
As you are now the owner of this document which should have come to you for free, please
consider making a donation of £1 or more for the upkeep of the (Radar) website which holds
this document. I give my time for free, but it costs me money to bring this document to you.
You can donate here https://blunham.com/Misc/Texas

Many thanks.

Please do not upload this copyright pdf document to any other website. Breach of copyright
may result in a criminal conviction.

This Acrobat document was generated by me, Colin Hinson, from a document held by me. I
requested permission to publish this from Texas Instruments (twice) but received no reply. It
is presented here (for free) and this pdf version of the document is my copyright in much the
same way as a photograph would be. If you believe the document to be under other
copyright, please contact me.

The document should have been downloaded from my website https://blunham.com/, or any
mirror site named on that site. If you downloaded it from elsewhere, please let me know
(particularly if you were charged for it). You can contact me via my Genuki email page:
https://www.genuki.org.uk/big/eng/YKS/various?recipient=colin

You may not copy the file for onward transmission of the data nor attempt to make
monetary gain by the use of these files. If you want someone else to have a copy of the file,
point them at the website. (https://blunham.com/Misc/Texas). Please do not point them at
the file itself as it may move or the site may be updated.

It should be noted that most of the pages are identifiable as having been processed by me.

I put a lot of time into producing these files which is why you are met with this page when you
open the file.

If you find missing pages, pages in the wrong order, anything else wrong with the file or
simply want to make a comment, please drop me a line (see above).

It is my hope that you find the file of use to you.

Colin Hinson
In the village of Blunham, Bedfordshire.

TEXAS INSTRUMENTS

TM 990
TM 990/101MA
Microcomputer

TABLE OF CONTENTS

SECTION TITLE PAGE

1. INTRODUCTION
1.1 General 1-1
1.2 Manual Organization 1-4
1.3 Product Index 1-4
1.4 Board Characteristics 1-5
1.5 General Specifications 1-5
1.6 Reference Documents 1-6
1.7 Glossary 1-7

2. INSTALLATION AND OPERATION OF THE TM 990/101MA
2.1 General 2-1
2.2 Required Equipment 2-1

2.2.1 Power Supply 2-1
2.2.2 Terminals and Cables 2-1
2.2.3 Power Cable/Card Cage 2-2
2.2.4 Parallel I/O Connector 2-2
2.2.5 Miscellaneous Equipment 2-2

2.3 Unpacking 2-2
2.4 Power and Terminal Hookup 2-2

2.4.1 Power Supply Connections 2-3
2.4.2 Terminal Hookup 2-5
2.4.3 Five-Switch DIP and Status LED 2-8

2.5 Operation 2-8
2.5.1 Verification 2-8
2.5.2 Power-Up/Reset 2-8

2.6 Sample Programs 2-8
2.6.1 Sample Program 1 2-8
2.6.2 Sample Program 2 2-10

2.7 Debug Checklist 2-10
2.8 AMPL Grounding 2-11

3. TIBUG INTERACTIVE DEBUG MONITOR
3.1 General 3-1
3.2 TIBUG Commands 3-1

3.2.1 Execute Under Breakpoint (B) 3-3
3.2.2 CRU Inspect/Change (C) 3-4
3.2.3 Dump Memory to Cassette/Paper Tape (D) 3-5
3.2.4 Execute Command (E) 3-8
3.2.5 Find Command (F) 3-8
3.2.6 Hexadecimal Arithmetic (H) 3-9
3.2.7 Load Memory from Cassette or Paper Tape (L) 3-9
3.2.8 Memory Inspect/Change, Memory Dump (M) 3-10
3.2.9 Inspect/Change User WP, PC, and ST Registers (R) 3-11
3.2.10 Execute in Single Step Mode (3) 3-12
3.2.11 TI 733 ASR Baud Rate (T) 3-13
3.2.12 Inspect/Change User Workspace (W) 3-13

3.3 User Accessible Utilities 3-14
3.3.1 Write One Hexadecimal Character to Terminal (XOP 8)... 3-15
3.3.2 Read Hexadecimal Word from Terminal (XOP 9) 3-15
3.3.3 Write Four Hexadecimal Characters to Terminal (XOP 10) 3-16
3.3.4 Echo Character (XOP 11) 3-17
3.3.5 Write One Character to Terminal (XOP 12) 3-17
3.3.6 Read One Character from Terminal (XOP 13) 3-17

iii

TABLE OF CONTENTS

SECTION TITLE PAGE

3.3.7 Write Message to Terminal (XOP 14) 3-17
3.4 TIBUG Error Messages 3-18

4. TM 990/101MA INSTRUCTION SET EXECUTION 4-1
4.1 General 4-1
4.2 User Memory 4-1
4.3 Hardware Registers 4-1

4.3.1 Program Counter (PC) 4-3
4.3.2 Workspace Pointer (WP) 4-3
4.3.3 Status Register (ST) 4-3

4.4 Software Registers 4-4
4.5 Instruction Formats and Addressing Modes 4-7

4.5.1 Direct Register Addressing 4-8
4.5.2 Indirect Register Addressing 4-8
4.5.3 Indirect Register Autoincrement Addressing 4-11
4.5.4 Symbolic Memory Addressing, Not Indexed 4-11
4.5.5 Symbolic Memory Addressing, Indexed 4-11
4.5.6 Immediate Addressing 4-13
4.5.7 Program Counter Relative Addressing 4-13

4.6 Instructions 4-14
4.6.1 Format 1 Instructions 4-18
4.6.2 Format 2 Instructions 4-20
4.6.3 Format 3/9 Instructions 4-22
4.6.4 Format 4 (CRU Multibit) Instructions 4-24
4.6.5 Format 5 (SHIFT) Instructions 4-25
4.6.6 Format 6 Instructions 4-27
4.6.7 Format 7 (RTWP, CONTROL) Instructions 4-30
4.6.8 Format 8 (IMMEDIATE, INTERNAL REGISTER LOAD/STORE)

Instructions 4-31
4.6.9 Format 9 (XOP) Instructions 4-33

5. PROGRAMMING
5.1 General
5.2 Programming Considerations

5.2.1 Program Organization
5.2.2 Executing TM 990/100MA on the TM 990/101MA
5.2.3 Required Use of RAM in Programs

5-1
5-3
5-3
5-3
5-3

5.3 Programming Environment 5-4
5.3.1 Hardware Registers 5-4
5.3.2 Address Space 5-5
5.3.3 Vectors (Interrupt and XOP) 5-5
5.3.4 Workspace Registers 5-6

5.4 Linking Instructions 5-6
5.4.1 Branch Instruction (B) 5-7
5.4.2 Branch and Link (BL) 5-7
5.4.3 Branch and Load Workspace Pointer (BLWP) 5-8
5.4.4 Return with Workspace Pointer (RTWP) 5-9
5.4.5 Extended Operation (XOP) 5-9
5.4.6 Linked-Lists 5-10

5.5 Communications Register Unit (CRU) 5-11
5.5.1 CRU Addressing 5-13
5.5.2 CRU Timing 5-14
5.5.3 CRU Instructions 5-14

iv

TABLE OF CONTENTS

SECTION TITLE PAGE

5.6 Dynamically Relocatable Code 5-19
5.7 Programming Hints 5-21
5.8 Interfacing with TIBUG 5-21

5.8.1 Program Entry and Exit 5-21
5.8.2 I/O Using Monitor XOP's 5-22

5.9 Interrupts and XOP's 5-24
5.9.1 Interrupt and XOP Linking Areas 5-24
5.9.2 TMS 9901 Interval Timer Interrupt Program 5-30
5.9.3 Example of Programming Timer Interrupts for TMS 9901

and TMS 9902A 5-32
5.10 Move Block Following Passage of Parameters 5-50
5.11 Block Compare Subroutine 5-51
5.12 Unit ID DIP-Switch 5-52
5.13 CRU Addressable LED 5-52
5.14 Using Main and Auxiliary TMS 9902As for I/O 5-52

6. THEORY OF OPERATION
6.1 General
6.2 Power Specifications
6.3 System Structure
6.4 System Buses

6.4.1 Address Bus
6.4.2 Data Bus
6.4.3 CRU Bus
6.4.4 Control Bus

6.5 System Clock
6.6 Central Processing Unit
6.7 RESET/LOAD Logic

6.7.1 RESET Function
6.7.2 LOAD Function
6.7.3 Reset and Load Filtering
6.7.4 CLRCRU Signal

6.8 External Instructions
6.9 Address Decoding

6.9.1 Memory Address
6.9.2 CRU Select

6.10 Memory Timing Signals
6.10.1 Ready
6.10.2 Wait
6.10.3 MEMCYC

6.11 Read-Only Memory
6.12 Random Access Memory
6.13 Buffer Control

6.13.1 Address and Data Buffers
6.13.2 Control Buffers
6.13.3 HOLD-, HOLDA, and DMA

6.14 Interrupt Structure
6.15 Parallel I/O and System Timer

6.15.1 Parallel I/O
6.15.2 System Timer

6.16 Main Communications Port
6.16.1 EIA Interface
6.16.2 TTY Interface

V

Decoding

6-1
6-1
6-3
6-4
6-4
6-4
6-4
6-4
6-7
6-8
6-10
6-10
6-13
6-14
6-14
6-14
6-15
6-15
6-19
6-26
6-26
6-27
6-27
6-27
6-28
6-29
6-30
6-30
6-31
6-31
6-32
6-34
6-34
6-35
6-35
6-36

TABLE OF CONTENTS

SECTION TITLE PAGE

6.16.3 Multidrop Interface 6-37
6.17 Auxiliary Communications Port 6-38
6.18 Unit ID Switch 6-40
6.19 Status Indicator 6-40

7. OPTIONS
7.1 General 7-1
7.2 Onboard Memory Expansion 7-1

7.2.1 EPROM Expansion 7-1
7.2.2 RAM Expansion 7-6

7.3 Slow EPROM 7-7
7.4 Serial Communication Interrupt 7-7
7.5 RS-232-C/TTY/Multidrop Interfaces (Main Port, P2) 7-7

7.5.1 TTY Interface 7-7
7.5.2 RS-232-C Interface 7-7
7.5.3 Multidrop Interface 7-8

7.6 External System RESET/LOAD 7-12
7.7 Remote Communications 7-12
7.8 Memory Map Change 7-12
7.9 TM 990/402 Line-by-Line Assembler 7-12
7.10 TM 990/301 Microterminal 7-13
7.11 OEM Chassis 7-13

8. APPLICATIONS
8.1 General 8-1
8.2 Offboard RAM 8-1
8.3 Offboard TMS 9901 8-1
8.4 Offboard Eight-Bit I/O Port 8-1
8.5 Extra RS-232-C Terminal Port 8-6
8.6 Direct Memory Access (DMA) Applications 8-7

8.6.1 DMA System Timing 8-7
8.6.2 Memory Cycle Timing 8-11
8.6.3 DMA System Guidelines 8-11
8.6.4 Multiple-Device Direct Memory Access Controller 8-12

8.7 EIA Serial Port Applications 8-17
8.7.1 Cable Pin Assignments 8-17
8.7.2 Modem (Data Set) Interface Signal Definitions 8-19

APPENDICES

A WIRING TELETYPE MODEL 3320/5JE FOR TM 990/101MA
B EIA RS-232-C CABLING
C ASCII CODE
D BINARY, DECIMAL, AND HEXADECIMAL NUMBERING
E PARTS LIST
F SCHEMATICS
G 990 OBJECT CODE FORMAT
H P1, P2, P3, AND P4 PIN ASSIGNMENTS
I TM 990/301 MICROTERMINAL
J CRU INSTRUCTION AND ADDRESSING EXAMPLES USING TMS 9901
K EXAMPLE PROGRAMS

vi

LIST OF ILLUSTRATIONS

FIGURE TITLE PAGE

1-1 TM 990/101MA Major Components . 1-1
1-2 TM 990/101MA Dimensions 1-2
1-3 Main and Expansion EPROM and RAM 1-5

2-1 Power Supply Hookup 2-4
2-2 TM 990/101MA Board in a TM 990/510A Card Cage 2-5
2-3 743 KSR Terminal Hookup 2-6
2-4 Connector P2 Connected to Model 743 KSR 2-6
2-5 Connector P2 Connected to TTY Device 2-7

3-1 Minimum Memory Requirements for TIBUG 3-2
3-2 CRU Bits Inspected by C Command 3-4
3-3 733 ASR Module Assembly Switch Panel 3-7
3-4 Tape Tabs 3-7

4-1 Memory Map 4-2
4-2 Status Register 4-3
4-3 Workspace Example 4-6
4-4 TM 990/101MA Instruction Formats 4-7
4-5 Direct Register Addressing Examples 4-9
4-6 Indirect Register Addressing Example 4-10
4-7 Indirect Register Autoincrement Addressing Example 4-10
4-8 Direct Memory Addressing Examples 4-12
4-9 Direct Memory Addressing, Indexed Example 4-13
4-10 BLWP Example 4-29
4-11 XOP Example 4-35

5-1 Source Listing 5-2
5-2 Example of Separate Programs Joined by Branches to Absolute

Addresses 5-7
5-3 Linked List Example 5-11
5-4 CRU Base and Bit Addresses 5-13
5-5 TMS 9900 CRU Interface Timing 5-15
5-6 LDCR Instruction 5-16
5-7 STCR Instruction 5-17
5-8 Addition of Displacement and R12 Contents to Drive CRU Bit

Address 5-18
5-9 Example of Program with Coding Added to Make it Relocatable 5-19
5-10 Examples of Non Self-Relocating Code and Self-Relocating Code. 5-20
5-11 Interrupt Sequence 5-26
5-12 Six-Word Interrupt Linking Area 5-27
5-13 Seven-Word XOP Interrupt Linking Area 5-29
5-14 Enabling and Triggering TMS 9901 Interval Timer 5-31
5-15 Example of Code to Run TMS 9901 Interval Timer 5-33
5-16 Example Program Using Timer Interrupts 3 and 4 5-38
5-17 Move Block of Bytes Example Subroutine 5-50
5-18 Compare Blocks of Bytes Example Subroutine 5-51
5-19 Reading the DIP Switch 5-53
5-20 Example Code to Check Board ID at DIP Switch (Multidrop) 5-54
5-21 Coding Example to Ascertain System Configuration Through Dip

Switch Settings 5-54
5-22 Coding Example to Blink LED On and Off 5-55
5-23 Example Program to Converse Through Main/Auxiliary TMS 9902As. 5-57

vii

LIST OF ILLUSTRATIONS

FIGURE TITLE PAGE

6-1 TM 990/101MA Block Diagram 6-2
6-2 Crystal-Controlled Operation 6-8
6-3 TMS 9900 Pin Functions 6-9
6-4 TMS 9900 Data and Address Flow 6-11
6-5 TMS 9900 CPU Flowchart 6-12
6-6 RESET and LOAD Logic 6-13
6-7 TM 990/101MA Memory Addressing 6-16
6-8 Memory Address Decode PROM 6-18
6-9 Decoding Circuitry for CRU I/O Addresses 6-20
6-10 TMS 9900 Memory Bus Timing 6-26
6-11 Read-Only Memory 6-28
6-12 Random Access Memory 6-29
6-13 TMS 9901 6-33
6-14 Serial I/O Port EIA Interface 6-36
6-15 Serial I/O Port TTY Interface 6-37
6-16 Multidrop Interface 6-38

7-1 Jumper Placement 7-2
7-2 Memory and Capacitor Placement 7-3
7-3 Memory Expansion Maps 7-6
7-4 Four Interrupt-Causing Conditions at TMS 9902A 7-8
7-5 Multidrop System 7-9
7-6 Multidrop Cabling 7-9
7-7 Master-Slave Full Duplex Multidrop System 7-10
7-8 Half-Duplex Multidrop System 7-11
7-9 Line-by-Line Assembler Output 7-14
7-10 TM 990/301 Microterminal 7-15
7-11 TM 990/510A OEM Chassis 7-16
7-12 OEM Chassis Backplane Schematic 7-17

8-1 Major Components used in I/O 8-2
8-2 Offboard Memory 8-3
8-3 Circuitry to add TMS 9901 Offboard 8-4
8-4 8-Bit 9905/06 Port 8-5
8-5 RS-232-C Port 8-6
8-6 DMA Bus Control 8-8
8-7 CPU HOLD- and HOLDA Timing 8-9
8-8 DMA System Timing 8-10
8-9 Memory Cycle Timing 8-12
8-10 DMA System Block Diagram 8-13
8-11 DMA Device Controller 8-13
8-12 DMA Controller 8-14
8-13 DMA Controller Timing 8-16
8-14 Cable Connections 8-17

viii

LIST OF TABLES

TABLE

1-1

2-1

TITLE

TM 990/101MA Configurations

Board Jumper Positions as Shipped

PAGE

1-4

2-3

3-1 TIBUG Commands 3-1
3-2 Command Syntax Conventions 3-3
3-3 User Accessible Utilities 3-14
3-4 TIBUG Error Messages 3-18

4-1 Status Bits Affected by Instructions 4-5
4-2 Instruction Description Terms 4-14
4-3 Instruction Set, Alphabetical Index 4-15
4-4 Instruction Set, Numerical Index 4-17
4-5 Comparison of Jumps, Branches, XOP's 4-30

5-1 Assembler Directives Used in Examples 5-1
5-2 Register Reserved Application 5-6
5-3 TM 990/101MA Predefined CRU Addresses 5-12
5-4 Alternate Programming Conventions 5-21
5-5 Preprogrammed Interrupt and User XOP Trap Vectors 5-24
5-6 Interrupt and User XOP Linking Areas 5-25
5-7 Interrupt Example Program Description 5-35
5-8 ASRFLAG Values 5-60

6-1 Device Supply Voltage Pin Assignments 6-3
6-2 Bus Signals 6-5
6-3 Control Bus Functions 6-6
6-4 External Instructions 6-14
6-5 TM 990/101MA CRU Map 6-21
6-6 Implicit Decoded CRU Bit Addresses 6-25
6-7 Onboard Device CRU Address 6-25
6-8 Data Buffers 6-30
6-9 Interrupt Characteristics 6-31
6-10 Dedicated Interrupt Description 6-31
6-11 DTR Hardware and Software Options 6-40

7-1 Master Jumper Table 7-4
7-2 Jumper Pins by Board Dash Number (Factory Installation) 7-5
7-3 Slow EPROM 7-7
7-4 Multidrop Jumper Table 7-10

8-1 103/113 Data Set Cable 8-17
8-2 202/212 Dat Set Cable 8-18
8-3 201 Data Set Cable 8-18
8-4 Data Terminal Cable 8-19

ix

SECTION 1

INTRODUCTION

1.1 GENERAL

The Texas Instruments TM 990/101MA is a self-contained microcomputer on a
single printed-circuit board. The board's component side is shown in Figure
1-1, which also highlights major features and components. Figure 1-2 shows
board dimensions. This microcomputer board contains features found on
computer systems of much larger size, including a central processing unit
(CPU) with hardware multiply and divide, programmable serial and parallel I/O
lines, external interrupts, and a debug-monitor to assist the programmer in
program development and execution. Other features include:

• TMS 9900 microprocessor based system: the microprocessor with the
minicomputer instruction set - software compatible with other members
of the 990 family.

• 1K X 16 bits of 2114 random-access memory (RAM) expandable onboard to
2K X 16 bits.

• 1K x 16 bits of TMS 2708 erasable programmable read-only memory
(EPROM), expandable onboard to 2K X 16 bits. Simple jumper
modifications enable substitution of the larger TMS 2716 EPROMs (16K
bits each) for the smaller TMS 2708s (8K bits each). Four TMS 2716s
permit EPROM expansion to 4K x 16 bits.

• Three board configurations are available. The characteristics of each
configuration are explained in section 1.3.

• Buffered address, data, and control lines for offboard memory and I/O
expansion; full DMA capabilities are provided by the buffer
controllers.

• 3 MHz crystal-controlled clock.

• One 16-bit parallel I/O port, each bit is individually programmable.

• Modified EIA RS-232-C serial I/O interface, capable of communication
to both EIA-compatible terminals and popular modems (data sets).

• A local serial I/O port, with interfaces for an EIA terminal and
either a Teletype (TTY) or a twisted-pair balanced-line multidrop
system (interface choices are detailed in section 1.3).

• Three programmable interval timers.

• 17 prioritized interrupts, including RESET and LOAD functions.
Interrupt 6 is level triggered (active LOW) and edge-triggered (either
polarity) and latched onboard.

• A directly addressable five-position DIP switch and an addressable
light emitting diode (LED) for custom system applications.

• PROM memory decoder permits easy reassignment of memory map config-
urations; see Figure 1-3 for memory map of the standard board.

1-1

12 MHz
CRYSTAL

U27
ii SI TM89902A FOR

AUXILIARY PORT
5 SWITCH

I.D. DIP
I UT

I $2

1 U30

AUXILIARY MAIN
PORT (P3) PORT (P2)

n n il
PARALLEL I/O

PORT (P4)

RESET
SWITCH Si, 40 r4

—12V

LED

U. U2$

TIM9904A

'
of

1 W
eg , U.

Y1

US

CLOCK DRIVER

743287 MEMORY
DECODE PROM

TM89900

TM89901

URI

MADE IN U.S.A.

TM990
TEXAS

/101MA-
INSTRUMENTS

TM89902A FOR
MAIN PORT

1

-12V
6.129

70

TEST POINT 1

CONNECTOR P1

ADDRESS
AND'

DATA BUFFERS RAM SOCKETS EPROM SOCKETS

1 U4
PORT P3 if

ILF

I U23

FIGURE 1-1. TM 990/101MA MAJOR COMPONENTS

•

A

9
9
0
/
1
0
1
M
A
 D
I
M
E
N
S
I
O
N
S

7.50
(19.05)

NOTE
Top dimensions are in inches and bottom dimensions, in parenthesis, are in

centimeters.

1.2 MANUAL ORGANIZATION

Section 1 covers board specifications and characteristics. A glossary in
section 1.7 explains terms used throughout the manual.

Section 2 explains how to install, power-up, and operate the TM 990/101MA
microcomputer with the addition of a data terminal, power supplies, and
appropriate connectors.

Section 3 explains how to communicate with the TM 990/101MA using the TIBUG
monitor. This versatile monitor, complete with supervisor calls and operator
communication commands, facilitates the development and execution of software.

Section 4 describes the instruction set of the TM 990/101MA, giving examples
of each class of instruction and providing some explanation of the TMS 9900
architecture.

Section 5 explains basic programming procedures for the microcomputer, giving
an explanation of the programming environment and hardware-dependent features.
Numerous program examples are included for using the various facilities of the
TM 990/101MA.

Section 6 is a basic theory of operation, explaining the hardware design
configuration and circuitry. This section provides explanations of the bus
structure, the control logic, and the various subsystems which make up the
microcomputer.

Section 7 describes various options available for the microcomputer, both
those suppplied onboard and those which Texas Instruments offers for offboard
expansion of the system.

Section 8 features various hardware applications which can be built using the
TM 990/101MA.

1.3 PRODUCT INDEX

The TM 990/101MA microcomputer is available in three different configurations,
which are specified by a dash number appended to the product name; e.g., TM
990/101MA-1. These configurations are listed in Table 1-1. A memory map is
shown in Figure 1-3.

TABLE 1-1. TM 990/101MA CONFIGURATIONS

TM 990/101MA
Dash No.

EPROM RAM Main Serial Port Option
(EIA Terminal I/F Stand) Socketed Program

-1 2 TMS 2708 TIBUG Monitor 4 2114 TTY
(1K x 16) (1K x 16)

-2 2 TMS 2716 Blank 4 2114 Multidrop
(2K x 16) (1K x 16)

-3 4 TMS 2716 Blank 8 2114 TTY
(4K x 16) (2K x 16)

1-4

MAIN EPROM'

0000

0800 07FF

OFFF

EXPANSION
EPROM

EXPANSION
RAM

F000

F800

TM 990/101MA

MAIN RAM

F7FF

FFFF

•EPROM's programmed with TIBUG monitor.

FIGURE 1-3. MAIN AND EXPANSION EPROM AND RAM

1.4 BOARD CHARACTERISTICS

Figure 1-1 shows the major portions and components of the microcomputer. The
system bus connector is P1, which is a 100-pin (50 each side) PC board edge
connector spaced on 0.125 inch centers. Connector P2 is the main serial port
and P3 is the RS-232-C auxiliary serial port. Both connectors are standard
25-position female jacks used in RS-232-C communications. The parallel I/O
port is PC board edge connector P4, which has 40 pins (20 each side) spaced on
0.1-inch centers.

Figure 1-2 shows the PC board silkscreen markings which detail the various
components on the board as well as the board dimensions and tolerances.

1.5 GENERAL SPECIFICATIONS

Power Consumption: +5V
Typ Max

+12V
Typ Max

-12V
Typ Max

TM 990/101MA-1 1.0 2.2 0.20 0.40 0.10 0.40
TM 990/101MA-2 1.0 2.2 0.20 0.40 0.10 0.40
TM 990/101MA-3 1.1 2.6 0.25 0.50 0.10 0.50

Clock Rate: 3 MHz

Baud Rates (Set by TIBUG): 110, 300, 600, 1200, 2400, 4800, 9600, 19200

Memory Size: The TM 990/10IMA-1 microcomputer is shipped with:

RAM: Four 2114 (1K X 4 bits each)
EPROM: Two TMS 2708 (1K X 8 bits each), preprogrammed with TIBUG.

Total Memory Capacity:

RAM: Eight 2114's (1K X 4 bits each)
EPROM: Four TMS 2708's (1K X 8 bits each) or

Four TMS 2716's (2K x 8 bits each)

Board Dimensions: See Figure 1-2.

Parallel I/O Port (P4): One 16-bit port, uses TMS 9901 programmable systems
interface.

Serial I/O Port (P2 and P3): Two asynchronous ports:
Main port (P2) has two interfaces: RS-232-C answer mode and either a TTY
or a balanced-line differential multidrop interface.

Auxiliary port (P3) meets "RS-232-C specification interface, capable of
either originate or answer mode.

Both serial ports use TMS 9902A asynchronous communication controllers,
but the auxiliary port will readily accept the TMS 9903 synchronous
communication controller. Simply plug in the TMS 9903 for synchronous
systems.

1.6 REFERENCE DOCUMENTS

The following documents provide supplementary information to the TM 990/101MA
User's Manual.

• TMS 9900 Microprocessor Data Manual

• TMS 9901 Programmable Systems Interface Data Manual

TMS 9902A Asynchronous Communication Controller Data Manual

• TMS 9903 Synchronous Communication Controller Data Manual

• TMS 990 Computer, TMS 9900 Microprocessor Assembly Language
Programmer's Guide (P/N 943441-9701)

• TM 990/301 Microterminal

• TM 990/401 TIBUG Monitor Listing

• TM 990/402 Line-by-Line Assembler User's Guide

• TM 990/502 Cable Assembly (RS-232-C)

• TM 990/503A Cable Assembly (TI Terminal 743 or 745)

• TM 990/504A Cable Assembly (Teletype)

• TM 990/506 Cable Assembly (Modem cable for /101 board)

1-6

• TM 990/510A/520A/530 Card Cage

• TM 990/511 Extender Board User's Guide

• TM 990/512/513 Prototyping Board User's Guide

1.7 GLOSSARY

The following are definitions of terms used with the TM 990/101MA. Applicable
areas in this manual are in parentheses.

Absolute Address: The actual memory address in quantity of bytes. Memory
addressing is usually represented in hexadecimal from 000016 to FFFF16 for the
TM 990/101MA.

Alphanumeric Character: Letters, numbers, and associated symbols.

ASCII Code: a seven-bit code used to represent alphanumeric characters and
control (Appendix C).

Assembler: Program that translates assembly language source statements into
object code.

Assembly Language: Mnemonics which can be interpreted by an assembler and
translated into an object program (section 4.6).

Bit: The smallest part of a word; it has a value of either a 1 or O.

Breakpoint: Memory address where a program is intentionally halted. This is
a program debugging tool.

Byte: Eight bits or half a word.

DO D7 D8 D15
M.S. byte L.S. byte

MSb (most significant bit) LSb (least significant bit)

Carry: A carry occurs when the most significant bit is carried out in an
arithmetic operation (i.e., result cannot be contained in only 16 bits),
(section 4.3.3.4).

Central Processing Unit (CPU): The "heart" of the computer: responsibilites
include instruction access and interpretation, arithmetic functions, I/O
memory access. The TMS 9900 is the CPU of the 101MA.

Chad: Dot-like paper particles resulting from the punching of paper tape.

Command Scanner: A given set of instructions in the TIBUG monitor which takes
the user's input from the terminal and searches a table for the proper code to
execute.

Context Switch: Change in program execution environment, includes new program
counter (PC) value and new workspace area.

CRU (Communications Register Unit): The TMS 9900's general purpose, command-

1-7

driven input/output interface. The CRU provides up to 4096 directly
addressable input and output bits (section 5.5).

Effective Address: Memory address value resulting from interpretation of an
instruction operand, required for execution of that instruction.

EPROM: See Read Only Memory.

Hexadecimal: Numerical notation in the base 16 (Appendix D).

Immediate Addressing: An immediate or absolute value (16-bits) is part of the
instruction (second word of instruction).

Indexed Addressing: The effective address is the sum of the contents of an
index register and an absolute (or symbolic) address (section 4.5.5).

Indirect Addressing: The effective address is the contents of a register
(section 4.5.2).

Interrupt: Context switch in which new workspace pointer (WP) and program
counter (PC) values are obtained from one of 16 interrupt traps in memory
addresses 000016 to 003E16 (section 5.9).

I/O: The input/output lines are the signals which connect an external device
to the data lines of the TMS 9900.

Least Significant Bit (LSB): Bit having the smallest value (smallest power of
base 2): represented by the right-most bit.

Link: The process by which two or more object code modules are combined into
one, with cross-referenced label address locations being resolved.

Load: Transfer control to operating system using the equivalent of a BLWP
instruction to vectors in upper memory (FFFC16 and FFFE16). See Reset.

Loader: Program that places one or more absolute or relocatable object
programs into memory (Appendix G).

Machine Language: Binary code that can be interpreted by the CPU (Table 4-4).

Monitor: A program that assists in the real-time aspects of program execution
such as operator command interpretation and supervisor call execution.
Sometimes called supervisor (Section 3).

Most Significant Bit (MSB): Bit having the most value; the left-hand bit
representing the highest power of base 2. This bit is often used to show sign
with a 1 indicating negative and a 0 indicating positive.

Object Program: The hexadecimal interpretations of source code output by an
assembler program. This is the code executed when loaded into memory.

One's Complement: Binary representation of a number in which the negative of
the number is the complement or inverse of the positive number (all ones
become zeroes, vice versa). The MSB is one for negative numbers and zero for
positive. Two representations exist for zero: all ones or all zeroes.

Op Code: Binary operation code interpreted by the CPU to execute the

1-8

instruction (section 4.5).

Overflow: An overflow occurs when the result of an arithmetic operation
cannot be represented in two's complement (i.e., in 15 bits plus sign bit),
(section 4.3.3.5).

Parity: Means for checking validity of a series of bits, usually a byte. Odd
parity means an odd number of one bits; even parity means an even number of
one bits. A parity bit is set to make all bytes conform to the selected
parity. If the parity is not as anticipated, an error flag can be set by
software. The parity jump instruction can be used to determine parity
(section 4.3.3.6).

PC Board (Printed Circuit Board): A copper-coated fiberglass or phenolic
board on which areas of copper are selectively etched away, leaving conductor
paths forming a circuit. Various other processes such as soldermasking and
silkscreen markings are added to higher quality PC boards.

Program Counter (PC): Hardware register that points to the next instruction
to be executed or next word to be interpreted (section 4.3.1).

PROM: See Read Only Memory.

Random Access Memory (RAM): Memory that can be written to as well as read
from (vs. ROM).

Read Only Memory (ROM): Memory that can only be read from (can't change
contents). Some can be programmed (PROM) using a PROM burner. Some PROMs can
be erased (EPROMs) by exposure to ultraviolet light.

Reset: Transfer control to operating system using the equivalent of a BLWP
instruction to vectors in lower memory (000016 and 000216). See Load.

Source Program: Programs written in mnemonics that can be translated into
machine language (by an assembler).

Status Register (ST): Hardware register that reflects the outcome of a
previous instruction and the current interrupt mask (section 4.3.3).

Supervisor: See Monitor.

Utilities: A unique set of instructions used by different parts of the
program to perform the same function. In the case of TIBUG, the utilities are
the I/O XOPs (section 3.3).

Word: Sixteen bits or two bytes.

Workspace Register Area: Sixteen words, designated registers 0 to 15, located
in RAM for use by the executing program (section 4.4).

Workspace Pointer (WP): Hardware register that contains the memory address of
the beginning (register 0) of the workspace area (section 4.3.2).

SECTION 2

INSTALLATION AND OPERATION OF THE TM 990/101MA

2.1 GENERAL

This section explains procedures for unpacking and setting up the TM 990/101MA
board for operation. This section assumes (1) the TIBUG monitor is resident
on EPROMs as initially shipped from the factory, and (2) that a terminal
suitable for connection to the main communications port is used with the
proper cable assembly.

Be sure that the correct cable assembly is used with your data
terminal. For teletypewriters (TTY), refer to Appendix A. For
RS-232-C compatible terminals, refer to Appendix B for the signal
configuration used by the main I/O port. Most RS-232-C compatible
terminals, such as a Lear Siegler ADM-1, will require the TM 990/502
cable or equivalent. A TI 743 or 745 must use a TM 990/503A cable or
equivalent because of the connector on the terminal end of the cable.
A TI 733 requires the use of a TM 990/505 cable or equivalent. Many
RS-232-C compatible terminals come with their own cables, and
therefore will probably work with no problem.

2.2 REQUIRED EQUIPMENT

The basic equipment required, along with appropriate options, is explained in
the following sections.

2.2.1 Power Supply

A power supply capable of meeting at least the following specifications is
required. A heavier duty supply is recommended, if possible, especially for
supplying the +5 voltage.

VOLTAGE REGULATION CURRENT

+5 V 3% 2.2 A
-12 V 3% 0.4 A
+12 V 3% 0.4 A

2.2.2 Terminals And Cables

A 25-pin RS-232 male plug, type DB25P, is required. Ready made cables are
available from TI: see Appendix A or B.

• RS-232-C compatible terminal, including the TI 733 (using its own
cable): see Appendix B to verify cabling you already have, or for
instructions to make a custom cable.

• TI 743/745: see Appendix B for special cabling required (these
terminals usually come with the correct cable).

• Teletype Model 3320/5JE (for TM 990/101MA-1 and -3 microcomputer
boards only): see Appendix A for required modifications for 20 mA
neutral current-loop operation and proper cable connections.

2-1

NOTE

If you want to make your own cable, be aware that the connector plugs
of various vendors, including TI, do not necessarily use the numbering
schemes on the board edge connector. ALWAYS refer to the board edge
when wiring a connector.

2.2.3 Power Cable/Card Cage

The use of a TM 990/510A card cage or equivalent facilitates operation and
setup. Alternately, one of the following 100-pin, 0.125 inch (center-to-
center) PCB edge connectors may be used to interface with connector P1, such
as with wire-wrap models:
• TI H431111-50 • Amphenol 225-804-50
• Viking 3VH50/9CND5 • Elco 00-6064-100-061-001

2.2.4 Parallel I/O Connector

If parallel I/O port P4 is used, a ribbon cable with a 40-pin, 0.1-inch center
spacing PCB edge connector is needed. (The TIBUG monitor does not use the
parallel port in its normal processing.) Wire-wrap connector examples are TI
H421111-20 and Viking 3VH20/1JND5.

2.2.5 Miscellaneous Equipment

• Volt-Ohmmeter to measure completed/open connections and to verify
power supply voltages and connections.

• If any custom connections are required, a soldering iron (25-45 watt),
rosin core solder, and wire are needed. Suggested wire sizes are 18
AWG insulated stranded wire for power connections, 24 AWG insulated
stranded wire for I/O connections.

2.3 UNPACKING

Lift the TM 990/101MA board from its carton and remove the protective
wrapping. Check the board for shipping damages. If any discrepancy is found,
notify your TI distributor.

Verify that data manuals for the TMS 9900, TMS 9901, and TMS 9902A devices are
included.

2.4 POWER AND TERMINAL HOOKUP

These procedures assume that the TIBUG monitor is resident in the required
address space (000016 to 07FF16), and that a terminal and cable of the proper
type to match the intended serial interface (TTY, EIA, multidrop) is also
employed.

Check the board and verify that the jumper configuration is as described in
Table 2-1. Table 7-1 (in Section 7, Options) further defines jumper
configurations.

Before connecting or disconnecting a connector to P4, TURN OFF the
power. Incorrect placement of the parallel connector (P4) with
power applied can damage the board.

2-2

TABLE 2-1. BOARD JUMPER POSITIONS AS SHIPPED

Function Stake Pins Used Proper Connection & Description

Interrupt 4 source El, E2, E3 El to E2 - pin 18, connector P1
Interrupt 5 source E4, E5, E6 E4 to E5 - pin 17, connector P1
Slow EPROM E7, E8, E53 E8 to E53 - No WAIT state
2708/2716 Memory Map E9, E10, Ell E10 To Ell - Use TMS 2708s
EPROM Enable E12, E13, E14 E13 to E14 - Onboard EPROM
HI/LO Memory Map E15, E16, El7 E16 to El7 - EPROM low, RAM high
EIA Connector Ground E18, E19 E18 to E19* - pin 1 of P3 grounded*
Microterminal +5 V E20, E21 Shipped installed on -0001, 3 only*
Microterminal +12 V E22, E23 Shipped installed on -0001, 3 only*
Microterminal -12 V E24, E25 Shipped installed on -0001, 3 only*
Main EPROM type E26 through E30 E27 to E28, E29 to E30 - TMS 2708s
Expansion EPROM type E31 through E35 E32 to E33, E34 to E35 - TMS 2708s
Teletype E36, E37 Shipped removed. On -0001, 3 only.

If using a TTY, borrow a Micro-
terminal jumper plug for use here.

EIA/MD receive select E38, E39, E40 E39 to E40 - EIA (and TTY) receive
Multidrop Termination E41 through E52 Shipped installed on -0002 only*
Resistors/Duplex Select
P3 Port Terminal/Modem E54, E55, E56 E54 to E55 - Terminal use*

*Jumper connection is not relevant for TIBUG operation with an RS-2342-C or
TTY terminal.

Be careful to apply correct voltage levels to the TM 990/101MA. Texas
Instruments assumes no responsibility for damage caused by improper
wiring or incorrect voltage application by the user. If power is
being supplied from separate power supplies, the system requires that
-12V be turned on first and be turned off last. There is no required
sequence in turning on the remaining voltages. This does not apply if
the system uses only one power supply.

2.4.1 Power Supply Connections

Figure 2-1 shows how the power supply is connected to the TM 990/101MA through
connector P1, using a 100-pin edge connector. Be careful to use the correct
pins as numbered on the board; these pin numbers may not correspond to the
numbers on the particular edge connector used. Check connections with an
ohmmeter before applying power if there is any doubt about the quality or
location of a connection.

The table in Figure 2-1 shows suggested color coding for the power supply
plugs. To prevent incorrect connection, label the top side of the edge
connector "TOP" and the bottom "TURN OVER".

Figure 2-2 shows the TM 990/101MA in the TM 990/510A card cage. Slot position
is determined by the other boards in the system. See the TM 990/510A/520A/530
Card Cage User's Guide or the TM 990 System Specification for card placement
guidelines.

Slide the microcomputer into the slot, following the guides. Be sure the P1
connector is correctly aligned in the socket on the backplane, then gently but
firmly push the board edge into the edge connector socket.

2-3

N N
1.4.

TM 990/101MA
P1 CONNECTOR

(TOP)

60

 unt'imiuriuuuaualluM]iill[iNauulluouulci
2 4 10 20 30

EDGECONNECTOR

111
,1\

1111111111111111111111111111
.
1A

s
1111111111111111111111[111511111111111111111111111111117

18 AWG INSULATED STRANDED WIRE

BANANA PLUGS

(SUGGEST COLOR CODING

liGND 11.+5V THESE AS PER TABLE

+12VJ{

VOLTAGE P1 PIN* SUGGESTED PLUG COLORS

+5V 3, 4, 97, 98 RED

+12V 75,76 BLUE

-12V 73, 74 GREEN

GND 1, 2,99, 100 BLACK

*ON BOARD, ODD-NUMBERED PADS ARE DIRECTLY BENEATH EVEN-NUMBERED PADS.

NOTES

1. A TM 990/510A Card Cage or its equivalent provides power supply
connections.

2. If you want to make your own cable, be aware that the connecting
plugs of various vendors, including TI, do not necessarily use
the numbering schemes on the board edge connector. ALWAYS refer
to the board edge when wiring a connector.

FIGURE 2-1. POWER SUPPLY HOOKUP

2-4

+120

+5 0

GND

-12 0

FIGURE 2-2. TM 990/101MA BOARD IN A TM 990/510A CARD CAGE

Looking on the backside of the backplane find the connections for each of the
supply voltages and connect them to the power supply.

BEFORE connecting the power supply to the microcomputer, use a volt-
ohmmeter to verify that correct voltages are present at the power
supply. After verification, switch the power supply OFF, and then
make the connections to the chassis as shown in Figure 2-2.

2.4.2 Terminal Hookup

Figure 2-3 shows a cable to connect the TM 990/101MA to the TI 743 KSR
terminal through connector P2. The DE15S connector attaches to the terminal;
a DB25P connector attaches to P2 on the board. A table of point-to-point
connections between the connectors is shown in the figure. Figure 2-4 shows a
TI 743 connected to a TM 990/101MA in a TM 990/510A card cage, and Figure 2-5
shows a TTY.

All terminals connected to the microcomputer will have a similar hookup
procedure and point-to-point configuration. For the differences between
terminal cables, see Appendices A and B. Terminals for communication directly
with TIBUG must be connected to the main communications port (connector P2) at
the corner of the board.

2-5

r:::::.:,_,_:,::::::::_i:i: i:ai E.
fri. S.': !I a 514 5; ri_ra fa ran: ;-!` 7-- a - - - - - - - 7 i.41k an A

DB25P DE15S

Yaw

1=0

TO 743 DATA
TERMINAL

•••••

41•0,

4 CONDUCTOR CABLE, 24 AWG
INSULATED STRANDED WIRE

CONNECTIONS

PIN ON DE15S PIN ON DB25P SIGNAL

13

12

11

1

2

3

8

7

XMIT

RECV

DCD

GND

FIGURE 2-3. 743 KSR TERMINAL HOOKUP

FIGURE 2-4. CONNECTOR P2 CONNECTED TO MODEL 743 KSR

IBM

TO P2 ON
TM 990/101MA

FIGURE 2-5. CONNECTOR P2 CONNECTED TO TTY DEVICE

The jumper marked EIA/MD, pins E38 to E40, should be in the EIA position, pins
E39 to E40, at all times unless the multidrop interface is used. If
connecting a RS-232 terminal, remove the TTY jumper at E36-E37; if connecting
a Teletype terminal, then insert the TTY jumper at E36-E37.

The TIBUG monitor operates the local I/O port at one of the following baud
rates:

110, 300, 600, 1200, 2400, 4800, 9600 or 19,200 baud.

There is a 200 ms delay following a carriage return for all baud rates at or
below 1200 baud. The delay allows for printhead travel.

The TMS 9902A asynchronous communication controller is initialized by TIBUG
for a seven-bit ASCII character, even parity, and two stop bits (for
compatibility with all terminals). At the terminal, set the baud rate of the
terminal to one of the above speeds.

TIBUG also uses conversational mode full-duplex communication. Set the
communications mode of your terminal to FULL DUPLEX, and set the OFF/ON LINE
switch to ON LINE, or the functional equivalents.

2-7

2.4.3 Five-Switch DIP and Status LED

A five-switch DIP and a programmable LED are accessed through the CRU.
Programming these is further explained in Sections 5.12 and 5.13 respectively.

2.5 OPERATION

2.5.1 Verification

Verify the following conditions before applying power:

• Power connected to correct pins on P1 connector.
• Terminal cable between P2 connector (NOT P3) and terminal.
• Jumpers in correct positions (see Table 2-1).
• Baud rate and communications mode are correctly set at the terminal;

terminal is ON LINE.

2.5.2 Power-Up/Reset

a. Apply power to the board and the data terminal.

b. Activate the RESET switch near the corner of the microcomputer board
(see Figure 1-1). This activates the TIBUG monitor.

c. Press the "A" key on the terminal (it may be more convenient to press
the carriage return key instead; this is also acceptable). TIBUG
measures the time of the start bit and determines the baud rate. A
carriage return time delay of 200 ms will be provided for all baud
rates at or slower than 1200 baud.

d. TIBUG prints the TIBUG banner message and, on a new line, a question
mark. This is a request to input a command to the TIBUG command
scanner. Commands are explained in detail in Section 3, and the
assembly language is described in Section 4.

NOTE

If control is lost during operation, return control to
the TIBUG monitor by repeating steps b, c, and d.

2.6 SAMPLE PROGRAMS

The following sample programs can be used immediately to test the micro-
computer board. Other sample programs that can be loaded and executed are
provided in Figures 5-15 (interrupt timer message) and 5-22 (LED blink).
Appendix K contains example programs that demonstrate microcomputer perform-
ance.

2.6.1 Sample Program 1

The following sample program can be input using the TIBUG "M" command
(paragraph 3.2.8), "R" command (paragraph 3.2.9), and "E" command (paragraph
3.2.4).

a. Enter the M command with a hexadecimal memory address of FE0016•

2-8

b. Enter the following values into memory, typing the new values then using
the space bar as described in paragraph 3.2.8.

Location Enter Value Assembly Language

FE00 2FAO XOP @>FE08,14 PRINT MSG
FE02 FE08
FE04 0460 B @ >0080 GO TO TIBUG
FE06 0080
FE08 4849 TEXT 'HI' MESSAGE
FEOA ODOA DATA >ODOA CR/LF
FEOC 0700 DATA >0700 BELL/END

Exit the M command with a carriage return after entering the last value above.
The monitor will print a question mark.

c. Use the R command to set the address value "FE00" into the P register
(program counter).

d. Use the E command to execute the program.

e. The message "HI" will be print on the printer, followed by a carriage
return, line feed, and a bell. Your terminal printout should resemble the
following:

TIBUG REV. Ft

?M FE00
FE00=D2100 2FRO
FE02=F100 FE08
FE04=0381 04A0
FE 0A=23 D 2 008 0
FE OR= Of': 00 4849
FEOR=02.C2 ODOR
F E Or =7:7400 07 00
7R
W=FFCF,
P=01RC FE00
E HI

You can re-execute your program by repeating steps c and d.

2.6.2 Sample Program 2

Using steps
program which
assembler.

FE00
FE02

1 to 5 in paragraph 2.6.1 above, enter and
has been assembled by the optional TM

2FAO P
FE08

execute the following
990/402 line-by-line

FE04 0460
FE06 n080
FE08 434F ICONGRATULATIONN.. YOUR PPrIGRAM IdOPK!
FEOR 4E47
FEOC 5241
FE OE 5455
FE10 4C41
FE12 5449
FE14 4F4E
FE1S 5.32E
FE18 2059
FE1A 4F55
FF1C 5220
FE1E 5052
FE20 4F47
FE22 5241
FE24 41120
FE2S 574F
FE28 524B
FE2A 5321
FE2C 0707 + 0707
FE2E 0700 +:• 0700

You can re-execute your program by repeating steps c and d in paragraph 2.6.1.

2.7 DEBUG CHECKLIST

If the microcomputer does not respond correctly, turn the power OFF. Do not
turn the power ON again until you are reasonably sure that the problem has
been found. The following is a checklist of points to verify.

1. Check POWER circuits:
- Proper power supply voltages and current capacity.
- Proper connections from the power supply to the P1 edge connector.

Check pin numbers on P1. Check plug positions at your power
supply. Look for short circuits. Look for broken connections.
Make sure board is seated in chassis or edge connector socket
correctly. Be certain that the edge connector socket (if used) is
not upside down.

2. Check TERMINAL circuits:
- Proper cable hookup to P2 connector, and to terminal. Verify with

data in Appendices A and B. One of the most common errors is that
the terminal cable is not plugged in.

2-10

- Check for power at the terminal. This is another common error -
the terminal is not turned ON.

- Terminal is in ON LINE mode, or equivalent.
- Terminal is in FULL DUPLEX mode, or equivalent. If the terminal

is in HALF DUPLEX mode, it will print everything you type twice,
or it may print garbage when you type. Put the terminal in FULL
DUPLEX mode.

- EIA/MD jumper in EIA position (E30).
Check BAUD RATE of terminal - it must be 110, 300, 600, 1200,
2400, 4800, 9600, or 19200 BAUD.

3. Check jumper plug positions against Table 2-1.

4. Be sure TI BUG EPROM's are in place correctly (U42 and U44).

5. Check all socketed parts for correctly inserted pins. Be sure there
aren't any bent under or twisted pins. Check pin 1 location.

If nothing happens, feel the components for excessive heat. Be careful as
burns may occur if a defective component is found. If the cause of
inoperation cannot be found, turn power OFF and call your TI distributor.
Before calling please be sure that your power supply, terminal, and all
connectors (use a volt-ohmmeter) are working properly.

2.8 AMPL GROUNDING

Programs can be emulated on a TM 990/101MA board using Texas Instruments AMPL
prototyping lab.

When executing program emulation on a TM 990/101MA, PWB 994725C or later,
connect the emulator-cable ground to pin TP1. This pin is lotted next to the
TMS 9901 at U1.

The target connector MUST be plugged into the TM 990/101MA
with pin 1 connected to pin 1, or damage may result.

SECTION 3

TIBUG INTERACTIVE DEBUG MONITOR

3.1 GENERAL

TIBUG is debug monitor which provides an interactive interface between the
user and the TM 990/101MA. It is supplied by the factory on assembly TM
990/101MA-1 only and is availble as an option, supplied on two 2708 EPROMs.

TIBUG occupies EPROM memory space from memory address (M.A.) 008016 as shown
in Figure 3-1. TIBUG uses four workspaces in 40 words of RAM memory. Also
in this reserved RAM area are the restart vectors which initialize the monitor
following single step execution of instructions.

The TIBUG monitor provides seven software routines that accomplish special
tasks. These routines, called in user programs by the XOP machine
instruction, perform tasks such as writing characters to a terminal. XOP
utility instructions are discussed in detail in paragraph 3.3•

All communication with TIBUG is through a 20 mA current loop or RS-232-C
device. TIBUG is initialized as follows:

• Press the RESET pushbutton (Figure 1-2). The monitor is called up
through interrupt trap 0.

• Enter the character "A" at the terminal. TIBUG uses this input to
measure the width of the start bit and set the TMS 9902A Asynchronous
Communication Controller (ACC) to the correct baud rate.

• TIBUG prints an initialization message on the terminal. On the next
line it prints a question mark indicating that the command scanner is
available to interpret terminal inputs.

• Enter one of the commands as explained in paragraph 3.2.

3.2 TIBUG COMMANDS

TIBUG commands are listed in Table 3-1.

TABLE 3-1. TIBUG COMMANDS

INPUT RESULTS PARAGRAPH

B Execute under Breakpoint 3.2.1
C CR U Inspect/Change 3.2.2
D Dump Memory to Cassette/Paper Tape 3.2.3
E Execute 3.2.4
F Find Word/Byte in Memory 3.2.5
H Hex Arithmetic 3.2.6
L Load Memory from Cassette/Paper Tape 3.2.7
M Memory Inspect/Change 3.2.8
R Inspect/Change User WP, PC, and ST Registers 3.2.9

S Execute in Step Mode 3.2.10

T 1200 Baud Terminal 3.2.11

W Inspect/Change Current User Workspace 3.2.12

3-1

MEMORY
ADDRESS

0000

0040

0048

0060

007E
0080

07FE

INTERRUPT VECTOR (RESET)

INTERRUPT VECTORS 1 TO 15

XOP VECTORS 0 AND 1

XOP VECTOR 2 TO 7

XOP VECTORS 8 TO 15
MONITOR UTILITIES

TIBUG MONITOR

..._

TIBUG EPROM AREA

USER EPROM AREA

TIBUG EPROM AREA
USER EPROM AREA

TIBUG EPROM AREA

FFB0 MONITOR

WORKSPACES

FFFC WP TIBUG RAM AREA

RESTART VECTORS

PC FFFE

FIGURE 3-1. MINIMUM MEMORY REQUIREMENTS FOR TIBUG

Conventions used to define command syntax in this paragraph are listed in
Table 3-2.

TABLE 3-2. COMMAND SYNTAX CONVENTIONS

CONVENTION

SYMBOL EXPLANATION

<> Items to be supplied by the user. The term within the angle brackets is a generic term.

1 Optional Item — May be included or omitted at the user's discretion. Items not included in brackets

are required.

t} One of several optional items must be chosen.

(CR) Carriage Return

A Space Bar

LF Line Feed

R or Rn Register (n = 0 to 15)

WP Current User Workspace Pointer contents

PC Current User Program Counter contents

ST Current User Status Register contents

NOTE

Except where otherwise indicated, no space is necessary
between the parts of these commands. All numeric input
is assumed to be hexadecimal;the last four digits input
will be the value used. Thus a mistaken numerical input
can be corrected by merely making the last four digits
the correct value. If fewer than four digits are input,
they are right justified.

3.2.1 Execute Under Breakpoint (B)

Syntax:

B <address> <(CR)>

This command is used to execute instructions from one memory address to
another (the stopping address is the breakpoint). When execution is complete,
WP, PC, and ST register contents are displayed and control is returned back to
the monitor command scanner. Program execution begins at the address in the
PC (set by using the R command). Execution terminates at the address
specified in the B command, and a banner is output showing the contents of the
hardware WP, PC, and ST registers in that order.

The address specified must be in RAM and must be the address of the
first word of an instruction. The breakpoint is controlled by a software
interrupt, XOP 15, which is executed when program execution is at the break-
point address.

3-3

0 1 1 2

ZERO FILLED

13 141516 7 18 1 9 1101 11 112113114115 417

1

.0-- 7 BITS —14
REQUESTED

VALUE DISPLAYED

>007F

80 CRU BIT
81
82
83
84
85
86

If no address is specified, the B command defaults to an E command, where
execution continues with no halting point specified.

EXAMPLE:
TB FC06
BP FFBO FCrit, E400

3.2.2 CRU Inspect/Change (C)

Syntax:

C < CRU address > }< count > < (CR) >

The CRU input bits are displayed right justified in a 16-bit hexadecimal
representation. CRU addresses of the displayed bits will be:

from "CRU Software Base Address"
to "CRU Software Base Address" + 2 (count) -2

"CRU Software Base Address" is the contents of register 12, bits 0 to 15, as
used by the CRU instructions (paragraph 5.5). Up to 16 CRU bits may be
displayed. Following display of the sensed CRU input bits, corresponding CRU
output bits at that address may be specified by keying in a desired hexa-
decimal pattern of 1 to 16 bits, right justified. A carriage return following
data display forces a return to the command scanner. A minus sign (-) or a
space causes the same CRU input bits to be displayed again. Defaults are
000016 for "Software Base Address" and 0 (count of 16) for "Count" (the latter
is a hexadecimal value of 0 to F with 0 indicating a decimal 16 bits).

The CRU inspect/change command displays from 1 to 16 CRU bits, right
justified. The command syntax includes the CRU software base address and the
number of CRU bits to be displayed. The CRU address is the 16-bit contents of
R12 as explained in Section 5.5 (vs. the "CRU hardware base address" on bits 3
to 14 of R12); thus the user must use 2 X CRU hardware base address. This is
shown in Figure 3-2 where 10016 is specified in the command to display values
beginning with CRU bit 8016.

2 C 100,7
0100=007F

FIGURE 3-2. CRU BITS INSPECTED BY C COMMAND

3-14

EXAMPLES:

(1) Examine eight CRU input bits. CRU address is 2016.

0 020..0 OFF-0— CARRIAGE RETURN ENTERED

(2) Set value of eight CRU output bits at CRU address 2016;
new value is 0216.

-7. 0 20 / CHANGE ()OFF TO 0002 8
0020=0 OF F 2 2 FOLLOWED BY CARRIAGE RETURN

(3) Check changes in CRU input bit O.

11111111= I I 0 0 1
0000=0001
0 0 0 11=ill 1 0 1
0000=0001
0 0 ! 111= 1111111

11111111=11II111

MINUS SIGN ENTERED

CARRIAGE RETURN ENTERED

(4) Check to see if the TMS 9901 is in the interrupt mode (zero) or
clock mode (one).

10u
01.00=FFFE

ZERO IN LSB INDICATES INTERRUPT MODE

(5) Check the contents of the I/O ports on the TMS 9901 (bits 1 to 14).

TA::: 120,E
0120=000E
-7-

3.2.3 Dump Memory To Cassette/Paper Tape (D)

Syntax:

MONITOR PROMPT

D < start address > l< stop address > A }< entry address > { A IDT = < name > < A>

NOTE

The termination given after IDT is a space bar. A carriage
return or some other termination will cause the instruction
to function incorrectly.

3-5

Memory is dumped from "start address" to "stop address." "Entry address" is
the address in memory where it is desired to begin program execution. After
entering a space or comma following the entry address, the monitor responds
with an "IDT=" prompt asking for an input of up to eight characters that will
identify the program. This program ID will be output. When the program is
loaded into memory using the TIBUG loader, code will be dumped as
non-relocatable data in 990 object record format with absolute load ("start
address") and entry addresses specified. When loading this code once more,
the LOAD will occur at the start address specified in the D instruction. If a
user specifies a starting address while loading the object code previously
dumped, the loader will ignore the user's input and load at the starting
address specified during the 'D' command. Object record format is explained
in Appendix G.

After entering the D command, the monitor will respond with "READY Y/N" and
wait for a Y keyboard entry indicating that the receiving device is ready.
This allows the user to verify switch settings, etc., before proceeding with
the dump.

3.2.3.1 Dump To Cassette Example. The terminal is assumed to be a Texas
Instruments 733 ASR or equivalent. The terminal must have automatic device
control (ADC). This means that the terminal recognizes the four tape control
characters DC1, DC2, DC3, and DC4.

The following procedure is carried out prior to answering the "READY Y/N"
query (Figure 3-3):

(1) Load a cassette in the left (No. 1) transport on the 733 ASR.

(2) Place the transport in the "RECORD" mode.

(3) Rewind the cassette.

(4) Load the cassette. If the cassette does not load it may be write
protected. The write protect hole is on the bottom right side of
the cassette (Figure 3-4). Cover it with the tab provided with the
cassette. Now repeat steps 1 through 4.

(5) The KEYBOARD, PLAYBACK, RECORD, and PRINTER LOCAL/OFF/LINE switches
must be in the LINE position.

(6) Place the TAPE FORMAT switch in the LINE position.

(7) Answer the "READY Y/N" query with a "Y"; the "Y" will not be echoed.

.1••••••

STOP STOP

KEYBOARD PLAYBACK RECORD PRINTER

LINE

OFF

LOCAL

LINE

OFF

LOCAL

RECORD CONTROL

0
ON

0

ERROR

0

PLAYBACK CONTROL

CONT BLOCK CHAR
START WD FWD

STOP REV TAPE FORMAT ERASE OFF

PRINT CHARACTER

O

ON

1•41•••••

{•••••

1••••••

CASSETTE 1

O
RECORD

O READY

O END

0 PLAYBACK

CASSETTE 2

PLAYBACK 0

READY 0

END 0

RECORD

REWIND LOAD/FF REWIND

STOP

LOAD/F F

STOP

WRITE TAB FOR SIDE 2

BIT 1 BIT 8

FIGURE 3-3. 733 ASR MODULE ASSEMBLY (UPPER UNIT) SWITCH PANEL

TAPE SIDE UP

WRITE TAB FOR SIDE I

FIGURE 3-4. TAPE TABS

3-7

3.2.3.2 Dump To Paper Tape Example

The terminal is assumed to be an ASR 33 teletypewriter. The following steps
should be completed carefully to avoid punching stray characters:

(1) Enter the command as described in paragraph 3.2.3.1. Do not answer
the "READY Y/N" query yet.

(2) Change the teletype mode from ON LINE to LOCAL.

(3) Turn on the paper tape punch and press the RUBOUT key several times,
placing RUBOUTS at the beginning of the tape for correct-reading/
program-loading.

(4) Turn off the paper tape punch, and reset the teletype mode to LINE.
(This is necessary to prevent punching stray characters.)

(5) Turn on the punch and answer the "READY Y/N" query with "Y". The Y
will not be echoed.

(6) Punching will begin. Each file is followed by 60 rubout characters.
When these characters appear (identified by the constant punching of
all holes) the punch must be turned off.

3.2.4 Execute Command (E)

Syntax:

E

The E command causes task execution to begin at current values in the
Workspace Pointer and Program Counter.

EXAMPLE: E

3.2.5 Find Command .(F)

Syntax:

F < start address > { A }< stop address > { }< value > { (CR)

The contents of memory locations from "start adddress" to "stop address" are
compared to "value". The memory addresses whose contents equal "value" are
printed out. Default value for ."start address" is O. The default for "stop
address" is O. The default for "value" is O.

If the termination character of "value" is a minus sign, the search will be
from "start address" to "stop address" for the right byte in "value". If the
termination character is a carriage return, the search will be a word mode
search.

3-8

EXAMPLE:

7F 0,20 FFFF 4 CARRIAGE RETURN ENTERED
0 0 CIA

0 0 C
0012
00 1 A

•T•F 0 20 FF i MINUS SIGN ENTERED

0 0 OA

0 0 07
0 0 0 C
0 0 Ofi
0 01 2
0 0 1
0 ci
001 7'

3.2.6 Hexadecimal Arithmetic (H)

Syntax:

H < number 1 > A }< number 2 > < (CR) >

The sum and difference of two hexadecimal numbers are output.

EXAMPLE:

?H 2 0 0 ‚ 1 0 0
H1 +Hi.-:= LI 0

CARRIAGE RETURN ENTERED

H1 -Hi.-E= LI 1 (10

3.2.7 Load Memory from Cassette or Paper Tape (L)

Syntax:

L < bias > < (CR) >

Data in 990 object record format (defined in Appendix G) is loaded from paper
tape or cassette into memory. Bias is the relocation bias (starting address
in RAM). Its default is 016. Both relocatable and absolute data may be loaded
into memory with the L command. After the data is loaded, the module
identifier (see tag 0 in Appendix G) is printed on the next line.

3.2.7.1 Loading From Texas Instruments 733 ASR Terminal Cassette.

The 733 ASR must be equipped with automatic device control (ADC). The
following procedure is carried out prior to executing the L command:

(1) Insert the cassette in one of the two transports on the 733 ASR
(cassette 1 in Figure 3-2).

(2) Place the transport in the playback mode.

(3) Rewind the cassette.

(4) Load the cassette.

3-9

(5) Set the KEYBOARD, PLAYBACK, RECORD, and PRINTER LOCAL/LINE switches
to LINE.

(6) Set the TAPE FORMAT switch to LINE.

(7) Loading will be at 1200 baud.

Execute the L command.

3.2.7.2 Loading From Paper Tape (ASR33 Teletype).

Prior to executing the L command, place the paper tape in the reader and
position the tape so the reader mechanism is in the null field prior to the
file to be loaded. Enter the load command. If the ASR33 has ADC (automatic
device control), the reader will begin to read from the tape. If the ASR does
not have ADC, turn on the reader and loading will begin.

Each file is terminated with 60 rubouts. When the reader reaches
the tape, turn it off. The loader will then pass control to
scanner.

The user program counter (P) is loaded with the entry address if
tag is found on the tape.

EXAMPLE:

7L 00CH),1
PROGRAM PROGRAM ID FROM TAPE

3.2.8 Memory Inspect/Change, Memory Dump (M)

Syntax:

• Memory Inspect/Change Syntax

M < address> < (CR) >

• Memory Dump Syntax

M < start address> { A }< stop address> < (CR) >

this area of
the command

a 1 tag or 2

CARRIAGE RETURN ENTERED

Memory inspect/change "opens" a memory location, displays it, and gives the
option of changing the data in the location. The termination character causes
the following:

• If a carriage return, control is returned to the command scanner.

• If a space, the next memory location is opened and displayed.

• If a minus sign, the previous memory location is opened and displayed.

If a hexadecimal value is entered before the termination character, the
displayed memory location is updated to the value entered.

3-10

Memory dump address directs a display of memory contents from "start address"
to "stop address". Each line of output consists of the address of the first
data word output followed by eight data words. Memory dump can be terminated
at any time by typing any character on the keyboard.

EXAMPLES:

(1)

M FE 00

CARRIAGE RETURN ENTERED

FE 00=FF OF
FE 02= 0012
FE 04= 0311
FE 02=FFFF
FE 04=01_:11
FE 0 F:.= 00:7:2

FFFF -0— NEW CONTENTS ENTERED

MINUS SIGN ENTERED
1 NEW CONTENTS

EEAA CARRAGE RETURN ENTERED

(2)

-M 20 -.7:0
002 u= lye wy3u 0000 0005 01-rf. opoo 0000 0114
00:::0=1100111
7-

3.2.9 Inspect/Change User WP, PC, and ST Registers (R)

Syntax:

R <(CR)>

The user workspace pointer (WP), program counter (PC), and status register
(ST) are inspected and changed with the R command. The output letters WP, PC,
and ST identify the values of the three principal hardware registers passed to
the TMS 9900 microprocessor when a B, E, or S command is entered. WP points to
the workspace register area, PC points to the next instruction to be executed
(Program Counter), and ST is the Status Register contents.

