4K words or 8K bytes

of addressability. FEach block is separately mapped into the address space as
explained in section 6.9.1.2.

6.12 RANDOM ACCESS MEMORY

The two RAM blocks, RAM 1 and RAM 2,
device provides four-bit storage;

each contain four 2114 devices. Each
four devices in parallel in each block
provide a 16-bit word. Each 2114 device contains 1K X U4 bits; therefore, each
block is 1K words. A fully expanded RAM section thus consists of 2K words.
Both blocks are mapped into a contiguous address space, and are selected as

explained in section 6.9.1.3.

Block RAM 2 is shown

in Figure 6-12.

TN
R44 [e] Q o
4.7K g26 | £27] €E28] Ez| e30
5V A
ROM?1-
A5 22 20 A5 22 20
A
A6 23 18 A6 23 18
A8
A7 1 17 DO A7 1 17 D8
A7 @8 ————
A8 2 16 D1 A8 2 16 D9
A6 07 p—=2"
AS 3 15 D2 Ag 3 15 D10
as UM o L1502 vaz2
At0 4 14 p3 14 pn
A4 e ——— A0 4
A1l 5 13 Da A1l 6 13 D12
A3 T e
A2 6 11 Ds A12 & 11 D13
A2 Q3 fF————
A3 7 10 pe A13 7 10 Dla
A1 Q2 p————
A4 8 9 D7 Al14 8] D15
AD Q1
TMS 2708/2716 TMS 2708/2716
Q/\ g R4S
g3t | e32 | €33 | €34 €35 4.7K
A4- = ROM2Z- l
AS 22 20 A5 22 20
A6 23 18 A6 23 18
A7 1 17 DO A7 1 17 b8
A8 2 16 DI A8 2 16 D9
A9 3 15 D2 A9 3 15 Dio
A0 4 u4s 14 D3 A0 4 uas 14 D11
A1 5 13 Da A1l 5 13 D12
_A | 13 D4
A2 6 11 D5 A12 6 11 D13
A13 7 10 D6 INERE 10 D14
A4 8 9 D7 Ald B 9 DIs

TMS 2708/2716

FIGURE 6-11.

6-28

TMS 2708/2716

READ-ONLY MEMORY

6.13 BUFFER CONTROL

Connector P1 is the system bus edge connector. It contains, in approximate
order by pins: the system power, interrupt, data, address, and control
signals. Table H-1 lists pins and their functions. Power lines are detailed
in paragraph 6.2, and interrupts are detailed in paragraph 6.14. This
discussion covers the address bus buffers, the data bus buffers, control
buffers, and a short discussion of HOLD, HOLDA, and direct memory access
(DMA).

\.
j
A5 15 11 DO A5 15 11 D8
Ne————— AQ 1/oa p——— e ELL LU, S
A 16 12 D1 A6 16 12 DY/
NA6 16 4.5 103 p——— ~————
A7 17 13 p2 4 A7 17 13 D19
N———-—r A7 1/02 R —
A8 1 14 D3 J _A8 1 14 D11
N——— A6 1/01 ——
L A9 2 Lk A9 2 1.
A5 U36 u34
A10 3 L A10 3
1 A4
11 A1l 4
A1t 4 A3
A12 7 _A12 7
~— A2
A13 6 N & 8 lLA13 6 8
Al4 5 —
\ A0 WE 10 _A14 5 10
WE- 2114 2114
®
RAM2-
*
L A5 15 11 D4 \ A5 15 11 D12
L A6 16 12 D5 L A6 16 12 D13/
A A7 17 13 D6 J L A7 17 13 D14/
A8] 14 D7 A8 1 14 Di5
L A9 2 AQ 2
A10 3 u30 A0 3 u2s
A0 5 | AR
L A1l 4 L A1 4
\ Al12 7 A12 7
. A13 6 8 L A13 6 8
Al4_ 5 10 _A14 5 10
2114 2114

FIGURE 6-12. RANDOM ACCESS MEMORY

6-29

6.13.1 Address and Data Buffers

The address buffers consist of two THLS2U45 octal bus transceivers. The address
lines normally flow cffboard. Upon a HOLDA signal, the direction reverses,
allowing a DMA controller to input an address onto the board for disposition
by the address decoder section. Address and data buffers are shown on sheet 3
of the schematics (Appendix F, page F-3).

The same devices are used as the data bus buffers, Direction data flow,

however, is governed by the T74LS153 decoder using the states of ONBDMEM and
HOLDA (listed in Table 6-8).

TABLE 6-8. DATA BUFFERS

Data Flow
HOLDA ONBDMEM Bus Command (READ) (WRITE) Operation
Low Low DBIN Onboard Offboard Normal offboard
Low High Low Offboard Offboard Normal onboard
High Low High Onboard Onboard DMA offboard
High High DBIN- Offboard Onboard DMA onboard

Note that during normal offboard operation, the direction is as expected.
During normal onboard operation, the direction of data flow 1is always
offboard so that offboard data will not interfere with the onboard operation.
This also permits an external logic system to monitor onboard activities for
debugging purposes. For example, illegal op codes can be caught by monitoring
the data bus during IAQ time. Following the same logic, data flow is always
onboard during an offboard DMA operation so that no interference occurs.
Finally, onboard DMA requires that the buffers be in a state opposite that
normally expected since the controller is offboard.

6.13.2 Control Buffers

Three types of enabling are used on control line buffers: HOLDA, CRU, and
always enabled. The lines that are always enabled are those whose source is
always onboard, such as the clocks, IAQ, IORST, CRUCLK, and HOLDA.

The second type, the CRU signals, are governed by the INTCRU/EXTCRU- signal
derived by the CRU address decoder (see section 6.9.2). Normally enabled,
CRUIN.B and CRUOUT.B are disabled for onboard operation to prevent possible
interference during address and CRU data stabilization.

The third type of control buffer is the type directly affected by CPU or DMA
operations: the memory control signals MEMEN-, WE-, and DBIN. Normally
enabled flowing offboard, these lines reverse direction when flowing onboard

for DMA operations so that the DMA controller can command onboard memory.
These lines are keyed on the state of HOLDA.

6-30

6.13.3 HOLD-, HOLDA, and DMA

When an offboard direct memory access controller (DMAC) wishes to initiate
operation, it asserts a low state onto the HOLD- line. After finishing the
current memory cycle, the microprocessor responds by floating its address,
data, MEMEN-, DBIN, and WE- lines, and then forces HOLDA (HOLD acknowledge)
high.

The DMAC is now free to use the system buses to transfer data directly in and
out of memory as it wishes. For a more detailed discussion of DMA operations,
refer to Section 8 of the manual, Applications.

6.14 INTERRUPT STRUCTURE

The TM 990/101MA provides a total of 17 interrupts. The characteristies of
each are listed in Table 6-9. .

TABLE 6-9. INTERRUPT CHARACTERISTICS

Interrupt Types Maskéble Prioritized Characteristics
Reset Dedicated No Yes INT 0, resets I1/0,
TMS 9900 mask
1-5 Dedicated Yes Yes Level triggered, all
defined*
6 Dedicated Yes Yes Level or edge
triggered*®
7-15 Shared I/0 Yes Yes Level triggered,
undefined
LOAD Dedicated No No Level triggered, will

always occur unless
locked out by a RESET

*¥Defined in Table 6-10.

TABLE 6-10. DEDICATED INTERRUPT DESCRIPTION

Interrupt
Level Purpose
1 Power fail interrupt, brought out on OEM chassis.
2 User defined.
3 System timer: TMS 9901
i Main I/0 port: TMS 99024
5 Auxiliary I/0 port: TMS 9902A/03
6 External device - edge (positive or negative) triggered or

level sensitive.

6-31

All interrupts except RESET and LOAD are processed by the TMS 9601
Programmable Systems Interface device. This device handles both parallel I/0
and interrupt requests. Because of the pinout limitation on the package, the
TMS 9901 must share INT7~ through INT15- (interrupt requests 7 through 15)
with the parallel I/0 lines P15 through P7, respectively. This reverse
arrangement provides contiguous I/0 and interrupt lines if some of the shared
lines are used for interrupts and others for 1I/0 (See Figure 6-13).

The basic operation of the interrupt facility must be initialized by the
microprocessor through the CRU. The 15-bit interrupt mask is set under
program control to allow interrupt requests by writing a ONE state into those
mask register positions. The mask bits that contain ZERO will not honor
interrupt requests. Note that the condition of the processor's Status
Register priority mask is irrelevant if the TMS 9901's Interrupt Mask Register

is a ZERO for a particular interrupt: the request will not even be presented
to the processor.

When one or more interrupt requests are presented on the INT1- to INT15-
lines, only those whose corresponding mask bits are ONE are considered. The
highest priority request present is encoded onto lines ICO through IC3, and
INTREQ- becomes active (low).

The TMS 9900 receives the coded request and compares its value to the
interrupt mask in its status register. If equal or higher priority, (a lower
interrupt number) the interrupt is honored, the mask is set to one less than
the current interrupt number, and the vector process begins. Note that level
0 is the highest priority, and cannot be masked out since it is a number that
is always equal to or lower than any number which can be in the mask register
of the processor. The lowest priority is 15.

There is extra logic for INT6- to be triggered either in the normal manner by
presenting a low level to P1 pin 20, or in an edge-triggered manner. A low-to-
high transition should be presented to Pi4-8, and a high~to-low transition on
P4-6. These edge-triggered signals are converted to level-sensitive signals,
and are latched by a pair of flip~flops. The interrupt request line can be
set inactive by the interrupt service routine by writing a bit, either a ONE
or a ZERO, to CRU bit address 00A61g (R12 base address 014Cq4). These flip-
flops are automatically cleared by the CLRCRU signal.

6.15 PARALLEL I/0 AND SYSTEM TIMER

The TMS 9901 provides sixteen lines of parallel I/0. The TM 990/101MA user
can read or write to any single bit of this parallel port because it is under
CRU control., For example, eight bits can be used for output at the same time
the eight other bits are used for input. This allows applications such as
scanning a custom keyboard for input, or outputting multiplexed signals to a
seven-segment display device; all under program control. A timer is also
intergrated into this device.

6-32

+5V

1111

——AAA—

FIGURE 6-13.

6-33

+5V

TMS 9901

1
E1
ALL 10k o¢——-P1-18
TMS9901 17 (INT1 (E2
INTREQ 11 IiRReo INTH P1-16
—_— INT2 E3 <
INT2
1C0 15 lico Ntz 8 l P1-13 S8k
iIc1 14 — INT3 25| 50w
1c1 INT3 r'y P1-15 2 gu_o.
NTa) o
e INTA St
1c2 13 bz inTa |2 ¢ (.——E4 P1-17
1 12 — 7 INTS
G Ic3 INTS Py ,.E5
— — INT6 <
IORST L o INTS |2 & .[E6 S
03 Py INT7 /P15 . * P16 oP 228
P4-40 ﬂg Eg
CRUIN 4 —_— 33 R
CRUIN INT8/P14 & P16
2 T—nss
CRUOUT 2 e
CRUOUT INT9/P13 —o— 1 P1-8
CRUCLKG 31 P4-36
3 CRUCLK INT10/P12 » P1-7
ISEL4- s _ 30 Pa-34 EDGE TRIGGER
CE INT11/P11 P10 LOGIC
| S s
A0 39 lse INT12/P10 2 1 P19 I
A1l 36 e 28 P4-30 p1.20___1
e INT13/P9 t P12 pee
27 PR e
A2 35 — 8
S2 INT14/P8 P1-11
25 23 [-———-—nzs
A3 —
s3 INT15/P7 P1-14
19 ;N-‘M
A4 2|, P6 o
20
+5V 40 Vee . pa10
16 lonD ra |2 P418
__[p3 |22 P4-16
p2 |2 Pa-14
P |2 Pa22
po |38 Pa-20
> > >
g ALL 10 kQ

6.15.1 Parallel I/0

Lines PO through P6 are dedicated I/0 lines, while P7 through P15 are shared
with INT15- through INT7-, respectively. When a user system is configured, it
must be decided how to allocate these shared lines between interrupts and I/0.
When written to, each parallel line remains in the same state until written to
again. The parallel I/0 lines are initialized by resetting the 9901. This
may be done in 3 ways; by

(1) Activating the RESET switch or pulling PRESET.B- to 0
(2) Executing a RSET instruction
(3) Putting the TMS 9901 in the clock mode and then writing a 0 to CRU

bit 15 (refer to Table 1, TMS 9901 manual). Instructions to
accomplish this for the TMS 9901 on the /101MA CPU board are:

LI R12,>100
SBO 0
SBZ 15

After initialization of the 9901, all I/0 lines are in the input mode, and all
I/0 lines are pulled high. Writing to a specific CRU bit programs that bit as
an output, and that bit will remain an output until the TMS 9901 is
initialized again.

6.15.2 System Timer

The TMS 9901 has an internal real time clock which may be used as an interval
timer by the user. It is a decrementer which generates an interrupt when it
decrements to 0. To load a value into the 9901 clock register on the /101MA,
the user must:

(1) put the 9901 in the clock mode by writing a 1 to the control bit
(CRU bit 0)

(2) 1load a 14-bit count value into the counter register (CRU bits 1
through 14)

The counter will start decrementing the counter register value immediately
after it is loaded at a rate of 0/64. For a 101 running at 3 MHz, this
computes to a decrement every 21.33 microseconds (rounded off). Writing all
ones to the counter register gives the maximum time interval of 349.525 milli-
seconds (rounded off value). An example of loading and starting the timer is:

LI ‘R12,>100
LDCR R1,15

R1 contains the 14-bit timer value, plus a one in the least significant bit
position. This least significant one gets loaded first and puts the TMS 9901
in the clock mode. If the least significant bit is a 0, the user will be
locading the TMS 9901 interrupt mask register instead of the counter register.
Refer to the TMS 9901 manual for more details.

6-34

When the TMS 9901 timer decrements to 0, a level 3 (INT3-) interrupt is
generated. For this interrupt to cause a context switch, the 9901 must be in
the interrupt mode (CRU bit 0 = 0), the INT3- mask bit must be 1 (CRU bit 3 =
1), and the TMS 9900 interrupt mask must be set to accept a level 3 or higher

priority interrupt (LIMI 3). Code to do this would look like the following:

LI R12,>100 SET CRU BASE ADDRESS OF 9901 ON 101
SBZ 0 PUT 9901 INTO INTERRUPT MODE

SBO 3 . ENABLE INT3

LIMI 3 SET 9901 INTERRUPT MASK FOR LEVEL 3 OR

HIGHER PRIORITY INTERRUPT.

After the interrupt has occurred and a context switch has taken place, the
user should disable the timer interrupt at the 9901 by writing a 0 to CRU bit
3. This will prevent INT3- from occurring during the Interrupt Service
Routine and possibly cause an infinite loop to the Interrupt Service Routine.
Several items of interest regarding the 9901 timer are

(1) After decrementing to 0, the timer reloads itself with the start
value and starts decrementing again

(2) When the 9901 timer is being used, it generates INT3-. Any signals
on the INT3- pin (pin 9) of the 9901 are ignored.

(3) If the timer is used for measuring elasped time or as an event
counter, the contents of the counter register must be read. To do
this, the 9901 must be put in the interrupt mode (CRU bit 0 = 0) for
at least 21.33 microseconds, then placed back in the clock mode (CRU
bit 0 = 1) and CRU bits 1-14 are read.

(4) To stop the timer, the 9901 must be put in the clock mode and the
counter register (CRU bits 1-14) must be loaded with zeroes.

6.16 MAIN COMMUNICATIONS PORT

The main communications serial 1/0 port (P2) has two options, depending on the
"dash number" ordered by the customer. (Refer to paragraph 1.3, "Product
Index," to determine whether the Teletype (TTY) or multidrop (MD) interface
circuitry is included on this serial port.) The main I/0 port uses the TMS
9902A Asynchronous Communications Controller and is intended for operation
with either the "console device" or master terminal for the TM 990/101MA user,
or with an automated control device using the multidrop interface. For
detailed operation instructions for the TMS 9902A, refer to the data manual
for this device. When pin E2 is connected via jumper to pin E3, the INT- pin
of U46 is connected to the INTY4- pin of the TMS 9901. The TMS 9902A will
generate an interrupt on 4 separate conditions, and so if the 9902A at P2 does
generate an interrupt, it will appear as INTU-.

6.16.1 EIA Interface

The EIA interface consists of 75188 line drivers and 75189A line receivers.
The receive-data line goes to P3-2 and the transmit-data line to P3-3. This
configuration forms a port suitable for connection to an RS-232-C compatible
terminal. A data-terminal-ready (DTR) signal is supplied as an input for
handshaking use with a device requiring it. Request-to-send (RTS) and clear-
to-send (CTS) signals are tied together and brought out to P2-8, which
functions as the data-carrier-detect (DCD) signal to the terminal.

6-35

1 — TO TNT4 ON 9901
Ald 91 sa Nt
A13 11 2 XxXouT
; - S3 xouTt — TTY QUTPUT
A1 —
s2 RTs RIS —
A1 13 — |6 I
s1 CTS +EI1A (+5V)
A10 14 |7
S0 DSR
CRUCLKG 15 | cruclk AN L2 :> LOCDCD e
CRUOQUT 8 | crRuOUT u
cRuUiN 4 1 cruin
¢3 16 | -
— ¢ LOCDTR o
ISEL2 7 15 z = P2:20
+5V 18 E38 MULTIDROP RECEIVER INPUT
Vee O
9
GND L—o E39
l (c EIA & TTY INPUT
— TMS 9902A E40

FIGURE 6-14., SERIAL I/0 PORT EIA INTERFACE

6.16.2 TTY Interface

A transistor and 560-ohm resistor form the transmit loop for the 20 mA current
loop, TTY interface. The transistor conducts current while the line driver
connected to its base is at a mark state. As the line driver goes to the
space state, the positive voltage output is clamped to ground through the
signal diode on the transistor base, thereby turning off the transistor and
the current loop (refer to Figure 6-15).

The receive circuit consists of a line receiver which monitors the receive
loop formed by the TTY transmit circuitry and the two supply resistors. The
values of these resistors is such that during a mark state, the input to the
line receiver is held very close to -12 volts., When the TTY transmit
circuitry cuts the loop, the receiver input is pulled up to +12 by the 2.7 K
ohm resistor.

Note that the TTY jumper must be in place so that the line receiver can

monitor the loop voltage. An EIA terminal should not be connected when the
TTY jumper is in place.

6-36

-12ve

TTY RCV RTN

= P2.23
+12V
£33
RIN —o0
E39
LOCR 7 E R
o CRCD #l_ E37 — E36 | TTY RCV — rois
E40
o 12V .
XOUT Y R
::::)}———AAAr—ﬂP—NNV—J—dVVVTT XMTRTN _ pyog
TTY XMT
l - P2.25
TMS 9902A ot
BV 2N2905A

IN914B

FIGURE 6-15. SERIAL I/O PORT TTY INTERFACE
6.16.3 Multidrop Interface

The multidrop interface (Figure 6-16) may be used for board-to-board
communications over long distances. Generally, only a twisted pair line is
required between the boards. One pair is necessary for transmitting, and
another pair for receiving when in full duplex mode. Connecting the two
half-duplex jumpers will loop the transmitter back to the receiver for test or
half-duplex applications and only one pair is then required.

More than two boards may be linked together, each one is just "dropped" in
place, hence the term multidrop. If more than two boards are used, the boards
not at the extreme ends of the twisted pair line (i.e., those "dropped in the
middle") are considered nonterminating boards, and the termination resistor
Jumper plugs should be removed to prevent standing wave patterns which might
occur, mostly at the higher baud rates. The two boards at the extremes of the
line, regardless of whether additional boards exist in between, should have
these resistor jumper plugs installed. Refer to Section 7, Options, for
Jumper configuration information.

The multidrop system, also called the private wire interface, uses a dual set,
twisted pair wiring, with operation of these lines in an unbalanced,
differential mode. As such, it is a differential line driver/receiver pair
which offers higher current drive capability and the noise-free advantages of
a balanced 1line.

6-37

MULTIDROP
RECEIVER 75107

INPUT I
€38 O] 1v 1A INPUSH

INPULL

~Q E£39 18

E400—Em—- 1G 5
TTY s
INPUT

.”—4u——
] S —

RIN

A A"
Oo— P2.23
E40 E50 g7 d
-5V E‘a("
o p2-18
ESt E52 E44

E43
XOUT
. L 2a 2z p—2UTPULL ?2.25
RTs OUTPUSH
— ’ P2-24
CTs :-{D— 2C 2y
TMS 9902A +5 VCCH
E48 O E42
: (..
—14 28 €45 E41
-5 | vee-
1c 1Z

FIGURE 6-16. MULTIDROP INTERFACE
6.17 AUXILIARY COMMUNICATIONS PORT

The auxiliary RS-232-C compatible port logic is shown in sheet 6 of the
Schematics (Appendix F). All signals for RS-232-C operation are provided.
Both terminal and modem communication can be used by proper programming and
cable assemblies. Devices such as terminals, modems, and serial line printers,
such as the TI 810, all can be attached to this port. Using a TMS 99024,
communications are asynchronous. By substituting a TMS 9903 Synchronous
Communications Controller, for example, 1200-baud synchronous modems can be
used.

This port uses a modified EIA-standard configuration for direct use with
RS-232-C compatible terminals. Signals required by modems are brought out to
spare pin positions, which are then rearranged in the special modem cable, the
TM 990/506 cable assembly, to the positions required by the modem.

All TMS 9902A/9903 signals are brought out to line drivers or receivers. Port

P3 may be configured as either a modem or EIA type interface in the following
manner:

6-38

(1) If E54 and E55 are jumpered together (terminal position), the RTS-
and CTS- signals from the TMS 9902A/9903 are tied together to form
DCD (Data Carrier Detect). The DCD signal is brought out to P3-8.
In this configuration, the P3 port appears as a modem to the
terminal device. If the user wishes to send characters to a terminal
device through the P3 port, he must first make the RTS- signal to
the terminal go low. This is done by writing a 1 to CRU bit 16 of
the 9902A. By making RTS- go to 0, the user is also pulling CTS- to
0, which 1s the same as asserting DCD. DCD will then be available
for terminals requiring that signal for communications.

(2) 1If E55 and E56 are jumpered together (modem position), RTS- and CTS-
are distinct signals, both of which are brought out to P3. 1In this

configuration, the P3 port looks like a terminal to the modem
connected to P3. -

Provisions are made also for Data-Terminal-Ready (P3-21) and Data-Set-Ready
(P3-19) and Ring Indicator (P3-22). These three signals are CRU-addressable,
outside the range of the TMS 9902A/03. DTR is a latched output and the other
two are inputs. Use of all signals provided can result in a completely
automated communications system. Section 8, Applications, describes several
examples for the use of this port, and gives the modem cable configurations as
well.

The TMS 9902A/9903 at Port P3 can be configured to generate an interrupt at
the TMS 9901 by connecting E5 to E6 with the INT5 jumper. If the TMS 99023 is
configured in this manner and does generate an interrupt, the interupt will
appear at the TMS 9901 as INT 5. Refer to the TMS 9902A or 9903 data manuals
for proper interrupt-causing conditions.

This EIA port deviates from the EIA standard in regard to the DTR (Data
Terminal Ready) signal at pin P3-20. With R27 installed, the DTR signal may
be read at P3-20 (to show if the terminal is ready) unless the cable is
disconnected or the terminal power is off, in which case the DTR signal will
always appear ready. This feature allows data to be transmitted despite the
fact that the majority . of terminals and printers have no connection to DTR
through the cable. . However, if data is transmitted while the cable is
disconnected or terminal power is off, the data will be lost.

In order to detect cable disconnection or the terminal power-off condition as
well as the DTR signal, resistor R27 must be removed from the board. This
makes the DTR implementation compatible with EIA standard RS-232, but now
terminals and printers must provide the DTR signal through the cable.

The DTR signal is actually read by software via the DSR (Data Set Ready)
status bit, CRU bit 27 of the TMS 9902A. Table 6-11 illustrates four software
functions in response to the status of CRU bit 27, depending on whether or not
R27 is installed.

6-39

TABLE 6-11. DTR HARDWARE AND SOFTWARE OPTIONS

Case | Hardware Software Function

1 R27 Installed Reads Bit 27 Data Terminal Ready condition is detected
regardless. of cable disconnection or
power off condition so that data is
transmitted where DTR is not implemented.

2 R2T7 Installed Ignores Bit 27 Data Communication is independent of the
status of the terminal.

3 R27 Removed Reads Bit 27 Fully EIA standard compatible, i.e., data
is transmitted only when the cable is
connected and power is on and the data
terminal is ready.

y R27 Removed Ignores Bit 27 Same as Case 2 above,

NOTE

An interrupt is generated when bit 27 changes logic level} This applies
to all four cases mentioned above.

6.18 UNIT ID SWITCH

The ID switch is a set of five SPST switches mounted in a DIP packing and
connected to a THLS251 CRU device. Each switch position corresponds to one
CRU bit and, in the open or OFF position, represents a logic ONE state.
Closing a switch to ground produces a logic ZERO state. Five switches can be
set to provide 32 unique codes.

The DIP switch has many applications. Used to pass information to a program,
it can function as a "programmer's front panel". Automatic communications
systems may have the same software in EPROM for every board in the system:
the polling ID for each board is set uniquely in the DIP switch. Alternately,
it can be used to pass baud rate and device type information about the
auxiliary port to the service programs. The uses for fixing system
configuration in the switch, and having one set of standard software, are
limited only by the imagination. '

6.19 STATUS INDICATOR

The status indicator is a CRU-addressable LED. Writing a ZERO to CRU address
00004¢ causes the LED to light; writing a ONE turns off the LED.

Uses for this feature are again limited only by imagination. Initialization
software can turn it off once initialization is complete. A system error can
cause the LED to come on. Test software can blind the LED during execution.

The CLRCRU signal turns the LED ON upon power-up.

6-40

SECTION 7
OPTIONS
7.1 GENERAL

This section explains the various options available to the user of the TM
990/101MA. These options include:

e Use of TMS 2716 EPROMs (2K x 8 bits each) instead of TMS 2708 EPROMs
(1K x 8 bits each)

e Onboard expansion of EPROM and RAM

e Asynchronous serial interrupt from one or both of the TMS 9902As
e RS-232-C/TTY/Multidrop interfaces with the Local Serial Port

o Use of slow access time EPROMs by insertion of one WAIT state

e Use of TM 990/301 Microterminal

e External switch actuation of a RESET or RESTART signal

e Power-up RESET or LOAD

e Memory Map change by reprogramming of the PROM

e Line-By-Line Assembler in EPROM.

Figures 7-1 and 7-2 show board locations applicable to this section. Table
7-1 is a summary of jumpers and capacitors used with these options.

7.2 ONBOARD MEMORY EXPANSION
7.2.1 EPROM Expansion
EPROM memory can be expanded onboard in two ways.

e Add two more TMS 2708 EPROM chips (1K X 8 bits each), for a total of
four, to provide an additional 1K words of memory.

e Use two or four TMS 2716 EPROM chips (2K x 8 bits each) to provide 2K
or 4K words of memory.)

Figure 7-3 shows placement of EPROM chips and corresponding memory addresses
(in bytes). The board silkscreen designators identify the necessary jumper
placement at E9/E10/E11, E26-E30, and E31-35.

NOTE

Check the jumper placements on your board against Table T7-2
for proper configuration of your board.

In general, for TMS 2708 use, jumpers are placed as shown in line 1 of Table

7-2; for TMS 2716, they are placed as shown in line 2. These jumpers switch
the chip enable and Al signals as required for the memory device used.

7-1

=L

* E8/ES3
NO WAIT STATE
FOR ON-BOARD EPROM

*E7/E8

* E54/E56
SELEGT PORT P3
FOR USE WITH A TERMINAL

*E18/E19
CONNECTS P3

ES5/E66
SELECT PIN P3 FOR

*¥E20/E21, E22/E23, E24/E26
POWER TO TM 990/301
MICROTERMINAL

*#¥E41/€42, E45/E46, EA9/ES0, E51/E52
MULTIDROP INTERFACE

*
E;mf:; ~o ONE WAIT STATE PIN 1 TO GROUND USE WITH A MODEM TERMINATION RESISTORS
HIGH MEMORY, . FOR ON-BOARD EPROM m \im
eran 0 it
LOW MEMOHY e _
\ I @ \\ &) INTERFACE .o
E16/E16 = o~ HALF DUPLEX
RAM IN LOW —l\rﬂ ' \ § ny (A5 | SELECTORS
MEMORY, 5 B Bgena
EPROM IN HIGH Ell r % *E30/E40
! CONNECTS EIA AND TTY
*SEE1LaE/§;g T remg rootm g 18 g — " INTERFAGE TO TMS 9902A
+ EB4 = o
ON-BOARD ek :}lmﬂiﬁ] [T T Esareso
o A o 258 CONNECTS MULTIDROP
E12/E13 # R INTERFACE TO TMS 9902A
CON-BOARD) SN LR — RN E36/E37
PROM g W leomrea & ENABLES TTY
E ° ‘u '3 INTERFACE
——— " lt
E0/E10 — e e
SELECTS A 1 u24 Eg us2 .V um 10@ P2 T us2
2716 MODE “ ' & 300y . 3
ADDRESS MAP s 10k ,:]' X F]
- 1 Dl -)| ﬂ ; o U43, u4s
*E10/E11 8 g § waoemusa. ARE ngzfégg
SELECTS f e = n
2708 MODE E | g 10 1 E34/E35
ve e 5 BANK 2
ADDRESS MAP &) 8 B AR e U43, U45
[] =] b} '
* E4/ES] Mz F i | | | ARE TMS 2716
CONNECTS §e = T 'm E31/E32
INTS TO P1-17 : T ,; F33/E34
n3 - u2z Ul car -
ED -3 E 3 | — "‘,ﬁ
*E1/E2] wr s I} 1 oF |k | i
rCOMECTS | [et e B e, uss
oP1-18 - -1, w A S S S T s ARE TMS 2708
\] E27/E28
E29/E30
E2/E3 BANK 1
CONNECTS INT4 TO MAIN TMS 9802A U4z, U44
ES/ES ARE TMS 2716
CONNECTS INT5 TO AUXILIARY TMS 9902A E26/E27
E28/E29
NOTES:

THIS POSITION IS THE NORMAL POSITION ON ALL MODULES.
*% NORMAL POSITION FOR -1 AND -3 MODULES ALSO.

#%% NORMAL POSITION FOR -2 MODULES ALSO.

FIGURE 7-1.

JUMPER PLACEMENT

£-L

p == E 2 u : va?
[3]
d] B ' s B] [] 'UI»)
1y? 1t un 1T us EPROM: 1 20 IAM i 1 u2e

— RESET
CAPACITOR

— LOAD
CAPACITOR

2708
0800 TO OFFF

1 ™ " f‘i ' U7 e A . 2708 1 uzs
— .;335:) m—
=" [<. \
,_D 3 | 1 b |
|
d—/= ! = =
] P] E l E 1 k:
u2 us T e 3luu
A M- | —
0'V1 + £ Ol " ! -&}. ! ;1‘::\
ST s e YR "

) 2716
10004¢ TO 1FFFqg

2708
00004g TO O7FF ¢
2716
00001g TO OFFF g

\/

F0004g TO F7FF g -

F8004g TO FFFFqg —

FIGURE 7-2. MEMORY AND CAPACITOR PLACEMENT

TABLE 7-1. MASTER JUMPER TABLE

No. Pins Connected
Pins Staked Together Function When Connected

3 E1-E2 Connects INT 4 to pin 18 of P1 edge connector
E2-E3 Connects INT 4 to TMS 9902A LOCAL I/O port

3 E4-E5 Cpnnects INT5 to pin 17 of P1 edge connector
E5-E6 Connects INTS5 to TMS 9902A of REMOTE 1I/0 port

3 E7-E8 Causes 1 WAIT state when onboard EPROM is

accessed
E8-E53 Causes no WAIT state: memory cycles are full
speed

3 E9-E10 Selects memory map for TMS 2716 EPROMs
E10-E11 Selects memory map for TMS 2708 EPROMs

3 E12-E13 Onboard EPROM is disabled from memory map
E13-E14 Onboard EPROM is enabled into memory map

3 E15-E16 EPROM at high addresses, RAM in low
E16-E17 EPROM at low addresses, RAM in high

2 E18-E19 Pin 1 of P3 is connected to GROUND

2 E20-E21 Microterminal: +5 volts to P2-14

2 E22-E23 Microterminal power: +12 volts to P2-12

2 E24-E25 Microterminal power: =12 volts to P2-13

5 E27-E28; E29-E30| Main EPROM is TMS 2708

E26-E27; E28-E29| Main EPROM is TMS 2716
5 E32-E33; E34-E35| Expansion EPROM is TMS 2708
E31-E32; E33-E34| Expansion EPROM is TMS 2716

2% E36-E37 Teletype terminal connected to P2

3 E38~E39 Multidrop Interface in use With LOCAL I/0 port
E39-ELQ EIA or TTY interface in use with LOCAL I/0

port

7-4

TABLE 7-1. MASTER JUMPER TABLE (Concluded)

No. Pins Connected
Pins Staked Together Function When Connected

2 each¥** |E41-EU2; EU5-EU6 |Multidrop termination resistors connected
E49-E50; E51-E52

2 each¥** | EU3-E4li; EN7-EU8 |{Multidrop Half Duplex operation enabled

3 E54-E55 Connects TMS 9902A RTS to CTS for port P3 to
communicate with an EIA compatible terminal.

E55~E56 Connects TMS 99024 CTS to port P3 directly for
communication with an EIA modem.

* On T 990/101MA-1 and -3 only
** On TM 990/101MA-2 only

TABLE 7-2. JUMPER PINS BY BOARD DASH NUMBER (Factory Installation)

Board Jumper Installation at
Dash No. Positions Staked Factory (Positions)
-1, -3 E1-E40, E53-E56 E1-E2 E4-E5 E10-E1t E13-E14

E16-E17 E18-E19 E20-E21 E22-E23
E24-E25 E27-E28 E29-E30 E32-E33
E34-E35 E39-E40 E8-E53 ES4-E55

-2 E1-E35, E38- E56 E1-E2 E4-E5 E10-E11 EI13-E14
E16-E17 E18-E19 E27-E28 E29-E30
E32-E33 E34-E35 E39-E40 EUL1-EA42
E43-EUY EUS-EU6 EUT-EU8 EU9-ES0
E51-E52 E8-E53 E5U-ES55

Location of RAM and EPROM in opposite ends of memory can be reversed by
jumpering E16 to E15 (instead of E16-E17); this starts RAM at M.A. 000044 and
EPROM starts in upper memory. In addition, EPROM can be disabled from the
memory map (in effect, it no longer exists) using jumper E12-E13 (jumper
placement E13-E14 enables it onto the memory map).

7-5

7.2.2 RAM Expansion

Four additional 2114 RAM chips can be added as shown in Figure 7-3. This will
provide an additional 1K words of RAM. Location of RAM and EPROM at opposite
ends of memory can be reversed by jumpering E16 to E15 (instead of E16-E17);

this will place RAM starting at M.A. 00004 and EPROM starting in upper
memory.

M.A. MA.
(HEX) JUMPERS (HEX) JUMPERS
0000 0000
| s | e
U4z, u4s (f::sszg::) E27/E28 . BANK 1
E29/E30 2 TMS 2716°S E9/E10
{2K X 8 EACH) E26/E27
0800 E10/E11 u42, uss E28/E29
BANK 2 E13/E14
2 TMS 2708'S E32/E33
U43, U5 {1K X 8 EACH) E34/E35
(EXPANSION)
OFFE
1000
E9/E10
rmszies | EVER
E33/E34
{2K X 8 EACH)
U43, uds (EXPANSION)
1FFE
(A) EPROM EXPANSION
M.A.
(HEX)
F000 BANK 2 2114
u2g, U30, U34, U36 (EXPANSION) (EACH 1K X 4 WITH
F800 . -4 IN EACH BANK. TOTAL
U29. U31. U35, U37 BANK 1 EXPANSION TO 2K X 16
FEEE BITS)

{B) RAM EXPANSION

FIGURE 7-3. MEMORY EXPANSION MAPS

7-6

7.3 SLOW EPROM
Slow EPROMs can be used with the TM 990/101MA by using a jumper between pins

E7 and E8. This connects WAIT to READY when onboard EPROM is addressed. Refer
to Table T7-3.

TABLE 7-3. SLOW EPROM TABLE

System Speed EPROM Type Access Time Jumper ET-E8 E8-E53
3 MHz TMS 2708 450 ns Installed
3 MHz ™S 2708 650 ns Installed
3 MHz T™S 2716 450 ns Installed
3 MHz T™S 2716 650 ns Installed

7.4 SERIAL COMMUNICATION INTERRUPT

Either or both serial ports (TMS 9902As) can be interrupt driven.
e Main Communications Port (EIA/TTY/MD) at P2: interrupt 4.
e Auxiliary Communicatiohs Port (EIA) at P3: interrupt 5.

As shown in Figure T7-U4, any of four conditions at the TMS 9902A can cause an
interrupt condition (change in data set mode, character received, character
transmitted, or TMS 9902A timer counted down to zero). An interrupt service
routine can check the TMS 9902A bits through the CRU to establish cause of the
interrupt, then take appropriate action. Further information is available in
the TMS 9902A Asynchronous Controller Data Manual.

7.5 RS-232-C/TTY/MULTIDROP INTERFACES (MAIN PORT, P2)

7.5.1 TTY Interface

Appendix A covers cabling for a Teletype Model 3320/5JE. To use this terminal
(20 mA current loop), connect pins E36 and E37 with a jumper plug.

M o o e . g

CAUTION |

e Al

Verify correct voltage levels at connector P2 before attaching
a teletypewriter type terminal.

Connect the cable to the terminal and to connector P2 at the microcomputer

board (P2 only). The EIA/MD jumper plug must be connected between pins E39
and E40.

7.5.2 RS-232-C Interface
Appendix B covers cabling for an RS-232-C compatible terminal. To use this

type of terminal, disconnect the TTY jumper and make sure the EIA/MD jumper is

in the EIA position. Connect the cable to the terminal and to the
microcomputer board.

7-T

INTERRUPT

SING 9902A
caY CRU
CONDITION T
pse ‘ \ DSCINT
DATA SET CHANGE DSCENB = @ 20
RBRL
RECEIVE BUFFER \ . RBINT -
LOADED, ENABLED RIENB ‘ /
XBRE ‘
TRANSMIT BUFFER I - XBINT -
EMPTY L XIENB ‘ /
TIMELP
TIMER ELAPSED { ‘) o TIMINT 19
TIMENB ‘ }
= TO INT4 OR INT5 /
{ E2/E3

PIN INSTALLATIONS TO ENABLE INTERRUPTS:
— INTERRUPT 4: E2/E3
— INTERRUPT 5: ES/E6

FIGURE 7-4. FOUR INTERRUPT-CAUSING CONDITIONS AT TMS 9902A
7.5.3 Multidrop Interface

Figure 7-5 shows the multidrop interface in use with a system of TM 990/100-
series microcomputer boards. The two boards at the extreme ends of the lines
are considered "terminating" boards; whereas, the boards in the middle are
non-terminating. Half-duples operation requires one twisted-pair line (i.e.,
two wires), and full-duplex operation requires two twisted pairs (i.e., four
wires). Refer to Figure 7-6 for cabling.

Table 7-4 shows the jumper configuration for the various configurations. As
an example, a common sSystem requirement is for a full duplex board-to-board
communication between only two boards. This requirement is fulfilled by the
jumper configuration shown on line 4 of the table.

7.5.3.1 Full Duplex Master-Slave

This communications setup is used when there is only one master station and
several slave stations. The system setup is shown in Figure 7-T. The
advantage of this approach is that one station is in command and control of
communication is thus centralized, and also each master-slave communication is
full duplex. The half duplex Jjumpers are removed.

7-8

MD

/@

NON-TERMINATING
BOARDS
TWISTED
PAIR TERMINATING

CABLING BOARDS
(SEE FIGURE 7-6)

FIGURE 7-5. MULTIDROP SYSTEM

P2 . P2
OUTPUSH | 24 24| OUTPUSH
OUTPULL |25 25| OUTPULL
INPUSH | 23 23| INPUSH
INPULL | 18 18] INPULL

NOTE: ALWAYS CONNECT A “PUSH" LINE TO A "“PUSH"
LINE AND A “PULL" LINETO A "PULL" LINE

FIGURE 7-6. MULTIDROP CABLING

7-9

TABLE T7-4.

MULTIDROP JUMPER TABLE

Mode

Install

Remove

Half Duplex,

non-terminating

E43-E4L, E4T-EU8

E41-E42, E45-EL6
E49-E50, E51-E52

Full buplex, non-terminating None All, EW1-E52
Half Duplex, terminating All, EW1-EB2 None
Full Duplex, terminating E41-EL2, EU5-EL6 E43-E4Y4, E47-EU8
E49-E50, E51-E52
All E38-E39
)))) 0
QUT] 24 A 24 24 24 24
25
95 25 25 25
O 0O
23 23 23 23 23
IN{ 18 18 18 18 18
MASTER SLAVET1 SLAVE2 SLAVE3 SLAVE”N
3 3
O o] O (o] O (o}
o} O o} o] (o] (o]
— ™ [Ty} P~ (o2} -
< <t et < <t [Te]
U w w w w
MASTER AND SLAVE “N”
JUMPER ARRANGEMENT.
(OTHERS HAVE NO JUMPERS)
FIGURE 7-7. MASTER-SLAVE FULL DUPLEX MULTIDROP SYSTEM

The output of the master station is routed to the input of each slave station.
The output of each slave is routed together to the one input of the master.
The control codes provided by the master should insure that only one slave
transmits at one time. Note four wires total are needed: one pair receive and
one pair transmit.

7.5.3.2 Half-Duplex Operation

This configuration is used when only two wires -~ one pair - is desired. The
half duplex jumpers are installed and the one twisted pair is connected at
either pins 18 and 23 or pins 24 and 25 of the P2 connector, on all stations.
See Figure 7-8.

Protocol must be determined carefully for this configuration to prevent many
stations becoming "live" on the lines at once. One station may be appointed
master and send control codes, or a round robin technique may be used where
control passes from one to another. Conversations are always half-duplex, so
when a master station requests a message, it must wait for the addressed
station to finish its transmission. This means that control is given up
periodically, and a malfunctioning slave station can "hang up" the whole
system. This approach does enjoy the advantage of two wires instead of four.

™ o ~

- 24 — 24 — 24 — 24
(HALF - —— 2 2 — 25
| !
DUPLEX ! [Il © 0 ol
JUMPERS) | L] 53 I L 23 'L 23 L4 23
L— 18 L--1 18 L-—| 18 L~ 18
N \/ _/ _/
UNIT 1 UNIT 2 UNIT 3 UNIT ““N”
~ o
S o

O (@] o (@] o O
- ™ 0 ~ @ =
< < < < < W0

W w w woow

UNIT 2 THROUGH UNIT “N-1"
JUMPER ARRANGEMENT.
(UNIT 1 AND UNIT “N’" HAVE
ALL JUMPERS CONNECTED)

FIGURE 7-8. HALF-DUPLEX MULTIDROP SYSTEM

7-11

7.6 EXTERNAL SYSTEM RESET/LOAD

The RESET function is activated from offboard by the assertion of a low state
on the PRES.B line, pin 94 on connector Pt. An SPST pushbutton to ground can
be connected to this line, and should be debounced by a 39 uF tantalum
capacitor at C18.

The LOAD function can be activated by asserting a low state on the RESTART.B-
line, pin 93 of connector P1. An SPST pushbutton to ground, with attendant C23
for debouncing, can be used for external actuation.

7.7 REMOTE COMMUNICATIONS

Jumpering pin E18 to E19 connects pins 1 and 7 of connector P2 to ground.
Removing this jumper leaves only pin 7 at ground. 1In some applications, it is
not desirable to have signal ground connected to chassis ground, to prevent
ground loops or keep an isolated chassis isolated. In these cases, remove the
Jumper. In most cases, there is no special consideration needed, and the
Jjumper may be left in place.

Serial Port P3 can be used to directly communicate with an EIA compatible
terminal. This type of operation requires that a jumper plug be installed
between E54 and E55, which connects RTS to CTS of the TMS 9902A, enabling
operation of this device. The terminal with its proper cable (see Appendix B)
may be plugged directly into connector P3.

If communication with an EIA compatible modem (see Section 8, Applications,
under EIA Serial Port Applications) is desired, insert the jumper plug between
pins E55 and E56. This connects CTS of the TMS 9902A to the line receiver on
the P3 connector. The TM 990/506 modem cable, or equivalent, must be used.

7.8 MEMORY MAP CHANGE

The entire system memory map is divided into two categories: onboard and
offboard. This division as well as the enable lines to onboard blocks of
memory, are controlled by a PROM, a T43287.

Blank PROM's may be programmed by the user to reconfigure the memory map. For
a discussion of the pattern generating process, refer to Section 6, Theory of
Operation, under Address Decoding.

7.9 TM 990/402 LINE-BY-LINE ASSEMBLER

A line-by-line assembler is available, programmed on two TMS 2708 EPROMs. It
will assemble each instruction as it is input by the user. The resulting
machine code will be printed on the terminal and placed in continuous memory
locations. The TIBUG monitor must be present to use the assembler.

No relocatable labels can be used. Jump instructions use dollar-sign plus or
minus byte displacements, and symbolic addresses are input as absolute
locations. Error codes identify syntax errors (illegal op code), displacement
errors (jump instructions), and range errors (e.g., R33). Figure 7-9 is an
example of assembly output using the line-by-line assembler.

7.10 TM 990/301 MICROTERMINAL

An alternate to a hard-copy terminal is a TM 990/301 microterminal for user
communication to and from the TM 990/101MA. The size of a hand-held
calculator, the TM 990/301 uses its light-emitting diode (LED) display to show
hexadecimal or decimal values. Features of the TM 990/301 include:

e Hexadecimal to signed decimal and signed decimal to hexadecimal
conversion of displayed value.

e Display and change contents of Workspace Pointer, Program Counter,
Status Register, or CRU ports.

e Increment through memory displaying contents.

o Display and change contents of memory addresses.

e Halt or single step user program execution.

e Begin program execution.

e Keyboard 0 through F4q.,
This microterminal comes with its own cable which attaches to the 25-pin
connector P2. To supply power to the microterminal, place jumpers at E20/E21,
E22/E23, and E24/E25. When the microterminal is not connected, make sure that
these jumpers are disconnected. Jumper E39/E40 must be in the (EIA position)
for microterminal operation. See Figure T7-2.
Figure 7-9 shows the microterminal and cabling to the TM 990/101MA.
7.11 OEM CHASSIS
An original equipment manufacturer (OEM) chassis is available. It features
slots for four boards, a motherboard backplane interfacing to P1 on the board,
and a terminal strip for power, PRES.B-, INT1.B- and RESTART.B-. A
dimensional drawing of the OEM chassis is shown in Figure 7-10, A schematic
of the backplane is shown in Figure 7-11. P71 pin assignments are listed in
Table H-1 of Appendix H.

NOTE

The dimension between card slots is one inch.

7-13

Fronog
FEI
FENZ
FEu4
FEO4
FEOE
FEO=
FEOC
FEUE
FE10
FE1z
FE14
FEle
FE1Z
FE1IR
FELIC
FELE

FESD 5

FE2E
FEZ4
FEZE
FEZS
FEZA
FEEC

FEZE 5

FEZD
FE3E

cFRO
FEOLC

JEYT Y
KRN

4734F
4E4T
Sz41
5455
SRS
S439
JF4E
S3ECE
o Eg
4F55
b Tt 1]
S0E2
4F 47
5241
R =41
SV4F
SC4B
521
uFav

Lol
0700

yen

MEMORY ADDRESS

ASSEMBLER MACHINE CODE

SEEND ~-

wOF v

e

FEOCa 14

R

E 300

=21

SFRUC -

FCOMGRATULATIONE.

+: AT 07
+3 0700

FIGURE 7-9.

USER INPUT SOURCE CODE

CHANGE MEMORY ADDRESS

SYNTAX ERROR

CHANGE MEMORY ADDRESS
YOUR FEOGEAM WOREZ! -

LINE-BY-LINE ASSEMBLER OUTPUT

TEXT STATEMENT

Microterminal
T™ 990/301

{@ TEXAS INSTRUMENTS

T™ 990/301 MICROTERMINAL

FIGURE 7-10.

7-15

BACKPLANE

| SEE
DETAIL A

(=]
O« 0527
i é[2PLACES
Q
~
— SEE DETAIL A
! —

§ ™
l ? g'r‘naj\css / S

i : .
! 3
!
@ C Y || tho
! an an | 0.089 :
Z_—RJ\ — — 2 0.189 1876
- 7.430 } 2PLACES
/ 0.374 |

jo19
&‘_;:
NOTES: A 1 .

1. DIMENSIONS IN INCHES 8 4.5
2. ALL DIMENSIONS £0.010. c

re— 0.406

BARRIER
STRIP

N

-
L

o] |
|

“‘-SEE OETAIL A

(i
UL

—fff--
o)

(2]

,_/\.B_J
)
WA\,
=N)
J
\I
P\’v

.

7

—,1

5.006 OETAIL A

FIGURE 7-11. TM 990/510A OEM CHASSIS

R7 031

~POUNANO

:

L =12Y Tii7] 18
o0s2 v RESTART:-B~ |
715) ?6 }4 K \TH.ZZO 12y —g
(CHASSIS GND, DS3
Sruf " Tr{;’;a +— T8y clon) 3
K T [
Ot 330 i 18V fuv) o
O
NT1.8~ O
[. 5ND >
4 6 8 012 146 18 20 . 30 | 34 36 38 40 42 44 46 4 s 66 68 70 72 |74 |76 88 1 ieef T—]
" 2 o p PP P opnpjoopppoppopo poprnoopao onoooappb) 100}
] Qs kR QK i lalalala ki ik o 1o e fa e lo ke e o e o o o b L faf @ 4 499
9
9%
I
J2
! N
> >
< 3 3 i 3
al g af g E DI
a3 j o o %
= o @ q A 2
3 9 b Hib fd 3
43) |
I -\ I
I
3
0
PR E: ©f ®f o of o o W ©f ol B B ©f B B B B B X wl ¥ ¥l W bbb»phﬁﬁbb | 2l ®| B| Pl | of ¥| ¥~ ¢uo
! ddddadddald|ldd @ d|d | |d [I | [| [o o | o |2 fa o o ol il d & o 99
3 8§ 7 3 i i3 15 17 19 |2y {23{25 &7 29] 3l 49 S| 73 75{ 77| 79| 81| 83| 8% 89 ¥ 95197
Ré
33
—rr 3
220 U MRz OnTmRe N 0TV An o BT, v ¥ a9~ %
R4 T o r ittt R oo e e
VI TT YN MO NN Nnm Ny NN GNNNANNG = —— - m e .
330 23 D353JTJIDIIIZIDHIDIJINDD 302235 3IDDDTDOIDIDIND 32323 2
R‘Z 220
30 Al .
220
DETAIL TYPICAL
fﬂ"‘i"_"_zi@_'!‘__]
v 1,
e 1 BE:
4 PLACES

™
i
i
|
i
|
|
.

PINS 1-7,9-15

FIGURE 7-12. OEM CHASSIS BACKPLANE SCHEMATIC

-
2

SECTION 8
APPLICATIONS

8.1 GENERAL

This section covers various methods of communicating to applications hardware
external to the TM 990/101MA. Figure 8-1 shows board locations applicable to
this section. :

8.2 OFFBOARD RAM

Figure 8-2 shows a logic diagram for adding additional RAM offboard. The
buffers are controlled by the same logic that is used onboard the TM
990/101MA. The dual flip-flops are used to generate one wait state whenever
the memory is enabled. The T74LS155 decodes the five most significant address
lines. The A0 and A1 lines select this memory board, and A2, A3 and Al select
one of six banks of expansion RAM. The outputs of the 74LS155 select 1K word
banks, starting with the 1Y1 output, which corresponds to an address range of
E80016 to EFFFq1g. Lines 1Y¥2 and 1Y3 are not used since they respond to the
address range of F0004¢ to FFFF1g, which are onboard the TM 990/101MA.
Additional 1K word banks connect to 1Y0, and so on up to 2Y0, which responds
to the lowest address in this application, C0004g.

Alternately, if the user wishes to address eight banks of RAM on this memory
board, using 1Y2 and 1Y3, then the onboard memory can be moved to BO0O4qg to
BFFFq¢g, or some other address, by reprogramming the Memory Address Decoder
PROM onboard the TM 990/101MA.

The T4LS08 bringing #1B onto the memory board is used to buffer the system
bus, in keeping with the practice that only one LS load per board should
appear for a system bus signal. It may easily be omitted. The two TU38s with
pull-up resistors attached are used instead of a TULSOL4 and TULSO0 to keep
down the parts count.

8.3 OFFBOARD TMS 9901

Figure 8-3 shows the wiring of an offboard TMS 9901 at the CRU bit address
OFEO1g- Only the programmable I/0 section is used; the clock and interrupt
section are ignored. The R12 bit address is 1FCOqg.

Connection is made through the system bus, P1. The CRUIN, CRUOUT, and CRUCLKB
signals are gated by the 1G signal. Chip enable is performed by one T4LS30.
Other addresses are not so easy to decode; the use of the various decode chips
would enable a bank of TMS 9901's.

8.4 OFFBOARD EIGHT-BIT I/0 PORT

Figure 8-4 shows the wiring of an I/0 port with separate 8-bit inputs and
outputs. The input is a T74LS251 selector, also known as a TIM 9905. The
output is an addressable latch array, a T4LS259 (or a TIM 9906). Address
decoding is done by random logic, and the R12 CRU address is 02004g6. Note
that MEMEN is not used in address decoding, so this circuit is active even
during memory cycles. Again this does no harm since CRUCLKB is inactive and
CRUIN is ignored by the processor.

c-8

TMS99800 —

TMS9901 —|

‘"‘! °%ﬂr
o g ::P«u £

f[i el e ' o

Vv E6S Uap

rlliu

vl
€IA
TERM™T rMODEM & :é :;g
[EDD:E-B} a

lL!“

[

v22

-12v

HZ.'\; \
]

1 I T—
1 US3
® w l—ron P3 E
] E[1
=09 5ﬂ
1 1 >
] NS
1 U48 P2 1 us2
8 y >
Q c3or 0 °
0 ' W1
1 a1 i é] 1 ust
R
5 3 ., MADE IN U.S.A.
_— |
I d DUE:J
{
1 u3s
1 xAs msmuu:nn
o N "7 B mnonm
[] ns i
=3
=1
Tuss a;]*m
e
g ule gp ‘3
8o s
D P R E] VA
1
’ C40 + t
00 E j 1 *»V _L‘)

— TMS99802A
FOR AUXILIARY
PORT P3

~— TMS9802A
FOR MAIN
PORT P2

J

f A CONNECTS INT4 TO MAIN TMS9802A (E2/E3) OR TO P1-18 (E1/E2)
C

ONNECTS INT5 TO AUXILIARY TMS9902A (E5/E6) OR TO P1-17 (E4/ES5)

FIGURE 8-1.

MAJOR COMPONENTS USED IN I/O

READY 90
¢18 22
WEB 78
DBIN.B 82

‘MEMEN B 80
HOLDA B
D158 48
D148 47
D13B 46
D12B 45
D11B 44
D10.B 43
D9.B 42
D88 41
D7.B 40
D6B 39
D5B 38
D4B 37
D3B 36
D28 35
D1B 34
DO.B 33
A140 71
A13B 70
A128 69
A11B 68
A10.B 67
A9B 66
ABB 65
A7B 64
AB8 63
A58 62
A48 61
A3B 60
A28 59
AlB 58
A0B 57

741574 741574
D Q D Q
5
47K
+5 7438 wW
c c LS02
741508
1.8
¢ LS00
POINT X"] MEMEN B
TO ALL PIN
. P g
10°SOF 2114's +5 . 2Y0f——= TOADD'L
5V 47K 1G 2Y 1 p———a CHIP
: 7418153 741508 __
v p AQ 14§56 AL SELECTS
n Al 12 ON 1K WORD
A PA% Rl -
3 15 7 BLOCKS
2c YOR— -
4 10 |7438p A2 [e wyil®
5 741.8243 o 23 3 . e 5 LS00
: : At 1 DRI 1 nD
1] J13 7415155
- A —
2 18 +5 6
3 17 A
a 16) = L
5 15 ™ 18 9 18 9 ~
6] 7415245 | 14) A5 15 A5 19) 11
N 1 ovop 2 IR]z—ggJ
7 13 1 f A6 16 12 D1y (AG 19]
8 12 A A7 17 13 D2 (A? 17 13 D10
] A
9 11 A8 1 R IEEES A8 1 14 D1
— d L/
G N A9 2 " Ag 2
XTI 10 WE 10 WE
19J_ i DIR f A0 3] 2114 _ A0 3 2114 .
= K 4 x a4
]
2 18 w A12 7 3 8 " a12 7 58
3 17 SSE 6 A3 ¢
4 16 [A 3 { A1a 9
5 15) r r
6] 74Ls245 14 P
7 13 A
8 2 3 N
[1
J
g " s
19] [OR
~ ' 18 9| - 18 9l °
2 18
A5 15 11 D4, A5 15 oD
3 17 —— D10 - DIYO
- - A6 16 l_ 12 p5) [(as 15 12 D1
r a7 17 13 DS a7 17 13 D14
5 I A8 1 L 14 ; A8 1 l_ 14 019
= 7415245 b7
. (" A9 2 A9 2
s " at0 3| 2114 0 WE (a0 3] 2114 o WE
I an 4 N YT x
3 (A2 7 <|-8 p12 g - 8
=13 ¢l — —
19 L 1DIR A13 6 A13 6
]
L A4 5 ("a1a__s|
= aladi—" jEaLE.
2
3 S
4
5
5| 741245 _J
7 13
8 12
9 1
G
19_]_ TDIR

FIGURE 8-2.