The termination character causes the following:

• A carriage return causes control to return to the command scanner.

• A space causes the next register to be opened.

Order of display is W, P, S.

3-11

EXAMPLES:

(1)

TR.
1.1.1= 0 02 0 100 SPACE ENTERED

F=11000 200 -41-- CARRIAGE RETURN ENTERED

(2)

Id= 0 1 0 0 / SPACE ENTERED

F= 02 0 0
.0 00 0 SPACE OR CARRIAGE RETURN ENTERED

3.2.10 Execute in Single Step Mode (S)

Syntax:

S

Each time the S command is entered, a single instruction is executed at the
address in the Program Counter, then the contents of the Program Counter,
Workspace Pointer, and Status Register (after execution) are printed out.
Successive instructions can be executed by repeated S commands. Essentially,
this command executes one instruction then returns control to the monitor.

EXAMPLE:

1)1=FFCE. SPACES ENTERED
4,„/„..

...
 WORKSPACE POINTER

F'=FE 1 0 FE 0 0
=26 OR PROGRAM COUNTER

FFCA-. FE 02-4—=: F; 0 A -4- STATUS REGISTER

FFCA FE 04 RAOP
FFC A FE 08 Riz,OR
FFCA FEOC .::t;OP

NOTE

Incorrect results are obtained when the S command causes execution of
an XOP instruction (see paragraph 4.6.9) in a user program. To avoid
this problem, use the B command (breakpoint) to the XOP vectors to
execute any XOP's in a program (rather than the S command) with the
appropriate XOP parameter previously loaded into R11 of the XOP work-
space.

3.2.11 TI 733 ASR Baud Rate (T)

Syntax:

T

The T command is used to alert TIBUG that the terminal being used is a 1200
baud terminal which is not a Texas Instruments' 733 ASR (e.g., a 1200 baud
CRT). To revoke the T command, enter it again.

T is used only when operating with a true 1200 baud peripheral device. Note
that T is never used when operating at other baud rates.

In TIBUG the baud rate is set by measuring the width of the character 'A'
input from a terminal. When an 'A' of 1200 baud width is measured, TIBUG is
set up to automatically insert three nulls for every character output to the
terminal. These nulls are inserted to allow correct operation of the TM
990/101MA with Texas Instruments 733ASR data terminals.

3.2.12 Inspect/Change User Workspace (W)

Syntax:

W [REGISTER NUMBER] < (CR) >

The W command is used to display the contents of all workspace registers or
display one register at a time while allowing the user to change the register
contents. The workspace begins at the address given by the Workspace Pointer.

The W command, followed by a carriage return, causes the contents of the
entire workspace to be printed. Control is then passed to the command
scanner.

The W command followed by a register number in hexadecimal and a carriage
return causes the display of the specified register's contents. The user may
then enter a new value into the register by entering a hexadecimal value. The
following are termination characters whether or not a new value is entered:

• A space causes display of the next register.

• A minus sign causes display of the previous register.

• A carriage return gives control to the command scanner.

EXAMPLES:

(1)

-T1A1 CARRIAGE RETURN ENTERED

0=P:442 P. 1 = 0 fr2=FAaFf R =UO2UR4=F B5E R5= 0 098 P6=1:31_11_1 P.7= It fi
R'd=FFIFi P.9=36 0 0 PA= 0EFO, R B = 0 0 = 0 1 C0 RD= 084 RE=FH::: =c:6 I:

XOP PARAGRAPH FUNCTION

8 Write 1 Hexadecimal Character to Terminal 3.3.1
9 Read Hexadecimal Word from Terminal 3.3.2

10 Write 4 Hexadecimal Characters to Terminal 3.3.3
11 Echo Character 3.3.4
12 Write 1 Character to Terminal 3.3.5
13 Read 1 Character from Terminal 3.3.6
14 Write Message to Terminal 3.3.7

NOTE

All characters are in ASCII code.

(2)

?W 2 i CARRIAGE RETURN ENTERED

P2= 0284 3456
R3=001B 1 0 0

F'4=1 A OR SPACE ENTERED

R5=046 0 ROOF
RA=F:;00 0 CARRIAGE RETURN ENTERED

3.3 USER ACCESSIBLE UTILITIES

TIBUG contains seven utility subroutines that perform I/O functions as listed
in Table 3-3. These subroutines are called through the XOP (extended
operation) assembly language instruction. This instruction is covered in
detail in paragraph 4.6.9. In addition, locations for XOP's 0 and 1 contain
vectors for utilities that drive the TM 990/301 microterminal, and XOP 15 is
used by the monitor for the breakpoint facility.

TABLE 3-3. USER ACCESSIBLE UTILITIES

NOTES

1. Initially, TIBUG will conduct I/O through the TMS 9902A connected
to connector P2: in this mode, 008016 is in TIBUG's R12 located
at memory address (M.A.) FFDE16. To change this configuration
change the contents of M. A. FFDE16 before executing the I/O XOP.
For example, to use the auxiliary TMS 9902A at P3, change M.A.
FFDE16 contents to 018016. CRU programming is discussed in
paragraph 5.5.

2. The write character XOP (XOP 12) activates the REQUEST TO SEND
signal of the TMS 9902A. This signal is never deactivated by
TIBUG so that modems may be used.

3. Most of the XOP format examples here use a register for the
source address, however, all XOP's can also use a symbolic memory
address or any of the addressing forms available for the XOP
instruction.

3-114

3.3.1 Write One Hexadecimal Character To Terminal (XOP 8)

Format: XOP Rn,8

The least significant four bits of user register Rn are converted to their
ASCII coded hexadecimal equivalent (0 to F) and output on the terminal.
Control returns to the instruction following the extended operation.

EXAMPLE:

Assume user register 5 contains 203C16. The assembly language (A.L.) and
machine language (M. L.) values are shown below.

A.L. XOP R5,8 SEND 4 LSB'S OF R5 TO TERMINAL

0 1 2 3 4 5 6 7 8 . 9 10 11 12 13 14 15

M.L. 0 0 1 0 1 1 1 0 0 0 0 0 0 1 0 1 > 2E05

Terminal Output: C

3.3.2 Read Hexadecimal Word From Terminal (XOP 9)

Format: XOP Rn,9
DATA NULL ADDRESS OF CONTINUED EXECUTION IF

NULL IS ENTERED
DATA ERROR ADDRESS OF CONTINUED EXECUTION IF

NON-HEX NO. ENTERED
(NEXT INSTRUCTION) EXECUTION CONTINUED HERE IF VALID HEX

NUMBER AND TERMINATOR ENTERED

Binary representation of the last four hexadecimal digits input from the
terminal is accumulated in user register Rn. The termination character is
returned in register Rn + 1. Valid termination characters are space, minus,
comma, and a carriage return. Return to the calling task is as follows:

• If a valid termination character is the only input, return is to the
memory address contained in the next word following the XOP
instruction (NULL above).

• If a non-hexadecimal character or an invalid termination character is
input, control returns to the memory address contained in the second
word following the XOP instruction (ERROR above).

• If a hexadecimal string followed by a valid termination character is
input, control returns to the word following the DATA ERROR statement
above.

3-15

10 0 1 0 1 1 I 1 0 1 0 0 0 0 0 0 1 M.L. > 2E81

EXAMPLE:

A.L. XOP R6,9 READ HEXADECIMAL WORD INTO R6

DATA > F FCO RETURN ADDRESS, IF NO NUMBER

DATA > FFC6 RETURN ADDRESS, IF ERROR

M.L. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
M.A. FFBO 0 0 1 0 1 1 1 1 0 0 1 1 0 0 1 0 1 1 0 > 2E46

FFB2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 > F FCO

FFB4 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 0 > FFC6

If the valid hexadecimal character string 12C is input from the terminal
followed by a carriage return, control returns to memory address (M.A.) FFB616
with register 6 containing 012C16 and register 7 containing OD0016•

If the hexadecimal character string 12C is input from the terminal followed by
an ASCII plus (+) sign, control returns to location FFC616. Registers 6 and 7
are returned to the calling program without being altered. The plus sign (+)
is an invalid termination character.

If the only input from the terminal is a carriage return, register 6 is
returned unaltered while register 7 contains OD0016. Control is returned to
address FFC016•

3.3.3 Write Four Hexadecimal Characters To Terminal (XOP 10)

Format: XOP Rn,10

The four-digit hexadecimal representation of the contents of user register Rn
is output to the terminal. Control returns to the instruction following the
XOP call.

EXAMPLE:

Assume register 1 contains 2C4616•

A.L. XOP R1,10 WRITE HEX NUMBER

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Terminal Output: 2C46

3-16

3.3.4 Echo Character (XOP 11)

Format: XOP Rn,11

This is a combination of XOP's 13 (read character) and 12 (write character).
A charcter in ASCII code is read from the terminal, placed in the left byte of
Rn, then written (echoed back) to the terminal. Control returns to the
instruction following the XOP after a character is read and written. By using
a code to determine a character string termination, a series of characters can
be echoed and stored at a particular address:

CLR R2 CLEAR R2

LI R1, > FE00 SET STORAGE ADDRESS

XOP R2, 11 ECHO USING R2

CI R2,> WOO WAS CHARACTER A CR?

JEQ $+6 YES, EXIT ROUTINE

MOVB R2,-*F11+ NO, MOVE CHAR TO STORAGE

JMP $-10 REPEAT XOP

3.3.5 Write One Character To Terminal (XOP 12)

Format: XOP Rn,12

The ASCII character in the left byte of user register Rn is output to the
terminal. The right byte of Rn is ignored. Control is returned to the
instruction following the call.

3.3.6 Read One Character From Terminal (XOP 13)

Format: XOP Rn,13

The ASCII representation of the character input from the terminal is placed in
the left byte of user register Rn. The right byte of register Rn is zeroed.
When this utility is called, control is returned to the instruction following
the call only after a character is input.

3.3.7 Write Message To Terminal (XOP 14)

Format: XOP @MESSAGE,14

MESSAGE is the symbolic address of the first character of the ASCII character
string to be output. The string must be terminated with a byte containing
binary zeroes. After the character string is output, control is returned to
the first instruction following the call.

Assuming the following program:

MEMORY
ADDRESS OP CODE A.L. MNEMONIC

(Hex) (Hex)

XOP @> FEE0,14

TEXT 'TEST'

BYTE 0

F E00 2FAO

F E02 FEEO

F E04

•

FEED 5445

FEE2 5354

FEE4 00

During the execution of this XOP, the character string 'TEST' is output on the
terminal and control is then returned to the instruction at location FE0416•
TEXT is an assembler directive to transcribe characters into ASCII code.

3.4 TIBUG ERROR MESSAGES

Several error messages have been included in the TIBUG monitor to alert the
user to incorrect operation. In the event of an error, the word 'ERROR' is
output followed by a single digit representing the error number.

Table 3-4 outlines the possible error conditions.

TABLE 3-4. TIBUG ERROR MESSAGES

ERROR CONDITION

0 Invalid tag detected by the loader.
1 Checksum error detected by the loader.
2 Invalid termination character detected.
3 Null input field detected by the dump routine.
4 Invalid command entered.

In the event of errors 0 or 1, the program load process is terminated. If the
program is being input from a 733 ASR, possible causes of the errors are a
faulty cassette tape or dirty read heads in the tape transport. If the
terminal device is an ASR33, chad may be caught in a punched hole in the paper
tape. In either case repeat the load procedure.

In the event of error 2, the command is terminated. Reissue the command and
parameters with a valid termination character.

Error 3 is the result of the user inputting a null field for either the start
address, stop address, or the entry address to the dump routine. It also
occurs if the ending address is less than the beginning address. The dump
command is terminated. To correct the error, reissue the dump command and
input all necessary parameters.

3-18

SECTION 4

TM 990/101MA INSTRUCTION SET EXECUTION

4.1 GENERAL

This section covers the instruction set used with the TM 990/101MA including
assembly language and machine language. This instruction set is compatible
with other members of the 990 family.

Other topics include:

• Hardware and software registers (sections 4.3 and 4.4)

• CRU addressing (section 4.7)

• Interrupts (section 4.10).

The TM 990/101MA microcomputer is designed for use by a variety of users with
varying technical backgrounds and available support equipment. Because a TM
990/101MA user has the capability of writing his programs in machine language
and entering them into memory using the TIBUG monitor, emphasis is on binary/
hexadecimal representations of assembly language statements. The assembly
language described herein can be assembled on a 990 family assembler. If an
assembler is used, this section assumes that the user will be aware of all
prerequisites for using the particular assembler.

It is also presumed that all users learning this instruction set have a
working knowledge in:

• ASCII coded character set (described in Appendix C).

• Decimal/hexadecimal, binary number system (described in Appendix D).

Further information on the 990 assembly language is provided in the Model 990
Computer/TMS 9900 Microprocessor Assembly Language Programmer's Guide (P/N
943441-9701).

4.2 USER MEMORY

Figure 4-1 shows the user RAM space in memory available for execution of user
programs. Note that the memory address value is the number of bytes beginning
at 0000; thus, all word addresses are even values from 000016 to FFFE16•

Programs in EPROMs can be read by the processor and executed; however, EPROM
memory cannot be modified (written to). Therefore workspace register areas
are in RAM where their values can be modified. Restart vectors and TIBUG work-
spaces use the last 40 words of RAM memory space as shown in Figure 4-1.

4.3 HARDWARE REGISTERS

The TM 990/101MA uses three major hardware registers in executing the
instruction set: Program Counter, Workspace Pointer, and Status Register.

4-1

FEA

INTERRUPT

AND XOP LINK AREA

FFAE

FFBO
FFF

USER
AVAILABLE

RAM

RESERVED 40 WORDS FOR
TIBUG MONITOR WORKSPACE

FILES AND RESET VECTORS
AT FFFC AND FFFE

•
•
•

RAM

2114

\ 1K X 16

RAM

2114

1K X 16

DEDICATED

MEMORY

MEMORY

ADDRESS

0000

003E

0040

007E

TIBUG 10080

MONITOR
07FE

0800

OFFE

1000

EFFE

F000

F7FE

F800

EPROM
TMS 2708
1 K X 16

EPROM
TMS 2708

1 K X 16

* NOT SUPPLIED WITH

TM 990/101MA-1 OR -2.

FIRST
1024
WORD

EPROM

SECOND
1024
WORD
EPROM"

MEMORY
EXPANSION

SECOND
1024
WORD
RAM*

FIRST

1024
WORD
RAM

BYTE 0000

BYTE 0001

INTERRUPT VECTORS

XOP VECTORS

DEDICATED MEMORY

ADDRESS (HEX)

0000-003F

0040-0047

0048-005F

0060-007F

0080=07FF

FEA8-FFAF

FFBO-FFFB

FFFC-FFFF

PURPOSE

Vectors for interrupts 0 (RESTART) to 15

Vectors for XOP's 0 and 1 (Microterminal I/O)

Vectors for XOP's 2 to 8 (Programmed by User)

Vectors for XOP's 8 to 15 (TIBUG utilities)

TIBUG monitor

Interrupt and XOP linking area

Four overlapping monitor work spaces

Restart (load) vectors

BOARD MEMORY MAP

ADDRESS (HEM MEMORY TYPE ENABLE SIGNAL COMMENT

0000-07F F* ROM (2708) ROM1 TIBUG monitor area

0000-OF F F * ROM (2716) ROM1 Main EPROM, blank TMS 2716

0800-OFFF* ROM (2708) ROM2 Expansion EPROM

1000-1FFF* ROM (2716) ROM2 Expansion EPROM, blank TMS 2716

F000-F7FF RAM (2114) RAM2 Expansion RAM

F800-F F F F RAM (2114) RAM1 Standard RAM

*EPROM pairs (e.g., U42, U44 and U43, U45) must be of the same type — both TMS 2708's or both TMS 2716's. The

two EPROMpairs, main and expansion, may be of different type if the appropriate jumper settings are made. This

situation means selecting the 2716 memory map jumper option.

FIGURE 4-1. MEMORY MAP

4-2

4.3.1 Program Counter (PC)

This register contains the memory address of the next instruction to be
executed. After an instruction image is read in for interpretation by the
processor, the PC is incremented by two so that it "points" to the next
sequential memory word.

4.3.2 Workspace Pointer (WP)

This register contains the beginning memory address of the register file
currently being used by the program under execution. This workspace consists
of 16 contiguous memory words designated registers 0 to 15. The WP points to
register O. Paragraph 4.4 explains a workspace in detail.

4.3.3 Status Register (ST)

The Status Register contains relevant information on preceding instructions
and current interrupt level. Included are:

• Results of logical and two's complement comparisons (many instruc-
tions automatically compare the results to zero).

• Carry and overflow.

• Odd parity found (byte instructions only).

• XOP being executed.

• Lowest priority interrupt level that will be currently recognized
by the processor.

The status register is shown in Figure 4-2.

2 3 4 5 6 7 8 9 10 11 12 13 14 15

A> EQ C OV OP X \\\\ RESERVED \\\\ INTERRUPT MASK

LOGICALLY GREATER THAN
ARITHMETICALLY GREATER THAN
EQUAL
CARRY

FIGURE 4-2. STATUS REGISTER

4.3.3.1 Logical Greater Than

This bit contains the result of a comparison of words or bytes as unsigned
binary numbers. Thus the most significant bit (MSB) does not indicate a
positive or negative sign. The MSB of bytes being logically compared
represents 27 (128), and the MSB of words being logically compared represents
215 (32,768).

4.3.3.2 Arithmetic Greater Than

The arithmetic greater than bit contains the result of a comparison of words
or bytes as two's complement numbers. In this comparison, the MSB of words or
bytes being compared represents the sign of the number, zero for positive, or
one for negative.

0

L>

L>
A>
EQ
C

OV OVERFLOW
OP ODD PARITY
X XOP BEING EXECUTED

4-3

4.3.3.3 Equal

The equal bit is set when the words or bytes being compared are equal.

4.3.3.4 Carry

The carry bit is set by a carry out of the MSB of a word or byte (sign bit)
during arithmetic operations. The carry bit is used by the shift operations to
store the value of the last bit shifted out of the workspace register being
shifted.

4.3.3.5 Overflow

The overflow bit is set when the result of an arithmetic operation is too
large or too small to be correctly represented in two's complement
(arithmetic) representation. In addition operations, overflow is set when the
MSB's of the operands are equal and the MSB of the result is not equal to the
MSB of the destination operand. In subtraction operations, the overflow bit is
set when the MSB's of the operands are not equal, and the MSB of the result is
not equal to the MSB of the destination operand. For a divide operation, the
overflow bit is set when the most significant sixteen bits of the dividend (a
32-bit value) are greater than or equal to the divisor. For an arithmetic left
shift, the overflow bit is set if the MSB of the workspace register being
shifted changes value. For the absolute value and negate instructions, the
overflow bit is set when the source operand is the maximum negative value,
800016.

4.3.3.6 Odd Parity

The odd parity bit is set in byte operations when the parity of the result is
odd, and is reset when the parity is even. The parity of a byte is odd when
the number of bits having a value of one is odd; when the number of bits
having a value of one is even, the parity of the byte is even.

4.3.3.7 Extended Operation

The extended operation bit of the Status Register is set to one when a
software implemented extended operation (XOP) is initiated.

4.3.3.8 Status Bit Summary

Table 4-1 lists the instruction set and the status bits affected by each
instruction.

4.4 SOFTWARE REGISTERS

Registers used by programs are contained in memory. This speeds up context-
switch time because the content of only one register (WP hardware register)
needs to be saved instead of the entire register file. The WP, PC, and ST
register contents are saved in a context switch.

A workspace is a contiguous 16 word area; its memory location can be
designated by placing a value in the WP register through software or a
keyboard monitor command. A program can use one or several workspace areas,
depending upon register requirements.

More than three-fourths of the instructions can address the workspace register

14-14

file; all shift instructions and most immediate operand instructions use
workspace registers exclusively.

Figure 4-3 is an example of a workspace file in high-order memory (RAM). A
workspace in ROM would be ineffective since it could not be written into. Note
that several registers are used by particular instructions.

TABLE 4-1. STATUS BITS AFFECTED BY INSTRUCTIONS

MNEMONIC L> A> EQ C OV OP I X MNEMONIC L> A> EQ C OV OP X

A X X X X X — — LDCR I
1

1
1

I
1

1
1

I
1
1

X

 1

1
I

I
I

I
I

I
I

I
I

I
I

I
I

1
I

1
cv

 csi 1

1
1

1
1

1
X

1
1

1
1

X

I
X

 I
I

I
I

I X
 1

I

I
—

I
X

 I
N

 c
v

I
I
I
I
I
I
I

1
X

1

I
 X

X

 X

I

I

1
 X

 I

1

1

I

I
I

I
I

I
I
I

I
N

N
I

I
I

I
I

I
I

I
I
X

I

I

X
 X

X

 I
I

I X

I

I X
X

X

I

l
I

I
I

I
I
N

N
I

X

X

 I

I
 I
 X

X

I

X

X
 I X

 X

X

 I

I

I
 X

 X
 X

 X
 X

 X

X

 I

I

I
 X X

 X
 N

N
 X

X
 X

I

I

I
 X

X

I
 X

X

I
 X

 X
 X

I X

 X
 X

 X
 X

 X
 X

 I
I X

X

I

N
N

X

X

X

 I

I
I
 X

X

I

X

X
 I

X
 X

X

I
 I

I X
 X

 X
 X

 X
 X

X

 I

I
X

X

I

N
N

X

AB X X X X X X — LI

ABS X X X X X — — LIMI

Al X X X X X — — LREX

ANDI X X X — — — — LWPI

B — — — — — — — MOV

BL — — — — — — — MOVB

BLWP — — — — — — — MPY

C X X X — — — — NEG

CB X X X — — X — OR I

CI X X X — — — — RSET

CLR — — — — — — — RTWP

COC — — X — — — — S

CZC — — X — — — — SB

DEC X X X X X — — SBO

DECT X X X X X — — SBZ

DIV — — — — X — — SETO

IDLE — — — — — — — SLA

INC X X X X X — — SOC

INCT X X X X X — — SOCB

INV X X X — — — — SRA

JEQ — — — — — — — SRC

JGT — — — — — — — SR L

JH — — — — — — — STCR

JHE — — — — — — — STST

J L — — — — — — — STWP

JLE — — — — — — — SWPB

JLT -- — — — — — — SZC

JMP — — — — — — — SZCB

JNC — — — — — — — TB

JN E — — — — — — — X

JNO — — — — — — — XOP

JOC — — — — — — — XOR

JOP — — — — — — —

NOTES

1. When an LDCR or STCR instruction transfers eight bits or less, the OP bit is set or reset as in byte instructions. Otherwise these

instructions do not affect the OP bit.

2. The X instruction does not affect any status bit; the instruction executed by the X instruction sets status bits normally for that

instruction. When an XOP instruction is implemented by software, the XOP bit is set, and the subroutine sets status bits normally.

14-5

WP REGISTER

MEMORY

ADDRESS

(HEXADECIMAL)
12

FC00
SHIFT
COUNT

15
) BITS 12-15 USED BY

R 0 r SHIFT INSTRUCTIONS

R 1

R2

R3

R4

R5

R6

R7

R8

R9

R 10

R 11

R 12

R 13

R14

 FC00

FCO2

FC04

FCO6

FCO8

FCOA

FCOC

FCOE

FC10

FC12

FC14

FC16

FC18

FC1 A

FC1C

FC1E

USED BY XOP'S AND BRANCH RETUF

USED IN CRU ADDRESSING

USED IN CONTEXT
SWITCHING ()COP,

BLWP, RTWP)
R 15

FIGURE 14-3. WORKSPACE EXAMPLE

14-6

OP CODE B TD DR Ts SR

OP CODE SIGNED DISPLACEMENT

OP CODE WR Ts SR

OP CODE C TS SR

OP CODE C R

OP CODE I Ti SR

OP CODE NOT USED

OP CODE N R

OP CODE DR Ts I SR

ARITHMETIC

JUMP

LOGICAL

CRU

SHI FT

PROGRAM

CONTROL

IMMEDIATE

MPY, DIV, XOP

2

3

4

5

6

7

8

9

4.5 INSTRUCTION FORMATS AND ADDRESSING MODES

The instructions used by the TM 990/101MA are contained in 16-bit memory words
and require one, two, or three words for full definition. The first word (or
the single word) of an instruction will describe the purpose of the
instruction while the succeeding one or two words will be numbers that are
referenced by the initial instruction word. A word describing an instruction
is interpreted by the Central Processing Unit (CPU) by decoding the various
fields within the 16 bits. These fields are shown in Figure 4-4 for the 9900
instruction set which is also categorized into nine instruction formats as
shown in the figure.

In order to construct instructions in machine language, the programmer must
have a knowledge of the fields and formats of the instructions. This knowledge
is often very important in debugging operations because it allows the
programmer to change bits within an instruction in order to solve an execution
problem.

FORMAT 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 GENERAL USE

OP CODE OPERATION CODE

B BYTE INDICATOR (1=BYTE)

TD DESTINATION ADDRESS TYPE*

DR DESTINATION REGISTER

TS SOURCE ADDRESS TYPE•

SR SOURCE REGISTER

C CRU TRANSFER COUNT OR SHIFT COUNT

R REGISTER

N NOT USED

•TD OR Ts ADDRESS MODE TYPE

00 DIRECT REGISTER

01 INDIRECT REGISTER

PROGRAM COUNTER RELATIVE, NOT INDEXED (SR OR DR = 0)
10

PROGRAM COUNTER RELATIVE + INDEX REGISTER (SR OR DR>0)

11 INDIRECT REGISTER, AUTOINCREMENT REGISTER

FIGURE 4-4. TM 990/101MA INSTRUCTION FORMATS

4-7

The fields within an instruction word contain the folowing information (see
Figure 4-4);

• Op code which identifies the desired operation to be accomplished when
this instruction is executed.

• B code which identifies whether the instruction will affect a full
16-bit word in memory or an 8-bit byte. A one indicates a byte will
be addressed, while a zero indicates a word will be addressed.

• T fields identified by TD for the destination T field and TS for the
source T field. The T field is a two-bit code which identifies which
of five different addressing modes will be used (direct register,
indirect register, memory address, memory address indexed, and
indirect register autoincremented). These modes are described in
detail in paragraphs 4.5.1 through 4.5.5. The source T field is the
code for the source address and the destination T field is the code
for the destination address. As shown in Figure 4-4, only five
instruction formats use a T field.

• Source and destination register fields which contain the number of the
register affected (0 through 15).

• Displacement fields that contain a bias to be added to the program
counter in program counter relative addressing. This form of
addressing is further described in paragraph 4.5.7.

• Fields that contain counts for indicating the number of bits that will
be shifted in a shift instruction or the number of Communication
Register Unit (CRU) bits that will be addressed in a CRU instruction.

4.5.1 Direct Register Addressing (T=002)

In direct register addressing, execution involves data contained within one of
the 16 workspace registers. In the first example in Figure 4-5, both the
source and destination operands are registers as noted in the assembly
language example at the top of the figure. Both T fields contain 002 to denote
direct register addressing and their associated register fields contain the
binary value of the number of the register affected. The 1102 in the op code
field identifies this instruction as a move instruction. Since the B field
contains a zero, the data moved will be the full 16 bits of the register (a
byte instruction addressing a register would address the left byte of the
register). The instruction specifies moving the contents of register 1 to
register 4, thus changing the contents of register 4 to the same value as in
register 1. Note that the assembly language statement is constructed so that
the source register is the first item in the operand while the destination
register is the second item in the operand. This order is reversed in the
machine language construction with the destination register and its T field
first and the source register and its T field second.

4.5.2 Indirect Register Addressing (T=012)

In indirect register addressing, the register does not contain the data to be
affected by the instruction; instead, the register contains the address within
memory of where that data is stored. For example, the instruction in Figure
4-6 specifies to move the contents of register 1 to the address which is
contained in register 4 (indirect register 4). Instead of moving the value in

24-8

DR Ts SR

RO

R1

R2

R3

R4

R5

PLACE R1 BINARY
IMAGE IN R4

SOURCE OPERANI:

DESTINATION OPERAND

MACHINE LANGUAGE•

0 1 2 3 4 5

1 0 0

OP CODE B TD

M.A.

FC00

FCO2

FC04

FCO6

FC08

FCOA

1.81.1.1.

T CODE FOR
DIRECT REGISTER

REGISTER 4

8 9 10 11

0 0 0 0

T CODE FOR
DIRECT REGISTER

REGISTER 1

„•••••••••••"
12 13 14 15

> C101 0 1 O 0 0 1

register 1 to register 4 as was the case in Figure 4-5, the CPU must first
read in the 16-bit value in register 4 and use that value as a memory address
at which location the contents of register 1 will be stored. In the example,
register 4 contains the value FD0016. This instruction stores the value in
register 1 into memory address (M.A.) FD0016•

Indirect register addressing is specified in assembly language source code by
preceding the register number with an asterisk (*). For example, A *R1,*R2
means to add the contents of the memory address in register 1 to the contents
of the memory address in register 2, leaving the sum in the memory address
contained in register 2.

In direct register addressing, the contents of a register are addressed. In
indirect register addressing, the CPU goes to the register to find out what
memory location to address. This form of addressing is especially suited for
repeating an instruction while accessing successive memory addresses. For
example, if you wished to add a series of numbers in 100 consecutive memory
locations, you could place the address of the first number in a register, and

EXAMPLE 1

ASSEMBLY LANGUAGE:

MOV R1,R4 MOVE THE CONTENTS OF R1 (SOURCE) TO R4 (DESTINATION)

EXAMPLE 2

ASSEMBLY LANGUAGE:

A R4,R10 ADD THE CONTENTS OF R4 (SOURCE) AND R10 (DESTINATION)

MACHINE LANGUAGE:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0 1 0 O 0 1 0 1 0 O 0 O 1 0 0 > A284

OP CODE B TD DR Ts SR

FIGURE 4-5. DIRECT REGISTER ADDRESSING EXAMPLES

4-9

1 1 0

4 5 6 7 8 9 10 11 12 13 14 15

1 1 0 1 0 0 0 0 0 0 0 1 > CD01

MACHINE LANGUAGE:

0 1 2 3

ASSEMBLY LANGUAGE:

MOV R1,*R4 MOVE THE CONTENTS OF RI (SOURCE) TO ADDRESS IN R4 (DESTINATION)

MACHINE LANGUAGE:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

L1 1 0 0 1 0 1 0 0 0 0 0 0 1 >C501

OP CODE B TD DR TS SR

M.A.

FC00 RO

FCO2 R1

FC04 R2

FCO6 R3

FC08 R4

FCOA R5

FD00

F D02

PLACE R1 BINARY

IMAGE IN MA FD0016

(INDIRECT R4)

FIGURE 4-6. INDIRECT REGISTER ADDRESSING EXAMPLE

ASSEMBLY LANGUAGE:

MOV R1,*R4+ MOVE THE CONTENTS OF RI TO ADDRESS CONTAINED IN R4,
INCREMENT ADDRESS BY 2

OP CODE B TD DR Ts SR

BEFORE AFTER

M.A.

FC00 RO

FCO2 R1

FC04 R2

FCO6 R3

FC08 R4

F F 00

FIGURE 4-7. INDIRECT REGISTER AUTOINCREMENT ADDRESSING EXAMPLE

execute an add indirect through that register, causing the contents of the
first memory address (source operand) to be added to another register or
memory address (destination operand). Then you could increment the contents of
the register containing the address of the number, loop back to the add
instruction, and repeat the add, only this time you will be adding the
contents of the next memory address to the accumulator (destination operand).
This way a whole string of data can be summed using a minimum of

4-10

instructions. Of course, you would have to include control instructions that
would signal when the entire list of 100 addresses have been added, but there
are obvious advantages in speed of operation, better use of memory space, and
ease in programming.

4.5.3 Indirect Register Autoincrement Addressing (T=112)

Indirect register autoincrement addressing is the same as indirect register
addressing (section 4.5.2) except for an additional feature - automatic
incrementation of the register. This saves the requirement of adding an
increment (by one or two) instruction to increment the register being used in
the indirect mode. The increment will be a value of one for byte instructions
(e.g., add byte or AB) or a value of two for full word instructions (e.g., add
word or A).

In assembly language the register number is preceded by an asterisk (*) and
followed by a plus sign (+) as shown in Figure 4-7. Note in the figure that
the contents of register 4 was incremented by two since the instruction was a
move word (vs. byte) instruction. If the example used a move byte instruction,
the contents of the register would be incremented by one so that successive
bytes would be addressed (the 16-bit word addresses in memory are always even
numbers or multiples of two since each contains two bytes). Bytes are also
addressed by various instructions of the 990 instruction set.

Note that only a register can contain the indirect address.

4.5.4 Symbolic Memory Addressing, Not Indexed (T=102)

This mode does not use a register as an address or as a container of an
address. Instead, the address is a 16-bit value stored in the second or third
word of the instruction. The SR or DR fields will be all zeroes as shown for
the destination register field in the first example of Figure 4-8. When the T
field contains 102, the CPU retrieves the contents of the next memory location
and uses these contents as the effective address. In assembly language, a
symbolic address is preceded by an at sign (@) to differentiate a numerical
memory address from a register number. All alphanumeric labels must be
preceded by an @ sign; numerical values preceded by an @ sign will be
assembled as an absolute address (the Line-By-Line Assembler does not
recognize alphanumeric symbols but does recognize absolute memory addresses).

In the second example in Figure 4-8, both the source and destination operands
are symbolic memory addresses. In this case, the source address is the first
word following the instruction and the destination is the second word
following the instruction in machine language.

4.5.5 Symbolic Memory Addressing, Indexed (T=102)

Note that the T field for indexed as well as non-indexed symbolic addressing
is the same (102). In order to differentiate between the two different modes,
the associated SR or DR field is interrogated; if this field is all zeroes
(00002), non-indexed addressing is specified; if the SR or DR field is greater
than, zero, indexing is specified and the non-zero value is the index register
number. As a result, register 0 cannot be used as an index register.

In assembly language, the symbolic address is followed by the number of the
index register in parentheses. In the example in Figure 4-9, the source
operand is non-indexed symbolic memory addressing while the destination

4-11

1st WORD

2nd WORD

> C801

> FF00

0 1 1 1 0

DR

6 7 8 9

0 0 0 0

1 0 0

SR

12 13 14 15

O 0 0 1

O 0 0

MACHINE LANGUAGE:

OP CODE B TD

0 1 2 3 4 5

1 1 1 1 1 1

Ts

10 11

O 0

O 0

operand is indexed symbolic memory addressing. In this case, the destination
effective address is the sum of the FF0216 value in the source memory address
word plus the value in the index register (000416). The effective address in
this case is FF0616 as shown by the addition in the left part of the figure.

Note that only symbolic addressing can be indexed.

EXAMPLE 1

ASSEMBLY LANGUAGE:

MOV R1,@>FFOO MOVE THE CONTENTS OF RI TO ADDRESS >FFOO

NOTE

The > sign indicates hexidecimal representation.

M.A.

FEFE

FF00

RO

R1

R2

PLACE R1 BINARY

IMAGE IN

MA >FFOO

EXAMPLE 2

ASSEMBLY LANGUAGE:

MOV @>FFOAR>FF08 MOVE THE CONTENTS OF > FFOA TO >FF08

MACHINE LANGUAGE:

OP CODE B TD DR Ts SR

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1st WORD 1 1 0 1 0 0 0 0 1 0 0 0 0 >C820

2nd WORD 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1 0 >FFOA (SOURCE)

3rd WORD 1 1 1 1 1 1 1 1 0 0 0 0 1 0 0 0 >FF08 (DESTINATION

BEFORE AFTER

FFFF 0000

0000 0000

FIGURE 4-8. DIRECT MEMORY ADDRESSING EXAMPLES

4-12

M.A.

FF08

FFOA

ASSEMBLY LANGUAGE:

MOV @>FF00,@>FF021111) MOVE THE CONTENTS OF >FFOO TO >FF02 + RI CONTENTS

MACHINE LANGUAGE:

>FF02
+ 0004

OP CODE B TD DR TS SR

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

>C860

>FFOO (SOURCE)

>FF02 '(DESTINATION)

1 1 0 0 1 0 0 0 1 1 0 0 0 0 0

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 0

(D)
(R1)

M.A.

RO

R1

R2

BEFORE AFTER

1

FFOO

FF02

FF04

FF06

0004 0004

FFEE FFEE
>FF06

0000 0000

0000 0000

0000 FFEE

FIGURE 4-9. DIRECT MEMORY ADDRESSING, INDEXED EXAMPLE

4.5.6 Immediate Addressing

This mode allows an absolute value to be specified as an operand; this value
is used in connection with a register contents or is loaded into the WP or the
Status Register interrupt mask. Examples are shown below:

LI R2,100 LOAD 100 INTO REGISTER 2
CI R8, >100 COMPARE R8 CONTENTS TO >100, RESULTS IN ST
LWPI >3C00 SET WP TO MA >3C00

4.5.7 Program Counter Relative Addressing

This mode allows a change in Program Counter contents, either an unconditional
change or a change conditional on Status Register contents. Examples are shown
below:

JMP $+6 JUMP TO LOCATION, 6 BYTES FORWARD
JMP THERE JUMP TO LOCATION LABELLED THERE
JEQ $+4 IF ST EQ BIT = 1, JUMP 4 BYTES (MA + 4)
JMP >3E26 JUMP TO M.A. >3E26 (LINE-BY-LINE ASSEMBLER ONLY)

The dollar symbol ($) means "from this address"; thus, $+6 means "this address
plus 6 bytes."

4-13

4.6 INSTRUCTIONS

Table 4-2 lists terms used in describing the instructions of the TM 990/101MA.
Table 4-3 is an alphabetical list of instructions. Table 4-4 is a numerical
list of instructions by op code. Examples are shown in both assembly language
(A.L.) and machine language (M.L.). The greater-than sign (>) indicates
hexadecimal.

TABLE 4-2. INSTRUCTION DESCRIPTION TERMS

TERM DEFINITION

B Byte indicator (1 = byte, 0 = word)

C Bit count

DR Destination address register

DA Destination address

lOP Immediate operand

LSB(n) Least significant (right most) bit of (n)

M.A. Memory Address

MSB(n) Most significant (left most) bit of (n)

N Don't care

PC Program counter

Result Result of operation performed by instruction

SR Source address register

SA Source address

ST Status register

STn Bit n of status register

TD Destination address modifier

Ts Source address modifier

WR or R Workspace register

WRn or Rn Workspace register n

In) Contents of n

a —+ b a is transferred to b

(a) —b Contents of a is transferred to be

In] Absolute value of n

Arithmetic addition

Arithmetic subtraction

AND Logical AND

OR Logical OR

0 Logical exclusive OR

n Logical complement of n

Hexadecimal value

TABLE 4-3. INSTRUCTION SET, ALPHABETICAL INDEX

ASSEMBLY
LANGUAGE
MNEMONIC

MACHINE
LANGUAGE

OP CODE FORMAT

STATUS REG.
BITS

AFFECTED

RESULT
COMPARED
TO ZERO INSTRUCTION PARAGRAPH

A A000 1 0-4 X Add (word) 4.6.1

AB 8000 1 0-5 X Add (byte) 4.6.1

ABS 0740 6 0-2 X Absolute Value 4.6.6

Al 0220 8 0-4 X Add Immediate 4.6.8

ANDI 0240 8 0-2 X AND Immediate 4.6.8

B 0440 6 Branch 4.6.6

BL 0680 6 — Branch and Link (R11) 4.6.6

B LVVP 0400 6 Branch; New Workspace Pointer 4.6.6

C 8000 1 0-2 Compare (word) 4.6.1

CB 9000 1 0-2,5 Compare (byte) 4.6.1

CI 0280 8 0-2 Compare Immediate 4.6.8

CKOF 03C0 7 User Defined 4.6.7

CKON 03A0 7 — User Defined 4.6.7

CLR 04C0 6 Clear Operand 4.6.6

COC 2000 3 2 Compare Dies Corresponding 4.6.3

CZC 2400 3 2 Compare Zeroes Corresponding 4.6.3

DEC 0600 6 0-4 X Decrement (by one) 4.6.6

DECT 0640 6 0-4 X Decrement (by two) 4.6.6

DI V 3C00 9 4 Divide 4.6.3

IDLE 0340 7 — Computer Idle 4.6.7

INC 0580 6 0-4 X Increment (by one) 4.6.6

INCT 05C0 6 0-4 X Increment (by two) 4.6.6

I N V 0540 . 6 0-2 X Invert (One's Complement) 4.6.6

JEQ 1300 2 Jump Equal (ST2=1) 4.6.2

JGT 1500 2 — Jump Greater Than (ST1=1), Arithmetic 4.6.2

JH 1E300 2 — Jump High (STO=1 and ST2=0), Logical 4.6.2

JHE 1400 2 Jump High or Equal (STO or ST2=1), Logical 4.6.2

JL 1A00 2 Jump Low (STO and ST2=0), Logical 4.6.2

JLE 1200 2 Jump Low or Equal (STO=0 or ST2=1), Logical 4.6.2

JLT 1100 2 — Jump Less Than (ST1 and ST2=0), Arithmetic 4.6.2

JMP 1000 2 — Jump Unconditional 4.6.2

JNC 1700 2 — Jump No Carry (ST3=0) 4.6.2

JNE 1600 2 — Jump Not Equal (ST2=0) 4.6.2

JNO 1900 2 — Jump No Overflow (ST4=0) 4.6.2

JOC 1800 2 Jump On Carry (ST3-1) 4.6.2

TABLE 4-3. INSTRUCTION SET, ALPHABETICAL INDEX (CONCLUDED)

ASSEMBLY
LANGUAGE

MNEMONIC

MACHINE
LANGUAGE

OP CODE FORMAT

STATUS REG.
BITS

AFFECTED

RESULT
COMPARED

TO ZERO INSTRUCTION PARAGRAPH

JOP 1C00 2 — Jump Odd Parity (ST5-1) 4.6.2

LDCR 3000 4 0-2,5 X Load CRU 4.6.4

LI 0200 8 — X Load Immediate 4.6.8

LIMI 0300 8 12-15 Load Interrupt Mask Immediate 4.6.8

LREX 03E0 7 12-15 Load and Execute 4.6.7

LWPI 02E0 8 Load Immediate to Workspace Pointer 4.6.8

MOV C000 1 0-2 X Move (word) 4.6.1

MOVB D000 1 0-2,5 X Move (byte) 4.6.1

MPY 3800 9 -- Multiply 4.6.3

NEG 0500 6 0-2 X Negate (Two's Complement) 4.6.6

OR I 0260 8 0-2 X OR Immediate 4.6.8

RSET 0360 7 12-15 Reset AU 4.6.7

RTWP 0380 7 0-15 Return from Context Switch 4.6.7

S 6000 1 0-4 X Subtract (word) 4.6.1

SB 7000 1 0-5 X Subtract (byte) 4.6.1

SBO 1D00 2 — Set CRU Bit to One 4.6.2

SBZ 1 E00 2 — Set CRU Bit to Zero 4.6.2

SETO 0700 6 Set Ones 4.6.6

SLA 0A00 5 0-4 X Shift Left Arithmetic 4.6.5

SOC E000 1 0-2 X Set Ones Corresponding (word) 4.6.1

SOCB F000 1 0-2,5 X Set Ones Corresponding (byte) 4.6.1

SRA 0800 5 0-3 X Shift Right (sign extended) 4.6.5

SRC OBOO 5 0-3 X Shift Right Circular 4.6.5

SR L 0900 5 0-3 X Shift Right Logical 4.6.5

STCR 3400 4 0-2,5 X Store From CRU 4.6.4

STST 02C0 8 — Store Status Register 4.6.8

STWP 02A0 8 — Store Workspace Pointer 4.6.8

SWPB 06C0 6 — Swap Bytes 4.6.6

SZC 4000 1 0-2 X Set Zeroes Corresponding (word) 4.6.1

SZCB 5000 1 0.2,5 X Set Zeroes Corresponding (byte) 4.6.1

TB 1F00 2 2 Test CRU Bit 4.6.2

X 0480 6 — Execute 4.6.6

XOP 2C00 9 6 Extended Operation 4.6.9

XOR 2800 , 3 0-2 X Exclusive OR 4.6.3

TABLE 4-4. INSTRUCTION SET, NUMERICAL INDEX

MACHINE
LANGUAGE
OP CODE

(HEXADECIMAL)

ASSEMBLY
LANGUAGE
MNEMONIC INSTRUCTION FORMAT

STATUS BITS
AFFECTED

0200 U Load Immediate

C
O

 C
O

 C
O

 C
O

 C
O

C

O
 C

O
 00

 0
3
 h

h

h
h

h
h

C

D
 CD

 C
D

 C
D

 C
D

 C
D

 cD
 C

D
 C

D
 C

D
 C

O
 C

D
 C

D
 C

D

u

l
 to

 L
O

 01
 C

N
N

 N
N

N
N

N
 N

N
N

N
N

 N
N

N
N

0-2

0220 Al Add Immediate 0-4

0240 ANDI And Immediate 0-2

0260 OR I Or Immediate 0-2

0280 CI Compare Immediate 0-2

02A0 STWP Store WP

02C0 STST Store ST —

02E0 LWPI Load WP Immediate —

0300 LIMI Load Int. Mask 12-15

0340 IDLE Idle —

0360 RSET Reset AU 12-15

0380 RTWP Return from Context Sw. 0-15

03A0 CKON User Defined —

03C0 CKOF User Defined —

03E0 LR EX Load & Execute

0400 BLWP Branch; New WP

0440 B Branch —

0480 X Execute —

04C0 CLR Clear to Zeroes —

0500 NEG Negate to Ones 0-2

0540 I NV Invert 0-2

0580 INC Increment by 1 0-4

05C0 I NCT Increment by 2 0-4

0600 DEC Decrement by 1 0-4

0640 DECT Decrement by 2 0-4

0680 BL Branch and Link —

06C0 SWPB Swap Bytes —

0700 SETO Set to Ones

0740 ABS Absolute Value 0-2

0800 SRA Shift Right Arithmetic 0-3

0900 SRL Shift Right Logical 0-3

OA00 SLA Shift Left Arithmetic 0-4

OBOO SRC Shift Right Circular 0-3

1000 * JMP Unconditional Jump —

1100 JLT Jump on Less Than —

1200 JLE Jump on Less Than or Equal —

1300 JEQ Jump on Equal —

1400 JHE Jump on High or Equal —

1500 JGT Jump on Greater Than —

1600 JNE Jump on Not Equal

1700 JNC Jump on No Carry

1800 JOC Jump on Carry

1900 JNO Jump on No Overflow —

1A00 JL Jump on Low —

1E100 JH Jump on High —

1C00 JOP Jump on Odd Parity

1D00 SBO Set CRU Bits to Ones —

1E00 SBZ Set CRU Bits to Zeroes —

1 F00 TB Test CRU Bit 2

2000 COC Compare Ones Corresponding 2

TABLE 4-4. INSTRUCTION SET, NUMERICAL INDEX (Concluded)

MACHINE
LANGUAGE

OP CODE
(HEXADECIMAL

ASSEMBLY
LANGUAGE
MNEMONIC INSTRUCTION FORMAT

STATUS BITS

AFF ECTED

2400 CZC Compare Zeroes Corresponding 3 2
2800 XOR Exclusive Or 3 0-2
2C00 XOP Extended Operation 9 6
3000 LDCR Load CRU 4 0-2,5
3400 STCR Store CRU 4 0-2,5

3800 MPY Multiply 9

3C00 DIV Divide 9 4

4000 SZC Set Zeroes Corresponding (Word) 1 0-2
5000 SZCB Set Zeroes Corresponding (Byte) 1 0-2,5
6000 S Subtract Word 1 0-4

7000 SB Subtract Byte 1 0-5
8000 C Compare Word 1 0-2

9000 CB Compare Byte 1 0-2,5
A000 A Add Word 1 0-4

B000 AB Add Byte 1 0-5

C000 MOV Move Word 1 0-2

D000 MOVB Move Byte 1 0-2,5

E000 SOC Set Ones Corresponding (Word) 1 0-2

F000 SOCB Set Ones Corresponding (Byte) 1 0-2,5

4.6.1 Format 1 Instructions

These are dual operand instructions with multiple addressing modes for source
and destination operands.

GENERAL FORMAT:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

OP CODE TD DR TS SR

If B = 1, the operands are bytes and the operand addresses are byte addresses.
If B = 0, the operands are words and the operand addresses are word addresses.

MNEMONIC
OP CODE

MEANING

RESULT STATUS

COMPARED BITS

TO 0 AFFECTED

DESCRIPTION
0 1 2

A 1 0 1 0 Add Yes 0-4 (SA)-(DA) (DA)

AB 1 0 1 1 Add bytes Yes 0-5 (SAI-t(DA) -- IDA)

C 1 0 0 0 1 Compare No 0-2 Compare (SA) to IDA) and set

appropriate status bits

CB 1 0 0 1 Compare bytes No 0-2,5 Compare ISA) to IDA) and set

appropriate status hits

MOV 1 1 0 0 Move Yes 0-2 (SA) IDA)

MOVE 1 1 0 1 Move bytes Yes 0-2,5 ISA) -, IDA)

S 0 1 1 0 Subtract Yes 0-4 IDA) - ISA) IDA)

SB 0 1 1 1 Subtract bytes Yes 0-5 IDA) - ISA) -'10A)

SOC 1 1 1 0 Set ones corresponding Yes 0-2 (DA) OR (SA) -- IDA)

SOCB 1 1 1 1 Set ones corresponding bytes Yes 0-2,5 (DA) OR ISA) (QA)

SZC 0 1 0 0 Set zeroes corresponding Yes 0-2 IDA) AND (SA) -*IDA)

SZCB 0 1 0 1 Set zeroes corresponding bytes Yes 0-2,5 IDA) AND ISA) -*IDA)

EXAMPLES

(1) ASSEMBLY LANGUAGE:
A @>100,R2 ADD CONTENTS OF MA >100 & R2, SUM IN R2

MACHINE LANGUAGE:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 >A0A0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 >0100

(2) ASSEMBLY LANGUAGE:
CB R1,R2 COMPARE BYTE R1 TO R2, SET ST

MACHINE LANGUAGE:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0 0 1 0 0 O 0 1 0 0 0 O 0 0 1

NOTE

In byte instruction designating a register, the left
byte is used. In the above example, the left byte (8
MSB's) of R1 is compared to the left byte of R2, and the
ST set to the results.

4-19

>9081

4.6.2 Format 2 Instructions

4.6.2.1 Jump Instructions

Jump instructions cause the PC to be loaded with the value (PC+2 (signed
displacement)) if bits of the Status Register are at specified values.
Otherwise, no operation occurs and the next instruction is executed since the
PC was incremented by two and now points to the next instruction. The signed
displacement field is a word (not byte) count to be added to PC. Thus, the
jump instruction has a range of -128 to 127 words (-256 to 254 bytes) from the
memory address following the jump instruction. No ST bits are affected by a
jump instruction.

GENERAL FORMAT:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

OP CODE SIGNED DISPLACEMENT (WORDS)

MNEMONIC
OP CODE

MEANING ST CONDITION TO CHANGE PC
0 1 2 3 4 5 6 7

JEQ 0 0 0 1 0 0 1 1 Jump equal ST2 = 1

JGT 0 0 0 1 0 1 0 1 Jump greater than ST1 = 1

JH 0 0 0 1 1 0 1 1 Jump high STO = 1 and ST2 = 0

JHE 0 0 0 1 0 1 0 0 Jump high or equal STO = 1 or ST2 = 1

JL 0 0 0 1 1 0 1 0 Jump low STO = 0 and ST2 = 0

JLE 0 0 0 1 0 0 1 0 Jump low or equal STO = 0 or ST2 = 1

JLT 0 0 0 1 0 0 0 1 Jump less than ST1 = 0 and ST2 = 0

JMP 0 0 0 1 0 0 0 0 Jump unconditional unconditional

JNC 0 0 0 1 0 1 1 1 Jump no carry ST3 = 0

JNE 0 0 0 1 0 1 1 0 Jump not equal ST2 = 0

JNO 0 0 0 1 1 0 0 1 Jump no overflow ST4 = 0

JOC 0 0 0 1 1 0 0 0 Jump on carry ST3 = 1

JOP 0 0 0 1 1 1 0 0 Jump odd parity ST5 = 1

In assembly language, $ in the operand indicates "at this instruction".
Essentially JMP $ causes an unconditional loop to the same instruction
location, and JMP $+2 is essentially a no-op ($+2 means "here plus two
bytes"). Note that the number following the $ is a byte count while
displacement in machine language is in words.

0 1 2 3 4 5

0 0 0 1 0 0

6 7 8 9 10 11 12 13 14 15

1 1 0 0 0 0 0 0 0 1

>1301

EXAMPLES:

(1) ASSEMBLY LANGUAGE:
JEQ $+4 IF EQ BIT SET, SKIP 1 INSTRUCTION

MACHINE LANGUAGE:

PC POINTS TO -41.".

IF STATUS REGISTER BIT 2 = 1

SKIP NEXT INSTRUCTION

The above instruction continues execution 4 bytes (2 words) from the
instruction location or, in other words, two bytes (one word) from the Program
Counter value (incremented by 2 and now pointing to next instruction while JEQ
executes). Thus, the signed displacement of 1 word (2 bytes) is the value to
be added to the PC.

(2) ASSEMBLY LANGUAGE:
JMP $ REMAIN AT THIS LOCATION

MACHINE LANGUAGE:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

>10FF 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1

PC -1 WORD CONTINUOUS LOOP

TO JMP $ (> FF = -1 WORD)

JMP $

PC POINTS TO

This causes an unconditional loop back to one word less than the Program
Counter value (PC + FF = PC-1 word). The Status Register is not checked. A
JMP $+2 means "go to the next instruction" and has a displacement of zero (a
no-op). No-ops can substitute for deleted code or can be used for timing
purposes.

4.6.2.2 CRU Single-Bit Instructions

These instructions test or set values at the CRU. The CRU bit is selected by
the CRU address in bits 3 to 14 of register 12 plus the signed displacement
value. The selected bit is set to a one or zero, or it is tested and the bit
value placed in equal bit (2) of the Status Register. The signed displacement
has a value of -128 to 127. CRU addressing is discussed in detail in paragraph
5.5. CRU multibit instructions are defined in paragraph 4.6.4.

14-21

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

General Format: OP CODE SIGNED DISPLACEMENT

MNEMONIC
OP CODE

STATUS

MEANING BITS DESCRIPTION
0 1 2 3 4 5 6 7

AFFECTED

SBO 0 0 0 1 1 1 0 1 Set bit to one Set the selected CRU output bit to 1.

SBZ 0 0 0 1 1 1 1 0 Set bit to zero Set the selected CRU output bit to 0.

TB 0 0 0 1 1 1 1 1 Test bit 2 If the selected CRU input bit = 1, set ST2.

EXAMPLE

R12, BITS 3 TO 14 = >100

ASSEMBLY LANGUAGE:

SBO 4 SET CRU ADDRESS >104 TO ONE

MACHINE LANGUAGE:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 1 1 1 0 1 0 0 0 0 0 1 0 0 >1D04

4.6.3 Format 3/9 Instructions

These are dual operand instructions with multiple addressing modes for the
source operand, and workspace register addressing for the destination. The MPY
and DIV instructions are termed format 9 but both use the same format as
format 3. The XOP instruction is covered in paragraph 4.6.9.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

General Format: OP CODE DR (REGISTER ONLY) Ts SR

MNEMONIC

OP CODE
MEANING

RESULT

COMPARED

TOO

STATUS
BITS

AFFECTED DESCRIPTION 01 2345

COC 0 0 1 0 0 0 Compare ones

corresponding

No 2 Test (DR) to determine if l's are in each
bit position where 1's are in {SA). If so,

set ST2.

CZC 0 0 1.0 0 1 Compare zeros

corresponding

No 2 Test (DR) to determine if O's are in each

bit position where 1's are in (SA). If so,

set ST2.

XOR 0 0 1 0 1 0 Exclusive OR Yes 0-2 (DR) 0 (SA) —*(DR)

MPY 0 0 1 1 1 0 Multiply No Multiply unsigned (DR) by unsigned

(SA) and place unsigned 32-bit product
in DR (most significant) and DR + 1

(lea'st significant). If WR15 is DR, the
next word in memory after WR15 will

be used for the least significant half of

the product.

DIV 0 0 1 1 1 1 Divide No 4 If unsigned ISA) is less than or equal to
unsigned)DR), perform no operation

and set ST4. Otherwise divide unsigned

(DR) and (DR) by unsigned (SA).

Quotient —.• (DR), remainder --> I DR+ 1).
If DR - 15, the next word in memory
after WR15 will be used for the

remainder.

Exclusive OR Logic 100 1

00+0 o
101 0

4-22

EXAMPLES

(1) ASSEMBLY LANGUAGE:
MPY R2,R3 MULTIPLY CONTENTS OF R2 AND R3, RESULT IN R3 AND R4

MACHINE LANGUAGE:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 1 1 1 01 0 0 1 1 0 0 0 0 1 >38C2

BEFORE AFTER

R2 0002 0002

R3 0003 0000 32-BIT

R4 N 0006 RESULT

The destination operand is always a register, and the values multiplied are
16-bits, unsigned. The 32-bit result is placed in the destination register and
destination register +1, zero filled on the left.

(2) ASSEMBLY LANGUAGE:
DIV @>FE00,R5 DIVIDE CONTENTS OF R5 AND R6 BY VALUE AT M.A. > FE00

MACHINE LANGUAGE:

0 1 2 4 5 6 7 9 10 11 12 13 14 15

0 0 1 1 1 1 0 1 0 1 1 0 0 0 0 0 >3D60

1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 >FE00

BEFORE AFTER

M.A. > FE® 0005 0005

ZZ
R5 0000 0003

R6 0011 0002 REMAINDER

The unsigned 32-bit value in the destination register and destination register
+1 is divided by the source operand value. The result is placed in the
destination register. The remainder is placed in the destination register +1.

4-23

(31 ASSEMBLY LANGUAGE:

COC R10,R11 ONES IN R10 ALSO IN R11?

MACHINE LANGUAGE:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 1 0 0 0 1 0 1 1 0 0 1 0 1 0 >22CA

Locate all binary ones in the source operand. If the destination operand also
has ones in these positions, set the equal flag in the Status Register;
otherwise, reset this flag. The following sets the equal flag:

0 1 2 3 4 6 7 8 9 10 11 12 13 14 15

R10 1 0 1 0 1 1 0 0 0 0 0 1 1 0 0 >AAOC

R11 1 1 1 0 1 1 1 1 1 1 0 0 1 1 0 1 >EFCD

Set E0 bit in Status Register to 1.

4.6.4 Format 4 (CRU Multibit) Instructions

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

OP CODE

General Format: C Ts SR

The C field specifies the number of bits to be transferred. If C = 0, 16 bits
will be transferred. The CRU base register (WR 12, bits 3 through 14) defines
the starting CRU bit address. The bits are transferred serially and the CRU
address is incremented with each bit transfer, although the contents of WR 12
are not affected. Ts and SR provide multiple mode addressing capability for
the source operand. If 8 or fewer bits are transferred (C = 1 through 8), the
source address is a byte address. If 9 or more bits are transferred (C = 0, 9
through 15), the source address is a word (even number) address. If the source
is addressed in the workspace register indirect autoincrement mode, the
workspace register is incremented by 1 if C = 1 through 8, and is incremented
by 2 otherwise.

NOTE

CRU addressing is discussed in detail in paragraph 5.5. CRU single
bit instructions are defined in paragraph 4.6.2.2

4-24

OP CODE
RESULT STATUS

MNEMONIC MEANING COMPARED BITS DESCRIPTION
0 1 2 3 4 5

TO 0 AFFECTED

LDCR 0 0 1 1 0 0 Load communcation

register

Yes 0-2,5t Beginning with LSB of (SA), transfer the

specified number of bits from (SA) to

the CRU.

STCR 0 0 1 1 0 1 Store communcation

register

Yes 0-2,5t Beginning with LSB of (SA), transfer the

specified number of bits from the CRU to

(SA). Load unfilled bit positions with 0.

1ST5 is affected only if 1 6 C E 8.

EXAMPLE

ASSEMBLY LANGUAGE:
LDCR @>FE00,8 LOAD 8 BITS ON CRU FROM M.A. >FE00

MACHINE LANGUAGE:

0 1 2 4 5 6., 7 8 9 10 11 12 13 14 15

0 0 1 1 0 0 1 0 0 0 1 0 0 0 0 0 >3220

1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 >FE00

NOTE

CRU addressing is discussed in detail in paragraph 5.5.

4.6.5 Format 5 (SHIFT) Instructions

These instructions shift (left, right, or circular) the bit patterns in a
workspace register. The last bit value shifted out is placed in the carry bit
(3) of the Status Register. If the SLA instruction causes a one to be shifted
into the sign bit, the ST overflow bit (4) is set. The C field contains the
number of bits to shift.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

General Format: OP CODE C R

If C = 0, bits 12 through 15 of RO contain the shift count. If C = 0 and bits
12 through 15 of WRO = 0, the shift count is 16.

MNEMONIC
OP CODE

MEANING

RESULT

COMPARED

TO 0

STATUS

BITS

AFFECTED

DESCRIPTION
0 1 2 3 4 5 6 7

SLA 0 0 0 0 1 0 1 0 Shift left arithmetic Yes 0-4 Shift (R) left. Fill vacated bit

positions with 0.

SRA 0 0 0 0 1 0 0 0 Shift right arithmetic Yes 0-3 Shift (R) right. Fill vacated bit

positions with original MSB of (R).

SRC 0 0 0 0 1 0 1 1 Shift right circular Yes 0-3 Shift (R) right. Shift previous LSB

into MSB.

SRL 0 0 0 0 1 0 0 1 Shift right logical Yes 0-3 Shift (R) right. Fill vacated bit

positions with 0's.

EXAMPLES

(1) ASSEMBLY LANGUAGE:
SRA R1,2 SHIFT R1 RIGHT 2 POSITIONS, CARRY SIGN

R1 BEFORE

R1 AFTER

MACHINE LANGUAGE:

0 1 2 3 4 5 7 8 9 10 11 12 13 14 15

>0841

>8FOF

>E3C3

0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0 0 13 1 1 1 1 0 0 0 0 1 1 1 1

N..

1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1

BIT CARRIED IN SIGN

(2) ASSEMBLY

R5 BEFORE

R5 AFTER

MACHINE

LANGUAGE:
SRC R5,4

LANGUAGE:

0 1 2 a

CIRCULAR SHIFT R5 4 POSITIONS

4 6 9 10 11 12 13 14 15

>0845

>090F

-\>F090

0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1

0 1 2 3 4 5 6 7 9 10 11 12 13 14 15

0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 1

- - - - •

1 1 1 0 0 0 0 1 0 0 1 0 0 0 0

4-26

(3) ASSEMBLY LANGUAGE:
R1,0 SHIFT COUNT IN RO SLA

0

RO 1

R1 (BEFORE) 1

R1 (AFTER) 1 1

SHIFT COUNT

4 I 5 I 6 I 7
8 1 9 10 11 12 I 13 I 14 1 15

>CCC3 0 0 1 1 0 0 1 1 0 0 0 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 0 0

1 1 1

1

1

VACATED BITS ZERO FILLED

4.6.6 Format 6 Instructions

These are single operand instructions.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

General Format: OP CODE TS SR

The TS and S fields provide multiple mode addressing capability for the source operand.

MNEMONIC
OP CODE

MEANING

RESULT

COMPARED

TOO

STATUS

BITS

AFFECTED

DESCRIPTION
0 1 2 3 4 5 6 7 8 9

B 0 0 0 00 1 0 0 0 1 Branch No SA - IPC)

BL 0 0 0 0 0 1 1 0 1 0 Branch and link No (PC) -±(1311); SA —>(PC)

BLWP 0 0 0 0 0 1 0 0 0 0 Branch and load

workspace pointer

No (SA) -*(WP); (SA+2) -"(PC);

(old WP) - (new WR 13),

fold PC) -• (new WR14);

(old ST(- (new WR15),

the interrupt input (INTREO) is not

tested upon completion of the

BLWP instruction.

CLR 0 0 0 0 0 1 0 0 1 1 Clear operand No 0000 -> (SA)

SETO 0 0 0 0 0 1 1 1 0 0 Set lo ones No FFFF 16 • ISA)

INV 0 0 0 0 0 1 0 1 0 1 Invert Yes 0-2 (SA) --ISA) (ONES complement)

NEG 0 0 0 0 0 1 0 1 0 0 Neudte Yes 04 - (SA) ' (SA)(TWO'S complement)

ABS 0 0 0 0 0 1 1 1 0 1 Absolute value* No 0-4 USA)) -*ISA)

SWPB 0 0 0 0 0 1 1 0 1 1 Swap bytes No ISA), hits 0 thru 7 - ISA), hits

8 thru 15; ISA), bits 8 thru 15 *

ISA), lets 0 thru 7.

INC 0 0 0 0 0 1 0 1 1 0 Increment Yes 0-4 (SA) 4 1 *(SA)

INCT 0 0 0 0 0 1 0 1 1 1 Increment by two Yes 0-4 ISA) ' 2 *ISA)

DEC 0 0 0 0 0 1 1 0 0 0 Decrement Yes 0-4 ISA) - 1 • ISA)

DECT 0 0 0 0 0 1 1 0 0 1 Decrement by two Yes 0-4 ISA) - 2 - ISA)

XT 0 0 0 0 0 1 0 0 1 0 Execute No Execute the instruction at SA.

*Operand is compared to zero for setting the status bit (i.e.. before execution).
tlf additional memory words for the execute instruction are required to define the operands of the instruction located at SA, these

words will be accessed from PC and the PC will be updated accordingly. The instruction acquisition signal (IAQ) will not be true

when the TMS 9900 accesses the instruction at SA. Status bits are affected in the normal manner for the instruction executed.