OFFBOARD MEMORY

8-3

T™M 990/101 MA , CONNECTOR P1

CRUIN.B |

7418367

TMS9901

CRUOUT €E
CRUCLK CRUIN

RST 1 2]
° P
so P2
s1 P3
s2 P4
s3 (-3
s4 P6
Vee P
GND P8
P9
P10
P11
P12
P13
P14
P15

w
@

w
~

8

N
~N

N
-

N
(-]

19

N
w

N
~

8

Fs

30
31
32
33

3

|
| 2 3
F
30 |-CRUOUTE | a 5
r [P —
87 | CRUCLK.B | 6} 7 b"’ LS04
gs |_IORSTB I 10 9 172
4
24 238 I 12 11 [
go | MEMENB | 14 13 | 2]
¥ — —
I 1 26 1G 3
| | 15 1]
3 +5V | 10
l_.____
4 +5V [39
yp oo ! 36
—
2 |—GND | 35
| ! 7415367 25
| aze | |2 3 24
¥
61 AsB 1 |4 5 40
H
62 L A5B | 7 16 |
¥
63 AeB | [10 9 3.)—‘
F
64 1 Aaze | |12 1 74LS30
r
65 | A8B | |14 13
3 —_— p—
| { G 2G
| ' L4
| 1
| | 7415367
o6 | asB | 2 3
¥
6 | At08 | 4 5
6 |- An1B | 6 7
69 | A28 | |10 9
b
70 | A138 | |12 1
7 1 A14B | |14 13
I —
I ' 18
|
| g to +5 volts
| I
|
LIST OF MATERIALS
ary PART
1 14 - PIN DIP SOCKET*
4 16 - PIN DIP SOCKET*
1 40 - PIN DIP SOCKET
3 74L8367
1 74L504
1 740530
1 TMS 9901
* AND WIRE - WRAP PINS AS REQUIRED
FIGURE 8-3. CIRCUITRY TO ADD TMS 9901 OFFBOARD

8-14

740504 7415259
—_ 741500
CRUCLK B {:: A12 3¢ ao |2
A13 2| g ai L8
Al4 A azl8
A3 CRUOUTB 13| asl?
74L504
A4 14G al 8
A5 IORST.B 5] o1 asl 10
741530 74LS04
A7 74LS00 oy L
A
A9
A10 5 I 16 ‘8
10K
Al Fmmmm— - —
A6 = : !o+5
1
7415251 : |
A12 9 P e e e e
c DO
A13 10g p1k3
A14 M. 02} 2
CRUIN.B 5], o3l
71 pal 15
D51 14
b6 13
o712

FIGURE 8-4.

8-BIT 9905/06 PORT

8.5 EXTRA RS-232-C TERMINAL PORT

Figure 8-5 shows a diagram of a serial I/0 port suitable for most RS-232-C
terminals. The handshaking signals used are DATA CARRIER DETECT, which is
generated from the REQUEST-TO-SEND tied back to CLEAR-TO-SEND on the TMS
9902A, and DATA TERMINAL READY, which is brought into the TMS 9902A for
program interrogation. The two 3.3K resistors supply a "fake" CLEAR-TO-SEND
and DATA-SET-READY to those terminals requiring them.

Since only half of the packages are used on the 75188 and 75189 devices,
another TMS 9902A may be added for an additional serial port. The R12 CRU
address is 1FC04¢4.

+12
3.3K
3.3K
5 T™S 9902A
7
L4LSOO CRUIN.B 4 1 INT . 75188
S t:::)}_l CRUQUTB 8 2 XOUT 2 ::::>}3
¢ . RS232
. 1 5 RTS
CRUCLKB 15 XMT
1 6
A3 A10 14 +5 5 DCD
PV 1
A4 A11 3 75189

—

AS A12 12 7_DsR §o<:]
A7 741s30 A13 11 DTR

75189
A8 - Al4 10 3 RIN §o<:] 4

RS232

17 | —

A9 : cs RCV
16

+5 i8 9

+5

75188: pin 1 =-12, pin 7 = GND, pin 14 = +12
75189: pin 7 = GND, pin 14 = +5

FIGURE 8-5. RS-232-C PORT

8-6

8.6 DIRECT MEMORY ACCESS (DMA) APPLICATIONS (FIGURES 8-6 AND 8-T)

The microcomputer controls CRU-based I/0 transfers between the memory and
peripheral devices. Data must pass through the CPU during these
program-driven I/0 transfers, and the CPU may need to be synchronized with the
I/0 device by interrupts or status-bit polling.

Some I/0 devices, such as disk units, transfer large amounts of data to or
from memory. Program driven I/0 can result in relatively large response
times, high program overhead, or complex programming techniques.
Consequently, direct memory access (DMA) is used to permit the I/0 device to
transfer data to or from memory without CPU intervention. DMA can provide
faster I/0 response time and higher system throughput, especially for block
data transfers. The DMA control circuitry is somewhat more expensive and
complex than the economical CRU I/0 circuitry and should therefore be used
only when required.

Microcomputer direct memory access occurs in block and cycle stealing modes,
using the CPU hold capability. The I/0 device drives HOLD- active (low) when
a DMA transfer needs to occur. At the beginning of the next available
non-memory cycle, the CPU enters the hold state and raises HOLDA to
acknowledge the hold request. The maximum latency time between the hold
request and the hold acknowledge is equal to three clock cycles plus three
memory cycles. The minimum latency time is equal to one clock cycle. A 3 MHz
system with no wait cycles has a maximum hold latency of nine clock cycles or

3 microseconds and a minimum hold latency of one clock cycle or 333
nanoseconds.

When HOLDA goes high, the CPU address bus, data bus, DBIN, MEMEN-, and WE- are
held in the high-impedance state to allow the I/0 device to use the memory
bus. The I/0 device must then generate the proper address, data, and control
signals and the proper timing to transfer data to or from the memory as shown
in Figure 8-6. Thus the DMA device has control of the memory bus when the CPU
enters the hold state (HOLDA = 1), and may perform memory accesses without
intervention by the microprocessor. Because the lines shown in figure 8~6 go
into high impedance when HOLDA = 1, the DMA controller must drive these
signals to the proper levels. The I/0 device can use the memory bus for one
transfer (cycle-stealing mode) or for multiple transfers (block mode). At the
end of a DMA transfer, the 1/0 device releases HOLD- and normal CPU operation
proceeds. TMS 9900 HOLD- and HOLDA timing are shown in Figure 8-7.

8.6.1 DMA System Timing (Figure 8-8)

The DMA process can be divided into three distinct phases (shown in Figure
8-8):

® Acquisition of memory control from the system
® Memory control by the DMA device, and
® Release of memory control to the system.

In systems with multiple DMA devices, the memory control phase can be shared
by the devices on a priority basis; however, the acquisition and release
phases must remain distinct in that the release phase must end before
another acquisition phase begins. This is necessary to avoid any memory
access conflict resulting from the hold acknowledge signal (HOLDA) delay which
occurs when the hold signal (HOLD-) is released.

8-7

8-8

A0-A14
DO-D15
MEMEN
DBIN
WE
WAIT
READY

MICROCOMPUTER

HOLD

HOLDA

1

REQUEST

MEMORY

GRANT

ADDRESS DATA MEMEN DBIN

WE

DMA 3-STATE CONTROL

DMACC

FIGURE 8-6.

DMA CONTROLLER

DMA BUS CONTROL

6-8

FIGURE 8-7.

CPU HOLD- AND HOLDA TIMING

| [
a1 m 1 mt m M I 1
03 I ' m A . 'm_'"m_
; |
MEMEN — \ ! S I I rl-—
|
AOA14 T ' ::Zz : | g S
) - |
DOD15 X X D, ~
wE ! ~HI-Z ' ! —
! HI-Z | ! !
DBIN __/ | _/ I | N
i
Reaoy [/ /00 A V///] V/ /777777 77/ /77 /7 /77 /7 / /77
! [
WAIT / i\ ' | I
t !
HOLDA ! |f ! |\——'
AGLD rz771_ ' I /71 :
[[
|
"~ MAX. 9 CLOCK CYCLES | ' :
| MINCLOCK OYCLE | | '
:<— | 1CCYL(?LCEK_H|

oL-8

ACQUISITION MEMORY CONTROL | RELEASE

REASSERTING HOLD
DURING THIS PERIOD
NOT RECOMMENDED

MAX 9+3W CLOCKS READ (1 WAIT STATE)

f——— e ————

| I 1 | |

1
MIN 1 CLOCK I MEMORY MEMORY WRITE

I

e e A B D B S O o B

¢3
(FROM CPU) ﬂ

AR TR ' !

(FROM 1/0 DEVICE] -~ V Z A V7 /77// A1

(TO CPU) I

HOLDA [
{FROM CPU) | V//A

AG {(n)

t
I

HOLD ! I |
1
|

(FRO‘HCPU)Jﬂmqﬂnﬂnﬂﬂﬂm
! :
{
:
|

SN B I B

(TO 1/O DEVICE))
MEMEN ! HI-Z

Hi-Z

e — S — —

(TO SYSTEM)

B I SRS % N N P

HI-Z

T
N

DMACC

5

(TO SYSTEM)

WE HI-Z

|

|

i

+

! HI-Z
(TO SYSTEM) ;

-z
DBIN HI

(FROM 1/0 DEVICE)

AD-A14 HI-Z

HI-Z

HI-Z HIZ

L..-._s._L-

DO-D15

‘H-'i-u-h-]‘

!
1
|

|

I

{(FROM 1/0 DEVICE] |
§

!

'

(TO/FROM 1/Q DEVICE)

/7] V777 V7 VI 77/ 7777 [L

READY T/ 7777777777 L]

{FROM SYSTEM)

STARTQ _.._—J

MEMENQ

- -———'—‘—\—F‘

RELEASEQ

|

MFIRSTQ

|

MWAITQ

]

]
|

MLASTQ

FIGURE 8-8. DMA SYSTEM TIMING

The acquisition of memory control from the system begins when the HOLD- signal
is asserted by the DMA device. This signal is driven by an open-collector
circuit and must be synchroriized to the trailing edge of clock phase one (g1).
The acquisition phase ends at the first trailing edge of &1 following the
receipt of HOLDA. Round-trip timing delays between the DMA device and the CPU
must be considered during device controller design.

The control of memory by the DMA device begins at the completion of the
acquisition and continues for as many memory cycles as required. The device
controller must provide the memory cycle timing signals MEMEN-, DBIN, WE-, and
DMACC- (TM 990 bus signal) as well as the memory address and data signals.
The memory cycle timing must duplicate the microcomputer memory cycle timing
with respect to minimum setup and hold times and also to synchronization to ¢1
and @3 clocks. The device controller must monitor the READY signal and wait
as required by the memory. The device controller must not require unnecessary
wait states (wait states not required by the microcomputer) because of device
controller setup timing; however, the device controller can delay the start of
a memory cycle to allow setup time for the DBIN, DATA, and address signals.

The release of memory control to the system begins when HOLD- is released by
the DMA device and is complete when the CPU releases HOLDA. Since the CPU
requires two @1 clock cycles for the release of HOLDA, resumption of memory
access during the release phase can cause a memory access conflict when the
DMA device responds to HOLDA just prior to HOLDA being released. This conflict
will cause loss of data and possibly modification of random memory locations.

8.6.2 Memory Cycle Timing (Figure 8-9)

As shown in Figure 8-9, a memory cycle consists of two states, MFIRSTQ and
MLASTQ, plus wait states MWAITQ as required by memory. Each state is one g1
clock cycle long. If additional DBIN, data or address setup time is required,
a setup state can be inserted before the MFIRSTQ state. The MLASTQ state marks
the end of a memory cycle. Read data will be stable at the end of MLASTQ.
The control signals MEMEN- and HOLD- which are static during a memory cycle
are allowed to change at the end of MLASTQ. In a multichannel-DMA controller,
the device access granted signals are allowed to change at the end of MLASTQ.

8.6.3 DMA System Guidelines
1. DMA and CPU meméry cycle timing should be identical.
2. DMA memory cycles can include memory-dependent wait states.
3. DMA devices must not require memory to insert wait states.

4, DMA devices must allow HOLDA to drop after releasing HOLD- prior to
reasserting HOLD-.

5. Three-state bus conflicts must be avoided.

6. Multiple DMA devices must not attempt simultaneous memory access.

7. Sufficient data and address setup times prior to WE- must be kept.

8. Most DMA device timing problems will occur at the first and last

memory accessed and at device to device changeover in systems with
multiple devices.

NORMAL
MEMORY
CYCLE

| |

| |

| |

o1 M Wl 1
|

MEMORY CYCLE
WITH SETUP STATE

MEMORY CYCLE
WITH 1 WAIT STATE

B I

! 1
| l
I T T o N o B
N o S o N NN NN N N NS o NS N o N e R
i I — N
3 L B !
S ma IS m I R e N
| I |
e ——— s S ——
— 1 S -
L i M e | I L

FIGURE 8-9. MEMORY CYCLE TIMING

8.6.4 Multiple-Device Direct Memory Access Controller

This section outlines the design of an eight-device, priority-access
controller for the direct memory access system shown in Figure 8-10. The
controller accepts access requests from the device controllers, acquires
memory from the CPU, grants memory access to the highest-priority device
switching from device to device as required, and generates all necessary
memory cycle timing signals.

The DMA controller interfaces with the device controllers (shown in Figure
8~11) through a DMA control bus consisting of access request (ARO- through
ART7-), access granted (AGO- through AG7-), and memory cycle complete (MCOMP-)
signals. To access memory, a controller asserts access request and waits for
access granted. The controller then drives the address bus (A0 through A15),
the data bus (DO through D15) as required, and the DBIN signal. The MCOMP-
signal indicates that the memory cycle will be complete and read data will be
stable on the data bus at the trailing edge of the g1 clock. A device can
request multiple memory cycles by continuously asserting access request.
Access request is released during the first clock cycle of the last required
memory cycle.

8-12

DMA CONTROL BUS

DMA DMA DMA DMA
CONTROLLER DEVICE DEVICE DEVICE
SYSTEM BUS
cPU MEMORY
FIGURE 8-10. DMA SYSTEM BLOCK DIAGRAM
DO thru D15 N
AROC thru AR7 AQ thru A15
DMA CONTROL AGO thru AG7, . DBIN o
BUS TO L DBIN -
DMA CONTROLLER mMcomp INTh -
B DEVICE B SYSTEM
CONTROLLER | CRUIN -~ > bus
ARO thru AR7 CRUOUT
DMA CONTROL —_— —
BUS TO AGO thru AG7 ~_ CRUCLK
NEXT DEVICE MCOMP P
__ [ORST

FIGURE 8-11.

8-13

DMA DEVICE CONTROLLER

The DMA controller (shown in Figure 8-12) provides memory access control,
memory cycle timing, and priority-based access of memory by the device
controllers. Access requests are synchronized to the system clock, then
prioritized using a priority encoder followed by a decoder. The priority
encoder also provides the signal DMAR which indicates if any device is
requesting access. Memory access is granted to the highest-priority device
when HOLDA is received from the CPU and at the end of each memory cycle. This
is done by loading a register with the decoder outputs. If no device is
requesting access, the decoder is disabled and the register is loaded thus
disabling all access granted signals. Loading of the register is inhibited
from the time HOLD- is released by the DMA controller until HOLDA is released
by the CPU in order to avoid an access conflict between the DMA and the CPU
due to the HOLDA response time.

~ ARO thru AR7

8
/'
Y
REG o1
(74L5374) |*
_— , 8 _—
AROQ thru AR7Q /] HOLD ~
l———
y MEMEN
——
PRIORITY WE
ENCODER DMAR —
———————>
(74148) DMACC
DMOUT
DMA CONTROL 3 CONTROL DMIN SYSTEM
BUS TO ¥ LOGIC ‘—"—HOLDA . SYST
DEVICE ﬁ o«
CONTROLLERS Y DBIN
DECODER READY
(74L5138) - o1
3
Tt a-
8 TPRST
A -/
REG B ACCLK
(74L.8374) B
A 8
. AGO thru AG?7
‘ MCPMP

FIGURE 8-12. DMA CONTROLLER

8-14

The DMA controller timing with priority contention is shown in Figure 8-13.
The logic equations for the DMA controller are:

DMAR = AROQ + AR1Q + + AR7Q

STARTQy = DMAR e MEMENQ- e RELEASEQ-

STARTQg = HOLDA e STARTQ

MEMENQ ; = HOLDA e STARTQ = STARTQ

MEMENQy = DMARQ- e MLASTQ

RELEASEQ; = DMARQ- e MLASTQ = MEMENQ

RELEASEQy = HOLDA- e RELEASEQ

HOLD = DMAR e RELEASEQ- + STARTQ + MEMENQ
MFIRSTQ, = HOLDA e STARTQ + DMAR e MLASTQ
MWAITQp = MFIRSTQ e READY- + MWAITQ e READY-
MLASTQy = MFIRSTQ e READY + MWAITQ e READY
WEQQ = DBIN- e MSTARTQ + WEQ e MWAITQ
DMACC = MFIRSTQ + MWAITQ

ACGATE = HOLDA e STARTQ + MLASTQ

ACCLK = ACGATE- ¢ g1

MCOMP = MLASTQ-

Signals ending with the letter Q are flip-flop outputs and signals with
subscripts are the corresponding flip-flop inputs. All flip-flops are code-
triggered on the trailing edge of #¢1 except WEQ (g1 leading edge).

9gL-g

m_ I rmn._nmn rmn. n
03 1 [M M M M m M M .
a2 V//]
Ao rZ2 777
HOLD
HOLDA 777
AG1 1] : /]
AGo . B
MEMEN . |
BMACC |
- NS ey I oy BN
ACCESSQ DEVICE 1 DEVICE 0 DEVICE 1 L
STARTQ |
RELEASEQ _ L
ACGATE V77Tl | S e B |
FIGURE 8-13. DMA CONTROLLER TIMING

8.7 EIA SERIAL PORT APPLICATIONS

This section describes the cable configurations and connector pin assignments
used with the microcomputer EIA serial port (connector P3). Interconnection
information is included for 103-, 202-, and 201- series modems and EIA data

terminals.

A typical system configuration is shown in FIgure 8-14., TI offers

a ready-made cable for use with all of the above modems, the TM 990/506.

8.7.1 Cable Pin Assignments

FIGURE 8-14,

ELA
DEVICH

CABLE CONNECTIONS

Tables 8-1, 8-2, 8-3, and 8-4 provide pin assignment information for interface

cables.
TABLE 8-1. 103/113 DATA SET CABLE
101 Pin Modem Pin
On P3 1037113 RS-232-C
(Male) (Male) Circuit Function
1 1 AA Protective Ground
3 2 BA Transmitter Data
2 3 BB Receiver Data
8 L CA Request to Send
16 5 CB Clear to Send
19 6 cC Data Set Ready
T 7 AB Signal Ground
20 8 CF Received Line Signal Detector (DCD)
21 20 CD Data Terminal Ready
22 22 CE Ring Indicator

TABLE 8-2.

202/212 DATA SET CABLE

101 Pin Modem Pin
On P3 202/212 RS-232-C Function
(Male) (Male) Circuit

1 1 AA Protective Ground

3 2 BA Transmitter Data

2 3 BB Receiver Data

8 i CA Request to Send

16 5 CB Clear to Send

19 6 cC Data Set Ready

7 7 AB Signal Ground

20 8 CF Received Ling Signal Detector (DCD)
21 20 CD Data Terminal Ready
22 22 CE Ring Indicator

Note: Pins 11 and 12 (reverse channel on 202) are not connected.

TABLE 8-3. 201 DATA SET CABLE
101 Pin Data Set
On P3 Pin 201 Circuit Function
(Male) (Male) 201
1 1 AA Protective Ground
3 2 BA Transmit Data
2 3 BB Receive Data
8 L CA Request to Send
16 5 CB Clear to Send
19 6 cC Data Set Ready
7 7 AB Signal Ground
20 8 CB Data Carrier Detect
15 15 DB Transmitter Signal Element Timing
17 17 DD Receiver Signal Element Timing
21 20 Cb Data Terminal Ready
22 22 CE Ring Indicator

Note: Pin 14 (new sychronization) is not connected.

TABLE 8-4. DATA TERMINAL CABLE

Data
Terminal
101 Pin Pin RS-232-C Function
On P3 (Female) Circuit
1 1 AA Protective Ground
2 2 BA Transmitter Data
3 3 BB Receiver Data
4 4 CA Request to Send
5 5 CB Clear to Send
6 6 cC Data Set Ready
7 7 AB Signal Ground
8 8 CF Data Carrier Detect
20 20 CD Data Terminal Ready

8.7.2 Modem (Data Set) Interface Signal Definitions
8.7.2.1 Pin 1 (AA) Protective Ground

This interface lead is connected to signal ground of the microcomputer by
connecting pin E18 to E19 with a jumper.

8.7.2.2 Pin 2 (BA) Transmitter Data

The interface lead provides the electrical connection from the microcomputer
to the associated data set for the purpose of transferring a bit-by-bit
serialization of the data which is to be transmitted across the communication
channel. 1In the time domain, character information presented on this lead
will appear least significant bit first through most significant data bit. 1In
asynchronous systems, each character serialization will be preceded by a start
bit and followed by one or more stop bits.

8.7.2.3 Pin 3 (BB) Receiver Data

This interface lead provides the electrical connection from the associated
data set to the microcomputer for the purpose of transferring a bit-by-bit
serialization of the data which has been received from the remote end of the
associated communications channel. The received character format is the same
as the format transmitted.

8.7.2.4 Pin 4 (CA) Request to Send

This eircuit originates in the microcomputer and is used to condition the
associated data set into the transmit mode. In half-duplex facilities this
interface signal is also used by the associated data set to control the
direction of transmission and to aid in the performance of the call turnaround
function. Some full-duplex facilities such as the Bell System 103~ and 212-
type data sets do not actually require this circuit for normal operation but
the circuit will continue to function as if it were required. Once the
microcomputer has asserted the REQUEST TO SEND interface signal, its transmit
logic must remain in an idle state until the associated data set has responded
with the CLEAR TO SEND interface signal described in the next section.

8-19

8.7.2.5 Pin 5 (CB) Clear to Send

The CLEAR TO SEND interface signal originates on the associated data set and
indicates to the microcomputer that serial data transmission may proceed
across circuit BA on pin #2. Some full-duplex facilities such as the Bell
System 103~ type data sets actually hold this circuit asserted once the
communications channel has been established, but the microcomputer must ignore
this constant status indication if circuit CA on pin #U4 is not asserted.

8.7.2.6 Pin 6 (CC) Data Set Ready

This interface lead originates in the associated data set and indicates to the
microcomputer that all prerequisite conditions are satisfied and therefore
data communications may now proceed. It is to be noted that the DATA SET
READY lead is indicative of the status of the local data set only and in no
way can be used to infer anything about the status of the remote data set.

8.7.2.7 Pin 7 (AB) Signal Ground

This interface lead provides the common ground reference potential for all
interchange circuits except circuit AA on pin #1. In addition, this ecircuit
is electrically in common with the logic signal ground of the microcomputer.
A jumper provides electrical commonality with circuit AA to minimize the
introduction of noise into the electronic circuitry. The jumper may be removed
at installation time if necessary.

8.7.2.8 Pin 8 (CF) Received Line Signal Detector

More commonly known as DATA CARRIER DETECT, this interface lead originates in
the associated data set and is used to indicate to the microcomputer that a
signal suitable for demodulation is being received on the communications
channel. Communications interfaces use this signal to prepare for data
reception and therefore all internal receiver logic must be held in an idle
state until circuit CF 1s asserted.

8.7.2.9 Pins 9 to 14 Not Used
8.7.2.10 Pin 15 (DB) Transmission Signal Element Timing

The DB circuit originates on an associated synchronous data set and is
used to provide the driving clock for all of the internal transmit logic on
the microcomputer. The microcomputer will present serial data to circuit BA
on pin #2 synchronously with the negative-to-positive transition of the
clocking signal on circuit DB. An associated synchronous data set samples the
data bit presented on circuit BA synchronously with the positive-to-negative
transition of the clocking signal on circuit DB.

It is worthwhile to note at this point that most synchronous data sets provide
an external transmitter clock option by which the user can provide his own
clock to the modem across circuit DA on pin #24 of the EIA standard RS-232-C.
Under these conditions, the modem will synchronize circuit DB on pin # 15 with
the previously mentioned external transmitter clock. This method of
supplemental clocking is not supported by the microcomputer. Accordingly, the
microcomputer is capable of interfacing only to synchronous data sets which
have the standard factory-wired internal transmitter clock circuit installed.

8-20

8.7.2.11 Pin 16 Not Used
8.7.2.12 Pin 17 (DD) Receiver Signal Element Timing

The DD circuit originates on an associated synchronous data set and is
used to provide the driving clock for all of the internal receiver logic on
the microcomputer. An associated synchronous data set will present serial
data to circuit BB on pin #3 synchronously with the negative-to-positive
transition of the clocking signal on the circuit DD. The microcomputer
samples the data bit presented on circuit BB synchronously with the
positive-to-negative transition of the clocking signal on circuit DD.

8.7.2.13 Pin 18 and 19 Not Used
8.7.2.14 Pin 20 (CD) Data Terminal Ready

This circuit originates in the microcomputer and is used to prepare the
associated data set for connection once a call has been established. The
actual connection can be initiated by either a manual or automatic answering
procedure in addition to either a manual or automatic call origination
procedure. Circuit CD is dropped to terminate a completed call and should not
be raised again until the associated data set has responded by dropping
circuit CC on pin #6.

8.7.2.15 Pin 21 Not Used
8.7.2.16 Pin 22 (CE) Ring Indicator

This interface signal originates on the associated data set and indicates to
the microcomputer that an incoming call is pending on the communications
channel. Note that the microcomputer incorporates an integrator circuit on
the RING INDICATOR signal to protect against the spikes and false-rings
normally associated with circuit CE due to the inductive coupling effects
inherent in the cables used to connect the microcomputer with external data
sets.

8.7.2.17 Pins 23 to 25 Not Used

8-21

APPENDIX A
WIRING TELETYPE MODEL 3320/5JE FOR TM 990/101MA
A.1 GENERAL
Figure A-1 shows the wiring configuration required to connect a 3320/5JE
Teletype in a 20 mA current loop with a TM 990/101MA. Other teletypewriter

models may require different connections; therefore, consult the manufacturer
for correct wiring of other models. Teletypewriters can be used with Assembly

No. 999211-0001 only.
; CAUTION ¢

Note the 117 Vac connection at pins 1 and 2. Be sure that this voltage
is not accidently wired to the TM 990/101MA board.

A.2 CONNECTIONS

The following assumes that the teletypewriter is wired as it came from the
factory.

(1) Locate the 151411 terminal block at the left rear (viewed from the
rear) of the machine (Figure A-1).

(2) Move the white/blue wire from terminal 4 to terminal 5 on the
terminal block.

(3) Move the brown/yellow wire from terminal 3 to terminal 5 on the
terminal block.

(4) Move the purple wire from terminal 8 to terminal 9 on the terminal
block (for 20 mA neutral signaling).

(5) ’Lccate the power resistor behind the teletype power supply. Remove
the blue wire from the 750 ohm tap and connect it to the 1450 ohm
tap, as shown in Figure A-2,

(6) Check pins 3, 4, 6, and 7 at terminal strip 151411, Voltage to
ground must be zero with power applied. If not, do not connect to
the TM 990/101MA.

NOTE
For teletypewriter operation, jumper E36/E37 must be installed
and E39/E40 must be in the EIA position.

A-3. TROUBLESHOOTING

If the printer continues to chatter after the RESET switch on the TM 990/101MA
has been activated, reverse connections 6 and 7 at the terminal strip.

PRINTER

KEYBOARD

TM 990/101MA

P2
ouUTPULL

r}
OUTPUSH

24
INPULL

18
INPUSH

z

r‘123456789

EEEEEEEEE

/

\

LEFT REAR VIEW OF TELETYPEWRITER

DETAIL A

TELETYPE

STRIP
151411

MODEL 3320/5JE

TERMINAL

VIOLET{PURPLE)

L/
| YELLOW

BLACK/GREEN

WHITE/BROWN

/
| RED/GREEN

WHITE/YELLOW

/
| WHITE/BLACK

WHITE/BLUE

L
. BROWN/YELLOW

GREEN/ORANGE

b~

| RED

GRAY(SILVER)

L —
b WHITE/RED

117 VAC

117 VAC

*NO.6 SPACE LUGS

FIGURE A-1. TELETYPEWRITER TERMINAL STRIP CONNECTIONS

A-2

1450 OHM TAP

DETAIL A

FIGURE A-2. TELETYPEWRITER RESISTOR CONNECTION

A-3

APPENDIX B

EIA RS-232-C CABLING

Figure B-1 shows the wiring for the 743 KSR cable attached between connector
P2 on the TM 990/101MA and a T43 KSR data terminal. Also shown is the
relationship between cable wires and signals to the serial interface, the TMS
9902A. Figure B-2 shows the cable configuration for the 733 data terminal.
Figure B-3 shows the cable configuration for the 765 data terminal.

NOTES

1. When using an RS-232-C device, disconnect jumper E36/E37 and
insert jumper E39/EL0 (EIA position). See Figure 7-2.

2. If you want to make your own cable, be aware that the connector
plugs of various vendors, including TI, do not necessarily use
the numbering schemes on the board edge connector. ALWAYS refer
to the board edge when wiring a connector.

TM 990/101MA EIA CABLE
A
TMS 9902A r
P2 P2
PROTECTIVE GND o
1
3 743 DATA
3 RECEIVED DATA TRANSMIT DATA
RIN 2 2 TERMINAL
2 TRANSMITTED DATA . RECEIVE DATA
XouT 3 3
S 5 DCo REQUEST TO SEND
RTS T — s 8
- DTR
crs |8 20 :
— SIGNAL GND
B SIGNAL GND , ;

NOTE: Suggested E!A cable connectors (ITT Cannon or TRW Cinch):
P2: DB 25P
P1: DE-15S

FIGURE B-1. EIA RS-232-C CABLING FOR 743 DATA TERMINAL

TM 990/101MA

TMS 9902A
P2
PROTECTIVE GROUND ;
an I3 RECEIVED DATA)
xouT |2 TRANSMITTED DATA .
33K, %W
+1 4 5
1,
i ;%: %W 6
SIGNAL GND ,
— DCP o
DSA |2 DTR 20

EIA CABLE

PROTECTIVE GROUND

P1

TRANSMIT DATA

RECEIVE DATA

CTS

DSR

SIGNAL GND

REQUEST TO SEND

DATA TERMINAL READY

FIGURE B-2. EIA RS~232-C CABLING FOR 733 DATA TERMINAL

T™ 990/101MA

TMS 9902A

P2
PROTECTIVE GROUND 1
RIN 3 RECEIVED DATA 2
XOUT 2 TRANSMITTED DATA 3

3.3K, W
+1 . 5
i ;% UW 6
SIGNAL GND 7
RTS 5 DeP 8
OsA |2 DTR 20

EIA CABLE

PROTECTIVE GROUND

W N WN -

P

733
DATA
TERMINAL

TRANSMIT DATA

RECEIVE DATA

CTs

DSR

SIGNAL GND

REQUEST TO SEND

DATA TERMINAL READY

FIGURE B-3. EIA RS-232-C CABLING FOR 765 DATA TERMINAL

14

15
1"

765
DATA
TERMINAL

APPENDIX C

ASCIi CODE

TABLE C-1. *ASCIl CONTROL CODES

BINARY HEXADECIMAL
CONTROL CODE CODE
NUL — Null 000 0000 ‘ 00
SOH — Start of heading 000 0001 01
STX — Start of text 000 0010 02
ETX - End of text 000 0011 03
EOT — End of transmission 000 0100 04
ENQ - Enquiry 000 0101 05
ACK — Acknowledge 000 0110 06
BEL — Bell 000 0111 07
BS — Backspace 000 1000 08
HT - Horizontal tabulation 000 1001 09
LF - Line feed 000 1010 OA
VT — Vertical tab 000 1011 0B
FF - Form feed 000 1100 oC
CR — Carriage return 000 1101 oD
SO — Shift out 000 1110 OE
Sl ~ Shift in 000 1111 OF
DLE - Data link escape 001 0000 10
DC1 - Device control 1 001 0001 11
DC2 -~ Device control 2 001 0010 12
DC3 - Device control 3 001 0011 13
DC4 — Device control 4 (stop) 001 0100 14
NAK — Negative acknowledge 001 0101 15
SYN - Synchronous idle 001 0110 16
ETB — End of transmission block 001 0111 17
CAN — Cancel 001 1000 18
EM — End of medium 001 1001 19
SUB — Substitute 001 1010 1A
ESC — Escape 001 1011 1B
FS — File separator 001 1100 1C
GS - Group separator 001 1101 1D
RS — Record separator 001 1110 1E
US — Unit separator 001 1111 1F
DEL — Delete, rubout 111 1111 7F

*American Standards Institute Publication X3.4-1968

C-1

TABLE C-2. *ASCIll CHARACTER CODE

BINARY HEXADECIMAL : BINARY HEXADECIMAL
CHARACTER CODE CODE CHARACTER CODE CODE
Space 010 0000 20 P 101 0000 50
! 010 0001 21 Q 101 0001 51
" (dbl. quote) 010 0010 22 R 101 0010 52
010 0011 23 s 101 0011 53
$ 010 0100 24 T 101 0100 54
% 010 0101 25 u 101 0101 55
& 010 0110 26 v 101 0110 56
* (sgl. quote) 010 0111 27 w 101 0111 57
{ 010 1000 28 X 101 1000 58
) -~ 010 1001 29 Y 101 1001 59
* (asterisk) 010 1010 2A z 101 1010 5A
+ 010 1011 2B [101 1011 58
, {comma) 010 1100 2C \ 101 1100 5C
— (minus) 010 1101 2D] 101 1101 5D
. {period) 010 1110 2E A 101 1110 5€
/ 010 1111 2F _ (underline) 101 1111 5F
0 011 0000 30 110 0000 60
1 011 0001 31 a 110 0001 61
2 011 0010 32 b 110 0010 62
3 011 0011 33 c 110 0011 63
4 011 0100 34 d 110 0100 64
5 011 0101 35 e 110 0101 65
6 011 0110 36 f 110 0110 66
7 011 0111 37 g 110 0111 67
8 011 1000 » 38 h 110 1000 68
9 011 1001 39 i 110 1001 69

011 1010 - 3A i 110 1010 6A
: 011 1011 38 k 110 1011 6B
< 011 1100 3c I 110 1100 6C
. 011 1101 3D m 110 1101 6D
> 011 1110 3E n 110 1110 6E
? 011 1111 ©3F o 110 1111 6F
@ 100 0000 40 p 111 0000 70
A 100 0001 a1 q 111 0001 71
B 100 0010 42 r 111 0010 72
c 100 0011 43 s 111 0011 73
D * 100 0100 aa t 111 0100 74
E 100 0101 45 u 111 0101 75
F 100 0110 46 v 1110110 76
G 100 0111 47 w 111 0111 77
H 100 1000 a8 x 111 1000 78
| 100 1001 49. y 111 1001 79
J 100 1010 4A z 111 1010 7A
K 100 1011 4B { 111 1011 78
L 100 1100 ac ‘. 111 1100 7C
M 100 1101 4D } 111 1101 7D
N 100 1110 4 ~ 111 1110 7E
o) 100 1111 aF

sAmerican Standards Institute Publication X3 4-1968

C-2

APPENDIX D

BINARY, DECIMAL AND HEXADECIMAL NUMBERING

D-1 GENERAL

This appendix covers numbering systems to three bases (2, 10, and 16) which are used
throughout this manual.

D-2 POSITIVE NUMBERS

D-2.1 DECIMAL (BASE 10). When a numerical quantity is viewed from right to left, the right-
most digit represents the base number to the exponent 0. The next digit represents the base

number to the exponent 1, the next to the exponent 2, then exponent 3, etc. For example, using
the base 10 (decimal):

106 105 104 103 102 10" 100
X, X X X X X X

or

1,000,000
100,000
10,000
Y 1000 100 10 1
X, XXX , X X X

For example, 75,264 can be broken down as follows:

“%,264
L ax10°-4x1 4
6x10'-6x10 - 60
b———2x10°-2x 100 - 200
L—-———5)(103:5“000 - 5000

7x10°-7x 10,000 - +70000
752641

D-1

D-2.2 BINARY (BASE 2). As base 10 numbers use ten digits, base 2 numbers use only 0 and
1. When viewed from right to left, they each represent the number 2 tothe powers0, 1, 2, etc.,
respectively as shown below:

215 26 25 24 3 22 1 0
(32,768) see (64) (32) (16) (8) (4) (2) (1)
X eeoe X X X X X X X

For example, 11011, can be translated into base 10 as follows:

1 1 0 1 1
L1x20-1x1=1
1x2'=1x2= 2
x22=0x4= 0
1x23=1x8= 8
1x 2% = 1 x16= +16

or 11011, equals 27:,.

Binary is the language of the digital computer. For example, to place the decimal quantity 23
(23,4) into a 16-bit memory cell, set the bits to the following:

0 A 15
ololololololololololol 1]o0! 1111

whichis 1 +2+4 + 16 - 23y.

D-2.3 HEXADECIMAL (BASE 16). Whereas binary uses two digits and decimal uses ten
digits, hexadecimal uses 16 (0t0 9, A, B, C, D, E, and F).

The letters A through F are used to represent the decimal numbers 10 through 15 as shown on
the following page.

Nio Nis Nio Nis
0 0 8 8
1 1] 9
2 2 10 A
3 3 11 B
4 4 12 C
5 5 13 D
6 6 14 E
7 7 15 F

When viewed from right to left, each digit in a hexadecimal number is a multiplier of 16 to the
powers 0, 1, 2, 3, etc., as shown below: ‘

163 162 16! 160
(4096) (256) (16) (n
X X X X

For example, 7 B A 5,6 can be translated into base 10 as follows:

7 B A 5
I 1:—-5x1¢:'.0= 5X1 = 5
10x161=10Xx16 = 160
11X162=11X256 = 2816

7X163= 7X4096 = 28672

316534

or 7B A 5, equals 31,653,.

Because it would be awkward to write out 16-digit binary numbers to show the contents of a
16-bit memory word, hexadecimal is used instead. Thus

0Q3E;s or > 003E { > indicates hexadecimal)

is used instead of
0000 0000 0011 1110;

to represent 62, as computed below:

D-3

x 20
1 x 21
1 X 22
1x 23
1
1

i
fod

1
—
—
—
Ir‘L‘?

o

x 24
X 25

[
0w N O

= 16

6219

BASE 10

6 12_10
l 2 X 109
6 X 10!

18

BASE 16

14
48

3 Egg
l T__Mxmo

3 x 161

6219

Note that separating the 16 binary bits into four-bit parts facilitates recognition and translation

into hexadecimal.

0000 0000 0011 11109

o

0 0 3

I o

Ei6

P

1100 0111 1011 11119

Table D-1 is a conversion chart for converting decimal to hexadecimal and vice versa. Table D-2
shows binary, decimal and hexadecimal equivalents for numbers Oto 15. Note that Table D-1 is
divided into four parts, each part representing four of the 16-bits of a memory cell or word (bits
0 to.15 with bit O being the most significant bit (MSB) and bit 15 being the least significant bit
(LSB). Note thatthe MSB is on the left and represents the highest power of 2 and the LSB on the
right represents the O power of 2(2°- 1). As explained later, the MSB can also be used to signify

number polarity (+ or —).

NOTE

To convert a binary number to decimal or hexadecimal, convert
the positive binary value as described in Section D-4.

D-4

TABLE D-1. HEXADECIMAL/DECIMAL CONVERSION CHART

MSB LSB
16° 162 16' 16° .
BIrs{o 1 2 3|4 5 6 7 |8 7 8 11| 12 13 14 15

HEX DEC | HEX DEC | HEX DEC | HEX DEC

0 ol|o o |o ol o 0

1 4096 | 1 256 | 1 16| 1 1

2 8192 | 2 512 | 2 2| 2 2

3 12288 | 3 768 | 3 48| 3 3

4 16384 | 4 1024 | 4 64| 4 4

5 20480 | 5 1280 | 5 go| s 5

6 24576| 6 1536 | 6 96 | 6 6

7 28672 7 1792 | 7 M2 7 7

8 32768 | 8 2048 | 8 128 8 8

9 36864 9 2304 | 9 144 | 9 9

A 40960 | A 2560 | A 160| A 10

B 45056 | B 2816 | B 176 | B 11

c 49182| C 3072 | C 192 ¢ 12

D 53248| D 3328 | D 208| D 13

E 57344 | E 3584 | E 224| E 14

F 61440 | F 3840 | F 240 | F 15

To convert a number from hexadecimal, add the decimal equivaients for each hexadecimal
digit. For example, 7A82,s would equal in decimal 28,672 + 2,560 + 128 + 2. To convert
hexadecimal to decimal, find the nearest decimal number in the above table less than or equal
to the number being converted. Set down the hexadecimal equivalent then subtract this
number from the nearest decimal number. Using the remainder(s), repeat this process. For

example:

31,362, - 70005 + 26900

2,690 - AOQ;s + 13010
+ 2

1301 - 80i¢
210- 26

7000
AOO
80

7A82¢

TABLE D-2. BINARY, DECIMAL, AND HEXADECIMAL EQUIVALENTS

BINARY DECIMAL HEXADECIMAL
(N2) (Nio) " (Nie)
0000 0 0]
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 9
1010 10 A
1011 11 B
1100 12 C
1101 13 D
1110 14 E
1111 156 F
10000 16 10
10001 17 11
10010 18 12
10011 19 13
10100 20 14
10101 21 15
10110 22 ‘ 16
1011 23 17
11000 24 18
11001 25 19
11010 26 1A
11011 27 iB
11100 28 iC
11101 - . 29 1D
11110 « 30 1E
IRRRAE 31 1F
100000 32 20

D-3 ADDING AND SUBTRACTING BINARY
Adding and subtracting in binary uses the same conventions for decimal: carrying over in

addition and borrowing in subtraction.

Basically,
0 1 10
+ 1 + 1 -1
1 10 (the carry, 1, is carried to the left) 01 (1 is borrowed from
top left)
1 11
=0 + carnry 1
1 1
+ 1 = 0 (from above) + 1 = 1 + 1

101

1
-\——carry carry 1 + 1 = 10-——/—.

1
1 1000 0110
} =0+ 1 carry .
1 -1 Borrow the 1 -1
1 0111 0111
=0+ 1 carry
+ 1

1

L. o
carry 1 + carry 1

8

D-4 POSITIVE/NEGATIVE CONVERSION (BINARY). To compute the negative equivalent
of a positive binary or hexadecimal number, or interpret a binary or hexadecimal negative
number (determine its positive equivalent) use the two’s complement of the binary number.

NOTE
To convert a binary number to decimal, convert the positive binary
value (not the negative binary value) and add the sign.

Two’s complementing a binary number includes two simple steps:

a. Obtain one’s complement of the number (1°s become O’s, O’s becomes 1's) (invert
bits).

b. Add 1 to the one’s complement.

For example, with the MSB (left-most bit) being a sign bit:

010 (+29) nt (-1 110 (=23 101 (=32)
101 Invert 000 invert 001 Invert 010 Invert
+1 Add 1 + 1 Add 1 +1 Add 1 +1

110 (=27) 001 (+15) 010 (+29) 011 {+39)

This can be expanded to 16-bit positive numbers:

(=39F64g) 0017 1001 1111 0110 (39F645 = +14,8384¢)
1100 0110 0000 1001 Invert
+1 Add 1
(=C60A1g) 1100 0110 0000 1010 (C60A;5 = —14,83819) Two’s Complement
SIGN BIT(—)

And to 16-bit negative numbers:

{(=C60A4g) - 1100 0110 0000 1010 (C60A4 = —14,8384¢)
0011 1001 1111 0101 Invert
+1 Add 1
(=39F64¢) 1001 1111 0110 (39F64 = +14,8381g) Two's Complement

0011
_\—SlGN BIT(+)

D-8

c1-c8, €11, C13-C17,
C19-C22, C24, C26-C39,

Symbol

C41-cu4, chg9, c51

c9, C12, C25, Cho

c10

C45-Cu8, C50

C52
CR1,
CR3

D31

E1-E40, E53-E56, TP1

CR2

E1-E35, E38-E56

All Jumpers

L1

P2, P3

Q1

R1, R2, R4, R5, R7, RS,
R11, R23, R26, R4Y4, RU5

R3, R12

R6

R9, R10, R14, R15

R13,
R18,
R19,
R33,
R20,

RU8

R16, R17
R24, R25

R21

R34, R39-Ri1

R22

APPENDIX E
PARTS LIST
Description

Capacitor, 0.047 uF

Capacitor, 22 mFd
Capacitor, 18 pFd
Capacitor, 0.047 mFd, 10%
Capacitor, 2.2 uF

Diode, IN5333B

Diode, IN91iB

Diode (LED, rt angle)

Pin, Jumper (BEI 75481-002)
Pin, Jumper {(BEI 75481-002)

Plug, Jumper (BEI 65474-004,
R 530153-002)

Coil, RF, 3.3 uH
Connector, 25-pin (AMP 206584-2)
Transistor, PNP

Resistor, 4.7K ohm

Resistor, 2.2K ohm
Resistor, 1.0K ohm
Resistor, 15.0 ohm
Resistor, 2.2 ohm

Resistor, 68.0 ohm

Resistor, 910 ohm,

i
=

Resistor, 330 ohm,

u =1
=

Resistor, 620 ohm

Resistor, 220 ohm

E-1

-0001

X

-0002

X

-0003

X

Symbol
R27
‘R28
R29
R30
R31, R32, R42, RU3
R35, R36, R46, RUT
R37
R38
R39
S1
S2
U1
u2, U8
U3, U26, U32

U4, U18

U5, u6, U10, U17, U20

U7, U027

U9, U39

U11

U12

U13, U4, U22, U23
U15

U16

U19

u21

U2y

U25, U52

PARTS LIST, Cont.

Description

Resistor,
Resistor,
Resistor,
Resistor,
Resistor,
Resistor,
Resistor,
Resistor,

Resistor,

3.9K ohm
2.7 ohm -
330 ohm, ¥ W
33K ohm

27K ohm

3.3K ohm
3.3K ohm

560 ohm

330 ohm, ¢ W

Switch, toggle

Switch, 5-position DIP

IC, TMS 9901N

Resistor,

10.0K ohms pkg.

IC, SN74LS241N, Line Drivers

Network,
Netwopk,
Network,
Network,
Network,

Network,

SNT4LSO8N
SNTULSTUN
SNTLULSOLN
SNTULS251N
SNT4LS132N

SNTLULS14N

IC, SN7HLS2U5N, Octal Buffer

TMS 9900

TIM 9904A, clock driver

PROM, 745287, memory decode

Network,
Network,

Network,

SNT4LSO2N
SN74LS153N

SN74LS138N

E-2

-0001

X

-0002

X

-0003
X

X

Symbol
U28-U31, U34-U36
U29, U31, U35, U37
U33, U49
U38
U40, U
u42
uly
L2, Usy
Ul2-uls5

U46, w47

uu48
U50

U51

U53
Us4
U55, Us56

VR1

XU1

XU15

XU16, XuuTt
Xu19

XU28-XU31, XU34-XU37,
XU46

XU42-xu4s5

Y1

PARTS LIST, Cont.

Description
2114 1024 x 4 RAM
2114 1024 x 4 RAM
IC, SN75188N, Line Drivers
Network, SNTULS10N
Network, SN75189AN
TMS 2708, EPROM, TIBUG byte 1
TMS 2708, EPROM, TIBUG byte O
T™MS 2716, 2048 x 8 EPROM
T™MS 2716, 2048 x 8 EPROM

TMS 9902A Asynchronous
Communication Controller

IC, SNT75112N
Network, SNTULSOON

IC, SNTULS259N, low power
Schottky

Network, SN75154N
Network, SN75107N Interface
Resistor Pack, 4.7K ohm, 6-pin SIP

IC, UA 7905C/MC 7905CP,
Voltage Regulator

Socket, 40 pin
Socket, 64 pin
Socket, 20 pin
Socket, 16 pin

Socket, 18 pin

Sccket, 24 pin

Crystal, 12 MHz, 5%, HC-18U

E-3

-0001

~=0002

-0003

X

APPENDIX F
SCHEMATICS

po AT 6
NOTES. UNLESS OTHERWISE SPECIFIED t bevice vy VOLTAGES T P! ; T TR T T]
LCAPACITANCE VALUES ARE IN ¢ X -y -5V GHD +5 ¥ 2V ! AT REVISED TO AGREE W/ASSY | 5/12/8 fhmzes
MICROFARADS (] 1 % 7 27 . B cna36adB JERRY CLARMK 705/78 | fraf e
2.RESISTANCE VALUES ARE IN OHMS \ ;':;SMIA 1 w0 C | CWN436599 Mensero PV R T
3 ALL RESISTORS ARE 'aw ; Joat 4 18 DICNa71723 (€) Oimpdvy Gioeo|@/12/ B0 |Gy & 72}
. ALL SIS 4w, 5% : ;x:%:/:l socker 9 2 £ [CN43G 246 Bty & 1950 [l D
[4] ci8 anD c23 are user's oPTION } e :.2; ~2dd . 20 = F |CN458943 (E) Humuthosry "%t 4o | 1772/ 81 |Goepydt 22iss
, s 270812716 i 18 G |cna58G44 mut ae 7-1G-81| 7/28/8 | Mosom
[5] Pinv NUMBER ASSIGNMENTS FOR F o LSS a n u 13 T CHATAYID [Ronin I 7282 212 87 0@ S
V4T APRLY TO THE 20 PIN SOCKET B Rt 1o k \ J {CN494998(E) L fanran 729221 8~9-82 | s
TO ENABLE USER TO INTERCHANGE 5188 1 7 1
THE TMS 99024 (IBPINS) WITH A |t z 1
TMSFIO3 (2O PIN) (USER S OF TION) HI rsis s 15 e
[6] WUMBER PLUGS ARE INSTALLED ON E20-£2I, (| 7w LI I i i 03
£22-£23, E24-E25 4S5 SHOWN OnN -OQ01 ONLY 75112 u 7 14 3 ==
74S138, 153, 251, 259; 745287 8 16 .
THESE COMPONENTS ARE INSTALLED ON 741500 ,
-000! ONLY _ TSR y m -
[B] ThESE componeNTS arE wsTALLED ON :] s ? 1 =
~0002 ONLY ¢ | Tuis08 7 14
9. NC DENOTES NO CONNECTION .| nuso 7 n !
. 7uLS14 7 '
. L7y 7 4 c
i TuLS132 7 0]
+12v J- J_ >P1- 75,76
Cl,c3sc38
$38 —~ =%
‘——
v e Pi- 3,4, 97,98
C458-C47, CH=€? €13, VRI
C49,650,C5/ Lcm Clé Cl7, 3 sy
_L Loat _I* 1o €22, ! 908 &7
W E *ch: Corwe cAo Argg lr L cis,caz
= <k #TEF | [P
GND ’ ©i-1,2, 21,2325, 27,77,
N 7 79 8/,83,85,89,91,99 100 8
+ B P4- 5791115,17,19,21,25
= cl2 T C36C99 25 27,29, 81,38, 38,37 39
22 047
-lav Ri-73,74
GRANT IN. E"B Pl-95
SPARES
" LRy pi-v6
u7 uar 2 . —
13! 9
7 ”
4L504 4LS0O4 75894 781894 ms%'ruiil.: J[! EIHIH H,s_,
V40
vi2 33 12 (234
13 2 2 3 e PART OR (DENTIFVING NUMBER NOMENGLATURE OR DESCRIFTION I [rores,
75188 75188 PARTS LIST
SRR —— . i
74LS!4 751894 e e 1=9-7, {i@ﬂsus INSTRUMENTS
IR e 0 Tl i
o INTERRRET DAING SEA WL 5 100" XAy s
::;:z::“n:":n:.::,,';m.‘ fug.00 PY, DIAGRAM, LOGIC,DETAILED
e Lero ron mi oy ToCe AL ¥ 278
994726 | 8117 e - el TM990/ I0IMA
o . M. " L8~ o DT BT AR
T T T T 994728 | a7 R g R e o
2 E S CLASSIFICATION ' | NEXT ASSY | hﬂ_______ . e 800 A%, a2 D962‘4l 994727 ﬂluw
TR - g BT ARPLICATION o Vo oof Payt Gt Tower 1OF 7
"8 | 7 [5 i IENEEN 3 2 l !

=1
ca 47K vi2
047 S
BV +8v © ot = 4 CLRCRY: o 0 o
=} PRElo = 74LSi4 ’
L i v? 5 o .a ‘ 7L802
- P T Dp"ff] v20 IORST = o, 35
: 74,808 o Dew & HOLDA SH3
74LS132 741504 N cx 518 CLR | 741574 ver A
‘ HOLDA-
.5V SR |7a1574 | | CLR |7a1574 13 L e S=3,7
] 2 741504 HOLD= ¢ 3
4.5.“% ST READY o3
od A
S B~
ei-sa & ERE b T . Al
BT s ag
- +5v CROCLK G - SH36
- re vt 74 L5138 uer CLK G
R2E 3 L eaNc] 5 J- S, CRUCL SH5.6
o Ut o L A vop2 741504 V&
- [74L.5132 ¥ e
pings (ZESTRET.BT ann, T 2 4o “ F11 :‘z 3 oo 122 RO N
) cz3 L 12 4 ot
EI 5 7aLsiaz . 4] rars7a q624 vaps £2| peany or (2 =¥
< BT G28 va p— 64 Pyl oz
] 1 | v HoL 44 03
> @ Te Y5 2 noLoa o3 D4
P2-ie] w20 —&le: vep— Da |23
=l 7 uts 46 o5
K & u25 v7 o8 |77 06
‘CLR TMS 9900 D&
P T SH34
o *5v &l ve ~
74L8O4
DBIN
1AG LOAD~ 2 ioac-
sH3 LR o
'8y . ‘;’ MEMEN~
RESET-
:.67»< Dr-—'f 21 tac Sm3
EXTCLKB -~ 17} oscin @ g | o1
pi-28 oy BIS \an - ’ 1 @2
LyTank! @ 12 Rid . ': 28 23
L leclo v "¢ ! 4
P27 i a.suui T oo e A RIG T @ s34
N v
= ™ o4 |2 32 INTREG~
= 8 yraL i 1co
vi FT |2 2l
I2MRE T : 1c2
L% xTapz @2 [HR-nc X ; 3 Saa
. [2 RUIN *
sn3 ShiC —|oseeeT @2 (] g 39 fnuou‘r 5&.
‘P4 NG €9l crucLx
Uie V]
TIM 9904 A a N
! u 3
z S 2 ¥ g ~|NIm g 5 W
) g P v a 7 }_{‘U E MG 3
ml W ul 3 g o & wlwHluly
8 ¥ 59 2 — 5% ~
N . -
(LY ~m n 9 L ¥
v 9 33 3 g 3 o 3
a § L 53 U
% Lo lli il
T 994727 v
T 2
. t .
2 |
. [.
5 C T !
8 |

13~ 1% +SV
sz WAT {> spare 335 R?
741504 4K . A
£ £7 3 READY
HOLDA- Z{uié) SH2
sH2,7 —2 T DBIN
. BeTa— SH2
° -7
BOM 1= ROMSEL
oni Bowz 20 57
on, RAMS 74LS00 oy OLDA 0o 8lg, OBy 12| 008 No s
a5k oYl 17U 2 o.LB 34
47K AR 4|5 10} nfizfis 27 A2
(OE_I.L____.__M/\,— +5V s = S5 SN S G'J§ o] eipzs ax j4 02.B 5| 38
! Tie = PSRNV
£ 20821 HoLDC - e = Tuza el HOLD= 03 5 Vg CREN-: X 20
RAM-MAP-KHI) SHT i® uz4 26 B4
ES 74L8153 sH2,4 { p4 lps ag |& D4.8 37
£17 EPROMSEL 2 gao < & o = > Bl S oee ol
7
(LE'b i "9 Do Zlgy a7l be.B 39
Bl 4 = i s} pr.B
Ei4 7 U, 10 o7 Bo 48 PI-40
O
Gz 7
oEL2 : R 741514 7415245 9_:
E12 5 47K
A L—AAA— +5Y II
= 14y 145287 - _ B
9 usz2 Yoo%——i—é—%—t—%—'gw [[o1:} 18im UlsAl 2 jo]-N -] Pl-41
S 1,2 MEMEN B{U8)2 : | *‘D'la_‘ﬁﬁrg”i) 17 g azl2 9B S| 4
Sy e, [HEee | CrEA Y " DI i6lps asle__ 0108 {1 4
3|uig = +%46ZB Y3ptr—m— NC ohe
T4L502 31 pil ISEL4— o " Dit 1516s A4lS . 44
74L808 z|o sp10_ ISELE= 70 SHz,4 ("o 73 PO PRTPY a
1) b2 _TSELe— > T ome
q vipl ISELT-oi e D13 B A6 : 46
TALS02 D4 12|a7 a7 |8 DW4.B a1
74L5138 0I5 Y'Y m“ 2 DI5:B ypi.4g
. TBY 7aLseds
INTCRU/EXTCRY= L
- 74LS 245
‘e , _CRYOUTY 2iia T [l8__chuouT.g > PI-50 i——n-lr—', A
SHEs e ruN.G 4l1a2 Y2 o e CBUN gz s A8 e Bl on Al 2 8.8 Spigs
P29 {— ol e » SHZ2,4 (A9 I 82 A2 3 A9, B | 66
—2f) [RE] S .
NC{ 8| “ 12 }NC AIO 1 P I S Y- - o7
a4 ¥4 - All 15 B4 A4 =3 AlLLB ©8
CLK— 1 241 P 9 CcLkB o Pi- 26 e
s : 13 738~ T A 24 sHz-o (A2 las As|e | A2 &9
swzs 07 B3 202 292 & s = 7 Tase
N |- 15lhs o3l BlB- o 22 Be A6 A o 70
y A 12 .
o 1 1Thus 4|3 3868 7 ‘9 14 87 a7 -
SH2 17 1" asl2 L AIBB N5 50
’ HED in a LRE Bem'{EL
vey 7] TAs241 L 2 L A8 —
P~ 25 = '
! sm2 HOLDA 2liai Y&y 8] ona sy o) g
AQ 18lg ™7 A j2 A0.B PI-57 snz s JORST— 42 vz ,&r—m%m—aa
a 11]g, Y22 4,13 AlLB 58 P90 &4 READY. B 4 S 193 114
- 4 B RI9c R20 8 12
SHZ (a les a3 AZ 59 9103 620 e ol
AD 1214 a2 A3.B =] P18 NG {——2a1 24) NC
Y Mies a5t Ad.B ol = . Y —Blone 2veld
| 23 Blae aoll 45.8 ©2 PI-92 {—fi— g iOLDB Dloaz 2va[2 HOLD= o, 12,7
. R2) R22 i1 3 CRUCLK.B=- _
sH24 | Ab 2l vl Aeb N1 e by Ses 288 2vaf3 CAUCRET Sp g7
AT 1liga AB 9 AT.B Pl- o4 P91 X, _IWLSZ4I
ENEL = 4BV — K
By 7415245 g6 ERUCLKG -
= - Lial T TR L i
o lreeseem |Dlo6214] 994727 |E
TilAﬁhllssv:I,"l.:‘b‘uhva N llC'A‘-!NOfgI e
B - 3 2 1
) 7 i 6 5 1 |