NOTE

Jumps, branches, and XOP's are compared in Table 4-5.

4-27

PC F F 0 0

OLD PC VALUE

(AFTER)

TO RETURN
EXECUTE
B *R11

MACHINE LANGUAGE:

0 1 2 3

0 0 0 0

1 1 1 1

4 5 6 7 8 9

0 1 0 0 0 0

1 1 0 1 0 0

12 13 14 15

>0420

>F000

0 0 0 0

0 0 0 0

10

1

0 0

11

EXAMPLES

(1) ASSEMBLY LANGUAGE:
B *R2 BRANCH TO M.A. IN R2

MACHINE LANGUAGE:

O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

O 0 0 0 0 1 0 0 0 1 O 1 0 0 1 0

R2 I F D D 0

> 0452

B *R2 PC F DDO (AFTER)

M.A. >FDDO NEXT INSTR.

(2) ASSEMBLY LANGUAGE:
BL @>FFOO BRANCH TO M.A. >FFOO, SAVE OLD PC VALUE (AFTER EXECUTION) IN R11

MACHINE LANGUAGE:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 1 1 0 1 0 1 0 0 0 0 0 >04A0

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 >FFOO

(3) ASSEMBLY LANGUAGE:
BLWP @>FD00 BRANCH, GET NEW WORKSPACE AREA

4-28

RO

This context switch provides a new workspace register file and stores return
values in the new workspace. See Figure 4-10. The operand (>FD00 above) is
the M.A. of a two-word transfer vector, the first word the new WP value, the
second word the new PC value. The processor does not test the interrupt
request line (INTREQ-) following a BLWP instruction.

BLWP @>FD00

M.A.>FC00

>FC80 BLWP @ >FD00

BRANCH WITH NEW WORKSPACE

RO

CALLING PROGRAM

BEFORE BLWP OCCURS

FC00 WP

TRANSFER >FD00

VECTORS

>FFOO

F F 0 0 (NEW WP)

F F 2 0 (NEW PC)

F C 8 4

N

AFTER BLWP

OCCURS

FFOO

F F 2 0

PC

ST

WP

PC

ST

RETURN

VALUES

>FF20

F C 0 0 = (OLD WP)

F C 8 4 = (OLD PC)

OLD ST CONTENTS

NEXT INSTR.

R13

R14

R15 NEW EXECUTION AREA

RTWP \\
7

NRTWP RETURNS EXECUTION TO CALLING

PROGRAM STARTING AT M.A. >FC84

FIGURE 4-10. BLWP EXAMPLE

Essentially, the RTWP instruction is a return to the next instruction that
follows the BLWP instruction (i.e., RTWP is a return from a BLWP context
switch, similar to the B*R11 return from a BL instruction). BLWP provides the
necessary values in registers 13, 14, and 15 (see Figure 4-10).

14.-29

MNEMONIC PARAGRAPH DEFINITION SUMMARY

JMP 4.6.2 One-word instruction, destination restricted to +127, —128 words from Program

Counter value.

B 4.6.6 Two-word instruction, branch to any memory location.

BL 4.6.6 Same as B with PC return address in R11.

BLWP 4.6.7 Same as B with new workspace; old WP, PC and ST contents (return vectors) are in

new R13, R14, R15.

XOP 4.6.9 Same as BLWP with address of parameter (source operand) in new R11. Sixteen XOP

vectors outside program in M.A. 401 6 to 7E 1 6; can be called by any program.

TABLE 4-5. COMPARISON OF JUMPS, BRANCHES, XOP'S

4.6.7 Format 7 (RTWP, CONTROL) Instructions

0 1 3 4 5 6 7 8 9 10 11 12 13 14 15

General Format: OP CODE N

External instructions cause the three most-significant address lines (AO
through A2) to be set to the levels described in the table below and cause the
CRUCLK line to be pulsed, allowing external control functions to be
interpreted during CRUCLK at AO, Al, and A2. The RSET instruction resets the
I/O lines on the TMS 9901 to input lines; the TMS 9902Ais not affected. RSET
also clears the interrupt mask in the Status Register. The LREX instruction
causes a delayed load interrupt, delayed by two IAQ cycles after LREX
execution. The load operation gives control to the monitor. Note, that
although included here because of its format, the RTWP instruction is not
classified as an external instruction because it does not affect the address
lines or CRUCLK.

CKOF- and CKON- can be used by monitoring pins 9 and 10 respectively of U25.
See sheet 2 of the schematics in Appendix F.

MNEMONIC OP CODE MEANING

STATUS

BITS

AFFECTED

DESCRIPTION

ADDRESS

BUS*

0 1 2 3 45 6 7 8910 AO Al A2 ,

IDLE 0 0 0 0 0 0 1 1 0 1 0 Idle — Suspend TMS 9900

instruction execution until

L H L

an interrupt, LOAD, or

RESET occurs

RSET 0 0 0 0 0 0 1 1 0 1 1 Reset I/0 & SR 12-15 0 —>ST12 thru ST15 L H H

CKOF 0 0 0 0 0 0 1 1 1 1 0 User defined --- H H L

CKON 0 0 0 0 0 0 1 1 1 0 1 User defined --- H L H

LREX 0 0 0 0 0 0 1 1 1 1 1 Load interrupt Control to TIBUG H 1-1 H

RTWP 0 0 0 0 0 0 1 1 1 0 0 Return from 0-15 (R13) -4.(WP)

Subroutine (R14) --> (PC)

(R15) —>(ST)

These outputs from the TMS 9900 go to a SN74LS138 as shown in Figure 5-6.

4-30

ASSEMBLY LANGUAGE:

RTWP RETURN FROM CONTEXT SWITCH

MACHINE LANGUAGE:

O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

O 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0

RTWP RETURN TO PREVIOUS WP (R13), PC (R14), ST (R15) VALUES

F C 0 0

R14 I F C 8 4 AFTER

R13

>0380

R15 WP FCOO STATUS

F C 8 4 PC

RTWP M.A. >FF40

STATUS ST

EXECUTION BEGINS AT M.A. >FC84

WITH RO AT M.A. >FC00.

4.6.8 Format 8 (IMMEDIATE, INTERNAL REGISTER LOAD/STORE) Instructions

4.6.8.1 Immediate Register Instructions

0 1 2 3 4 5 6 7 8 10 11 12 13 14 15

General format: OP CODE N

10P

MNEMONIC
OP CODE

MEANING

RESULT

COMPARED

STATUS

BITS DESCRIPTION
0 1 2 3 4 5 6 7 8 9 10

TO 0 AFFECTED

Al 0 0 0 0 0 0 1 0 0 0 1 Add immediate Yes 0-4 (RI + 10P —> (13)

ANDI 0 0 0 0 0 0 1 0 0 1 0 AND immediate Yes 0-2 (R) AND 10P -*IR)

CI 0 0 0 0 0 0 1 0 1 0 0 Compare

immediate

Yes 0-2 Compare (RI to 10P and set

appropriate status bits

LI 0 0 0 0 0 0 1 0 0 0 0 Load immediate Yes 0-2 10P --:>(R)

ORI 0 0 0 0 0 0 1 0 0 1 1 OR immediate Yes 0-2 (RI OR IOF '-' IR)

AND Logic: 0.1, 1.0 = 0 OR Logic: 0 + 1, 1 + 0 = 1

0-0 = 0 1 + 1 = 1

1.1 = 1 0 + 0 = 0

4-31

4.6.8.2 Internal Register Load Immediate Instructions

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

General format: OP CODE

N

10P

OP CODE
MNEMONIC MEANING DESCRIPTION

0 1 2 3 4 5 6 7 8 9 10

LWPI 0 0 0 0 0 0 1 0 1 1 1 Load workspace pointer immediate 10P — (WP), no ST bits affected

LIMI 0 0 0 0 0 0 1 1 0 0 0 Load interrupt mask 10P, hits 12 thru 15 —ST12

thru ST15

4.6.8.3 Internal Register Store Instructions

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

General format: OP CODE N R

NO ST BITS ARE AFFECTED.

OP CODE
MNEMONIC MEANING DESCRIPTION

0 1 2 3 4 5 6 7 8 9 10

STST 0 0 0 0 0 0 1 0 1 1 0 Store status register 1ST) — (F)

STWP 0 0 0 0 0 0 1 0 1 0 1 Store workspace pointer (WP) --*(R)

EXAMPLES

(1) ASSEMBLY LANGUAGE:
Al R2,>FF ADO >FF TO CONTENTS OF R2

MACHINE LANGUAGE:

O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

O 0 0 0 0 0 1 0 0 0 1

0 0 1 0

O 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

R2

BEFORE

0 0 0 F

AFTER

0 1 0 E

(2) ASSEMBLY LANGUAGE:
CI R2,>10E COMPARE R2 TO >10E

MACHINE LANGUAGE:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 >0282

0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 >010E

R2 contains ''after" results I >10E) of instruction in Example (1) above; thus the ST equal bit becomes set.

4-32

>0222

>00F F

(3) ASSEMBLY LANGUAGE:
LWPI >FC00 WP SET AT ,>FC00 (M.A. OF RO)

MACHINE LANGUAGE:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 >02E0

1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 >F COO

(4) ASSEMBLY LANGUAGE:

STWP R2 STORE WP CONTENTS IN R2

MACHINE LANGUAGE:

O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

O 0 0 0 0 0 1 0 1 0 1 0 O 0 1 0

This places the M.A. of RO in a workspace register.

4.6.9 Format 9 (XOP) Instructions

Other format 9 instructions (MPY, DIV) are explained in paragraph 4.6.3
(format 3).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

>02A2

General Format: 0 1 0 1 1 D (XOP NUMBER) TS SR

The TS and SR fields provide multiple mode addressing capability for the
source operand. When the XOP is executed, ST6 is set and the following
transfers occur:

(401 6 + 4D) (WP)

(4216 + 40) — (PC)
SA (new R11)

(old WP) > (new WR13)

(old PC) —+ (new WR14)

(old ST) -, (new WR15)

First vector at 401 6

Each vector uses 4 bytes (2 words)

The TMS 9900 does not test interrupt request (INTREQ-) upon completion of the
XOP instruction.

4-33

An XOP is a means of calling one of 16 subtasks available for use by any
executing task. The EPROM memory area between M.A. 4016 and 7E16 is reserved
for the transfer vectors of XOP's 0 to 15 (see Figure 4-1). Each XOP vector
consists of two words, the first a WP value, the second a PC value, defining
the workspace pointer and entry point for a new subtask. These values are
placed in their respective hardware registers when the XOP is executed.

The old WP, PC, and ST values (of the XOP calling task) are stored (like the
BLWP instruction) in the new workspace, registers 13, 14, and 15. Return to
the calling routine is through the RTWP instruction. Also stored, in the new
R11, is the M.A. of the source operand. This allows passing a parameter to the
new subtask, such as the memory address of a string of values to be
processed by the XOP-called routine. Figure 4-11 depicts calling an XOP to
process a table of data; the data begins at M.A. FF0016, This XOP example
uses XOP vectors that point directly to the XOP service routine WP and PC. The
TM 990/101MA comes with interrupt and XOP vectors pointing to linking areas
that point to the service routine. The use of these linking areas is
explained in subsection 5.9.

XOP's 0, 1 and 8 to 15 are used by the TIBUG monitor, calling software
routines (supervisor calls) as requested by tasks. This user-accessible
software performs tasks such as write to terminal, convert binary to hex
ASCII, etc. These monitor XOP's are discussed in Section 3.3. XOP vectors 2
through 7 are programmed with memory vector values, but reserved for the user.
See Section 5.9 for an explanation of the Interrupt/XOP linking area.

14-314

XOP 4

PROGRAM I

RTWP

>FFOO

ASSEMBLY LANGUAGE:
XOP @>FF00,4

MACHINE LANGUAGE:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 >2D20

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 >FFOO

M.A.

>ow AFTER XOP 0 WP

>0042 XOP 0 PC FCOO WP

XOP F C 2 0 PC

VECTORS >0050 I FCOO N ST

>0052 I F C 2 0

>007E

CALLING INSTR. r XOP @>F F00,4

> FC00 RO

PASSED PARAMETER (SOURCE OPERAND) FFOO R11+11-----

R12

OLD WP R13 RETURN VECTORS

I OLD PC R14 TO CALLING TASK

OLD SR R15

>FC20 I 1ST INSTR.

TABLE OF
VALUES TO

BE PROCESSED

NOTE
THIS EXAMPLE DOES NOT USE THE XOP
LINKING AREAS EXPLAINED IN SUBSECTION
5.9. THIS XOP EXAMPLE PRESUMES THE XOP
VECTORS HAVE BEEN PROGRAMMED INTO
MEMORY (MA. 0050

16
AND 005216) BY THE

USER.

FIGURE 4- 1 1 . XOP EXAMPLE

14-35

SECTION 5

PROGRAMMING

5.1 GENERAL

This section is designed to familiarize the user with programming the TM
990/101MA. Explanations about the programming environment, using TIBUG XOP's,
supporting special features of the hardware, and certain programming practices
are included. Programs are provided as examples for the user to analyze and
follow, and possibly combine into the user's system. This section is divided
into, roughly, two areas: the first part gives background information on the
programming environment and shows suggested coding practices for a variety of
situations, and the second part gives specific program examples using special
features of the hardware.

For clarity, source listing examples in this section use assembler directives
recognized by larger assemblers but not recognized by the TM 990/402
Line-By-Line Assembler (LBLA). These directives are not explained in the
section on the 990 instruction set (Section 4), but are explained in detail in
the Model 990 Computer, TMS 9900 Microprocessor Assembly Language Programmer's
Guide. A synopsis of their definitions are given here. These directives are
explained in Table 5-1.

TABLE 5-1. ASSEMBLER DIRECTIVES USED IN EXAMPLES

Label Opcode Operand Meaning

AORG XXXX Assemble code that follows so that it is
loaded beginning at M.A. XXXX. This is
similar to the absolute load (slash) request
of the LBLA.

DATA YYYY Place the value YYYY in this location (if
preceded by the greater-than sign (>) the
quantity is a hexadecimal representation).

DATA LABEL If LABEL represents a memory address, the
memory address value is placed at this
location aligned on an even address (word
boUndary).

END Signifies end of program for assembler.

AAAA EQU BBBB Wherever the symbol AAAA is found, substit-
ute the value BBBB.

IDT 'NAME' Program will be identified by NAME.

TEXT 'ABCD123' The ASCII value of the specified string is
assembled in successive bytes.

5-1

0079

SOURCE STATEMENT NO.

RELATIVE ADDRESS

OBJECT CODE (ASSEMBLED SOURCE)

LABEL FIELD

/

OPCODE

OPERAND

04-01 CLR 1
LI 7.CKPARM 0207

00BC'
I. 3. 0208

000'5
LI 9,CLKWP+4 0209

FF3C
WRIT 47 2F.'97 LOOP1
HE:XI 2E40

ooln' DATA NEXT,, ERROR
oo.6.•
0/1 NEXT E4.WP @DEC EX
020:)

COMMENT FIELD

CLEAR FOR DECIMAL TO HEX ROUTI
PROMPT MESSAGES ' •

FIVE. PROMPTS

REGISTER 2 ADDRESS

PROMPT USER FOR TIME VALUE
GET INPUT
NULL, ERROR RTN ADR

DECIMAL CHARS TO BINARY

ASSEMBLED OBJECT SHOWS RELATIVE

ADDRESS OF "NEXT" AT 004A16

FIGURE 5-1. SOURCE LISTING

Figure 5-1 is a part of a source listing used in this section, as assembled by
TI's TXMIRA assembler. Unless specified otherwise by directive, the TXMIRA
assembler will begin assembling code relative to memory address 000016 (second
column). When resolving an address for an instruction, as shown at the bottom
of the figure, the instruction address operator is the same as the relative
address in column two of the listing. Thus, for the label NEXT, the address
004A16 is assembled which is the relative address within the listing. This is
useful when determining such addresses as the destination of a labelled BLWP
instruction. Note that the Line-By-Line Assembler does not use labelled
addressing, but assembles the absolute address given.

5-2

5.2 PROGRAMMING CONSIDERATIONS

5.2.1 Program Organization

Programs should be organized into two major areas:

• Procedure area of executable code and data constants (never modified)
• Data area of program data and work areas whose contents will be

modified.

The executable code and constant data section can be debugged as a separate
entity, and then programmed into EPROM. The work area can be placed at
any other in RAM, and that address does not have to be contiguous with the
program code area, and can even be dynamically allocated by a Get Memory
supervisor call of some kind. Even if the program parts are loaded and
executed together, the organization and debug ease are enhanced.

In this programming section, all example programs are coded, with one
exception, in this manner. The only work area is the register set, which is
arbitrarily fixed to a RAM address. The one exception, the Two-Terminal
routine, is coded to reside entirely in RAM because the workspace is a part of
the contiguous extent of code. This method of coding is used in RAM-intensive
systems because the operating system need not manage workspaces as might be
necessary in a system with very little RAM.

5.2.2 Executing TM 990/100MA Programs on the TM 990/101MA

Programs developed on the TM 990/100MA board use a different interrupt and XOP
trap configuration than the TM 990/101MA. This must be taken into
consideration when executing programs on the TM 990/101MA that were developed
for running on TM 990/100MA. On the TM 990/100MA, interrupt vectors are
programmed into PROM for INT3 and INTO (vectors FF6816 and FF8816 for INT3 and
FFAC16 for INTO). This allows for immediate use of these interrupt traps such
as with the TMS 9901 and TMS 9902A interval timers. XOP vectors on the TM
990/100MA are programmed for XOP's 0, 1 and 8 to 15 for use by TIBUG. User
XOP's (XOP 2-7) are not programmed.

On the TM 990/101MA board, however, all interrupt and XOP vectors are
programmed, and the linking scheme in RAM is different. Consult the interrupt
linking section (paragraph 5.9) for the scheme used. The TM 990/100MA scheme
is described in the User's Guide for that microcomputer.

5.2.3 Required Use of RAM in Programs

All memory locations that will be written to must be in RAM-type memory (this
is important to consider when the program is to be programmed into ROM).
Areas to be located in RAM include all registers as well as the destination
operands of format 1 instructions and the source operands of most format 6
instructions. For example, in the following source lines:

MOV @>0700,@>FC00 MOVE DATA
CLR @>FC00 CLEAR MEMORY ADDRESS
ABS @>FC00 SET TO ABSOLUTE VALUE
INCT @>FC00 INCREMENT BY TWO
S R1, @>FC00 (>FC00) -R1, ANSWER IN >FC00

The address FC0016 will be written to; thus, it has to be in RAM.

5-3

5.3 PROGRAMMING ENVIRONMENT

The programming environment of a computer is loosely defined as the set of
conditions imposed on a programmer by either or both the hardware and
systems software, but it is also the facilities available to the programmer
because of the design of the hardware and software. The environment in which
a program resides usually determines how that program is coded. This section
gives explanations of the major areas of the TM 990/101MA design from a
programmer's point of view. Note all program examples given are for a full
assembler (e.g., PXRASM, TXMIRA, or SDSMAC vs. the Line-By-Line Assembler) so
that labels can be used for reader comprehension.

5.3.1 Hardware Registers

The TMS 9900 family of processors is designed around a memory-to-memory
architecture philosophy; consequently, the only registers inside the processor
affecting the programmer are the Workspace Pointer (WP) register, the Program
Counter (PC) register, and the Status (ST) register. There are no accumulators
or general purpose registers which reside physically inside the
microprocessor. All manipulations of data are accomplished by using these
three registers as described below.

5.3.1.1 Workspace pointer (WP) Register

The Workspace Pointer is a register which holds the address of a sixteen word
area in memory; this memory area serves as a general purpose register set. A
memory area is designated as a workspace or general purpose register set by
loading the address of the first word (register 0) of the 16-word space into
the WP register. Thus the programmer's register set is in memory, and can be
referred to with register addressing, or if the WP value is known, with memory
addressing. The registers are simply a data area in a program with the
special privileges usually given to processor registers. This approach has
several advantages for the programmer.

1. Register save areas need no longer be kept in programs, since the
actual program registers are already in memory, and are maintained by
the hardware during program linking by the use of a special class of
instructions.

2. Program debugging is greatly heightened since the registers of a
questionable program remain intact in memory during debugging. The
debug monitor has its own set of registers, in memory, and there is
no question of which of many program modules has tampered with the
processor registers, since each program in question can have its own
registers.

3 Recursive, re-entrant, and ROM resident code is much easier to write
since program calls are handled by special instructions, and new
workspace areas, linked together by the hardware, are available for
use at each program call.

4. Linked-list structuring of workspaces is automatically done by the
hardware, reducing system software overhead.

5. Very fast interrupt handling is possible since only three processor
registers (WP, PC, ST) are stored by the hardware during the
interrupt (instead of a whole register set) usually by a software

5-4

instruction or routine.

5.3.1.2 Program Counter (PC) Register

The Program Counter (PC) register holds the address of the next instruction to
be executed by the processor. As such, it is no different than the PC in any
other processor and is incremented while fetching instructions unless modified
by a program branch or jump, or during an interrupt sequence.

5.3.1.3 Status (ST) Register

The Status Register holds the processor status and is the only one of the
three processor registers which has nothing to do with memory, directly. It
is divided into two parts: the status bits, which are set to reflect the
attributes of data being handled by the processor, and the interrupt mask,
which governs the priority structure of interrupt processing. The ST is
organized as shown in Figure 4-2.

5.3.2 Address Space

The TMS 9900 microprocessor addresses 65,536 (64K) bytes (8-bits each).
Although the data bus is 16 bits wide, and the instruction set is mainly word
(16-bits) oriented, the basic unit of address is a byte. The actual memory
architecture is 32,768 (32K) words of two bytes each, and byte processing is
accomplished within the processor after fetching a word from memory. Because
the instruction set is mainly arithmetically oriented, and usually operates on
16-bit words, it is probably best to view the address space as a collection of
words, each containing, usually for I/O purposes, two bytes.

5.3.3 Vectors (Interrupt and XOP)

This subsection covers the interrupt and XOP environments in general;
programming of interrupts and XOPs is covered in detail in Section 5.9.
Interrupt and XOP vectors are located beginning with address 000016 and extend
through 007F16. The first half, addresses 000016 through 003F16, contain the
interrupt vectors. There are 16 prioritized interrupts. Level 0 is the
highest priority, with a vector pair at 000016 and 000216. Level 15 is the
lowest priority, with its vector pair at 003C16 and 003E16. Level 0 interrupt
is synonomous with the RESET function. A vector pair consists of a workspace
pointer and a program counter, both values identifying the interrupt program
environment.

Before an interrupt can occur, the processor must recognize it as having an
equal or higher priority than the interrupt mask in the Status Register. After
a valid interrupt has occurred, the interrupt vector values are retrieved from
memory, and the hardware equivalent of a BLWP instruction takes place.

There is one additional vector pair, at FFFC16 and FFFE16, for the LOAD-
function. When signaled, this interrupt always occurs and cannot be disabled
by the Status Register interrupt mask. Note also that RESET being level zero,
cannot be disabled, since its Status Register priority value of zero is always
equal to or higher than any value in the interrupt mask field.

The XOP vectors work in a similar manner. Vector location begins at 004016
and extends through 007F16. These vectors are triggered by execution of the
XOP instruction, with a number from 0 to 15. There is no prioritizing; these
are software-triggered interrupts, and XOP service routines may freely execute

5-5

other XOP's. One additional event happens during the vector action: the source
operand of the XOP instruction is evaluated as an address and placed in the
new Workspace Register 11. This provides a parameter to the XOP routine.

The TIBUG monitor uses several XOP's for I/O service from the terminal; some
of these are available for the user as explained in subsection 3.3. In
addition, the programmer may wish to program interrupt and XOP vectors for
special functions.

5.3.4 Workspace Registers

The actual workspace registers, in memory, provide general working areas for a
program. Some registers can also be used for special purposes; these are
listed in Table 5-2.

TABLE 5-2. REGISTER RESERVED APPLICATION

Register Application

0: Bits 12 - 15 (least significant half-byte) provide the shift count
for shift instructions coded to refer to this register. This
register cannot be used for indexed addressing.

11: Holds return address following execution of a BL instruction.
During XOP service routine, it holds resolved memory address of
argument in XOP instruction.

12: CRU Base Address.

13: During BLWP, RTWP, interrupts, and XOP's: holds old WP contents.

14: During BLWP, RTWP, interrupts, and XOP's: holds old PC contents.

15: During BLWP, RTWP, interrupts, and XOP's: holds old ST contents.

In general, then, registers 1 to 10 are available for unrestricted use,
although the programmer can use the reserved registers for other purposes, if
proper consideration is given.

One advantage of the workspace concept is that one program can request an
almost unlimited number of register sets, or alternately, every little module
in a program system can have at least one set of its own registers. Programs
are usually written to take advantage of the benefits associated with
programming operands in registers.

5.4 LINKING INSTRUCTIONS

These are of vital interest to a programmer for they answer the all important
questions of how to get in and out of a program. These instructions are:

• B (paragraph 5.4.1) Branch
• BL (paragraph 5.4.2) Branch with return link in R11
• BLWP (paragraph 5.4.3) Branch, new workspace, return link in R13 to R15
• RTWP (paragraph 5.4.4) Return, use vectors in R13 and R14
• XOP (paragraph 5.4.5) Branch, new workspace, vectors in low memory

5-6

MOV R11,R10
BL @>FD00

•

5-7

5.4.1 Branch Instruction (B)

Though not normally considered a program linking instruction, the branch
instruction can be used to link the programs in a known location, such as
TIBUG. Since the Workspace Pointer is not affected by the instruction,
program systems using this convention usually delegate the responsiblity for
establishing workspaces to each program. Thus we may have branches to various
programs as shown in Figure 5-2. Note that each program sets up its own WP
(LWPI instruction). The AORG and EQU directives are explained in paragraph
5-1.

*PGMA PROGRAM *PGMB PROGRAM *PGMC PROGRAM

AORG >0800 AORG >0A00 AORG >1000
PGMB EQU >0A00 PGMA EQU >0800 PGMA EQU >0800

PGMC EQU >1000 PGMC EQU >1000 PGMB EQU >0A00
PGMA LWPI >FF90 PGMB LWPI >FF70 PGMC LWPI >FF50

*00 000 I 4100

@PGMB J B @PGMC J B @PGMA
•••

B @>0080 •• •

FIGURE 5-2. EXAMPLE OF SEPARATE PROGRAMS JOINED BY BRANCHES TO ABSOLUTE
ADDRESSES

5.4.2 Branch And Link (BL)

The BL instruction is designed mainly for the calling of subprograms with a
convenient means of returning back to the calling program. Since the
processor puts the address of the next instruction in register 11 (it
effectively transfers the PC to R11) before branching, the return path is
established. To return (using the same workspace) simply execute a B *R11 (or
RT instruction).

Note, though, that only one level of subroutine call is possible if only one
workspace area is used, unless register 11 is saved by the first subroutine
wishing to branch and link to a second subroutine.

CALLING PROGRAM

FIRST LINK SECOND LINK

BL @FE00 FE00 LI R6,47 FD00 CI R5,22

•

B. *R11

The BL subroutine can include XOP instructions to provide special services
needed to accomplish the subroutine function, as in the following example:

BL @RDNUM
RDNUM XOP R1,13

CI R1,>3000
JL RDNUM
CI R1,>3900
JH RDNUM
XOP R1,12
B *11

READ A CHARACTER
IS IT BELOW A ZERO?
YES,GO BACK
IS IT ABOVE A NINE?
YES, GO BACK
ECHO THE CHARACTER
RETURN

The very simple routine shown above reads a character from the terminal and
checks for a decimal digit 0-9. If the character is acceptable, it is echoed
back to the terminal, and then control is returned to the calling program. If
the character is unacceptable, the routine drops it and requests another; the
bad character is not echoed to show the user that another character must be
typed.

5.4.3 Branch and Load Workspace Pointer (BLWP)

This is the most sophisticated linking instruction in that it causes a
complete program environment change (context switch), and automatically links
the old workspace to the new, also preserving the old processor status. As
such, it behaves in the same way as the interrupt sequence or XOP sequence,
and it is therefore possible to vector to an interrupt or XOP service routine
without actually causing an interrupt or executing an XOP. For example,
executing a BLWP 610 will vector to the RESET interrupt handler, which if TIBUG
is resident, causes the user to set the baud rate and start TIBUG again.

Since the TMS 9900 is a linked-list rather than a stack machine, those used to
a stack for systems programming may need some readjustment, but the superior
flexibility of linked-lists is simplified by the fact that the programmer can
move nodes around, whereas in a stack, the nodes are fixed in Last-In
First-Out (LIFO) order. The transition is made painlessly since the hardware
completes program linking with the execution of one instruction, and very
little effort is required on the part of the programmer.

There are two immediate possibilities to discuss in using the BLWP
instruction. For simple subroutine linking, the following is an example:

CALLING PROGRAM SUBROUTINE

ENTRY

BLWP @SUBA PCSUBA ENTRY POINT

RTWP
SUBA DATA WPSUBA WPSUB

DATA PCSUBA

Note the double word vector pointed to by the BLWP operand, the values WPSUBA
and PCSUBA. These two DATA statements provide the memory addresses of these
vectors. The latter (PCSUBA) is the entry point, and is well defined.
However, the WP value is shown here without a definition. This raises the
fundamental question: if there are many programs operating together, such as

5-8

TIBUG, possibly a user-written monitor, and a collection of application
programs and subroutines, who is responsible for managing the individual
workspaces? If each individual program is responsible, then the following
definition would be added to the above subroutine:

WPSUBA EQU >FF70

Note this defines WPSUBA as M.A. FF7016 and ties down one area of memory to
the subroutine; thus, no other program in the system can call this subroutine
without chancing some conflict by using the same workspace. Thus, it is
reserved for one subroutine.

A second approach is to code a value which is designated as a common workspace
for whoever is in control at the time. In the EQU statement above, the value
could be, by agreement, the common workspace. This implies that there are now
two entities - the reserved workspace, which must be carefully mapped out
ahead of time so there is no overlap, and the common workspace, of which there
may be one or more, and whose status is such that any program can use it, but
if control leaves that program, then that workspace is no longer considered
needed, and thus can be used by another program.

Note the previous discussion assumes that the program code is in EPROM. If the
code is to be executed from RAM, then writing the program is simple; put the
workspace at the end of the program as a data area.

In either case, the user is responsible for partitioning his memory such that
workspaces do not overlap or interfere with TIBUG or the XOP's defined by
TIBUG, along with any user defined workspaces.

5.4.4 Return With Workspace Pointer (RTWP)

The RTWP instruction can be used to both return from a program. and to link to
a program. Since the instruction reloads the processor WP, PC, and ST
registers from workspace registers 13, 14 and 15, then the contents of these
registers governs where control will go. If those registers were intiialized
by a BLWP instruction, then the action can be seen as a return, but if special
values are placed in these registers, the action can be viewed as a subroutine
call. Actually, program calls are not limited to a nesting structure, as in
stack architectures, but are generalized so that chains and even rings may be
formed. The TIBUG monitor uses the RTWP instruction in this manner. Using
the "R" command, the user fills TIBUG's registers 13, 14, and 15. Using the
"E" command causes TIBUG to execute a RTWP instruction using the values in
these registers.

Since the RTWP does not affect the new workspace at all, there is no way for
the called program to return to the caller unless the caller had initialized
the new workspace registers before executing the RTWP. This type of program
transfer is thus in a "forward" direction only, and is usually suitable only
for a monitor program in a fixed location such as TIBUG.

5.4.5 Extended Operation (XOP)

The XOP instruction works almost like a BLWP instruction, except that the
address containing the double-word vector area is between 004016 and 007F16,
and is selected by an argument of from 0 to 15, and that the new workspace
register 11 is initialized with the fully resolved address of the first
operand of the XOP instruction. This means that if the operand is a register,

5-9

the actual memory address is computed and placed in the new register 11.

The XOP instruction is meant as a "supervisor call" or special function
operation. As such, a programmer might wish to implement routines which
perform some standard process such as a character string search or setting the
system timer, as shown by the following code:

CALLING PROGRAM

*AT M.A. 0048:
*AT M.A. 004A:

XOP TRAPS AND SUBROUTINE

FF903 TIMER ROUTINE WP
10AE3 TIMER ROUTINE PC

XOP 2
VECTORS

LI R0,11719 *AT M.A. 10AE: IDT 'TIMER'
XOP R0,2 ENTRY MOV *11,11 GET VALUE

LI 12,>0100 ADDRESS 9901
SLA 11,1 SHIFT CLOCK COUNT
ORI 11,1 SET CLOCK MODE
LDCR 11,15 START CLOCK
SBZ 0 SET INTERRUPT MODE
SBO 3 ENABLE INT3 MASK
RTWP

The main program requests 11719 clock counts, which is a desired time of 0.25
second. This number is found by taking the system clock frequency, dividing
it by 64 to find the timer frequency, then reciprocating that to give the
timer interval, then dividing the desired time delay by the timer interval to
find the clock counter value. It is assumed here that XOP 2 is available for
this function. The timer routine translates the request and starts the system
timer. One quarter second later, an interrupt through INT3 will be generated.

TIBUG supplies definitions for XOP's 0, 1, and 8 through 15, leaving 2 through
7 available for the user. XOP's 2 through 7 are programmed according to the
scheme described in subsection 5.9.

5.4.6 Linked-Lists

A linked list is a data organization where a collection of related data,
called a node, contains information which links it to other nodes. The prime
example here is a workspace register set: it contains sixteen words of data.
If there are many workspaces present at one time connected by BLWP
instructions, then every register 13 contains the address of the previous
workspace, forming a linked list. At the same time, the BLWP also places the
previous program counter value in register 14, providing a means of returning
back to the previous program environment.

For example, the E or execute TIBUG command uses the RTWP instruction to begin
program execution at the WP, PC, and ST values in current registers 13, 14,
and 15. The R or register inspect/change TIBUG command can be used to set up
these registers prior to the execute command. In the example in Figure 5-3,
program PGMA is executed using the TIBUG E command; it later gives control to
program PGMB using the BLWP command. In doing so, the processor forges links
back to PGMA by placing return WP, PC, and ST values in registers 13, 14, and
15 of PGMB. Likewise, PGMB branches to PGMC with return links to PGMB forged
into R13 to R15 of PGMC. Each can return to the previous program by executing
an RTWP instruction, and the processor can travel up the linked list until
PGMA is reached again.

5-10

0 CALL PGMB 0 RETURN
TO PGMA BLWP

PGMB

PGMA

BLWP

0 RETURN
TO PGMB

RETURN
LINKS TO
PGMA

CALL PGMC

R13-15

RTWP

R13-15

R13-15

PGMC

RTWP

RETURN
LINKS TO
PGMB

5.5 COMMUNICATIONS REGISTER UNIT (CRU)

Input and output is mainly done on the TM 990/101MA using the Communications
Register Unit or CRU.. This is a separate hardware structure with its own data
and control lines. Thus the TMS 9900 microprocessor has one address bus, but
two sets of control and data buses. One set, the memory set, has a 16-bit
parallel bidirectional data bus and three control lines, MEMEN-, DBIN, and
WE-.

The other set, the CRU I/O set, uses two lines, one line for input (CRUIN),
and one for output (CRUOUT). There is one control line, CRUCLK, used to
strobe a bit being output on CRUOUT. A bit being input on CRUIN has no strobe
and is simply sampled by the microprocessor at its discretion.

CRU devices are run on one phase of the system clocks, and therefore, the rate
of data transfer on the CRUIN line is a function of the system clock. Since
the CPU also uses this system clock, it will sample the CRUIN line at a rate
that is a function of the system clock when doing a CRU read operation
(executing a CRU read instruction - STCR or TB).

FIGURE 5-3. LINKED LIST EXAMPLE

5-11

CRU Hardware
Base Address
(R12, bits 3-14)

CRU Software
Base Address
(R12, bits 0-15)

Function

Status L.E.D. 0000 0000
Unit I.D. Switch 0020 0040
TMS 9902A, Main I/O (Lower Half) 0040 0080
TMS 9902A, Main I/O (Upper Half) 0050 00A0
TMS 9901 Interrupt Mask, System Timer 0080 0100
TMS 9901 Parallel I/O 0090 0120
RESET Interrupt 6 00A6 014C
TMS 9902A, Auxiliary I/O (Lower Half) 0000 0180
TMS 9902A, Auxiliary I/O (Upper Half) OODO 01A0
RS-232 Handshaking Signals 00E0 01C0
Offboard CRU 0100 0200

Thus, the CRU data group consists of three lines - CRUIN, CRUOUT, and CRUCLK.
The address bus supplies CRU address as well as memory addresses; which
operation being performed is determined by the presence of the proper control
signals. Memory operations use address bits 0 through 14 externally, bit 15
is used inside the processor for byte operations. CRU operations, however,
use only bits 3 through 14; bits 0, 1, and 2 are set to zero, and bit 15 or an
address is totally ignored.

When CRU instructions are executed, data is written or read through the CRUOUT
or CRUIN pins respectively of the TMS 9900 to or from designated devices
addressed via the address bus of the microprocessor.

The CRU software base address is maintained in register 12 (bits 0 to 15) of
the workspace register area. Only bits 3 through 14 of the register are
interpreted by the CPU for the desired CRU address, and this 12-bit value is
called the CRU hardware base address. When the displacement is added to the
hardware base address, the result is the CRU bit address further explained in
section 5.5.1.

TM 990/101MA devices driven off of the CRU interface include the TMS 9901
parallel interface and the TMS 9902A serial interface which are accessed
through the CRU addresses noted in Table 5-3. This table also lists the
functions of the other CRU addresses which can be used for onboard or offboard
I/O use. Addressing the TMS 9901 and TMS 9902A for use as interval timers is
explained, along with programming examples, in sections 5.9.3 and 5.9.4.
Further detailed information on these two devices can be obtained from their
respective data manuals.

TABLE 5-3. TM 990/101MA PREDEFINED CRU ADDRESSES

NOTES

1. Besides the examples used herein, Appendix J contains examples of
the various CRU instructions programmed to drive the onboard TMS
9901 or monitor signals to the TMS 9901.

2. The CRU software base address is equal to 2X the hardware base
address, or the hardware base address is 1/2 the software base
address.

5-12

5.5.1 CRU Addressing

The CRU software base address is contained in the 16 bits of register 12. From
the CRU software base address, the processor is able to determine the CRU
hardware base address and the resulting CRU bit address. These concepts are
illustrated in Figure 5-4.

5.5.1.1 CRU Address

The CRU bit address is the address that will be placed on the address bus at
the beginning of a CRU instruction. This is the address bus value that, when
decoded by hardware attached to the address bus, will enable the device so
that it can be driven by the CRU I/O and clock lines. The CRU bit address is
the sum of the displacement value of the CRU instruction (displacement applies
to single-bit instructions TS, SBO, and SBZ only) and the CRU hardware base
address in bits 3 to 14 of R12. Note that the sign bit of the eight-bit
displacement is extended to the left and added as part of the address. The
resulting CRU hardware bit address is then placed on address lines A3 to A14;
address lines AO to A2 always will be zeroes in CRU instruction execution.

5.5.1.2 CRU Hardware Base Address

The CRU hardware base address is the value in bits 3 to 14 of R12. For
instructions that do not specify a displacement (LDCR and STCR do not), the
CRU hardware base address is the same as the first CRU bit address (see
above). An important aspect of the CRU hardware base address is that it does
not use the least significant bit of register 12 (bit 15); this bit is ignored
in deriving the CRU bit address.

5.5.1.3 CRU Software Base Address

The CRU software base address is the entire 16-bit contents or R12. In
essence, this is the CRU hardware base address times two. Bits 0, 1, 2, and 15
of the CRU software base address are ignored in deriving the CRU hardware base
address and the CRU bit address.

CRU SOFTWARE BASE ADDRESS (CONTENTS OF R12)

ADDRESS

R12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ZEROES
IGNORE

CRU HARDWARE BASE ADDRESS

SIGN 0 0 0 0 0 1 0 0 1 0 0 0 + DISPLACEMENT*
EXTENDED

0 0 0 0 0 0 0 1 1 0 0 1 0 0 0

•

ALL ZEROES FOR

CRU OPERATIONS CRU BIT ADDRESS

*The displacement added to the CRU hardware base address is a signed eight-bit value,

with sign extended, used only when executing one of the single-bit CRU instructions

(TB, SBO, and SBZ).

FIGURE 5-4. CRU BASE AND BIT ADDRESSES

5-13

A3 A4 A5 A6 A7 A8 A9 A10 All Al2 A13 A14
LINES

Because bit 15 of R12 is not used, some confusion can result in programming.
Instead of loading the CRU address in bits 0 to 15 of register 12 (e.g., LI
R12,>80 to address the TMS 9901 at CRU address 8016), the programmer must
shift the base address value one bit to the left so that it is in bits 3 to 14
instead of in bits 4 to 15. Several programming methods can be used to ensure
this correct placement, and all of the following examples place the TMS 9901
bit address of 8016 correctly in R12.

LI R12, >100
or

LI R12,>80*2

or
LI R12,>80
SLA R12,1

PLACES >80 IN BITS 3 TO 14

MULTIPLY BASE ADDRESS BY 2 (NOT RECOGNIZED BY LINE-BY-
LINE ASSEMBLER)

BASE ADDRESS IN BITS 4 TO 15
SHIFT BASE ADDRESS ONE BIT TO THE LEFT

From a programming standpoint, it may be best to view addressing of the CRU
through the entire 16 bits of R12. In this context, blocks of a maximum of 16
CRU bits can be addressed, and in order to address an adjacent 16-bit block, a
value of 002016, must be added or subtracted from R12. For example, with R12
containing 000016, CRU bits 0 to F16 can be addressed. By adding 002016 to
R12, CRU bits 1016 to 1F16 can be addresses, etc.

5.5.2 CRU Timing

CRU timing is shown in Figure 5-5. Timing phases (01 to 04) are shown at the
top of the figure. The CRU address is valid on the address bus beginning at
the start of 02, and stays valid for eight timing phases (two clock cycles).
At the start of the next 02 phase, CRUCLK at the TMS 9900 goes high for two
phases to provide timing for CRUOUT sampling. Note that for LDCR and STCR
instructions, the address bus is incremented for each data bit to be output or
input. For input operations, the address is placed on the address bus at the
beginning of phase 02, and the input is sampled between phases 04 and 01.

5.5.3 CRU Instructions

The five instructions that program the CRU interface are:

• LDCR Place the CRU hardware base address on address lines A3 to A14.
Load from memory a pattern of 1 to 16 bits and serially transmit
this pattern through the CRUOUT pin of the TMS 9900. Increment
the address on A3 to A14 after each CRUOUT transmission.

• STCR Place the CRU hardware base address on lines A3 to A14. Store
into memory a pattern of 1 to 16 bits obtained serially at the
CRUIN pin of the TMS 9900. Increment the address on A3 to A14
after each CRUIN sampling.

• SBO Place the CRU hardware base address plus the instruction's signed
displacement on address lines A3 to A14. Send a logical one
through the CRUOUT pin of the TMS 9900.

• SBZ Place the CRU hardware base address plus the instruction's signed
displacement on address lines A3 to A14. Send a logical zero
through the CRUOUT pin of the TMS 9900.

• TB Place the CRU hardware base address plus the instruction's signed

5-114

rl 04

CRU OUTPUT CRU INPUT

1

AO -A15

CRUCLK

F

7
0
O

CRUOUT

2

CRUIN

6;

03

1

INPUT BIT m

INPUT VALID

displacement on address lines A3 to A14. Sample the CRUIN pin of
the TMS 9900, and place the bit read into ST2, the Equal Bit of
the Status register.

NOTE

Examples of single- and multi-bit CRU instruction execution using the
TMS 9901 are presented graphically in Appendix J.

5.5.3.1 CRU Multibit Instruction

The two multibit instructions, LDCR and STCR, address the CRU devices by
placing bits 3 through 14 (hardware base address) of R12 on address lines A3
through A14. AO, Al, and A2 are set to zero for all CRU operations. The first
operand is the source field address and the second operand is the number of
bits in the operation.

If the length is coded as from 1 through 8 bits, only the left byte of the
source or receiving field takes part in the operation, and bits are shifted in
or out from the least significant bit of that left byte. Thus a LDCR R2, 1
outputs bit 7 of R2 to the CRU at the address derived from register R12. An
STCR R5,2 would receive two bits of data serially and insert them into bit 7
and then bit 6 or register 5. The CRU address lines are automatically
incremented to address each new CRU bit, until the required number of bits are
transferred. In an STCR instruction, unused bits of the byte or word are
zeroed. In this last example, bits 0-5 are zeroed, the right byte is
unaffected.

FIGURE 5-5. TMS 9900 CRU INTERFACE TIMING

5-15

0 0 0 0 1 0 0 0 0 0 1 1 0 0

O 0 0 0 0 1 0 0 0 0 0 0 0 0 0

O 1 1 0 0 0 1 1 0 0 0 0 1 0 1

• • •

0 • CRU Address >100

1

—2

—3

—4

5 CRU Address 'A

—6

— 7

— 8

—9

—A

— 8

—C

—D

—E

—F

— 10

— 11

—12

IGNORE

8 BITS OR LESS — BYTE ADDRESS

9 BITS OR MORE — WORD ADDRESS

NOTE: EXAMPLES OF CRU INSTRUCTIONS ADDRESSING THE

TMS 9901 ARE SHOWN IN APPENDIX J.

An LDCR loads the CRU device serially from memory over CRUOUT timed by CRUCLK.
An STCR stores data into memory obtained serially through CRUIN from the
addressed CRU device. Figures 5-6 and 5-7 show this operation graphically.
The TMS 9901 is used in the example as the CRU device because it most simply
shows the bit transfers involved.

LI R12,>200 LOAD CRU BASE ADDRESS >100 IN BITS 3 TO 14 OF R12
LDCR R5,6 6 BITS TO CRU

O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

O 2 7 8 15

1 0 0 0 0 0 1 0

0200

>3185

FIGURE 5-6. LDCR INSTRUCTION

5-16

R4 0 0

0 6 15

LI

STCR

R12,>120*2

R4,10

LOAD CRU BASE ADDRESS >120 IN BITS 3 TO 14 OF R12

10 BITS FROM CRU TO R4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 1 0 0 0 0 oilo 0)020C

0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 0 0 0 >0240

0 0 1 1 0 1 1 0 1 0 0 0 0 1 0 0 >3684

ZERO FILL -0 .(-CRU Address >120

UNUSED LEFT-SIDE BITS • • 1

2

-3

-4

-5

-6

7

8

9 4-CRU Address >129

- A

NOTES: - B
8 BITS OR LESS - BYTE ADDRESS C
9 BITS OR MORE - WORD ADDRESS
THE MULTIPLICATION IN THE DESTINATION OPERAND (>120'121

IS NOT RECOGNIZED BY THE TM 990/402 LINE-BY-LINE ASSEMBLER. -E
THIS MULTIPLICATION IS AN EXAMPLE OF THE RELATIONSHIP OF
THE CONTENTS OF THE CRU BASE ADDRESS TO THE CONTENTS -F

OF REGISTER 12. 1-10
EXAMPLES OF CRU INSTRUCTIONS ADDRESSING THE

TMS 9901 ARE SHOWN IN APPENDIX J.

FIGURE 5-7. STCR INSTRUCTION

5-17

0 1 2 3 4

X X X

5 6 7 8 9 10 11 12 13 14 15

X

8

V\\ \V\ 17
BIT 8 SIGN
EXTENDED

9 10 11 12 13 14 15

SIGNED
DISPLACEMENT

5.5.3.2 CRU Single-Bit Instructions

The three single-bit instructions are set bit to zero (SBZ), set bit to one
(SBO), and test bit (TB). The first two are output instructions, and the last
one is an input instruction. All three instructions have only one operand,
which is assembled into an eight-bit signed displacement to be added to the
CRU hardware base address to provide the CRU bit address. The SBZ instruction
sets the addressed bit to zero (zero on CRUOUT) and the SBO instruction sets
the addressed bit to one (one of CRUOUT). The TB instruction reads the logical
value on the CRUIN line and places this value in bit 2 (EQ) of the Status
Register; the test can be proven by using the JEQ or JNE instructions.

The operand value is treated as a signed, eight-bit number, and thus has a
range of values of -128 to +127. This number is added to the CRU hardware
base address derived from bits 3 to 14 of register 12, and the result is
placed on the address lines. This process is illustrated in Figure 5-8.

Notice that after execution of a TB instruction, a JEQ instruction will cause
a jump if the logic value on CRUIN was a one, and the JNE will cause a jump if
the logic value was a zero.

SOFTWARE BASE ADDRESS

HARDWARE BASE ADDRESS

DON'T CARE

W12

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 0 0 ADDRESS BUS

SET TO ZERO EFFECTIVE CRU BIT ADDRESS
FOR ALL CRU
OPERATIONS

FIGURE 5-8. ADDITION OF DISPLACEMENT AND R12 CONTENTS TO DRIVE CRU BIT
ADDRESS

5-18

5.6 DYNAMICALLY RELOCATABLE CODE

Most programs written for the TM 990/101MA will contain references in memory.
These references are given by means of a symbolic name preceded by an at @
sign. Examples are @>FE00 (M.A. FE0016, recognized by the LBLA) or @SUM
(recognized by a symbol-reading assembler, not the LBLA).

For example, a short program, located at M.A. 090016 to 090F16, adds two
memory addresses then branches to the monitor:

M.A.
0900
0904
0908
090C
090E

MOV @>090C,R1
A @>090E,R1
B @>0080
DATA 100
DATA 200

MOVE VALUE AT M.A. 090C TO R1
ADD VALUE AT M.A. 090E to R1 (R1 = ANSW)
RETURN TO MONITOR
FIRST NUMBER
SECOND NUMBER

In this program, a number in EPROM is moved to a register in RAM, and another
number in EPROM is added to that register (the destination of an add must be
in RAM in order for the sum to be written to it). If it is desired to move
this entire program to another address (such as to RAM for debugging purposes
to allow data changes as desired), then the locations of the code must be
changed to reflect the new addreses. For example, to relocate the above
example to start at address FC0016, each of the addresses of the numbers must
be changed before the program can execute; otherwise, the program will try to
access numbers in M.A. 090C16 and 090E16 when they have been relocated to M.A.
FCOC16 and FCOE16 respectively.

For a variety of reasons, it may be advantageous to have code that is
"self-relocating," that is, it can be relocated anywhere in memory and execute
correctly. Such "position-independent" or "dynamic-relocating" code is of
great advantage when the code is programmed into EPROM. In this manner, the
EPROMs can be installed in any socket, responding to any address, and the
program will still execute correctly. Such programs are possible with the TM
990/101MA by merely beginning the program with the code segment shown below
(register 10 is used in the following examples). Thereafter, memory addresses
can be
index register,

indexed, relative to the beginning of the program (using R10 as the
in this case). This code is shown in Figure 5-9.

M.A. OP CODE/OPERANDS COMMENTS
0000
0004
0008

START LWPI
LI
JEQ

>FE00
R10,START
RELOC

RO AT M.A. >FE00
LOOK AT START ADDR.
IF NOT BIASED, NEED RELOCATING

Base 000A CLR R10 LOADER HAS BIAS, CLR BASE REG.
Reg. 000C JMP STARTX GO TO PROGRAM
Setup 000E RELOC LI R10,>045B B*R11 OPCODE IN R10

0012 BL R10 PC VALUE RO R11
0014 RELOCX AI R11,START-RELOCX SUBTRACT BYTES TO PROGRAM START
0018 MOV R11,R10 PROGRAM START TO R10

001E STARTX MOV @>001A(R10),R1 MOVE FIRST NUMBER TO R1
Relo- 0012 A @>001C(R10),R2 ADD 2ND NO. TO R1, ANSW IN R1
eatable 0016 B @>0080 RETURN TO MONITOR
Program 001A DATA 100 FIRST NUMBER

001C DATA 200 SECOND NUMBER

FIGURE 5-9. EXAMPLE OF PROGRAM WITH CODING ADDED TO MAKE IT RELOCATABLE

5-19

*NON SELF-RELOCATING

*NO BASE REGISTER USED
LI R3,TABLE

*REMAINDER OF CODE NOT
MOV @COUNT,R2

SEARCH C R1,*R3+
JEQ FOUND
DEC R2
JNE SEARCH

COUNT DATA 6•
TABLE DATA 12,15,59,62,73,92

*SELF-RELOCATING

*R10 IS BASE REGISTER
R3,TABLE
R10,R3

OF CODE INDEXED
@COUNT(R10),R2
R1,*R3+
FOUND
R2
SEARCH

COUNT DATA •6
TABLE DATA 12,15,59,62,73,92

POINT TO TABLE
ADD BASE REG.

GET COUNT
(R1) IN TABLE ?
YES
NO, DEC COUNTER
LOOK AGAIN

POINT TO TABLE

INDEXED
GET COUNT
(R1) IN TABLE?
YES
NO, DEC COUNTER
LOOK AGAIN

LI
A

*REMAINDER
MOV

SEARCH C
JEQ
DEC
JNE

This coding first sets up a base register which computes the address of the
beginning of the program. This is accomplished by:

• Establishing the beginning workspace register address with LWPI.

• Placing the opcode for the instruction B*R11 in the designated index
register address (R10 above).

Execute a branch and link to R10; this places the address of the next
instruction following BL R10 into register 11; a branch to R10 means a
return indirect through R11.

• Compute the beginning address of the program by subtracting 1016 from
the address in register 11.

• Move this beginning address to R10, allowing R11 to be further used as
a linking register.

• Index all future relocatable addresses using R10.

There are several considerations. Absolute addresses (e.g., beginning of
monitor at 008016) need not be indexed, and other types of memory indexing
should consider the contents of the base register; it may be necessary to add
the contents of the base register to another indexing register. Also, an
immediate load of an address into a register will require that the base
address in the index register be added to the register also. For example:

LI R2,>0980 ADDRESS OF VALUES IN R2
A R10,R2 ADD BASE ADDRESS

Figure 5-10 is an example of a program that searches a table of numbers for a
value. The example is shown in both relocatable and non-relocatable code, for
comparison. Symbolic addressing is used.

FIGURE 5-10. EXAMPLES OF NON SELF-RELOCATING CODE AND SELF-RELOCATING CODE

5-20

Great care must be taken with B, BL, and BLWP. If linking to other modules is
needed, these modules must be part of a system which is linked together by the
linker program (e.g., TXLINK on the FS990 system), and all modules must be
coded as self-relocating.

When programming the EPROM's, the code must be loaded such that the address
START has the value ZERO, i.e., the code must appear biased at location
000016.

5.7 PROGRAMMING HINTS

In any programming environment there are several ways to accomplish a task.
Table 5-4 contains alternate coding practices; some have an advantage over
conventional coding.

TABLE 5-4. ALTERNATE PROGRAMMING CONVENTIONS

PURPOSE
CONVENTIONAL

CODE
ALTERNATE

CODE
ALTERNATE CODE

ADVANTAGE

Compare REG contents to 0 CI RX,O MOV RX,RX Saves one word
Increment A REG by 4 INCT RX C *RX+,*RX+ Saves one word

INCT RX
Access old workspace
registers.

MOV @N(R13),R1 N is twice the
number of the
old register
wanted.

Swap two registers MOV RX,RHOLD XOR RX,RY Saves a regis-
MOV RY,RX XOR RY,RX ter: "RHOLD"
MOV RHOLD,RY XOR RX,RY not needed.

Clear a register CLR RX XOR RX,RX (None)
CLR RX SUB RX,RX (None)

5.8 INTERFACING WITH TIBUG

The TIBUG monitor provides a starting point for the programmer to consider
when looking for program examples. The monitor contains some basic user
facilities, and the user will probably enter and exit programs through TIBUG.

5.8.1 Program Entry and Exit

To execute a program under TIBUG, use the nRn and commands as explained in
Section 3 of this manual.

Exit from a program to TIBUG can be through:

B @>0080

TIBUG will print the prompting question mark. Note that the power-up
initialization routine is not entered; instead, control goes directly to
TIBUG's command scanner.

5.8.2 I/O Using Monitor XOP's

5.8.2.1 Character I/O

Four XOP's deal specifically with character I/O:

• Echo Character XOP 11
• Write Character XOP 12
• Read Character XOP 13
• Write Message XOP 14

The echo character XOP (XOP 11) is a read character XOP (XOP 13) followed by a
write character XOP (XOP 12). The following code reads in a character from a
terminal. If an A or an E is found, the character is written back to the
terminal and program execution continues; otherwise, the program loops back
waiting for another keyboard entry.

GETCHR XOP R1,13 READ CHARACTER
CI R1,>4100 COMPARE R1 TO ASCII "A"
JEQ OK IF "A" FOUND, JUMP
CI R1,>4500 COMPARE R1 TO ASCII "E"
JEQ OK IF "E" FOUND, JUMP
JMP GETCHR RETURN TO READ ANOTHER CHARACTER

OK XOP R1,12 WRITE CHARACTER AS ECHO

XOP 14 causes a string of characters to be written to the terminal.
Characters are written until a byte of all zeroes is found.

XOP 13 reads one character and stores it into the left byte of a word; the
right byte is zero filled. The previous coding example could also have been
completed with the following:

OK XOP R1,14

Instructions are written in hexadecimal form; thus, messages should be grouped
in a block separated from the continuous executable code. Each message must
be delimited by a byte of all zeroes:

**MESSAGES
CRLF BYTE >OD
LF BYTE >0A,>00
MSG1 TEXT 'BEGIN PGMA'

BYTE 0
MSG2 TEXT 'END PGMA'

BYTE 0
MSG3 TEXT '#ERRORS (IN HEX):'

BYTE 0
MSG4 TEXT 'ERROR EXP VALUE='

BYTE 0
MSGS TEXT ',RCV VALUE='

BYTE 0

Note in the preceding example, that if it is desired to send a carriage
return and a line feed, use the following: XOP @CRLF,14. But if only a line
feed is wanted, use: XOP @LF,14.

5.8.2.2 Hexadecimal I/O

Three XOP's handle hexadecimal numbers.

• Write one hexadecimal character XOP 8
• Read a four-digit hexadecimal word XOP 9
• Write four hexadecimal characters XOP 10

Using the message block in paragraph 5.8.2.1, an example code
be:

segment might

*ERROR ROUTINE
ERROR XOP

XOP
XOP
XOP
XOP
XOP

@MSG4,14
R1,10
@MSG5,14
R2,10
@CRLF,14
@LF,14

START ERROR LINE
PRINT CORRECT EXPECTED VALUE
MORE ERROR LINE
PRINT ERRORED RCV VALUE
DO CARRIAGE RETURN/LINE FEED
ONE MORE LF FOR DOUBLE SPACE

XOP 8 is actually called four times by XOP 10, after positioning the next
digit to be written into the least significant four bits of the work register.

The following shows how to input values to a program by asking for inputs from
the terminal.

GET XOP
DATA

OK A
JMP

NULL LI
XOP
JMP

ERROR XOP
JMP
• •

DEFMSG TEXT
BYTE

ERRMSG TEXT
BYTE

R4,9
NULL,ERROR
R3,R4
XXX
R4,>3AF1
@DEFMSG,14
OK
@ERRMSG,14
GET

CALL TO GET HEX # ROUTINE
NO INPUT/BAD INPUT ADDRESSES
ADD OLD NUMBER IN
CONTINUE PROGRAM
LOAD DEFAULT VALUE
PRINT DEFAULT MESSAGE

PRINT ERROR MESSAGE
TRY AGAIN

• •
'DEFAULT USED'
0
'ERROR: USE 0-9, A-F ONLY'
0

Note that the XOP 9 routine stores only the last four digits typed before the
termination character (delimiter) is typed. This means if a wrong number is
entered, continue typing until four correct digits are entered; then type a
delimiter (space, carriage return, or minus sign). Typing fewer than four
digits total (but at least one digit) causes leading zeroes to be inserted.
Typing only a delimiter gives control to the first address following the XOP,
and typing an illegal character at any time causes control to go to the
address specified in the second word following the XOP call.

5.9 INTERRUPTS AND XOPS

5.9.1 Interrupt and XOP Linking Areas

When an interrupt or XOP instruction is executed, program control is passed to
WP and PC vectors located in lower memory. Interrupt vectors are contained in
M.A. 000016 to 003F16; and XOP vectors are contained in M.A. 004016 to 007F16.
User-available interrupt and XOP vectors are preprogrammed in the EPROM chip
with WP and PC values that allow the user to implement interrupt service
routines (ISR's) and XOP service routines (XSR's). This includes programming
an intermediate linking area as well as the ISR or XSR code.

When an interrupt or XOP is executed, it first passes control to the vectors
which point to the linking area. The linking area directs execution to the
actual ISR or XSR. The linking areas are shown in Table 5-6. The linking area
is designed to leave as much space free as possible when not using all the
interrupts. That is, the most frequently used areas are butted up against the
TIBUG area, the least frequently used areas extend downward into RAM.

Return from the ISR or XSR is through return vectors in R13, R14, and R15 at
the ISR or XSR workspace and at the linking area workspace.

How to program these linking areas is explained in the following paragraphs.

NOTE

Interrupts 3 and 4 are used by the timers on the TMS
9901 and TMS9902A respectively.

TABLE 5-5. PREPROGRAMMED INTERRUPT AND USER XOP TRAP VECTORS

M.A. Int.
VECTORS

M.A. XOP
VECTORS

WP PC WP PC

0000 INTO TIBUG TIBUG 0048 XOP2 FF48 FF5A
0004 INT1 FF5A FF7A 004C XOP3 FF3A FF4C
0008 INT2 FF4E FF6E 0050 X0P4 FF2C FF3E
000C INT3 FF8A FFAA 0054 XOPS FF1E FF30
0010 INTO FF7E FF9E 0058 XOP6 FF10 FF22
0014 INT5 FF72 FF92 005C XOP7 FF02 FF14
0018 INT6 FF66 FF86
001C INT7 FEEE FFOE
0020 INT8 FEE2 FF02
0024 INT9 FED6 FEF6
0028 INT10 FECA FEEA
002C INT11 FEBE FEDE
0030 INT12 FEB2 FED2
0034 INT13 FEA6 FEC6
0038 INT14 FE9A FEBA
003C INT15 FE8E FEAE

BYTE
0-1 1 2-3 1 4-5 1 6-7 1 8-9 I A-B I C-D 1 E-F

USER RAM AREA

INT15 INT15 INT15 INT15
INT15 INT15 INT14 INT14 INT14 INT14 INT14 INT14
INT13 INT13 INT13 INT13 INT13 INT13 INT12 INT12
INT12 INT12 INT 12 INT 12 INT 11 INT11 INT11 INT11
INT11 INT11 INT10 INT10 INT10 INT10 INT10 INT10
INT9 INT9 INT9 INT9 INT9 INT9 INT8 INT8
INT8 INT8 INT8 INT8 INT7 INT7 INT7 INT7
INT7 INT7 XOP7 XOP7 XOP7 XOP7 XOP7 XOP7
XOP7 X0P6 X0P6 X0P6 X0P6 X0P6 X0P6 X0P6
X0P5 X0P5 X0P5 X0P5 X0P5 X0P5 X0P5 XOP4
XOP4 XOP4 XOP4 XOP4 XOP4 XOP4 XOP 3 X0P3
XOP 3 X0P3 X0P3 XOP3 X0P3 XOP2 XOP2 XOP2
XOP2 XOP2 XOP2 XOP2 INT2 INT2 INT2 INT2
INT2 INT2 INT1 INT1 INT1 INT1 INT1 INT1
INT6 INT6 INT6 INT6 INT6 INT6 INT5 INT5
INT5 INT5 INT5 INT5 INT4 INTO INT4 INT4
INT4 INT4 INT3 INT3 INT3 INT3 INT3 INT3

M.A.

FE901FEAO
FEBO
FECO
FEDO
FEED
FEFO
FF00
FE10
FF20
FF30
FF40
FF50
FF60
FF70
FF80
FF90
FFAO
FFBOt
FFFB TIBUG WORKSPACE

TABLE 5-6. INTERRUPT AND USER XOP LINKING AREAS

5.9.1.1 Interrupt Linking Areas

When one of the programmable interrupts (INT1 to INT15) is executed, it traps
to an interrupt linking area in RAM. Each linking area consists of six words
(12 bytes) as shown in Figures 5-11 and 5-12. The first three words contain
the last three registers of the called interrupt vector workspace (R13, R14,
and R15), and the second three words, located at the interrupt vector PC
address, are intended to be programmed by the user to contain code for a BLWP
instruction, a second word for the BLWP destination address, and a RTWP
instruction code (all three words to be entered by the user). When the ISR is
completed, control returns to this linking area where the return values (to
the interrupted program) are loaded into the linking area's three registers
(R13 to R15), then the BLWP instruction (at the PC vector address) is executed
using the M.A. provided by the user (the BLWP instruction consists of two
words, the BLWP operator and the destination address; the destination address
points to a two-word area also programmed by the user).

Return from the interrupt service routine is through the RTWP instruction
(routine's last instruction). This places the (previous) WP and PC values at
the time of the BLWP instruction (in the six-word linking area) into the WP
and PC registers. Thus, the RTWP code that follows the BLWP instruction will
now be executed, causing a second return routine to occur, this time to the
interrupted program using the return values in R13, R14, and R15 of the
interrupt link area. This area is shown graphically in Figure 5-11.