FUNED

-4

Ra4 ST o ’\ o
4TK) .
+5y £26| E27| £28| E29| E30 E3| E32{ E33| g34] E35 RAS
4.7K
+5V
S 3 ROM |- - =
ROom2-—
SH2,3 A4 53
AS L 220, 120 | A 2% Q AS 22 20} AS 224, Ao@]
e Y Ao z3h AMe FYE) i8 (Ao 23 B FOREES P A IT
a7 Y L4 oeh7_oo AT 708 a1 17100 Al 11,0 Lall 08 o0&
28 Y 482 16D A8 2 6 D9 AB 2 6_ DI A e 09 Y _[9
Ao Q7 b a— A6 Q7
Y3 Y a2 3]a . QoS DZ A9 = 15 D0 A3 3 15 D2 A as Y43, (1 DIO oo
enz3{ aio Y Ao 4 MU‘“QS 14 D3 " ai0_a] uez [1a D1l) AC 4| Y45 [1a Dpm a0 4laa Gsle pu Y on SHZ.3
Al Y an_ sl Qal2 Dé AR 12 DIz] A5 13 D4 A slas Qa3 D2 Y on 4
22 Y Az e Az - Q3|L.DS A2 & 1i__DI3 Y o5 AlZ__6la gl D3 Y o2
Y Az 7 Al qQzllo te ; A3 7 10 _Di4 [a3 7 10D a3 1 Al Qzl0__ Di4 Y ok
Y Aaa_ &l 2 D7 A48 5 DIS Al4 B 9 D7 [Aa_ 8 3 ps__ Y bis
» A0 Q1 | A4 8 . A0 ot ~2F
TMS2708/2716 T™MS2708 /2710 TMS2708/27i0 - ™
L))) $2708/2716
j 3\ N
. \. /
e =~
AS IS W bo AS 15 It D8 b__AS 15 W\ D2 ka5 5 I D8
A3 1/04 A Lo4
WY NN x{oa 12_Di WA 12 D9 A0 1% 12__Di Ae 6l,a 505 12 05
AT 11} ay 102 [2_D2 a7 15 DIO A1 17 > D2 A7 171 ppe[® Do
a2 Ila, 1)1 [14_D2 |28 | 14 ot l__AB 1 1403 AB_ e Tollt ou
49 2], A5 2 A9 2 - Ay 214
AlD Bl U3 SRR RN A0 3| uav AID 310 uss
FYTII A Al 4 Al 4 ALY : o
A 710 Az 7 l__al2 7 Al2 ' —_—
NERETY N Y - l__AZ & 8 a3 o 8 A ol,, & L8 Mz
a4 5lh, wWElo a4 5 i0 Al4_ 5 10 —A4 5o We H2,
TMS 4045 TMS 4045 - TMS 4045 TMS 4045
sHz,7 —WE= ‘ ¢ .
ey RAMZT
Do
_ A5 15 aptl..D4 b AS 15 {11 y h__ A5 15 1l o4 5 1Bl poabl DIz
DI Ll AL [:59 :1[’;85 12 D05 A AL 13 2 D13 A h__ AL 17 2 PE] L A 1 AB 1505 12 DI
A AT 1A 10212 D6 AT 17 13__ D4 a1 17 1306 AT la jpz i Did
am— A8 1.0 1joiPe_Dr AB 1 % 05 J k48 | 4 07 A Uay 101 P4 Dis
snz3] B LS o A9 2 i A9 2 AY 2 lae
’ D4 Ao 3], us0 A0 3| uvze AD 3| usl AC 3100 Uz
%] Al 4|43 :“2 : | 2:; ‘71 An2 Alax
= Az 7] \ A2 Tl
De | A e :‘2 &sle AR & & Az & 8 Az Cla zzle
o7 _A4_"5i,8 wE O A4S 10 _Al4 5 10 A& Slae wWE el
TMSA045 TMS 4045 TMS 4045 TMS 4045
L) y,
T Rt g e e
: - ~tthr Ipi9e6214 994727 |H
. - [NONE'] Toer
8 i 7 | 6 [t 4 3 | 2 1

64

W ~ -+ W
& T a e
"] " W 0
2 | g |
I I
et z z
£ = 2 es &
=l £z i ss> ICSs
Ul
] Da _
s sec £ £3 £4 €6 ISEL - gya
53
- -
INTREG - T e e L2
INTREG- INTZ- |8 - 4 - Pi-i3 cmsg) Lo
1cc 9
e — I CC INT3- - RI-15 L CRUIN
sn2 e e INT & - -
2 3 INTE- [
L(< R INTE- (&
IR 2 == Bi-ie
—,‘IWU?NA
INTra/pal2l Bi-ry
ﬁl|¢_u£.~m
[T /el 28 Pi-12
sHz,3 SERST- lreri— rlllufmm
sH2,36-%3 - Olg— INTiz/poZ PI-9 ﬂ\
CRUIN 4
sH2,3 CRUIMN ﬁ|l.l|||v,ua.u0 Y
sHZ,3 CRVGLT 2leruouT INTIRNEL Pi-i0
g 3l crucLK . [na-wm
swz -BELA Slce - TNRrr o El Pi-7
. AIO 39) ﬁ P 4-34 o B
, o — . .
All ELIP NTo/ el 22 PI-8 Pa-é Sz
SH2-6 A1z 35 s2 [DA-W@ 74LS 14
e |3
M__w - Mw 83 R g 22 Pi-5
- <2154 , L 3P a-35 R12
2 .
NT/ e 22 Pi-&
[U&Lo
o 12
=} o P4-12
Ps -
oa |2 Mh e pa-8
22 4-18 14Ls14 141804
P3 P4-1G
p2 (26 P4-ia
7
e |3 Pa-22
Po (28 P4-20
e 5w
- /
GRUCLKG Py
SH2,6 571 _N..cy.:
7405132 -
141508

e 3 P4-4

Lol LTV Ll i

_ S:_.Gm Z »1D|96214] 994727

e [scxNONE] Toue 5
8 [7 6 s 1 . 4 3 I 2 | 1

O

wis

'3 ., TRANSMITTED
PN]
su7 Ei1A - EiA+ _i21 p > P3-3 zv o
75188 334K6 TERMINAL
TERMINAL CLEAR TO SEND -
£18 pa-i 5 U para carmiEr 23-5
& DETECT
Teee EE—2(> 837 remmnar
9% DATA SET READY
sy 75188 MODEM pi-6
h 2N CLEAR TO
£56 0 s SEND p3-16
E55 227~
. 39K 75,9qu TERMINAL suz 3 SRUOUT 1315 P
DATA TERMINAL e -
s o READY o320 ,5‘:”‘5‘7“ Bler aolt- } ne s
SHS INTS~- Tar | eHz3CRUCLKG -Lial . gl \\ ot
75189A USI g4] PN
NC ISE(. 7- 3 7
& ﬂ/]‘t RECEIVED ISELO 2 o3 e_NC
a4 120e, T L INT 8= . .{r DATA S p3-2 |sH3 B a2 =
A3 13 gl Ha a2 c
s3 XOUT 751694 - ~N
A2 14 we7 £ SV = QOpF—
SH2 3,4, s2 RTS- Y
57 At Blg, [3] crsf® oI ed MODEM SCR P17 7415259
=) % i 4
- SO DsR w53
Swz,s, 7 SRUCLKG RUCL K 75154 74500
sH235 7 SRUOUT rUOUT &N |2
arzas 7 SRYIN .
852,38, -
ar3 135‘-5' »5Y
12 Jﬁ.ﬁ MODEM _SCT 53-15
Rz Us3
T 5 25k 75154
MS 9902 5y A E!\A+
pa-21 MODEM DTR
NC .
uso 4loe shZ ISEL 7- ISELT- o, 5
- f\zL DSR 3 &
p3-is & MODEM-DSR I NE Y
751894 D2 c 9
NE 1=}
4o B
- ML RI v3g |, 1
p3.22 (MODEM-RI o - A =
6261 751894 s w15 e
047 15054
1 7 i
= 13 Do
iz],
= 74L5251
e O 7w Lid s TR s
|,§1.,,,,L-~_J Dl96214 994727 |H
R focn NONET Joerr B
8 7 6 5 4 4 | 2 | 1 I

-4

s - e .__.‘.:.":— T
o mm— e — _._|
l INPUSH ia 4 ne
. | INPULL 2lg e mom
| s), R
+5v G 26
cRI cr2 e 9 |
) ;gi : | Ns3z3 IN5333 ["‘ s av - Ne
P25 € Loccrs Py dal +izv | oy o ‘
53% - L - — = o8 Ra3 33
os. 2.3k R29 7K
LOCOSR 3. ; :
p2-g &2 WA 2124 8y
6_LOGAC oo | l
l -
515 l = om '
! £s50
sne ElAd i __
ous ANT4- | E38 | | I
P2-18
[y £52 s I
- YL S~ P inr-H t 7T =7 u——
- DUPLEX
a2 - =3 RN I SELECTORS
" e | P2iza —5v
2,34, { BB 12s2 3, ocotr | caes E43 NS i
5,6 Al 13{g osrZ) I St 3z
! (=4
A {4 us3 ZI_Z5
SO 75154 s l
¢ t
sH2 56 SRWCLK L2lcrucLk xouT] ! I
8H 2,3 5,6 S82QUT 8lecruouT
sHz35eSBYN _ dliguin RTSHE ‘ } ‘
SHZ,.!,A,G-&—————K; @~ c-rs-,é_I o L._ _ . 1 I
SH3 ISEL 2~ ' £~ " 8 LOCXTD 523 "I caa
vse B75:53 ? | L
—> | TTY INTERFACE I I
LR SR RN - L |
TMS 9902 J I
E ouTPuLL |
HOLD A= | e 32 e outpusk P ’
sH2,3 = 2c 2v F
81 & N
P18 & 1 £ " p2-8 741800 NC{ '8 ues
- S 2T T=T-) = +5v B -8v
P79 €— vZe
B Pi-77 é— 7aLs24r Iy +SV Llo MULT! = DROP INTERFACE
T !E“’zs s) S
QMEMEN\Q"
Pi- 80 BN [y l 3 (2 f_ g2z E:] £23 R
P az(—-—ﬁ—:-B o OLOC~ | c e T | “izv 2-12
s a O - = B3 | 'Y |
;
- >
o2 _MEMCYC > p1-g4 = L a |
—]suz,3 28IN -E-L—)m-u 4 .y g2l E20 S pz-1a
23 MEMEN= = ;D: 6 RamM |- s 4
sz 4 —WE= = TALS IO o
k= a3 L2y £25 £24 o213
74LS00 o
i
LI NI 19; .Uﬂ"a Ramzs SH4 f — P2~
741810
A 2ot U2? 5 4 T P2r7
a7 74L604 vz L
TeLsC4 741914
e
[o Bar - 504727
Swa g;MrJ] e RGRET T3
N -
1 .t
8 7 e 1 5_. 1. g P 3, [. 2 | .

APPENDIX G

990 OBJECT CODE FORMAT

G.1 GENERAL » ‘

In order to correctly load a program into memory using a loader, the program in hexadecimal
machine code must be in a particular format called object format. Such a format is required by
the 7/BUG loader (paragraph 3.2.7 explains loader execution). This object format has a tag
character for each 16-bit word of coding which flags the loader to perform one of several
operations. These operations include:

= Load the code at a user-specified absolute address and resolve relative addresses.
(Most assemblers assemble a program as if it was loaded at memory address 0000s;
thus, relative addresses have to be resolved.)

» Load entire program at a specific address.
= Set the program counter to the entry address after loading.

= - Check for checksum errors that would indicate a data error in an object record.

G.2 STANDARD 990 OBJECT CODE

Standard 990 object code consists of a string of hexadecimal digits, each representing four
bits, as shown in Figure G-1.

TAG CHARACTER
/ - LENGTH OF RELOCATABLE CODE TAG CHARACTERS‘—j;7

OOO4CBLINK AQOOOBFF70C0004BOACCECOLOBOOOEBCLEOCO04SBO202CO02CTF 1IFCF 0001

A0012BCCA42BCCA0C004ABO200B2N0PB0420BOOOOBO200B0O003B0201 BO0O37F 30DF 0002

ACO28B1DOOB1OFFBFF70C0030R020CE0100R1 DOZBO4ACCBOA01 B140AB1EQOTF 2AFF 0003

AOO3EB0201B0003B0O380B 1 D00B03S0B0420BO3807F 760F — 0004

3001ETIMEO1S0000BL INK 7FAABF 0005

: BL.INK TXMIRA 0006
END OF OBJECT CHECKSUM FIELD

FIGURE G-1. OBJECT CODE EXAMPLE

G-1

The object record consists of a number of tag characters, each followed by one or two fields as
defined in Table G-1. The first character of a record is the first tag character, which tells the
loader which field or pair of fields follows the tag. The next tag character follows the end of the
field or pair of fields associated with the preceding tag character. When the assembler has no
more data for the record, the assembier writes the tag character 7 followed by the checksum
field, and the tag character F, which requires no fields. The assembler then fills the rest of the
record with blanks, and begins a new record with the appropriate tag character.

Tag character O is followed by two fields. The first field contains the number of bytes of
relocatable code, and the second field contains the program identifier assigned to the program
by an IDT assembler directive. When no IDT directive is entered, the field contains blanks. The
loader uses the program identifier to identify the program, and the number of bytes of
relocatable code to determine the load bias for the next module or program. The PXSASM
assembler is unable to determine the value for the first field until the entire module has been
assembled, so PX9ASM places a tag character O followed by a zero field and the program
identifier at the beginning of the object code file. At the end of the file, PX9ASM places another
tag character zero followed by the number of bytes of relocatable code and eight blanks.

Tag characters 1 and 2 are used with entry addresses. Tag character 1 is used when the entry
address is absolute. Tag character 2 is used when the entry address is relocatable. The
hexadecimal field contains the entry address. One of these tags may appear at the end of the
object code file. The associated field is used by the loader to determine the entry point at which
execution starts when the loading is complete.

Tag characters 3 and 4 are used for external references. Tag character 3 is used when the last
appearance of the symbol in the second field is in relocatable code. Tag character 4 is used
when the last appearance of the symbol is absolute code. The hexadecimal field contains the
location of the last appearance. The symbol in the second field is the external reference. Both
fields are used by the linking loader to provide the desired linking to the external reference.

For each external reference in a program, there is a tag character in the object code, with a
location, or an absolute zero, and the symbol that is referenced. When the object code field
contains absolute zero, no location in the program requires the address that corresponds to the
reference (an IDT character string, for example). Otherwise, the address corresponding to the
reference will be placed in the location specified in the object code by the linking loader. The
location specified in the object code similarly contains absolute zero or another location. When
it contains absolute zero, no further linking is required. When it contains a location, the addre s
corresponding to the reference will be placed in that address by the linking loader. The locat. »n
of each appearance of a reference in a program contains either an absolute zero or anott er
location into which the linking loader will place the referenced address.

G2

TABLE G-1. OBJECT OUTPUT TAGS SUPPLIED BY ASSEMBLERS

TAG HEXADECIMAL FIELD .
ND FIE
CHARACTER (FOUR CHARACTERS) SECO FIELD MEANING
0 Length of all relo- 8-character program Program start
catable code identifier
1 Entry address None Absolute entry
address
2 Entry address None Relocatable entry
address
3 Location of last 6-character symbol Ehernal reference
appearance of last used in relo-
symbol catable code
4 Location of last 6-character symbol External reference
appearance of last used in absolute
symbol code
5 Location 6-character symbol Relocatable external
definition
6 Location 6-character symbol Absolute external
definition
7 Checksum for None Checksum
current record
8 Ignore checksum None Do not checksum for
error
2] Load address None Absolute load
address
A Load address None Relocatable load
address
B Data None Absolute data
C Data None Relocatable data
D Load bias value* None Load point specifier
F None None End-of-record
G Location 6-character symbol Relocatable symbol
definition
H Location 6-character symbol Absolute symboi

definition

*Not supplied by assembler.

Tag characters 5 and 6 are used for external definitions. Tag character 5 is used when the
location is relocatable. Tag character 6 is used when the location is absolute. Both fields are
used by the linking loader to provide the desired linking to the external definition. The secHnd
field contains the symbol of the external definition.

Tag character 7 precedes the checksum, which is an error detection word. The checksur. is
formed as the record is being written. it is the 2’s complement of the sum of the 8-bit ASCII
values of the characters of the record from the first tag of the record through the checksum tag
7. If the tag character 7 isreplaced by an 8, the checksum will be ignored. The 8 tag can be used
when object code is changed in editing and it is desired to ignore checksum.

Tag characters 9 and A are used with load addresses for data that follows. Tag character 9 is
used when the load address is absolute. Tag character A is used when the load address is
relocatable. The hexadecimal field contains the address at which the following data word is to
be loaded. A load address is required for a data word that is to be placed in memory at some
address other than the next address. The load address is used by the loader.

Tag characters B and C are used with data words. Tag character B is used when the data is
absolute; an instruction word or a word that contains text characters or absolute constants, for
example. Tag character C is used for a word that contains a relocatable address. The
hexadecimal field contains the data word. The loader places the word in the memory location
specified in the preceding load address field, or in the memory location that follows the
preceding data word.

To have object code loaded at a specific memory address, precede the object program with the
D tag followed by the desired memory address (e.g., DFDOOJ.

Tag character F indicates the end of record. It may be followed by blanks.

Tag characters G and H are used when the symbol table option is specified with other 990
assemblers. Tag character G is used when the location or value of the symbol is relocatable,
and tag character H is used when the location or value of the symbol is absolute. The first field
contains the location or value of the symbol, and the second field contains the symbol to which
the location is assigned.

The last record of an object code file has a colon (:) in the first character position of the record,
followed by blanks. This record is referred to as an end-of-module separator record.

Figure G-2 is an example of an assembler source listing and corresponding object code. A
comparison of the object tag characters and fields with the machine code in the source listing
will show how object code is constructed for use by the loader.

SOURCE STATEMENT NO.

LOCATION COUNTER (ADDRESS RELATIVE TO FIRST OBJECT BYTE)

MACHINE CODE

SAMFLE SDSMAC 945273 ok
: : PHIGE Ol
BOE1 / 10T “SAMPLE” '
Q2 YR BRGE DATA WSPRACE
A3 88z aasA’ DATAR START
02384 A4 ARG DATA B8
060085 0RR6 WSFACE BSS 32
BEB6 AB26 TABLE BSS 100
0007 0o3A STRARY
Q288 O0BBAR BACC CLR 12
89383 803C B84CH CLR ®©
0810 @BR]’E V202 LI 2, TABLE
2938 HY26” . ’
a311 AA32 80N MOV 9, BTRABLE+2
2034 Wz3”
B912 8898 1001 JMF $+4
B912 8998 LOOP
BB14 8098 Lzid LI 4, >1234
009A 1234
AB343 803C 0244 BND1 4, >FEED
] POSE FEED
8316 88RY DCa4 MOYB 4. %2+
VE17 BBR2 9205 . LI 5. 25555
BeAR4 5555 ‘
2018 BBRE CBB5 MOV 5, @TABLE
BOA8 VY26~
09413 END
NO ERRORS
NOORARSAMFLE HOOOQo GO el OR2ABEOOOOAGOSHEMICCEOAC OEGS 020 NGERECSOOTF SN 0F RLX]
CO02BRL ONIENZ 041234 E0C44EFEEDEDC 24 EOZOSESSSDECS0SL NOEEFFIC1IF g
. SAMPLE BO-00-N0 03314323 ZDIMAC 345273 ee

FIGURE G-2. SOURCE CODE AND CORRESPONDING OBJECT CODE

G-5

P1, P2, P3, AND P4 PIN ASSIGNMENTS

APPENDIX H

TABLE H-1. CHASSIS INTERFACE CONNECTOR (P1) SIGNAL ASSIGNMENTS

P1 P1 P1

PIN SIGNAL . PIN SIGNAL PIN SIGNAL

33 DO.B 7 A14B 12 iNT13.8

34 D1.B 72 A15.8 1 INT14.B

35 D2.B 22 /1B 14 INT15.8

36 D3.B 24 238 28 EXTCLK.B

37 D4.B 92 HOLD.B 3 +5V

38 D5.8 86 HOLDA.B 4 +5V

39 D6.B 82 DBIN.B 97 +5V

40 D78 26 CIK B 98 +5V

41 D8.B 80 MEMEN.B 75 +12V

42 D9.B 84 MEMCYC.B 76 +12v

43 D10.B 78 WE.B 73 -12Vv

44 D11.B 90 READY.B 74 -12V

45 D128 87 CRUCLK.B 1 GND

46 D138 30 CRUOUT.B 2 GND

47 D14.B 29 CRUIN.B 21 GND

48 D15.B 19 IAQ.B 23 GND

57 AO.B 94 PRES.B 25 GND

58 A1B 88 {ORST B 27 GND

59 A2.B 16 iNT1.8 3 GND

60 A3B 13 iNT2.B 77 GND

61 A4B 15 iNT3.B 79 GND

62 A5.B 18 INT4.B 81 GND

63 A6.B 17 iNT5.8 83 GND

64 A7.B 20 iNT6.8 85 GND

65 A8.B 6 iNT7.B 89 GND

66 A9.B 5 INT8.8 91 GND

67 A10.B 8 iNT9.B 99 GND

68 A11B 7 INT10.B 100 GND

69 A12B 10 INT11.B 93 RESTART.B

70 A138 9 iNT12B 95-96 CONNECTED TOGETHER

(GRANTIN/GRANTOUT)

NOTE

If you want to make your own cable, be aware that the connector plugs
of various vendors, including TI, do not necessarily use the numbering

schemes on the board edge connector.

when wiring a connector.

H-1

ALWAYS refer to the board edge

TABLE H-2. SERIAL I/0 INTERFACE (P2) PIN ASSIGNMENTS

P2 SIGNAL DESCRIPTION
PIN
1 GND
7 GND
3 RS232 XMT RS232 Serial Data Out
2 RS232 RCV RS232 Serial Data In
5 CTS Clear to Send

{3.3KQ2 puli-up to +12 V)
6 DSR Data Set Ready

{3.3KQ pull-up to +12 V)

8 DCD Carrier Detect
20 DTR Data Terminal Ready
18,23 TTY XMT TTY Receive Loop/Private

Wire Receive Pair
24,25 TTY RCV TTY Transmit Loop/Private

Wire Transmit Pair o
12* +12V Jumper Option for Microterminal
13* -12V Jumper Option for Microterminal
14* +5V Jumper Option for Microterminal
16 RESTART Invokes the Load

Interrupt to the TMS 9900 CPU

*When using the Microterminal, these voltages are jumpered to the corresponding pin in connector P2. Eise, the voitages are not connected.

TABLE H.3 SERIAL I/O INTERFACE {P3) PIN ASSIGNMENTS

P3 PIN SIGNAL DESCRIPTION
1 OPTIONAL GND GROUND IF JUMPER AT E18, E19
7 GND GROUND
2 RS232 RCV RS232 Serial Data In
3 RS232 XMT RS232 Serial Data Out
5 CTS-Terminal Terminal Clear to Send (3.3 k€2 pull-up to +12 V)
6 DSR-Terminal Terminal Data Set Ready (3.3 k2 pull-up to +12 V)
8 DCD-Terminal Terminal Data Carrier Detect
(activated by TMS 9902A Request to Send)

16 CTS-Modem Modem Clear to Send™
19 DSR-Modem Modem Data Set Ready”
20 . DTR-Terminal Terminal Data Terminal Ready

DCD-Modem Modem Data Carrier Detect™
21 DTR-Modem Modem Data Terminal Ready™
15 SCT Synchronous Transmit Clock
17 SCR Synchronous Receive Clock
22 Rl Ring Indicator

*Used with TM 990/506 Modem Cable Only.

H-3

TABLE H-4. PARALLEL 1/0 INTERFACE (P4) SIGNAL ASSIGNMENT

P4 PIN SIGNAL P4 PIN SIGNAL
20 PO 17 GND
22 P1 15 GND
14 P2 13 GND
16 P3 1 GND
18 P4 9 GND
10 P5 39 GND
12 P6 ' 37 GND
24 INT15 or P7 35 GND
26 INT14 or P8 33 GND
28 INT13 or P9 31 GND
30 iNT12 or P10 29 GND
32 INT11 or P11 27 GND
34 INT10 or P12 25 GND
36 TNT9 or P13 23 GND
38 iNT8 or P14 21 GND
40 iNT7 or P15 19 GND .
7 GND 1 +12V
8 POSITIVE EDGE TRIGGER INT6 2 —12V

3 +5V

4 SPARE

5 GND

6 NEGATIVE EDGE TRIGGER INT6

NOTE

If you want to make your own cable, be aware that the connector plugs
of various vendors, including TI, do not necessarily use the numbering
schemes on the board edge connector. ALWAYS refer to the board edge
when wiring a connector.

H-4

APPENDIX |
TM 990/301 MICROTERMINAL

.1 GENERAL

The Texas Instruments Microterminal offers all of the features of a minicomputer front panel at reduced cost
The Microterminal, intended primarily to support the Texas Instruments TM 990/1XXM microcomputers, al-
lows the user to do the following:

L Read from ROM or read/write to RAM

L] Enter/display Program Counter

L Execute user program in free running mode or in single instruction mode
L Halt user program execution

L Enter/display Status Register

® Enter/display Workspace Pointer (this term is unique to the Texas Instruments 9900
microprocessor)

® Enter/display CRU data (this term is unique to the Texas Instruments 9900 microprocessor)
L] Convert hexadecimal quantity to signed decimal quantity
® Convert signed decimal quantity to hexadecimal quantity

1.2 SPECIFICATIONS

® Power Requirements
+12V (£3%}, 50 mA
—12V (£3%), 50 mA
+5V (+3%), 150 mA

® Operating Temperature: 0°C to 50°C (+32° to +122°F)
] Operating Humidity: O to 95 percent, non-condensing

L] Shock : Withstand 2 foot vertical drop

1.3 INSTALLATION AND STARTUP

To install the Microterminal onto a TM 990/1XX microcomputer, do the following:

L Attach jumpers to:
- On TM 990/100MA. J13, J14, and J15, and set J7 to EIA position
- On TM 990/101MA: E20-E21, E22-E23, and E24-E25
- On TM 990/180M: J4, J5, and J6, and set J13 to EIA position.

L] Attach the EIA cable from the Microterminal to connector P2. Signals between the Microterminal
and the microcomputer are listed as in Table 1.

[) To initialize the system, actuate the microcomputer RESET switch, then press the microterminal

[CLRlkey.

NOTE
If the user has installed the optional filter capacitor on the RESTART input, this
capacitor must be removed for proper operation (e.g., if C5 is installed en the
TM 990/100MA or TM 990/180M microcomputer, this capacitor must be
removed).

1-1

|
|

&

X

{fs TEXAS INSTRUMENTS

Microterminal
T™ 990/301

RUN

L[

m
=3
-
m
o
(¢}

EST ECRU

il

g
=
o
Q
o
9]

]

DCRU

m
2
>
m
2
Q

—
2]

~ w [t
Bl

L
L

oG

Fi=

I
]

Joooodoo

r,
|

\

FIGURE I-1. TM 990/301 MICROTERMINAL
TABLE I-1. EIA CABLE SIGNALS
EIA AT TM 990/100MA/180M/101MA
CONNECTOR INTERFACE SIGNAL
PIN Pz PIN SIGNAL
TERMINAL DATA OUT -2 RS232 RCV
TERMINAL DATA IN -3 RS232 XMT
GND -7 GND
12 +12V -12 +12V
13 -12v -13 -12V
14 +5V -14 +5V
16 HALT -16 RESTART

I-2

CAUTION
Before attaching the Microterminal to a power source, verify voltage
levels between ground and EIA connector pins 12, 13, and 14
at connector P2 on the board. Voltage should not exceed values in
Table 1-1. ’ ‘

1.4 KEY DEFINITIONS

.41 DATAKEYS

e E

Clear Key — Depressing this key blanks display, initializes and sends initialization message (ASCI{ code
for A and ASCII code for Z) to host microcomputer.

Hexadecimal Data Keys — Depressing any one of these keys shifts that value into the right-hand display
digit. All digits already in the data display are left shifted. For all operations other than decimal to
hexadecimal conversion, the fourth digit from the right is shifted off the end of the right-hand display
field when a data key is depressed. For a decimal to hexadecimal conversion, the fifth display digit from
the right, rather than the fourth, is shifted off the end of the data field.

1.4.2 INSTRUCTION EXECUTION

RUN

Pressing this key while a program is running (run displayed) will halt program execution. The address of
the next instruction will be displayed in the four left-hand display digits, and the contents of that
address will be displayed in the four right-hand digits. Pressing this key while the program is halted, wili
execute a single instruction using the values in the Workspace Pointer (WP), Program Counter {PC), and
Status Register (ST), and the displays will be updated to the next memory address and contents at that
address. i

Pressing this key initiates program execution at the current values in the WP, PC; run is displayed in the
three right-hand display digits. '

1.4.3 ARITHMETIC

The signed hexadecimal data contained in the four right-hand display digits is converted to signed

decimal data. Note that the fourth display digit from the right is the sign bit (1 = negative). The
conversion limits are minus 32,7681¢ (80001¢) to plus 32,767 (7FFF 16). Two H—D key depressions are
required. The sequence is: :

1. Depress .

2. Enter data via hex data key depressions.
3. Depress . The results of the conversion are displayed in the five right-hand display
digits.

The decimal data contained in the five right-hand display digits is converted to hexadecimal. The
conversion limits are the same as for hexadecimal to decimal conversion. The sequence is:

1. Depress .

2. Enter data via hex data key depressions.
3. Depress . The results of the conversion are displayed in the fourright-hand display
digits.

1.4.4

1.4.5

1.4.6

1.5.1

REGISTER ENTER/DISPLAY

Pressing this key causes the value displayed in the four right-hand digits to be entered into the WP.
Wi Pressing this key causes the WP contents to be displayed in the four right-hand display digits.

EPC | Pressing this key causes the value displayed in the four right-hand digits to be entered into the PC.

PC | Pressing this key causes the PC contents to be displayed in the four right-hand display digits.

O Q
v

EST Pressing this key causes the value displayed in the four right-hand digits to be entered into the ST.
DST | Pressing this key causes the ST contents to be displayed in the four right-hand display digits.

CRU DISPLAY/ENTER

Pressing this key causes the data at the designated Communications Register Unit (CRU) addresses to
be displayed. Designate from one to 16 CRU bits at a specified CRU address by using four hexadecimal
digits. The first digit is the count of bits to be displayed. The next three digits are the CRU address
(equal to bits 3 to 14 in register 12 for CRU addressing). When is depressed, the bit count and
address are shifted to the left-hand display, and the right-hand display will contain the values at the
selected CRU output addresses. The output value will be zero-filled on the left, depending upon bit
count entered. If less than nine bits, the value will be contained in the left two hexadecimal digits. If
nine or more, the value will be right justified in all four hexadecimal digits.

ECRU | Pressing this key enters a new value at the CRU addresses and bit count shown in the left display after
depressing [DCRU]. The new value is entered from the keyboard and displayed in the right-hand
display. Pressing [ECRU] enters this value onto the CRU at the address shown in the left display.

CAUTION
Avoid setting new values at the TMS 9902A on the TM 990/100MA/
180M/101MA through the CRU (TMS 9902A is at CRU address 0040 16)'
as this device controls /0 functions.

MEMORY ENTER, DISPLAY, INCREMENT

Pressing this key will cause (1) the memory address (MA) in the right-hand display to be shifted to the
left-hand display and (2) the contents of that memory address to be displayed in the right-hand display.

Pressing this key causes the value in the right-hand display to be entered into the memory address
contained in the left-hand display. The contents of that location will then be displayed in the four
right-hand display digits {entered then read back).

Pressing this key causes the same action as described for the key; it also increments the memory

address by two and displays the contents at that new address. The memory address is displayed on the
left and the contents at that address is displayed on the right.

EXAMPLES
EXAMPLE 1, ENTER PROGRAM INTO MEMORY
Enter the following program starting at RAM location FEOGQ1g. Set the workspace pointer to FF001¢ and the

status register to 20001g. Single step through the program and verify execution. Then execute the program in
free run mode and verify execution. Then halt program execution.

. NOTE
In the following examples, XXXX indicates memory contents at
current value in Memory Address Register.

OPCODE INSTRUCTIONS
04C0 CLR RO CLEAR WORKSPACE REGISTERO
0580 INC RO INCREMENT WORKSPACE REGISTER O
0280 Cl RO, >00FF CHECK FOR COUNT 255
O0FF ‘ .
16FC JNE $-6 JUMP TO !NC RO IF NOT DONE
10FF JMP $-0 STAY HERE WHEN FINISHED
KEY ENTRIES DISPLAY

Clear Display Depress CLR

Enter PC Value Depress F=lE kI [d EEED

Enter into PC Depress EPC EEED

Display PC Depress DPC | [FEOO

Enter ST Value Depress @ @@ [[2000

Enter into ST Depress EST -

Display ST Depress DST

Enter WP Value Depress @]@ - FFOO

Enter Into WP Depress FF00

Display WP Depress - FFOO

Enter MA Value Depress @ @ - FEQOO

Enter Into MA Depress EMA mm

Enter CLR 0 Opcode Depress @ E @ FEOO;04CO

Enter data,

increment MA Depress EMDI FEO2 m

Enter INC 0 Opcode Depress @ @ FE02{0580

Enter Data,

Increment MA Depress

Enter Cl Opcode Depress [o] [0 FE04]0280

Enter Data,

Increment MA Depress EMD! FEOG

KEY ENTRIES DISPLAY

Enter Cl
Immediate Operand Depress][0} FEQB|0OFF
Enter Data,

Increment MA Depress EM Dll

Enter JNE $-6

Opcode Depress Wil

Enter Data,

Increment MA Depress FEQA m

Enter

JMP $-0 Opcode Depress [1]l] A

Enter Data,

Increment MA Depress FEOC]xxxx]

The program has now been entered into RAM. Since the PC, ST and WP values have been previously set, the
program can be executed in single step mode by depressing the H/S key.

DISPLAY EXECUTES

(AFTER) INSTRUCTION
Depress [FE02[0580 CLR RO
Depress | FE04[0280 INC RO
Depress [FEO8[16FC Cl RO>00FF
Depress H/S FE0210580 JNE $-6

This cycle will continue untit RO reaches the count of 255 at which point the program will continuously
execute at location FEQA1g because it is a jump to itself.

To verify this, depress: DISPLAY
RUN - run

The program should now be “looping to self” at location FEOA1g. To verify this, depress:

s

Now examine the memory location corresponding to Register 0.

Depress B @
Depress EMA

This itlustrates that FF15 did become the final contents of WP0. Note that, when the program was being
entered into RAM, IEMDI was used rather than because of the rather desirable feature of automatic
address incrementing. The advantage of using is that the actual contents of the addressed memory
location are displayed after key depression {echoed back after being entered).

1.5.2 EXAMPLE 2, HEXADECIMAL TO DECIMAL CONVERSIONS
Convert 800016 to a decimal number

Depress CLR

Depress H-D

Depress @ E)j @

Jil

Depress 2768
Convert 0020, to a decimal number

Depress CLR LT 1]
Depress [H>D [T 1
pepress (2] 0]
Depress [F=D [3

5.3 EXAMPLE 3, DECIMAL TO HEXADECIMAL CONVERSIONS
Convert 451 oto hex

Depress CLR — T 1
Depress T 1
pepress [4] 5]
Depress [] 2p0]

Convert —102410 to hex

Depress

Depress D—>H

Depress m @ E] 1024
Depress]

1t

FCO0

5.4 EXAMPLE 4, ENTER VALUE ON CRU

Send a bit pattern to the CRU at CRU address {bits 3 to 14 of R12) 0EQ1g with a bit count of 9 containing a
value of 5 (0000001012).

Depress [CLR ——

Depress [___SZ] @ @ 90E0
Depress DCRU 90EO{YYYY
pepress [0] [0] [0] [50E0[o005]

Depress ECRU

YYYY indicates value at the current CRU address. Note that a[DCRU]Joperation is always required to
specify bit count/CRU address.

1.5.5 EXAMPLE 5. ENTER, VERIFY VALUE AT MEMORY ADDRESS

Enter 004016 into location FE20 and verify that it got there.

Depress CLR

oo [F] [B [
Depress EMA
pepress [0] [0] [4] [o]
Depress FE20{0040 |

_The contents of address FE20 are verified by an echo of data from memory to display following the
pressing of@ 1f it is desired to view and enter data at address FE22, depress

APPENDIX J

CRU INSTRUCTION AND ADDRESSING EXAMPLES USING TMS 9901

The following figures, J-1 to J-6, are examples of addressing the TMS 9901 through
the CRU, pointing out in graphic form:

e External I/0 in parallel (multibit) and serial (single bit) forms,

° The relationship between the CRU bits addressed and the bits in the source
operand of the STCR instructions,

° The relationship between the CRU bit addressed and the displacement in
single-bit instructions.

The TMS 9901 occupies 32 bit positions of CRU space with the low 16 bits at CRU

software base address 0100qg and the high 16 bits at CRU software base address 012044
To access the low 16 bits of the TMS 9901 through the CRU, load 0100 into register 12.

The high 16 bits at CRU software base address 01201g are the parallel I/0 bits, shown
in the accompanying figures. These may be set, reset, or read in any order or in any
combination of 1 to 16 bits. Since CRU operations are serial, data from the
microprocessor (either serial or parallel) is transmitted serially to the TMS 9901,
which outputs it in parallel. Likewise, during input, data present at the TMS 9901 I/0
pins (in parallel) is shifted serially to the microprocessor using the CRU. It is
necessary only to load register 12 with 01201g and use either the LDCR or STCR
instructions. Bear in mind that the CRU operations of 1 to 8 bits affect the left byte
(more significant half) of a word (registers take up a full memory word).

The lower 16 bits of the TMS §901 at CRU software base address 010044 are used for
control of interrupts and the timer function, and to restore the I/0 lines to the
input mode with output buffers disabled and floating. Interrupt requests are presented
to the TMS 9901, each on its own line, and are compared against an internal mask. If
the internal interrupt mask allows, the particular interrupt request is encoded into
TMS 9901 output lines ICO to IC3 (going to interrupt input lines ICO to IC3 at the
TMS 9900) as explained on page 6 of the TMS 9900 data manual and page 8 of the TMS
9901 data manual. The TMS 9901 also pulls the INTREQ- line low on interrupt requests
(not during RESET), which goes to INTREQ- at the TMS 9900.

APPENDIX J

CRU INSTRUCTION AND ADDRESSING EXAMPLES USING TMS 9901

The following figures, J-1 to J-6, are examples of addressing the TMS 9901 through
the CRU, pointing out in graphic form:

e External I/0 in parallel (multibit) and serial (single bit) forms,

° The relationship between the CRU bits addressed and the bits in the source
operand of the STCR instructions,

¢ The relationship between the CRU bit addressed and the displacement in
single-bit instructions.

The TMS 3901 occupies 32 bit positions of CRU space with the low 16 bits at CRU

software base address 01001¢ and the high 16 bits at CRU software base address 012044
To access the low 16 bits of the TMS 9901 through the CRU, load 0100 into register 12.

The high 16 bits at CRU software base address 01201g are the parallel I/0 bits, shown
in the accompanying figures. These may be set, reset, or read in any order or in any
combination of 1 to 16 bits. Since CRU operations are serial, data from the
microprocessor (either serial or parallel) is transmitted serially to the TMS 9901,
which outputs it in parallel. Likewise, during input, data present at the TMS 9601 I/0
pins (in parallel) is shifted serially to the microprocessor using the CRU. It is
necessary only to load register 12 with 012041 and use either the LDCR or STCR
instructions. Bear in mind that the CRU operations of 1 to 8 bits affect the left byte
(more significant half) of a word (registers take up a full memory word).

The lower 16 bits of the TMS 9901 at CRU software base address 010044 are used for
control of interrupts and the timer function, and to restore the I/0 lines to the
input mode with output buffers disabled and floating. Interrupt requests are presented
to the TMS 9901, each on its own line, and are compared against an internal mask. If
the internal interrupt mask allows, the particular interrupt request is encoded into
TMS 9901 output lines ICO to IC3 (going to interrupt input lines ICO to IC3 at the
TMS 9900) as explained on page 6 of the TMS 9900 data manual and page 8 of the TMS
9901 data manual. The TMS 9901 also pulls the INTREQ- line low on interrupt requests
(not during RESET), which goes to INTREQ- at the TMS 9900.

(1) ASSEMBLY LANGUAGE:

LI R12,> 0130
LDCR R2,2

(2) SOURCE ADDRESS IN MEMORY:

Y

Y

ADDRESS
SELECT

PO
P1
P2
P3
P4
P5
P6
P7
P8
P9
P10
P11
P12
P13
P14
P15

0 3 4 78 11 12 15
I ¥ !
R2 |17 0110 1 10 10 1 10 1 0 1
] i : TWO BITS TRANSFERRED
LEFT BYTE USED
(3) ADDRESSING:
R12:y17 1 1 0 0 0 O 1 0 O 1 0O O O O Of Bit 15
Ignored
tenored ! ‘ -
l [
1/0
0000 O0OOTI1T OGO 100 0O
DECODE
Ay mmmmmm e e e Aqy

ADDRESS LINES

Figure J-2.

LDCR Byte Execution To TMS 9901

J-3

1) ASSEMBLY LANGUAGE:

LI
STCR

R12, > 120

R3, 11

(2) SOURCE ADDRESS IN MEMORY:

0 31 78 11 12 15 BV
T I T
R3:Jj1* 0 1 1 0 1 1t 1 0 1 0 1 1 0 0 1} Before y PO
1 T T
0 0 0 00 0O1T 01T 0 1T 0 1 0 0 0] After P1
P2
} A L . P3t—e
ZEROED P4
— < P51 ¢
P6
P74
(3) ADDRESSING: P8
. . PO
Address lines at operation start P10
A P11
R12:{1 0 1 0'0 0 0 10 0 1 0'0 O O O |eBit 15 P12} —
Ignored P13} —
| J 1 }
P14
P151
Tgnored =|ADDRESS
’—> SELECT
1/0
ZEROES —— DECODE TMS 9901
—]
0O 000 0O0OOT11TO0UOOT1TO0O0 0 0—d
Ag === e Aqy

ADDRESS LINES

Figure J-3.

J-4

STCR Word Execution To TMS 9901

(1) ASSEMBLY LANGUAGE:

LI R12, > 120
STCR R1,6

(2) SOURCE ADDRESS IN MEMORY:

PO
0 34 7 8 11 12 15 pil | =

T T T P2

R1 10 11 0 1 1T 0 0 1 0 1 0 1 1 0]|Before P3

o 011 0 1T 0 0 0 1T 0 1T 0 1T 1 0fAfter P4

1 P | P5
P6|—

ZEROED UNCHANGED ol OV
P8l—
407 —
P10}—
(3) ADDRESSING: P11l—
P12f—
! ! ! . P13l —
R12:j0 0 0 0 0 0 0 1 0 O t O O O O O}Bit 15
N 0 : Ignored P14p—
Ignored — P15|—
»|{ADDRESS
l_—_-—SELECT
i/0
[Ao A1u]

T
ADDRESS LINES

Figure J-U4. STCR Byte Execution To TMS 9901

J-5

(1) ASSEMBLY LANGUAGE:

LI R12, > 140
TB -3
PO
(2) ADDRESSING: P1
™s 2
T T T Bit 15 P3
R12/0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 Oleis %01 .,
L——tT—u——J' ignored
ignored : l PS
P6
' P7
P8
Tt 11 1 1 1 1 1 1 1 0 1 «—-3 Displacement P9
sign extend L | Added to Address P10
P11
ZEROES P12
P13
000 0O0O0O0T1TO0O0OT1T 110 11— P14
P15
Ao Ay ADDRESS
I
ADDRESS LINES [—————D~SELECT
1/0
(3) STATUS REGISTER: DECODE
BIT NO. O 3 15
1

EQUAL ,
BIT

"
|

NOTE
If a JEQ (jump on equal) instruction follows a TB
instruction, a 1 found will cause a jump, and a 0 found
will not cause a jump (1 = EQUAL state).

Figure J-5. Test CRU Bit At TMS 9901

J-6

(1) ASSEMBLY LANGUAGE:

LI R12,> 0120
SBZ 7

(2) ADDRESSING:

Ri2 {0 0 0 0 0 0 0 1t 0 O 1 O O O O O} Bit 15

[J'l] Ignored
Ignored — l
+ 60 000 0 0 0 0 0 1 11 +--+7 Displacement
I |- Added to Address

Sign extend

6o 6 o,b0 6001 0010 1 1 11

ZEROES ———:::]

Figure J-6. Set CRU Bit At TMS 9901

J=7

—

1/0
DECODER

ADDRESS
SELECT

PO
P1
P2
P3
P4
P5
P6
P7
P8
P9
P10
P
P12
P13
P14
P15

ZERO

APPENDIX K

EXAMPLE PROGRAMS

K.1 MASTERMIND GAME

K.2 HI-LO GAME

APPENDIX K

EXAMPLE PROGRAMS

This appendix contains listings of programs that can be loaded into memory or
reassembled into memory for demonstration or entertainment purposes. These
listings are commented to provide ancillary data and explain the individual
programming techniques. Assembly listing format is as follows:

SOURCE STATEMENT NUMBER (DECIMAL)

——ASSEMBLED OBJECT CODE (HEXADECIMAL)

OP CODE MNEMONIC

~——RELATIVE MEMORY ADDRESS
LABEL FIELD
/// / /J//[OPERAND

O0EY FEOO

FEO=
D030 FEOQ4
FEA
FEOS
P FEOA
2w FEOC
FEOGE

2% FELG
FE1Z

DREG
FFoe
0200
00008
D410
OATA
[2E 81

QD=0

ZFAD
FEIIN

START LWFI WSF
LI RO, 10
LR RY
CLR R10
L1 R1Z, 20

CIUTRUT OFEMING MESSAGE
XOF @eMESEL, 14

ADDRESS OF LABEL MESS1 IS M.A. FEDA ¢

COMMENT FIELD

SET WORKSFACE POINTER
RO = TENZ MULTIFLIER
RY = NO. OF TRIES

R10 N, OF TRIES
TM= 2202 CRU ADDR.

i

L

OFENING MESSAGES

FULL-LINE COMMENT BEGINS WITH ASTERISK

The code can be reassembled and loaded with the L TIBUG command, or the change
memory command (M) can be used to insert assembled object code at the memory
addresses shown in the listing (beginning at FE0016, program start). The
assembled object code is listed in column 3 of the listing, opposite the
corresponding memory address in column 2. It is important that the programs be
entered at the addresses noted, or that proper consideration be given to the
labelled addresses which have been assembled into absolute addresses relative to
the beginning of the program (address FEOO16). This consideration is important
when entering the code using the enter memory (M) command with program start not
at address FEOO16.

If the code is to be loaded beginning at an address other than FE0016 as a
program start address,it must berefigured to the new program bias. For example, if
the program was to be loaded beginning at FCOO16, labelled addresses must be
decreased by 2004¢ (FEOO16 - FC004¢g = 20016)° Note that jump instructions create
a displacement value and not a memory address; thus, jump instructions using
labels are not affected by a new program start address.

At the back of each listing is a cross-reference of labels and number of the
source statement in which they are used (column one of the listing contains
source statement numbers).

If the Line-By-Line Assembler (LBLA) is used, an absolute address must be
substituted for labelled addresses. These hexadecimal values are in the first
column of the cross-reference table of labels.

K.1 MASTERMIND GAME

The printout of this game in execution (below) illustrates game rules and
objective. The program generates a five-digit number. To win, you must deduct which
five digits make up the number, and their correct order. Only digits 1 to 8 are
used. After each guess, the program prints the letters X and 0 for each correct
digit entered. In addition, each X indicates a digit is in the correct column. You
are given only 12 tries to win.

MAZTERMIND. . GUESE MHMMHHMM M=1-3 12 TRIES
YO BGET = FOR A MATCHs. O FOR A HIT

1..11111 =
c.. 12222 4

2..31323322 0

3. .41 - CONTROL-H CAUSES ENTRY TO BE IGNORED, ALLOWS ENTRY REPEAT
d..44144 =

S5..95415

.53 165

Veed&l??

2..547182

F..e4721 H=£4721

1..11111

F..233232 =20

4..324324 000

S, ..259355 W00

o - CR RESTARTS PROGRAM
MAZTERMIND. . GUEZE HMHMHN MH=1-2 12 TRIES
¥OW GET ¥ FOR A MATCH. O FORF A HIT

[a
L]
L]

- -

]
B o i
o 4 |::_'| rI:I bt
JURL I O TN
]
[}

i

) DS 3 I OO I W
Ll
yi]
[N

- ESC KEY RETURNS CONTROL TO MONITOR

AN TN TEMIRG

MOSTERMINMD FOR T

0T

1

= COMPUTE
0 LmETioo.

et Sycen T

PHECROCOMPLT

TR R
4

B

Rz, THE

k3

2 4 - et o
A LasSTE AR
Sl o)
=

4 25 i 3 e

THIZ FROGRAM PLAYS MAS

CEUECT

DEDLCT INN,

~
2

TERMINIDI Ob THE T# =%
OF THE GAME

-
I

T

11

E

S0

i # +
ELOMICRD-
EY

Te-DIGIT

COMPUTER. T
HAVE 12 &Ue

IMOICATE &
IMOICATE TH

DeTEGIT O MU

3 --

2 -

HE
Rt
CORRECT DIGIT
E DIGIT IX
BER WITH

COMFUTER LUIZES

Gl

CORRECTLY
THE LETTER
A CARRIAGE RETURNM RESTARTE
AM ESOARFE KEY IMPUT RETURME

Gk Y
TO ADCORFLIzH THIE.
REL BY
FLACED
OTHER RULED
THE GAME

YOb TO THE

MUIMEBER

X

GEHERATED BY

THE

THE DIGITE
THE

i

OME
LETTER
WITHI

I To =, vy
UTER WL
ARt
THE
THAT

M
AFF

MONT TOR

- LOMTRIL H OEEY ALLDWE

Yl T

R

FREZENMT

LIME OF

IRINININ

[RInIn

D00OE

i ENTRIES ahND
THIZ GAME 13 ¢

LISE
ASSEMEL,
TWO OOF
ADDRESS
k3 =
£

EL

EG

EGL

Eu

EqLl

Eii

EL

L= Erdl

REEMTER HEW

LIME

ED BY THE LBEL
THE LIZTING,

B
¥

.
s

[BT B R R U AN

S)

MBLED TO BE LOADED AT M. 4.
OF THE ARG ASSEMBLER DIRECTIVE.

THIG
4 AT THE ADDRESZESD SH
CORRESPOMOING OBJECT

TS ZHOWN DTN COLAN THREE. G000 LCE!

+ 3 + * #*
M, OF GUESSES
FOANDOM - MO ARRK
RAMNDEY NG 20
FONTICN NOH COb
10 CONSTANT F
CONTAHINS ATCTI
COMTAINS ASCII
ADDRESS OF X%

SFEOD BY
FROGRAM TAN
DWR TN COLUME
CODE FOR THIE
Y ADDRESS
FUTATION USE
FUTATION LISE
R DECIMAL COM
vk

L 075 BUFFEFR

D 4

OOAT

OIS
STALIES

ONAT

GO AR

e e
FEOD

: FEOD

FEOZ
FEO4
FEOA

FEOZ
FEON
FEOC
FEOE

IRIRIN
D00
OOk

TR N

OEED
FEDA
FEOD
FEGE

AF A0
FF72
D400

oA

3

Bl
B
B
Bl
[SXBIR
PR

RO
0 RANTGM
FANTIC
ARCII
CAET O
LAl
3+

et et ed e 2
¥R By

P
]

OF EXECUTABLE CODE

+ PROCEDURE ﬁREﬁ

B3

3+ @
STHRT

&
LWF
YOF

MO
XOF

CLR
R0y

#

I W=

ERULES. 14

RURLF. I

RO

r‘: < Fr

RO ARFAY
M. ARRAOY
MO, SEED
T1T (HEL00G)
UT CHARACTE
T M.A. HFEO
¥* #* #

ATDRESS

R MAF
0

4 4

i
SET WOREISFACE

- FRINT RULEX

PRIMT CR-LF

COLINTS
1

1
POINTS

GLUE S

T3 R

FOINTER

=ES
AMDGM ARRGY

MM I NI TEYMLER
MOSTERMIND FOR THE T @

Wis/s/7e FOGE D00l

F1%¥ HIIFH!HHFHth

= COMPUTE ROAMDOM BRUMBER, MOVE TO LOCATION MR
ML

[R, Dy CUMPUTE RORMDGM NUOMEER
MY

1
a1 J

pralies
1455 ot

4

F

»—ar,

1.~!‘__

MY RILR11
CALEEE FHNDHﬂ UTHIT T BE IN RANGE 13

SR e

3

MIOVE

e
“r

MAKE @SCIL, FANGE 1-8
FUT INM RANDOM ARRAY
TEST FOR END OF LOOF
OO UNTIL R1=R10

BN

DETERMIME MUMBER O

FoupCoOMIMG GUEST
PRINT UPCOMING GUES

I OMUMBER TO PRIOMPT UZER

MO1S

IMC RO hHEEE"h”E~'+1
@ CLEAR ARRAY THAT HOLDS ASCIT X7% AND 073
= IF CONTROL H PREZSEDL START HERE

REITRT MOV R7.RE2 XOB ADDR TO RE

CLR
LR
CLR

DONVERT GU
MY ROL.RET
LR OR1
DIv E4.R1
SWFR R
SOCR FjaF*

SR

ORI

MOZ0
ORI R E0E0

MOV R, @G0T

AOF BGUEZNG, 14

K-5

. NUMEER FRR

*
£
*

CUTEUT
GLIEZS MO, T B2

DINVIDE RIRZ EBY 10
BUITIENT IN LEFT BYTE

MERGE GUOTIENT & REMAIMDER
FIRST DIGIT:

FUT IM SPACE IF
MOFE A2CTY DIGITS

MOFE #2011 SFACE & DIGIT

FUT In FPRINT BUFFER

FRINT GUEST NIMBER

MMIMD TEMIEA
MASTERMIMND FOR THE TR ™

jio/sm FyGE DD

INFLIT CHARGDTER & TEST FOR COLUMM MATOH

D00 FEALD D20 Mo, RYLRE FONDOM NUMBER ALDR IH B

GoOvl FE4E C047 M R7,R1 X B0 BUFF ADDRE IM R1

Q0T OFEDD 0202 LI oo IMFUT IMFUT BUFFER ALDDR IN RZ
FETGEZ

OO FEDRA OA4C LR RIZ CLEOR BIT MOF OF CAasT OouUTr O
009 M=
DQOYT FERE ZF4A3 O RE.13 REOD DIGIT

QO & # WhT CR, EBESCAFE. OR COMNTROL-H FEEY FREZSSEDY
DO7 FESE 0283) Bz, 0000 CHFk. RET. ENTEREDFY
FEDH
OO2s FEDRC
Qe FEDE
FE&O
Q100 FE&Z
2101 FE&4
FE&A
D107 FE&S
G103 FE&D
0104 FE&D
0100 FE&AE 02
FEZO =
G106 FET7Z LE H MOE0 YES. REAL GMNOTHER
D107 FETA ZF0E A S M. IR RAMGE, ECHD
0103 #OoIm DIIGIT & MATCH AMIU TR RIGHT OO Upny
Glow R R R DIGIT INM RIGHT COLUMNT
110 JME MO40 MO, FUT CHGR IN CHAR BEIFFER
a1l SWFR RZ YE=. FUT BINARY © IM M=BR OF
nile MOVE KRS, sH1+ ¥OIM THE X0 BUFFER
0117 IMND RIZ OUT CHAR
0114
D115
DilA
0117
Qiilz
O11% F

LER

5 RESTART GAHE
o1 RS

AFE FEY ENTEREDT

1RGO

ARG MOMNITR YES, RETURM TO MOMITOR
1 Fose HOR00 CONTROL-H FPRESEZED?

JEG RESTRT
R 3L, R
N
i

sET THIZ ENTRY
s THAM 17

REALN BNOTHER

ORI, GRESTER THAM =7

MOAG
MOVE RE, #RE ZERD G CHOR TO INFUT EUFFEF
SR “HT BIT IM MAF
IFTH MNUMBEFR 1NP”T“
! Y NL.H FEAT ANOTHER GL
1 | Bl W] YES, I= A0 EBUFFER Fi

L -

[P
et
1]

DLE0
2121

AL MOT0 h', M WINMEFR YET
XofF 2 0Bk, 14 YET, FRINT X0 BUFF (ALL X737

0122 5

0123 FE?Z ZFAD AOF BUINNER, 14 FRINT WINMER

0124 *
0125 MO
D124 FEYE ZFAO XOF SMNUMBER. 14 FRINT RUMBER

D127 ¥

D15 FEYR 1OBS& AMF MOOS FLOY ArilTHER OOk
F1Ew FERC 04&0 MONITH B RE:unH TOOMOKEITOR

e
H
J
e

,

K-6

MIMD TXHIRA
ASTERMINDG FORE THE TH

e R 4
LR M i

MICROCOMPUTER

-
il
)

G/TE FAGE 0004

D131 3
a1=E "
o # TEST FOR O7%, ..