5-25

WP
PC

FF5A

FF7A
R13 (OLD WP)

R14 (OLD PC)

O INTERRUPT NO. 1
RECOGNIZED

M.A. 0000
0002
0004
0006

INTERRUPT
- VECTORS IN

EPROM

R15 (OLD ST)

FF7A /
zz

BLWP

FF7C XXXX ///
/

/////

FF7E
//;741!„A

INTERRUPTED
PROGRAM

FIRST REGISTER
IN WORKSPACE

6-WORD INTERRUPT LINK AREA 7--

O

/INTERRUPT SERVICE ROUTINE

1,2 INTERRUPT EXECUTION TRAPS TO 6-WORD INTERRUPT LINK AREA.
3,4 BLWP EXECUTED TO 2-WORD VECTORS TO INTERRUPT SERVICE ROUTINE (ISR)

5 RTWP FROM ISR TRAPS BACK TO 6-WORD LINK AREA.

RO FF5A

6 RTWP FROM LINK AREA RETURNS BACK TO INTERRUPTED PROGRAM.

= LINKAGE PROGRAMMED BY USER

FIGURE 5- 1 1 . INTERRUPT SEQUENCE

5-26

DO NOT USE RO-R12 OF THE LINKING AREA WORKSPACE,
BECAUSE THE OVERLAPPING STRUCTURE WILL DESTROY
THE CONTENTS OF A LINKING AREA FOR ANOTHER INTER-
RUPT OR XOP.

EXAMPLE USING INT1 LINKING AREA (WP = FF5A, PC = FF7A)

(ACTUAL ADDRESS OF RO OF INTERRUPT VECTOR

WP)

USED TO SAVE RETURN VALUES (TO
INTERRUPTED PROGRAM)

INT1 VECTOR PC ADDRESS (CONTAINS BLWP)

ADDRESS OF 2 - WORD VECTOR POINTING TO
WP AND PC VALUES OF ISR

RETURN PC VALUE IN ISR POINTS TO THIS
RTWP INSTR.

FF74

FF76

FF78

FF7A

FF7C

FF7E

R13 (OLD WP)

R14 (OLD PC)

R15 (OLD ST)

0420 (BLWP)

0380 (RTWP)

TO BE
PROGRAMMED
BY USER

Each interrupt linking area is set up so that it can be programmed in this
manner. In summary, each six-word linking area can be programmed as follows:

• Determine the location of the linking area as shown by the WP and PC
vectors in Table 5-5.

• The PC vector will point to the last three words of the six-word area.
The user must program these three words respectively with 042016 for a
BLWP instruction, the address (BLWP operand) of the 2-word vector
pointing to the interrupt service routine, and 038016 for an RTWP
instruction as shown in Figure 5-12.

• At the vector address for the BLWP operand, place the WP and PC values
respectively of the interrupt handler.

FIGURE 5-12. SIX-WORD INTERRUPT LINKING AREA

5-27

Example coding to program the linkage to the interrupt service routine for
INT1 is as follows:

*PROGRAM POINTER TO INT1 SERVICE ROUTINE FOLLOWING BLWP INSTRUCTION
AORG >FF7A INT1 PC VECTOR ADDRESS
DATA >0420 HEX VALUE OF BLWP OP CODE
DATA >FA00 LOCATION OF 2-WORD VECTORS TO ISR (EXAMPLE)
DATA >0380 HEX VALUE OF RTWP OP CODE

*PROGRAM POINTER TO 2-WORD VECTORS TO INTERRUPT SERVICE ROUTINE (EXAMPLE)
AORG >FA00
DATA >F1300 WP OF INTERRUPT SERVICE ROUTINE (EXAMPLE)
DATA >FA04 PC OF INTERRUPT SERVICE ROUTINE (EXAMPLE)

*INT1 ISR FOLLOWS (BEGINS AT M.A. FA04)

The interrupt service routine which begins at M.A. FA0416 will terminate with
an RTWP instruction.

5.9.1.2 XOP Linking Area

The XOP linking area contains seven words (14 bytes), of which the first two
and the fourth words must be programmed by the user. Each XOP vector pair
contains the pointer to the new WP (in the first word) and a pointer to the
new PC (in the second word) which points to the first instruction to be
executed.

In the seven-word XOP linking area, the first word is the destination of the
XOP PC vector. The last three words are the final three registers (R13, R14,
and R15) of the linking area workspace which will contain the return vectors
back to the program that called the XOP. The third word of the seven-word
area is R11, which contains the parameter being passed to the XOP service
routine. This is shown in Figure 5-13.

For example, when XOP 2 is executed, the PC vector points-to the BLWP
instruction shown at M.A. FF5A16 in Figure 5-13. This executes, transferring
control to the preprogrammed WP and PC values at the address in the next word
(YYYY as shown in Figure 5-13). To obtain the parameter passed to R11 of the
vector WP (M.A. FF5E16 in Figure 5-13), use the following code in the XOP
service routine:

MOV *R14+,R1 MOVE PARAMETER TO R1

This moves the parameter to R1 from the old R11 (the old PC value in R14 was
pointing to this address following the BLWP instruction immediately above it,
effectively to R11), and increments the XOP service routine PC value in its
R14 to the RTWP instruction at M.A. FF6016. Thus an RTWP return from the XOP
service routine will branch back to the RTWP instruction at FF6016 which
returns control back to the instruction following the XOP.

5-28

EXAMPLE USING XOP 2 LINKING AREA IWP FF48, PC FF5A)

M.A.

FF48

(ACTUAL ADDRESS OF RO OF XOP2

VECTOR WP)

•

FF5A

•

•

PC 0420 (BLWP) XOP2 VECTOR POINTS TO HERE

TO BE
FF5C YYYY POINTS TO XSR WP PC & VECTORS

PROGRAMMED
XOP SOURCE ADDR. PARAMETER R11 (PARAMETER) BY USER FF5E

FF60 0380 (RTWP) RTWP BACK TO CALLING PROGRAM

FF62
813 (OLD WP)

FF64 R14 (OLD PC) USED TO SAVE RETURN VALUES

(TO INTERRUPTED PROGRAM)
R15 (OLD ST) FF66

FIGURE 5-13. SEVEN-WORD XOP INTERRUPT LINKING AREA

In summary, the seven-word XOP linking area can be programmed as follows:

• Determine the value of the PC vector for the XOP as shown in Table
5-5.

• The PC value will point to the first word of the seven-word linkage
area. The user must program three of the first four words of this
area respectively with 042016 for a BLWP instruction, the address of
the two-word vector that points to the XOP service routine, ignore the
third word, and insert 038016 for an RTWP instruction in the fourth
word.

• At the address of the BLWP destination in the second word, place the
WP and PC values respectively to the XOP service routine.

An example of coding to program the XOP linkage for XOP 2 as shown in Figure
5-13 is as follows:

*PROGRAM POINTER TO XOP SERVICE ROUTINE AT XOP2 LINK AREA
AORG >FF5A XOP2 PC VECTOR ADDRESS
DATA >0420 HEX VALUE OF BLWP CODE
DATA >FA00 LOCATION OF 2-WORD VECTORS TO XSR (EXAMPLE)
DATA 0 IGNORE
DATA >0380 HEX VALUE OF RTWP CODE

*PROGRAM POINTER TO 2-WORD VECTORS TO XOP2 SERVICE ROUTINE (EXAMPLE)
AORG >FA00 LOCATION OF VECTORS
DATA >FBOO WP OF XOP SERVICE ROUTINE (EXAMPLE)
DATA >FA04 PC OF XOP SERVICE ROUTINE (EXAMPLE)

*XSR CODE FOLLOWS (BEGINS AT M.A. FA04)

At the XOP service routine, the following code uses the PC return value (in
R14 of the XOP service routine workspace) to obtain the parameter in R11 (in
the link area) as well as set the return PC value in R14 (in the XOP service
routine workspace) to the RTWP in the link area:

MOV *R14+,R1 MOVE OLD R11 CONTENTS TO R1 OF XOP SERVICE ROUTINE

Now R14 points to the RTWP instruction in the link area. The last instruction
in the XOP service routine is RTWP. RTWP execution causes a return to the
link area where a second RTWP executes, returning control to the next
instruction following the XOP.

5.9.2 TMS 9901 Interval Timer Interrupt Program

A detailed discussion of the TMS 9901 interval timer can be found in the TMS
9901 data manual. There are several possible sequences of coding that can
program and enable the interrupt 3 interval timer, and since the timer has a
maximum period of 349 milliseconds before issuing an interrupt, the programmer
must decide whether to set the interval period in the calling program or in
the code handling the interrupt. If the interrupt period desired is longer
than 349 milliseconds, then it may be advantageous to reset the timer in the
interrupt subroutine which also triggers the interrupt and returns control
back to the interrupted program. In any case, the timer must be initially set
and triggered following the general sequence below:

1. Set the CRU address of the TMS 9901 in bits 3 to 14 of R12.

2. Set up the interrupt 3 linking area.

3. Enable the clock interrupt at the TMS 9901 (interrupt 3).

4. Set the Status Register interrupt mask to a value of 3 or greater.

5. Set a register to the value of the interval desired (bits 1 to 14)
with bit 15 set to one to enable the clock as shown in Figure 5-14.
This figure shows the code and a representation'of the CRU for
setting a time of 250 milliseconds and for setting the TMS 9901 to
the clock mode. The first bit serially brought in on the CRU will be
a value of one in bit 15 of the register which sets the TMS 9901 to
the clock mode; successive bits (1 to 14) then set the clock interval

5-30

value. The final bit brought in triggers the timer.

6. When the interrupt occurs, the interrupt handler must reset the
interrupt at the TMS 9901 before returning to the interrupted
program.

LI R12,>100 CRU ADDRESS OF TMS 9901 12 X X80= >100)

LI R1, >5138P CLOCK, >2DC7 COUNTS, AND SET CLOCK MODE BIT

LDCR R1, 15 SET CLOCK VALUE AT CLOCK REGISTER

10 11 12 1 13 14 15

CRU TMS 9901

ADDR ASSIGNMENT

> 588F

CLK1 TO CLK14 = > 2DC7 - 11,719

11,719/48,875Hz • 250MS

 1 80 1 = CLOCK MODE

► 1 81 CLK1

1 82 CLK2

•
•
•

1

NOTE:

THE FIRST SERIAL INPUT FROM CRU (A ONE IN BIT 15 OF R1) SETS CLOCK MODE.

LAST INPUT TO CLOCK REGISTER (CLK1 TO CLK14) STARTS THE CLOCK.

SE CLK14

8F

FIGURE 5-14. ENABLING AND TRIGGERING TMS 9901 INTERVAL TIMER

5-31

The clock decrements the value set in step 5 at the rate of 0/64
(approximately 46,875 Hz with a 3 MHz clock). The maximum interval register
value of all ones in 14 bits (16,383) takes approximately 349 milliseconds to
decrement to zero.

The code in Figure 5-15 is an example of a code to set up and call the TMS
9901 interval timer and also the code of the interrupt handling subroutine.
Note that the calling program first clears the counting register (RO) of the
interrupt workspace. Then it sets up the interrupt masks at the TMS 9901 and
TMS 9900 after setting the TMS 9901 address in R12. Then the calling program
sets an initial value in the timer register (CLK1 to CLK14 as shown in the TMS
9901 data manual). Because the desired output on the terminal is a message
every 15 seconds, a minimum interval is set in the calling program while the
interrupt handler is responsible for setting the time and clearing the
interrupt after it occurs. The handler keeps a count of the intervals to
determine the 15 seconds.

At the bottom of the figure is the interrupt linking area. Since all the code
in this figure is loaded as if at absolute memory address values (using the
AORG assembler directive) data statements are used here at the appropriate
memory address. This program can be loaded and executed by placing the
machine-language assembler output in the third column at the address shown in
the second column. Then execute with the program start at M.A. FD0016•

The TMS 9901 can also be used as an event timer by starting the counter at the
beginning of the interval and reading the counter after the event has
occurred. To read the current value in the counter, the TMS 9901 must be
taken out of the clock mode and put into the interrupt mode for at least 21.4
usec (1 TMS clock period). After that, putting the 9901 back into clock mode
and reading the clock/int mask bits gives the current clock value (elasped bit
count divided by 46,875 equals elapsed time in seconds).

5.9.3 Example of Programming Timer Interrupts for TMS 9901 and TMS 9902A

This subsection explains how to use the interrupt vector scheme to program the
TMS 9901 and TMS 9902A timers. These timers use, respectively, interrupts 3
and 4 to trap to interrupt service routines following timer countdown.

The program described in the following paragraphs does the following:

• Initializes the interrupt linking areas for the TMS 9901 and TMS 9902A
timers (interrupts 3 and 4 respectively).

• Loads the timers with internal values.

• Triggers the timers which cause interrupts when the countdown is
complete.

• Contains interrupt service routines (ISR's) which execute when
interrupts 3 or 4 are executed.

• Provides modules that perform hexadecimal-to-decimal conversions and
decimal-to-hexadecimal conversions.

The individual modules of this program are summarized in Table 5-7. Please
read these descriptions before continuing. The listing of this example
program is provided in Figure 5-16, sheets 1 to 12.

5-32

TIMER TXMIRA 936227 ** 09:08:10 122/78 PAGE 0001

0001 * * * * * * * * * * * * * * * * * *
0002 * THIS PROGRAM CAUSES AN INTERRUPT THROUGH INT3
0003 * EVERY 15 SECONDS USING THE INTERVAL TIMER IN THE *
0004 * TMS 9901. THE AORG DIRECTIVE CAUSES THE CODE TO BE *
0005 * ASSEMBLED BY THE TXMIRA ASSEMBLER BEGINNING AT THE *
0006 * ADDRESS SPECIFIED (SAME AS SLASH COMMAND ON THE *
0007 * LINE-BY-LINE ASSEMBLER). THIS PROGRAM CAN BE EXE-
0008 * CUTED BY LOADING THE PROGRAM WITH THE TIBUG "M"
0009 * COMMAND AND EXECUTING WITH THE "E" COMMAND AT PC *
0010 * ADDRESS -:.FD00. LOAD OBJECT IN THIRD COLUMN OF
0011 THIS LISTING AT ADDRESS IN 2D COLUMN. J.WALSH
0012
0013 IDT 'TIMER'
0014
0015 * REGISTER EQUATES
0016
0017 0000 RO EQU 0
0018 0001 RI EQU 1
0019 000r R12 EQU 12
0020
0021 * PROGRAM CALLING THE INTERRUPT
0022
0023 FD00 AORG :`FD00 BEGIN ASSEMBLY AT M.A. ":- FD00
0024 FD00 02E0 LWPI >FD20 DEFINE WORKSPACE ADDRESS

FD02 FD20
0025 FD04 04E0 CLR e>FE60 CLEAR INTERRUPT REG 0

FD06 FE60
0026 FD08 020C LI R12,>0100 9901 CRU ADDRESS IN R12

FDOA 0100
0027 FDOC 1E00 SBZ 0 9901 TO INTERRUPT MODE
0028 FDOE 1D03 880 3 ENABLE INTERRUPT 3
0029 FD10 OR00 LIMI 3 ENABLE INT3 AT TMS 9900

FD12 0003
0030 FD14 0201 LI R1,3 2 ONES TO,TMS 9901

FDI6 0003
0031 FD18 r;3r1 LDCR R1,15 ENABLE CLOCK AT 9901
0032 FD1A 10FF _AMP $ LOOP HERE, WAIT FOR INTERRUPT
0033
0034 * INTERRUPT SUBROUTINE
0035
0036 FE00 AORG >FE00 BEGIN ASSEMBLY AT M.A.>FE00
0037 FE00 FE60 DATA >FE60 BLWP WP VECTOR FOR INT
0038 FE02 FE04 DATA >FE04 BLWP PC VECTOR FOR INT
0039 FE04 0300 LIMI 0 DISABLE INTERRUPTS

FE06 0000
0040 FE08 0280 CI RO,A0 COUNT = AO = 15 SECONDS?

FEOA 00:3C
0041 FEOC 1308 JEQ >FE24 YES, PRINT MESSAGE
0042 FEOE 0580 INC RO NO, INCREMENT COUNTER
0043 FE10 020C LI R12,>100 9901 CRU ADDRESS

FE12 0100
0044 FE14 0201 LI R1,>5B9F CLOCK COUNT OF 11,719

FEI6 5B9F
0045 FE18 33C1 LDCR R1,15 APPLY COUNT, START COUNTER

FIGURE 5-15. EXAMPLE OF CODE TO RUN TMS 9901 INTERVAL TIMER (SHEET 1 OF 2)

5-33

CLR RO
B @>FE04

RESET TIMER COUNT
BEGIN AT INTERRUPT START

TEXT '15 SECONDS HAVE ELAPSED.'

DATA >0707,>0707 BELLS

BYTE 0 END OF MESSAGE DELIMITER

INTERRUPT LINK AREA PROGRAMMING

TIMER TXMIRA 936227 ** 09:08:10

0046 FE1A 1E00 SBZ 0
0047 FE1C 1D03 SBO 3
0048 FE1E 0300 LIMI 3

FE20 0003
0049 FE22 0330 RTWP
0050 FE24 2FAO XOP @>FE2E,14-

FE26 FE2E
0051 FE28 04C0
0052 FE2A 0460

FE2C FE04
0053 FE2E 31

FE2F 35
FE30 20
FE31 53
FE32 45
FE33 43
FE34 4F
FE35 4E
FE36 44
FE37 53
FE38 20
FE39 48
FE3A 41
FE3B 56
FE3C 45
FE3D 20
FE3E 45
FE3F 4C
FE40 41
FE41 50
FE42 53
FE43 45
FE44 44
FE45 2E

0054 FE46 0707
FE48 0707

0055 FE4A 00
0056
0057
0058
0059 FFAA AORG >FFAA
0060 FFAA 0420 DATA >0420
0061 FFAC FE00 DATA >FE00
0062 FFAE 0380 DATA >0380
0063 END

122/78 PAGE 0002

9901 TO INTERRUPT MODE
CLEAR INTERRUPT AFTER EXECUTED
RESET INT MASK AT TMS 9900

RETURN TO CALLING PROGRAM
WRITE MESSAGE

BEGIN ASSEMBLY AT M.A. >FFAA
BLWP INSTRUCTION CODE
BLWP VECTORS LOCATION
RTWP INSTRUCTION CODE

0000 ERRORS

NOTE: As an exercise, the user can load and execute this code: (1) load the machine code values shown
in column 3 into the memory locations shown in column 2, or (2) reassemble : if the Line-By-
Line Assembler (LBLA) is used, substitute the slash command for the AORG directive and follow
the DATA and TEXT statement conventions for the LB LA. Execute using the E TIBUG command.

FIGURE 5-15. EXAMPLE OF CODE TO RUN TMS 9901 INTERVAL TIMER (SHEET 2 OF 2)

5-34

Module
Sheet Number
of Fig. 5-16 Program Description

This module sets up the interrupt linkage
areas for interrupts 3 and 4, loads vectors
pointing to Module REALCK for interrupt 3
and to Module KYBDSC for interrupt 4. This
is the first program called, and it calls
Module User Start.

This module sets TMS 9901 timer to specified
value, starts countdown (countdown complet-
ion causes interrupt through interrupt level
3).

The module sets TMS 9902A timer to local I/O
port to specified value, starts countdown
(countdown completion causes an interrupt
through interrupt 4).

This Real-Time Clock routine is the Inter-
rupt Service Routine (ISR) for interrupt 3.
It accumulates counts at one-fifth second
intervals to keep a real-time clock count;
time values are initialized by User Start.

This module initializes I/O buffer for key-
board input.

This is the Keyboard Scan Routine ISR for
interrupt 4. It polls the keyboard unit for
a new character, and then puts the character
in buffer. Backspace and delete monitoring
is provided.

Interrupt Link 1

User Start

Timer, TMS 9901 5

Timer, TMS 9902A 6

Real Time Clock ISR 7 & 8

Keyboard Initial-
ization

8

Keyboard Scan ISR 9 & 10

2 to 4 "User Start" routine; this is the start of
the general user control program. This
contains mainline code to the timers, and
calls KYINIT before starting the timers.

Hex/Decimal
Conversions

11 & 12 These modules convert decimal numbers to
hexadecimal equivalents (sheet 11) and hex-
adecimal numbers to decimal equivalents
(sheet 12).

TABLE 5-7. INTERRUPT EXAMPLE PROGRAM DESCRIPTION

5-35

5.9.3.1 Interrupt Linking Area Set-Up (Figure 5-16, Sheet 1)

This module sets up the interrupt linking areas that point to the two
interrupt service routines for the timers in the TMS 9901 and TMS 9902A. The
workspace for this module is the space just below the INT3 and INTO linking
areas. Since this example uses only interrupts 3 and 4, the linking areas for
interrupts 1, 2, and 5 through 15 are free space.

5.9.3.2 User Start Program (Figure 5-16, Sheets 2, 3, and 4)

This module organizes the other modules into a user program. It sets up
control functions and calls other modules in a prescribed sequence. This
program receives control after the interrupt linking areas are initialized as
described in paragraph 5.9.2.1. It then sets the timing values for the TMS
9901 timer and begins the countdown by a BLWP @TIME01. It also calls the key-
board initialization module (BLWP @KYINIT) which calls the TMS 9902A set and
execute module (BLWP @TIME02).

NOTE

This User Start Program is for example purposes, and is intended
only as a vehicle to demonstrate usage of the following
subroutine modules.

5.9.3.3 TMS 9901 Timer Set Routine (Figure 5-16, Sheet 5)

This module sets and executes the interval timer of the TMS 9901. The calling
routine specifies the number of 21.333-microsecond periods at 3 MHz to be
counted by loading its own register O. The TIME01 routine then picks this
number (limited to 14 bits) by indirect addressing through R13 (return WP
value = RO). It shifts it while in R9, supplies the correct control bit (bit
0 = 1 by ORing), starts the timer (LDCR instruction) and enables the
interrupt. Control returns to the calling program, which will be interrupted
by the timer interrupt when the count reaches zero. The calling sequence to
the timer set routine is:

LI R0,9375 1/5TH SECOND INTERVALS
BLWP @TIME01 SET TIMER

The interrupt service routine for interrupt 3 is in paragraph 5.9.3.5.

5.9.3.4 TMS 9902A Timer Set Routine (Figure 5-16, Sheet 6)

This module sets and executes the interval timer of the TMS 9902A. The calling
routine specifies (in its own register 0) the number of 64 microsecond periods
(at 3 MHz, with the TMS 9902A's CLK4M control bit zeroed) to be counted before
generating the interrupt. This routine then picks this number up (through WP
return value in R13, old RO), puts it in the left byte of R9, sets the LDIR
(Load Interval Register) flag to enable loading of the timer value, resets
LDCTRL (Load Control register) to bypass loading the control register, loads
the timer which begins to count, and then enables interrupt 4 on the TMS 9901.
Notice that the user must have a jumper plug between pins E2 and E3 for an
interrupt to occur. Control returns to the calling program which will be
interrupted by the timer sometime later (called ISR described in paragraph
5.9.3.6).

5-36

5.9.3.5 TMS 9901 24-Hour Real-Time Clock Service Routine (Figure 5-16,Sheet 7)

In this module, the TMS 9901 timer is used as a real-time clock; an interrupt
occurs every fifth of a second and a fractions counter is updated. The calling
program initially sets the second-interval counter (R1) to 5. Every five
counts, the seconds counter is updated; every sixty seconds the minutes
counter is updated, etc. Note that since the initial period (one-fifth
second) is long, the execution time of this service routine is trivial from a
system throughput standpoint. Note also that because this timer is associated
with interrupt 3, it has higher priority than the TMS 9902A timer, which will
be used for miscellaneous timing purposes in this example. This ensures the
integrity of the real-time clock recording the elapsed time from system
initialization.

5.9.3.6 TMS 9902A Used to Poll Keyboard Service Routine (Figure 5-16, Sheets 9
and 10)

In this module, the TMS 9902A timer is being used as a general purpose delay
timer. The service routine samples an ASCII encoded keyboard's output, and if
a set time has elapsed and a strobe change occurred, it reads the character.
The time delay and strobe change ensure a new character has been sent from the
keyboard. The strobe for any one character is assumed to last longer than the
interval set in the timer for scanning, and a flag is used in the software to
simulate an edge-triggered data capture condition. The ASCII encoded keyboard
is assumed to be connected to the TMS 9901 through connector P4.

When the strobe goes from high to low, data is read, and the flag turned on.
Only when the strobe goes high again is the flag reset and a new character can
be received.

5.9.3.7 Decimal to Hexadecimal Conversion (Figure 5-16, Sheet 11)

This module is a sample decimal to hexadecimal conversion routine. The
calling program places the least significant four digits in its register 0,
and the most significant (fifth) digit is right-justified in its register 1.
A BLWP @DECHEX instruction gives control to the conversion routine.

The calling routine isolates each decimal digit and uses it to index a loop
which adds'the proper place value (10, 100, 1000, etc.) to the result
register. As each digit is isolated, a table pointer is bumped through the
decimal powers. The resultant hexadecimal number is returned to the caller
routine routine's register O. The caller's register 1 is not disturbed.

5.9.3.8 Hexadecimal to Decimal Conversion (Figure 5-16, Sheet 12)

This module is a sample hexadecimal to decimal conversion routine. The
calling routine places the hexadecimal number in its own register 0, then
performs a BLWP @HEXDEC. The converted result is placed back in the caller's
register 0 (through address in R13), with a fifth digit (most significant) in
register 1 of the calling program. Both registers in the calling program are
always altered.

The routine repeatedly divides the number by 10, and collects the remainders.
These remainders, properly collected by the shift and SOC instructions, form
the decimal number.

5-37

0015
0014
0017

9018

0019

0020

0021

0022

0023
0024
0025
002A
0027
0028
0029
0030
00:31
0032
0033
0034
00R5
0036
0037

000R
000A
000C
000E
0010
0012
0014
0014
001R
001A
001C
001E

002A
00 7)R

002A

COA0
000E
COAO
0012
0203
0420
0204
ORRO
0205
0148'
020A
01A8"

CCF.n
crsA
CCR4

00'7,0 Cr4:3
00*73 CC45
0024 CC44

ory, r 0:7400
002E 0004

TEST TXMIRA 936227 ** 08:05:22 122/78 PAGE 0001

IDT 'TEST' 0001
0002
0003
0004
0005
000A
0007
000R
0009
0010
0011
0012
0013 0000 02E0

0002 FF78
0014 0004 ()ROO

000A 0000

INTERRUPT LINKING AREA INITIALIZATION ROUTINE.
THIS ROUTINE INITIALIZES THE INTERRUPT LINKING
AREA IN HIGH RAM FOR INTERRUPTS 3 AND 4.
A "BLWP" INSTRUCTION IS BUILT, WITH THE
ADDRESS OF THE PARTICULAR INTERRUPT SERVICE
ROUTINE WHICH WILL THEN RECEIVE CONTROL
WHEN THE INTERRUPT IS ACTIVATED. TO COMPLETE
THE RETURN PATH, A "RTWP" INSTRUCTION IS
BUILT IN RAM ALSO.

ENTRY LWPI >FF78 GET WORKSPACE

LIMI 0 CUT OFF INTERRUPTS

THE FOLLOWING CODE LOADS THE REGISTERS WITH THE
PROPER VALUES FOR INITIALIZING THE RAM AREA.
MOV @>000E, 1 GET INT 3 PC PTR

MOV. @>0012,2 GET INT 4 PC PTR

LI R,>0420 LOAD BLWP OPCODE

LI 4,>0380 LOAD RTWP OPCODE

LI 5,INT3VC ADDR OF 9901 TIMER ROUTINE

LI 6,INT4VC ADDR OF 9902A TIMER ROUTINE

THE FOLLOWING CODE TAKES THE INFORMATION IN THE
REGISTERS AND MOVES IT OUT TO INITIALIZE THE
RAM LINKING AREA. FIRST INTERRUPT 3 AREA IS
INITIALIZED, THEN THE INTERRUPT 4 AREA.

INTERRUPT 3 - TMS 9901 TIMER
MOV 3,*1+ MOVE "BLWP" OPCODE
MOV 5,*1+ MOVE SERVICE ROUTINE ADDRESS
MOV 4,*1+ MOVE "RTWP" OPCODE
INTERRUPT 4 - TMS 9902A TIMER
MOV 3, *2+ MOVE "BLWP" OPCODE
MOV 6,*2+ MOVE SERVICE ROUTINE ADDRESS
MOV 4,*2+ MOVE "RTWP" OPCODE
RETSORE INTERRUPTS
LIMI 4 TURN INTERRUPTS BACK ON

FIGURE 5-16. EXAMPLE PROGRAM USING TIMER INTERRUPTS 3 AND 4 (SHEET 1 OF 12)

5-38

TEST TXMIRA Q36227 ** 122/78 PAGE 0002

0039
0040 MAIN ROUTINE
0041 # THIS ROUTINE IS A SMALL SAMPLE OF WHAT TYPE
0042 # OF CODE SHOULD BE USED TO CONTROL THE FUNCTIONS
004R OF THE VARIOUS PARTS OF THE SYSTEM BEING
0044 # USED IN THIS EXAMPLE. PLEASE KEEP IN MIND
0045 THAT THIS ENTIRE PROGRAMMING EXAMPLE IS
0046 # STILL ONLY AN EXAMPLE OF HOW THE FACILITIES
0047 OF THE MICROCOMPUTER CAN BE USED: IT IS NOT
0048 INTENDED TO SERVE AS A SOFTWARE BASE FOR
004Q # A USER APPLICATION PROGRAM.
0050
0051 # THIS MAIN ROUTINE RECEIVES CONTROL AFTER
0052 # THE INTERRUPT LINKING AREA IS INITIALIZED.
005R # IT CALLS THE KEYBOARD INITIALIZATION
0054 ROUTINE, AND STARTS BOTH TIMERS GOING.
0055 # IT THEN INTERROGATES THE NEW-LINE FLAG
0054 # AND "DISPOSES" OF THE USER DATA BY
0057 PRINTING IT. (OF COURSE, AN APPLICATION
0058 PROGRAM WOULD DO MORE WITH THE DATA).
0059
0060
0061 # WORK AREA DEFINITIONS
0062
00A2: FF18 KYBDWP EQU >FF18 KEYBOARD ROUTINE WORKSPACE
0064 FEF3 KYBUF EQU >FEF3 KEYBOARD BUFFER
0065 FF38 CLKWP EQU >FF38 REAL-TIME CLOCK WORKSPACE
0066 FF78 COMRG EQU >FF78 TRANSIENT ROUTINE COMMON WORKS
0067 FF58 MAINRG EQU >FF58 MAIN REGS FOR THIS ROUTINE
00AR
0069 # XOP DEFINITIONS
0070
0071 DXOP READ,11 READ ONE CHARACTER
0072 DXOP WRIT, 14 WRITE A STRING
00774 . DXOP HEXI,9 HEX # INPUT
0074 DXOP HEX0, 10 HEX # OUTPUT
0075
0076 # ENTRY POINT
0077
0078 0030 02E0 USERST LWPI CLKWP CLOCK REGS FOR INITIALIZATION

0032 FF38
0079 0034 04C1 CLR 1 CLEAR FOR DECIMAL TO HEX ROUTI
0080 00:36 0207 LI 7,CKPARM PROMPT MESSAGES

0038 008r1
0081 003A 0208 LI R,5 FIVE PROMPTS

003C 0005
0082 003E 0209 LI 9,CLKWP+4 REGISTER 2 ADDRESS

0040 FF3C
0083 0042 2F97 LOOP1 WRIT *7 PROMPT USES' FOR TIME VALUE
0084 0044 2E40 HEXI 0 GET INPUT,
0085 0046 004A' DATA NEXT,ERROR NULL, ERROR RTN ADR

004R 00B6'
0086 004A 0420 NEXT BLWP @DECHEX DECIMAL CHARS TO BINARY

004C 020A'

FIGURE 5-16. EXAMPLE PROGRAM USING TIMER INTERRUPTS 3 AND 14 (SHEET 2 OF 12)

5-39

TEST

0087
0088

004E
0050

TXMIRA 936227 ** 08:05:22

CE40 MOV 0, #9+
2FAO WRIT @CRLF

122/78 PAGE 0003

PUT VALUE IN CLOCK REGISTERS
DO CARRIAGE RETURN / LINE FEED

0052 0100'
0089 0054 0227 AI 7,12 NEXT PROMPT IN TABLE

0056 000C -
0090 0058 0608 DEC 8 ONE LESS TO GO
0091 005A 16F3 JNE LOOP1 GO BACK IF NOT DONE
0092 005C 2F97 WRIT *7 READY, GET SET, GO !
0093 005E 2EC9 READ 9 USER RESPONSE STARTS CLOCK
0094 0060 2FAO WRIT @CRLF NEW LINE

0062 0100'
0095 0064 0200 LI 0,9375 ONE-FIFTH SECOND INTERVALS

0066 249F
0096 0068 0420 BLWP @TIME01 SET TIMER

006A 0104'
0097 006C 0201 LI 1,5 INTERRUPTS / SECOND

006E 0005
0098 0070 02E0 LWPI MAINRG NOW USE THIS ROUTINE'S REDS

0072 FF58
0099 0074 0420 BLWP @KYINIT START SCANNING KEYBOARD

0076 0184'
0100 0078 0820 WAIT MOV @KYBDWP,@KYBDWP LOOK AT LINE FLAG

007A FF18
007C FF18

0101 007E 13FC .JEO WAIT NOT COMPLETE LINE YET
0102 0080 8820 C @KYBUF,@TI TIME REQUEST•?

0082 FEF3
0084 00FE'

0103 0086 1305 JEQ TIME GO PRINT REAL TIME
0104 0088 2FAO WRIT @CRLF FINISH LINE

008A 0100'
0105 008C 2FAO WRIT @KYBUF SPILL THE BUFFER

008E FEF3
010A 0090 1 0F3 JMP WAIT WAIT FOR MORE TYPED STUFF
0107 0092 0207 TIME LI 7,CKPARM PROMPT STRINGS NOW HEADINGS

0094 OOBC'
0108 0096 0208 LI 8,5 4 OF ITEMS

0098 0005
0109 009A 0209 LI 9,CLKWP+4 CLOCK REGISTERS 2,3,4,5,6

009C FF3C
0110 009E 2F97 LOOP2 WRIT *7 PRINT HEADING
0111 00A0 0039 MOV *9+,0 GET TIME PARM FROM CLOCK
0112 00A2 0420 BLWP @HEXDEC: CONVERT BINARY TO DECIMAL

00A4 0252'
0113 00A6 2E80 HEXO 0 PRINT TIME
0114 00118 2FAO WRIT @CRLF FINISH LINE

00AA 0100'
0115 00AC 0227 AI 7,12 NEXT HEADING

OOAE 000C
0116 0080 OAOR DEC 8 ONE LESS TO GO
0117 0082 16F5 JNE LOOP2 GO BACK IF NOT DONE
0118 0084 10E1 JMP WAIT DONE, GO WAIT
01151 0086 2FAO ERROR WRIT @CRLF DO CR / LF

0088 0100'

FIGURE 5-16. EXAMPLE PROGRAM USING TIMER INTERRUPTS 3 AND 4 (SHEET 3 OF 12)

TEST TXMlRA 936227 ** 08:05:22 122/78 PAGE 0004

0120 00BA 10C3 JMP LOOP1
0121 *
0122 * DATA CONSTANTS
0123 *
0124 0OBC 53 CKPARM TEXT 'SECONDS
0125 0007 00 BYTE 0
0126 0008 4D TEXT 'MINUTE
0127 00D3 00 BYTE 0
0128 00D4 48 TEXT 'HOUR '

0129 00DF 00 BYTE 0
0130 00EO 44 TEXT 'DAY NUMBER '

0131 00EB 00 BYTE 0
0132 00EC 59 TEXT 'YEAR '

0133 00F7 00 BYTE 0
0134 00F8 47 TEXT 'GO ? '
0135 00FD 00 BYTE 0
0136 00FE 54 TI TEXT 'TI'
0137 0100 0D CRLF BYTE }O,}A,0

0101 0A
0102 00

FIGURE 5-16. EXAMPLE PROGRAM USING TIMER I0T8BBD9TS 3 AND 4 (SHEET 4 OF 12)

5-41

TEST

0139

TXMIRA 936227 ** 08:05:22 122/78 PAGE 0005

0140 TMS Q901 TIMER SET ROUTINE
0141 THIS ROUTINE SETS THE INTERVAL TIMER ON THE TMS9901
0142 WITH A VALUE PASSED BY THE CALLING PROGRAM. THE
0143 VALUE PASSED IS SIMPLY AN INTEGER COUNT OF THE
0144 NUMBER OF 21.333 MICROSECOND PER DESIRED. THIS
0145 ROUTINE TAKES CARE OF LOADING THE TIMER REGISTER
014A PROPERLY, AND ENABLING THE TIMER INTERRUPT.
0147
014R 0104 FF78 TIME01 DATA :>FF78, ENTO1

0106 0108,
0149 0108 ENTO1 LIMI 0 TUR14 OFF INTERRUPTS

010A 0000
0150 OlOr r25D MCIV *13,9 GET TIMER VALUE
0151 010E LI 12,>0100 ADDRESS 9901

0110 0100
0152 0112 0419 SLA 9,1 SHIFT CLOCK COUNT
015:3 0114 cy"A9 ORI 9,1 SET CLOCK MODE

0116 0001
0154 0118 LDCR 9,15 START CLOCK
0155 011A 1E00 SBZ 0 INTERRUPT MODE
015A O11C: SBO 3 ENABLE INT :3 REO MASK
0157 011E c):300 LIMI 4 TURN INTERRUPTS BACK ON

0120 0004
0158 0122 07-:R0 RTWP RETURN TO CALLER

FIGURE 5-16. EXAMPLE PROGRAM USING TIMER INTERRUPTS 3 AND 4 (SHEET 5 OF 12)

5-42

TEST

016 ►
0161
01A2
01Af?
0164
0165
016.

TXMIRA 9:::6227 ** OR:OF-1:2'7* 122/78 PAGE 0006

TMS 9902A INTERVAL TIMER SET ROUTINE
THIS PROGRAM SETS THE INTERVAL TIMER OF THE TMS 9902A
USING THE VALUE PASSED► BY THE CALLING PROGRAM.
THE PROGRAM LOADS THE VALUE PROPERLY AND ENABLES
THE APPROPRIATE INTERRUPT.

0167 0124 FF78 TIME02 DATA >FF78,ENTO2
012A 0128'

0148 0128 OROO ENTO2 LIMI 0 CUT OFF INTERRUPTS
012A 0000

0169 012r C2SD MOV *13,9 GET TIMER VALUE
0)170 012E 0609 '?WPB 9 PUT IN LEFT BYTE F►OR LDCR
0171 0130 020C LI 12, >0)0)80 POINT TO 9902A

01:7:2 00R0
0172 0134 1DOD 'SBO► 13 SET LDIR TO LOAD VALUE
0173 01:746 1E0E SBZ 14 RESET LDCTRL, BYPASS CONTROL R
0174 01R 209 LDCR 9,R LOAD TIMER, BEGIN COUNT
0175 013A 1D14 SBO 20 SET TIMENB FOR INTERRUPT
0176 0130 0A1r SLA 12,1 POINT TO 9901
0177 013E 1E00 SBZ 0 SET INTERRUPT MODE
0178 ►140 1D04 SBO 4 ENABLE INT 4 MASK
0179 0142 02100 LIMI 4 GIVE BACK INTERRUPTS

0144 0004
0180 0146 ORRO RTWP RETURN

FIGURE 5-16. EXAMPLE PROGRAM USING TIMER INTERRUPTS 3 AND 4 (SHEET 6 OF 12)

5-43

TEST

0182
01:33
0184
01:39
01PA

TXMIRA 936227 ** 122/78 PAGE 0007

TMS 9901 REAL TIME CLOCK ROUTINE
THIS ROUTINE IS ACTIVATED WHEN THE TMS 9901
INTERVAL TIMER COUNTS DOWN TO ZERO, CAUSING
INTERRUPT 3. THIS ROUTINE COUNTS THE NUMBER

0187 OF ONE-FIFTH SECOND INTERVALS OCCURRING AND
01PP UPDATES THE APPROPRIATE COUNTER. AT THE END
0189 OF A SECOND, THE MINUTE COUNTER IS CHECKED,
0190 AND UPDATED IF NECESSARY. THIS PROCEDURE IS
0191 REPEATED FOR EACH SUCCESSIVELY LARGER TIME
0192 UNIT, UP TO A YEAR. LEAP YEARS DON'T COUNT.
0193
0194 0148 FF38 INT3VC DATA CLKWP,IN3PC

014A 014C'
0195 0140 020C: IN3PC LI 127)0100 POINT TO 9901

014E 0100
0196 0150 1E00 SBZ 0 INTERRUPT MODE
0197 0152 1003 SRO :3 ACKNOWLEDGE INTERRUPT
0198 0154 0A01 DEC 1 DOCK FRACTION COUNTER
0199 0156 1615 JNE RETURN NOT DONE WITH A SECOND - YET
0200 NEW SECOND
0201 0158 0201 LI 1,5 NEW SECOND COUNTDOWN

015A 0005
0202 015C 0582 INC 2 ADD ONE SECOND TO CLOCK.
0203 015E 0282 CI 2,60 AO SECONDS YET?

0160 003C:
0204 0162 160F JNE RETURN NO, GO RETURN
0205 NEW MINUTE
0206 0164 04C2 C:LR 2 NEW MINUTE: CLEAR SECONDS
0207 0166 0533 INC 3 ADD ONE MINUTE
0208 0168 0283 rI 3,60 60 MINUTES YET-'

016A 003r
0209 0160 160A JNE RETURN NO, RETURN
0210 NEW HOUR
0211 016E 04C3 C:LR 3 NEW HOUR: CLEAR MINUTES
0212 0170 0584 INC 4 ADD ONE HOUR
0213 0172 0284 CI 4,24 MIDNIGHT YET-*

0174 0018
0214 0176 1605 JNE RETURN NO
0215 NEW DAY
0216 0178 0585 INC 5 ADD ONE DAY
0217 017A 0285 CI 5,364 END OF YEAR?

017C 016E
0218 017E 1601 JNE RETURN NO, RETURN
0219 NEW YEAR
0220 0180 0586 INC 6 NEXT YEAR
0221 0182 0380 RETURN RTWP

FIGURE 5-16. EXAMPLE PROGRAM USING TIMER INTERRUPTS 3 AND 4 (SHEET 7 OF 12)

5-44

TEST

0223
0224
0225
0226

TXMIRA 936227 ** 08:0:22 122/78 PAGE 0008

KEYBOARD INITIALIZATION - ROUTINE
THIS ROUTINE INITIALIZES THE WORK AREA USED BY THE
KEYBOARD SCANNING ROUTINE WHEN THE TMS 9902A TIMER

0227 TIMES OUT. THE TMS 9902A TIMER IS DEDICATED TO TIMING
0228 THE INTERVAL BETWEEN KEYBOARD SCANS. IT IS SET
0229 IN THIS ROUTINE, AND THE KEYBOARD CHARACTER BUFFER
0230 IS CLEARED OUT, AS WELL AS THE APPROPRIATE FLAGS RESE
0231
0232 0184 FF18 KYINIT DATA KYBDWP,KYENT

0136 0188'
0233 0188 0209 KYENT LI 9,37 # WORDS IN BUFFER

018A 0025
0234 0180 0208 LI 8,KYBUF KEYBOARD INPUT BUFFER

018E FEF:3
0235 0190 04F8 LOOP CLR *8+ WIPE TWO BYTES OUT
02:36 019'2 0609 DEC 9 # OF WORDS LEFT
0237 0194 16FD JNE LOOP GO BACK
0238 0196 04C2 CLR CLEAR INDEX PTR: NEW LINE
022:9 0198 04C:74 CLR f-3 CLEAR STROBE FLAG
0240 019A 04C0 CLR 0 CLEAR NEW-LINE FLAG
0241 0190: 0401 CLR 1 CLEAR DATA AREA
0242 019E 0200 LI 0,'7)0R 75 SCANS / SECOND

01A0 00D0
024!; 01A2 0420 BLWP @TIME02 GO START TIMER

01A4 0124
0244 01A6 0:7{R0 RTWP DONE

FIGURE 5-16. EXAMPLE PROGRAM USING TIMER INTERRUPTS 3 AND 4 (SHEET 8 OF 12)

5-145

TEST TXMIRA 93627 ** 05:09:22 122/78 PAGE 0009

0244
0247
0248
0249
0250
0251
0?52

0254
0255
025A
0257
025R
0259
02A0
0241
0242
02A
0244
0245
ti '/-A
02A7
02AR 01A8 FFI8

()].AA 01AC'

INT4VC

KEYBOARD SCANNING ROUTINE
THIS ROUTINE SCANS AN ASCII-ENCODED KEYBOARD
CONNECTED DIRECTLY TO THE PARALLEL I/0 PORT, P4.
I/O BITS 0-7 ARE ASCII DATA, AND BIT 8 IS AN
EDGE-TRIGGERED (HIGH-TO-LOW) STROBE.
THIS ROUTINE IS ENTERED WHEN THE INTERVAL•TIMER
IN THE TMS 9902A TIMES OUT. THE INTERRUPT IS
ACKNOWLEDGED, AND THE STATE OF THE STROBE FLAG
IS SENSED. IF PREVIOUSLY INACTIVE AND NOW ACTIVE,
A NEW CHARACTER HAS APPEARED ON THE I /0 PORT,
WHICH IS READ IMMEDIATELY. IF THE STROBE IS
INACTIVE, OR IF PREVIOUSLY ACTIVE AND STILL. ACTIVE,
THEN THE I/O PORT IS IGNORED. WHEN A NEW CHARACTER
I READ, THE STROBE FLAG IS SET, AND IS RESET
ONLY AFTER THE STROBE GOES INACTIVE.
CHARACTERS ARE COLLECTED IN THE KEYBOARD BUFFER
AND WHEN A CARRIAGE RETURN IS INPUT, OR WHEN
THE BUFFER IS FULL, THE NEW--LINE FLAG IS SET.
IT IS ASSUMED THERE IS A ROUTINE SOMEWHERE
WHICH INSPECTS THE NEW-L. I NE FLAG, AND USES
THE COLLECTED DATA FOR SOME PURPOSE.
DATA KYBDWP,IN4PC

IN4PC
0249
0270 01AC

01AE
0271 01B0
0272
0273 01B2

01B4
0274 01B6
0275 01B8
027A 01BA
0277 01BC
0278 01BE
0279 01C0
02RO
0281 0102'
02R2 0104
028,::: 01CA
0284 01C8
0215 O1CA

01CC
0?RA 010E

01DO
0287 01D2
02RR 01D4

01D6
0289 01D8
0290 01 DA

01 DC
0291 01DE
0292 01 EO

CHECK STROBE FLAG
RESET: SCAN FEYBOARD
LOW AT STROBE
STILL LOW FROM LAST CHAR
HIGH: DONE WITH OLD CHAR
SINCE NO CHAR, RETURN
SO SCAN KEYBOARD
LOOh AT STROBE
HIGH: NO CHAR YET
SET STROBE FLAG, NEW CHAR
GRAB BYTE FROM tEYBOARD
STRIP PARITY BIT

BACKSPACE?

GO DO BACKSPACE
DELETE LINE?

GO DELETE LINE
PUT CHAR IN BUFFER

CHAR PTR TO NXT LO❑C
END OF BUFFER?

020C
0080
1D14

020C
0120
COM
1:7:04
1FOR
1617
040:3
1015

1FOR
1313
070R
:=A01
0241
7F00
02R1
ti:-O(>
1-20D
02R1
7F00
1ROC
D881
FEF3
05R2
02R2

MOV 3,3
JEO. SCAN
TB 8
UNE GCIBAC:K
CLR 3
JMP GOBACK
STROBE FLAG WAS RESET,

SCAN TB 8
JEO GOBACK
SETO 3
STCR 1,8
AND I 1,>7F00

CI 1,)0R00

JEO BS
CI 1,>7F00

JEO DEL
MOVB 1,@KYBUF(2)

INC 2
CI 2,72

ADDRESS THE TMS 9902A, TURN OFF INTERRUPT
LI 12,)0080 POINT TO 9902

SBO 20 RESET INTERRUPT
ADDRESS THE TMS 9901, AND POLL THE KEYBOARD STATUS
LI 12,)0120 PARALLEL I/0 9901

FIGURE 5-16. EXAMPLE PROGRAM USING TIMER INTERRUPTS 3 AND 4 (SHEET 9 OF 12)

5-46

TEST

01E2

TXMIRA 936,227 ** 08:05:22 122/78 PAGE 0010

0048
0293 O1E4 1308 JEQ LINE YES, FORCE LINE DONE
0294 01E6 0281 CI 1,}0B00 C.'ARRIAGE RETURN 7j

01E8 0DO0
0295 01EA 1308 JEQ LlNEX YES, SET END-OF-LINE
0296 01EC 0380 GOBACK RTWP DONE
0297 * SPECIAL CHARACTER HANDLING ROUTINES
0298 01EE 0602 BG DEC 2 MOVE INDEX BACK
0299 01F0 10FD JMP GOBACK
0300 01F2 04C2 DEL CLR 2 CLEAR INDEX
0301 01F4 1006 JMP RETURN
0302 BUFFER OVERFLOW HANDLING ROUTINE
0303 01F6 D8A0 LINE MOVB @CRX,@KYBUF(2) FORCE {CR}

01F8 0208'
01FA FEF3

0-:'1 04 01FC 0582 LlNEX I NC 2 BUMP POINTER FOR NULL BYTE
0305 01FE D8A0 MOVB @CRX+1,@KYBUF(2) NULL OUT END OF LINE

0200 0209'
0202 FEF3

0306 0204 0700 CR SETO 0 TURN LINE FLAG ON
0307 0206 10BD JMP RETURN
0308 0208 OD0O CRX DATA ->0D00

FIGURE 5-16. EXAMPLE PROGRAM USING TIMER I0TEBBD9TG 3 AND 4 (SHEET 10 OF 12)

TEST

0310
0311
0312

TXMIRA 936227 ** 08:05:22 122/78 PAGE 0011

*
* DECIMAL TO HEXADECIMAL CONVERSION ROUTINE
*

0313 020A FF78 DECHEX DATA >FF78,DECH1
020C 020E'

0314 020E CO3D DECH1 MOV *13+,0 GET 4 LSD'S
0315 0210 CO5D MOV *13,1 GET 1 MSD
0316 0212 064D DECT 13 RESTORE OLD WP
0317 0214 0202 LI 2,4 SET UP COUNTER

0216 0004
0318 0218 0203 LI 3,MULT ADDRESS OF MULTIPLY TABLE

021A 0248'
0319 021C 04C4 CLR 4 CLEAR SUM
0320 021E C173 DECH2 MOV *:3+, 5 GET MULTIPLIER
0321 0220 C180 MOV 0,6 COPY OVER INPUT
0322 0222 0246 ANDI 6,›F STRIP WANTED DIGIT

0224 000F
0323 0226 C186 MOV 6,6 IS NEW DIGIT ZERO
0324 0228 1303 JEQ DECH4 YES, SKIP ADDITIONS
0325 022A A105 DECH3 A ADD INTO SUM
0326 022C 0606 DEC

5,4
 DECREMENT COUNTER

0327 022E 16FD JNE DECH3 IF NOT DONE, JUMP BACK
0328 0230 0940 DECH4 SRL 0,4 MOVE NEXT DIGIT OVER
0329 0232 0602 DEC 2 DECREMENT DIGIT COUNTER
03:30 0234 16F4 JNE DECH2 IF NOT ALL DIGITS, JUMP
0331 0236 0241 ANDI 1,›F LOOK AT MSD ONLY

0238 000F
0332 023A 1304 JEQ DECH6 IF ZERO, EXIT
0333 023C C153 MOV *3,5 GET 10 K VALUE
0334 023E A105 DECHS A 5,4 ADD IT ON
0335 0240 0601 DEC 1 DECREMENT THE COUNTER
0336 0242 16FD JNE DECHS IF NOT ZERO, JUMP
0337 0244 C744 DECH6 MOV 4,*13 PUT DATA IN OLD REGS.
0338 0246 0380 RTWP RETURN
0:339 0248 0001 MULT DATA 1,10,100, 1000,10000

024A 000A
024C 0064
024E 03E8
0250 2710

FIGURE 5-16. EXAMPLE PROGRAM USING TIMER INTERRUPTS 3 AND 4 (SHEET 11 OF 12)

5-48

TEST.

0341
0342
0:343
0344 0252

TXMIRA 936227 ** 08:05:22 122/78 PAGE 0012

HEXADECIMAL TO DECIMAL CONVERSION ROUTINE

FF78 HEXDEC DATA >FF78,HEXD1
0254 0256'

0345 0256 COBD HEXD1 MOV *13+,2 GET HEX VALUE
0346 0258 04C0 CLR 0 CLEAR RETURN VALUE
0347 025A 0204 LI 4,4 SET UP COUNTER

025C 0004
0348 025E 0205 LI 5,10 DIVISOR IS 10

0260 000A
0349 0262 OB40 HEXD2 SRC 0,4 MAKE ROOM FOR NEW DATA
0:350 0264 0082 MOV IS QUOT I ENT > 0 ",
0351
0352

0266
0268

130C
COC2

JEC4
MOV

HEXD3
2,3

IF NO, JUMP
SET UP FOR NEXT DIVIDE

0353 026A
0354 026C
0355'026E

04C2
3C85
E003

CLR
DIV
SOC

2
J,.
3,0

CLEAR UPPER HALF OF DOUBLEWORD
DIVIDE BY 10
PUT NEW DATA IN 0

0356 0270 0604 DEC 4 DECREMENT COUNTER
0357
0358

0272
0274

16F7
OB40

JNE
SRC

HEXD2
0,4

IF NOT DONE, JUMP BACK
MOVE DATA OVER 1 NIBBLE

0359 0276 C042 HEXD4 MOV 2,1 SET UP MSD
0360 0278 C741 MOV 1,*13 PUT DATA IN CALLER REG.1
0361 027A 064D DECT 13 OLD WP ADDRESS
0362 027C C740 MOV 07*13 PUT DATA IN CALLER REG.0
0363 027E 0380 RTWP EXIT
0364 0280 OB40 HEXD3 SRC 0,4 MOVE DATA OVER
0365 0282 0604 DEC 4 DECREMENT COUNTER
0366
0367

0284
0286

16FD
10F7

JNE
JMP

HEXD3
,HEXD4

IF NOT DONE, CONTINUE SHIFTING
GO XFER DATA AND EXIT

0368
0369 # PROGRAM END
0370
0371 END

0000 ERRORS

FIGURE 5-16. EXAMPLE PROGRAM USING TIMER INTERRUPTS 3 AND 4 (SHEET 12 OF 12)

5-49

5.10 MOVE BLOCK FOLLOWING PASSAGE OF PARAMETERS

The coding in Figure 5-17 is an example of a called subroutine that will move
a block of data from one location to another. The three parameters of (1)
move-from address, (2) move-to address, and (3) length of block are provided
to the subroutine either through registers 0 to 2, or by the three words
following the calling program's BLWP instruction, or by a combination of both.
The block move subroutine first interrogates the words following the calling
program's BLWP instruction; if a zero is found, it looks in a register for a
parameter. In Figure 5-17, the calling program provides the move-from and
block length parameters in registers, and the move-to parameter in the second
word following the BLWP instruction.

LI
LI
BLWP
DATA
DATA
DATA

RO,>F100
R2,125
@MVBLK
0
>F200
0

MOVE-FROM Address
MOVE 125 BYTES
BRANCH TO SUBROUTINE
MOVE-FROM ADDR IN RO
MOVE-TO ADDRESS
BYTE COUNT IN R2

(a) Calling Program

WP, PC OF SUBROUTINE
SAVE WP
GET "FROM" ADR
NON-ZERO: PARM IN-LINE
PICK UP FROM REG INSTEAD
GET "TO" ADR
PARM IN-LINE CODE
GET FROM REGS
GET LENGTH
IN-LINE PARM
GET FROM REGS
MOVE BYTE
ONE LESS TO GO
NOT DONE YET
RESTORE WP
RETURN TO CALLING PROGRAM

MVBLK
MVBLK1

MV

MVBLK3

MVBLK4

DATA
MOV
MOV
JNE
MOV
MOV
JNE
MOV
MOV
JNE
MOV
MOVB
DEC
JNE
MOV
RTWP

>FF90,MVBLK1
13,12
*14+,1
MVBLK2
*13+,1
*14+,2
MVBLK3
*13+,2
*14+,3
MVBLK4
*13,3
*1+,*2+
3
MVBLK4
12,13

(b) Move Block Subroutine

FIGURE 5-17. MOVE BLOCK OF BYTES EXAMPLE SUBROUTINE

5-50

5.11 BLOCK COMPARE SUBROUTINE

Figure 5-18 shows a sample block-compare subroutine which accepts three
parameters from the calling program, in the same manner as the block-move
subroutine (paragraph 5.10.1). This compare subroutine inspects two strings,
comparing successive bytes until an unequal byte is found or until the
specified string length is exhausted. The Status Register bits in register 15
are updated accordingly, and the subroutine returns to the calling routine
with the altered status bits, which may be used immediately for conditional
jumps.

The sample calling program is at the top of Figure 5-18. Note that the
conditional jumps follow directly after the calling code, so the calling
program simply compares (through the subroutine) and jumps, in the normal
programming manner.

FIRST BLOCK START ADDRESS
SECOND BLOCK START ADDRESS
BRANCH TO SUBROUTINE
START ADDR. IN RO (1ST BLOCK)
START ADDR. IN R1 (2ND BLOCK)
COMPARE 100 BYTES
IF LESS THAN OF EQUAL, JUMP
IF GREATER THAN, JUMP

LI RO,>F100
LI R1,>F200
BLWP @CMBLK
DATA 0
DATA 0
DATA 100
JLE $+10
JGT

(a) Calling Program

CMBLK DATA >FF90,CMBLK1 WP, PC OF SUBROUTINE
CMBLK1 MOV 13,12 SAVE WP

MOV *14+,1 GET "A" ADR
JNE CMBLK2
MOV *13+,1 GET IN CALLER REG

CMBLK2 MOV *14+,2 GET "B" ADDR
JNE CMBLK3
MOV *13+,2 GET FROM IN CALLER REG

CMBLK3 MOV *14+,3 GET LENGTH
JNE CMBLK4
MOV *13+,3 GET FROM REG

CMBLK4 CB * 1+, *2+ LOOK AT STRINGS
JNE CMBLK5 FOUND UNEQUAL
DEC 3 ONE LESS BYTE
JNE CMBLK4 STILL MORE TO LOOK AT

CMBLK5 STST 15 STORE FINAL STATUS
RTWP RETURN TO CALLING PROGRAM

(b) Compare Block Subroutine

FIGURE 5-18. COMPARE BLOCKS OF BYTES EXAMPLE SUBROUTINE

5-51

5.12 UNIT ID DIP-SWITCH

The Unit ID switch is a very versatile piece of hardware The practical uses
of this small device are limited only by the imagination. The proper way to
read the switch settings is shown in Figure 5-19.

One example use of the switch is in a multidrop environment where each board
on the communications line is assigned an ID number through the settings on
the switch. The same software can be used in all the boards in the system,
instead of having to maintain up to 32 separate copies, each unique only in an
I.D. field. Figure 5-20 shows an example program segment in a communications
routine.

Another example for use is in systems configuration. Whereas the main
communications port (P2) is designed for use specifically for a terminal, the
auxiliary communications port (P3) is a general purpose RS-232 port and can be
connected to modems, serial line printers, device interfaces such as cassette
or floppy disk controllers, etc., as well as terminals. The switch can be set
to indicate the nature and baud rate of the device attached to the remote
port. Figure 5-21 shows a program segment example.

5.13 CRU ADDRESSABLE LED

The light-emitting diode (LED) DS1 on the TM 990/101MA is addressable through
the CRU at software base address 000016. Writing a zero to the LED turns it
on and writing a one turns it off. Figure 5-22 show a sample routine to blink
the LED on and off once a second, using the TMS 9901 timer. The LED is on for
one-quarter second and off for three-quarters of a second.

5.14 USING MAIN AND AUXILIARY TMS 9902As FOR I/O

The TIBUG XOP routines (XOP 8 to 14) are written to accomplish input and
output through a TMS 9902A. When the TIBUG monitor is entered, the address
for all I/O is directed to the main TMS 9902A (through connector P2). Any
time a user program branches back into TIBUG at address 008016 or when a RESET
function is activated, the CRU address is set to the main TMS 9902A. However,
a user may use all of the above-mentioned XOP calls to program any TMS 9902A
in the system by first moving the software base address of the desired TMS
9902A into R12 of the I/O routines; this register is located at M.A FFDE16•
In other words, move the software base address for the TMS 9902A (board
addresses shown in Table 5-3) into memory address FFDE16. Figure 5-23 is an
example where both serial I/O ports of the TM 990/101MA are activated for
conversation to each other. Two terminals are assumed to be connected, one to
each port, and the operators may type messages to each other. This principle
can be expanded to support any of a number of TMS 9902A-controlled serial I/O
ports. (A variety of custom line interfaces may be used with a TMS 9902A.)

The write character XOP service routine first ensures that the Request-to-Send
signal is active. This signal is not deactivated by TIBUG so that modem users
will retain their data carrier. If a modem user wishes to drop the data
carrier, the affected TMS 9902A must be addressed by the user program, and
then the Request-to-Send signal is deactivated through the CRU.

Only the main TMS 9902A, at CRU software base address 008016 is initialized by
TIBUG; other TMS 9902As in a system must be initialized by the user. Note the
first portion of the example program in Figure 5-23. Part of TIBUG's
initialization is to sense the baud rate of the attached terminal. If the baud

5-52

SWITCH 5 LSB WHEN READ

SET TO ON, ZERO READ (GROUNDED)

SET TO OFF, ONE READ

SWITCH 1 MSB WHEN READ

rate is 110, 300, or 1200 baud, then the XOP routine waits 200 milliseconds
after transmitting a carriage return. In addition, 1200 baud causes every
character transmitted to be followed by 25 milliseconds of delay time. Only
at 2400 and 9600 baud are characters transmitted without delays.

For 110, 300, and 1200 baud, the monitor ASRFLAG is set to one to cause a wait
state following writing of a carriage return. If the TIBUG I/O XOP routines
are used for other I/O ports, the state of the monitor's ASRFLAG will also
govern delay loops used by the Write Character XOP. The user should then swap
out the contents of the ASRFLAG as listed in Table 5-8.

NOTE

If all five switch settings are stored (using CRU), switch 1 would be
the MSB and switch 5 would be the LSB. For example, if switch 1 was
set to OFF, and the other set to ON, storage of the five settings
would be represented by 1016 or 100002• Code to store the switch
contents in register 0 is shown below.