(

MO
FEAG D20z LI Rz TRFUT ITHFUT RUFFER ZTART IM RZ
FEAZ FFoh
0137 MOSE
O1Es FESAM DOFZ
0132 FELAL 1300
0140 FEMNE 209
0141 FESA OPRD
0142 POERS
014732 FEADC ORID =R
3144 FEAE FEOX [=4
0145 FERO 13205 00
0144 FERZ 14604 ANE
2147 FEB4 LC44 MOVE
0142 FER& Q24D R
FERZ SO0
014% FERBAO BOOZ SR
o150 MOST
0151 FERC 82
2152 FEBE
153 PIDED .
D15 FECD 0222 o1 RZ, INFUT+S LEST OIGIT s INFUT BUFFERT
FECZ FFQ ‘
D150 FECS LAEF ik T MO, D REXT DIGTT
& FECA ZFAD XiF BYXOBRF. 1S YET . FPRINT X0 BUFF
- FEC=
0157 FECH 0220
FECT Qoo
2= FECE 140EB M
FED) 2FA0 IR
FEDZ FF&A
O1&D FEDA 10EOG 1| O o L e FRINT MUMBER FOR FLAYER

b

VG Gl
e 00 s L b

TEST BYTE FROM INPUT BUFFER
BYTE CAST OUT IF EOUAL TO ZERD
RS POINTS TO WORK ARRAY i
FOSITION CAST OUT CH MAF

TEST FOR OAST OUT CHAR

DOES BYTE MATOH WORE ARRAY 7
IF COST OUT. MOST

IF NOT ZoUAL, MOST

OM HIT. PUT O TN X0 BUFFER
MAR CAST T CHAR

SRPOTL COMPARTISON. FINIZH LODP

e i, RO TESZT FOF LOST DIGIT
L MOS IF Lok, DO ANOTHER DRIGIT

a1 v, 1 THELVE GUEZZES MADET

CONC, MGRE G
HREY 14 YEZ. FRINT =

MM IMD

TXMIRA P3LEZ7 ## GTEIE S 11277

[}

FAGE 0005

MOSTERMIND FOR THE TM 2%0/1XY MICROCOMPUTER

alas
D14a3
G144
0145
Oléak
1467
OlaR

1ET

G170

0171

03172
o173
0174
0175
174
0177
D172
0179
O1a0
IR RES &
TR Ry
n1Es
01 sg

0155

FED&
FEDZ
FELiy
FEDC
FEDE
FEED
FEE1
FEEZ
FEEXR
FEE4
FEEL
FEE®R
FEEA
FEELC

FEEE =104

FEFO

FEFZ
FEF4
FEF&
FEF7

2a FEFS

D1E7
olEs

FEF®

FEFA
FEFE
FEFT

FEFD

2% FEFE

LR R

0173
0194

FFOD
FFOz

FF04
FFOS

2 FFOs

FFos

FFOh

FEO

A FFOE

FFOF
FF10
FF11
FF1z

D000
W0
R
20
AF
20
FFO&
00
FEFE
FFOZ

000

ORON
[aInlnls)
ZE
zE
07

D0

=0
Z0
=1
00
D000

D000

0
=0
000

D0
D000

Onng

40
41
T4

4%

i #* # * % #* i# * #* * * * 3
OnTH SECTION
* #

WORKESFAZE
: DATH O,0,0,0 Fo~-R3

%
2
o
s
o
®
3
¥

% 0% & o ok &

=

'.’ :

i3]

DATH 10 R4 CONVERSION CONSTANT
TEXT “% - R

TEXT “0 ~ Fe

oATH XOR R7
ODATA O Rz
OaTA NN R
OATA NN+T R1O
DATA F5555 Fil-RAaNDoM NOMBER SEED
DATA 3100 Riz
ONATA © F1Z2-CR5T OUT CHAR MAF
3t
TEXT STATEMENTEZ
LIME MUMBER OF THIS GUESS
GUESHMO DATA 000N TR, LIME FEED
GO oDaTHh $-% CONVERTED GUESE NUMEBER
TEXT ~..7

BYTE 7.0 BELL/STOF

RANDOM NOMBER OF COMPUTER IN AZCII
NUMBER TEXT 7 N=7

MR OETA 0. 0.0

¥ OXTE AND 0% BUFFER SHOWING HITZ 2 MISSES

XOBR TeEXT - 7 SFACET FOR PRINTING
XOE ONTHA 0.0:0

RULES OUTFUT AT BEGIMNING OF GAME

RilLES

DETH 0006
TEXT "MASTERMIMDS

K-8

PP L RIL THMIR
MASTERMIND FOR THE TH 990,

)

tigs7e Frisial OnihdA

FF13 o
FE14 A4
FF1S A%
FF1& 4F
FF17 44

D197 FFL1gZ ZE TEYT .. GUESS NMNMNMM M-1-28 172 TR
Fri= ZE
FFif A7
FF1R 5
FFiC a5
FFin T
FFI1E =

11
]
m
%)

FFLIF 20
FEZO 4F
FF

LATR 00060
TEXT YOl GET X i 0 MATCH, O Fie A4 HIT-

i QT EnI AR 112/7% FévEE Goo7
FTCRCGMPUTER

MMIND TEMIE
MASTERMIND FOR THE TH

FFan
FF4R
FFac ;
FFALD 4F
FraE 20
FFAF A
FFD0 4F
FF31 B
FFS2 260
FFoz 41
FFTo4 24
FFS5 43
FFSE& g
FFS7 Bl
Q00 FFSE 00 EYTE O

K-10

MM I M

5 FESA
FF5C
FFoE
0204

P
L4 % WY

FF&O

b
f:.l
L,
i~
fas |
n
L
i)

0207

OZ0S FF7O

020% FF72

DS B8]

Oty

D000 ERRORE

TYHIRA
MASTERMINGD FOR THE

QOO0
W00

D000

»‘\i

R R I OV
3

[
nmm g

]
(ST O

2+ b

!
~—
e

o)

L a')
e
[
R
aT)
0
O
O
O

519

T %

BLUFFER OF

IMFUT

E e

WINNER

SORRY

CHLF

. e e
+ S T A

ALAE MICROCOMFUTER

MUMBERSD

ST 0,0.,0

TRIFLIT

TEXT HINMER"

EYTE 21,0

TEXT SURREY

BYTE 2.0

EYTE 0 50, 02 0

END START

K~11

11z

0

e
Frivihae

SV

INFLUT

MOMNITR oi2w
MM R REXY
MUMBER 0138
R 3
1

R13-

THERE ARE 0041

SYMBOLE

3104

T

CHl&A0

1
-

3

1751

G117 0140

D149

145

‘K-12

01751

Ty

007w

RI8R0Y

0144

i1z

%
2

(IS

b
4

10
142

K.2 HI-LO GAME

The printout of this game in execution (below) illustrates game rules and
objectives. The program generates a number between 0 and 999. You have unlimited
guesses to find the number, but you can be an expert, above average, average, or a
turkey depending upon how many guesses used.

L FEOO

RIESS

TR LOAD AND EXECUTE PROGRAM
W=FFED

FP=0132 FEOO

+E

CAM YOU GLEST My HUMEER 0 TO 29937
IMFUT A MURMEBER 2 FREZZ THE EZFRCE EAF.

SO0 TOD LOW. TEY AGHIM!?
v TOO LOW. TEY AGAIM!?
Q00 TOO HIGH: TRY AGAIN!
TOO LOW. TEY AGAHIN: !
TOO HIGHs TEY AGAIM?E
: : - CONTROL H PRESSED TO IGNORE ENTRY

TOO HIGHs TRY AGAIN!

TOO HIGH: TREY AGARIM!
CORRECT! ¥YOUREE REOYE AVERAGE EBECAUZE IT TOOK vOU 02 TRIES!

[| W]

DO Y)

DR R Rt

Juo g 1T

CAN vOU GUEEE MY MUMEBER <0 TO 999x7F

INFUT R HUMEBER & PRESS THE ZPACE EAR.

500 TOO LOW. TRY AGAIM?? -

Tan TOO HIGH. TRY AGAIMN!

=50 TOO HIGH: TREY AGAIN?

573 - CORRECT! YOU‘RE AM EXPERT EBECAUIE IT TOOK YOU 04 TRIES!

CHH YO GUEET MY HUMEBER <0 TO 9997

IMPUT A HUMEBER & PREEZ THE =PRCE ERE.

S0 TOO HIGHs TRY AGAIN!

00 TOAO HIGHs TRY AGHIM! «— S CR PRESSED TO START NEW GAME

CAH vOU GUESE MY MUMEBER <0 TO
INFUT A HUMEER % FREZZ THE =P
=00 TOO HIGHs TRY RAGAINY
400 TOO HIGHs TRY RGAIN!

o300 TOO HIGHs TREY AGAIHM?
S0 TOO HIGHs TREY AGAIN! « ESC PRESSED TO RETURN TO MONITOR

K-13

GLIEDS

OO0
IalaleRy
o010
O01
noLz
O013
G114
Q015
QD1A
O01E

01w

r FEGO

12 FEOQO

FEGS

EO4
FEOA
FEOZ

< FEON

FEOQC

FEGE

DA
0041
D047
6403
044
004
0G4
Q047
OO45
Q04
QOS50

0051

FEL1D
FELIZ

FEL4
FE14
FE1Z
FE1%

TEZMIFEA
HI-LO GAME FOR OTH

Q000
D00
D00
D00
Ialalnt
00w
Q000

XM

OTED
FFan
00
Q000
0407
OACH
0200
OOR0

ZFAH0

FERD

DAL
1F13

Diy Lo 4

.
“

R
Rl

=y

Rz
i
R
F1
F1

=+

4#*
3+
4=

=T

B3
ME

o oo Sy e T e
oS s R PR R R 1

B/1EK MICROCOMEUTERS

<% Bs3 2= L&) <% it e

THIS GUESSING GAME CANM BE RUN ONM A& TH 2907174X RICRO-

COMPLUTER WITH 432 (H1RD) WO

RANM MEMORY. IT I3 WRITTEN T BE LOADED AT M.A.

TR Fadalk oo

3=

R

* ®

b ir

OF USER AYRILARLE

AN CAN BE ASSEMBLED AT THAT GDDRESE LSIMNG
OR BY LOADING THE ORJECT (COLUMN =) AT THE MEMORY

AOORESTSES (COLUMN 2). THE GRJECT OF THIX

GUESE WHICH MUMBER THE CORF
O THIS WITHOWT BECOMING A
- CARRIAGE KRETURRK BRINGE

- TPRACE FEY CONTIMUES GAM
OO LUCK . L WALEH
#* # 3 + = * #
o TalESS T
REGIZTER EGUATES
£l
B
Ed
B
ECil
B
8] il
2 By 1
ORJECT CODE AT ABRSOLUTE ADDR
OORG SFEDO
T T T T T
FROCENURE AREAT EXECUTABLE
R T T TR B R
IMITIALIZE REGISTERS
ART LUWFT HER

R RNV R B ST en]

e
P}
!

1.1 B 10

CLR R?
CLR R10
LI R1Z, >80

DUTFUT OFENING MESTAGE
AP eMESS1.14

THIS ROUTINE IS A NUMBER GENERATOR THAT
A NUMBER FROM O T 799 BASED ON-THE TIME T RE
2 BIT AT THE THM: @

OFEMING MEZSAGE. IT CHECKS
INTERFACE THAT SIGNIFIES THO

THIS DIGIT MEANS A NUMBER I3
FOR THIZ FIREST NUMBER. RZ IS
OOTO wPE.

Wer CLR RE

IMNCMNG TR 21

JER ECHGE

21 R, 997

K-14

UTER

THIRE

Yt -

E

3+

TERM=Z
EUIE=

CMULT

ENTE
CONT
M.
MO
TR
Eos

£ 3=
COGE
B oa

TH

HAZ GENERATED., AMD
EY. FOLLOWING RULED
T PROGROM RESTART
- EQCAFE EEY BRINGES YOI TO MOMITOR
- ZONTROL-H KEEY IGNDORET THIS ENTRY

4 ¥ +

MULTIFLIER

SONOL ACCUMULATOR

IFLY ANSWER
RED DIIGIT

AINE COMPUTER

TRIEZALO
TRIEZ

ADDRESS (TMS

BEGIMMIMNG WHI

3% k23 35 k3

EI 2R e

TH

PO

FFEOD

SET WOREZSFACE. POLIMNTER

RO = TENS MULTIFLIER

Ry -

R10

T A

BEI

CONT IMUCHLESLY

RE TO CONTAIN COMPUTER D

INRREN
YEZ.
NI,

M. OF TRIE
= M, 3 -TRI

IMNG MESSAGE

MG GUESZED.

T RECEIVEDTY

-~
=

ES
TMS 9902 CRUADDR.

WH

GENERATES

SPOND

FROGRAM 13

)

&

FEOO
E LBLA

T
T3
SFPLS

TEOMUMBER

Tid Ti

ERERIAGL
DIGIT HAS BEEM RECEIVED |
THE TERMINAL IN RESFONZE. TO0 THE GPEMIMG MESZAGE. RECEIFT
TLE WATITIN

ECHDE CHARAITER

INCREMENTED

T3

=

IMCREMENTED FR

U

HESD TEMIRS w3IRAZET7 =% Qe 2ET0n 118773 FiGE Do0R

I-L0 GAME FOR TR 2%0/14X MICROCOMPUTERS

-
Laed '>—ﬂ'

FE1i
O05: FELE
DOSE FEZO
0054 FEZR

mm

& JEGE NERPG YEZ., CLEAR TO O, RESTART
2 : IMZ RZ NOL, INCREMENT MO, IN RE
JEE TNCMD LOGF, RECHECE FOR LIGIT INFUT

¥ "i HL

;
RIEY)
oy

[
SR

0055 # AFTER FIRST DIGIT IS ENTERED, COMPUTER S NO. IS IN RS.
OO0 # READ IN GUESSES AND CONVERT THESE TO HEXADECIMAL. ZUM
0057 # FOR COMPFARISON TO COMPUTER-S MOL IM RS, AT NEW NUMBER
0058 # 1% READ, OLD VALUE IS MULTIFLIED BY 10 AND NEW YALLUE
005w # AODED TO FRODUCT TO EEEF CUOMULATIVE TOTAL OF DIGITS

D& #+ ENTERET.
O0&1 FEZA ZFZO 0 ECHOO XOF 8LFCR. 12 o LINE~FEEL. (R
FEZ& FF34
O0AZ2 FEZE 04C1 ECHOZ LR Rl CLEAR ACCUMMUOLATOR
On&T FEZA ZECE ECHOL XOFP R3,11 ECHO CHAR. . FLACE IT IM R3S
Q0&4 FEZC O&CE SWFR RZ PLACE UNALUE IM RIGHT EBYTE
Q0L # WAS SPACE. CR, ESCAPE OR CONTROL-H FPRESISED?
004&+ FEZE I RZ. 20020 SFACE BAR PRESZEDY
FE20
0067 FEZZ 1
O0sZ FEZ4 O
FE=& D0
OOsY FEZER 13

¢
D070 FEZA 02
0

]

-~
-

)
.. - "
OO 3 B Y MO 0%

OO0 e 0 T D 07 e B0

AR AR

S i

-
'~

JER COMPRE YE=, COMPARE VALUES
g | R=, 0000 CARRIAGE RET. PRESSED?

Ll -

=
-

JES ZTART YES. RESTART FROGRAM
D | Rz, >001R EZCAFE FPREZZEDRT
FEZD O
0071 FEZE 13
QG722 FE40 OF
FE4Z OO0
Q072 FE44 13ZEF JEGH ECHOD Do LFCR. RESTORT GUESE
0074 FEAL 0243 ANOI R3Z, H000F MUY, SAVE O-7 DIGIT OMLY
FE4Z OOOF
Q075 FE4OG 2840 MFPY RO, R1 FREVIOUE NG, X140
QO7& FEAC AGCZ 3 Rz.RZ MEW ND. + ABOVE FPROGCT
o077 FEAE €043 MOV R3ILRI1 ANSWR TO ACCLIMMULATOR
Q0732 FESO 1GED P ECHOR GET NEXT DIGIT
0079 FETDZ 0440 MONITR R @080 GOOTO MONITOR
FESA 0030
Q00 ¥ COMPARE NUMBERZ INFUT TO COMPUTER S NUMBER
0031 FESE ODE COMPRE INC RIO INCREMENT NS, GUEZIED
D082 FEDE 220 o Ri,R2 COMPARE TO COMPUTER"S N
Q0232 FESA 1102 LT LD MO, IS LESES THAN CUOMPUTER!
OO24 FESC 1504 JdGT 0 HIGH MO, IS MORE THAN COMPUTERS
O0OE% FEDE 13046 JED BEIAL N IS CORRECT VALUE
QOGS4 # MESAGES FOR TO0 HIGH. 7o Lo
Q0BE7 FEAD ZFAD LOW XOF eLoWM. 14 TOO—-_0W MESZAGE
FE&Z FFOG
O0E8 FE& 10B1 P BECHOE GET MEXT MIMBER
0089 FEAL 2FAD HIGH XOF @HIGHM. 14 TOO-HIGH MESTSOAGE
FE4Z FF1A ,
Q090 FEAA 10DE JMP BECHOR GET MEXT HMIMEBER

JEG MOMITH YES. RETURM Y0 MONITOR
1 R2, 0008 WAS CONMTRIL-H PRESSEDT

' i
toLid
1 opes T

oy

1

K-15

GUESS

HI-LO GOAME FOR TH

A
S
Qw7

011Gl
D107

31073

0104
G105

D108
107

0108
010%
2110

TAMIRN

2FAD

E FF3g

028

T 0007

1503

~E7E 2FA0

& FFAF

')UF

Sy n()-v[;

1503
ZFAD
FF&%

1002

2FA0

w24 FF7Z

TELZZT e
S0/ 1XK MICROCOMPUTERS

LB

CORRECT MUMBRER WAS GUESSED
FIMD OUT HOW MANY TRIES
Eoiial. XOF 2C0RECT. 14

o1 RLIOLT
JET %
OE @

4

h’FH;11

HE
o

COLINT
1o, %

4
2]

JMET
XOp

i

m~w

NE. 11

COINT
R10, 132

HRT
1OF

4=
2THIRTN, 14

EE
XOF

CTHINT
ETLURFEY. 14

#-IF CORRECT MUMRBER FOUIND.
COUNT DIV
R

ORI 210,

SWPE RV

A R?.RI10

MOV R10. €NUMBR
XOF @CNT. 14

JRE START

K-16

HE

DUTRUT MO,

11773 PaGE 0003

UEET AND CLITRUT
CORRECT GUESS

MESZAGE
MESSAGE

TRY COUNT GREATER THAN 772
YE=,
MEY S

CHECE
Py 07

SE I
TRIED |

GO GET OOUNT

TRY~COUNT SREATER THAM 27
.‘f'E r:' 3
N,

CHECE AGAIN

o S-2 TRIES MESSAGE

CGD GET CORINT

TRY-COUNTER GREATER THAM 137

OUTFUT TURFEY MESSAGE
i 10-13 TRIES MESSAGE

YES,
LI

G GET COUNT
OUTPUT 13 (TUREEY) MESSAGE

(OF TRIES iy
DIVIDE TRY-NO. EY 10
OR IN 30 FOR AZCIT NGO,
OF IN 30 FOR ASCIIT NGO,
FREMAINDER IM LEFT BYTE
2-DIGIT DECIMAL IN R1O
MOVE GTY TO MESSAGE

OF TRIES

GO TO BEGINNING OF FROGRAM

GLESS TEMIRNA FRA32T ## O 2E0n 115/

HI-LO GAME FOR THM Y20/1XX MICROCOMPUTERS

“

FOGE 0004

0115 R T T U R O N S T S ; :
011y * DATS AREAT DATA STATEMENTS, TEXT STATEMENTZ. ETO.

3120 * * #® * * i 2 3 3 ¥ * 3 3% % * i a* i %

kS k] W+ * * - 5+

)
k<4

2.
2

0121 # MEZSAGES
0122 FERO OADD MESSY TATH 0000, Z0A0H
FEERZ OA0H
O12% FER4 A3 TEXT “CaM YOl GUESS MY MUMBER (O TO 997
FERS 41
FERL AE
FEB7 20
FER=Z iy
FER% aF
FEEN pbi]
FEEBR 20
FERC A7
FEBD b
FEEE A%
FEBF
FELCD
FECZ1
FECZ

b

e

v

ol R T o I B
il na B IRV N VY

i
mir
L R A
LERR i I Y
K
T m

i

FECAH B

-,
!

4 s
DA A

i~ -
o

FEDO
FEDRL
FEDZ
FEDZ
FETIG
FENS
FEDA
FEDY

0124 FEDZ SADD LEaTa 0000 LIKE FEEDI, R

Q125 FEDN 47 TEXT “INFUT A MNIMBER % FRESS THE SFACE BAR.
FEUE fAE
FED 0
FED i
FEDE v
FELIF 20
FEED 41
FEE1 20
FEEZ 4E
FEE™Z =5
FEES 40

Pod B L D D b o £ RO G BB
0D T

- o A .
Dol 2 IRV S IR

K-17

liESs

HI-LO GAME FOR TH

.......

L L

D12%

01320

FEES
FEE&
FEE7
FEE:
FEE®
FEEQ
FEEE
FEEL
FEED
FEEE
FEEF
FEFO
FEF 1
FEFZ
FEFZ
FEF4
FEFS
FEF&
FEF7
FEFS
FEF%
FEFA
FEFE
FEFC
FEFD
FEFE
FEFF

& FFOO

FFG2
FFO3
FFO4
FEO5
FF&
FFO7
FFOz
FFOw
FFON
FFOEB
FFOC
FFOL
FFOE
FFOF
FF1O
FFii
FFIZ
FF13
FF14
FF1%S
FF1&
FF1&
FFify
FF1C
FFRil
FF1E

TXMIRA 936227

1z
a5
) 2l
PN
=0
=
26)
50
a2
4%
L]

1.5

53

20
54
Az
a5
20

f—
[

=0
41
A3

=
o
=

A)

Az
a3

bty

ZE

2020
=4

21
LRTATRY N
OO0
ZOZ0

)

aF

4F

RO LEX

LM

HIGHM

QIHRGCGMPUTERS

AT 22020

LERLE

o) el Bl X Wy el T1s/7E

TEXT Ty LW, TRY AGAIM!T!S

LT 0000, 0

OATH 2020

TEXT -"ToO HIGH.

K-~18

LIME FEEID.

T

)

TRY AGAIN!”

=P

G

E=

FAGE

SHEACE

CRo

3005

END

by

GUESDS

HI-LO GAME FOR TH

D131

013z
01332
Q154

D135

01324

i
O

1
a0 s

a1

013w

0140

FFLF
FF20
FFZ1
FFzz
FFzz
FFz4
FF25
FFzé
FFZ7
FFz&
FFZz%
FF2A
FFZE
FFZC
FFZL
FFZE
FFZF
FF 30
FFaz
FFz4
FF3&
FF3&
FF30
FF2C
FF3E
FFZF
FFa0
FFa1
FF4z
FFA4Z
FFa4
FFAD
FF a4
FFA7
FF4&
FFa=
FFan
FFAR
FFaC
FFAD
FFAE
FFaF
FFE0
FFZ1
FFT2
FF33
FFZ24
FFo0
FFos
FF37
FFSE
FF3%
FFA
FFIR

TXMIRA =3
ERAV TS 9

b3
RO)

T~

’:

-
[

IR B S O R~ -

f
R

i1

]
mogt my
s

20
41
47
41
Az
4E
1
OHROT
D00
OHon
[818)
O707
0707
2020
4z
4F

oo,
bl

LFCR

CORECT

SEVEN

MINE

gy

oaTh

oaTH
BYTE
LAaTA

OnaTh
TEXT

BYTE
TEXT

BYTE
TEXT

34t o

"o e
LIt L0

MICROCOMPUTERS

SOROT, O
=0a00

0
=OF0TF L, 0OT707

FE0Z0

TCORRECT! Yo~

8]

AN EXPERT

e

TARGVYE AVERAGE

K-19

RE

1i1as7a FAGE Q004

LIME FEEL, CR.
LIMNE FEED. CK
END OF MESZAGE
BELLE

SPACES

END 0OF MESZAGE

ERNI

M=G

GLUES=

HI-LO GAME FOR TH

0141

01432

0143
0144

0145

2144

FFoO
FF=h
FEESE
FFoF
FF&OQ
FF&1
FEAZ
FF&Z
FF&4
FF&D
FFRLA
FF&7
FF&z
FFew
FF&n
FF&R
FF&O
FF&D
FFA&E
FFA&F
FF70
FF71
FF72
FF73
FF74
FF7%
FF74&
FF77
FF7a
FF72
FF76
FF78B
FFZL:
FFEZD
FF7E
FF7F
FF2O
FFa1
FFoz
FF=z
Frid
FFaS
FFos
FFa7
FFag
FFraw
FF2h
FFzR
FFEaC
FFzD
FF=E
FFaF
FF20
FF%1

TEMIRA 9RA2ET7 ww
PROSLEY

4F
£T 2

i
A%
20
41
g

T
ar

B

11
47
A%
20
10
11

4%

o
e

41
47
45
20
00
41
20

T4

20
Y

aF

) el oo

20

THIRTHN

el Ea e,

MICROCOMFPUTERS

BYTE
TEXT

BYTE

TURKEY TEXT

CNT

BEYTE
TEXT

0

K
it

O

BN
i

i

VERAGE

TIREEY

BECAUISE IT Tk

K-20

lig/7e

Yl

FoGE

(a1l

s 3L P
P 3 L

GLETE TEMIFN 22T B
HI-LO GAME FOR T 290/135Y MICROGCOMPUTE

EERR I lig/s7a FAGE GO0z

0147 FF22 0000 NUMBR 0ATA O FLACE ASCIT M. HERE
01432 FF24 2O BYTE 20
0147 FF9S T TEALT “TRIES!
FFo& S2
FFo7 a4
FFas 45
FFaw i
FEoN =1
0150 FFYR 07 BYTE 7:7.7.0 BELLES (AS0I1 O7)
FFaC 07
FFoh 07
FF2E $1¥)
D151 WaF EVEN WORKSFACE START (RO LOD)
0157 EMD '

D000 ERRORS
TYYREF 23754 #4H LRIl T 11R/753 FaGE 0001

CNT 1Ak 0115

COMRFREE 02l D07

CORECT 0134 094

COUNT 010w OOwE D102 Q104
ECHOO (21878 Q073

ECHO AT T8 O0O75

ECHOD OO 0050 O0NSS 0090
EOUAL QA
HIGH
HIGHM
IMNCNG
LFOR
LT
L
ME==1
MOMITR OO7% 0071

NEWND O0AR QOS2

MIMNE 140 1

NUMER 014? 0114

Ris O01e CGOR4 0075 Gl1ov
Ri 0020 QDAZ DOT7S 0 007
R1O D025 D04 ODE] Q0%
R1z2 QO2E Qa7

R 0021 QO7 &

F{ =) i:)f_-':;' IR TONe CHOE A 18T N OOES D070 072 3] 07 A) i_')7 & i:) '.':)7 ? '
S OO OO a5 (%1853] DE3S
= 07 ODES D10Y 0110 0112 0113
ZEVEN 01733 Qo7

STHRT O03z 008 D11é

THIRTN D142 0105

TUREEY ©144 03107

AR 0151 ona3

OO

D102 0111 G113 0114

THERE ARE 0032 SYMEOLED

K-21

INDEX

In the page number list of this alphabetical index, subject matter is covered
by a table if a T precedes the page number, or is covered by a figure if an F
precedes the page number.

Page
Addition of Displacement and R12 Contents to Drive CRU Bit Address...... F5-18
Address BuS..seessees cecerserennee teessesessesssessassenannas P
Address and Data BufferS..cccecececcceccecas Ceeceerenees ceeecae ceeseeees 6=30
Address Decoding..cececeessacecenes Ceeesetetacesassreenassasans ceseceess 6=15
Address SpaCe..ceceessccscss seeatessaseesecscsannns cessesssrassccssssess D=5
Alternate Programming Conventions........ seeesersesssssescnne cecesnsesns T5-21
AMPL Grounding...ceeeees sessese secsecicsesccssaans sesvasssessvassssassese 2=11
Applications....... tecesesaterssannsns cesesesesssss cesessessessns .+ Section 8
ASCII Cod€ecencecnccss cessessases secsasesas ceesresesesnsacsnse +ess. Appendix C
ASRFLAG Valu€S.eseeesssssssosoaconas ceesenenases cesesessssesasrensns eess T5-60
Assembler Directives Used in Examples.....ceeeee.e P T5-1
Auxiliary Communications POrt.sececececcessssscccnens cesescsans creevsenans 6-38

Binary, Decimal, and Hexadecimal Numbering....seeeeceeessssssssssss Appendix D

Block Compare Subroutin€..eeeseceecses tecesssessssssenas ceeseeas ceeesssses 5=51
BLWP ExXample.ceceseccessssses cecsesan cessases ctseserscssessanns sesasesss FlU=29
Board CharacteristicS..eseeccess ceesascns sestestcsseenanns crecsens cesenaa 1-5
Board Jumper Positions as Shipped.cccccscecscscccssnne cecsan cecsccsssene T2-3
Branch and Link (BL).eeeececsoconnscssosccsossasonasanccs ceteeeeens ceeees 5=T
Branch and Load Workspace Pointer (BLWP) vecase easeseas cesanscasae ee 5-8
Branch Instruction (B)eceeecececonsns creescesasesncaans cereces essesensss 5=7
Buffer Control.cecesseceseosns Ceresssessesessencna cetecnnes e ercesanees .. 6=19
Bus SignalsS..ceeeececcsssn ceranas cesceennsenas cseesccns ceeccans csesesess TH=5
Cable, 103/113 Data Setecseeccesccess cseeccs cessescecs cesssensscsanss eees T8=17
Cable, 201 Data Setecesecscnass tererbevecnns Ceseesrrasectncennsnnas eeeee T8B-18
Cable, 202/212 Data Set.ceceessccecsss esessesassssesessansee ceecesescscess TB-18
Cable ConnectionS.ceeececeasaaes cenccsons tesesecenssscsansanas cesresnnen . F8-1T7
Cable Pin Assignments......ec... cessesersnnns ceceses ceessssccsccnasesans 8-17
Central Processing Unit...... cesescccns cesstccnasenans cessececes cestsene 6-8
Circuitry to add TMS 9901 Offboard...ccceceasn cesssssccnssnnas cecesacana . F8-4
CLRCRU Signal.vevecececcconsoas catessens cessens e tesseesessecenesnnonnas 6-14
Coding Example to Ascertaln System Configuration Through Dip Switch
Settings...... cesesseasaes sessseasans secesnas cressseseacss ceessenees 5-50
Coding Example to Blink LED On and Off....... ceeseeseas csesescnnne cessas F5-55
Command Syntax ConventionS..eecesee. sesecasensa cesestoccaccsas sessessesas T3=3
Communications Register Unit (CRU).cieerececccenns B
Compare Blocks of Bytes Example Subroutine........ sesssees ceecnnne ceeses F5-51
Comparison of Jumps, Branches, XOP'S..eeeeesses cessessssscases eeessseass TU=30
Connector P2 Connected to Model 743 KSR..veeeeeeenn cecscsssscenans sesens F2-6
Connector P2 Connected to TTY Device....... cescecnen eessscacecsane cesces F2-7
Control BuS..eceeeececcscccasoes eseccessssesesneasen ceeeaca cscescecanes 6-1
Control BufferS.ceeeecececccccoccnces St aeesessesetsecessesaenans eveenees 6=30
Control Bus FunctionS..eeseceeccccececces Ceeeeessceas cecesseecanns ceeess T6-6
CPU HOLD~ and HOLDA TimingZeeeesosesscecacoscconanses csescces cessaca .ee.. F8-9
CRU Addressable LED..eeececescsconsaan sessesrsstrssenan tesesvescscsssnss D=52
CRU AdAresSSing.ecececeseccsscoscesssssosssanna ceveseseanes ceeseeces ceee. 5=13
CRU Base and Bit AddresseS.cccceses cesesensas teesessscssssasensane cesess F5-13
CRU Bits Inspected by C Command..ceeceeecesccesocnes sessecsecasessasasses F3-U
CRU BUS.esesssssssossssssssssssssne e secestesssstcssssascssencannas ceees b=

Index-1

INDEX (CONTINUED)

CRU Inspect/Change (Cleeevecanen cesssaseseee cesescessssscssassesrenensss 3-4
CRU Instruction and Addressing Examples Using TMS 9901...... esesess Appendix J
CRU Instructions...... ceseennss sesesecsssne ceescsssrtecannses tesasessssss 5=1U
CRU S€leCh.eceeveeresssvessssssssasssssssssssssnscssossnnoons Ceesesssssssun 6-19
CRU TimMiNgecceeersoosnscoccsccannssans teeesenas cessessceanrnes ceesesssaesas D=1l
Crystal- Controlled Operatlon... Ceeeeenena cestssecrcerenans teesssesseess FO=8
Data BuSeeesecacenss ceecensns cecans cececesansane ceecesenns ceeesrssnns eeo b=l
Data BufferS.ceeccecssacceces Cresrsssetsasenanns ceecerans cecscssessssass T6-30
Data Terminal Cablé..eseeeess teteseessssesessessseesccnsanas ceensssssna . T8-19
Debug Checklist.cseeeeceeeecesecccescase ctecessesesesssessssasassesans eees 2=10
Decoding Circuitry for CRU I/0 AddressSeS..cceececseesesccsssscssccnas ees F6-20
Dedicated Interrupt Description........... secescescaseasnnne cesssessansss TOH=31
Device Supply Voltage Pin Assignments...... cecsesenes ceseses ceessessesss T6=3
Direct Memory Access (DMA) ApplicationS.eeeecececsssssecsascsoss ceeesanes B=T
Direct Memory Addressing EXampleS...ceeveescessccocccs cesececcssssnas eee Fh-12
Direct Memory Addressing, Indexed Example...cecescecscscccscns sesesesases F4-13
Direct Register Addressing Examples....... esesvsecssscscssscs cesessesenns F4-9
Direct Register AddressSing...ceccecesceescccccscsssssessnons ceesssessenssss U4=8
DMA Bus Control...ceeeeess cecessessscasessnenransnns tesecessscanns ceesess F8-8
DMA Controller Timing..... csissessssssesssnnees ccearssesetecercanans eees FB-16
DMA Controller........ ceceene cecesessanneas Ceteceresssssanans cesecesvess F8-1U4
DMA Device Controller.ceeecsceccessssscsces tescsceccrsressannns J R - B K
DMA System Block Diagram..eseeesss csresssassesasssenns cestessasane eesess F8-13
DMA System GuidelineS...eeeeeas Ceeseseseessce sttt nnans crecsssecns 8-11
DMA System Timing.seeeeoeeeess ceessscssssccessanns ceecseessnns ceeccncesss 8=T
DMA System Timing...eeesoeeeess cetesesessecssectesncnnnnnes ceiesssessenaseas F8-10
DTR Hardware and Software OptionS....... teeessresascsaaas teescsesassrens T6-40
Dump Memory to Cassette/Paper Tape (D)..... cetecasesetteetessaresnnnss ees 3=5
Dynamically Relocatable Code.ceeeesens ceeseecscassesssenss cessssssssasss 5=-19
Echo Character (XOP 171).ceeeeceseesesscscessososcscscssssonss cescecssesss 3=17
EIA Interface....... creesessssssssses cessesesesvsescensreanrne eeeerssssses 0=35
EIA RS-232-C Cablingeeeeccececsceccccnecss csevssssssesssrsessesanss ... Appendix B
EIA Serial Port ApplicationS.ceececescessccess csescessssnas ceeressssaans 8-17
Enabling and Triggering TMS 9901 Interval Timer.eeeeseeses ceeecnns seeeses F5-31
EPROM ExpansiONeccescssces cesessrs e csessensssscensen cecsscscnsne cesessss (=1
Example Code to Check Board ID at. DIP Switch (Multidrop)...ececececsess.. F5-54
Example of Code to Run TMS 9901 Interval Timer........... cesecsccssccen . F5-33
Example of Program with Coding Added to Make it Relocatable....... seesss F5-19

Example of Programming Timer Interrupts for TMS 9901 and TMS 9902A...... 5-32
Example of Separate Programs Joined by Branches to Absolute Addresses... F5-7
Example Program to Converse Through Main/Auxiliary TMS 9902AS....ccce... F5-57

Example Program Using Timer Interrupts 3 and 4...... ceecsans ceessseesees F5-38
Example Programs....cecceeececesecs cesescscssrscsnae eesceacsssssssces Appendix K
Examples of Non Self-Relocating Code and Self -Relocating Codeeeeeevssss. F5-20
Execute Command (E)eceeeesscses Geeeseseescesesesesnnnas S
Execute in Single Step Mode (S)eeeveecacasscoacss cecssessssesssessscsnses 3=12
Execute Under Breakpoint (B)...cverecceccecerscscans eeescscssssessssses 3=3
Executing TM 990/100MA on the TM 990/101MA. ..t teececscasscccncacsncsses D=3
Extended Operation (XOP).eeeevesseas teesesassssasaanas -
External InstructionS..cseeecssecsssss cerecsesssssaannns R L
External InstructionS.ceceeccesceceass teesesescscscesesescscscsscassenees TO=14
External System RESET/LOAD....ccvecescns s T £ L4
Extra RS-232-C Terminal Port.....eeeecececcnss P -

Index-2

INDEX (CONTINUED)

Find Command (F)eeeoeocesescnacoes cescccccssscaainnn cesssesases eveessees 3
Five-Switech DIP and Status LED ceesscscssesesseessessrssune estessense . 2
Format 1 InStructionS..eeecscsccecccss cerecacns ceesaseans ceesncseccessess 418
Format 2 InstructionS...ceeceesscseccoss eeessesencenenensrtsraanns ceeeesas U
Format 3/9 Instructions......... tececesesccssersettasessntasanos ceeseces b
Format 4 (CRU Multibit) InstructionS..ceeceeece. cesccsccsrsinsenans eeseee U=2U4
Format 5 (SHIFT) InstructionsS..cccecececsesssccassscccsncsnocs eeeesssees U=25
Format 6 InstructionS..esescceccess teeeceeevesecennas cessees cereesraeaes y-27
Format 7 (RTWP, CONTROL) INStructionS.ececsecsescescecccsoccscencsncasass U4=30
Format 8 (IMMEDIATE, INTERNAL REGISTER LOAD/STORE) Instructions......... §-31
Format 9 (XOP) InstructionS..cecsecess tessesesavessesnsescssansessssassss 4=33
Four Interrupt-Causing Conditions at TMS 9902A.....cceveeceess cesesenses

]
-3
(o]

General Specifications....... Ceeeeceeeecsesnanens ceeesncncesstscsonsssee
General, ApplicationS.....ceeceescssccsossens ceessassase cectsccccscssnnns
General, Installation and Operatlon Of the TM 990/10TMAcveeenennancnnanas
General, OptionS..cceeeececconsn cevececnese ceseseeenes cesesseasns cesesenns
General, Programming....... cesesssssececsnes seescaccnns teesesscseensssnss
General, Theory of OperatioN.cceccesesccscccccscsssencs cevesscsesseneans
General, TIBUG Interactive Debug Monitor....eccceee. cesecanan cescacssces
General, TM 990/101MA Instruction Execution......... cesesanas cesssarseas

GloSSaryessessccesee cececsevesere et essesesencescssssesvesesessetsar oo

_a.l:'WO\\.IJ'IN'JNCX)—-‘
L T N G QT (U e G L. 0 |

T3
-3
[}
—
—

Half-Duplex Multidrop System........ cesesssnsaan ceseresssesseannane ceecns
Hardware Registers..cceccecescccecss cececncse seesencss cesessens cevssceses .
Hardware Registers....ccce.c.. sessescscscsans cseseccesenne ceresene cecaes
Hexadecimal Arithmetic (H)eeeeeeeennen cssecstereanss cesesecan vesecccsaes
HOLD-, HOLDA, and DMA...... e eeessesssasseesanse cessssccass ceessesans sees

=
1
—

TEY
WO =
—

I/0 Using Monitor XOP'S..veeeoeees tectscessseesssssasssnssrasssasseenese D=22
Immediate Addressing...... seeeessasans Ceeessiesneaesencassananee eoeeseess 4=13
Implicit Decoded CRU Bit AddresseS...ceee... ceesessesscenna cecsccesnsons T6-25
Indirect Register Addressing Example........ teetsessssasecne ceecenne eees FU-10
Indirect Register Addressing....ceceececescescscccns ceesesccssessesssass 4=8
Indirect Register Autoincrement Addressing Example....ceceeecccscccas eess F4-10
Indirect Register Autoincrement Addressing..... cssecsssnne ceesessssesess U4=11
Inspect/Change User Workspace (W)..eeeeoesese sresscstscsscsasssessescesscss 3—13
Inspect/Change User WP, PC, and ST Registers (R)..... cesseessssesssenesss 3=11
INSTALLATION AND OPERATION OF THE TM 990/10TMA..cvccccssncsss eeeees Section 2
Instruction Description Terms...... ceseenes cessssasssesseaans cesseceasess TU=TU
Instruction Formats and Addressing ModeS.eceeeecasecccccccccces cesesssnas U4=T
Instruction Set, Alphabetical IndeX.ceeevecscessosaccasasssoas csessesssss TH=15
Instruction Set, Numerical IndeX.....cco.c.. P eeeee TU-1T
Instructions...ccecees.. ceeesenee ceeectsenseessasanas L.
Interfacing with TIBUG...ceeenvercne s A
Interrupt and User XOP Linking Areas.................................... T5-25
Interrupt and XOP Linking Areas..... sesessessasne cecessssssscssssscsness 5=24
Interrupt. CharacteristicCS.iceeececeeaccenaees seseecesessscesscsersssasnases TO=31
Interrupt Example Program Description..ceceseesceccccens csessscessssases I5=35
Interrupt SequUeNCe....ceececeassss cesecoes ceeceesescsscssssans ceeesceess F5-26
Interrupt Structure....ceeeee.. ceesenens ceeresne cessesessccssessscsssses 0=31
Interrupts and XOP's...... ceeonne ceseecsennns L

Jumper Pins by Board Dash Number (Factory Installation)..ccesecececeeeees T7=5
Jumper‘ Placement....-........-.................................--.o-..-. F7-2

Index-3

INDEX (CONTINUED)

LDCR Instruction...sececececececescs ceeserssscsscsrens cesevessases sessessenese . F5-16
Line-by-Line Assembler Output........ U S L
Linked List Example..eceeceeeseces cecsccnes seecssasressssaseassens ceeess . F5-11
Linked-TestSuiieeeeeeseceeoeceesoseossoacssssnas tesessssess seesases essess 5=10
Linking Instructions......... cesesessecssasssresasans ceseccccssssssseess D=b
LOAD Function...... ettctescnasnsenns Cteeeesssssanes tececsasaneene vesses 6=-13
Load Memory from Cassette or Paper Tape (L)...... tecessecescsncans eesese 3-9

Main and Expansion EPROM and RAM............ cesenses cesens sessaeases vesse F1=5
Main Communications Port........ ceceeresases csesres Ceccesasstsenesenases 6-35
Major Components used in I/0ceceevecccaceses teetevesecscccrans ceeeseesss FB82
Manual OrganizatioN....eecsececscsesssesccasosossssscsssasonssccsncannas 1=4
Master Jumper Table..ccceesssssseasssssacscnssosccons cececsesans veeenesss TT-U
Master-Slave Full Duplex Multidrop System..ccecccecesaccss eecesssessenss F7=10
MEMCYC-.eeeeereceonnnes esessesssrssesnns eveescns cereescssscsssssesasasss 0-27
Memory Address Decode PROM..... ceeesecesesssesssiesesssensas ceeeseesseos FO6-18
Memory Address Decoding....c.eeceeceeces ceeeeas ceeeenaens ceeecens veessess 6-15
Memory and Capacitor Placement......c.cc.. cectsesssssssscons ceecne ceecnn . F7=3
Memory Cycle Timing..... ebesessssssenns ceenenas cetecesnssanes cieanes eees 8=11
Memory Cycle Timing..... cessseans Cecesesasnsssccsssans tessens ceesescesses FB=12
Memory Expansion MapS...eeceeeccccccss ceveeves cecssecsns ceesssssesascese FT=6
Memory Inspect/Change, Memory Dump (M)...veceeeeenns cevens cesessssanes ees 3-10
Memory Map Change....cc... ceeesessescenns ceseccsss ceeeccesssns creecsssess =12
Memory Map..... cetessssetaases cesessasans cecscanns cesesas ceececsssessees Fli=2
Memory Timing SignalS....veeeeoees cesesanns cessasene ceeassenas seesaass .. 6-26
Minimum Memory Requirements for TIBUG.......... sesces seesescssnsesse eess F3=2
Miscellaneous Equipment.....ccevevcecse cessene sesaccaes sesecscssense cesss 2=2
Modem (Data Set) Interface Signal DefinitionS.eceeecscesececcass ceecnens 8-19
Move Block Following Passage of Parameters....... cececseas sescecences ... 5=-50
Move Block of Bytes Example Subroutine......cseceeccesces secssscscssssss F5-50
Multidrop Cabling..eseesscess ceereacanaes eseccncasesses ceseescses cececne F7-9
Multidrop Interface......... cesesacss vesesesana ceescanissesaansascanans . 6-37
Multidrop Interface.sscsceesssss ceteasans ceersssas cesesasssnes cesesseess T-8
Multidrop Interface...ceecees ceeesccnsas cececcecscssessacsacscsssasscass FO=-38
Multidrop Jumper Table...... ceecesen cresssesecns eesscssesecessssssesssss I7T=10
Multidrop System..... e sesececens . F7-9
Multiple-Device Direct Memory Access Controller........ cessescscsssases . 8-12

OEM Chassis Backplane Schematic.....eccc.. seesssresesessasns N see FT=-17
OEM ChassiS.eecoesss ceesesen creecsne ceasenens seseasens cesessesnens eessse (=13
Offboard Eight-Bit I/0 POrt.ececececceccscnscooccscscsccccaccans ceeecns .o 8-1
Offboard Memory.ceeceessssecees cesense ceetesessansenssassans ceeesanens ees F8-3
Offboard RAMeceseeecccovossaccccvoscccons ceseesensas eesecessssane ceveeas 8-1
Offboard TMS 99071.cceeevcesocesns cescccessssnes cesecasssrescens cevsessess 8-1
Onboard Device CRU Address....... ceevssessssecssassaseessanns cesesssssnes TH=25
Onboard Memory Expansion....ccsecececccss cesessrescscasssnens Y £
Operation..cceieesceeccsssssssasnsessessessnsccscns ceerecessecanenns ceess 2=8
OPTIONS. . ceveeeseosscesconns sseecsescsssecssnons cesees ceseeensssssss Section 7

P1, P2, P3, and P4 Pin AssignmentS...ceececccccaanss eessseessssss Appendix H
Parallel I/0 and System TiMer...eessssesccscscscss e ceseeas ceeeass 6=-32
Parallel I/0 Connector....... teeeeeescecessassessenene cereenne cereecens 2=2

Parallel I/0.cceeeccescccsscnnnne ceerectssscteesssecnns ceceonns cecssssses D-3U

Index-U

INDEX (CONTINUED)

Parts Listeceeecececens ceescscsnsen csesessaces ceesene sesssessssecses Appendix E
Power SpecificationS.ceeeececececss ceesscesasaesassenes cesscessesssaness b=1
Power and Terminal HOOKUD.::easess Ceeseccecsnsesnens P~
Power Cable/Card Cag€.cceeececesecess cecesean cessnescenss O
Power Supply Connections....... cessesecssasncs secesrescnns cessseneans cess 2=3
Power Supply HOOKUDsseesesevvosesscsoas cerees ceesesssaans creesesanas eoo. F2-1
Power Supplyeeceeecececsccsccnss ceescessevas cessesssesescsssscsssesvenses 2=1
Power-Up/Reset...... ceersissessannns cessens ceessesss ceessssessesssssenss 2=8
Preprogrammed Interrupt and User XOP Trap VectorS...cceceescccosscesnce .. T5-24
Product IndeX.seeeososssoscassssscsasasss tesecese Cecessesssssnnns ceseseas 1-4
Program Counter (PC)eeeseescsecsecssscacssossssscssssssanse cecesencssanes H4=3
Program Counter Relative Addressing....cceeeeeecncssccss cessesnevrsssaces U=13
Program Entry and Exit...eceecevececcoccnccsncancans cevressesasessssscces 5-21
Program Organization....cececeeocescss ceevesensun ceevecnnee cesessssnnne eees 5=3
PROGRAMMING.scoeeeeoscnss cecsssesasease secescnsessnsesnene cesssesses Section 5
Programming Considerations...eeececescecse cecseessaasee seescessanses eess 5-3
Programming Enviromment.........c... cesecceses e
Programming HintS..eececeeeees cheecessans O teesesenseccnnee 5-21

RAM EXpansSioN..eceesee Ceeeccscesasetesrasescanes cecereas ceeseens R £)
Random Access Memory.....eeeee. ceeeseessee cersenese cecesesssccacscesassss 6=28
Random Access Memory......... ceeesssaea Cececestecesstsassescsscssansanss FO=29
Read Hexadecimal Word from Terminal (XOP 9)..cccecerveecccsonnns sesecscsne 3-15
Read One Character from Terminal (XOP 13)..... cesvse ceescsccecanes eeeees 3-17
Read-0nly Memory.ceessseecccsoscscacnnns cecsecsssectscsenssseasssasioess 0=2T
Read-Only Memory.cececeeseee ceecassesssnan Ceceesscesccssscccrsansasesess FO=28
Reading the DIP Switcheceacececncesees ceesscsansaes teeveccssensens vessse F5-53
Ready.eceseeseescsscsssaacas Cevssesssecsene P ¢ Dy
Reference DocumentS...ceeeseccascscces ceetscacrassans teeccennna cessesena 1-6
Register Reserved Application....... teseessessacnns Ceesessesssasanssaas . T5-6
Remote Communications......... sesccssssssasase teesssesesesesanscssne cees (=12
Required Equipment........ cetesessscseanns -
Required Use of RAM in Programs............ cesesssssenassaes cecscsaseses 5=3
Reset and Load Filtering....... Cesecercsansses cecesecsecessacsannas ceses 61U
RESET and LOAD LOgiCeeeeeeneons e reeeecereneneens e Fereeeenaans veeew. F6-13
RESET Function..eceeeeecncacnecss P T L
RESET/LOAD LOBiCeeeeeeoeiosesococoseescceoncoasnsescscssssnssososcananns 6-10
. Return with Workspace Pointer (RTWP)....cesecsccsccosccecossanssascsncss 5-9
RS-232-C Interface......... ceeene O A
 RS=232-C POrf.ceesucecencnsens Ceeeereeateanas P AP - I
‘RS-232-C/TTY/Multidrop Interfaces (Main Port, P2)....ccveeieenncnnnneaas T=T

Sample Program T.ceeeeececssseossesscccscacses - .
Sample Program 2..ccccceecccsces ceeeteesseassacsssscesssneonas cesessseces 2=10
Sample Programs...... eeeaees eesessaaees Ceeeecceetestaertccetacnnnes vees 2-8
SCHEMATICS . eeesesasessssssnsasososasnssssessssscsssasnsssssecasssssesssse Appendix F
Serial Communication INterrupt.cceccececeeess Ceeeceecens ceeeeevecccsecss T=T
Serial I/0 Port EIA INterfacC.ececeececcccscscsccsssassssscsscssscscssses FO=30
Serial I/0 Port TTY INterface.cececcesscecssccscssesaccssscccscsscssescsss FO=3T
Seven-Word XOP Interrupt Linking Area....... ceecesnanns Ceceeceereseenenn F5-29
Six-Word Interrupt Linking Are@....cccecececsscssoscscosssccssccsensscsss F5=27
S1OW EPROM.secevsscennoosnsssacsasassnssssssscanasssacns B A
S1OW EPROM.cvvceacosssosccsessnasacsconncsaanaee ceveccscsccsasssescssans TT=T
Software Registers..ccceeceescccscees cesesessssenens ceessecsssasnsscsceses L=l
Source LiSting.ceesececcsccscsssssccsnssccsccscns escesssescsscnsssesssas F5=2

Index-5

INDEX (CONTINUED)

Status Bits Affected by Instructions.....cc.. ceesesecencs csessesecscse .o TU=5
Status Indicator........ ceessssassssas crresesesescscanans Ceecvesssssannn 6-40
Status Register (ST)eeeeeecncecese ceseesssessesseennras tesssetessssansen 4.3
Status Register.ieeeeesesescesceccesncncnns crestessesresecnnnas treseseasanan Fi-3
STCR Instruction...... ceessesessssssenssesnsessenns e o N
Switch, DIP, 5-position (S2).ceeceeecccecocccnne ceeesnenas cesscnnnaas ees 5-52
Switch, RESET (S1)ieeeees ceecsacsesssensen teesececsessnsssssssssasess 2=8, 6=10
Symbolic Memory Addressing, Indexed...cccecececcccccanes secssesencs eeees B=11
Symbolic Memory Addressing, Not Indexed....eeeesceccecesceccocscnns ceees U=11
System BUuSESeseeeeeeesssssscosnnnes cescsaessenanes cescccnns ceeesessseees D=l
System CloCK.seeesaseossansns teesecsesccnasanas ceenes Ceesecrsssescsasnass O=T
System Structure...cceccecsss Gsesesesssscestctetcsettosentnonnas cecsennnn .o 6-3
System Timer.e.ceeeeecscecess ceereerieestssessecscennanna eeeesssesensenseses D34

TAPE TaADSeeesenssncasacscenssssnncessssssossssosnsssscoccnssos ceseecssss F3-7
Terminal HooKUpP.eeeeeosose ceececesssscessssennns cesecssasssssssssesssenes 2=5
Terminals and Cables...... 2
THEORY OF OPERATION.:cecccacscss ceevscessersecrsansacses seeeceeessss Section 6
TI 733 ASR Baud Rate (T).ceereervecssncscecssasassanes eessenans crecnan .. 3-13
TIBUG CommandSeeceescscscnsss crecessceaccsnsnnne cecsesessns cesessscsssssss 3-1
TIBUG CommandS..eeecscsosscsvssssssosssesne ceesesnene ceeescsesescanen eesses T3=1
TIBUG Error MessageS..... ceecscessessscsannns cecacaanans cecsesasassensnns 3-18
TIBUG Error MessSageS.eecessccsscss creerecccnseenns Cesssesessaasses ceeens T3-18
TIBUG INTERACTIVE DEBUG MONITOR::eeeeeesssccsns cressesssssasssene .. Section 3
TM 990 Object Code Format.ceeeeeeecesaoee cesscsrsessnas essssssssses Appendix G
TM 990/101MA Block Diagram.......... cessne ceessccasssnsscesssassseacssss FO=2
TM 990/101MA Board in a TM 990/510A Card Cageeeeens sesesssccssessncans .. F2-5
T™M 990/101MA ConfigurationsS..ceeecee. tessessansassaanas cecevessssnsene eos T1-4
TM 990/101MA CRU MapPeeesvovesossaseasse esessecscsrsssssessnsens ceeersasess TH=21
T™ 990/101MA Dimensions..... ceccacecscscssassasescns cecescsesssascecnnne F1-2
TM 990/101MA Instruction FormatS..eececesceccccscss sesesessessensns ceeses PUT
TM 990/101MA INSTRUCTION SET EXECUTION...ceceseees ceeescseccecanscssssss U=
T™M 990/101MA Major ComponentiS.ceecscesescscesosces ceesesessessasssssene .o F1-1
TM 990/101MA Memory Addressing......... Ceeececeererccncsntsessccscssssss FO=16
TM 990/101MA Predefined CRU Addresses................... cesenss IH=12
TM 990/301 Microterminal....... cresvesscsensssscsasrascsnnea vesessessces =13
TM 990/301 Microterminal.seeceeeeesoscsnss crecsanan cvsesvssssessasssssnsss FI=15
TM 990/402 Line-by-Line Assembler......... ceseess ceececsesssssssreseness =12
TM 990/510A OEM Cha551s... F7-16
TMS 9900 CPU Flowchart..eeeeeveeoss Cetesesesseseesecenenns cevecessssssees FB=12
TMS 9900 CRU Interface Timing.eececeseeseccscsccscsscscsse sesssssssesnese F5=15
TMS 9900 Data and Address FloW.eeseeeoesoasee tesececscesccssssssccncssses FO=11
TMS 9900 Memory Bus Timing..eceeeeseoess cesene ceeterscasssteensrsnne ceess F6-26
TMS 9900 Pin FunctionS...ceeececsccness cesecssscsssasrans tesessssesesnses FD=9
TMS 9901 Interval Timer Interrupt Program.....csseeeececes cececsns eoeeess 5=-30
TMS 9907T.ceeeennn tecsecstcstsetesctatesssessssees e ceescscsssesnsssss F6=33
TTY Interface..ceeeecees. Ceeeseensneen ceveseensnraans ceecscesessescssass 0=36
TTY Interface.ceeececsccees ceeccecssessonns sevecssnessesae cessvensseness T=T

Unit ID DIP-Switcheeeeeernese seseesrsssccessssscsssersssenas Cessessssesses D=52
Unit ID SwitCheceeeeeooeenss PP PP -T2 1)
Unpacking.seees. sescsssssess ceovene ceeessesresescsns cececssssssncsancsee 2=2
User Memory...ees. ceesresiassacssnens cessssccananes S L
User Accessible Utilities...... Ceetecsaseneeneeanns ceccecescsssscsssscss 3-14
User Accessible UtilitieS.ceeeeeecceceeenn A i B L.

INDEX (CONCLUDED)
Using Main and Auxiliary TMS 9902As for I/0..cceeceececccocassscansecssss 5=52

Vectors (Interrupt and XOP)...ieuieeeeeseaeeersotosssssnssssccnsnssasccssse D=5
VErifiCatione e e eoeeeeseoeeeesosoescescessessossssssscssscscansnsssassnss 2=8
WALE e e e enecseeaceosaasossossseaneassssassoosssascsesossssnscscnnsasssnnsosss 0=27
Wiring Teletype Model 3320/5JE for TM 990/10TMA......cccceeveeee.s. Appendix A
WorksSpace EXample..ceeeeecesescsnssscsssesssscssssssssssssssssesssaseees FU=H
Workspace Pointer (WP)...eeeeeeesasesssesscsssscoosssosasscnassannsnncss 4=3
Workspace RegisterS.ceeeeesseesesossacscsoscscsssssssssasssssssssssosese D=H
Write Four Hexadecimal Characters to Terminal (XOP 10).ecceececcccsnssss 3=16
Write Message to Terminal (XOP 14)...cueccetieeieeneeoacononcnnnossssass 3=17
Write One Character to Terminal (XOP 12)ceeesccccccsecascsccassnsssereans 3=17
Write One Hexadecimal Character to Terminal (XOP 8)...cccevscecensccsaas 3=15

XOP EXAMDPLE+ e s eeeeeseesasnnsssnsnaeassssssescassssssscceceassssennnansss FI=35

Index-T7

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199
	Page 200
	Page 201
	Page 202
	Page 203
	Page 204
	Page 205
	Page 206
	Page 207
	Page 208
	Page 209
	Page 210
	Page 211
	Page 212
	Page 213
	Page 214
	Page 215
	Page 216
	Page 217
	Page 218
	Page 219
	Page 220
	Page 221
	Page 222
	Page 223
	Page 224
	Page 225
	Page 226
	Page 227
	Page 228
	Page 229
	Page 230
	Page 231
	Page 232
	Page 233
	Page 234
	Page 235
	Page 236
	Page 237
	Page 238
	Page 239
	Page 240
	Page 241
	Page 242
	Page 243
	Page 244
	Page 245
	Page 246
	Page 247
	Page 248
	Page 249
	Page 250
	Page 251
	Page 252
	Page 253
	Page 254
	Page 255
	Page 256
	Page 257
	Page 258
	Page 259
	Page 260
	Page 261
	Page 262
	Page 263
	Page 264
	Page 265
	Page 266
	Page 267
	Page 268
	Page 269
	Page 270
	Page 271
	Page 272
	Page 273
	Page 274
	Page 275
	Page 276
	Page 277
	Page 278
	Page 279
	Page 280
	Page 281
	Page 282
	Page 283
	Page 284
	Page 285
	Page 286
	Page 287
	Page 288
	Page 289
	Page 290
	Page 291
	Page 292
	Page 293
	Page 294
	Page 295
	Page 296
	Page 297
	Page 298
	Page 299
	Page 300
	Page 301
	Page 302
	Page 303
	Page 304
	Page 305
	Page 306
	Page 307
	Page 308
	Page 309
	Page 310
	Page 311
	Page 312