*READING THE DIP SWITCH
CLR RO CLEAR HOLDING AREA
LI R12,>40 DIP SWITCH ADDRESS
STCR R0,5 SWITCH VALUES IN REGISTER 0

FIGURE 5-19. READING THE DIP SWITCH

5-53

v MULTIDROP SYSTEM WITH DIP SWITCH
* REGISTER 1 CONTAINS DESIRED ID VALUE

CLR R0 CLEAR HOLDING AREA
LI R12,}40 DIP SWITCH ADDRESS

STCR R0,5 SWITCH VALUES IN REG. 0
C R0,R1 IS MESSA8E FOR ME?
JEQ PROCES YES, GO PROCESS IT
BLWP @CLRBUF NO, CLEAR BUFFER

RTWP RETURN BACK TO RESCHEDULE

FIGURE 5-20. EXAMPLE CODE TO CHECK BOARD ID AT DIP SWITCH FOR
MDLIIDBUP ENVIRONMENT

* SYSTEMS CONFIGURATION EXAMPLE
CLR R0 CLEAR HOLDING AREA
LI R10}40 DIP SWITCH CRU ADDRESS

STCR R0,5 SWITCH VALUES IN REG. 0
LI R1010 LOAD "1" BIT FOR WALKING COMPA

CZC R1,R0 IS REMOTE PORT USED?
JNE NOTUZD NO, JUMP OUT OF ROUTINE
SRL R1,1 SET TO }08 FOR CHECK
CZC R1,R0 ID2: IS TERMINAL CONNECTED?
JEQ TERMNL YES, ID3, ID4, ID5 - BAUD RATE
SRL R1,1 NO, SET TO }04 FOR CHECK
CZC R1,R0 ID?: MODEM CONNECTED--,
JEQ MODEM YES, ID4, ID5 = MODEM TYPE
SRL R1,1 NO, SET TO }02 TO CHECK ID4
CZC R1,R0 ID4: I/O DEVICE CONTROLLER?
JEQ lODEV YES, ID5, 1 = TAPE, 0 - FLOPPY
SRL R1,1 NO, SET TO }01 TO CHECK ID4
CZC R1,R0 ID5: SERIAL LINE PRINTER?
JEQ PRNTR YES
XOP @SYSERR,14 NO, PRINT ERROR MESSAGE

* BECAUSE WRONG SWITCH SETTINGS

FIGURE 5-21. CODING EX19PLOT0 ASCERTAIN SYSTEM CONFIGURATION

BLINK TXMIRA 936227 ** 16:02:28 121/78 PAGE 0001

0001 IDT 'BLINK'
0002 * * * * * * * * * * * * * * *
0003 * THIS PROGRAM SETS UP THE INTERRUPT LINKING AREA AND THE
0004 # TIMER AT THE TMS 9901. IT EXECUTES THE TIMER. WHEN THE
0005 * THE TIMER COUNTS DOWN, AN INTERRUPT IS EXECUTED THROUGH
000-6 * INTERRUPT TRAP 3 WHICH TRANSFERS CONTROL TO THE ISR AT
0007 * THE BOTTOM OF THIS LISTING. THE CALLING PROGRAM AND ISR
0008 * USE THE SAME WORKSPACE (>FF00). THIS PROGRAM IS CODED
0009 * AT ABSOLUTE ADDRESSES USING THE AORG ASSEMBLER DIRECTIVE
0010 * THUS, IT CAN BE CODED USING THE LINE-BY-LINE ASSEMBLER
0011 * WITH THE SLASH COMMAND USED INSTEAD OF THE AORG COMMAND.
0012 * * * * * * * * * * * * * * *
001:3
0014 * CALLING PROGRAM
0015
0016 FrO0 AORG >FC00 BEGIN CODE AT M.A. >Fr00
0017 ** SET UP INT3 LINKING AREA
0018 FrO0 02E0 LWPI >FFOO WORKSPACE ADDR (FOR BOTH PGMS)

FrO2 FF00
0019 FCO4 C060 MOV @>000E, 1 INT3 PC VECTOR TO R1

FCO6 000E
0020 FLOE: 0•7,0 LI 2,>0420 PLACE BLWP MACH. CODE IN R2

FCOA 0420
0021 FrOr rr42 MOV 2,*1+ MOVE BLWP CODE TO LINK AREA
00 2 FCOE 0202 LI 2,>FD00 ADDRESS OF VECTORS TO ISR

Fr10 FDOO
0023 FC12 rr42 MOV 27*1+ MOVE VECTOR ADDR TO LINK AREA
0024 FC14 0202 LI 2,>0R80 PLACE RTWP MACHINE CODE IN R3

FC16 0380
0025 FC18 0442 MOV 2,*1 MOVE RTWP TO LINK AREA
0026 ** LOAD AND EXECUTE TIMER AT TMS 9901
0027 FC1A 0300 LIMI 0 DISABLE INTERRUPTS

FC1C 0000
0028 FC1E 020r LI 12,>0100 TMS 9901 CRU ADDRESS

FC20 0100
0029 FC22 0203 LI R,>0300 CLOCK MODE, COUNT - 1

FC24 0:300
0030 F026 0204 LI 4, ::0800 INTERRUPT MODE, ENABLE INT3

FC2S 0500
0031 FC2A 0205 LI 5,3 INITIALIZE TIMER COUNTER

FC2C 0003
0032 FC2E 3104 LDCR 4,4 ENABLE INT3 AT 9901
()ORR FCRO RORR LDCR 3,2 START CLOCK AT 9901
00R4 FC32 04CC CLR 12 POINT TO L.E.D.
0035 FC34 1D00 SBO 0 TURN L.E.D. OFF
00:36 FCRA 0300 LIMI 3 ENABLE INT3 AT TMS 9900

FC38 000R
0037 FC3A 10FF JMP $ WAIT HERE FOR INTERRUPT

FIGURE 5-22. CODING EXAMPLE TO BLINK LED ON AND OFF (SHEET 1 OF 2)

5-55

LDCR 9.15
SBZ O
CLR 12
DEC 5
L.E.D' TO ON OR
MOV 5.5
JNE }FD30
S8Z 0
LI 5,3

LIMI 3

START CLOCK
SET INTERRUPT MODE AT 9901
L.E.D. CRU ADDRESS
DECREMENT COUNTER

OFF STATUS
REG. 5 ~ ZERO?
NO, TURN OFF L.E.D.
YES, TURN ON L.E.D.
RELOAD INTERRUPT COUNT

ENABLE INT3

121/78 PAGE 0002

0039 *

0040 * INTERRUPT SERVICE ROUTINE
0041 *

0042 FB0O AORG }FD00
0043 FD00 FF00 DATA }FF007}FD04

FD06 0000
0045 FD08 020C LI

FDOA 0100
0046 FD0C 1D03 SBO 3
0047 FD0E 0209 LI 9,15625

FD10 3D09
0048 FD12 0A19 SLA 9,1
0049 FD14 0269 URI 9,1

FD16 O001
0050 FD18 33C9
0051 FD1A 1E00
0052 FDIC 04CC
0053 FD1E 0605
0054 ** SET
0055 FD20 C145
0056 FD22 1606
0057 FD24 1E00
0058 FD26 0205

FD28 0003
0059 FD2A 0300

FD2C 0003
0060FD2E0380 RTWP
0061 FD30 1D00 SBO 0
0062 FD32 0300 LlMI 3

FD34 0003
0063 FD36 0380 RTWP
0064 END

0000 ERRORS

BEGIN CODE AT M.A. }FD00
WP, PC OF ISR

DISABLE INTERRUPTS

TMS 9901 CRU ADDRESS

CLEAR INTERRUPT AT 9901
1/4 SECOND COUNT FOR TMS 9901

SHIFT CLOCK COUNT
SET CLOCK MODE

RETURN TO PROGRAM
TURN OFF L.E.D
ENABLE INT3

RETURN TO PROGRAM

mors. As an exercise, the use, can mua and oxv*"m this code:
/

(1) muu the machine code values show" in column o into
the memory locations shown m column r' v,(o)reassemble;
n the u"o'ov'uno Assembler (LoLA)/, used, substitute the
slash command for the AOno u/mct/"= and follow the
DATA and TEXT statement conventions for the LaLA. Ex-
ecute using the E TIBUG command.

FIGURE 5-22. CODING EXAMPLE TO BLINK LED ON AND OFF (SHEET 2 OF 2)

0025
0026
(>027
0028

0029
0030
00R1
0082
0033
00:34
OORF;
OORA
00R7

°ORR
0039
0040
0041
0042
004:3
0044
0045
0044

0047
0048
(>049

0008
000A
000C
000E
0010
0012
0014
0016
001R
001A
001r
001E
0020
0022

0(24
0026
002R
002A
002r_:
002E
00:30
0032
00R4
00:74A

0038

TWOTRM TXMIRA 936227 ** 08:11:39 122/78 PAGE 0001

02E0
00CC/
0200
0180

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
(>012
001:3
(>014
0015
0016
0017
0018
0019
0020
0021
0022
0023 0000

0002
0024 0004

(>006

TWO TERMINAL PROGRAM EXAMPLE
THIS ROUTINE INITIALIZES THE AUXILIARY I/O PORT
OF THE TM990/101MA MICROCOMPUTER. BOTH SERIAL
PORTS ARE THEN USED IN A CONVERSATIONAL MODE
WITH EACH OTHER. THE PROCEDURE IS TO INSPECT
THE RECEIVE BUFFER BIT IN THE ADDRESSED TMS9902A
TO SEE IF A CHARACTER HAS BEEN ASSEMBLED
IN THE UART. IF SO, IT IS ECHOED TO THE
ORIGINATING TERMINAL, AND THEN TRANSMITTED
TO THE OTHER TERMINAL. THEN THE OTHER
TERMINAL IS INSPECTED FOR A CHARACTER, ETC.
THE POINTS TO NOTE ARE:

1) THE AUXILIARYTMS9902A MUST BE INITIALIZED.
2) THE OLD "ASR"-FLAG MUST BE SAVED,

AND A NEW ONE DETERMINED FOR THE
NEW TERMINAL (AUXILIARY PORT).

3) EVERY WRITE OPERATION CONSISTS OF
MOVING THE DESIRED ADDRESS TO TIBUG,
AND MOVING THE DESIRED "ASR"-FLAG TO TIBUG.

LWPI REDS USE SPARE SPACE AT END OF PROD

LI 12,>0180 AUXILIARY PORT ADDRESS

IDT 'TWOTRM'

RC40
1202
05r1
10Fr
3311
0051
0281
01A0
1103
16(n
0702

1D1F
1000
:3220
00B6/
1E0D
0400
04r2
1FOF
13FE
05RO
1FOF
16FD
0201
00A2'

INITIALIZE AUXILIARY '6ERIAL PORT
SBO :31 RESET UART
NOP RESET TIMING DELAY
LDCR @CTL, 8 LOAD CONTROL CHARACTER

SBZ 13
CLR 0
CLR 2

TSTSP TB 15
JEQ TSTSP

RPLnOP INC 0
TB 15
JNE SPLOOP
LI 1,TABLE

BYPASS INTERVAL REGISTER
BAUD RATE LOOP COUNTER
ASR FLAG FOR THIS PORT
LOOK AT RIN
WAIT FOR USER TO TYPE SOMETHIN
UP BAUD LOOP COUNTER
RIN NOW HAS A SPACE:
DROP OUT ON A MARK
BAUD RATE TABLE

NOW INSPECT BAUD RATE TABLE FOR A LOOP
COUNT WHICH MATCHES, THEN LOAD BAUD RATE.

LOOK AT ATBLE LOOP COUNT
IF < OR = WE HAVE A MATCH
SKIP BAD BAUD RATE, NEXT LOOP
LOOK AT NEXT LOOP COUNT
LOAD BAUD RATE CONTROL VALUE
GET VALUE ITSELF
1200 BAUD ?

NO, HIGHER BAUD RATE
NO, LOWER BAUD RATE
SET LOCAL ASR FLAG

BDLOOP C: 0,*1+
JLE MATCH
INCT 1
IMF' BDLOOP

MATCH LDCR *1,12
MOV *1,1
CI 1,>01A0

JLT HIRATE
JNE BEGIN
SETO 2

FIGURE 5-23. EXAMPLE PROGRAM TO CONVERSE THROUGH
MAIN AND AUXILIARY TMS 9902As (SHEET 1 OF 3)

5-57

HIRATE

BEGIN

imp
INC
THE
mov

BEGIN
2
AUXILIARY PORT
@X180,@XOPCRU

MOV @ASRFLG,3

MOV 27@ASRFLG

XOP 0,13
XOP @BGNMSG,14

MOV @X80,@XOPCRU

MOV 3,@ASRFLG

XOP @BGNMSG714

AND PRINT BEGIN MESSAGE
MARK NO {CR} DELAY

IS NOW UP. PRINT GREETING.
AUX. PORT ADR. TO TlBUG

SAVE MAIN PORT ASR-FLAG

AUX. PORT ASR-FLAG

READ BY OLD INIT. CHAR.
PRINT BEGIN MESSAGE

MAIN PORT ADR TO TIBUG

MAIN PORT ASR-FLAG

PRINT BEGIN MESSAGE HERE, TOO

0050 003A 1001
0051 003C 0582
0052
0053 003E C820

0040 OOAO'
0042 FFDE

0054 0044 C0E0
0046 FFF4

0055 0048 C802
004A FFF4

0056 004C 2F40
0057 004E 2FA0

0050 0OB7^
0058 0052 0820

0054 009E'
0056 FFDE

0059 0058 C803
005A FFF4

0060 005C 2FAV
005E 00B7'

122/78 PAGE 0002

0061 *
0062 *
0063 0060 C320 LOOP

0062 009E'
0064 0064 1F15
0065 0066 160B
0066 0068 C80C

006A FFDE
0067 006C C803

006E FFF4
0070 2EC0 0068
0072 0820

0069 0074 O0A0'
0076 FFDE

0070 0078 C802
007A FFF4

0071 007C 2F00
0072 007E C320 NEXT

0080 O0A0'
0073 0082 1F15
0074 0084 16ED
0075 0086 C80C

0088 FFDE
0076 008A C802

008C FFF4
0077 008E 2EC0
0078 0090 C820

0092 0O9E^
0094 FFDE

0079 0096 C803
0098 FFF4

0080 009A 2F00
0081 009C 10E1
0082

THIS IS THE MAIN LOOP.
FIRST ADDRESS MAIN PORT, THEN THE.AUXILIARY PORT
MOV @X80,12 ADDRESS FOR MAIN PORT

TB 21 CHARACTER TYPED HERE ?
JNE NEXT NO, TRY OTHER PORT
MOV 12,@XOPCRU YES, GIVE ADDRESS TO TIBUG

MOV 3,@ASRFLG MOVE ASR-FLAG

XOP 0,11 READ/ECHO CHAR TO ORIGINATING
MOV @X180,@XOPCRU AUXILIARY PORT ADDRESS

MOV 2,@ASRFLG AUXILIARY PORT ASR-FLAG

XOP 0,12 WRITE CHARACTER TO OTHER TERMl
MOV @X180°12 ADDRESS FOR AUXILIARY PORT

TB 21 CHARACTER TYPED HERE ?
JNE LOOP NO, TRY MAIN PORT
MOV 127@XOPCRU YES, GIVE ADDRESS TO TI8UG

MOV 2,QASRFLG MOVE ASR-FLAG

XOP 0,11 READ/ECHO CHAR TO ORIGINATING
MOV @X80,@XOPCRU MAIN PORT ADDRESS

MOV 3,@ASRFLG MAIN PORT ASR-FLAG

XOP O,12 WRITE CHARACTER TO MAIN TERMIN
JMP LOOP

FIGURE 5-23, EXAMPLE PROGRAM TO C00V8BS8 THROUGH
MAIN AND AUXILIARY TMS 9902As (SHEET 2 OF 3)

5-58

TWOTRM

0083
0084

TXMIRA 936227 ** 08:11:39

* DATA AREA

0085 009E 0080 X80 DATA }0080 MAIN PORT R12 BASE ADDRESS
0086 00A0 0180 X180 DATA }0180 AUXILIARY PORT R12 BASE ADDRES
0087 FFF4 ASRFLG EQU }FFF4 TIBUG ASR FLAG ADDRESS
0088 FFOE XOPCRU EQU }FFDE TlBUG XOP R12 ADDRESS
0089 00A2 0010 TABLE DATA }10,}34 9600 BAUD

00A4 0034
0090 0OA6 0040 DATA }40,}D0 2400 BAUD

00A8 00D0
0091 00AA 0070 DATA }70,}1AO 1200 BAUD

00AC 01A0
0092 00AE 0200 DATA }2O0, }4D0 300 BAUD

00B0 04D0
0093 00B2 0400 DATA }400,}638 110 BAUD

00B4 0638
0094 00B6 62 CTL BYTE }62 9902A CONTROL
0095 0087 0D BGNMSG BYTE }0D, }0A

00B8 0A
0096 00B9 42 TEXT 'BEGIN OPERATION'
0097 0008 0O BYTE }0D,}0A,}00

00C9 0A
00CA 00

0098 OOCC 0000 REGS DATA 0107070,0.0,070,0.O,0,0,0,0,0,0
00CE 0000
0ODO 0000
00D2 0000
00D4 0000
00D6 0000
O0D8 0000
O0DA 0000
00DC 0000
00DE 0000
00E0 0000
00E2 0000
00E4 0000
00E6 0000
00E8 0000
00EA 0000

END

0000 ERRORS

FIGURE 5-23. EXAMPLE PB0QB&M TO CONVERSE THROUGH
MAIN AND AUXILIARY TMS 9902As (SHEET 3 OF 3)

5-59

TABLE 5-8. ASRFLAG VALUES

ASRFLAG
Value*

Recommended Baud Rate Description/Recommendations

Positive No. 2400, 9600 No delays . Use for CRT's, modems.

Zero 110, 300 Carriage Return Delay only. Use for
hardcopy terminals.

Negative No. 1200 Carriage Return and Character padding
delays. Use with "T" command if
terminal is not a TI 733.

*ASRFLAG located in RAM at M.A. FFF416.

SECTION 6

THEORY OF OPERATION

6.1 GENERAL

This section presents the theory of operation of the TM 990/101MA micro-
computer. Information in the following manuals can be used to supplement
material in this section:

• TMS 9900 Microprocessor Data Manual

• TMS 9901 Programmable Systems Interface Data Manual

• TMS 9902A Asynchronous Communications Controller Data Manual

• TTL Data Book, Second Edition

• Bipolar Microcomputer Components Data Book

• The MOS Memory Data Book.

Figure 6-1 shows a block diagram of the TM 990/101MA, highlighting the four
major buses:

• Address bus

• Control bus

• Data bus

• Communications Register Unit (CRU) bus.

In normal operation the TMS 9900 microprocessor commands the address bus and
most of the control bus; the data bus is bidirectional, driven by both the
microprocessor and the memory devices. The two-line CRU bus is not
bidirectional; the serial output line is microprocessor driven and the serial
input line is driven by the CRU device.

The major features of the TM 990/101MA microcomputer board are the clock
driver, the microprocessor, the TMS 9901, the two TMS 9902As and peripheral
circuitry, the bidirectional and normal backplane buffers, the EPROM, the RAM,
the additional CRU devices, and the miscellaneous signals. These features are
discussed in the following paragraphs of this section.

6.2 POWER SPECIFICATIONS

Approximate power values required by the TM 990/101MA-1 are listed in the
following table:

Current -12 V +5 V +12 V Watts

Typical 0.1 A 1.0 A 0.20 A 15.0 W

Maximum 0.40 A 2.2 A 0.4 A 19.7 W

6-1

V
2 K BYTE

2114'$

(four)

2 K BYTE

2I14's

(four)

BUFFER

CONTROL

RS-232

TERMINAL
RESET

CRU

ADDRESS

DECODE

O
I-
U
z
z
O

LOAD

TMS

9902 A

SERIAL

PORT
A

RESET
/L REX TTY or

MULTIDROP .INTERRUPTS

14

I NT6
EDGE

TRIGGER

LOGIC

INT1-INT15

INT6+ _

INT6-

INT6L

TMS

9901

MICROTER-

MINAL

TMS

9902A

/9903
RS-232

TERMINAL

rc

I-
U

z
z
0
U

DTR

DIP

SWITCH
L.E.D.

1

DATA

BUFFERS
ADDRESS

BUFFERS

MISC

CONTROL
SIGNAL

and
CRU

BUFFERS

MISC.
CNTL

S
Y

S
T

E
M

 E
D

G
E

 C
O

N
N

E
C

T
O

R

MISC.

CONTROL

V
SHARED I/O DEDICATED I/O

EDGE CONNECTOR

PARALLEL PORT

SERIAL

PORT

/,2711111

.2716

MEMORY

ADR ESS
DECODE

-v

TMS
2708

/2716 -v

TMS
2708

/2716

A .2706

/.2716

C
O

N
T

R
O

L
 B

TMS

2708
/2716

TMS

2708

/2716

MEMORY

CONTROL

16

12 MHz

11

DATA BUS

TIM

9904A

3MHz

CLOCK
CONTROL BUS

RESET ADDRESS BUS 15

Supply Voltages to Pin Numbers
Device -12 V -5 V GND +5 V +12 V

TMS 9900 1 26,40 2,59 27
TMS 9901 16 40
TMS 9902A 9 18
TMS 9902A/03 socket 9 20
TIM 9904A 3, 10 20 13

2114 9 18
TMS 2708/2716 21 12 24 19
74LS241, 74LS245 10 20
75188 1 7 14
75189 7 14
75154 8 15
75107 13 7 14
75112 11 7 14
74LS138, 153, 251, 259; 745287 8 16
74LSXX 7 14

The -5 V supply is derived on the board by the UA7905 regulator from the -12 V
line supplied from offboard. The -5 V supply is used primarily by the TMS
9900 microprocessor and the TMS 2708/2716 EPROMs for back-biasing the
substrate, and by the multidrop interface as a supply voltage. The -12 V
supply is used for the EIA line drivers as well as for supplying the voltage
to the -5 V regulator.

The +12 V supply is used by the TMS 9900 microprocessor and the TMS
2708/2716 EPROMs as the main voltage supply since these are MOS parts. The
+12 V also is used for the EIA line drivers.

All integrated circuits on the board, except the EIA line drivers, use the +5
V supply, and because of the heavy load this voltage is not derived by an
on-board regulator but must be supplied from off the board. The MOS parts use
this supply for TTL compatibility, and, in fact, the TMS 9901, 9902A, 9903,
and 2114 use only this voltage for supply since they contain internal charge
pumps, eliminating the need for -5 or +12 V in their operation.

Table 6-1 lists the pin assignments of each integrated circuit for the supply
voltages each uses.

TABLE 6-1. DEVICE SUPPLY VOLTAGE PIN ASSIGNMENTS

6.3 SYSTEM STRUCTURE

The block diagram in Figure 6-1 shows the system structure of the TM 990/101MA
microcomputer board. The microcomputer design centers around five buses:
power, control, address, data, and CRU. The major blocks of the system are
the processor, the miscellaneous control signals, address decoding, onboard
memory, the TMS 9901,and two TMS 9902A serial ports, and the miscellaneous CRU
devices.

Functionally, these major blocks represent the processing, memory and I/O
portions of the microcomputer.

6-3

Throughout the remainder of this section, each block's function is discussed,
grouping the explanations into three categories: processing, memory, and I/O.
The first subject is the buses since the buses tie all the blocks together.

The power bus is explained in section 6.2, so the following section deals with
the remaining buses.

6.4 SYSTEM BUSES

The four major buses are subdivided by function in Table 6-2. By referring to
the schematics in Appendix G, each random logic line as well as the bus lines
can all be traced. All bus signals appear on connector P1.

6.4.1 Address Bus

The 16-line address bus consists of lines AO through A15. Only 15 of these,
AO through A14, are normally used for addressing memory. Memory access deals
with a 16-bit word, and A15, the byte address bit, is not brought out of the
TMS 9900 since byte operations are handled by fetching a 16-bit word into the
processor, and modifying the addressed byte, rewriting the 16-bit word back to
memory if necessary. Therefore, A15 appears only on connector P1 and is
grounded to show a zero offboard, thereby fetching words on even boundaries.

On the board the address lines are routed to the address decoding PROM which,
with MEMEN-, selects onboard memory if the address presented lies within the
limits of the memory map programmed into the PROM.

Lines AO, Al, and A2 are also routed to the 74LS138 external instruction
decoder where, upon a CRUCLK pulse, the state of the address lines determines
whether a CRU operation (AO, Al, A2 = 0) or an external instruction is
occurring. This leaves A3 through A14 for CRU addressing; A3 through A14 are
routed to the I/O decode logic and the CRU devices.

6.4.2 Data Bus

The data bus consists of 16 bidirectional lines which are routed from the
processor to the onboard memory and to the bidirectional buffers for offboard
use. DO is the most significant bit, and D15 is the least significant bit.

6.4.3 CRU Bus

The three lines in the CRU bus are CRUIN, CRUOUT, and CRUCLK. Whenever an
address is present on the address bus and MEMEN- is not also active, a CRU
operation is to be assumed. Note that even if some CRU device responds to the
address bus while it changes value or is in any way invalid, no harm is done
because the data presented to CRUIN by the addressed device will be ignored by
the processor. Since the processor will poll CRUIN only when required, CRU
address decoding is simplified.

6-4

TABLE 6-2. BUS SIGNALS

Functional Device Connections Signal

Address Bus

AO, Al, A2

A3, A4

A5, A6, A7, A8
A9

A10, All, Al2

A13, Al4

(A15.B)

Data Bus

Address decode PROM, external instruction decode

Address decode PROM, CRU decode logic, TMS 2716 EPROM

CRU decode logic, all memory devices

All memory devices, TMS 9901, TMS 9902A/3, one 74LS251

All memory devices, TMS 9901, TMS 9902A/3, both 74LS251s

Byte indicator: always zero, offboard signal only

DO-D7 Most significant byte, 1 EPROM/byte, 2 2114/byte
D8-D15 Least significant byte, 1 EPROM/byte, 2 2114/byte

CRU Bus

CRUIN CRU input line, TMS 9901, TMS 9902A/3, 74LS251 (TIM 9905)
CRUOUT CRU output line, TMS 9901, TMS 9902A/3, 74LS259(TIM 9906)
CRUCLKB CRU clock, TMS 9901, TMS 9902A/3, 74LS251 (TIM 9905),

74LS259 (TIM 9906), Edge-triggered logic

Control Bus

MEMEN- Memory control: address decode PROM
DBIN Memory control: RAM decode logic, data bus buffer control
WE- Memory control: RAM decode logic, all 2114 RAMs
MEMCYC- Memory control: offboard only
READY Memory control: slow EPROM logic, offboard WAIT state

Auxiliary Control

01-, 03- Clock: TMS 9901, TMS 9902A/3, RESET/LOAD logic

EXTCLK.B-, CLK.B- Clock: offboard only

PRES.B-, RESTART.B- RESET/LOAD logic, TMS 9900, TMS 9901
RST-, LOAD-, IORST.B-

INT1- to INT6-

INT7- to INT15-

HOLD-, HOLDA

IAQ

Interrupt control: dedicated TMS 9901

Interrupt control: shared I/O, TMS 9901

Address, data, memory control for DMA: TMS 9900

Miscellaneous: TMS 9900

6-5

Signal Purpose Active State Group

Low

High

Low

Low

Memory

Memory

Memory

Memory

MEMEN -
(memory enable)

DBIN
(data bus input)

WE -
(write enable)

MEMCYC-
(memory cycle)

High Memory READY

High

Low

High

WAIT

HOLD-

HOLDA

Memory

Processor
Activity

Processor
Activity

Enables memory devices, address
on address bus is for memory

Shows state of processor's data
bus: high is input to processor,
low is output.

Strobe to memory devices for
writing data to memory.

Indicates beginning and end of
one memory cycle. For successive
memory cycles, MEMEN- can be
active continuously, MEMCYC-
goes inactive between each
separate memory cycle.

Indicates memory is ready with
read data on next clock, or has
disposed of data on write cycle.
Wait states are generated by
pulling this line low.

Acknowledges that memory is not
ready, indicating a wait state.

Requests processor to give up
control of address, data buses,
and MEMEN-, WE-, and DBIN.

Acknowledges that processor has
given up control of buses given
above, and has suspended
activity.

When an address is present on the address bus and MEMEN- is not active and if
AO, Al, and A2 are all zero, the CRUCLK pulse is gated through the external
instruction decoder, and any data on CRUOUT is strobed into the addressed CRU
device. This is a CRU output operation, and it is distinct from an input
operation in that CRUCLK is active during output; whereas, it is inactive upon
input.

As mentioned above, CRU input is achieved by the processor asserting an
address while keeping the MEMEN- signal inactive, and then polling CRUIN at
the appropriate time.

6.4.4 Control Bus

This bus is not as homogenous as the other buses; therefore it is divided into
groups as shown in Table 6-2. Table 6-3 gives a brief explanation of each
function.

TABLE 6-3. CONTROL BUS FUNCTIONS

6-6

Signal Purpose Active State Group

01, 03 Low Clock TTL level clocks

EXTCLK.B- Low Clock External TTL clock input to
TIM 9904A

CLK.B- Low Clock Output of internal oscillator
of TIM 9904A

PRES.B- Low Reset/Load Causes reset interrupt

RST- Low Reset/Load Reset interrupt input, TMS 9900

IORST

IORST- Low I/O reset to TMS 9901's. Does
not cause reset interrupt.

RESTART.B- Low Reset/Load Causes load function delayed by
LOAD- Low Reset/Load two IAQ or idle pulses. (LOAD is

name of external instruction and
load function pulse)

INT1-15- Low Interrupt Request for interrupt to TMS
9901

IAQ High Misc. Signifies this memory cycle to
be an instruction fetch.

Reset/Load External causes RSET- Low instruction,

TABLE 6-3. CONTROL BUS FUNCTIONS (CONCLUDED)

6.5 SYSTEM CLOCK

The system clock is generated by a crystal and tank circuit tuned to 4 times
the desired system frequency. This network is attached to the TIM 9904A clock
driver, which counts down the input signal from the tank and crystal into four
non-overlapping clock phases at MOS signal levels for the TMS 9900. The
inverse of these phases is output to TTL levels for the remainder of the
system.

Also on the TIM 9904A, the reset function is latched and synchronously
presented to the TMS 9900; this ensures synchronization with the correct
phase.

The crystal is a third overtone series-resonant crystal, set in an HC-18U
holder (see Figure 6-2).

The TTL clocks are routed the RESET-/LOAD- and MEMCYC logic, as well as to the
P1 connector and the TMS 9901 and TMS 9902A/9903's.

If pins 11 and 12 of the TIM 9904A (01 and 02) are shorted, the device
will overheat and go into thermal runaway almost instantly.

6-7

XTAL 1
QUARTZ

CRYSTAL CD -7- XTAL 2

3.3µH 1
18 pF

T TANK 2

TANK 1

OSCIN

4.7 Kil

18

19

12

11 TMS 9900

MICROPROCESSOR
TIM9904 A R 03

1 CLOCK 8 28
DRIVER

p4 R (64
25

R=1511
17

20 13 3 10

V CC iFVD D GNDI GND
1 2

+5V +12V

FIGURE 6-2. CRYSTAL-CONTROLLED OPERATION

6.6 CENTRAL PROCESSING UNIT

The TMS 9900 microprocessor is the central processing unit (CPU) for the TM
990/101MA. The responsibilities of the CPU include:

• Memory, CRU and general bus control

• Instruction acquisition and interpretation

• Timing of most control signals and data

• General system initialization.

Figure 6-3 groups the TMS 9900 pins by function. The address bus addresses
memory and the CRU devices, and provides the codes for the external
instructions. The data bus carries all memory data, including instruction
code as well as program data and addresses. Interrupt requests are encoded as
a binary number by the TMS 9901 for presentation to the TMS 9900 micropro-
cessor.

Memory operations are initiated by placing an address on the address lines
along with MEMEN-, DBIN, and eventually WE-. If the memory cycle is an
instruction fetch, IAQ goes active also. READY is sampled and the memory
cycle is ended one clock cycle after READY is active.

6-8

7

5

62

3

61

63

29

9
311.

a. 31

30

(MSB) DO •
41

42
TMS 9900 DI

IAQ D2

D3
45

HOLD 04 .41

46
HOLDA D5

47
READY D6

WAIT D7
48 ► DATA BUS GOES TO wig

.411 49 ► WE D8
MEMORY, EXPANSION
BUFFERS

D9 .01 50
MEMEN

DBIN D10 .41 51

52
Dll

01 D12
53

54
02 D13 .411

55
03 D14

D15 -.4111

CRUIN (MSB) AO
23

CRUOUT Al
22

CRUCLK A2
21

A3
20

INTREQ A4
19

► ICO A5
18 ADDRESS BUS GOES TO

IC1 A6
17 MEMORY AND I/O DECODER,

IC2 Al

A8
16

MEMORY, EXPANSION
BUFFERS, TMS 9901,

IC3
15 TMS 9902A

A9
14

VBB A10
13

VCC All
12

VCC Al2
11

VDD A13
10

VSS A14
Vss

+12V

5V

159

27

26

2

40

FIGURE 6-3. TMS 9900 PIN FUNCTIONS

+5V

GOES TO
RESET/LOAD
LOGIC

CONTROL BUS GOES
TO MEMORY DECODER, 1
MEMORY, EXPANSION
BUFFERS.

{ FROM SYSTEM CLOCK

1

CRU I/O

FROM TMS 9901
INTERRUPT CONTROL

25

32

36

35 ►
34

""

33 40.

RESET 6

LOAD

CRU operations are initiated by placing an address on the address bus. CRUIN
is sampled for an input operation; otherwise it is ignored, and for an output
operation the datum is placed on CRUOUT and strobed with CRUCLK. Aside from
I/O purposes, CRU operations also program the operation of such devices as the
TMS 9901, 9902A, and 9903.

Figures 6-4 and 6-5 show the data flow and operational flowchart of the
microprocessor. Figure 6-6 shows the decoding of the external instructions.
For more information, refer to the TMS 9900 Microprocessor Data Manual.

6.7 RESET/LOAD LOGIC

After the clock and the CRU, the next circuitry most closely associated
with microcomputer operation is the random logic dealing with RESET- and
LOAD-. This block initializes the system and is also used to return control
to TIBUG when using single-step operation (refer to Figure 6-6).

6.7.1 RESET Function

The RESET switch feeds a latch formed from back-coupled inverters for
debouncing. The PRES.B- signal from connector P1 joins the RESET- switch
signal in a Schmitt trigger gate to assure that multiple reset pulses due to
noise or bounce do not affect the microcomputer. After being inverted again,
the reset signal is routed to the TIM 9904A which then synchronizes it with 03
and then presents the signal to the microprocessor.

The RESET- signal also goes to two flip-flops which generate the IORST-
signal, which clears TMS 9901's and any other devices attached to it
offboard. This IORST- signal is also generated by the external instruction
RSET, but it is important to realize'that the RSET instruction in a program
generates only IORST- and not a full RESET interrupt. IORST- can be active for
up to two 03 clock periods.

Reset causes the following to occur:

• Clears I/O devices on IORST line (onboard TMS 9901)

• Inhibits memory write and CRU operations

• Sets TMS 9900 status register interrupt mask to 000016

• Processor traps to vectors at 000016 and 000216

Reset is caused by:

• Actuating the RESET switch on the PC board

• Setting the PRES.B- signal to a logic ZERO state on connector P1.

.).....Z
.......7 c<6 \C

C
MULTIPLEXER

T1

T2

PROGRAM COUNTER

WORKSPACE REGISTER

TNTREO ICO IC3
AO—A14

INTERRUPT
REGISTER MEMORY

ADDRESS
REGISTER

16

STATUS
REGISTER

16

INSTRUCTION
REGISTE R

CONTROL
ROM

C
0

T
R
N

\ A MULTIPLE XE Ft

16 16

HOLD

HOL DA
LOAD

VtiE
READY

WAIT
%WM

DBIN

RESET
IAO

CONTROL
LOGIC

A IT

ALU

F

R
\ AIM T ‚PIE Xf R

CRUCLK

16

SHIFT

I
COUNT F

16

SODHCf DATA
HI GIST(H

16

16

SHIFT REGISTER

 1

16

CRUOUT
DO D15 CROIN

FIGURE 6-4. TMS 9900 DATA AND ADDRESS FLOW

INSTRUCTION

ACQUISITION

RESET SIGNAL
CAUSES IMMEDIATE

V

GET RESET VECTOR

IIIVP AND PC)

FROM LOCATION 0, 2

STORE PREVIOUS PC,

WP, AND ST IN NEW

WORKSPACE. SET

INTERRUPT MASK
(ST12-ST15) = 0

INTERRUPT
VALID? 11C0-1C3-.<

T12-ST15)
GET LOAD VECTOR

(WP AND PC) FROM

LOCATION FFFC16,

FFFE16

STORE PREVIOUS PC,

WP, AND ST IN NEW

WORKSPACE. SET

INTERRUPT MASK

(ST12 - ST15) -= 0

V

GET INTERRUPT LEVEL

VECTOR (WP AND PC)

STORE PREVIOUS PC,

WP, AND ST IN NEW

WORKSPACE. SET
INTERRUPT MASK (ST12
-ST15) TO LEVEL - 1

INSTRUCTION

EXECUTION

FIGURE 6-5. TMS 9900 CPU FLOWCHART

6-12

U 1 1

RST-

RSET-
74L808

MEMEN-

03—

TO OFF BOARD I/O CLRCRU-

TO ON BOARD I/O IORST-

+5V

WAIT

0 1
ME MC YC -

+5V +5V
F -,...--,. -6-.......

PRE PRE PRE
.

D 0 D Q D 0
U 1 0 U 1 0 U17

74LS74 74LS74 74L874

-CK Q -CK Q- -CK Q -
CLR CLR CLR

---1:7-' '-'1:7-'
r+5v

CK

17) Q
U17

74L874

CLR

PRE
0

PRE
0

U20
74LS74

CK 6
CLR

PRE
+5V I-..-)i,

PRE
-D 0 -

U20
74LS74

- CK 6
CLR

+5V

0
US

74LS74
CK

CLR

U7

74LSO4

A
PRE

D Q-
U8

74LS74
CK 6

CLR

+5V

LOAD-

F
R

O
M

 P
R

O
C

E
S

S
O

R
 C

IR
C

U
IT

U7
74LSO4

741308

••sr, 3F

L

I
I tr I

ELECTROLYTIC!
—J

-

 C23 1 74LS132

P2-16 4
Win

LREX-
FROM PROCESSOR CIRCUIT

FIGURE 6-b. RESET AND LOAD LOGIC

6.7.2 LOAD Function

The LOAD function is triggered by either activating RESTART.B- or executing
the external instruction LREX. Both of these are combined in the same way the
RESET function is. The first flip-flop presents the LOAD request to the
second, and the second and third flip-flops count two IAQ or IDLE pulses and
then present the LOAD function request to the microprocessor. The second
flip-flop clears the first one so that only one LOAD is generated even though,
for instance, the RESTART.B- signal may be continuously active.

RESET overrides LOAD because a RESET- signal clears the LOAD flip-flops. This
is important when both requests occur simulataneously.

Load causes the following to occur:

• LOAD function is delayed two instructions (IAQ) or idle pulses (IDLE),
then triggerred

• Processor traps to vectors at M.A. FFFC16 and FFFE16.

6-13

P1-93 RESTART.B-

P1-94.4

WO R5
+5V

U7 74LSO4 4.71(2 r
R24 • !C181, 3911

I I

R25 LELECTROLYTIC!

PRE S. B-

74LS132

U11 U7

t> •
741SO4

+5V

R6
1Ku 011

IAQ

IDLE-

S1
N.C.

•-0

Load is caused by the following if RESET is inactive:

• Executing the software instruction LREX

• Setting RESTART.B- to logic ZERO state on connector P1.

6.7.3 Reset and Load Filtering

Installing a 39 microfarad capacitor at C18 will debounce the PRES.B- signal.
This would be adequate for manual actuation by an SPST pushbutton to ground.

A 39 microfarad capacitor at C23 debounces the RESTART.B- signal, suitable for
connection to a manually actuated switch in the same way as above.

These capacitors are user options, and these values are suggested values.

6.7.4 CLRCRU Signal

The CLRCRU (clear CRU) signal is a power-up IORST which resets the edge-
triggered interrupt 6, the status LED, and remote serial port Date Terminal
Ready signal. The status LED is lighted and Data Terminal Ready is inactive.

6.8 EXTERNAL INSTRUCTIONS

The so-called external -instructions are those which, when executed by the
processor, cause address lines AO, Al, and A2 to be set to a state, and CRUCLK
to become active. The instructions and descriptions are listed in Table 6-4.

TABLE 6-4. EXTERNAL INSTRUCTIONS

Instruction Opcode AO Al A2 Description

IDLE 0340 0 1 0 Suspends processor until RESET, LOAD,
or interrupt'occur.

RSET 0360 0 1 1 Zeroes TMS 9900 interrupt mask,
generates IORST

CKON 03A0 1 0 1 Not used on TM 990/101MA

CKOF 03C0 1 1 0 Not used on TM 990/101MA

LREX 03E0 1 1 1 Causes LOAD, delayed by two IAQ or
IDLE pulses

The CKON and CKOF instructions are used by other 990-family systems to control
the system timer. On the TM 990/101MA, the system timer is incorporated into
the TMS 9901; hence, these instructions are not used.

The RSET instruction generates the IORST signal to clear all I/O devices (on-
board TMS 9901) attached to it. It also clears out the status register
interrupt mask, which allows only a RESET interrupt or a LOAD function to be
granted.

The LREX instruction causes a LOAD function request to be presented to the
processor after two IAQ or IDLE pulses. This means that the LOAD function
occurs after two instructions are executed following the LREX. TIBUG uses
this function to do single step by executing the LREX, a RTWP to the user,
then one user instruction. The LOAD function becomes active and vectors back
to TIBUG, which then prints the processor registers.

IDLE causes the processor to suspend operation; it is, in essence, a HALT
instruction. An interrupt or LOAD terminates the idle state.

In all cases, note that AO, Al, and A2 are nonzero values so that these
instructions are differentiated from a CRU output operation.

6.9 ADDRESS DECODING

This section explains address decoding for both memory and CRU I/O along with
their memory maps. The memory address map configurations are shown in Figure
6-7.

6.9.1 Memory Address Decoding

6.9.1.1 Memory Address Decoding PROM

The memory map is programmed in a 745287 PROM as shown in Figure 6-8. The
PROM is a 256 x 4 bit memory, and each four-bit word (D04 to D01) is used to
determine memory to be enabled. The most significant bit of the PROM word,
D04, is the RAM enable control line. Programming a ZERO on D04 will cause RAM
to become active. Since there are two banks of RAM on the board and since
there is no room on the PROM to decode the two banks separately, each bank is
enabled by the state of address line A4. Therefore, all RAM is decoded by the
PROM as a complete block and cannot be separated.

The next two bits of the PROM word (D03 and D02) enable each EPROM bank
separately and directly. EPROMs are enabled by programming a zero.

The least significant bit of the PROM word (D01) is a negative-logic "OR" of
the other three bits of the PROM word. If any of the other three bits are
zero, this bit must be zero also. This signal indicates to data bus buffer
control whether memory addressed is onboard or offboard; a zero state
indicates onboard memory.

EPROM 1
(TMS 2708)

EPROM 2
(TMS 2708)

OFF-BOARD
MEMORY

RAM 2
2114

RAM 1
2114

0000

07FE

OFFE
1000

2000

EFFE
F000

F7FE
F800

FFFE

EPROM 1
TMS 2716

EPROM 2
TMS 2716

OFF-BOARD
MEMORY

RAM 2
2114

RAM 1
2114

0000

0800

OFFE
1000

1FFE
2000

EFFE
F000

F7FE
F800

FFFE

EPROM 1
TMS 2708

EPROM 1
TMS 2708

EPROM 2
TMS 2716

OFF-BOARD
MEMORY

RAM 2
2114

RAM 1
2 1 1 4

0000

07FE

OFFE
1000

1800

1FFE
2000

EFFE
F000

F7FE
F800

FFFE

EPROM 1
TMS 2716

EPROM 2
TMS 2708

EPROM 2
TMS 2708

OFF-BOARD
MEMORY

RAM 2
2114

RAM 1
21 14

0000

0800

1000

F000

F800

OFFE

17FE

1FFE

EFFE

F7FE

FFFE

a) 2K EPROM (2708's) b) 4K EPROM (2716's) c) 3K EPROM (2708 & 2716) d) 3K EPROM (2708 & 2716)

2K RAM 2K RAM 2K RAM 2K RAM

NOTES

1. All addresses in hexadecimal.

2. EPROM selection in each bank is a jumper option.

FIGURE 6-7. TM 990/1O1MA MEMORY ADDRESSING

The memory address decoding PROM is enabled by MEMEN- when active low, and the
lower five input bits are the most significant bits of the address bus (AO to
A4). The PROM thus selects memory in blocks of 1K words. The upper three
address bits of the PROM have jumper options to choose between TMS 2708s and
TMS 2716s and to select or deselect onboard EPROM, and to configure the memory
map either with EPROM in low addresses and RAM in high addresses, or RAM low
and EPROM high. There are thus eight different address maps in the PROM
controlled by the three jumpers (23 = 8). Each address map consists of 32
four-bit words, showing the state of each 1K word block in memory.

When MEMEN- is inactive, the PROM is disabled.

6.9.1.2 EPROM Selection

There are two basic memory maps for the EPROM - one for the TMS 2708s and the
other for TMS 2716s. These correspond to cases (a) and (b) of Figure 6-7.
Each bank of EPROM actually consists of two EPROM devices, one for bits 0 to 7
of the addressed word, and the other for bits 8 to 15. Beginning addresses are
shown to the left of the figure; ending addresses are shown to the right. Each
EPROM bank is separate and can be programmed into any location by
reprogramming the address decode PROM.

Case (c) and (d) of the memory map in Figure 6-7 show what happens if the
jumper is is configured to "2716" position, and TMS 2708s are used. Case (c)
shows that if a word at address 000016 is accessed, that same word can be read
at 080016. Likewise, both 000216 and 080216 will address the same word, etc.

On the board, the jumper next to the EPROMs selects the proper pin
configuration for the particular EPROM in use. Note that address line A4 is
routed to the EPROM when the jumper is in the "2716" position.

To deselect, or ignore, onboard EPROM, move the EPROM select jumper to connect
pin E12 to E13. This causes onboard EPROM sockets to disappear completely
from the memory map.

6.9.1.3 RAM Selection

The RAM is treated as one block, since it is decoded with only one output line
from the address decode PROM, There are four RAMs per bank and two banks in
the block. The selection of a specific bank of RAM is decided by the state of
address line A4. Selection is accomplished by the gate array shown in Figure
6-8. Each RAM select is set up by the PROM and A4, and becomes valid when WE-
goes low for a write, or DBIN goes high for a read. Note that DBIN will
assert at the same time MEMEN- goes low during a read cycle, reference Figure
6-10, but WE- will not assert until some time after MEMEN- goes to O. The user
should be aware that a chip select will not occur during a write cycle until
after WE- drops. This is to prevent fast RAMs, which sample WE- as soon as
they are selected, from sampling WE- before it goes low during a write cycle.

At this point, the second jumper option becomes meaningful. This option
selects where EPROM and RAM appear in the memory map. In the normal "RAM
HIGH" position, the RAM bank address begins at F00016 and EPROM begins at
000016. Moving the jumper plug to the alternate position causes "2708"
EPROMs to be at F00016 ("2716" EPROMs begin at E00016), and RAM to be at
000016.

6-17

ADH

ADG

ADF

ADE

ADD

ADC

ADB

ADA

U19

D04

D03

D02

DO1

2 EPROMSEL

7 A2

A4

R23
4.7K

.---NAAr— +5 V

GATE ARRAY

6 13

9 RAM

10 ROM2

11 ROM1

E10

E9

E17
2708/2716- 15

El 6 RAM—MAP—H I 1 U12

El 5
AO 3

E14 Al 4

12 ONBOARDMEM
E13

A3 6

El 2 A4 5 0 J
U

M
P

E
R

S
 S

E
L
E

C
T

 M
A
P

 0
 T
O

 7
 (0

0
0
2
 T

O

El 1

WE

DBIN

RAM 1

RAM 2

(o
0

(o
0

0

C°

TABLE A. ADDRESS IN/DATA OUT

MAP PROM OUTPUT (4 BITS EACH)

0 66FF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
1 66FF FFFF FFFF FFFF FFFF FFFF FFFF CCAA
2 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FF66
3 CCAA FFFF FFFF FFFF FFFF FFFF FFFF FF66
4 • 66FF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
5 66FF FFFF FFFF FFFF FFFF FFFF FFFF FFCA
6 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FF66
7 CAFF FFFF FFFF FFFF FFFF FFFF FFFF FF66

TABLE B. MAP CONFIGURATION (SET BY JUMPERS)

ADDRESS
INPUT

ADH TO
ADA (LSB)

00
20
40
60
80
AO
CO
EO

MAP 0 =
Map 1 =
Map 2 =
Map 3 =
Map 4=
Map 5 =
Map 6 =
Map 7 =

2708 OR
2716 USED?

TMS 2716
TMS 2716
TMS 2716
TMS 2716
TMS 2708
TMS 2708
TMS 2708
TMS 2708

LOW OR
HIGH RAM?

Low RAM
Low RAM
High RAM
High RAM
Low RAM
Low RAM
High RAM
High RAM

READ EPROM?

No EPROM
High EPROM
No EPROM
Low EPROM
No EPROM
High EPROM
No EPROM
Low EPROM

FIGURE 6-8. MEMORY ADDRESS DECODE PROM

6-18

6.9.1.4 Memory Mapping

The memory map can be changed by the user substituting another user programmed
PROM in the address decoder socket. (The 745287 PROMs are available from your
Texas Instruments distributor.) Using the guidelines in section 6.9.1, the
user can produce many different memory maps. In general, if active output is
desired for any particular input combination, the bit code is set to zero.
Starting at the initial input address to the PROM, the output states desired
are determined. ADA is the least-significant address input, and ADH is the
most significant. DO1 is the least significant output bit, and D04 is the
most significant.

When planning a memory map, or when using any memory offboard (such
as a TM 990/201 or TM 990/206 memory board), the memory devices on
the TM 990/101MA board must not overlap in address space either with
each other or with devices offboard. Onboard memory devices MUST be
mapped into unique locations, and no other offboard devices may
respond to addresses intended for any onboard memory device.

The 745287 PROMs are field-programmable, fusible-link devices. The PROMs are
delivered in a state of all binary ONEs. By blowing a fuse link during
programming, a ZERO is programmed. Once a bit is programmed as ZERO, there is
no way to restore the bit to a ONE. Be careful to program the device
completely; partially programmed devices have been known to have random bit
revert back to the ONE state because the fuse link was not blown completely.

MSB and LSB conventions are those used by the TM 990 family systems hardware
and software for PROM and EPROM programming.

6.9.2 CRU Select

The CRU I/O decoding is done by a gate array and a 74LS138 decoder as shown in
Figure 6-9. Address lines A3 through A9 are decoded, providing eight onboard
select lines, each line addressing a block of 32 CRU bits. These select lines,
ISELO through ISEL7, go to the various onboard CRU devices, with the exception
of the ISEL3 line which is reserved for future use. The INTCRU/EXTCRU line is
defined by the upper four address bits (A3-A6) and MEMEN; the line activates
the 74LS138 decoder and deactivates the 74LS241 buffer with CRUIN.B and
CRUOUT.B when an onboard CRU address is asserted. At all other times the
buffer is enabled, and the onboard decoder is disabled, allowing some
offboard CRU device to respond. Because of this manner of decoding, over-
lapping CRU addresses offboard will be ignored if they are mapped into
onboard CRU space. Onboard CRU address space thus is reserved; and because
there is no PROM, the CRU address map cannot be changed. Table 6-5 gives the
detailed CRU map for the TM 990/101MA.

6-19

74LS02

INT CRU/EXTCRU-
- 4

15 ISELO— U52
YO

6
D

14 ISEL1—
G1 Y1

4
D

13 ISEL2—
G2A Y2 0

5
0

D
12 ISEL3--

G2B Y3
3

D
11 ISEL4— A7

C Y4
A8 2

D
10 ISEL5—

B Y5
A9 D ISEL6—

Y6
ISEL7— D7

Y7

74L5138 3:8 DECODER

SIGNAL ENABLES

ISELO— L.E.D. Circuit

ISEL1— DIP Switch

ISEL2— Main TMS 9902A (P2)
ISEL3— Not Used

ISEL4— TMS 9901

ISEL5— RESET Edge-Triggered Interrupt

ISEL6— Auxiliary TMS 9902A (P3)

ISEL7— Auxiliary EIA Signals

FIGURE 6-9. DECODING CIRCUITRY FOR CRU I/O ADDRESSES

CRU
Software Base
Address (Hex)

Bit
Address (Hex) Function Input Output

000016 0000 STATUS LED
0001 RESERVED

1
001F RESERVED

004016 0020 UNIT ID 4 (LSB) INPUT ONLY
0021 UNIT ID 3
0022 UNIT ID 2
0023 UNIT ID 1
0024 UNIT ID 0 (MSB) INPUT ONLY
0025 GROUNDED
0026 GROUNDED
0027 GROUNDED
0028 RESERVED
TO

003F RESERVED

008016 0040 SERIAL I/O RBRO CTRLO
0041 PORT A P2 RBR1 CTRL1
0042 TMS 9902A RBR2 CTRL2
0043 RBR3 CTRL3
0044 RBR4 CTRL4
0045 RBR5 CTRLS
0046 RBR6 CTRL6
0047 RBR7 CTRL?
0048 0 CTRLB
0049 RCVERR CTRL9
004A RPER CTRL10
004B ROVER LXDR
004C RFER LRDR
004D RFBD LDIR
004E RSBD LDCTRL
004F RIN TSTMD
0050 RBINT RTSON
0051 XBINT BRKON
0052 0 RIENB
0053 TIMINT XBIENB
0054 DSCINT TIMENB
0055 RBRL DSCENB
0056 XBRE NOT USED
0057 XSRE NOT USED
0058 TIMERR NOT USED
0059 TIMELP NOT USED
005A RTS NOT USED
005B DTR NOT USED
005C CTS NOT USED
005D DSCH NOT USED
005E FLAG NOT USED
005F INT RESET

TABLE 6-5. TM 990/101MA CRU MAP

6-21

TABLE 6-5. TM 990/101MA CRU MAP (CONTINUED)

CRU
Software Base
Address (Hex)

Bit
Address (Hex) Function Input Output

0060 RESERVED

007F RESERVED
010016 0080 TMS 9901 CONTROL BIT CONTROL BIT

0081 PSI INT1 / CLK1 MASK1 / CLK1
0082 INT2 / CLK2 MASK2 / CLK2
0083 INT3 / CLK3 MASKS / CLK3
0084 INT4 / CLK4 MASK4 / CLK4
0085 INT5 / CLK5 MASK5 / CLK5
0086 INT6 / CLK6 MASK6 / CLK6
0087 INT7 / CLK7 MASK7 / CLK7
0088 INT8 / CLK8 MASKS / CLK8
0089 INT9 / INT9 MASK9 / MASK9
008A INT10/ INT10 MASK10/ MASK10
008B INT11/ INT11 MASK11/ MASK11
008C INT12/ INT12 MASK12/ MASK12
008D INT13/ INT13 MASK13/ MASK13
008E INT14/ CLK14 MASK14/ CLK14
008F INT15/ INTREQ MASK15/ RST2
0090 PO INPUT PO OUTPUT
0091 P1 INPUT P1 OUTPUT
0092 P2 INPUT P2 OUTPUT
0093 P3 INPUT P3 OUTPUT
0094 P4 INPUT P4 OUTPUT
0095 P5 INPUT P5 OUTPUT
0096 P6 INPUT P6 OUTPUT
0097 P7 INPUT P7 OUTPUT
0098 P8 INPUT P8 OUTPUT
0099 P9 INPUT P9 OUTPUT
009A P10 INPUT P10 OUTPUT
009B P11 INPUT P11 OUTPUT
009C P12 INPUT P12 OUTPUT
0 09D P13 INPUT P13 OUTPUT
009E TMS 9901 P14 INPUT P14 OUTPUT
009F PSI P15 INPUT P15 OUTPUT

014016 00A0 RESERVED

00A5 RESET INT6
00A7 RESERVED
TO
OOBF RESERVED

CRU
Software Base
Address (Hex)

Bit
Address (Hex) Function Input Output

018016 0000 SERIAL I/O RBRO CTRLO
00C1 PORT B P3 RBR1 CTRL1
00C2 (THS 9902A) RBR2 CTRL2
00C3 RBR3 CTRL3
00C4 RBR4 CTRL4
0005 RBR5 CTRL5
0006 RBR6 CTRL6
0007 RBR7 CTRL?
0008 0 CTRL8
00C9 RCVERR CTRL9
OOCA RPER CTRL10
OOCB ROVER LXDR
00CC RFER LRDR
OOCD RFBD LDIR
OOCE RSBD LDCTRL
00CF RIN TSTMD
OODO RBINT RTSON
00D1 XBINT BRKON
00D2 0 RIENB
00D3 TIMINT XBIENB
00D4 DSCINT TIMENB
00D5 RBRL DSCENB
00D6 XBRE NOT USED
00D7 XSRE
00D8 TIMERR
00D9 TIMELP
OODA RTS
OODB DCD (NOT DSR)
OODC CTS
OODD DSCH
OODE FLAG NOT USED
OODF INT RESET

01C016 00E0 DTR DTR
00E1 DSR
00E2 RI
00E3
00E4
00E5
00E6 RI
00E7 0 DTR
00E8 RESERVED RESERVED
00E9
OOEA
00EB
00EC
OOED
OGEE
OOEF PORT B 0 RESERVED

TABLE 6-5. TM 990/101MA CRU MAP (CONTINUED)

6-23

TABLE 6-5. TM 990/101MA CRU MAP (CONCLUDED)

CRU
Software Base
Address (Hex)

Bit
Address (Hex) Function Input Output

01E016 00F0 RESERVED
TO

()OFF RESERVED

020016 0100 OFF-BOARD
TO CRU

0180 OFFF

Although CRU addresses are decoded into 32-bit blocks, not all CRU
devices use or completely decode the entire 32 bits. This can
result in a CRU device being enabled by addresses other than those
specified. Note the alternate addresses in Table 6-6. This
condition may be referred to as implicit decoding, and should be
considered where it is necessary to debug a CRU scheme.

Note that, address lines AO, Al, and A2 do not enter into the decoding. If
an external instruction is being executed, it is true that some CRU device may
be addressed by the line A3 through Alit, but since CRUCLK is trapped in the
external instruction decoder, no CRU output can be done. Therefore, since
CRUCLK is absent from the addressed device, it will assume a CRU input
operation, and present a datum to CRUIN, which the processor will ignore. No
harm is done in either case, so lines AO, Al, and A2 are don't care
conditions.

Device Normal Address Range
(R12, Bits 3 to 14)

Alternate Address
Ranges

Status LED
Unit ID Switch

0000
0020 - 0027

0001 - 001F
0028 - 002F, 0030 - 0037,
0038 - 003F

Edge Trig INT6 Clear
DTR (Input)

DTR (Output)
DSR (Input)

RI (Input)

OOA6 00A0 - 00BF
OOEO 00E4, 00E8, 00EC, 00F0, 00F4,

00F8, OOFC
OOEO 00E1 - ()OFF
00E1 00E5, 00E9, OOED, 00F1, 00F9,

00FD
00E2 OOFA, 00FE

TABLE 6-6. IMPLICIT DECODED CRU BIT ADDRESSES

NOTES

The above are CRU bit addresses, not R12 contents.

2. Response to an alternate address (right column) will be the same
as to using the normal adress (middle column); however, the user
should program using only the normal address.

Table 6-7 gives nominal address values for all onboard CRU devices. These are
the nominal values which should be used in programs.

TABLE 6-7. ONBOARD DEVICE CRU ADDRESS

Device

CRU Address
(R12, Bits 0-15)
(Hexadecimal)

Maximum
Displacement
(Decimal)

CRU Bit Address Range
(R12, Bits 3-14)
(Hexadecimal)

Status LED 0000 0 0000
Unit ID Switch 0040 4 0020 - 0024
Local TMS 9902A 0080 31 0040 - 005F
TMS 9901 Interrupt 0100 15/31* 0080 - 008F
/Timer
TMS 9902A Parallel 0120 15/31* 0090 - 009F
I/O
Reset Interrupt 6 014C 0 OOA6
Remote TMS 9902A 0180 31 0000 - OODF
DTR, DSR, RI 01C0 2 OOEO - 00E2

*The TMS 9901 is shown split into its two separately functional parts; each
has a maximum displacement of 15. Together, the device has a maximum
displacement of 31.

6-25

/------------1\
\ /

MEMEN

DBIN

WE

AO A14

READY

WAIT

DO-D15 CPU DRIVEN INPUT MODE CPU DRIVEN CPU WRITE DATA DRIVEN

)(:)C DON'T e411)000(KY \00000.006,5rii CART \000009119R.EXX)(

k

41

02

6.10 MEMORY TIMING SIGNALS

The three memory timing signals are READY, WAIT, and MEMCYC-. These are
arbitrarily grouped together for a discussion of their theory of operation.

6.10.1 Ready

The READY signal is an input to the TMS 9900 microprocessor which indicates
that during a memory cycle, the memory devices addressed will be ready at the
next 01 clock phase for a successful disposition of data.

The READY signal is sampled by the processor during 01, after MEMEN- has gone
low. If READY is high when sampled, the 9900 CPU will continue the memory
operation in progress as shown by the READ cycle part of Figure 6-10. During
a read cycle if READY is sampled and found to be high, the processor will read
data from the selected memory device(s) on the leading edge of the next 01.
During a write cycle, if READY is sampled on the leading edge of 01 and found
high, the CPU will assume that data has successfully been stored in the
selected memory device(s) by the time the next leading edge of 01 occurs. If
the selected memory device(s) cannot meet this timing constraint, the READY
signal can be pulled low, which puts the TMS 9900 CPU into a wait state. The
WAIT signal will go high to signify that the processor is in a wait state, and
CPU operations will be suspended until READY is sampled high. When READY goes
high again, WAIT will drop and the CPU will continue execution from the point
where it stopped. (Refer to the write cycle portion of Figure 6-10.)

[41-- 333 ns WITH 3MHz CLOCK

IAO
I SHOWN ASSUMING THIS \

CYCLE IS AN INSTRUCTION

J
ACQUISITION CYCLE

RD = READ DATA

MEMORY READ CYCLE WITH NO WAITS MEMORY WRITE CYCLE WITH ONE WAIT

FIGURE 6-10. TMS 9900 MEMORY BUS TIMING

6-26

The READY line can be held low for any amount of time, so the user can use
memory devices with very slow access times. As an example, consider the
memory cycle times for the 2114 memories resident on the CPU board. With a
system clock frequency of 3 MHz, the total time is about 600 nsec between (1)
assertion of DBIN, MEMEN-, and valid address and (2) the actual processor
read. When rise and fall times for these signals plus setup times for the
data are computed, the memory device should have an access time of 490 nsec or
less from valid address. For processor write operations, counting rise and
fall times plus data hold times, the cycle time should be less than 600 nsec
from valid address. 2114 devices will have data available for the processor
to read a maximum of 450 nsec after receiving a valid address. For write
operations, the data must be held valid for at least 200 nsec before the WE-
signal goes high. If Figure 6-10 is examined, the user will notice these
constraints are easily met. If the memory devices do not meet these times,
wait states can be inserted to hold control, address and data lines valid
until the timing criteria for the device is met. Each wait state extends
valid control, address and data information by 333 nsec.

For 3 MHz operation, data must be available during a read cycle 490
nanoseconds after the start of the cycle. For a write operation data must be
captured by the memory devices 600 nanoseconds after the start of the cycle.
If these times cannot be met, the processor can be put in a wait state by
forcing READY.B low for as long as necessary (indefinitely, if need be). After
READY.B becomes high, the memory cycle will occupy one more clock cycle and
then be completed. Refer to Figure 6-10.

6.10.2 Wait

The WAIT signal is output by the processor to acknowledge that addressed
memory devices are not ready and that the processor is in a wait state.

Note that if one wait state is required, as is specified by the SLOW jumper,
WAIT can be connected to READY. At the start of the cycle, WAIT is inactive
and thus low. When the processor samples READY, it sees that memory is not
ready because the READY line is low. The processor acknowledges by raising
WAIT to high, and being connected to READY. When the processor samples READY
again, it finds it high and therefore completes the memory cycle. The SLOW
jumper must be inserted for memories which cannot meet the speed requirements
listed in section 6.10.1.

6.10.3 MEMCYC-

It is possible for the TMS 9900 microprocessor to activate MEMEN- and
accomplish many fetches from memory by shifting the address bus, all while
MEMEN- is still active. The MEMCYC- signal is synchronized to the 03 clock
edge after the beginning of the memory cycle, and goes inactive just before
the instant the address bus could change. This signal thus delimits one
complete memory cycle and differentiates between separate memory cycles.

The MEMCYC- signal is used by dynamic memories which must be able to intervene
between memory cycles for burst refresh, if necessary.

6.11 READ-ONLY MEMORY

The two EPROM blocks, shown in Figure 6-11, each contain two devices. Each
device provides an eight-bit output; the two in parallel in each block thus
provide a 16-bit word. TMS 2708 EPROMs contain 1K X 8 bits; therefore, each

6-27

block is 1K words. Using TMS 2716 EPROMs, capacity is expanded to 2K words
per block. A fully expanded EPROM section thus contains 4K words or 8K bytes
of addressability. Each block is separately mapped into the address space as
explained in section 6.9.1.2.

6.12 RANDOM ACCESS MEMORY

The two RAM blocks, RAM 1 and RAM 2, each contain four 2114 devices. Each
device provides four-bit storage; four devices in parallel in each block
provide a 16-bit word. Each 2114 device contains 1K X 4 bits; therefore, each
block is 1K words. A fully expanded RAM section thus consists of 2K words.
Both blocks are mapped into a contiguous address space, and are selected as
explained in section 6.9.1.3. Block RAM 2 is shown in Figure 6-12.

R44 0 0 (r0
4.7K E26 E27 E28 E29 E30

+5 V -N

ROM1-

A5 22 20 A5 22 20
A9

A6 23 18 A6 23 18
A8

A7 1 17 DO A7 1 17 D8
A7 08

A8 2 6 D1 A8 2 16 D9
A6 07

A9 3 A5 U44 06 15 D2 A9 3 U42 15 D10

A10 4
A4

05 14 D3 A10 4 14 D11

All 5 13 D4 All 5 13 D12
A3 Q4

Al2 6 11 D5 Al2 6 11 D13
A2 03

Al3 7 10 D6 A13 7 10 D14
Al 02

A14 8 9 D7 A14 8 9 D15
AO Q1

TMS 2708/2716 TMS 2708/2716

0 0 0
R45

E31 E32 E33 E34 E35
4.7K

A4- ROM2-

A5 22 20 A5 22 20

A6 23 18 A6 23 18

A7 1 17 DO A7 1 17 D8

A8 2 16 DI A8 2 16 D9

A9 3 15 D2 A9 3 15 D10

A10 4
U45

14 D3 A10 4
U43

14 D11

All 5 13 D4 All 5 13 D12

Al2 6 11 D5 Al2 6 11 D13

A13 7 10 D6 A13 7 10 D14

A14 9 D7 A14 9 D15

TMS 2708/2716 TMS 2708/2716

FIGURE 6-11. READ-ONLY MEMORY

6-28

6.13 BUFFER CONTROL

Connector P1 is the system bus edge connector. It contains, in approximate
order by pins: the system power, interrupt, data, address, and control
signals. Table H-1 lists pins and their functions. Power lines are detailed
in paragraph 6.2, and interrupts are detailed in paragraph 6.111. This
discussion covers the address bus buffers, the data bus buffers, control
buffers, and a short discussion of HOLD, HOLDA, and direct memory access
(DMA).

DO)

D1

D2,/

D3/

10

•

A5 15

A6 16

• A7 17

A8 1

1/4.. A9 2

• A10 3

• A11 4

Al2 7

• A13 6

1/4... A14 5

A9 1/04

A8 1/03

A7 1/02

A6 1/01

A5 U36

A4

A3

A2

A 1 CS

AO WE

•
A5 15

A6 16

A7 17

A8 1

• A9 2

• A10 3

All 4

1/4., Al 2 7

• A13 6

• A14

11 D8

14 D11

U34

8

10

12 D9 I

13 D10)

11

12

13

14

8

RAM2-

WE- 2 114 2114

11 D4 A5 15 11 D121

A6 16

A7 17 13 D14)

14 D15

• A5 15

A6 16 12 D13

A8 1

A9 2 •

12 D5

13 D6_..d

14 D7/

• A7 17

A8 1

A10 3 U30 U28

• A9 2

11/4. A 1 0 3

All 4 •
Al 1 4

•

8

10

• Al 3 6

• A14

A13 8

• A 1 4 5 10

Al2 7 Al2 7

2114

FIGURE 6-12. RANDOM ACCESS MEMORY

6-29

2 114

Data Flow
HOLDA ONBDMEM Bus Command (READ) (WRITE) Operation

Low Low DBIN Onboard Offboard Normal offboard
Low High Low Offboard Offboard Normal onboard
High Low High Onboard Onboard DMA offboard
High High DBIN- Offboard Onboard DMA onboard

6.13.1 Address and Data Buffers

The address buffers consist of two 74LS245 octal bus transceivers. The address
lines normally flow offboard. Upon a HOLDA signal, the direction reverses,
allowing a DMA controller to input an address onto the board for disposition
by the address decoder section. Address and data buffers are shown on sheet 3
of the schematics (Appendix F, page F-3).

The same devices are used as the data bus buffers, Direction data flow,
however, is governed by the 74LS153 decoder using the states of ONBDMEM and
HOLDA (listed in Table 6-8).

TABLE 6-8. DATA BUFFERS

Note that during normal offboard operation, the direction is as expected.
During normal onboard operation, the direction of data flow is always
offboard so that offboard data will not interfere with the onboard operation.
This also permits an external logic system to monitor onboard activities for
debugging purposes. For example, illegal op codes can be caught by monitoring
the data bus during IAQ time. Following the same logic, data flow is always
onboard during an offboard DMA operation so that no interference occurs.
Finally, onboard DMA requires that the buffers be in a state opposite that
normally expected since the controller is offboard.

6.13.2 Control Buffers

Three types of enabling are used on control line buffers: HOLDA, CRU, and
always enabled. The lines that are always enabled are those whose source is
always onboard, such as the clocks, IAQ, IORST, CRUCLK, and HOLDA.

The second type, the CRU signals, are governed by the INTCRU/EXTCRU- signal
derived by the CRU address decoder (see section 6.9.2). Normally enabled,
CRUIN.B and CRUOUT.B are disabled for onboard operation to prevent possible
interference during address and CRU data stabilization.

The third type of control buffer is the type directly affected by CPU or DMA
operations: the memory control signals MEMEN-, WE-, and DBIN. Normally
enabled flowing offboard, these lines reverse direction when flowing onboard
for DMA operations so that the DMA controller can command onboard memory.
These lines are keyed on the state of HOLDA.

6-30

6.13.3 HOLD-, HOLDA, and DMA

When an offboard direct memory access controller (DMAC) wishes to initiate
operation, it asserts a low state onto the HOLD- line. After finishing the
current memory cycle, the microprocessor responds by floating its address,
data, MEMEN-, DBIN, and WE- lines, and then forces HOLDA (HOLD acknowledge)
high.

The DMAC is now free to use the system buses to transfer data directly in and
out of memory as it wishes. For a more detailed discussion of DMA operations,
refer to Section 8 of the manual, Applications.

6.14 INTERRUPT STRUCTURE

The TM 990/101MA provides a total of 17 interrupts. The characteristics of
each are listed in Table 6-9.

TABLE 6-9. INTERRUPT CHARACTERISTICS

Interrupt Types Maskable Prioritized Characteristics

Reset Dedicated No Yes INT 0, resets I/O,
TMS 9900 mask

1-5 Dedicated Yes Yes Level triggered, all
defined*

6 Dedicated Yes Yes Level or edge
triggered*

7-15 Shared I/O Yes Yes Level triggered,
undefined

LOAD Dedicated No No Level triggered, will
always occur unless
locked out by a RESET

*Defined in Table 6-10.

TABLE 6-10. DEDICATED INTERRUPT DESCRIPTION

Interrupt
Level Purpose

1 Power fail interrupt, brought out on OEM chassis.
2 User defined.
3 System timer: TMS 9901
4 Main I/O port: TMS 9902A
5 Auxiliary I/O port: TMS 9902A/03
6 External device - edge (positive or negative) triggered or

level sensitive.

6-31

All interrupts except RESET and LOAD are processed by the TMS 9901
Programmable Systems Interface device. This device handles both parallel I/O
and interrupt requests. Because of the pinout limitation on the package, the
TMS 9901 must share INT7- through INT15- (interrupt requests 7 through 15)
with the parallel I/O lines P15 through P7, respectively. This reverse
arrangement provides contiguous I/O and interrupt lines if some of the shared
lines are used for interrupts and others for I/O (See Figure 6-13).

The basic operation of the interrupt facility must be initialized by the
microprocessor through the CRU. The 15-bit interrupt mask is set under
program control to allow interrupt requests by writing a ONE state into those
mask register positions. The mask bits that contain ZERO will not honor
interrupt requests. Note that the condition of the processor's Status
Register priority mask is irrelevant if the TMS 9901's Interrupt Mask Register
is a ZERO for a particular interrupt: the request will not even be presented
to the processor.

When one or more interrupt requests are presented on the INT1- to INT15-
lines, only those whose corresponding mask bits are ONE are considered. The
highest priority request present is encoded onto lines ICO through IC3, and
INTREQ- becomes active (low).

The TMS 9900 receives the coded request and compares its value to the
interrupt mask in its status register. If equal or higher priority, (a lower
interrupt number) the interrupt is honored, the mask is set to one less than
the current interrupt number, and the vector process begins. Note that level
0 is the highest priority, and cannot be masked out since it is a number that
is always equal to or lower than any number which can be in the mask register
of the processor. The lowest priority is 15.

There is extra logic for INT6- to be triggered either in the normal manner by
presenting a low level to P1 pin 20, or in an edge-triggered manner. A low-to-
high transition should be presented to P4-8, and a high-to-low transition on
P4-6. These edge-triggered signals are converted to level-sensitive signals,
and are latched by a pair of flip-flops. The interrupt request line can be
set inactive by the interrupt service routine by writing a bit, either a ONE
or a ZERO, to CRU bit address 00A616 (R12 base address 014C16). These flip-
flops are automatically cleared by the CLRCRU signal.

6.15 PARALLEL I/O AND SYSTEM TIMER

The TMS 9901 provides sixteen lines of parallel I/O. The TM 990/101MA user
can read or write to any single bit of this parallel port because it is under
CRU control. For example, eight bits can be used for output at the same time
the eight other bits are used for input. This allows applications such as
scanning a custom keyboard for input, or outputting multiplexed signals to a
seven-segment display device; all under program control. A timer is also
intergrated into this device.

INT1

1NT2

INT3

INTREQ 11

ICO 15

IC1 14

INTREQ

ICO

IC1

TMS9901

IC2 13
IC2 INT4

IORST 1

IC3 12
IC3

RSTI

10

28

I NT5

I NT6

INT7/P15

I NT8/P14

I NT9/P13

I NT 10/P12

INT11/P11

INT12/P10

INT13/P9

I NT14/P8

I NT15/P7

27

23

34

32

31

29

GND P4

P3

P2

P1

P5 VCC

16

PO

P4-10

P4-18

P4-16

P4-14

P4-22

P4-20

21

2

3

ALL 10 k1

+5V

El
PI-18

E2
P1-16 -•

E3 <
P1-13 0 cs) F

0 ri
2O a) a) 0 csi

P1-15 0 ca cl- 0-
LrriE1— 0 2 LL

E4 P1-17

CRUIN 4

CRUOUT 2

CRUCLKG 3

ISE L4-

A10 39

CRUIN

CRUOUT

CR UCLK

E

All 36
4,'1

Al2 35
S2

A13 25
S3

A14 24

+5V 40

1

20

•
E5

E6 Csi
Z gcc oc)

"-
a) 0 r)
(a
a)0

SC:1I—Z u-
-

EDGE TRIGGER

LOGIC

P1-20

P4-6

P4-8

P1-6

P4-40

P1-5

P4-38
P1-8

P4-36

P1-7

P4-34

P1-10
P4-32
P1-9

P4-30
P1-12

P4-28

P1-11
P4-26

P1-14

P4-24

P4-12 S4 P6

FIGURE 6-13. TMS 9901

+5V

1 I 1 ALL 10 ki2,

INT1

INT2

INT3

INT4

INT5

I NT6

6.15.1 Parallel I/O

Lines PO through P6 are dedicated I/O lines, while P7 through P15 are shared
with INT15- through INT7-, respectively. When a user system is configured, it
must be decided how to allocate these shared lines between interrupts and I/O.
When written to, each parallel line remains in the same state until written to
again. The parallel I/O lines are initialized by resetting the 9901. This
may be done in 3 ways; by

(1) Activating the RESET switch or pulling PRESET.B- to 0

(2) Executing a RSET instruction

(3) Putting the TMS 9901 in the clock mode and then writing a 0 to CRU
bit 15 (refer to Table 1, TMS 9901 manual). Instructions to
accomplish this for the TMS 9901 on the /101MA CPU board are:

LI R12,>100
SBO 0
SBZ 15

After initialization of the 9901, all I/O lines are in the input mode, and all
I/O lines are pulled high. Writing to a specific CRU bit programs that bit as
an output, and that bit will remain an output until the TMS 9901 is
initialized again.

6.15.2 System Timer

The TMS 9901 has an internal real time clock which may be used as an interval
timer by the user. It is a decrementer which generates an interrupt when it
decrements to O. To load a value into the 9901 clock register on the /101MA,
the user must:

(1) put the 9901 in the clock mode by writing a 1 to the control bit
(CRU bit 0)

(2) load a 14-bit count value into the counter register (CRU bits 1
through 14)

The counter will start decrementing the counter register value immediately
after it is loaded at a rate of 0/64. For a 101 running at 3 MHz, this
computes to a decrement every 21.33 microseconds (rounded off). Writing all
ones to the counter register gives the maximum time interval of 349.525 milli-
seconds (rounded off value). An example of loading and starting the timer is:

LI R12,>100
LDCR R1,15

R1 contains the 14-bit timer value, plus a one in the least significant bit
position. This least significant one gets loaded first and puts the TMS 9901
in the clock mode. If the least significant bit is a 0, the user will be
loading the TMS 9901 interrupt mask register instead of the counter register.
Refer to the TMS 9901 manual for more details.

6-34

When the TMS 9901 timer decrements to 0, a level 3 (INT3-) interrupt is
generated. For this interrupt to cause a context switch, the 9901 must be in
the interrupt mode (CRU bit 0 = 0), the INT3- mask bit must be 1 (CRU bit 3 =
1), and the TMS 9900 interrupt mask must be set to accept a level 3 or higher
priority interrupt (LIMI 3). Code to do this would look like the following:

LI R12,>100 SET CRU BASE ADDRESS OF 9901 ON 101
SBZ 0 PUT 9901 INTO INTERRUPT MODE
SBO 3 ENABLE INT3
LIMI 3 SET 9901 INTERRUPT MASK FOR LEVEL 3 OR

HIGHER PRIORITY INTERRUPT.

After the interrupt has occurred and a context switch has taken place, the
user should disable the timer interrupt at the 9901 by writing a 0 to CRU bit
3. This will prevent INT3- from occurring during the Interrupt Service
Routine and possibly cause an infinite loop to the Interrupt Service Routine.
Several items of interest regarding the 9901 timer are

(1) After decrementing to 0, the timer reloads itself with the start
value and starts decrementing again

(2) When the 9901 timer is being used, it generates INT3-. Any signals
on the INT3- pin (pin 9) of the 9901 are ignored.

(3) If the timer is used for measuring elasped time or as an event
counter, the contents of the counter register must be read. To do
this, the 9901 must be put in the interrupt mode (CRU bit 0 = 0) for
at least 21.33 microseconds, then placed back in the clock mode (CRU
bit 0 = 1) and CRU bits 1-14 are read.

(4) To stop the timer, the 9901 must be put in the clock mode and the
counter register (CRU bits 1-14) must be loaded with zeroes.

6.16 MAIN COMMUNICATIONS PORT

The main communications serial I/O port (P2) has two options, depending on the
"dash number" ordered by the customer. (Refer to paragraph 1.3, "Product
Index," to determine whether the Teletype (TTY) or multidrop (MD) interface
circuitry is included on this serial port.) The main I/O port uses the TMS
9902A Asynchronous Communications Controller and is intended for operation
with either the "console device" or master terminal for the TM 990/101MA user,
or with an automated control device using the multidrop interface. For
detailed operation instructions for the TMS 9902A, refer to the data manual
for this device. When pin E2 is connected via jumper to pin E3, the INT- pin
of U46 is connected to the INTO- pin of the TMS 9901. The TMS 9902A will
generate an interrupt on 4 separate conditions, and so if the 9902A at P2 does
generate an interrupt, it will appear as INTO-.

6.16.1 EIA Interface

The EIA interface consists of 75188 line drivers and 75189A line receivers.
The receive-data line goes to P3-2 and the transmit-data line to P3-3. This
configuration forms a port suitable for connection to an RS-232-C compatible
terminal. A data-terminal-ready (DTR) signal is supplied as an input for
handshaking use with a device requiring it. Request-to-send (RTS) and clear-
to-send (CTS) signals are tied together and brought out to P2-8, which
functions as the data-carrier-detect (DCD) signal to the terminal.

6-35

A14 10 9901 TO INT4 ON
S4 INT

A13 11 2 XOUT
TTY OUTPUT S3 XOUT

Al2 12 5 RTS
RTS S2

All 13 6
S1 CTS +EIA (+5VI

A10 14 7
SO DSR

CRUCLKG 15
CRUCLK RIN LOCDCD

CRUOUT 8 P2-8
CRUOUT

CRUIN 4
CRUIN

473 16
95 LOCDTR P2-20 17 ISEL2
CE

+5V 18 E38 MULTIDROP RECEIVER INPUT
VCC 0

9
GND E39 /0

EIA & TTY INPUT
O

TM8 9902A E40

FIGURE 6-14. SERIAL I/O PORT EIA INTERFACE

6.16.2 TTY Interface

A transistor and 560-ohm resistor form the transmit loop for the 20 mA current
loop, TTY interface. The transistor conducts current while the line driver
connected to its base is at a mark state. As the line driver goes to the
space state, the positive voltage output is clamped to ground through the
signal diode on the transistor base, thereby turning off the transistor and
the current loop (refer to Figure 6-15).

The receive circuit consists of a line receiver which monitors the receive
loop formed by the TTY transmit circuitry and the two supply resistors. The
values of these resistors is such that during a mark state, the input to the
line receiver is held very close to -12 volts. When the TTY transmit
circuitry cuts the loop, the receiver input is pulled up to +12 by the 2.7 K
ohm resistor.

Note that the TTY jumper must be in place so that the line receiver can
monitor the loop voltage. An EIA terminal should not be connected when the
TTY jumper is in place.

6-36

IN9148

P2-25

2N2905A

TTY XMT RTN
P2-24

-12 V

RIN

-12V

TTY RCV RTN
ir P2-23

+12 V

E38

E39 LOCRCD E37c --0 E36 TTY RCV
E40

0 P2-18

TMS 9902A

XOUT

+5 V

FIGURE 6-15. SERIAL I/O PORT TTY INTERFACE

6.16.3 Multidrop Interface

The multidrop interface (Figure 6-16) may be used for board-to-board
communications over long distances. Generally, only a twisted pair line is
required between the boards. One pair is necessary for transmitting, and
another pair for receiving when in full duplex mode. Connecting the two
half-duplex jumpers will loop the transmitter back to the receiver for test or
half-duplex applications and only one pair is then required.

More than two boards may be linked together, each one is just "dropped" in
place, hence the term multidrop. If more than two boards are used, the boards
not at the extreme ends of the twisted pair line (i.e., those "dropped in the
middle") are considered nonterminating boards, and the termination resistor
jumper plugs should be removed to prevent standing wave patterns which might
occur, mostly at the higher baud rates. The two boards at the extremes of the
line, regardless of whether additional boards exist in between, should have
these resistor jumper plugs installed. Refer to Section 7, Options, for
jumper configuration information.

The multidrop sytem, also called the private wire interface, uses a dual set,
twisted pair wiring, with operation of these lines in an unbalanced,
differential mode. As such, it is a differential line driver/receiver pair
which offers higher current drive capability and the noise-free advantages of
a balanced line.

6-37

+5 V

E46 p E42

E45 E41

RIN

XOUT

RTS

CTS

MULTI DROP
RECEIVER

INPUT
75107

I NPUSH 1Y 1A E38 0
INPULL

18 E39

1G 540 EIA
TTY

INPUT
VCC+

VCC- 5

28

2A

GND

75112

OUTPULL

OUTPUSH

2C 2Y

E47

E48

P2 23

P2.18

E44

E43

P2 25

P2 24

2A 2Z O

TMS 9902A +5 VCC+

0

28

VCC-

1C

GND

12

I Y

+5V -5V

FIGURE 6-16. MULTIDROP INTERFACE

6.17 AUXILIARY COMMUNICATIONS PORT

The auxiliary RS-232-C compatible port logic is shown in sheet 6 of the
Schematics (Appendix F). All signals for RS-232-C operation are provided.
Both terminal and modem communication can be used by proper programming and
cable assemblies. Devices such as terminals, modems, and serial line printers,
such as the TI 810, all can be attached to this port. Using a TMS 9902A,
communications are asynchronous. By substituting a TMS 9903 Synchronous
Communications Controller, for example, 1200-baud synchronous modems can be
used.

This port uses a modified EIA-standard configuration for direct use with
RS-232-C compatible terminals. Signals required by modems are brought out to
spare pin positions, which are then rearranged in the special modem cable, the
TM 990/506 cable assembly, to the positions required by the modem.

All TMS 9902A/9903 signals are brought out to line drivers or receivers. Port
P3 may be configured as either a modem or EIA type interface in the following
manner:

6-38

(1) If E54 and E55 are jumpered together (terminal position), the RTS-
and CTS- signals from the TMS 9902A/9903 are tied together to form
DCD (Data Carrier Detect). The DCD signal is brought out to P3-8.
In this configuration, the P3 port appears as a modem to the
terminal device. If the user wishes to send characters to a terminal
device through the P3 port, he must first make the RTS- signal to
the terminal go low. This is done by writing a 1 to CRU bit 16 of
the 9902A. By making RTS- go to 0, the user is also pulling CTS- to
0, which is the same as asserting DCD. DCD will then be available
for terminals requiring that signal for communications.

(2) If E55 and E56 are jumpered together (modem position), RTS- and CTS-
are distinct signals, both of which are brought out to P3. In this
configuration, the P3 port looks like a terminal to the modem
connected to P3.

Provisions are made also for Data-Terminal-Ready (P3-21) and Data-Set-Ready
(P3-19) and Ring Indicator (P3-22). These three signals are CRU-addressable,
outside the range of the TMS 9902A/03. DTR is a latched output and the other
two are inputs. Use of all signals provided can result in a completely
automated communications system. Section 8, Applications, describes several
examples for the use of this port, and gives the modem cable configurations as
well.

The TMS 9902A/9903 at Port P3 can be configured to generate an interrupt at
the TMS 9901 by connecting E5 to E6 with the INT5 jumper. If the TMS 9902A is
configured in this manner and does generate an interrupt, the interupt will
appear at the TMS 9901 as INT 5. Refer to the TMS 9902A or 9903 data manuals
for proper interrupt-causing conditions.

This EIA port, deviates from the EIA standard in regard to the DTR (Data
Terminal Ready) signal at pin P3-20. With R27 installed, the DTR signal may
be read at P3-20 (to show if the terminal is ready) unless the cable is
disconnected or the terminal power is off, in which case the DTR signal will
always appear ready. This feature allows data to be transmitted despite the
fact that the majority, of terminals and printers have no connection to DTR
through the cable. However, if data is transmitted while the cable is
disconnected or terminal power is off, the data will be lost.

In order to detect cable disconnection or the terminal power-off condition as
well as the DTR signal, resistor R27 must be removed from the board. This
makes the DTR implementation compatible with EIA standard RS-232, but now
terminals and printers must provide the DTR signal through the cable.

The DTR signal is actually read by software via the DSR (Data Set Ready)
status bit, CRU bit 27 of the TMS 9902A. Table 6-11 illustrates four software
functions in response to the status of CRU bit 27, depending on whether or not
R27 is installed.

6-39

Case Hardware Software Function

1 R27 Installed Reads Bit 27 Data Terminal Ready condition is detected
regardless of cable disconnection or
power off condition so that data is
transmitted where DTR is not implemented.

2 R27 Installed Ignores Bit 27 Data Communication is independent of the
status of the terminal.

3 R27 Removed Reads Bit 27 Fully EIA standard compatible, i.e., data
is transmitted only when the cable is
connected and power is on and the data
terminal is ready.

4 R27 Removed Ignores Bit 27 Same as Case 2 above.

TABLE 6-11. DTR HARDWARE AND SOFTWARE OPTIONS

NOTE

An interrupt is generated when bit 27 changes logic level. This applies
to all four cases mentioned above.

6.18 UNIT ID SWITCH

The ID switch is a set of five SPST switches mounted in a DIP packing and
connected to a 74LS251 CRU device. Each switch position corresponds to one
CRU bit and, in the open or OFF position, represents a logic ONE state.
Closing a switch to ground produces a logic ZERO state. Five switches can be
set to provide 32 unique codes.

The DIP switch has many applications. Used to pass information to a program,
it can function as a "programmer's front panel". Automatic communications
systems may have the same software in EPROM for every board in the system:
the polling ID for each board is set uniquely in the DIP switch. Alternately,
it can be used to pass baud rate and device type information about the
auxiliary port to the service programs. The uses for fixing system
configuration in the switch, and having one set of standard software, are
limited only by the imagination.

6.19 STATUS INDICATOR

The status indicator is a CRU-addressable LED. Writing a ZERO to CRU address
000016 causes the LED to light; writing a ONE turns off the LED.

Uses for this feature are again limited only by imagination. Initialization
software can turn it off once initialization is complete. A system error can
cause the LED to come on. Test software can blind the LED during execution.

The CLRCRU signal turns the LED ON upon power-up.

6-40

SECTION 7

OPTIONS

7.1 GENERAL

This section explains the various options available to the user of the TM
990/101MA. These options include:

• Use of TMS 2716 EPROMs (2K x 8 bits each) instead of TMS 2708 EPROMs
(1K x 8 bits each)

• Onboard expansion of EPROM and RAM

• Asynchronous serial interrupt from one or both of the TMS 9902As

• RS-232-C/TTY/Multidrop interfaces with the Local Serial Port

• Use of slow access time EPROMs by insertion of one WAIT state

• Use of TM 990/301 Microterminal

• External switch actuation of a RESET or RESTART signal

• Power-up RESET or LOAD

• Memory Map change by reprogramming of the PROM

• Line-By-Line Assembler in EPROM.

Figures 7-1 and 7-2 show board locations applicable to this section. Table
7-1 is a summary of jumpers and capacitors used with these options.

7.2 ONBOARD MEMORY EXPANSION

7.2.1 EPROM Expansion

EPROM memory can be expanded onboard in two ways.

• Add two more TMS 2708 EPROM chips (1K X 8 bits each), for a total of
four, to provide an additional 1K words of memory.

• Use two or four TMS 2716 EPROM chips (2K x 8 bits each) to provide 2K
or 4K words of memory.

Figure 7-3 shows placement of EPROM chips and corresponding memory addresses
(in bytes). The board silkscreen designators identify the necessary jumper
placement at E9/E10/E11, E26-E30, and E31-35.

NOTE

Check the jumper placements on your board against Table 7-2
for proper configuration of your board.

In general, for TMS 2708 use, jumpers are placed as shown in line 1 of Table
7-2; for TMS 2716, they are placed as shown in line 2. These jumpers switch
the chip enable and A4 signals as required for the memory device used.

7-1

N.

613

[!1:1:]

.. 022

70 \
40

I I

E2/E3
 CONNECTS INT4 TO MAIN TMS 9902A

U3S

* E8/E53
NO WAIT STATE

FOR ON—BOARD EPROM

* E54/E55
SELECT PORT P3

FOR USE WITH A TERMINAL

**E20/E21, E22/E23, E24/E25
POWER TO TM 990/301

MICROTERMINAL

* E16/E17,,
RAM IN

HIGH MEMORY,
EPROM IH

LOW MEMORY

E15/E16
RAM IN LOW

MEMORY,
EPROM IN HIGH

*E13/E14
SELECTS

ON—BOARD
EPROM

E12/E13
DESELECTS
ON—BOARD

EPROM

E9/E10
SELECTS

2716 MODE
ADDRESS MAP

*E10/E11
SELECTS

2708 MODE
ADDRESS MAP

* E4/E5
CONNECTS

INT5 TO P1-17

* E1/E2
CONNECTS

INT4 TO P1-18

1 Ell 043
TEAM 1A,rLIODEM

iiii

Oi

1 U4S

e±r

I

El
, 032

1

I U31

uM

U41

* E7/E8
ONE WAIT STATE

FOR ON—BOARD EPROM

*E18/E19
CONNECTS P3

PIN 1 TO GROUND

E55/E56
SELECT PIN P3 FOR

USE WITH A MODEM

***E41/E42, E45/E46, E49/E50, E51/E52
MULTIDROP INTERFACE

TERMINATION RESISTORS

US

10

U1

*V
I

xo

fl-n

I [i

1133 5 1 um

1 .4

C3010 r
L.

037

5

 1 [1

L3. ri) 1

NT 4

213

RR" ;Cc: Du.

El

234 C27

E43/E44

MULTIDROP
INTERFACE

E47/E48
HALF DUPLEX

SELECTORS

E38/E39
CONNECTS MULTIDROP

INTERFACE TO TMS 9902A

*E39/E40
CONNECTS EIA AND TTY

INTERFACE TO TMS 9902A

1 US3
E36/E37

ENABLES TTY
INTERFACE

112 / U62

MADE IN U.S.A.
160

U43, U45
ARE TMS 2708

E32/E33
E34/E35

TEXAS INSTRUMENTS
Th111110/10161A-

UU
TVA,

* U42, U44
ARE TMS 2708

E27/E28
E29/E30

U43, U45
ARE TMS 2716

E31/E32
E33/E34

U42, U44
ARE TMS 2716

E26/E27
E28/E29

FIGURE 7-1. JUMPER PLACEMENT

$2

U10

11
I U23

U3

1.
UM

E5/E6
CONNECTS INT5 TO AUXILIARY TMS 9902A

NOTES:

* THIS POSITION IS THE NORMAL POSITION ON ALL MODULES.

** NORMAL POSITION FOR —1 AND —3 MODULES ALSO.

*** NORMAL POSITION FOR —2 MODULES ALSO.

I U54

BANK 2

BANK 1

RESET

CAPACITOR
TTY5 EIA

E40
EMI

MD

U21 U27

1 U30 U32

40 P4 30

U12
is

2

EPROM1223,2_, RAM HI
0 r..1

 , Tc

C2E, !.1

2ros) 1\-27011

U40

I U39
5

U47 LPORT •A
Er 17

>"9

1 U7

1 US U25

10
62

I U62

11 MA
,
D
it
LIN U.S.A.

lt:4
100018 TO 1FFF1e

1

I US 1 1131

1 U46
C309 r

P2

1115

2708

0800 TO OFFF

U61

1

2716

Uw

uo

Pi
40
1

S INSTRUMENTS
1101MA-

g
I U23

-12V
+UV

SO 70 N.

C

{2708

000016 TO 07FF18

2716

000016 TO OFFF18

4.U1 E4
El

20

MIT 6

F00016 TO F7FF1e-

F80018 TO FFFF18

6 Sinn
u sac

1 11415

1 U53

U6

1 U4

1 U3

LOAD

CAPACITOR

FIGURE 7-2. MEMORY AND CAPACITOR PLACEMENT

No.
Pins Staked

Pins Connected
Together Function When Connected

Connects INT 4 to pin 18 of P1 edge connector

Connects INT 4 to TMS 9902A LOCAL I/O port

Connects INT5 to pin 17 of P1 edge connector

Connects INT5 to TMS 9902A of REMOTE I/O port

Causes 1 WAIT state when onboard EPROM is
accessed

Causes no WAIT state: memory cycles are full
speed

Selects memory map for TMS 2716 EPROMs

Selects memory map for TMS 2708 EPROMs

Onboard EPROM is disabled from memory map

Onboard EPROM is enabled into memory map

EPROM at high addresses, RAM in low

EPROM at low addresses, RAM in high

Pin 1 of P3 is connected to GROUND

Microterminal: +5 volts to P2-14

Microterminal power: +12 volts to P2-12

Microterminal power: -12 volts to P2-13

Main EPROM is TMS 2708

Main EPROM is TMS 2716

Expansion EPROM is TMS 2708

Expansion EPROM is TMS 2716

Teletype terminal connected to P2

Multidrop Interface in use with LOCAL I/O port

EIA or TTY interface in use with LOCAL I/O
port

3

3

3

3

2

2

2

2

5

3

2*

3

5

E1-E2

E2-E3

E4-E5

E5-E6

E7-E8

E8-E53

E9-E10

E10-E11

E12-E13

E13-E14

E15-E16

E16-E17

E18-E19

E20-E21

E22-E23

E24-E25

E27-E28; E29-E30

E26-E27; E28-E29

E32-E33; E34-E35

E31-E32; E33-E34

E36-E37

E38-E39

E39-E40

TABLE 7-1. MASTER JUMPER TABLE

7-4

TABLE 7-1. MASTER JUMPER TABLE (Concluded)

No.
Pins Staked

Pins Connected
Together Function When Connected

2 each**

2 each**

3

E41-E42; E45-E46
E49-E50; E51-E52

E43-E44; E47-E48

E54-E55

E55-E56

Multidrop termination resistors connected

Multidrop Half Duplex operation enabled

Connects TMS 9902A RTS to CTS for port P3 to
communicate with an EIA compatible terminal.

Connects TMS 9902A CTS to port P3 directly for
communication with an EIA modem.

* On TM 990/101MA-1 and -3 only
** On TM 990/101MA-2 only

TABLE 7-2. JUMPER PINS BY BOARD DASH NUMBER (Factory Installation)

Board
Dash No. Positions Staked

Jumper Installation at
Factory (Positions)

-1, -3 E1-E40, E53-E56 E1-E2 E4-E5 E10-E11
E16-E17 E18-E19 E20-E21

E13-E14
E22-E23

E24-E25 E27-E28 E29-E30 E32-E33
E34-E35 E39-E40 E8-E53 E54-E55

-2 E1-E35, E38- E56 E1-E2 E4-E5 E10-Ell
E16-E17 E18-E19 E27-E28

E13-E14
E29-E30

E32-E33 E34-E35 E39-E40 E41-E42
E43-E44 E45-E46 E47-E48 E49-E50
E51-E52 E8-E53 E54-E55

Location of RAM and EPROM in opposite ends of memory can be reversed by
jumpering E16 to E15 (instead of E16-E17); this starts RAM at M.A. 000016 and
EPROM starts in upper memory. In addition, EPROM can be disabled from the
memory map (in effect, it no longer exists) using jumper E12-E13 (jumper
placement E13-E14 enables it onto the memory map).

7-5

7.2.2 RAM Expansion

Four additional 2114 RAM chips
provide an additional 1K words
ends of memory can be reverse
this will place RAM starting
memory.

can be added as shown in Figure 7-3•
of RAM. Location of RAM and EPROM at
d by jumpering E16 to E15 (instead of
at M.A. 000016 and EPROM starting

This will
opposite
E16-E17);
in upper

M.A.
(HEX)

0000

U42, U44

0800

U43, U45

JUMPERS
M.A.

(HEX)

JUMPERS

BANK 1

2 TMS 2708'S

(1K X 8 EACH)

E10/E11
E13/E14
E27/E28
E29/E30

0000

BANK 1
2 TMS 2716'S
(2K X 8 EACH)

E9/E10
E26/E27
E28/E29 BANK 2

2 TMS 2708'S

(1K X 8 EACH)

(EXPANSION)

E10/E11
E13/E14
E32/E33
E34/E35

U42, U44

OFFE

1000

BANK 2

2 TMS 2716'S
(2K X 8 EACH)

(EXPANSION)

E9/E10

E31/E32
E33/E34

U43, U45

1FFE

(A) EPROM EXPANSION

M.A.
(HEX)

U28, U30, U34, U36
F000

BANK 2
(EXPANSION)

2114

(EACH 1K X 4 WITH
.:4 IN EACH BANK. TOTAL
EXPANSION TO 2K X 16

BITS)
U29, U31, U35, U37

F800

FFEE

BANK 1

(B) RAM EXPANSION

FIGURE 7-3. MEMORY EXPANSION MAPS

7-6

7.3 SLOW EPROM

Slow EPROMs can be used with the TM 990/101MA by using a jumper between pins
E7 and E8. This connects WAIT to READY when onboard EPROM is addressed. Refer
to Table 7-3.

TABLE 7-3. SLOW EPROM TABLE

System Speed EPROM Type Access Time Jumper E7-E8 E8-E53

3 MHz
3 MHz
3 MHz
3 MHz

TMS 2708
TMS 2708
TMS 2716
TMS 2716

450 ns
650 ns
450 ns
650 ns

Installed

Installed

Installed

Installed

7.4 SERIAL COMMUNICATION INTERRUPT

Either or both serial ports (TMS 9902As) can be interrupt driven.

• Main Communications Port (EIA/TTY/MD) at P2: interrupt 4.

• Auxiliary Communications Port (EIA) at P3: interrupt 5.

As shown in Figure 7-4, any of four conditions at the TMS 9902A can cause an
interrupt condition (change in data set mode, character received, character
transmitted, or TMS 9902A timer counted down to zero). An interrupt service
routine can check the TMS 9902A bits through the CRU to establish cause of the
interrupt, then take appropriate action. Further information is available in
the TMS 9902A Asynchronous Controller Data Manual.

7.5 RS-232-C/TTY/MULTIDROP INTERFACES (MAIN PORT, P2)

7.5.1 TTY Interface

Appendix A covers cabling for a Teletype Model 3320/SJE. To use this terminal
(20 mA current loop), connect pins E36 and E37 with a jumper plug.

Verify correct voltage levels at connector P2 before attaching
a teletypewriter type terminal.

Connect the cable to the terminal and to connector P2 at the microcomputer
board (P2 only). The EIA/MD jumper plug must be connected between pins E39
and E40.

7.5.2 RS-232-C Interface

Appendix B covers cabling for an RS-232-C compatible terminal. To use this
type of terminal, disconnect the TTY jumper and make sure the EIA/MD jumper is
in the EIA position. Connect the cable to the terminal and to the
microcomputer board.

7-7

XBRE

XIENB

DSC H

DSCENB

RBRL

RIENB

TIMELP

TIMENB

INTERRUPT
CAUSING

CONDITION

DATA SET CHANGE i

RECEIVE BUFFER
LOADED, ENABLED

TRANSMIT BUFFER
EMPTY

{ TIMER ELAPSED

9902 A
CRU
BIT

DSCINT
20

RBINT
16

XBINT
17

TIMMT
19

TNr
TO INTO OR INT5

Ir E2/E3

PIN INSTALLATIONS TO ENABLE INTERRUPTS:

- INTERRUPT 4: E2/E3

- INTERRUPT 5: E5/E6

FIGURE 7-4. FOUR INTERRUPT-CAUSING CONDITIONS AT TMS 9902A

7.5.3 Multidrop Interface

Figure 7-5 shows the multidrop interface in use with a system of TM 990/100-
series microcomputer boards. The two boards at the extreme ends of the lines
are considered "terminating" boards; whereas, the boards in the middle are
non-terminating. Half-duples operation requires one twisted-pair line (i.e.,
two wires), and full-duplex operation requires two twisted pairs (i.e., four
wires). Refer to Figure 7-6 for cabling.

Table 7-4 shows the jumper configuration for the various configurations. As
an example, a common system requirement is for a full duplex board-to-board
communication between only two boards. This requirement is fulfilled by the
jumper configuration shown on line 4 of the table.

7.5.3.1 Full Duplex Master-Slave

This communications setup is used when there is only one master station and
several slave stations. The system setup is shown in Figure 7-7. The
advantage of this approach is that one station is in command and control of
communication is thus centralized, and also each master-slave communication is
full duplex. The half duplex jumpers are removed.

7-8

NON-TERMINATING
BOARDS

TWISTED
PAIR
CABLING
(SEE FIGURE 7-6)

TERMINATING
BOARDS

FIGURE 7-5. MULTIDROP SYSTEM

P2 • P2

OUTPUSH

OUTPULL

INPUSH

INPULL

OUTPUSH

OUTPULL

INPUSH

INPULL

NOTE: ALWAYS CONNECT A "PUSH" LINE TO A "PUSH"
LINE AND A "PULL" LINE TO A "PULL" LINE

FIGURE 7-6. MULTIDROP CABLING

7-9

24
25

23

18

TABLE 7-4. MULTIDROP JUMPER TABLE

Mode Install Remove

Half Duplex, non-terminating E43-E44, E47-E48 E41-E42, E45-E46
E49-E50, E51-E52

Full Duplex, non-terminating None All, E41-E52

Half Duplex, terminating All, E41-E52 None

Full Duplex, terminating E41-E42, E45-E46 E43-E44, E47-E48
E49-E50, E51-E52

All E38-E39

24

25

24

25

24

25

23 23

0 0 0

23

18 18 18

SLAVE1 SLAVE2 SLAVE3 SLAVE"N"

N Cs1
U)
1.11

0 0 0 0 0 0

0 0 0 0 0 0

U)
LLJ 1.11

MASTER AND SLAVE "N"
JUMPER ARRANGEMENT.
(OTHERS HAVE NO JUMPERS)

FIGURE, 7-7. MASTER-SLAVE FULL DUPLEX MULTIDROP SYSTEM

7-10

OUT

23

IN 18

MASTER

24

25

LIJ

C)

11.1

The output of the master station is routed to the input of each slave station.
The output of each slave is routed together to the one input of the master.
The control codes provided by the master should insure that only one slave
transmits at one time. Note four wires total are needed: one pair receive and
one pair transmit.

7.5.3.2 Half-Duplex Operation

This configuration is used when only two wires - one pair - is desired. The
half duplex jumpers are installed and the one twisted pair is connected at
either pins 18 and 23 or pins 24 and 25 of the P2 connector, on all stations.
See Figure 7-8.

Protocol must be determined carefully for this configuration to prevent many
stations becoming "live" on the lines at once. One station may be appointed
master and send control codes, or a round robin technique may be used where
control passes from one to another. Conversations are always half-duplex, so
when a master station requests a message, it must wait for the addressed
station to finish its transmission. This means that control is given up
periodically, and a malfunctioning slave station can "hang up" the whole
system. This approach does enjoy the advantage of two wires instead of four.

I- - 24 24 24 24 1
1

ri- 25 25 t 25 25 (HALF 1 1 i l i
DUPLEX (I 1 I 1 0 0 0 I
JUMPERS) 1 L _ 23 I

1
L_ 23 I L_

I
23 1 L - 23

L _ __ 18 L -- 18 L-- 18 L - - 18
....1 \,../ \,../

UNIT 1 UNIT 2 UNIT 3 UNIT "N"

CN

1.11

CN
L)
11.1

0 0 0 0 0 0

0 0 0 0 0 0

UNIT 2 THROUGH UNIT "N-1"
JUMPER ARRANGEMENT.

(UNIT 1 AND UNIT "N" HAVE
ALL JUMPERS CONNECTED)

FIGURE 7-8. HALF-DUPLEX MULTIDROP SYSTEM

7-11

7.6 EXTERNAL SYSTEM RESET/LOAD

The RESET function is activated from offboard by the assertion of a low state
on the PRES.B line, pin 94 on connector P1. An SPST pushbutton to ground can
be connected to this line, and should be debounced by a 39 uF tantalum
capacitor at C18.

The LOAD function can be activated by asserting a low state on the RESTART.B-
line, pin 93 of connector P1. An SPST pushbutton to ground, with attendant C23
for debouncing, can be used for external actuation.

7.7 REMOTE COMMUNICATIONS

Jumpering pin E18 to E19 connects pins 1 and 7 of connector P2 to ground.
Removing this jumper leaves only pin 7 at ground. In some applications, it is
not desirable to have signal ground connected to chassis ground, to prevent
ground loops or keep an isolated chassis isolated. In these cases, remove the
jumper. In most cases, there is no special consideration needed, and the
jumper may be left in place.

Serial Port P3 can be used to directly communicate with an EIA compatible
terminal. This type of operation requires that a jumper plug be installed
between E54 and E55, which connects RTS to CTS of the TMS 9902A, enabling
operation of this device. The terminal with its proper cable (see Appendix B)
may be plugged directly into connector P3.

If communication with an EIA compatible modem (see Section 8, Applications,
under EIA Serial Port Applications) is desired, insert the jumper plug between
pins E55 and E56. This connects CTS of the TMS 9902A to the line receiver on
the P3 connector. The TM 990/506 modem cable, or equivalent, must be used.

7.8 MEMORY MAP CHANGE

The entire system memory map is divided into two categories: onboard and
offboard. This division as well as the enable lines to onboard blocks of
memory, are controlled by a PROM, a 745287.

Blank PROM's may be programmed by the user to reconfigure the memory map. For
a discussion of the pattern generating process, refer to Section 6, Theory of
Operation, under Address Decoding.

7.9 TM 990/402 LINE-BY-LINE ASSEMBLER

A line-by-line assembler is available, programmed on two TMS 2708 EPROMs. It
will assemble each instruction as it is input by the user. The resulting
machine code will be printed on the terminal and placed in continuous memory
locations. The TIBUG monitor must be present to use the assembler.

No relocatable labels can be used. Jump instructions use dollar-sign plus or
minus byte displacements, and symbolic addresses are input as absolute
locations. Error codes identify syntax errors (illegal op code), displacement
errors (jump instructions), and range errors (e.g., R33). Figure 7-9 is an
example of assembly output using the line-by-line assembler.

7-12

7.10 TM 990/301 MICROTERMINAL

An alternate to a hard-copy terminal is a TM 990/301 microterminal for user
communication to and from the TM 990/101MA. The size of a hand-held
calculator, the TM 990/301 uses its light-emitting diode (LED) display to show
hexadecimal or decimal values. Features of the TM 990/301 include:

• Hexadecimal to signed decimal and signed decimal to hexadecimal
conversion of displayed value.

• Display and change contents of Workspace Pointer, Program Counter,
Status Register, or CRU ports.

• Increment through memory displaying contents.

• Display and change contents of memory addresses.

• Halt or single step user program execution.

• Begin program execution.

• Keyboard 0 through F16.

This microterminal comes with its own cable which attaches to the 25-pin
connector P2. To supply power to the microterminal, place jumpers at E20/E21,
E22/E23, and E24/E25. When the microterminal is not connected, make sure that
these jumpers are disconnected. Jumper E39/E140 must be in the (EIA position)
for microterminal operation. See Figure 7-2.

Figure 7-9 shows the microterminal and cabling to the TM 990/101MA.

7.11 OEM CHASSIS

An original equipment manufacturer (OEM) chassis is available. It features
slots for four boards, a motherboard backplane interfacing to P1 on the board,
and a terminal strip for power, PRES.B-, INT1.B- and RESTART.B-. A
dimensional drawing of the OEM chassis is shown in Figure 7-10. A schematic
of the backplane is shown in Figure 7-11. P1 pin assignments are listed in
Table H-1 of Appendix H.

NOTE

The dimension between card slots is one inch.

MEMORY ADDRESS

ASSEMBLER MACHINE CODE

USER INPUT SOURCE CODE

FE, 00 /FE00 ~w CHANGE MEMORY Amonsmo

FE00 2FH0 XOP @>FE0C914
FE02 FE0C
FE04 y+2 -= SYNTAX ERROR
FE04 0460 B @>0080
FE06 0080
FE08 /FE 0C CHANGE MEMORY ADDRESS
FE0C 434F WOMGRHTULHTIOM3. YOUR PROGRAM WORKC!`W TEXT STATEMENT

FEW 4E47
FE10 5241
FE12 5455
FE14 4C41
FE16 5449
FE18 4F4E
FEW 532E
FE1C 2059
FE1E 4F55
FE20 5220
FE22 5052
FE24 4F47
FE26 5241
FE28 41326
FE2H 574F
FE2C 524B
FE2E 5321
FE30 0707 +>0707
FE32 0700 +>0700

FIGURE 7-9. LINE-BY-LINE ASSEMBLER OUTPUT

?-14

43 TEXAS INSTRUMENTS

Microtermina
TM 990/301

H/S D-H 1-1-0

 I

RUN

EWP E PC

 I I

EST ECRU

I

DWP OPC DST

I 1 I

DCRU

I

EMA EMD EMDI CLR

0 1 2 3

F-1 F-1
4 5 6 7

I I

8 9 A 8

C 13 E - F/

LI

FIGURE 7-10. TM 990/301 MICROTERMINAL

0.405
BARRIER
STRIP

•••,11•1

0527
2 PLACES

-3

ED SEE DETAIL A

DETAIL A 0.189
4 PLACES

17' 1 f
(loss

7.4.30

0.189
2 PLACES

A 1

4.5

C 5.008

NOTES:
1. DIMENSIONS IN INCHES
2. ALL DIMENSIONS 110.010.

8ACKPLANE
O 4;)

SEE
DETAIL A

C

DETAIL A

FIGURE 7-11. TM 990/510A OEM CHASSIS

7-16

CI
.01
IKI

JI

J2

J3

J4

R? 4...,
V PRES 8- 0 7

032
.1,....
1K TIL 220 RESTART. B - 09 RH

A0N, 14
v‘ +I2V

(CHASSIS 002D) 1 0S 3
0045

1K '1;1. •
R9
...v. 14 -I5V (-UM

ur ^ T11220
330 •V'TIL2201

15V 44109) 0 2
0 S +5V

mn.is — 06
08 51.10

4 6 8 10 1 14 16 20 30 54 36 8 , 42 44 46 5 66 74
• t_____2:0

1 O\ ZZ 4‘
(04

ck Q,kii

0 rOPP

d c(4 4 4
l'a
I.

'D t
Et ,• ECC •C 'C

r

1•1 0

0 o to
a 14,1V roiz ,zzz,,.., 4

r o 0 Jo

kr,
0 .(it., tx (,,,. l

o 0990
TBI

n

z 0

ft1
,7,
. +

11 if
H a
:n .13
7 +

i
0

7

i
2

7

•
is
•

96

•
95

•
Ji
•

%

•
J7
0-

it
11. a
2
(.9

2 4 im 4 ' ()-e

ar'

. . 0 ,.. b VI Vfill 0. J

a(a(

50

at 1

0 o
o o

7
,

p

at a(

(9 o

o o

p

o'. o'

Pre

o d et

19

et
73-o

Q
\

 o e99

:00

3 5 7 9 11 13 IS 17 19
RE:

• AA

2: 23 2 2 29 31 49 51 I 73 75 77 79 al 83 85 89 91 95 97

330
R 5
%A JD
220

R4
,,, 4 ..2/,,,4.2-.12evIml24.-'2..., _l2NItm!2*"..1.0 ,..- 42,c._eNym ,..2 t, . .., , .9,,,,
2

I .
• r AA

33o
R 3

''nS'IS"S'S°S.'5"55'33.-335-5S3 ;IIIIIS'S'S;;SS;"S' S S 3 5 S 53

R2 220
AA

330
RI

22

DETAIL TYPICA
FOR Lii,u2.1.13,114

PINS 1-7.9.15

FIGURE 7-12. OEM CHASSIS BACKPLANE SCHEMATIC

7-17

SECTION 8

APPLICATIONS

8.1 GENERAL

This section covers various methods of communicating to applications hardware
external to the TM 990/101MA. Figure 8-1 shows board locations applicable to
this section.

8.2 OFFBOARD RAM

Figure 8-2 shows a logic diagram for adding additional RAM offboard. The
buffers are controlled by the same logic that is used onboard the TM
990/101MA. The dual flip-flops are used to generate one wait state whenever
the memory is enabled. The 74LS155 decodes the five most significant address
lines. The AO and Al lines select this memory board, and A2, A3 and A4 select
one of six banks of expansion RAM. The outputs of the 74LS155 select 1K word
banks, starting with the 1Y1 output, which corresponds to an address range of
E80016 to EFFF16. Lines 1Y2 and 1Y3 are not used since they respond to the
address range of F00016 to FFFF16, which are onboard the TM 990/101MA.
Additional 1K word banks connect to 1YO, and so on up to 2Y0, which responds
to the lowest address in this application, C00016.

Alternately, if the user wishes to address eight banks of RAM on this memory
board, using 1Y2 and 1Y3, then the onboard memory can be moved to B00016 to
BFFF16, or some other address, by reprogramming the Memory Address Decoder
PROM onboard the TM 990/101MA.

The 74LSO8 bringing 951B onto the memory board is used to buffer the system
bus, in keeping with the practice that only one LS load per board should
appear for a system bus signal. It may easily be omitted. The two 7438s with
pull-up resistors attached are used instead of a 74LSO4 and 74LS00 to keep
down the parts count.

8.3 OFFBOARD TMS 9901

Figure 8-3 shows the wiring of an offboard TMS 9901 at the CRU bit address
OFE016. Only the programmable I/O section is used; the clock and interrupt
section are ignored. The R12 bit address is 1FC016•

Connection is made through the system bus, P1. The CRUIN, CRUOUT, and CRUCLKB
signals are gated by the 1G signal. Chip enable is performed by one 74LS30.
Other addresses are not so easy to decode; the use of the various decode chips
would enable a bank of TMS 9901's.

8.4 OFFBOARD EIGHT-BIT I/O PORT

Figure 8-4 shows the wiring of an I/O port with separate 8-bit inputs and
outputs. The input is a 74LS251 selector, also known as a TIM 9905. The
output is an addressable latch array, a 74LS259 (or a TIM 9906). Address
decoding is done by random logic, and the R12 CRU address is 020016. Note
that MEMEN is not used in address decoding, so this circuit is active even
during memory cycles. Again this does no harm since CRUCLKB is inactive and
CRUIN is ignored by the processor.

8-1

TMS9900

1:s I:
Ull

Ulo

I-

U23
1 U29

E.
;

 I Ug 2716 2706
171

10
52

1

14 49

1 U3S U32

r.i
U

U37

034 C27

Nl

1

1 U31

U13 U22

1 U3

0

{=1/-
RIS

5

0 1 U30

fig F

TMS9901
I-

INT4 -12V N.
442V

70 \

CS Ul
.11V E4

El
20

R
4=:3-

410

L
1

60
5? 1°° 1----"--DI4C26

1 l Op 00
—12V

g

P4 10 -S. OW 6111
I-1

1-1 LI_ 60 30

•121/ — ; c r,i.p 0 • .3 13 et I
. 5 PS . J

:::(,,e ILIJT lh ' , uu .. Up 033 C 1 U41
TERM 1--E 661-515 0401)3 X

EN;6MI;

1+7)

.. .i. E 1
1121

• • • ry E54 15

I- 1 E. 'ii 2 1,11 E 1,
wo

1.r W_
640
E39

E311
MD

ii OE

1 U4 1 US

I I,* EPROM 1117

0

1 U6

11

• 3;

026

1 U26

1 U24

1 U64

1 U63

1 U52

TMS9902 A
FOR AUXILIARY
PORT P3

TMS9902A
FOR MAIN
PORT P2

1 0311

i5i

043
1

U111
1:1 MADE IN U.S.A.

U50

1
TEXAS INSTRUMENTS

2716

9 1-

TP.19110/101MA- t[1

,

1

211AN 1

U47 L POST P3
Er 5r, U

1 U46

C300 r

U

1.1 V111

+1
C40

U

1 U36
OF

El
U36

LSO8 7438

74LS74 74LS74

r
READY 90

+5

01.B 22

74LS08
01.13 f

7438

_C>

4.7K
NW

LSO2

LSOO

MEMEN.B

WE.B 78

DBIN.B 82

MEMEN.B 80

HOLDA.8

POINT "X"
TO ALL PIN

10'S OF 2114's +5

+5 V 4.7 K
74LS153

11

3

4 10
IC3 74LS243

5 9
+5 I 1

IC2
6 8 IC1

'Co
r-Fk4 13

AO 74LS08

Al D
A2

A3

14

15

3

2
2Y0

1G 2Y1

2G 2Y2

2Y 3

2C PIT

1C 1Y1

B 1Y2

A 1Y3

 TO ADD'L
 CHIP

11 SELECTS
12 ON 1K WORD

7 BLOCKS

5 LSOO

D15.8 48 18 +5 +5

D14.6 47 3 17

013.13 46 4 16

D12.6 45 5 15 18 18

D11.8 44 6 74LS245 14 A5 15
DI/0

11 DO.,
A5 15

131/0
D8

43 7 13 A6 16 12 D1, A6 16 12 D9 D10.6

D9.8 42 8 12 A7 17 13 021 A7 17 13 D10

D8.8 41 9 11 e A8 14 D3 A8 1 14 D11,

G A9 2 A9 2

1911 DIR e A10 3 _ 2114W 10 WE A10 3 2114 0 WE

e All r A11 4
O

D7.B 40 18 Al2 7
S

8 Al2 7

D6.6 39 3 17 3 6 A13 6

05.B 38 4 16 A14 A14

134.6 37 5 15

D3.6 36 6 74LS245 14

D2.6 35 7 13

01.8 34 8 12

DO.B 33 9 11
+5

G

19 ± l[DIR

18 9 18
A14.0 71 18 DI/Or A13.8

A5 15 11
D42

A5 15 11 D13
70 3 17

A6 16 12 D5 f A6 16 12 D1)
DI/Or

69 4 16 Al2.8
17 13 D5 (- A7 17 13 014

68 15 A11.B

A10.8
74LS245 L A8 1 14 D7 le A8 1 14 D15

67 6 14 ."1
9 2 A9 2

66 7 13 A9.6
2114 10 WE 2114 w 10 WE

c
A10 3 A10 3

65 12 A8.6
All 4 9 (All 4 ic

Al2 A.12

A13 6 13 6
191 1 DIR

r A14 4 5

A7.8 64 18

A6.8 63 3 17

A5.8 62 4 16

A4.8 61 5 15

A3.8 60 6 74LS245 14

A2.8 59 7 13

Al.B 58 8 12

A0.8 57 11

G

19 1 DIR

FIGURE 8-2. OFFBOARD MEMORY

8-3

74L5155

74LS367

CRUIN.B

CRUOUT.8 I 4

CRUCLK.B 1 6

IORST.B 1 10

43.6 1 12

MEMEN-B 1 14

2G 1G
15 1

1

29 1

30 1

87 1

M31

24 1

80 1

3I

4 1 +5V 1

GND

GND

1 74LS367

A3.6 I 2

A4.6 4

A5.6 1 6

A6.6 I 10

A7.6 1 12

A8.6 14

2

1

60

61 1

62

63

64 1

65

9
9
0/

1
0

1
 M

A
 ,
 C

O
N

N
E

C
T

O
R

 P
1

1 1G 2G

1

1 741S367

A9.8 1

TMS9901

CRUOUT CE

CRUCLK CRUIN

RST 1
PO 38

0
P1 37

SO
P2 26,

S1
P3 22

S2
P4 21

S3 P5 20

S4 P6 19

VCC
P7 23

GND
P8 27

P9 28

P10 29

P11 30

P12 31

P13 32

P14 33

P15

5

7 LSO4

9

11

13

3

10

39

36

35

25

24

5 40

7 16

9

11 74LS30
13

A10.6 4

A11.6 I

Al2.6 1

A13.13 1

A14.13 1

7

9

11

13

6

10

12

14

1G

66 1

67

68

69

70 1

71

1

to +5 volts

LIST OF MATERIALS

QTY PART

14 - PIN DIP SOCKET•
4 16 - PIN DIP SOCKET•
1 40 - PIN DIP SOCKET
3 74LS367
1 74LSO4
1 74LS30
1 TMS 9901

• AND WIRE - WRAP PINS AS REQUIRED

FIGURE 8-3. CIRCUITRY TO ADD TMS 9901 OFFBOARD

8-4

74LSO4

CRUCLK B
74LS00

A4

A3
-4>D74LSO4

A5
74LS30 74LSO4

A8

A9

Al2

74LS259

G

CLR

QO

Q1

Q2

Q3

Q4

05

A13 2

A14

CRUOUT.B 13

14

IORST.B 15 10

Q6

7

11

12

A7 74LSOO

A10
10K52

All
+5

+5 16

r
A6

74LS251

Al2 9 4 L _ J
C DO

A13 10 D1
A14 11 D2

CRUIN.B 5 Y D3 1

15 D4

14 D5

13
D6

7 12

FIGURE 8-4. 8-BIT 9905/06 PORT

8-5

8.5 EXTRA RS-232-C TERMINAL PORT

Figure 8-5 shows a diagram of a serial I/O port suitable for most RS-232-C
terminals. The handshaking signals used are DATA CARRIER DETECT, which is
generated from the REQUEST-TO-SEND tied back to CLEAR-TO-SEND on the TMS
9902A, and DATA TERMINAL READY, which is brought into the TMS 9902A for
program interrogation. The two 3.3K resistors supply a "fake" CLEAR-TO-SEND
and DATA-SET-READY to those terminals requiring them.

Since only half of the packages are used on the 75188 and 75189 devices,
another TMS 9902A may be added for an additional serial port. The R12 CRU
address is 1FC016•

+5 TMS 9902A

74LS00 CRUIN.B

CRUOUT.B 8

CRUCLK.B 15

03.8 16

A3 A10 14

+12

3.3K
5

1","/ 6
3.3K

75188

CRUCLK.B

INT
X

2 XOUT 2

5 RTS

CTS

+5

4 75188

3
RS232
XMT

DCD
A4

A5
74LS30

A7

A8

A9

;10

All 13

Al2 12

A13 11

A14 10

17
CS

75189
7 DSR

75189
3 RIN 601 4

DTR

RS232
RCV

20

7
18 +5 9

+5

75188: pin 1 = -12, pin 7 = GND, pin 14 = +12
75189: pin 7 = GND, pin 14 = +5

FIGURE 8-5. RS-232-C PORT

8-6

8.6 DIRECT MEMORY ACCESS (DMA) APPLICATIONS (FIGURES 8-6 AND 8-7)

The microcomputer controls CRU-based I/O transfers between the memory and
peripheral devices. Data must pass through the CPU during these
program-driven I/O transfers, and the CPU may need to be synchronized with the
I/O device by interrupts or status-bit polling.

Some I/O devices, such as disk units, transfer large amounts of data to or
from memory. Program driven I/O can result in relatively large response
times, high program overhead, or complex programming techniques.
Consequently, direct memory access (DMA) is used to permit the I/O device to
transfer data to or from memory without CPU intervention. DMA can provide
faster I/O response time and higher system throughput, especially for block
data transfers. The DMA control circuitry is somewhat more expensive and
complex than the economical CRU I/O circuitry and should therefore be used
only when required.

Microcomputer direct memory access occurs in block and cycle stealing modes,
using the CPU hold capability. The I/O device drives HOLD- active (low) when
a DMA transfer needs to occur. At the beginning of the next available
non-memory cycle, the CPU enters the hold state and raises HOLDA to
acknowledge the hold request. The maximum latency time between the hold
request and the hold acknowledge is equal to three clock cycles plus three
memory cycles. The minimum latency time is equal to one clock cycle. A 3 MHz
system with no wait cycles has a maximum hold latency of nine clock cycles or
3 microseconds and a minimum hold latency of one clock cycle or 333
nanoseconds.

When HOLDA goes high, the CPU address bus, data bus, DBIN, MEMEN-, and WE- are
held in the high-impedance state to allow the I/O device to use the memory
bus. The I/O device must then generate the proper address, data, and control
signals and the proper timing to transfer data to or from the memory as shown
in Figure 8-6. Thus the DMA device has control of the memory bus when the CPU
enters the hold state (HOLDA = 1), and may perform memory accesses without
intervention by the microprocessor. Because the lines shown in figure 8-6 go
into high impedance when HOLDA = 1, the DMA controller must drive these
signals to the proper levels. The I/O device can use the memory bus for one
transfer (cycle-stealing mode) or for multiple transfers (block mode). At the
end of a DMA transfer, the I/O device releases HOLD- and normal CPU operation
proceeds. TMS 9900 HOLD- and HOLDA timing are shown in Figure 8-7.

8.6.1 DMA System Timing (Figure 8-8)

The DMA process can be divided into three distinct phases (shown in Figure
8-8):
• Acquisition of memory control from the system

• Memory control by the DMA device, and

• Release of memory control to the system.

In systems with multiple DMA devices, the memory control phase can be shared
by the devices on a priority basis; however, the acquisition and release
phases must remain distinct in that the release phase must end before
another acquisition phase begins. This is necessary to avoid any memory
access conflict resulting from the hold acknowledge signal (HOLDA) delay which
occurs when the hold signal (HOLD-) is released.

8-7

MEMORY

AO-A14

DO-D15

MEMEN

DBIN

WE

WAIT

READY

DBIN MEMEN DMACC WE ADDRESS

MICROCOMPUTER

HOLD
REQUEST

GRANT
HOLDA

DMA 3-STATE CONTROL

DMA CONTROLLER

DATA

CRU

FIGURE 8-6. DMA BUS CONTROL

01

03

MEMEN
r-N HI-Z r_____7_

AO-A14 I HI-Z

I HI-Z

DO-D15

WE HI-Z

Co HI-Z
DBIN

READY / A y-/1/1 i///

WAIT

HOLDA

HOLD V///1 I V//I

MAX. 9 CLOCK CYCLES
WITH WAIT STATES

I MIN. 1 CLOCK CYCLE I I 1 CLOCK
I CYCLE

FIGURE 8-7. CPU HOLD- AND HOLDA TIMING

HI-Z I I I

I I
HI -Z

HI Z I fl HI-Z

HI -Z HI-Z

DMACC
(TO SYSTEM)

WE
(TO SYSTEM)

DBIN
(FROM I/O DEVICE)

AO-A14
(FROM I/O DEVICE)

DO-D15
(TO/FROM I/O DEVICE)

HI-Z HI-Z

HI-Z HI Z

MEMORY CONTROL RELEASE

REASSERTING HOLD
DURING THIS PERIOD
NOT RECOMMENDED

MEMORY WRITE
(1 WAIT STATE)

ACQUISITION

MIN 1 CLOCK MEMORY
MAX 9+3W CLOCKS READ

pi
(FROM CPU)

03
(FROM CPU)

AR In)
(FROM I/O DEVICE)

Taw'
(TO CPU)

HOLDA
(FROM CPU)

AG (n)
(TO I/O DEVICE)

MEMEN
(TO SYSTEM)

HI Z i I HI Z

V I A V / / / / /

VI/ /1 I I V/A

READY
(FROM SYSTEM)

STARTQ

MEMENQ

RELEASEQ

MFIRSTQ

MWAITQ

MLASTQ

FIGURE 8-8. DMA. SYSTEM TIMING

The acquisition of memory control from the system begins when the HOLD- signal
is asserted by the DMA device. This signal is driven by an open-collector
circuit and must be synchronized to the trailing edge of clock phase one (01).
The acquisition phase ends at the first trailing edge of 01 following the
receipt of HOLDA. Round-trip timing delays between the DMA device and the CPU
must be considered during device controller design.

The control of memory by the DMA device begins at the completion of the
acquisition and continues for as many memory cycles as required. The device
controller must provide the memory cycle timing signals MEMEN-, DBIN, WE-, and
DMACC- (TM 990 bus signal) as well as the memory address and data signals.
The memory cycle timing must duplicate the microcomputer memory cycle timing
with respect to minimum setup and hold times and also to synchronization to 01
and 03 clocks. The device controller must monitor the READY signal and wait
as required by the memory. The device controller must not require unnecessary
wait states (wait states not required by the microcomputer) because of device
controller setup timing; however, the device controller can delay the start of
a memory cycle to allow setup time for the DBIN, DATA, and address signals.

The release of memory control to the system begins when HOLD- is released by
the DMA device and is complete when the CPU releases HOLDA. Since the CPU
requires two 01 clock cycles for the release of HOLDA, resumption of memory
access during the release phase can cause a memory access conflict when the
DMA device responds to HOLDA just prior to HOLDA being released. This conflict
will cause loss of data and possibly modification of random memory locations.

8.6.2 Memory Cycle Timing (Figure 8-9)

As shown in Figure 8-9, a memory cycle consists of two states, MFIRSTQ and
MLASTQ, plus wait states MWAITQ as required by memory. Each state is one 01
clock cycle long. If additional DBIN, data or address setup time is required,
a setup state can be inserted before the MFIRSTQ state. The MLASTQ state marks
the end of a memory cycle. Read data will be stable at the end of MLASTQ.
The control signals MEMEN- and HOLD- which are static during a memory cycle
are allowed to change at the end of MLASTQ. In a multichannel-DMA controller,
the device access granted signals are allowed to change at the end of MLASTQ.

8.6.3 DMA System Guidelines

1. DMA and CPU memory cycle timing should be identical.

2. DMA memory cycles can include memory-dependent wait states.

3. DMA devices must not require memory to insert wait states.

4. DMA devices must allow HOLDA to drop after releasing HOLD- prior to
reasserting HOLD-.

5. Three-state bus conflicts must be avoided.

6. Multiple DMA devices must not attempt simultaneous memory access.

7. Sufficient data and address setup times prior to WE- must be kept.

8. Most DMA device timing problems will occur at the first and last
memory accessed and at device to device changeover in systems with
multiple devices.

8-11

NORMAL MEMORY CYCLE MEMORY CYCLE
MEMORY WITH 1 WAIT STATE WITH SETUP STATE

CYCLE

¢1 ~uuuuuuuuuu~_
I I I I

I I I
I

MEMEN
FJ_____

MSETUPQ

MF I RSTO

MWAITQ I I I
I I

MLASTO

DMACC

WE

FIGURE 8-9. MEMORY CYCLE TIMING

8.6.4 Multiple-Device Direct Memory Access Controller

This section outlines the design of an eight-device, priority-access
controller for the direct memory access system shown in Figure 8-10. The
controller accepts access requests from the device controllers, acquires
memory from the CPU, grants memory access to the highest-priority device
switching from device to device as required, and generates all necessary
memory cycle timing signals.

The DMA controller interfaces with the device controllers (shown in Figure
8-11) through a DMA control bus consisting of access request (ARO- through
AR7-), access granted (AGO- through AG7-), and memory cycle complete (MCOMP-)
signals. To access memory, a controller asserts access request and waits for
access granted. The controller then drives the address bus (AO through A15),
the data bus (DO through D15) as required, and the DBIN signal. The MCOMP-
signal indicates that the memory cycle will be complete and read data will be
stable on the data bus at the trailing edge of the 01 clock. A device can
request multiple memory cycles by continuously asserting access request.
Access request is released during the first clock cycle of the last required
memory cycle.

8-12

AO thru A15 ARO thru AR7

DBIN

DEVICE
CONTROLLER CRUIN

CRUOUT

CRUCLK

DO thru D15

SYSTEM
BUS

IORST

INTn

DMA CONTROL
BUS TO
DMA CONTROLLER

DMA CONTROL
BUS TO
NEXT DEVICE

AGO thru AG7.

MCOMP

ARO thru AR7
1.-

AGO thru AG7

MCOMP

DMA CONTROL BUS

DMA
CONTROLLER

DMA
DEVICE

DMA

DEVICE

DMA
DEVICE

',YSTEM BUS

CPU MEMORY

FIGURE 8-10. DMA SYSTEM BLOCK DIAGRAM

FIGURE 8-11. DMA DEVICE CONTROLLER

8-13

HOLD AROQ thru AR 7Q

MEMEN

WE
DMAR

PRIORITY
ENCODER

(74 48)
DMACC

DMOUT

CONTROL
LOGIC

DMIN

HOLDA

V DBIN

READY
4 DECODER

(741_5138)

8 IORST

SYSTEM
BUS

REG
(74LS374)

ACCLK

DMA CONTROL
BUS TO
DEVICE

CONTROLLERS

ARO thru AR7

8

REG

(74LS374)

AGO thru AG7

MC5MP

The DMA controller (shown in Figure 8-12) provides memory access control,
memory cycle timing, and priority-based access of memory by the device
controllers. Access requests are synchronized to the system clock, then
prioritized using a priority encoder followed by a decoder. The priority
encoder also provides the signal DMAR which indicates if any device is
requesting access. Memory access is granted to the highest-priority device
when HOLDA is received from the CPU and at the end of each memory cycle. This
is done by loading a register with the decoder outputs. If no device is
requesting access, the decoder is disabled and the register is loaded thus
disabling all access granted signals. Loading of the register is inhibited
from the time HOLD- is released by the DMA controller until HOLDA is released
by the CPU in order to avoid an access conflict between the DMA and the CPU
due to the HOLDA response time.

FIGURE 8-12. DMA CONTROLLER

8-14

The DMA controller timing with priority contention is shown in Figure 8-13.
The logic equations for the DMA controller are:

DMAR = AROQ + AR1Q + + AR7Q

STARTQ] = DMAR • MEMENQ- • RELEASEQ-

STARTQK = HOLDA • STARTQ

MEMENQJ = HOLDA • STARTQ = STARTQ

MEMENQK = DMARQ- • MLASTQ

RELEASEQJ = DMARQ- • MLASTQ = MEMENQ

RELEASEQK = HOLDA- • RELEASEQ

HOLD = DMAR • RELEASEQ- + STARTQ + MEMENQ

MFIRSTQD = HOLDA • STARTQ DMAR • MLASTQ

MWAITQD = MFIRSTQ • READY- + MWAITQ • READY-

MLASTQD = MFIRSTQ ••READY + MWAITQ • READY

WEQQ = DBIN- • MSTARTQ + WEQ • MWAITQ

DMACC = MFIRSTQ + MWAITQ

ACGATE = HOLDA • STARTQ + MLASTQ

ACCLK = ACGATE- • 01

MCOMP = MLASTQ-

Signals ending with the letter Q are flip-flop outputs and signals with
subscripts are the corresponding flip-flop inputs. All flip-flops are code-
triggered on the trailing edge of 01 except WEQ (01 leading edge).

01

DEVICE 0 DEVICE 1 DEVICE 1

01

03

AR 1/ /1 V / / 1

ARC V / A V / /1
HOLD l 1

HOLDA
V / / 1 / 1

AG1

A.76

MEMEN

DMACC

WE

MCOMP

ACCESS()

STARTQ

RELEASE()

ACGATE

FIGURE 8-13. DMA CONTROLLER TIMING

8.7 EIA SERIAL PORT APPLICATIONS

This section describes the cable configurations and connector pin assignments
used with the microcomputer EIA serial port (connector P3). Interconnection
information is included for 103-, 202-, and 201- series modems and EIA data
terminals. A typical system configuration is shown in Figure 8-14. TI offers
a ready-made cable for use with all of the above modems, the TM 990/506.

P

P2 P3 P4

E tA
DEVICE

FIGURE 8-14. CABLE CONNECTIONS

8.7.1 Cable Pin Assignments

Tables 8-1, 8-2, 8-3, and 8-4 provide pin assignment information for interface
cables.

TABLE 8-1. 103/113 DATA SET CABLE

101 Pin
On P3

(Male)

Modem Pin
103/113
(Male)

RS-232-C
Circuit Function

1

,-
 N

 0
1
 •,- L

(1
1

0
 C- C

O
 O

N

N
 N

AA Protective Ground
3 BA Transmitter Data
2 BB Receiver Data
8 CA Request to Send
16 CB Clear to Send
19 CC Data Set Ready
7 AB Signal Ground
20 CF Received Line Signal Detector (DCD)
21 CD Data Terminal Ready
22 CE Ring Indicator

TABLE 8-2. 202/212 DATA SET CABLE

101 Pin
On P3

(Male)

Modem Pin
202/212
(Male)

RS-232-C
Circuit

Function

1 1 AA Protective Ground
3 2 BA Transmitter Data
2 3 BB Receiver Data
8 4 CA Request to Send
16 5 CB Clear to Send
19 6 CC Data Set Ready
7 7 AB Signal Ground
20 8 CF Received Ling Signal Detector (DCD)
21 20 CD Data Terminal Ready
22 22 CE Ring Indicator

Note: Pins 11 and 12 (reverse channel on 202) are not connected.

TABLE 8-3. 201 DATA SET CABLE

101 Pin
On P3

(Male)

Data Set
Pin 201
(Male)

Circuit
201

Function

1 1 AA Protective Ground
3 2 BA Transmit Data
2 3 BB Receive Data
8 4 CA Request to Send
16 5 CB Clear to Send
19 6 CC Data Set Ready
7 7 AB Signal Ground
20 8 CB Data Carrier Detect
15 15 DB Transmitter Signal Element Timing
17 17 DD Receiver Signal Element Timing
21 20 CD Data Terminal Ready
22 22 CE Ring Indicator

Note: Pin 14 (new sychronization) is not connected.

8-18

TABLE 8-4. DATA TERMINAL CABLE

101 Pin
On P3

Data
Terminal
Pin

(Female)
RS-232-C
Circuit

Function

1 1 AA Protective Ground
2 2 BA Transmitter Data
3 3 BB Receiver Data
4 4 CA Request to Send
5 5 CB Clear to Send
6 6 CC Data Set Ready
7 7 AB Signal Ground
8 8 CF Data Carrier Detect
20 20 CD Data Terminal Ready

8.7.2 Modem (Data Set) Interface Signal Definitions

8.7.2.1 Pin 1 (AA) Protective Ground

This interface lead is connected to signal ground of the microcomputer by
connecting pin E18 to E19 with a jumper.

8.7.2.2 Pin 2 (BA) Transmitter Data

The interface lead provides the electrical connection from the microcomputer
to the associated data set for the purpose of transferring a bit-by-bit
serialization of the data which is to be transmitted across the communication
channel. In the time domain, character information presented on this lead
will appear least significant bit first through most significant data bit. In
asynchronous systems, each character serialization will be preceded by a start
bit and followed by one or more stop bits.

8.7.2.3 Pin 3 (BB) Receiver Data

This interface lead provides the electrical connection from the associated
data set to the microcomputer for the purpose of transferring a bit-by-bit
serialization of the data which has been received from the remote end of the
associated communications channel. The received character format is the same
as the format transmitted.

8.7.2.4 Pin 4 (CA) Request to Send

This circuit originates in the microcomputer and is used to condition the
associated data set into the transmit mode. In half-duplex facilities this
interface signal is also used by the associated data set to control the
direction of transmission and to aid in the performance of the call turnaround
function. Some full-duplex facilities such as the Bell System 103- and 212-
type data sets do not actually require this circuit for normal operation but
the circuit will continue to function as if it were required. Once the
microcomputer has asserted the REQUEST TO SEND interface signal, its transmit
logic must remain in an idle state until the associated data set has responded
with the CLEAR TO SEND interface signal described in the next section.

8-19

8.7.2.5 Pin 5 (CB) Clear to Send

The CLEAR TO SEND interface signal originates on the associated data set and
indicates to the microcomputer that serial data transmission may proceed
across circuit BA on pin #2. Some full-duplex facilities such as the Bell
System 103- type data sets actually hold this circuit asserted once the
communications channel has been established, but the microcomputer must ignore
this constant status indication if circuit CA on pin #4 is not asserted.

8.7.2.6 Pin 6 (CC) Data Set Ready

This interface lead originates in the associated data set and indicates to the
microcomputer that all prerequisite conditions are satisfied and therefore
data communications may now proceed. It is to be noted that the DATA SET
READY lead is indicative of the status of the local data set only and in no
way can be used to infer anything about the status of the remote data set.

8.7.2.7 Pin 7 (AB) Signal Ground

This interface lead provides the common ground reference potential for all
interchange circuits except circuit AA on pin #1. In addition, this circuit
is electrically in common with the logic signal ground of the microcomputer.
A jumper provides electrical commonality with circuit AA to minimize the
introduction of noise into the electronic circuitry. The jumper may be removed
at installation time if necessary.

8.7.2.8 Pin 8 (CF) Received Line Signal Detector

More commonly known as DATA CARRIER DETECT, this interface lead originates in
the associated data set and is used to indicate to the microcomputer that a
signal suitable for demodulation is being received on the communications
channel. Communications interfaces use this signal to prepare for data
reception and therefore all internal receiver logic must be held in an idle
state until circuit CF is asserted.

8.7.2.9 Pins 9 to 14 Not Used

8.7.2.10 Pin 15 (DB) Transmission Signal Element Timing

The DB circuit originates on an associated synchronous data set and is
used to provide the driving clock for all of the internal transmit logic on
the microcomputer. The microcomputer will present serial data to circuit BA
on pin #2 synchronously with the negative-to-positive transition of the
clocking signal on circuit DB. An associated synchronous data set samples the
data bit presented on circuit BA synchronously with the positive-to-negative
transition of the clocking signal on circuit DB.

It is worthwhile to note at this point that most synchronous data sets provide
an external transmitter clock option by which the user can provide his own
clock to the modem across circuit DA on pin #24 of the EIA standard RS-232-C.
Under these conditions, the modem will synchronize circuit DB on pin # 15 with
the previously mentioned external transmitter clock. This method of
supplemental clocking is not supported by the microcomputer. Accordingly, the
microcomputer is capable of interfacing only to synchronous data sets which
have the standard factory-wired internal transmitter clock circuit installed.

8-20

8.7.2.11 Pin 16 Not Used

8.7.2.12 Pin 17 (DD) Receiver Signal Element Timing

The DD circuit originates on an associated synchronous data set and is
used to provide the driving clock for all of the internal receiver logic on
the microcomputer. An associated synchronous data set will present serial
data to circuit BB on pin #3 synchronously with the negative-to-positive
transition of the clocking signal on the circuit DD. The microcomputer
samples the data bit presented on circuit BB synchronously with the
positive-to-negative transition of the clocking signal on circuit DD.

8.7.2.13 Pin 18 and 19 Not Used

8.7.2.14 Pin 20 (CD) Data Terminal Ready

This circuit originates in the microcomputer and is used to prepare the
associated data set for connection once a call has been established. The
actual connection can be initiated by either a manual or automatic answering
procedure in addition to either a manual or automatic call origination
procedure. Circuit CD is dropped to terminate a completed call and should not
be raised again until the associated data set has responded by dropping
circuit CC on pin #6.

8.7.2.15 Pin 21 Not Used

8.7.2.16 Pin 22 (CE) Ring Indicator

This interface signal originates on the associated data set and indicates to
the microcomputer that an incoming call is pending on the communications
channel. Note that the microcomputer incorporates an integrator circuit on
the RING INDICATOR signal to protect against the spikes and false-rings
normally associated with circuit CE due to the inductive coupling effects
inherent in the cables used to connect the microcomputer with external data
sets.

8.7.2.17 Pins 23 to 25 Not Used

8-21

APPENDIX A

WIRING TELETYPE MODEL 3320/5JE FOR TM 990/101MA

A.1 GENERAL

Figure A-1 shows the wiring configuration required to connect a 3320/5JE
Teletype in a 20 mA current loop with a TM 990/101MA. Other teletypewriter
models may require different connections; therefore, consult the manufacturer
for correct wiring of other models. Teletypewriters can be used with Assembly
No. 999211-0001 only.

Note the 117 Vac connection at pins 1 and 2. Be sure that this voltage
is not accidently wired to the TM 990/101MA board.

A.2 CONNECTIONS

The following assumes that the teletypewriter is wired as it came from the
factory.

(1) Locate the 151411 terminal block at the left rear (viewed from the
rear) of the machine (Figure A-1).

(2) Move the white/blue wire from terminal 4 to terminal 5 on the
terminal block.

(3) Move the brown/yellow wire from terminal 3 to terminal 5 on the
terminal block.

(4) Move the purple wire from terminal 8 to terminal 9 on the terminal
block (for 20 mA neutral signaling).

(5) Locate the power resistor behind the teletype power supply. Remove
the blue wire from the 750 ohm tap and connect it to the 1450 ohm
tap, as shown in Figure A-2.

(6) Check pins 3, 4, 6, and 7 at terminal strip 151411. Voltage to
ground must be zero with power applied. If not, do not connect to
the TM 990/101MA.

NOTE

For teletypewriter operation, jumper E36/E37 must be installed
and E39/E40 must be in the EIA position.

A-3. TROUBLESHOOTING

If the printer continues to chatter after the RESET switch on the TM 990/101MA
has been activated, reverse connections 6 and 7 at the terminal strip.

A-1

LEFT REAR VIEW OF TELETYPEWRITER

TELETYPE MODEL 3320/5JE

TM 990/101MA

P2

OUTPULL

TERMINAL
STRIP
151411

9
VIOLET(PURPLE)

YELLOW
PRINTER OUTPUSH

24
BLACK/GREEN

KEYBOARD
INPUSH

23

* 6

44‹. WHITE/BLACK

7 WHITE/BROWN

RED/GREEN

WHITE/YELLOW

INPULL
18

WHITE/BLUE

5 e< BROWN/YELLOW

4 GREEN/ORANGE

RED

DETAIL A

3 GRAY(SILVER)

WHITE/RED

117 VAC

117 VAC

•NO.6 SPACE LUGS

FIGURE A-1. TELETYPEWRITER TERMINAL STRIP CONNECTIONS

A-2

FRONT

DETAIL A

FIGURE A-2. TELETYPEWRITER RESISTOR CONNECTION

A-3

APPENDIX B

EIA RS-232-C CABLING

Figure B-1 shows the wiring for the 743 KSR cable attached between connector
P2 on the TM 990/101MA and a 743 KSR data terminal. Also shown is the
relationship between cable wires and signals to the serial interface, the TMS
9902A. Figure B-2 shows the cable configuration for the 733 data terminal.
Figure B-3 shows the cable configuration for the 765 data terminal.

NOTES

1. When using an RS-232-C device, disconnect jumper E36/E37 and
insert jumper E39/E40 (EIA position). See Figure 7-2.

2. If you want to make your own cable, be aware that the connector
plugs of various vendors, including TI, do not necessarily use
the numbering schemes on the board edge connector. ALWAYS refer
to the board edge when wiring a connector.

TMS 9902A

TM 990/101MA

PROTECTIVE GND

P2

EIA CABLE

A

P2 P1

RIN
RECEIVED DATA

2
TRANSMIT DATA

13
743 DATA
TERMINAL

TRANSMITTED DATA RECEIVE DATA
12 XOUT 3

DCO REQUEST TO SEND
RTS

DTR
CTS

SIGNAL GND SIGNAL GND
DSR 7

NOTE: Suggested EIA cable connectors (ITT Cannon or TRW Cinch).

P2: DB 25P

P1: DE 15S

FIGURE B-1. EIA RS-232-C CABLING FOR 743 DATA TERMINAL

B-1

PROTECTIVE GROUND

RIN

XOUT

3 RECEIVED DATA

2 TRANSMITTED DATA

.224r

A3A34W
. '4W

SIGNAL GND

5 DCP

7 DTR

RTS

DSR

2

3

5

6

7

8

20

PROTECTIVE GROUND

TRANSMIT DATA

RECEIVE DATA

CTS

DSR

SIGNAL GND

REQUEST TO SEND

DATA TERMINAL READY

TM 990/101MA
TMS 9902A

P2

2

3

5

6

7

8

20

733
DATA

TERMINAL

EIA CABLE

P2 P1

1

2

3

5

6

7

8

20

PROTECTIVE GROUND

TRANSMIT DATA

RECEIVE DATA

CTS

DSR

SIGNAL GND

REQUEST TO SEND

DATA TERMINAL READY

FIGURE B-2. EIA RS-232-C CABLING FOR 733 DATA TERMINAL

P2 P1

TM 990/101MA

TMS 9902A
EIA CABLE

P2

RIN

XOUT

RTS

DSR

PROTECTIVE GROUND

3 RECEIVED DATA

2 TRANSMITTED DATA

14W 765
DATA

TERMINAL Ay6\XW
SIGNAL GND

5 DCP

1

14

3

2

9

15

11

7 DTR 8

FIGURE B-3. EIA RS-232-C CABLING FOR 765 DATA TERMINAL

B-2

APPENDIX C

ASCII CODE

TABLE C-1. *ASCII CONTROL CODES

CONTROL
BINARY
CODE

HEXADECIMAL
CODE

NUL — Null 000 0000 00
SOH — Start of heading 000 0001 01
STX — Start of text 000 0010 02
ETX — End of text 000 0011 03
EOT — End of transmission 000 0100 04
ENQ — Enquiry 000 0101 05
ACK — Acknowledge 000 0110 06
BEL — Bell 000 0111 07
BS — Backspace 000 1000 08
HT — Horizontal tabulation 000 1001 09
LF — Line feed 000 1010 OA
VT — Vertical tab 000 1011 OB
FF — Form feed 000 1100 OC
CR — Carriage return 000 1101 OD
SO — Shift out 000 1110 OE
SI — Shift in 000 1111 OF

DLE Data link escape 001 0000 10
DC1 — Device control 1 001 0001 11
DC2 — Device control 2 001 0010 12
DC3 — Device control 3 001 0011 13
DC4 Device control 4 (stop) 001 0100 14
NAK Negative acknowledge 001 0101 15
SYN Synchronous idle 001 0110 16
ETB End of transmission block 001 0111 17
CAN Cancel 001 1000 18
EM End of medium 001 1001 19
SUB Substitute 001 1010 1A
ESC Escape 001 1011 1B
FS File separator 001 1100 1C
GS Group separator 001 1101 1D
RS — Record separator 001 1110 1E
US — Unit separator 001 1111 1F

DEL — Delete, rubout 111 1111 7F

*American Standards Institute Publication X3.4-1968

C-1

TABLE C-2. *ASCII CHARACTER CODE

CHARACTER
BINARY

CODE

HEXADECIMAL

CODE
CHARACTER

BINARY

CODE

HEXADECIMAL

CODE

Space 010 0000 20 P 101 0000 50

I 010 0001 21 Q 101 0001 51

" (dbl. quote) 010 0010 22 R 101 0010 52

010 0011 23 S 101 0011 53

$ 010 0100 24 T 101 0100 54

% 010 0101 25 U 101 0101 55

& 010 0110 26 V 101 0110 56

' (sgl. quote) 010 0111 27 VV 101 0111 57

(010 1000 28 X 101 1000 58

) 010 1001 29 Y 101 1001 59

* (asterisk) 010 1010 2A Z 101 1010 5A

+ 010 1011 2B [101 1011 5B

, (comma) 010 1100 2C \ 101 1100 5C

— (minus) 010 1101 2D] 101 1101 5D

. (period) 010 1110 2E A 101 1110 5E

/ 010 1111 2F _ (underline) 101 1111 5F

0 011 0000 30 110 0000 60

1 011 0001 31 a 110 0001 61

2 011 0010 32 b 110 0010 62

3 011 0011 33 c 110 0011 63

4 011 0100 34 d 110 0100 64

5 011 0101 35 e 110 0101 65

6 011 0110 36 f 110 0110 66

7 011 0111 37 g 110 0111 67

8 011 1000 38 h 110 1000 68

9 011 1001 39 i 110 1001 69

011 1010 3A j 110 1010 6A

011 1011 3B k 110 1011 68

011 1100 3C I 110 1100 6C

011 1101 3D m 110 1101 6D

011 1110 3E n 110 1110 6E

011 1111 3F o 110 1111 6F

@ 100 0000 40 P 111 0000 70

A 100 0001 41 q 111 0001 71

B 100 0010 42 r 111 0010 72

C 100 0011 43 s 111 0011 73

D 100 0100 44 t 111 0100 74

E 100 0101 45 u 111 0101 75

F 100 0110 46 v 111 0110 76

G 100 0111 47 w 111 0111 77

H 100 1000 48 x 111 1000 78

I 100 1001 49 V 111 1001 79

J 100 1010 4A z 111 1010 7A

K

L

100 1011

100 1100

4B

4C

{
i

111 1011

111 1100

78

7C

M 100 1101 4D } 111 1101 7D

N 100 1110 4E 111 1110 7E

0 100 1111 4F

*American Standards Institute Publication X3 4-1968

C-2

APPENDIX D

BINARY, DECIMAL AND HEXADECIMAL NUMBERING

D-1 GENERAL

This appendix covers numbering systems to three bases (2, 10, and 16) which are used
throughout this manual.

D-2 POSITIVE NUMBERS

D-2.1 DECIMAL (BASE 10). When a numerical quantity is viewed from right to left, the right-

most digit represents the base number to the exponent 0. The next digit represents the base
number to the exponent 1, the next to the exponent 2, then exponent 3, etc. For example, using
the base 10 (decimal):

i06 105 104 iO3 102 101 ioo
X, X X X, X X X

Or

1,000,000
100,000

10,000
+ 1000 100 10 1

X, XXX , X X X

For example, 75,264 can be broken down as follows:

75, 264

L._ 4x 10° , 4 x 1

6 x 101 = 6 x 10

2 x 102 = 2 x 100

5 x 103 = 5 x 1000

7 x 104 = 7 x 10,000

D-1

4

= 60

= 200

= 5000

= +70000
7526410

D-2.2 BINARY (BASE 2). As base 10 numbers use ten digits, base 2 numbers use only 0 and
1. When viewed from right to left, they each represent the number 2 to the powers 0, 1, 2, etc.,
respectively as shown below:

215 26 25 24 23 22 21 20

(32,768) • • • (64) (32) (16) (8) (4) (2) (1)
X ••• X X X X X X X

For example, 110112 can be translated into base 10 as follows:

1x20=1x1= 1

1 x 21 = 1 x 2= 2

x 22 = 0 x 4 = 0

1 x 23 = 1 x 8 = 8

1 x 24 = 1 x 16= +16

1 1 0

2710

or 110112 equals 271o.

Binary is the language of the digital computer. For example, to place the decimal quantity 23
(2310) into a 16-bit memory cell, set the bits to the following:

0 15

0 0 0 0 0 0 0 0 0 0 0 1 0 1 1

which is 1 + 2 + 4 + 16 = 231o.

D-2.3 HEXADECIMAL (BASE 16). Whereas binary uses two digits and decimal uses ten
digits, hexadecimal uses 16 (0 to 9, A, B, C, D, E, and F).

The letters A through F are used to represent the decimal numbers 10 through 15 as shown on
the following page.

D-2

N10 N16 N10 N16

0 0 8 8
1 1 9 9
2 2 10 A
3 3 11 B
4 4 12 C
5 5 13 D
6 6 14 E
7 7 15 F

When viewed from right to left, each digit in a hexadecimal number is a multiplier of 16 to the
powers 0, 1, 2, 3, etc., as shown below:

163 162 161 160

(4096) (256) (16) (1)

X X X X

For example, 7 B A 516 can be translated into base 10 as follows:

7 A 5

f•—• 5 X 16° = 5 X 1 = 5

10 X 161 = 10 X 16 = 160

11 X 162= 11 X 256 = 2 816

7 X 163 = 7 X 4096 = 28 672

31 65310

or 7 B A 5,6 equals 31,65310.

Because it would be awkward to write out 16-digit binary numbers to show the contents of a
16-bit memory word, hexadecimal is used instead. Thus

003E16 or > 003E (> indicates hexadecimal)

is used instead of

0000 0000 0011 11102

to represent 6210 as computed below:

D-3

1 1

BASE 2

.f.10

BASE 10

0 X 20 - 0 2 X 100 = 2
1 X 21 = 2 6 X 101 = 60
1 X 22 = 4

1 X23 = 8
6210

1 X24 = 16

1 X 25 = 32 BASE 16

6210

3 E16
I 14 X 16° = 14

 3 X 161 48

6210

Note that separating the 16 binary bits into four-bit parts facilitates recognition and translation

into, hexadecimal.

0000 0000 0011 11102

il or
0 0 3 E16

C 7 ;16

1100 0111 1011 11112

Table D-1 is a conversion chart for converting decimal to hexadecimal and vice versa. Table D-2
shows binary, decimal and hexadecimal equivalents for numbers 0 to 15. Note that Table D-1 is
divided into four parts, each part representing four of the 16-bits of a memory cell or word (bits
0 to 15 with bit 0 being the most significant bit (MSB) and bit 15 being the least significant bit
(LSB). Note that the MSB is on the left and represents the highest power of 2 and the LSB on the

right represents the 0 power of 2 (2°, 1). As explained later, the MSB can also be used to signify

number polarity (+ or —).

NOTE
To convert a binary number to decimal or hexadecimal, convert

the positive binary value as described in Section D-4.

D-4

163 162 16' 16°

2 3 4 5 6 7 8 7 8 11 12 13 14

DEC HEX DEC HEX DEC HEX DEC

0 0 0 0 0 0 0
4 096 1 256 1 16 1 1
8 192 2 512 2 32 2 2

12 288 3 768 3 48 3 3
16 384 4 1 024 4 64 4 4
20 480 5 1 280 5 80 5 5
24 576 6 1 536 6 96 6 6
28 672 7 1 792 7 112 7 7
32 768 8 2 048 8 128 8 8
36 864 9 2 304 9 144 9 9
40 960 A 2 560 A 160 A 10
45 056 B 2 816 B 176 B 11
49 152 C 3 072 C 192 C 12
53 248 D 3 328 D 208 D 13
57 344 E 3 584 E 224 E 14
61 440 F 3 840 F 240 F 15

To convert a number from hexadecimal, add the decimal equivalents for each hexadecimal
digit. For example, 7A82,6 would equal in decimal 28,672 + 2,560 + 128 + 2. To convert
hexadecimal to decimal, find the nearest decimal number in the above table less than or equal
to the number being converted. Set down the hexadecimal equivalent then subtract this
number from the nearest decimal number. Using the remainder(s), repeat this process. For
example:

31,36210 = 7000,6 + 269010 7000
2,69010 = A0016 + 13010 A00

13010 . 8016 +210 80
2,0= 216 2

7A82,6

15 BITS 0 1

HEX

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

TABLE D-1. HEXADECIMAL/DECIMAL CONVERSION CHART

MSB LSB

D-5

TABLE D-2. BINARY, DECIMAL, AND HEXADECIMAL EQUIVALENTS

BINARY
(N2)

DECIMAL
(N10)

HEXADECIMAL
(N16) _

0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 9
1010 10 A
1011 11 B
1100 12 C
1101 13 D
1110 14 E
1111 15 F
10000 16 10
10001 17 11
10010 18 12
10011 19 13
10100 20 14
10101 21 15
10110 22 16
10111 23 17
11000 24 18
11001 25 19
11010 26 1A
11011 27 1B
11100 28 1C
11101 29 1D
11110 30 1E
11111 31 1F

100000 32 20

D-6

D-3 ADDING AND SUBTRACTING BINARY
Adding and subtracting in binary uses the same conventions for decimal: carrying over in
addition and borrowing in subtraction.

Basically,

0

+ 1

10

— 1

1 10 (the carry, 1, is carried to the left) 01 (1 is borrowed from
top left)

1

1 }

+ 1 = 0 (from above) + 1 = 1

= 0 + carry 1

11

-"\—carry

= 0 + 1 carry

1
= 0 + 1 carry

+ 1

100

+ 0 = 0

carry 1 + carry 1

carry 1 + 1 = 10

1
1000 0110

— 1 Borrow the 1 — 1

0111 0111

D-7

D-4 POSITIVE/NEGATIVE CONVERSION (BINARY). To compute the negative equivalent
of a positive binary or hexadecimal number, or interpret a binary or hexadecimal negative
number (determine its positive equivalent) use the two's complement of the binary number.

NOTE
To convert a binary number to decimal, convert the positive binary
value (not the negative binary value) and add the sign.

Two's complementing a binary number includes two simple steps:

a. Obtain one's complement of the number (1's become 0's, 0's becomes l's) (invert
bits).

b. Add 1 to the one's complement.

For example, with the MSB (left-most bit) being a sign bit:

010 (+22) 111 (-12) 1'10 (-22) 101 (-32)

101 Invert 000 Invert 001 Invert 010 Invert

+ 1 Add 1 + 1 Add 1 + 1 Add 1 + 1

110 (-22) 001 (+12) 010 (+22) 011 (+32)

This can be expanded to 16-bit positive numbers:

(=39F616) 0011 1001 1111 0110 (39F616 +14,83810)

1100 0110 0000 1001 Invert

+1 Add 1

(=a311k16) 1100 0110 0000 1010 (C60A16 —14,83810) Two's Complement

SIGN BIT(—)

And to 16-bit negative numbers:

(=C60A16) 1100 0110 0000 1010 (C60A16 —14,83810)

0011 1001 1111 0101 Invert

+1 Add 1

(=39F616) 0011 1001 1111 0110 (39F616 +14,83810) Two's Complement

SIGN BIT(+)

D-8

APPENDIX E

PARTS LIST

Symbol Description -0001 -0002 -0003

C1-C8, C11, C13-C17, Capacitor, 0.047 uF
C19-C22, C24, C26-C39,
C41-C44, C49, C51

C9, C12, C25, C40 Capacitor, 22 mFd

C10 Capacitor, 18 pFd x x x

C45-C48, C50 Capacitor, 0.047 mFd, 10% x x x

C52 Capacitor, 2.2 uF x x x

CR1, CR2 Diode, IN5333B x

CR3 Diode, IN914B x x

DS1 Diode (LED, rt angle) x x x

E1-E40, E53-E56, TP1 Pin, Jumper (BEI 75481-002) x x

E1-E35, E38-E56 Pin, Jumper (BEI 75481-002) x

All Jumpers Plug, Jumper (BEI 65474-004,
R 530153-002)

x x

Ll Coil, RF, 3.3 uH x x

P2, P3 Connector, 25-pin (AMP 206584-2) x x x

Q1 Transistor, PNP x x

R1, R2, R4, R5, R7, R8, Resistor, 4.7K ohm
R11, R23, R26, R44, R45

R3, R12 Resistor, 2.2K ohm

R6 Resistor, 1.0K ohm x x x

R9, R10, R14, R15 Resistor, 15.0 ohm x x x

R13, R16, R17 Resistor, 2.2 ohm x x x

R18, R24, R25 Resistor, 68.0 ohm x x x

R19, R21 Resistor, 910 ohm, 4 w x x x

R33, R34, R39-R41 Resistor, 330 ohm, W x

R20, R22 Resistor, 620 ohm x x x

R48 Resistor, 220 ohm x x x

E -1

Symbol

PARTS LIST, Cont.

Description -0001 -0002 -0003

R27 Resistor, 3.9K ohm x x x

R28 Resistor, 2.7K ohm x x

R29 Resistor, 330 ohm, 1 W x x

R30 Resistor, 33K ohm x x

R31, R32, R42, R43 Resistor, 27K ohm x

R35, R36, R46, R47 Resistor, 3.3K ohm x x x

R37 Resistor, 3.3K ohm x x

R38 Resistor, 560 ohm x x

R39 Resistor, 330 ohm, 4 W x x

S1 Switch, toggle x x x

S2 Switch, 5-position DIP x x x

U1 IC, TMS 9901N x x x

U2, U8 Resistor, 10.0K ohms pkg. x x x

U3, U26, U32 IC, SN74LS241N, Line Drivers x x x

U4, U18 Network, SN74LSO8N x x x

U5, U6, U10, U17, U20 Network, SN74LS74N x x x

U7, U27 Network, SN74LSO4N x x x

U9, U39 Network, SN74LS251N x x x

U11 Network, SN74LS132N x x x

U12 Network, SN74LS14N x x x

U13, U14, U22, U23 IC, SN74LS245N, Octal Buffer x x x

U15 TMS 9900 x x x

U16 TIM 9904A, clock driver x x

U19 PROM, 74S287, memory decode x x x

U21 Network, SN74LSO2N x x x

U24 Network, SN74LS153N x x x

U25, U52 Network, SN74LS138N x x x

E -2

PARTS LIST, Cont.

Symbol

U28-U31, U34-U36

Description

2114 1024 x 4 RAM

-0001 -0002 -0003

x

U29, U31, U35, U37 2114 1024 x 4 RAM x x

U33, U49 IC, SN75188N, Line Drivers x x x

U38 Network, SN74LS1ON x x x

U40, U41 Network, SN75189AN x x x

U42 TMS 2708, EPROM, TIBUG byte 1

U44 TMS 2708, EPROM, TIBUG byte 0 x

U42, U44 TMS 2716, 2048 x 8 EPROM x

U42-U45 TMS 2716, 2048 x 8 EPROM x

U46, U47 TMS 9902A Asynchronous x x x
Communication Controller

U48 IC, SN75112N x

U50 Network, SN74LSOON x x x

U51 IC, SN74LS259N, low power x x x
Schottky

U53 Network, SN75154N x x x

U54 Network, SN75107N Interface x

U55, U56 Resistor Pack, 4.7K ohm, 6-pin SIP x x x

VR1 IC, UA 7905C/MC 7905CP,
Voltage Regulator

x x x

XU1 Socket, 40 pin x x x

XU15 Socket, 64 pin x x x

XU16, XU47 Socket, 20 pin x x x

XU19 Socket, 16 pin x x x

XU28-XU31, XU34-XU37, Socket, 18 pin x x x
XU46

XU42-XU45 Socket, 24 pin x x x

Y1 Crystal, 12 MHz, 5%, HC-18U x x x

E-3

APPENDIX F
SCHEMATICS

I

PI 75,76

PI 3,4, 97, 9e

5V

7

P 9-9, 2, 21, 22,25. 27.77,
79, 81,193, 85,89,91,99,100

19, 21,23
25, 27, 29,31,35 35,3z 39

PI 73,74

PI 95

PI 96

Itel STATUS
Of Mtn

H E
LI 6 7

*53

IS Lg_

U7
,

74L504

U12

74L514

u27
?>88
74L504

1)33

75180

1)49

78188 75189A

7,3

REVISIONS

NOTES. UNLESS OTHERWISE SPECIFIED
I.CAPACITANCE VALUES ARE IN

7,1 ICRO FARADS

2.RESISTANCE VALUES ARE IN OHMS

3. ALL RESISTORS ARE ga w, 57.

CIS AND C23 ARE USER'S OPTION.

E. PIN NUMBER ASSiGNNIENTE FOR
U47 APPLY TO THE 20 PIN SOCKET.
TO ENABLE USER TO INTERCHANGE
THE 7/45 9902 A (/SPIN 5) WITH A
759903(20 PIN C USER 'S OPTION)

E JUNIPER PLUGS ARE INSTALLED ON EZO-E21,
EZZ - E 23, EZ4 -E25 AS SHOWN ON -0001 ONLY

THESE COMPONENTS ARE INSTALLED ON
-0001 ONLY

ElT1-oESE COMPONENTS APE INSTALLED ON
-0002 ONLY

9. NC DENOTES NO CONNECTION

Device oPPLY 40 TAGg$ TO P N NURSER
-12 V -5 V GUD ...5 V *12 v

TM 0900 1 26 2 27
TNS 9901 16 40
MS 9902 A 9 18
MS 9902/03 SOCKET 9 20
MS 9904A 3,10 20 13
1110 4045 9 18
MS 2708/2716 21 12 24 19
7410241, 7410245 10 20
75188 1 7 14
75182 7 14
75154 8 15
75107 13 7 14
75112 11 7 14
7412138, 153, 251, 2590 745287 8 16
741000 7 14
741002 7 14
741504 7 14
741308 7 14
741510 7 14
741514 7 14
741174 7 14
7410132 7 14

C

H

RE, oEscarPTioN

E
F

5

A

CA/4949/0 /4,44.4- 442-32 4-92-82
C8/4949 98 3t-,12 8-9-82

CA1471723 (2)freurri.,/M so
CN436246. igus-f*Vaa
CN458 943 (3) AN4,444y, 1+/148
0/v458644 aL...iet

cN4.36599 /Att.",

CAP:16604B .164R Y C1.44,4

REV/5E0 7104535E W/45.5y

6/31/ 80

II- 4 - 59,
//..72/8/
7/24/41

22/07741

DATE

rx-e/EtiLe2P.--

CO--y'47

co-ref. ,c4.44.4

ApP'ROVED

03

.047 - ,....
/ 1 1 035 C3

c '.a.,, . 8

--1

C45-047,
049,050,05o
I

.04?±
c25"
22

CI-F7, C13,
cw Ci7,

PO- 022,
024,C2G-

034,C41 -C44
.047

- - - -

2 VRI
4

AM . T 2z

T

0 C1.2 thilt

1+ ilo

C15,C3
047

CI 2
22

1+ T C34,C39
.047

)

.12V

.5V

rP I

Ski

-12V

SEQ 'CENT I • SPEC No I
NO PROCESS

RROcESSES - FOR CORRELAT,0N TO OOV T.O SPtCRIC0TICNS sri TI CRAW'S', 447

8 7

ADOITIONAL

CLASS/ E, CATION NOTES

OTT

994728
Next Nett

994726

APPLICATION

EIM

8117
NNW ON

8117

4-

',ERE OR 10ENTIPINO MARINER NONIEHCLATuRE OR ORSCRIRTION :72€.`1:7AVV.

uNLESS 0111ERRISE sotcPED

Cgr=s^.7•XEVE

: of
• INTERPRET OP•w•NO PER mu. 0.1000
• ApAova sk.i. SLAM AND p.m aoatil
• coRGENTR4.TV

4
•41111NRO

,
Ol•WTERS 01.0

.
•rn

irg47
POLE TOLERANCE

'.122 '

”71/1', 5i1 I, '7•1?

PARTS LIST

- /0.43 I-9.74
73
' sAs.778

96214 994 72 7 niwo
NONE or-7

4TEXAS iNSTRUMENTS

,,NEN EPP

DIAGRAM, LOGIC, DETAIL ED
TM 990/ 101MA

6 5 4 43 2

RSET- 74L504

C10

L__11521g.

O
OSC IN

TANK I

02
TANK 2 03

if 62
64 9 NC

•I

29

514 C1-8-

III

(3

- ml 3)
2 `4 4 4 4

h.,
ti) 4

kr) 4
I

P2 16

1.17
741.504

S/43
14C.

•5v

8 7 5 4 3 2

RI
VIB 1 cs 47. U12

7 LSO8
4 1 01 .047 ,I gp..; 6

2 PPE 5 PRE 9 ..7 741-S14 6 U2 5. 5,6
-L-- 0

17
0 0

U20
0

741.602
10825T -

---3 c. a r—' NC .11-c. a A SH 3,5
HOL DA

HOL 0A- 51.4 3,
 7

HOLD-
READY 514 3

AO

A

4 •

4 CLR Rv

5113

1125
68

P1-93 <RESTART ,VVN-

tR8
E'XTCLK B- 4' 7 K

P1-28 < '

191.27

Re
K

UII

1
so _Er„,)

E.
399 74i.5 ,32

74LS:35

----- YO 15

3 E Y2
G24 VS
G2S Y4

=6' YS GI Y6
U25 Y7

1-040-

U

G

CRuCL. G
741504

00
READY 01
p401-0 02
HOL 04 03

U15 04
T,459900 LID):

D7
WE- DS

D9
Do

0811') Di
012 83

LOAD 013
WAIT 014
NIEMEN 015 24
RESET- AO
LAD At
01 42

 02 A3 21
8 2 03 A4

0

4C

A6 ,p

A6 17 A7
16 A8

ICI 49 15

410 14

IC3 All 13
CRUIN 412 12

0 CRUOUT A13 I
0 CRUCLK 414

-49

•

A

31

48
49
50
5/
52

22

33 IC2

Z::,-)'''45r6621 4 r 994727 —.NoNe

1. 8 10

• 5V
4 U7

74LE, .4
q. e ,"

5v
10

4,1
7805

• 5 v
so

a Erg 5
13 0 a

1 ,2 9
U7

74 Lsoe -1- 74L5/32 741,504
N.

• 5v
U7

74L504
85
4.7H

'16
39

.5v

1

1125

741.574

8

4
68

G1-44 E PRES B -

U10 U/0 U17
3 C. SL—Nc 11 CK O 6 —c. (7)

CLR 741.574 CLR 741.574 CLR
'TT 13 13

36 ICO

32 IN TREG

5113, 6

SH 5,6

00
I

02
0 3
04
05
06

7
De 5,43,4

09

4-- 010
01 1
012
013
014
015
AO
4 1
42
.3
A4
A5
44

7 51 3,4
AB
4
410
All
Al2

SH 3,4, 4/3 5,6,7
514

CLR 74 Ls 74 CLR 741.574
797- U27

1 [.>

L
• 5V

71. 574 4 ,
744S74

01 4

74L 874

2 0 o _5 12 ;8E0 9

U8 L../4,
.'-LE14 a -f-mc -.1-1—o< 5 --A4c

CUR CLR

741.6132

CCU RR

• 5v

4
77

go o
Lao

3 <K di 4,

5
4

le YTAL 1
VI arr 14

12 1.1.5
19 xTAL2 ^I.2-NC
16 OsCOuT a--5i 7

L-n4,
TIM 9904A

L
34,4

42
49
44
45
46
47

12
11

9

R16 ~M 5

FL4-4,;;;;L.,

:70••••.:

13 +5V WAIT
91-12 sp.,,R, "3 r~9 47.77K ESI E7

741.504 13
U3 12 5,2,7 HO DA- READY 2 U18 3 5H2

5H 2
SH7

741-505 OBIN 741.510
01511.1

ROM I- 45 u3 ROm5EL

741.5t0

54-44
5F.4 4
BH 7

ROM2-
RAM- OIR

BI Al
52U1442

53 A5
B4 A4
B5 AS
FIG AG
B7 Al

Be AB

00
DI
02
03
04

05

07

DO.B
01.5
D2.5
05.B
04.5
D5.5
06.8
07. 5

_18 2 >PI 33
> 34

35
> 36

+5V A-401_04

5 44 10 II 12 13
R25

X11 4.7 K
vlr +5v

(0E10 = 2708/271G

oE RAM-MAP-Fa

17 3
4

`<-71
I5 U24 25 61

741.9153
O

451.1
1 p55 U19

2 ADF DO4
ADE DO5

4 ADD DO2
7 ADC DOI
C' ADS

51-17 F4oLDC- HOL.0- 15
14

15
12
11

5
24 EPROM5EL 9

10
11
12

4E17
(0ElG

> 37
> 35

> 39
>P1 40

246
22Q 7 9 2 7 A

B 0E45
Ei4

(:E13

9 11 fs. 10
U

911 741.514
4.7K

-14.4,- +5V

74L5245 19
5 ADA

52
14 Y li 745287

U52 /0,15 15EL 0 5„6

4',G1
0G24

1J.452B
5 C. 2

131 U11141

132 A 2
55 A5

54 A4
B5 45
BG AG

87 A7
55 A8

D8
09
010
DI I
012
015
D14

D15

> 2 08.8 91 41
3 D9.5 \ 42
4 010,3 > 45

5 011'15 44
G 012.5 > 45

7 D13.5 > 46
8 014.13 > 47
9 015.8 >91 48

18
17

46
15
14

15
12

1.454451.1- 9 ,i,14 ISELI- „, 5
y2,25_ 15EL2^ T51.4. 7

Y3 2 NC
14 1-II I5EL4- 5,5

75 D IO ISEL5- 5,5
y„ 9 ISELG-
"0 7 I5EL7- 5H6

SH I,

741.508 I 2 L 3
74/502 741-508 6,42,4

8 10 9
74L502

741.5138

19+y_ 741-5245 I 97 CR WE XTC R U -

16 - 15 CRUOUT.B 742S245 2 CRu OU7
71-29 CRUIN 5

> 91 50 AI 171
U3 16 IA2 172 51 Di Al

023
B2 42
83 45
B4 A4

B5 A5
BG AG

B7 AT

earFre
194

48
5H2,4 A9

410
All

IS
I/
IG

15
14

13
12

2
5 49.B

8,754
A4

44#41118

11 0
2
145

.....5

8

.

8

1368 P 7:‘'

,

I

 609:75

/ 71
9 415.5 >91_72

BRUIN SH 2,5
14 IAD 113
12 1.10

144 114
13- 241 271 9 CLK. SH 2 CLK- PI 26

24
22
19
21
23

> PI 25

412
415
414

783.6- 5-12,5,G,7 °5

1'1
,1_42 IAG,

SH2-6 2A2 212

243 213
244 214

741-524

5 81.13- 5 •
MO

3 I48.8

18 -7-7-1.17
T-T 68 +5

SH2
HOLDA 18 ,HOLDA.a4 p, -86

16 p2R5T.E1-> p,
14
12

INC
5 _ HOLD-5.2

,
7

3 CRUCLK.B- Pl 87

2 Al 16-1,11
4 IA2 112

: "U32"
- 144 114

241 2Y1

15 242. 212

243 273

2442, 214

19] 741.5241

[AR
131 Al
2 U22 42

3 AO AO
Al

A2

sHz.s 1095T- PI 57
41.B > 58

SH2 4 42.B 1G
910 6W
R19 920

P1-89‹ •
_ +5V F/C.

HOLID.5-
R21 R22
910 620

91-91<

OuCLKG-

91-90‹ J READY. B

59
GO

TT> 61

42

63
> PI 64

55 A3
54 A4 15 45.5 A

A 6 A4 .B A4 45 135
13 7 45.5 BG AG

B7 47
B8 AB

91-92‹
12 A6.8 5,42,4 46

A7.6 A7

45V
19/ 741.5245

96214 994727 1,1+1 D kAS, IssNaumusr
f 4

1 FM 5 3 6 8 7

o
134 E35

944
4.7 K

+5V -NVV--- EZ8 E29 030 E26 527 531 E32 E33 R45
4.76

•—'vsn,- +5V

ROM 1 -

44

si-/ 3

ROM 2-
5,-4 3 N2,3

AS 22
--IC-9-A6As A, ,

0±5Q.

23 98 CS Do Al I A7 087

V A9
AG 0 7

15
 ILO'

 IA D 3 95 U440 14 D3
Q.

93 04
I
 ED):

0 o

A5 22 20 AS 22 20
AS 23 18

45 AS 22
AG 23

A9 910
AS CS
A7 08
AG 07
AS U4306
A4 05
AS 04
A2 05
Al 02
AO 0I

8
4- A7 I
9 A8 2

17 05 A7 I 17 DO
14 D9 AS 2 IS DI

28 08
AS
49

D9
9- 7A3 3

AtO 4
All 5
812 6

9 413 7
9 914 8

15 D10 49 3 15 D2
U42 14 DII AIO 4 U45 14 05 942,3 DII

51+2,3 13 012 Al l 5 13 D4
II 013 All 6 I 1 D5

Al 012
AIZ 013 AZ 03

A13 7 Al 02 -S1.9-A14 8 AO
0I

413 ID 014 Al3 7 10 06 014
5 D7 9 DIS 414 8 9 D7 414 9 015 015

,,

TMS 2708/2716 764521708 /2716 76152708/2716
Tm5 2708/2716

4 6_5_ 3
r-

2 5 4_, 3
1

U55 / /1 / I U50
4.7K 4 4.7K

+5V I
1 L- +5V

2

A5 15 AS 15 II 28 AS 15 DO II D8 AS IS
AG 16
/7 17
A8 1
49 2
AID 3

A9 1/o4
48 I/03
A7 I/02 -II 02
96 I/01 14 D5

A9 1/04
46 16 AG

Ili
!,

A7
AG IS 12 DI 12 09 , 39 AS 1/03

A7 1/02
46 1/01
A5
A4 U55
45
A2
Al CS
AO WE 10

15 010 17
AS I
A9 2

A7 17 13 02
AS I 14 03 14 DII
A9 2
AIO 3 U57

A5
A4

All 4 A5
Al2 7 A2

AI913 6
• Al4 5 AO

U55 ..„_„/L110 U54
All 4 All
Ala 7 412

All 6
A14 5

ES 6
-we 10

413 6 RAM
N 7 Al4 5 10 0

TMS 4045 TMS4045 TMS 4045 T M84045

51+2,7 WE
7 RAM 2-

DO
• 45 15
• it.
• 17

I
A9 2

II 04 ,
12 DS
15 OG
14 07

AS 15 II 012
121:113
13 014
14 DIS

A5 15 II D4 ,
12 05
13 OS
14 07

012 AS IS

A6 16
A7 17
A8
A9 2

A9 1/04 II
98 1/05 12

1/04
//05
I/02
1/01

A9

A7
AG
AS
A4
93
A2
Al
AO

AS IS I
Al 17 D2 A7 1/02

A6 I/01
AS
A4 U29
AS
AZ
Al n

AS I
D3 A9 2 A9 2 $142,3 U213 u3 I AIO 3

qn 4
All 7
All

• Al4 5

04 U30 Ala AID 3 A10 3
All4 A11 4 All 4 D5
912 7 AIZ 7 912 7

Al3 6
, 414 5

06

D7
8 913 8 413 6. a CS

WE 10 A 4 5 Al4 5 10 AO WE IC

T1.154045 TMS 4045 TMS 4045 1615 4045
J I

, 5.46214 '"--.994727
—NONE

8 7 6 5 4 3 2 1

5„104101JRCE

;Is DIT4 - 5,47

INT550URCE>pv

mo NT5 - si4 E

r
(A

6,

0 0 0 0
N 4, u„

5

111

Np
N.

tA

—4 —4

•

O

0

I

AJ

0

(7,
0

P

C

•-•

r

to

0 c '
CA,

z ^45 N

• tiK-
0 AC,221

• ..••••

c 1 m. 4.7.,
,C4/<

r

1:1 D 1;) 13 0 0 .0 0 0 0 0 0 .0 D 0 13 11 13 TI 13 11 D 13 13
AA 446-56' A - •- 4 7 - - A 7 - A- - •

• 0 A, 4'
• N N 6, 6 6 8 ir co it ,' 6 ,6, ,t) y

A Ill

J> L _CL 9 _q_
s'

2 %

o o 0 0 o n

•

C0

&.1

10

6'
r

I>

r
tn" 0

-1

'C C
-

C

N A p

)?,
1

ZI

ia

z

N

O 0 0 D 0 U 0
O N la 4 (A CA

0,

onnnn
- 0 M Jj

c C C
• 0 .;
✓ c `
x -1

z zz
A - A A

.4.,
41'•

0

U
N

A to

N
n
0 -1

1.6

(31 •,1 t 65

KA.

z
• H 1-4 -I
0, 4 ill -

z

A, A CT
r
7

0 A,

N

O

X

O
5 ;

 0 F. Oi 0 <
• 10,
A A

A A

- C
O

5:
Nv •

4.1
4-4-AAA- -4

4 _ _ _ _

0 0
- 0 r c

•e,
A,

1.10
SN

51-12,3, 4,
5, 7

U41
75159A

NC
6 5 4 RECEIVED

DATA
C 03

o2 54

53
sz 047

S I

V41
75189.8

45V
14

10

u53
75,54 7

61

Sul, 5, 7 CRUCLK G

5047
.
3
‘5.

 7 CRUOUT

4.5V

12 075 MODEM SOT

U5\
75154

P3-2 < MODEM DTR

NC
((40

P3
< MODEM-05R

LI 3
/75i89.4
NC

(40

23-22 <A1°D4-"-RI
4 6

751894
022,

.047

OSIR -

RI-

LJAA
13 TRANSMITTED

A ILDL-
DATA

.> P3-3 • I2V
R46
33K TERMINAL

CLEAR TO SENO >p3 5

0447 TERMINAL 3.3K DATA SET READY
P9 6

75155
7-56.4(NAL U33

5
DATA CARRIER

4 [i>6
 DETECT

>

17 > 23-5 EIA•
E 54

7.5188 MODEM
•' 12 CLEAR TO

((56 I i 13 SEND P3-16
E55 P27 •,,,..

3.9K 75189A

83-7

CPUOU 2
51-12,3 0 7

5042,5 CLRCRU- 15 0,, 06 11
23- 20 5.2

,
3cRucL..G - 14 6 5 .!

U51 04 9

TERMINAL
DATA TERMINAL

A READY

.3v 9

1475- 639
330

SEL 7 3 2— NC DS)
3 ISELO- 2

> P3 2 A14 INT 5- 2 INT-

)(OUT

RTS-

C TS

DER-

PIN

5

4 fl NC
A13 2 13

Ar2 14 00

Al
74 Ls259 MODEM SCR P3-17 ,6 A10 SO

CR Li C L K

CRUOUT

CRUIN

0

74(500

05
,
7CPUIN

El1 3
13142,3,A

ISEL.C...- 19 CE SCR
rms

9903
< ONLY')

Scr

TI

10 >P3 /5

P26
45V 4.7K EIA 75188

9 a
TMS 9902

10

ISEL7-
5)-i 3 DO s u 7

DI W

ISEL 7- 4 B
3

2
0

ID
U39

A 11

05 V

15 D4
14 05

13

)2 07

NC

74Ls251

A

96214 D 994727 . e H
NONEI 1.))) 6

1 7 5

A
• (1,
G 2G

S 2Y

2

D D

.1+. NC
4 7401Rinl

31_
NC

10

• 5V
CRI CR2
1N53331E 1N5333

+5v

INRUSH
IN PULL

55

P2-
5 OCC TS 3'3 K • .t12V

A14 10
.413 11

412
A11

8142,3,4,
5,6

C Ala 4

R3S
E47 560 -12V

£48
> 92 124

> 921-251

5V
FT<1,As0—.--'Ivvv--R 32
330 27K

a
4 LOCDTR 15

<5v - -5V

 IA
,
7
,
5,.

:..
4
0c0.0,_) pz a 74Lsoo NC{

16 u..

E25 E E24 > P2-13 - IZV

P1 731 < •

PI 79‹

PI 77‹
VVE.13-

pi_90<74EMEN$-5

P1-82< peiN.13
NOLO - 61414

5142

5142,3
S•i2,3

5142,4
WE-

NIEMEN-

MEMCYC-
108IN

m04-DC-
Alm 3

 Pi 54
>Pi 83

51425,6 CRuCLK G is
gm CRu OUT

5,42.
3
.
5
.
6 CRu,N 4

5142,33,6-93
5143

ZSEL 2- 17

sH2.3 "'DA-

10 Ey8 LOcM5-,7 g s 77,
751338

TTY INTERFACE

L.- -

2
5

2A 2 Z 1
2C 21,

E44
DUPLEX
SELecroRs

£43

OuT PULL
ouTeuSm

E52 E51

834 542 541 R34
330 27K 330 271,1

I~.

4-

MULTI .5V

1U. 0

- DROP INTeR

.

:

9

A 2

..

E

3 IC 13
1 2 I 1 3

213

.12v
E22 a

£1431

23

_J
C

yF p
 I

13 75112 j
• 5v E21 0 £20 > P2-14 —

3

0

B

740500

U313 6
RAM I -

5i4 4
741.810

28 NC
it

12
R43 8.33
27K

2A .75V 6 LOLRCQ >Pa z
u.53

75/54 u34
75107 EIA £50 Cs„,E4.9_,

R 28
2. 714

TTY RCV
E38 0 E40

E39 E 3 T T Y
E36 P2 18

R 5G
LOCD5R .3. 5 K

P2-G 1A.N

SH

5145 INT4 -

L_
829
330

-12v
"W TTY RCV R TN 92 2

.12 v

4 INT-
53 Rtp4

52
51 055 7
50
0RUCLK
cRuou7

CiPuiN RTS 5 1,
• CTSA J
CE

u4G

TNIS 4902

U26
74L5241

-
AI
AZ I Y2
1,43 i Y3

144 1 Y4

241 3Y1

2A2 2 Y2

243 2Y3
2A423Y 4

9

Ss-14 e RANI 2 -
P2-1 0

A 74L810
4 > P2,-7 3 >4

A4

r. lavide de 4 7417 \Drial4 99 4 7 2 7
_.4+LNONEL 7 OBI N - 51../ 3

7 8 2 1

.1.1,31a5

A .i2
3 741.514

u27
74 L1504

5142,3,4

5 RAM 1-1

U27 .5
74 L1304

92
4.7K

TTYXMTj TN

TTYXMT

01
2N 2905A

L/53
75/54 7-837-

5
6 I 3.3K

75 lee I

1.1

> P2 2cLi 830
33K

T

E426 41

5

4
$

4

II

3

5

7

4

9 MEMC

7

5
3

APPENDIX G

990 OBJECT CODE FORMAT

G.1 GENERAL
In order to correctly load a program into memory using a loader, the program in hexadecimal
machine code must be in a particular format called object format. Such a format is required by
the TIBUG loader (paragraph 3.2.7 explains loader execution). This object format has a tag
character for each 16-bit word of coding which flags the loader to perform one of several
operations. These operations include:

• Load the code at a user-specified absolute address and resolve relative addresses.
(Most assemblers assemble a program as if it was loaded at memory address 000016;
thus, relative addresses have to be resolved.)

• Load entire program at a specific address.

• Set the program counter to the entry address after loading.

• Check for checksum errors that would indicate a data error in an object record.

G.2 STANDARD 990 OBJECT CODE
Standard 990 object code consists of a string of hexadecimal digits, each representing four
bits, as shown in Figure G-1.

TAG CHARACTER

LENGTH OF RELOCATABLE CODE TAG CHARACTERS

(--"--N
0004CBLINK A0000BFF70C0004B04CCBC060B000EBCC60C0048B0202C002C7F1FCF 0001
A0012BCC42BCC60C004AB0200B3009B042080000B030080003B0201B00037F3ODF 0002
A0028B1DOOBIOFFBFF70C0030B020CB0100B1D03B04CCB0601B1604B1E007F2AFF 0003
A003E802018000350380B1130013038080420B03807F760F

..._,r__,
0004

3001ETIMEO150000BLINK 7FAABF 0005
BLINK TXMIRA 0006

END OF OBJECT CHECKSUM FIELD

FIGURE G-1. OBJECT CODE EXAMPLE

G-1

The object record consists of a number of tag characters, each followed by one or two fields as
defined in Table G-1. The first character of a record is the first tag character, which tells the
loader which field or pair of fields follows the tag. The next tag character follows the end of the
field or pair of fields associated with the preceding tag character. When the assembler has no
more data for the record, the assembler writes the tag character 7 followed by the checksum
field, and the tag character F, which requires no fields. The assembler then fills the rest of the
record with blanks, and begins a new record with the appropriate tag character.

Tag character 0 is followed by two fields. The first field contains the number of bytes of
relocatable code, and the second field contains the program identifier assigned to the program
by an IDT assembler directive. When no IDT directive is entered, the field contains blanks. The
loader uses the program identifier to identify the program, and the number of bytes of
relocatable code to determine the load bias for the next module or program. The PX9ASM
assembler is unable to determine the value for the first field until the entire module has been
assembled, so PX9ASM places a tag character 0 followed by a zero field and the program
identifier at the beginning of the object code file. At the end of the file, PX9ASM places another
tag character zero followed by the number of bytes of relocatable code and eight blanks.

Tag characters 1 and 2 are used with entry addresses. Tag character 1 is used when the entry
address is absolute. Tag character 2 is used when the entry address is relocatable. The
hexadecimal field contains the entry address. One of these tags may appear at the end of the
object code file. The associated field is used by the loader to determine the entry point at which
execution starts when the loading is complete.

Tag characters 3 and 4 are used for external references. Tag character 3 is used when the last
appearance of the symbol in the second field is in relocatable code. Tag character 4 is used
when the last appearance of the symbol is absolute code. The hexadecimal field contains the
location of the last appearance. The symbol in the second field is the external reference. Both
fields are used by the linking loader to provide the desired linking to the external reference.

For each external reference in a program, there is a tag character in the object code, with a
location, or an absolute zero, and the symbol that is referenced. When the object code field
contains absolute zero, no location in the program requires the address that corresponds to the
reference (an IDT character string, for example). Otherwise, the address corresponding to the
reference will be placed in the location specified in the object code by the linking loader. The
location specified in the object code similarly contains absolute zero or another location. When
it contains absolute zero, no further linking is required. When it contains a location, the addr€ ;s
corresponding to the reference will be placed in that address by the linking loader. The locat, ,n
of each appearance of a reference in a program contains either an absolute zero or anon er
location into which the linking loader will place the referenced address.

G-2

TABLE G-1. OBJECT OUTPUT TAGS SUPPLIED BY ASSEMBLERS

TAG HEXADECIMAL FIELD
SECOND FIELD MEANING

CHARACTER (FOUR CHARACTERS)

0 Length of all relo- 8-character program Program start
catable code identifier

1 Entry address None Absolute entry
address

2 Entry address None Relocatable entry
address

3 Location of last 6-character symbol External reference
appearance of last used in relo-
symbol catable code

4 Location of last 6-character symbol External reference
appearance of last used in absolute
symbol code

5 Location 6-character symbol Relocatable external
definition

6 Location 6-character symbol Absolute external
definition

7 Checksum for None Checksum
current record

8 Ignore checksum None Do not checksum for
error

9 Load address None Absolute load
address

A Load address None Relocatable load
address

B Data None Absolute data

C Data None Relocatable data

D Load bias value• None Load point specifier

F None None End-of-record

G Location 6-character symbol Relocatable symbol
definition

H Location 6-character symbol Absolute symbol
definition

'Not supplied by assembter.

Tag characters 5 and 6 are used for external definitions. Tag character 5 is used when the
location is relocatable. Tag character 6 is used when the location is absolute. Both fields are

used by the linking loader to provide the desired linking to the external definition. The second
field contains the symbol of the external definition.

G-3

Tag character 7 precedes the checksum, which is an error detection word. The checksur is
formed as the record is being written. it is the 2's complement of the sum of the 8-bit ASCII
values of the characters of the record from the first tag of the record through the checksum tag
7. If the tag character 7 is replaced by an 8, the checksum will be ignored. The 8 tag can be used
when object code is changed in editing and it is desired to ignore checksum.

Tag characters 9 and A are used with load addresses for data that follows. Tag character 9 is
used when the load address is absolute. Tag character A is used when the load address is
relocatable. The hexadecimal field contains the address at which the following data word is to
be loaded. A load address is required for a data word that is to be placed in memory at some
address other than the next address. The load address is used by the loader.

Tag characters B and C are used with data words. Tag character B is used when the data is
absolute; an instruction word or a word that contains text characters or absolute constants, for
example. Tag character C is used for a word that contains a relocatable address. The
hexadecimal field contains the data word. The loader places the word in the memory location
specified in the preceding load address field, or in the memory location that follows the
preceding data word.

To have object code loaded at a specific memory address, precede the object program with the
D tag followed by the desired memory address (e.g., DFD00).

Tag character F indicates the end of record. It may be followed by blanks.

Tag characters G and H are used when the symbol table option is specified with other 990
assemblers. Tag character G is used when the location or value of the symbol is relocatable,
and tag character H is used when the location or value of the symbol is absolute. The first field
contains the location or value of the symbol, and the second field contains the symbol to which

the location is assigned.

The last record of an object code file has a colon (:) in the first character position of the record,

followed by blanks, This record is referred to as an end-of-module separator record.

Figure G-2 is an example of an assembler source listing and corresponding object code. A
comparison of the object tag characters and fields with the machine code in the source listing
will show how object code is constructed for use by the loader.

G-4

SAMPLE

SOURCE STATEMENT NO.

LOCATION COUNTER (ADDRESS RELATIVE TO FIRST OBJECT BYTE)

MACHINE CODE

SDSMAC 945278 **
PAGE 0001

0001 IDT 'SAMPLE'
102 0000 ROOF.' DATA WSPACE
03 0002 008A' DATA START

0004 0004 0000 DATA 0
0005 0006 WSPACE 855 32
0006 0026 TABLE 8SS 100
0007 008A START
0008 008R 04CC CLR 12
0009 008C 04C0 CLR 0
0010 008E 0202 LI 2, TABLE

0090 0026'
0011 -0092 C800 MOV 0,0TA8LE+2

0094 0028'
0012 0096 1001 JMF - $+4
0013 we% LOOP
0014 0098 0204 LI 4,3,1234

009A 1234
0015 009C 0244 ANDI 4,>FEED

009E FEED
0016 00A0 DC84 MOVB 4,*2+
0017 00A2 0205 LI 5,>5555

0084 5555
0018 00A6 C805 MOV 5,61TABLE

00A8 0026'
0019 END
NO ERRORS

000ARSAMPLE H0000C00060008ABOOOOROOSAEO4CCE04C001- (0 026EC8007F200F
00028B1001E0204B12341:0244tFEEDDIC84B0205B5555K605L00211,7E3AF

SAMPLE 00/00/00 08:14:23 ZICMAC 945278 ••

FIGURE G-2. SOURCE CODE AND CORRESPONDING OBJECT CODE

000
000

G-5

APPENDIX H

P1, P2, P3, AND P4 PIN ASSIGNMENTS

TABLE H-1. CHASSIS INTERFACE CONNECTOR (P1) SIGNAL ASSIGNMENTS

PAN
SIGNAL

PI - PIN
SIGNAL PIN SIGNAL

33 DO.B 71 A14.6 12 INT13.B
34 D1.8 72 A15.8 11 INT14.8
35 D2.6 22 .El1.B 14 IN175.13
36 D3.6 24 033 28 EXTCLK.B
37 D4.8 92 1-1(TIff.8 3 +5V
38 D5.8 86 HOLDA.B 4 +5V
39 D6.8 82 DBIN.B 97 +5V
40 D7.8 26 ti K. B 98 +5V
41 D8.B 80 MEMEN.B 75 +12V
42 D9.8 84 MEMCYC.B 76 +12V
43 D10.8 78 VVE.13 73 -12V
44 D11.8 90 READY.B 74 -12V
45 D12.8 87 CRUCLK.B 1 GND
46 D13.8 30 CRUOUT.B 2 GND
47 D14.8 29 CRUIN.B 21 GND
48 D15.8 19 IAQ.B 23 GND
57 AO.B 94 PRES.B 25 GND
58 Al .B 88 10R"r B 27 GND
59 A2.B 16 INT1.13 31 GND
60 A3.B 13 ITITT.8 77 GND
61 A4.B 15 IN B 79 GND
62 A5.6 18 W4.B 81 GND
63 A6.B 17 ITOS.13 83 GND
64 A7.8 20 INT6.B 85 GND
65 A8.8 6 I NT7.B 89 GND
66 A9.8 5 1NTEB 91 GND
67 A10.8 8 IN .B 99 GND
68 A11.6 7 INT10.B 100 GND
69 Al2.8 10 INT11.13 93 RESTART.B
70 A13.6 9 INT12.B 95-96 CONNECTED TOGETHER

(GRANTIN/GRANTOUT)

NOTE

If you want to make your own cable, be aware that the connector plugs
of various vendors, including TI, do not necessarily use the numbering
schemes on the board edge connector. ALWAYS refer to the board edge
when wiring a connector.

H-1

TABLE H-2. SERIAL I/O INTERFACE (P2) PIN ASSIGNMENTS

P2
PIN

SIGNAL DESCRIPTION

1 GND

7 GND

3 RS232 XMT RS232 Serial Data Out

2 RS232 RCV RS232 Serial Data In

5 CTS Clear to Send
(3.3Kfl pull-up to +12 V)

6 DSR Data Set Ready
(3.3K0 pull-up to +12 V)

8 DCD Carrier Detect

20 DTR Data Terminal Ready

18,23 TTY XMT TTY Receive Loop/Private
Wire Receive Pair

24,25 TTY RCV TTY Transmit Loop/Private
Wire Transmit Pair

12* +12 V Jumper Option for Microterminal

13* —12 V Jumper Option for Microterminal

14* +5 V Jumper Option for Microterminal

16 RESTART Invokes the Load
Interrupt to the TMS 9900 CPU

'When using the Microterminal, these voltages are jumpered to the corresponding pin in connector P2. Else, the voltages are not connected.

H-2

TABLE H.3 SERIAL I/O INTERFACE (P3) PIN ASSIGNMENTS

P3 PIN SIGNAL DESCRIPTION

1 OPTIONAL GND GROUND IF JUMPER AT E18, E19

7 GND GROUND

2 RS232 RCV RS232 Serial Data In

3 RS232 XMT RS232 Serial Data Out

5 CTS-Terminal Terminal Clear to Send (3.3 Id2 pull-up to +12 V)

6 DSR-Terminal Terminal Data Set Ready (3.3 kS2 pull-up to +12 V)

8 DCD-Terminal Terminal Data Carrier Detect

(activated by TMS 9902A Request to Send)
16 CTS-Modem Modem Clear to Send*

19 DSR-Modem Modem Data Set Ready*
20 , DTR-Terminal Terminal Data Terminal Ready

DCD-Modem Modem Data Carrier Detect*
21 DTR-Modem Modem Data Terminal Ready*
15 SCT Synchronous Transmit Clock
17 SCR Synchronous Receive Clock
22 RI Ring Indicator

*Used with TM 990/506 Modem Cable Only.

H-3

TABLE H-4. PARALLEL I/O INTERFACE (P4) SIGNAL ASSIGNMENT

P4 PIN SIGNAL P4 PIN SIGNAL

20 PO 17 GND
22 P1 15 GND
14 P2 13 GND
16 P3 11 GND
18 P4 9 GND
10 P5 39 GND
12 P6 37 GND
24 INT15 or P7 35 GND
26 PU14orP8 33 GND
28 INT13 or P9 31 GND
30 INT12orP10 29 GND
32 INT11orP11 27 GND
34 INT1O or P12 25 GND
36 INT9 or P13 23 GND
38 INT8 or P14 21 GND
40 OTr7 or P15 19 GND
7 GND 1 +12 V
8 POSITIVE EDGE TRIGGER INT6 2 —12 V

3 +5 V
4 SPARE
5 GND
6 NEGATIVE EDGE TRIGGER INT6

NOTE

If you want to make your own cable, be aware that the connector plugs
of various vendors, including TI, do not necessarily use the numbering
schemes on the board edge connector. ALWAYS refer to the board edge
when wiring a connector.

H-4

APPENDIX I

TM 990/301 MICROTERMINAL

1.1 GENERAL

The Texas Instruments Microterminal offers all of the features of a minicomputer front panel at reduced cost

The Microterminal, intended primarily to support the Texas Instruments TM 990/1XXM microcomputers, al

lows the user to do the following:

• Read from ROM or read/write to RAM

• Enter/display Program Counter

• Execute user program in free running mode or in single instruction mode

• Halt user program execution

• Enter/display Status Register

• Enter/display Workspace Pointer (this term is unique to the Texas Instruments 9900

microprocessor)

• Enter/display CRU data (this term is unique to the Texas Instruments 9900 microprocessor)

• Convert hexadecimal quantity to signed decimal quantity

• Convert signed decimal quantity to hexadecimal quantity

1.2 SPECIFICATIONS

• Power Requirements

+12V (±3%), 50 mA

—12V (±3%), 50 mA

+5V (±3%), 150 mA

• Operating Temperature: 0°C to 50°C (+32° to +122°F)

• Operating Humidity: 0 to 95 percent, non-condensing

• Shock: Withstand 2 foot vertical drop

1.3 INSTALLATION AND STARTUP

To install the Microterminal onto a TM 990/1XX microcomputer, do the following:

• Attach jumpers to:

- On TM 990/100MA.: J13, J14, and J15, and set J7 to EIA position

- On TM 990/101MA: E20-E21, E22-E23, and E24-E25

- On TM 990/180M: J4, J5, and J6, and set J13 to EIA position.

• Attach the EIA cable from the Microterminal to connector P2. Signals between the Microterminal

and the microcomputer are listed as in Table 1.

• To initialize the system, actuate the microcomputer RESET switch, then press the microterminal

CLR key.

NOTE

If the user has installed the optional filter capacitor on the RESTART input, this
capacitor must be removed for proper operation (e.g., if C5 is installed on the
TM 990/100MA or TM 990/180M microcomputer, this capacitor must be
removed).

1-1

t TEXAS INSTRUMENTS

H/5 D-H H-D RUN

EWP E PC EST ECRU

DWP DPC DST DCRU

r

EMA EMD EMDI CLR

I I I 1

0 1 2 3

1
4 5 6 7

I

8 9 A

B

I

C D E F/-

 I

FIGURE I-1. TM 990/301 MICROTERMINAL

TABLE I-1. EIA CABLE SIGNALS

EIA
CONNECTOR

PIN
INTERFACE SIGNAL

AT TM 990/100MA/180M/101MA

P2 PIN SIGNAL

2 -2 RS232 RCV TERMINAL DATA OUT

3 TERMINAL DATA IN -3 RS232 XMT

7 GND -7 GND

12 +12V -12 +12V

13 -12V -13 -12V

14 +5V -14 +5V

16 HALT -16 RESTART

CAUTION

Before attaching the Microterminal to a power source, verify voltage

levels between ground and EIA connector pins 12, 13, and 14
at connector P2 on the board. Voltage should not exceed values in

Table 1-1.

1.4 KEY DEFINITIONS

1.4.1 DATA KEYS

I CLRI

for A and ASCII code for Z) to host microcomputer.

Clear Key — Depressing this key blanks display, initializes and sends initialization message (ASCII code

Hexadecimal Data Keys — Depressing any one of these keys shifts that value into the right-hand display

digit. All digits already in the data display are left shifted. For all operations other than decimal to

hexadecimal conversion, the fourth digit from the right is shifted off the end of the right-hand display

field when a data key is depressed. For a decimal to hexadecimal conversion, the fifth display digit from

the right, rather than the fourth, is shifted off the end of the data field.

1.4.2 INSTRUCTION EXECUTION

Pressing this key while a program is running (run displayed) will halt program execution. The address of

the next instruction will be displayed in the four left-hand display digits, and the contents of that

address will be displayed in the four right-hand digits. Pressing this key while the program is halted, will

execute a single instruction using the values in the Workspace Pointer (WP), Program Counter (PC), and

Status Register (ST), and the displays will be updated to the next memory address and contents at that

address.

Pressing this key initiates program execution at the current values in the WP, PC; run is displayed in the

three right-hand display digits.

1.4.3 ARITHMETIC

H-*DI The signed hexadecimal data contained in the four right-hand display digits is converted to signed

decimal data. Note that the fourth display digit from the right is the sign bit (1 = negative). The

conversion limits are minus 32,76810 (800016) to plus 32,767 (7FFF16). Two H-+D key depressions are

required. The sequence is:

1. Depress IH- DI

2. Enter data via hex data key depressions.

3. Depress H-÷13 . The results of the conversion are displayed in the five right-hand display

digits.

I The decimal data contained in the five right-hand display digits is converted to hexadecimal. The

conversion limits are the same as for hexadecimal to decimal conversion. The sequence is:

1. Depress ID->H

Enter data via hex data key depressions.

. The results of the conversion are displayed in the four right-hand display

I o
1

[F/—

IH/S

RUN

2.

3. Depress

digits.

D -,H

1-3

depressing 1DCR Ul

display. Pressing

. The new value is entered from the keyboard and displayed in the right-hand

enters this value onto the CRU at the address shown in the left display. `ECRU

1.4.4 REGISTER ENTER/DISPLAY

Pressing this key causes the value displayed in the four right-hand digits to be entered into the WP.

Pressing this key causes the WP contents to be displayed in the four right-hand display digits.

Pressing this key causes the value displayed in the four right-hand digits to be entered into the PC.

Pressing this key causes the PC contents to be displayed in the four right-hand display digits.

Pressing this key causes the value displayed in the four right-hand digits to be entered into the ST.

Pressing this key causes the ST contents to be displayed in the four right-hand display digits.

1.4.5 CRU DISPLAY/ENTER

DCRU Pressing this key causes the data at the designated Communications Register Unit (CRU) addresses to
be displayed. Designate from one to 16 CRU bits at a specified CRU address by using four hexadecimal

digits. The first digit is the count of bits to be displayed. The next three digits are the CRU address

(equal to bits 3 to 14 in register 12 for CRU addressing). When DCRU is depressed, the bit count and

address are shifted to the left-hand display, and the right-hand display will contain the values at the

selected CRU output addresses. The output value will be zero-filled on the left, depending upon bit

count entered. If less than nine bits, the value will be contained in the left two hexadecimal digits. If

nine or more, the value will be right justified in all four hexadecimal digits.

Pressing this key enters a new value at the CRU addresses and bit count shown in the left display after

CAUTION

Avoid setting new values at the TMS 9902A on the TM 990/100MA/

180M/101MA through the CRU (TMS 9902A is at CRU address 004016),

as this device controls I/O functions.

1.4.6 MEMORY ENTER, DISPLAY, INCREMENT

Pressing this key will cause (1) the memory address (MA) in the right-hand display to be shifted to the

left-hand display and (2) the contents of that memory address to be displayed in the right-hand display.

Pressing this key causes the value in the right-hand display to be entered into the memory address

contained in the left-hand display. The contents of that location will then be displayed in the four

right-hand display digits (entered then read back).

Pressing this key causes the same action as described for the JEMD1 key; it also increments the memory

address by two and displays the contents at that new address. The memory address is displayed on the

left and the contents at that address is displayed on the right.

1.5 EXAMPLES

1.5.1 EXAMPLE 1, ENTER PROGRAM INTO MEMORY

Enter the following program starting at RAM location FE0016. Set the workspace pointer to FF0016 and the

status register to 200016. Single step through the program and verify execution. Then execute the program in

free run mode and verify execution. Then halt program execution.

1.4

fEWP

DWP

EPC

DPC

EST

DST

ECRU

EMA

EMD

EMDI

EMD11 FE041xxxx1

0280

IEMDI]

Enter Data,
Increment MA

Enter CI Opcode

Enter Data,

Increment MA

Depress

Depress

Depress

E OLE FE04

fFE061xxxx

NOTE

In the following examples, XXXX indicates memory contents at

current value in Memory Address Register.

OPCODE INSTRUCTIONS

04C0 CLR RO CLEAR WORKSPACE REGISTER 0

0580 INC RO INCREMENT WORKSPACE REGISTER 0

0280 CI RO, >OOFF CHECK FOR COUNT 255

DOFF

16 FC JNE $-6 JUMP TO INC RO IF NOT DONE

10FF JMP $-0 STAY HERE WHEN FINISHED

KEY ENTRIES DISPLAY

Clear Display Depress CLR'

Enter PC Value Depress

Enter into PC Depress

Display PC Depress

Enter ST Value Depress

Enter into ST Depress

Display ST Depress

Enter WP Value Depress

Enter Into WP Depress

Display WP Depress

Enter MA Value Depress

Enter Into MA Depress

Enter CLR 0 Opcode Depress

OOP
EPC

DPC

El 0E1E1
EST

DST

F/-1 IF/— CIO
EWP

IDWP1

Fl--, aaa
1EM A

ElEPCI

FE00

FE00

FE00

2000

12000

2000

I
IFFOO

FF00

FFOO

FE00

FE00Ixxxx

FE00 04C0

F/—

Enter data,

increment MA Depress

EMDI IFE021xxxx

Enter INC 0 Opcode Depress 00®a FE02 0580

1-5

EMDI

FEOA xxxx

EE1

FEOA 10FF

EMDI FEOC xxxx

ED El CI
falT341

ED OD

FE0610OFF

F E08 xxxx

FE08 16FC

KEY ENTRIES DISPLAY

Enter CI

Immediate Operand Depress

Enter Data,

Increment MA Depress

Enter JNE $-6

Opcode Depress

Enter Data,

Increment MA Depress

Enter

JMP $-0 Opcode Depress

Enter Data,

Increment MA Depress

The program has now been entered into RAM. Since the PC, ST and WP values have been previously set, the

program can be executed in single step mode by depressing the H/S key.

DISPLAY

(AFTER)

IFE02 0580

FE041_0280

FE08[16FC

FE02 0580

EXECUTES

INSTRUCTION

CLR RO

INC RO

CI RO,>00FF

JNE $-6

Depress [HIS(

Depress H/S

Depress H/S

Depress H/S

This cycle will continue until RO reaches the count of 255 at which point the program will continuously

execute at location FE0A16 because it is a jump to itself.

To verify this, depress:

DISPLAY

RUN

run

The program should now be "looping to self" at location FE0A16. To verify this, depress:

H/S

FEOA 10FF

Now examine the memory location corresponding to Register 0.

Depress Ej IFEOA FF00

FFOO °OFF] Depress EMA

This illustrates that FF16 did become the final contents of WPO. Note that, when the program was being

entered into RAM, IEMDI, was used rather than

address incrementing. The advantage of using EMDI

location are displayed after key depression (echoed back after being entered).

1-6

EMD because of the rather desirable feature of automatic

is that the actual contents of the addressed memory

LCLR

1.5.2 EXAMPLE 2, HEXADECIMAL TO DECIMAL CONVERSIONS

Convert 800016 to a decimal number

0

Depress

Depress

Depress

Depress

CLR

H-*D

non
H-*D

8000

—3 2768

20

32

Convert 002016 to a decimal number

Depress CLR

Depress H—D

Depress M

Depress H-->D

.5.3 EXAMPLE 3, DECIMAL TO HEXADECIMAL CONVERSIONS
Convert 4510 to hex

Depress

Depress

Depress

Depress

1=1
D—H

45

2D

Convert —102410 to hex

Depress

Depress

Depress

Depress

I CLR

D—>F1

Fl

F/-

2 1024

IFC00 D—>FI

5.4 EXAMPLE 4, ENTER VALUE ON CRU

Send a bit pattern to the CRU at CRU address (bits 3 to 14 of R12) 0E016 with a bit count of 9 containing a

value of 5 (0000001012).

1-7

I C LR I Depress

90E0 E 0 Depress F0 Ti

90E0

0005 I 101 90E0

ECRU

YYYY Depress

Depress

Depress

~ DCRU I

L9J D

DCRU operation is always required to YYYY indicates value at the current CRU address. Note that a

specify bit count/CRU address.

FE20

FE20

0040 FE20

0040 FE20

1.5.5 EXAMPLE 5. ENTER, VERIFY VALUE AT MEMORY ADDRESS

Enter 004016 into location FE20 and verify that it got there.

Depress

Depress

Depress

Depress

Depress

_The contents of address FE20 are verified by an echo of data from memory to display following the

pressing of EM If it is desired to view and enter data at address FE22, depress EMDI[

1-8

ICLR I

EMA

EJ

EMD

APPENDIX J

CRU INSTRUCTION AND ADDRESSING EXAMPLES USING TMS 9901

The following figures, J-1 to J-6, are examples of addressing the TMS 9901 through
the CRU, pointing out in graphic form:

• External I/O in parallel (multibit) and serial (single bit) forms,

• The relationship between the CRU bits addressed and the bits in the source
operand of the STCR instructions,

• The relationship between the CRU bit addressed and the displacement in
single-bit instructions.

The TMS 9901 occupies 32 bit positions of CRU space with the low 16 bits at CRU
software base address 010016 and the high 16 bits at CRU software base address 012016.
To access the low 16 bits of the TMS 9901 through the CRU, load 0100 into register 12.

The high 16 bits at CRU software base address 012016 are the parallel I/O bits, shown
in the accompanying figures. These may be set, reset, or read in any order or in any
combination of 1 to 16 bits. Since CRU operations are serial, data from the
microprocessor (either serial or parallel) is transmitted serially to the TMS 9901,
which outputs it in parallel. Likewise, during input, data present at the TMS 9901 I/O
pins (in parallel) is shifted serially to the microprocessor using the CRU. It is
necessary only to load register 12 with 012016 and use either the LDCR or STCR
instructions. Bear in mind that the CRU operations of 1 to 8 bits affect the left byte
(more significant half) of a word (registers take up a full memory word).

The lower 16 bits of the TMS 9901 at CRU software base address 010016 are used for
control of interrupts and the timer function, and to restore the I/O lines to the
input mode with output buffers disabled and floating. Interrupt requests are presented
to the TMS 9901, each on its own line, and are compared against an internal mask. If
the internal interrupt mask allows, the particular interrupt request is encoded into
TMS 9901 output lines ICO to IC3 (going to interrupt input lines ICO to IC3 at the
TMS 9900) as explained on page 6 of the TMS 9900 data manual and page 8 of the TMS
9901 data manual. The TMS 9901 also pulls the INTREQ- line low on interrupt requests
(not during RESET), which goes'to INTREQ- at the TMS 9900.

APPENDIX J

CRU INSTRUCTION AND ADDRESSING EXAMPLES USING TMS 9901

The following figures, J-1 to J-6, are examples of addressing the TMS 9901 through
the CRU, pointing out in graphic form:

• External I/O in parallel (multibit) and serial (single bit) forms,

• The relationship between the CRU bits addressed and the bits in the source
operand of the STCR instructions,

• The relationship between the CRU bit addressed and the displacement in
single-bit instructions.

The TMS 9901 occupies 32 bit positions of CRU space with the low 16 bits at CRU
software base address 010016 and the high 16 bits at CRU software base address 012016.
To access the low 16 bits of the TMS 9901 through the CRU, load 0100 into register 12.

The high 16 bits at CRU software base address 012016 are the parallel I/O bits, shown
in the accompanying figures. These may be set, reset, or read in any order or in any
combination of 1 to 16 bits. Since CRU operations are serial, data from the
microprocessor (either serial or parallel) is transmitted serially to the TMS 9901,
which outputs it in parallel. Likewise, during input, data present at the TMS 9901 I/O
pins (in parallel) is shifted serially to the microprocessor using the CRU. It is
necessary only to load register 12 with 012016 and use either the LDCR or STCR
instructions. Bear in mind that the CRU operations of 1 to 8 bits affect the left byte
(more significant half) of a word (registers take up a full memory word).

The lower 16 bits of the TMS 9901 at CRU software base address 010016 are used for
control of interrupts and the timer function, and to restore the I/O lines to the
input mode with output buffers disabled and floating. Interrupt requests are presented
to the TMS 9901, each on its own line, and are compared against an internal mask. If
the internal interrupt mask allows, the particular interrupt request is encoded into
TMS 9901 output lines ICO to IC3 (going to interrupt input lines ICO to IC3 at the
TMS 9900) as explained on page 6 of the TMS 9900 data manual and page 8 of the TMS
9901 data manual. The TMS 9901 also pulls the INTREQ- line low on interrupt requests
(not during RESET), which goes to INTREQ- at the TMS 9900.

(1) ASSEMBLY LANGUAGE:

0130 LI R12,>
LDCR R2,.2

(2) SOURCE ADDRESS IN MEMORY:

PO

P1

P2

0 3 4 7 8 11 12 15 P3

P4
R2 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 P5

P6

TWO BITS TRANSFERRED P7

LEFT BYTE USED P8

P9

P10

P11

(3) ADDRESSING: P12

P13

R12: 1 1 1 0 0 0 0 1 0 0 1 0 0 0 0 0 Bit 15 P14

Ignored P15
Ignored' 11

ADDRESS

SELECT

0 0 0 0 0 0 0 1 0 0 1 0 0 0
I/O

DECODE

A14
1

ADDRESS LINES

A0
1

Figure J-2. LDCR Byte Execution To TMS 9901

J-3

I I
0 1 1 0 1 1 1 0 1 0 1 1 0 0 1 Before

0 0 0 0 0 1

II

0 1 0 1 0 0 0 After

R3:

1) ASSEMBLY LANGUAGE:

LI R12, > 120
STCR R3,11

(2) SOURCE ADDRESS IN MEMORY:

0 34 78 11 12 15 +5 V

PP •

:3

1
 • P2

P4 •
P5 •
P6
P7 •

P8 •
P9

P10 •
P11

P12•
P13

P14
P15

ZEROED

(3) ADDRESSING:

Address lines at operation start

R12: 1 0 1 0
1 1
0 0 0 1 0 0 1 0 0 0 0 0 4 Bit 15

Ignored

Ignored ADDRESS

SELECT

0 0 0 0

I/O
DECODE ZEROES

0 0 0 1 0 0 1 0 0 0

TMS 9901

A0

Ai4

ADDRESS LINES

Figure J-3. STCR Word Execution To TMS 9901

J-4

(1) ASSEMBLY LANGUAGE:

LI R12, > 120
STCR R1,6

(2) SOURCE ADDRESS IN MEMORY:

PO
0 3 It 7 8 11 12 15 P1

P2
R1 1 0 1 1 0 1 1 0 0 1 0 1 0 1 1 0 Before

P3

0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 P4 After

I P5 L1_1
P6

ZEROED UNCHANGED
P7

P8

P9

P10
(3) ADDRESSING: P11

P12

R12: 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 Bit 15 P13

Ignored P14
Ignored P15

ADDRESS

SELECT

0
I/O

0 0 0 0 0 0 0 1 0 0 1 0 0 0 DECODE TMS 9901

A0 A14

ADDRESS LINES

Figure J-4. STCR Byte Execution To TMS 9901

— +5 V
—

—

—

—

J-5

DECODE (3) STATUS REGISTER:

BIT NO. 0 15

LI R12, >1140
TB -3

0 1 0 0 0 1 0 1 0 0 1 0 0

1 1 1 1 1 1 1 1 1 1 0

0 0 0 0 1 0 0 1 1 1 0

PO —(

P1 —

P2 —
TMS

P3
9901

P4

P5

P6 —

P7

P8 —

P9

P10

P11 —

P12

- P13 —

P14 —

P15

ADDRESS

SELECT

1

1
A0 A14,

ADDRESS LINES

EQUAL
BIT

Bit 15
is

ignored
0 0

1 Displacement
Added to Address

(2) ADDRESSING:

R12

ignored

sign extend

ZEROES

0

0

(1) ASSEMBLY LANGUAGE:

NOTE
If a JEQ (jump on equal) instruction follows a TB
instruction, a 1 found will cause a jump, and a 0 found
will not cause a jump (1 = EQUAL state).

Figure J-5. Test CRU Bit At TMS 9901

J-6

(1) ASSEMBLY LANGUAGE:

LI R12,>
SBZ 7

0120

PO

P1

P2

P3
P4

P5

P6
P7

(2) ADDRESSING: P8
P9

P10
R12 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 Bit 15 P11

Ignored
P12 I I J Ignored
P13

0 0 0 0 0 0 0 0 0 1 1 +.1--+7 Displacement P14
Added to Address

a— ADDRESS

P15

Sign extend
SELECT

0 0 0 0 0 0 0 1 0 0 1 0 1 1 1 1 I/O
DECODER

—

—

—

—

—
—ZERO

—

—

—

—

—

ZEROES

Figure J-6. Set CRU Bit At TMS 9901

APPENDIX K

EXAMPLE PROGRAMS

K.1 MASTERMIND GAME

K.2 HI-LO GAME

FULL-LINE COMMENT BEGINS WITH ASTERISK

ADDRESS OF LABEL MESS1 IS M.A. FEDA16

APPENDIX K

EXAMPLE PROGRAMS

This appendix contains listings of programs that can be loaded into memory or
reassembled into memory for demonstration or entertainment purposes. These
listings are commented to provide ancillary data and explain the individual
programming techniques. Assembly listing format is as follows:

SOURCE STATEMENT NUMBER (DECIMAL)

RELATIVE MEMORY ADDRESS

ASSEMBLED OBJECT CODE (HEXADECIMAL)

LABEL FIELD

OP CODE MNEMONIC

OPERAND

COMMENT FIELD

0029 FEOO 02E0 START LWRI WSP SET WORKSPACE POINTER
FE02 FF9A.

0030 FE04 0200 LI 80,10 RO TENS MULTIPLIER
FEW-. 000A

0031 FEOE; 04C9 CLR P9 R9 NO. OF TRIES
0032 FEOA 04r(' CLR R10 R10 NO. OF TRIES
0033 FEOC 020r LI R12,>80 TMs 9902 CRII ADDR.

FEOE 00R0
00w1 * OUTPUT OpENING MESSAGE
00f,:77; FE10 2FAO XOP @MESS1,14 OPENING MESSAGE''-

FE12 FED(

The code can be reassembled and loaded with the L TIBUG command, or the change
memory command (M) can be used to insert assembled object code at the memory
addresses shown in the listing (beginning at FE0016, program start). The
assembled object code is listed in column 3 of the listing, opposite the
corresponding memory address in column 2. It is important that the programs be
entered at the addresses noted, or that proper consideration be given to the
labelled addresses which have been assembled into absolute addresses relative to
the beginning of the program (address FE0016). This consideration is important
when entering the code using the enter memory (M) command with program start not
at address FE0016.

If the code is to be loaded beginning at an address other than FE0016 as a
programstartaddress,it must be refigured to the new program bias. For example, if
the program was to be loaded beginning at FC0016, labelled addresses must be
decreased by 20016 (FE0016 - FC0016 20016). Note that jump instructions create
a displacement value and not a memory address; thus, jump instructions using
labels are not affected by a new program start address.

At the back of each listing is a cross-reference of labels and number of the
source statement in which they are used (column one of the listing contains
source statement numbers).

If the Line-By-Line Assembler (LBLA) is used, an absolute address must be
substituted for labelled addresses. These hexadecimal values are in the first
column of the cross-reference table of labels.

K.1 MASTERMIND GAME

The printout of this game in execution (below) illustrates game rules'and
objective. The program generates a five-digit number. To win, you must deduct which
five digits make up the number, and their correct order. Only digits 1 to 8 are
used. After each guess, the program prints the letters X and 0 for each correct
digit entered. In addition, each X indicates a digit is in the correct column. You
are given only 12 tries to win.

MASTERMIND
YOU GET X

1..11111
2..12222
3..31333
4..41
4..44144

— GUESS NNNNN N=1-8 12 TRIES
FOR A MATCH' 0 FOR A HIT -

X
0
0

X0
< ENTRY CONTROL-H CAUSES TO BE IGNORED, ALLOWS ENTRY REPEAT

5..55415 00
6..641t;t; XXO
7..46177 0000
8-64718 XXX00
9..64781 XXXXX WINNER! N=64781

1..11111
2..22222 X

XXO
4..32434 000

XXX00
6.. < CR RESTARTS PROGRAM

MASTERMIND—GUESS NNNNN N=1-8 12 TRIES
YOU GET X FOR A MATCH‚ 0 FOR A HIT

- 1..11111

00
4..32444 XXX
5..34299 X00

ESC KEY RETURNS CONTROL TO MONITOR

Ill IND TXMIRA
MASTERMIND FOR THE TM

0001
0003 *

936227 ** 09:25:18 118/78 PAGE 0001
99()/1XX MICROCOMPUTER

IDT 'MMIND'
* * * * * * * * * * * * * +

0004 * THIS PROGRAM PLAYS MASTERMIND ON THE TM 990/1XX MICRO--
00%_j * COMPUTERS. THE OBJECT OF THE GAME IS TO GUESS, BY
0006 * LOGICAL DEDUCTIgN, A 5-0I6IT NUMBER GENERATED BY THE-
0007 * COMPUTER. THE COMPUTER USES ONLY THE DIGITS 1 TO 8. Y0
0008 * HAVE 12 GUESSES TO ACCOMPLISH THIS. THE COMPUTER WILL
0009 * INDICATE A CORRECT DIGIT GUESSED BY O LETTER ; AND
0010 * INDICATE THE DIGIT IS CORRECTLY PLACED WITHIN THE
0011 * 5-DIGIT NUMBER WITH THE LETTER X. OTHER RULES THAT AP[
0012 * - A CARRIAGE RETURN RESTARTS THE GAME

AN ESCAPE KEY INPUT RETURNS YOU TO THE MONITOR
0014 * - CONTROL H KEY ALLOWS YOU TO SCRAP PRESENT LINE OF
0017-i * ENTRIES AND REENTER NEW LINE
0016 * THIS GAME IS ASSEMBLED TO BE LOADED AT M.A. }FE0O BY
0017 * USE OF THE AORG ASSEMBLER DIRECTIVE. THIS PROGRAM CAN
0018 * ASSEMBLED BY THE LBLA AT THE ADDRESSES SHOWN IN COLUMr-
0019 * TWO OF THE LISTING. CORRESPONDING OBJECT CODE FOR THO'.'.
0020 * ADDRESSES IS SHOWN IN COLUMN THREE. GOOD LUCK!
0021 * * * * * * * * * * * * * * *
0022 0000 R0 EQU 0 NO. OF GUESSES
0023 0001 R1 EQU 1 RANDOM NO. ARRAY ADDRESS
0024 0002 R2 EQU 2 RANDOM NO. COMPUTATION USE
0025 0003 R3 EQU 3 RANDOM NO. COMPUTATION USE
0026 0004 R4 EQU 4 10 CONSTANT FOR DECIMAL COM
0027 0005 R5 EQU 5 CONTAINS ASCII 'X'

0028 0006 R6 EQU 6 CONTAINS ASCII 'O'

0()29 0007 R7 EQU 7 ADDRESS OF X'S & O'S BUFFF9'
0030 0008 R8 EQU 8
0031 0009 R9 EQU 9 RANDOM NO. ARRAY ADDRESS
0032 ;00A R10 EQU 10 RANDOM NO. ARRAY ADDRESS+5
0033 000B R11 EQU 11 RANDOM NO. SEED
0034 000C R12 EQU 12 ASCII '1' (}3100>
0035 000D R13 EQU 13 CAST OUT CHARACTER MAP
0036 FE00 AORG }FE00 LOAD AT M.A. }FE00
0037 * * * * * * * * * * * * * *
0038 *
0039 * PROCEDURE AREA OF EXECUTABLE CODE
O040 *
004t * * * * * * * * * * * * * * *
0042 START
0043 FE0O 02E0 LWPI WS SET WORKSPACE POINTER

FE02 FED6
0041 FE04 2FA0 XOP 0RULES,14 PRINT RULES

FE06 FF0C
0045 11005
0046 FE08 2FA0 XOP @CRLF,14- PRINT CR-LF

FE0A FF72
0047 FE0C 04CO CLR R0 COUNTS 12 GUESSES
0043 FE0E C049 MOV R9,R1 R1 POINTS TO RANDOM ARRAY

MMIND T%MlRA 936227 ** 09:25:48 118/78 PAGE 00(2
MASTERMIND FOR THE TM 990/1XX MICROCOMPUTER

{N50 * COMPUTE RANDOM NUMBER, MOVE TO LOCATION NH
0051 M010
0052 FEW 0202 L R2,509 COMPUTE RANDOM NUMBER

FE12 01FD
0053 FE14 388B MPY R11,R2
0054 FE16 O223 Al R3,291

FE18 0123
0055 FE1/\ C2C3 MOV RS,R1I
0056 * CAUSE RANDOM DIGITS TO-BE IN RANGE 1-8
0037 FE1C 0953 SRL R3,5
0058 FE1E B0CC AB R12,R3 MAKE ASCII, RANGE 1-8
0059 FE20 DC43 MOVB R3,*R1+ PUT IN RANDOM ARRAY
0(>60 FE22 8281 C R1,R10 TEST FOR END OF LOOP
0061 FE24 10F5 JL M010 DO UNTIL R1=R10
0062 *
0063 * DETERMINE NUMBER OF UPCOMIN8 GUESS
0061 * PRINT UPCOMING GUESS NUMBER TO PROMPT USER
0065 *
0066 M013
0067 FE26 0580 INC R0 GUESS=Gi|ESS+1

0068 ` * CLEAR ARRAY THAT HOLDS ASCII X'S AND O'S

0069 * IF CONTROL H PRESSED, START HERE
0070 FE28 C087 RESTRT MOV R7,R2 XOB ADDR TO R2
0071 FE2A 04F2 CLR *R2+ *
0072 FE2C 04F2 CLR *R2+ *
0073 FE2E 04D2 CLR *R2 *
0074 * CONVERT GUESS NUMBER FOR OUTPUT
0075 FE30 C080 MOV R0,R2 GUESS NO. TO R2
0076 FE32 04C1 CLR R1
0077 FE34 3C44 DIV R4,R1 DIVIDE R1R2 BY 10
0078 FE36 06C1 SWPB R1 QUOTIENT IN LEFT BYTE
V07? FE38 F0O1 SOCB R1,R2 MERGE QUOTIENT & REMAINDER
0080 FEW 13()2 JEQ M020 PUT IN SPACE IF FIRST DIGIT"
0081 FEW 0262 ORI R2,}3030 MAKE ASCII DIGITS

FEW 3030
0082 M020
0083 FEW 0262 ORI R2,}20% MAKE ASCII SPACE & DIGIT

FEW 2030
0064 FE44 CS02 MOV R2,@GCD PUT IN PRINT BUFFER

FE46 FEF4
0085 FE48 2FA0 XOP OGUESNO714 PRINT OUESS NUMBER

FE40

MMIND T%MIRA 936227 ** 09:25:48 116/78 PAGE 0003
MASTERMIND FOR THE TM 990/1XX MICROCOMPUTER

0087 *
0088 INPUT CHARACTER & TEST FOR COLUMN MATCH
008,71,
0090 FE4C C209 MOV R9. RE: RANDOM NUMBER ADDR IN R8
0091 FE4E C047 MOV R7,R1 X & O BUFF ADDR IN R1
0092 FE50 0202 L R2,INPUT INPUT BUFFER ADDR IN R2

FE52 FF5A
0093 FE34 04CD CLR R13 CLEAR BIT MAP OF CAST OUT C~
0094 M030
0095 FE56 2F43 XOP R3,13 READ DIGIT
0096 * WAS CR, ESCAPE, OR CONTROL-H KEY PRESSED?
0097 FE58 0283 CI R3,}0D00 CAR. RET. ENTERED?

FE5A 0D00
0098 FE5C 13D1 JEQ START YES, RESTART GAME
0099 FE5E 0283 CI R3,}1B00 ESCAPE KEY ENTERED?

FE60 1B00
0100 FE62 131C JEQ MONITR YES, RETURN TO MONITOR
0101 FE64 0283 CI R3,}0800 CONTROL-H PRESSED?

FE66 0800
0102 FE68 13DF JEQ RESTRT YES, RESTART THIS ENTRY
0103 FE6A 9303 CB R3,R12 IS NO. LESS THAN 1?
0104 FE611 1AF4 JL M030 YES, READ ANOTHER
0105 FE6E 0283 CI R3,}3800 IS NO. GREATER THAN S?

FE70 3800
0106 FE72 1BF1 JH M030 YES, READ ANOTHER
0107 FE74 2F03 XOP R3,12 NO, IN RANGE, ECHO
0108 * IS DIGIT A MATCH AND IN RIGHT COi.UMN?
0109 FE76 9E03 CB R3,*R8+ DIGIT IN RIGHT COLUMN?
0110 FE78 1603 JNE M0Q) NO, PUT CHAR IN CHAR BUFFER
0111 FE7A 06C3 SWPB R3 YES, PUT BINARY 0 IN MSB OF
0112 FE7C DC45 MOVB R5,*R1+ PUT AN X IN THE XO BUFFER
0113 FE7E 058D INC R13 MAP CAST OUT CHAR
0114 M04;
0115 FE80 DC83 MOVB R3,*R2+ ZER3 OR CHAR TO INPUT BUFFEF
0116 FE82 0B11) SRC R13,1 PUT BIT IN MAP
0117 FE84 8288 C R8,R10 FIFTH NUMBER INPUT?
0118 FE86 1AE7 JL M030 NO, READ ANOTHER GUESS
0119 FE88 0281 CI R1,XOB+5 YES, IS %G BUFFER FULL?

FE8A FF0B
0120 FE8C 1A09 JL M050 NO, NO WINNER YET
0121 FEOE 2FA0 XOP @XOBP,14 YES, PRINT XO BUFF (ALL X'S)

FE90 FF04
0122 *
0123 FE92 2FA0 XOP @WINNER,14 PRINT WINNER.!

FE94 FF6()
0124 Z-
0 125 M043
0126 FE96 2FA0 XOP @MUMBER,14 PRINT NUMBER

FE98 FEFA
0127
0128 FE9A 10B6 .-IMP M0(F5 PLAY ANOTHER ~0ME
0129 FE9C 0460 MONITR B 0>0080 RETURN TO MONITOR

FEW 0080

MIND TXMIRA 936227 ** 09:25:43
ASTERMIND FOR THE TM 990/1XX MICROCOMPUTER

0131 *
0132 *

(33 * TEST FOR O'S. .
~ ^34 *

0135 M050

118/7O PAPE 0004

0136 FEA0 0202 LI R2, INPUT INPUT BUFFER START IN R2
FEA2 FF5A

0137
()138 FEA4 D0F2 MOVB *R2+,R3 TEST BYTE FROM INPUT BUFFER
0139 FEA6 130C JEQ M060 BYTE CAST OUT IF EQUAL TO ZERO
0140 FEA8 C209 MOV R9,R8 R8 POINTS TO WORK ARRAY
0141 FEAA 09BD SRL R13,11 POSITION CAST OUT CH MAP
0142
0143 FEAC 0B1D SRC R13,1 TEST FOR CAST OUT CHAR
0144 FEAE 9E03 CB R3. *R8 DOES BYTE MATCH WORK ARRAY ?
0145 FEB0 1805 JOC M057 IF CAST OUT. M057
0146 FEB2 1604 JNE M057 IF NOT EQUAL, M057
0147 FEB4 DC46 MOVB R67*R1+ ON HIT, PUT O fN XO BUFFER
0148 FEB6 026D OR! R13,}8000 MAP CAST OUT CHAR

FEB8 8000
0149 FEBA B0C3 AB R3, R.---,' SPOIL COMPARISON, FINISH LOOP
0150 M057
0151 FEBC 8288 C R8,R1O TEST FOR LAST DIGIT
0152 FEBE 1AF6 ']L M035 IF LOW: DO ANOTHER DIGIT
0133 M060
0154 FEC0 0282 CI R2,INPUT+5 LAST DIGIT IM INPUT BUFFER?

FEC2 FF5F
0155 FEC4 1AEF JL M052 NO, DO NEXT DIGIT

56 FEC6 2FA0 XOP @XOBP,14 YES, PRINT XO BUFF
FEC8 FF01

0157 FECA 0280 CI R0,12 TWELVE GUESSES MADE?
FECC 000C

0158 FECE 1AAB JL M010 NO, MORE GUESSES REM0IM
0139 FED0 2FA0 XOP @SORRY,14 YES, PRINT SORRY

FED2 FF6A
0160 FED4 10E0 jMP M045 PRINT NUMBER FOR PLAYER

MMIND TXMIRA 936227 ** 09:23:48
MASTERMIND FOR THE TM 990/1XX MICROCOMPUTER

0162

0163 *
0164 * DATA SECTION
0165 *
0166 * * * * * *

118/78 PAGE 0005

* * * * * * *
0167 * WORKSPACE
0168 FED6 0000 WS DATA 0,0,0,0 R0-R3

FED8 0000
FEDA 0000
FEDC 0000

0169 FEDE 000A DATA 10 R4 CONVERSION CONSTANT
0170 FEE0 58 TEXT 'X ' R5

FEE1 20
0171 FEE2 4F TEXT 'O ' R6

FEE3 20 '

0172 FEE4 FF06 DATA XOB R7
0173 FEE6 0000 DATA 0 R8
0174 FEES FEFE DATA NN R9
0175 FEEA FF03 DATA NN+5 R10
0176 FEEC 5555 DATA }5555 R11-RANDOM NUMBER SEED
0177 FEEE 3100 DATA }3100 R12
0178 FEF0 00% DATA 0 R13-CAST OUT CHAR MAP
0179 *
0180 * TEXT STATEMENTS
0181 *
0182 * LINE NUMBER OF THIS GUESS
0183 FEF2 0D0A GUESNO DATA }0D0A CR, LINE FEED
0184 FEF4 0000 GCD DATA $-$ CONVERTED GUESS NUMBER
0185 FEF6 2E TEXT '..'

FEF7 2E
0186 FEF8 07 BYTE 7,0 BELL/STOP

FEF9 00
0187 * RANDOM NUMBER OF COMPUTER IN ASCII
0188 FEFA 20 NUMBER TEXT ' N='

FEFB 20
FEFC 4E
FEFD 3D

0189 FEFE 0000 NN DATA 0,0,0
FF00 0000
FF02 0000

0190 * X'S AND O'S BUFFER SHOWING HITS & MISSES
0191 FF04 20 XOBP TEXT ' ' SPACES FOR PRINTING

FF05 20
0192 FF06 0000 XOB DATA 0,0,0

FF08 0000
FF0A 0000

0193 * RULES OUTPUT AT BEGINNING OF GAME
0194 RULES
0195 FF0C 0D0A DATA }0D0A
0196 FF0E 4D TEXT 'MASTERMIND'

FF0F 41
FF10 53
FF11 54
FF12 45

MMIND T%MIR0
MASTERMIND FOR THE TM

FF13 52
FF14 4D
FF15 49
FF16 4E
FF17 44

0197 FF18 2E
FF19 2E

936227 ** 09:25748 118/78
990/1XX MICROCOMPUTER

TEXT "..GUESS NNNNN N=1-8 12

PAGE

TRIES'

0006

FF1A 47
FF1B 55
FF1C W-1
FF1D 53
FF1E 53
FF1F 20
FF20 4E
FF21 4E
FF22 4E
FF23 4E
FF24 4E
FF25 20
FF26 4E
FF27 3D
FF28 ?1
FF29 2D
FF2A 38
FF2B 20
FF2C 31
FF2D 32
FF2E 20
FF2F 54
FF30 52
FF31 49
FF?2 45
FF33 53

0198 FF34 ()DOA DATA }0D0A
0199 FF36 59 TEXT 'YOU GET X FOR 0 M0TCH, O FOR A HIT'

FF37 4F
FF38 W_-~
FF39 20
FF3A 47
FF3B 45
FF3C 54
FF3D 20
FF3E 58
FF3F 20
FF40 46
FF41 4F
FF42 52
FF43 20
FF44 41
FF43 20
FF46 4D
FF47 41
FF48 34
FF49 43

MMIND
MASTERMIND FOR

TXMIR0
THE TM

936227
990/1XX

** 09:25:48 118/78 PAGE
MICROCOMPUTER

FF4A 48
FF4B 2C
FFIC 20
FF4D 4F
FF4E 20
FF4F 46
FF50 4F
FF51 52
FF52 20
FF53 41
FF54 20
FF55 48
FF56 49
FF57 54

0200 FF58 00 BYTE 0

0007

MMIND TXMIRA 936227 *v 09:23:18 118/78 PAGE
MASTERMIND FOR THE TM 990/1XX MICROCOMPUTER

0202 * BUFFER OF NUMBERS INPUT
0203 FF5A 0000 INPUT DATA 0,0,0

FF5C 0000
FF5E 0000

0204 *
0205 FF60 20 WINNER TEXT' WINNER'

FF61 20
FF62 57
FF63 49
FF64 4E
FF65 4E
FF66 45
FF67 52

0206 FF68 21 BYTE }21,0
FF69 00

0207 FF6A 20 SORRY TEXT ' SORRY'

FF6B 53
FF6C 4F
FF6D 52
FF6E 52
FF6F 59

0208 FF70 0. BYTE 0,0
FF71 00

0209 FF72 0D CRLF BYTE
FF73 0A
FF74 00
FF73 00

0210
0211 END START

0O(~

0000 ERRORS

TXXREF 937512 *A 09:28:19 118/78 PAGE 0001

CRLF 0209 0046
GCD 0184 0084
GUESNO 0183 0083
INPUT 0203 0092 0136 0154
M005 0045 0128
M010 0031 0061
M015 0066 0158
M020 0082 0080
M030 0094 0104 0106 0113
M040 0114 0119
M045 0125 0160
M050 o133 0120
M052 0137 0155
M055 0142 0152
M057 0150 0145 0146
M060 0153 0139
MONITR 0129 0100
NN 0189 0174 0175
NUMBER 0188 0126
R0 0022 0047 0067 0073 0157
R1 0023 0048 0059 0060 0076 0077 0078 0079 0091 0112

0119 0147
R10 0032 0060 0117 0131
R11 0033 0053 0055
R12 0034 0038 0103
R13 0035 0093 0113 0116 0141 0143 01%;
R2 0024 0052 0053 0070 0071 0072 0073 0075 0079 0081

0083 0084 0092 0115 0136 0138 0154
R3 0025 0054 0055. 0057 0058 8059 0095 0097 0099 0101

0103 0105 0107 0109 0111 0115 0138 0144 0149
0149

R4 0026 0077
R5 0027 0112
R6 0028 0147
R7 0029 0070 0091
R8 0030 0090. 0109 0117 0140 0144 0131
R9 ()031 0048 0090 010~
RESTRT 0070 0102
RULES 0194 O044
SORRY 0207 0159
START 0042 0098 0211
WINNER 0205 0123
WS 3168 3043
XOB 0192 0119 0172
XOBP 0191 0121 0156

THERE ARE 0041 SYMBOLS

K- 12

K.2 HI-LO GAME
The printout of this game in execution (below) illustrates game rules and
objectives. The program generates a number between 0 and 999. You have unlimited
guesses to find the number, but you can be an expert, above average, average, or a
turkey depending upon how many guesses used.

?L' FE00
17,truz
7R
W=FFB0
P=01R2 FE00
?E

LOAD AND EXECUTE PROGRAM

CAN YOU GUESS MY NUMBER (0 TO 999)?
INPUT A NUMBER &. PRESS THE SPACE BAR.
500 TOO LOW, TRY.AGAIN!!-
700 TOO LOW, TRY AGAIN! !
900 TOO HIGH, TRY AGAIN!
R50 TOO- LOW, TRY AGAIN! !

'.875 TOO HIGH, TRY AGAIN!
RR CONTROL I-I PRESSED TO IGNORE ENTRY

R1;0 TOD HIGH, TRY AGAIN!
857 TDB HIGH, TRY AGAIN!
.854. CORRECT! YOU'RE ABOVE . AVERAGE BECAUSE IT TOOK YOU 08 TRIES!

CAN YOU GUESS MY NUMBER <0 TO 999)?,
INPUT A NUMBER & PRESS THE SPACE BAR.
500 TOO. LOW, TRY AGAIN!!
700 TOO HIGH, TRY AGAIN!
F..50 TOO HIGH, TRY AGAIN!

CORRECT! YOU-'RE AN EXPERT BECAUSE IT TOOK YOU 04 TRIES!

CAN :YOU GUESS MY NUMBER . <0 TO 999)?
INPUT R , NUMBER - & PRESS THE SPACE BAR.
900 TOO HIGH, TRY AGAIN!
800 TOO HIGH.- TRY AGAIN!

CR PRESSED TO START NEW GAME

CAN YOU GUES MY NUMBER <0 TO 999)7
INPUT A NUMBER & PRESS THE SPACE BAR.
500 TOO HIGH, TRY AGAIN!
400 . TOO HIGH, TRY AGAIN!
300 TOO, HIGH, TRY AGAIN!
200 TOO HIGH, TRY AGAIN!

ESC PRESSED TO RETURN TO MONITOR

K-13

Gi/ECS TXMIRA 936227 ** 09:22:02 118/78 PAGE 0001
HI-LO GAME FOR TM 99011XX MICROCOMPUTERS

0001
0002
0003
0(}04
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0018
0019 0000
0020 0001
0021 0002
0022 0003
0023 0008
0024 0009
;O25 000A
0026 0000
0027
0028 FE0(`
0029
0030
0031
0032
0033 FE00 02E0

FE02 FFA0
0034 FE04 0200

FE06 000A
0033 FE;8 04071
0036 FE00 04CA
0037 FE0C ;20C

FE0E 0080

* * * * * * * * * * * * * *
THIS GUESSING GAME CAN BE RUN ON A TM 990/1XX MICRO--
COMPUTER WITH 432 (}1B0) WORDS OF USER AVAILABLE
RAM MEMORY. IT IS WRITTEN TO BE LOADED AT M.A. }FE00
AND CAN BE ASSEMBLED AT THAT ADDRESS USING THE LBLA
OR BY LOADING THE OBJECT (COLUMN 3) AT THE MEMORY
ADDRESSES (COLUMN 2). THE OBJECT OF THIS PROGRAM IS TO
GUESS WHICH NUMBER THE COMPUTER HAS GENERATED, AND TO
DO THIS WITHOUT BECOMING A TURKEY. FOLLOWING RULES 0PPL`
- CARRIAGE RETURN BRINGS YOU TO PROGRAM RESTART
- ESCAPE KEY BRINGS YOU TO MONITOR
- CONTROL-H KEY IGNORES THIS ENTRY
- SPACE KEY CONTINUES GAME

GOOD LUCK. J. WALSH
* * * * * * * * * * * * * *

'GUESS'
EQUATES
0 TENS MULTIPLIER

GUESS NO. ACCUMULATOR
MULTIPLY ANSWER
ENTERED DIGIT`
CONTAINS COMPUTER'S NUMBER
NO. TRIES/10
NO.'TRIES '

EQU 12 CRU ADDRESS (TMS 9902 }
* OB']ECT CODE AT ABSOLUTE ADDRESS BEGINNING WITH }FE00

N]RG }FE00
* * * * * * * * * * * *
* PROCEDURE AREA: EXECUTABLE CODE

* *
* INITIALIZE REGISTERS
START LWPI WSP SET WORKSPACE POINTER

LI R0,10 R0 = TENS MULTIPLIER

CLR R9 R9 NO. OF TRIES
CLR R10 R10 = NO. OF TRIES

TMS 9902 CRU ADDR.

IDT
* REGISTER
RO EQU
R1 EQU 1
R2 EQU 2
R3 EQU 3
R8 EQU 8
R9 EQU 9
R10 EQU 10
R12

0038 ' ` * OUTPUT OPENING MESSAGE
0039 FE10 2FA0 XOP @MESS1,14 OPENING MESSAGE

0040
0041
0042
0043
0044
0045-
0046
0047
0048
0049
0050
0051

FE14
FE 16
FE18
FE1A

* THIS ROUTINE IS A NUMBER GENERATOR THAT GENERATES
* A NUMBER FROM 0 TO ̀999 BASED, ON'THE TIME TO RESPOND TO T|
* OPENING MESSAGE. IT CHECKS A BIT AT THE TMS 9902 SERIAL
* INTERFACE THAT SIGNIFIES-THAT A DIGIT HAS BEEN RECEIVED |
* THE TERMINAL IN RESPONSE TO THE OPENING MESSAGE. RECEIPT
* THIS DIGIT MEANS A NUMBER IS BEING GUESSED. WHILE WAITIN
* FOR THIS FIRST NUMBER, R8 IS CONTINUOUSLY iNCREMENTED FR
* 0 TO 999.

04C8 NEWNO CLR R8 R8 TO CONTAIN COMPUTER'S NO.
1F15 INCNO TB .21 DIGIT RECEIVED?
1307 JEQ ECHO2 YES, ECHO CHARACTER
0288 CI R8,999 NO. INCREMENTED TO 999?

R-l4

UERS TXMIRA 936227 ** 09r22:02 113 7R PAGE 0002
I -LO GAME FOR TM 990/1XX MICROCOMPUTERS

FE1C: 03E7
0052 FE1E 13FA 1E0 NEWNO YES, CLEAR TO 0, RESTART
0053 FE20 05R8 INC RS NO, INCREMENT NO. IN RS
0051 FE22 10F9 JMP INCNO LOOP, RECHECK FOR DIGIT INPUT
0055 AFTER FIRST DIGIT IS ENTERED, COMPUTER'S NO. IS IN RS.
005A READ IN GUESSES AND CONVERT THESE TO HE: SUM
0057 FOR COMPARISON TO COMPUTER'S NI:). IN RS. AS NEW NUMBER
005R * IS READ, OLD VALUE IS MULTIPLIED BY 10 AND NEW VALUE
0059 * ADDED TO PRODUCT TO KEEP CUMULATIVE TOTAL OF DIGITS
00A0 * ENTERED.
0061 FE24 2F20 ECHOO XOP €LFCR, 12 DO LINE-FEED, CR

FE26 FF34
0062 FE28 04C1 ECHO' CLR R1 CLEAR ACCUMULATOR
0063 FE2A 2EC:3 ECH01 XOP R3,11 ECHO CHAR., PLACE IT IN R3
004.1 FE2C: OArn .WPB R3 PLACE VALUE IN RIGHT BYTE
00A5 * WAS SPACE, CR, ESCAPE OF: CONTROL-H PRESSED?
0066 FE2E CI R3,)0020 SPACE BAR PRESSED?

FE:30 00'20
0067 FE32 1311 JEQ COMPRE YES, COMPARE VALUES
0048 FE34 0283 CI R3,>000D CARRIAGE RET. PRESSED?

FE36 000D
0049 FE38 13E3 JEO START YES, RESTART PROGRAM
0070 FE3A 0233 CI R3,>001B ESCAPE PRESSED?

FE3C 001B
0071 FE3E 1309 JEO MONITR YES, RETURN TO MONITOR
0072 FE4O 0283 CI R3,>0008 WAS CONTROL-H PRESSED?

FE42 0008
0073 FE14 13EF .JEC! ECHO() DO LFCR, RESTART GUESS
0074 FE46 0243 AND I R3,>000F NO, SAVE 0-9 DIGIT ONLY

FE48 000F
0075 FE4A 3840 MPY Rif, R1 PREVIOUS NO. X10
007A FE4C A0C2 A R2, R3 NEW NO. 4- ABOVE PRODUCT
0077 FE4E 0043 MCIV R:3. RI ANSWR TO ACCUMULATOR
007R FE50 10EC JMP ECH01 GET NEXT DIGIT
0079 FE52 0460 MONITR B • 6%>00R0 GO 70 MONIToR

FE54 00R0
00R0 * COMPARE NUMBERS INPUT TO COMPuTER's NUMBER
0081 FES4 053A COMPRE INC RIO INCREMENT NOS. GUESSED
OOR ' FE58 8201 Rl,R8 COMPARE TO COMPUTERS NO.
008.3 FESA 1102 JLT LOW NO. IS LESS THAN COMPUTER'S
00R4 FE5C 1504 JOT HIGH NO. IS MORE THAN COMPUTEFCS
00R5 FETE 130A JEO EOHAL NO. Is CORRECT VALUE
008A * MESAGEs FOR To0 HIGH, TOO LOW
0087 FE6O 'FAO LOW XOP eLnwm 14 TOO-LOW MESSAGE

FE62 FFOO
008R FE84 1061 _}MP ECHO;_ GET NEXT NUMBER
108,9, FE64

FE4S
2FAO
FFIA

HIGH XOP @HIGHM,14 TOO-HIGH MESSAGE

0090 FE6A 10DE JMP ECH02 GET NEXT NuMBER

K-15

GUESS
HI-LO GAME FOR

0092
0093
0094 FE6C

FE6E

TXMIR0 936227 ** 09;22:02 118/78 PAGE 0003
TM 990/1XX MICROCOMPUTERS

* CORRECT NUMBER WAS GUESSED
* FIND OUT HOW MANY TRIES WAS USED AND Oi|TPUT MESSAGE

2FA0 EQUAL XOP @CORECT,14 CORRECT GUESS MESSAGE
FF38

0095 FE70 028A CI R10,7 TRY COUNT GREATER THAN 7?
FE72 0007

0096 FE74 1503 JOT $+8 YES, CHECK AGAIN
0()97 FE76 2FA0 XOP @SEVEN,14 NO, DO 0-7 TRIES MESSAGE

FE78 FF4F
0098 FE7A 100E JMP COUNT GO GET COUNT
0099 FE7C 028A CI R10,9 TRY-COUNT GREATER THAN 9?

FE7E 0009
0100 FE80 1503 JOT $+8 YES, CHECK AGAIN
0101 FE82 2FA0 XOP @NINE,14 NO, DO 8-9 TRIES MESSAGE

FE84 FF5A
0102 FE86 1008 JMP COUNT GO GET COUNT
0103 FE88 <)28A CI R10,13 TRY-COUNTER GREATER THAN 13--

FE8A 000D
0104 FE8C 1503 JOT $+8 YES, OUTPUT TURKEY MESSAGE
0105 FE8E 2FA0 XOP @THIRTN,14 NO, DO 10-13 TRIES MESSAGE

FE90 FF69
0106 FE92 1002 JMP COUNT SO GET COUNT
0107 FE94 2FA0 XOP @TURKEY,14 OUTPUT }13 (TURKEY) MESSAGE

FE96 FF72
0108 * IF CORRECT NUMBER FOUND, OUTPUT NO. OF TRIES `
0109 FE98 3E40 COUNT DIV R0,R9 DIVIDE TRY-NQ. BY 10
0110 FE9A ;269 QRI R9,}0030 OR IN >00 FOR ASCII NO.

FE9C 0030
0111 FE9E 026A OR IN }30 FOR ASCII NO.

FEA0 0030
0112 FEA2 06C9 SWPB R9 REMAINDER IN LEFT BYTE
0113 FEA4 A289 A R97 RIO 2-DIGIT DECIMAL IN R10
0114 FEA6 C80A MOV R10,eNUMBR MOVE QTY TO MESSAGE `

FEA8 FF92
0115 FEA0 2FA0 XOP @[1NT,14 OUTPUT' NO. OF TRIES

FEAC FF7D
0116 FEAE 10A'Ell jMF START GO TO BEGINNING OF PROGRAM

GUESS TXMIR0 936227 ** 09:22:02 118/78 PAGE 0004
HI-LO GAME FOR TM 990/1XX MICROCOMPUTERS

0118 * * * * * * * * * * * * * * * * * * -!--
0119 * DATA AREA: DATA STATEMENTS, TEXT STATEMENTS, ETC.
0120 * * * * * * * * * * * * * * * * * * *
0121 * MESSAGES
0122 FEB0 0A0D MESS! DATA }0A0D.}0A0A

FEB2 0A0A
0123 FEB4 43 TEXT 'CAN YOU GUESS MY NUMBER (0 TO 999)? '

FEB5 41
FEB6 AE
FEB7 20
FEB8 59
FEB? IF
FEB0 55
FEBB 20
FEBC 47
FEBD 55
FEBE 45
FEBF 53
FEC0 53
FEC1 20
FEC2 4D
FEW 59
FEC4 20
FEW 4E
FEC6 55
FEC7 4D
FEW 42
FEC9 45
FECA 52
FECB 20
FECC 28
FECD 30
FECE 20
FEW 54
FED; 4F
FED1 20
FED2 39
FED3 39
FED4 39
FED5 29
FED6 3F
FEW 20

0124 FED8 0A0D DATA >0A0D LINE FEED, CR
0125 FED0 49 TEXT 'INPUT A NUMBER & PRESS THE SPACE BAR. '

FEW W
FEDC 50
FEDD 55
FEDE 54
FEDF 20
FEW 41
FEE1 20
FEE2 4E
FEW 55
FEE4 4D

GUESS TXMIRA 936227 ** 09:22:02 118/78 PAGE

HI-LO GAME FOR TM 990/1XX MICROCOMPUTERS

0005

FEE5 42
FEE6 45
FEE7 52
FEES 20
FEE9 26
FEEA 20
FEEB 50
FEEC 52
FEED 45
FEEE 53
FEEF 53
FEF0 20
FEF1 54
FEF2 48
FEF3 45
FEF4 20
FEF5 53
FEF6 50
FEF7 41
FEF8 43
FEF9 45
FEFA 20
FEFB 42
FEFC 41
FEFD 52
FEFE 2E
FEFF 20

0126 FF00 2020 LOWM DATA }2020 DOUBLE SPACE
0127 FF02 54 TEXT 'TOO LOW, TRY AGAIN!!'

FF03 4F
FF04 4F
FF05 20
FF06 4C
FF07 4F
FF08 37
FF09 2C
FF0A 20
FF0B 54
FF0C 52
FF0D 59
FF0E 20
FFOF 41
FF10 47
FF11 41
FF12 49
FF1~ 4E
FF14 21
FF15 21

0128 FF16 0A0D DATA >0AOD,0 LINE FEED, OR, END MSG
FF18 0000

0129 FF1A 2020 HIGHM DATA >2020 TWO SPACES
0130 FF1C 54 TEXT 'TOO HIGH, TRY AGAIN!'

FF1D 4F
FF1E 4F

GUESS TXMIRA 936227 ** 09c22:02
HI—LO GAME FOR TM 990/IXX MICROCOMPUTERS

118/78 PAGE 0006

FF1F 20
FF20 48
FF21 49
FF22 47
FF23 48
FF24 2C
FF25 20
FF26 54
FF27 52
FF28 59
FF29 20
FF2A 41
FF2B 47
FF2C 41
FF2D 49
FF2E 4E
FF2F 21

0131 FF30 0A0D DATA }0A0D,; LINE FEED, CR, END MSG
FF32 0000

0132 FF34 0A0D LFCR DATA }0A0D LINE FEED, CR
0133 FF36 00 BYTE 0 END OF MESSAGE

0134 FF38 0707 CORECT DATA }0707"}0707 BELLS

FF3A 0707
0135 FF3C 2020 DATA }2020 SPACES

0136 FF3E 43 TEXT 'CORRECT! YOU''RE '

FF3F 4F
FF40 52
FF41 52
FF42 45
FF43 43
FF44 54
FF43 21
FF46 20
FF47 39
FF48 4F
FF49 55
FF4A 27
FF4B 52
FF4C 45
FF4D 20

0137 FF4E 00 BYTE 0 END OF MESSAGE
0138 FF4F 41 SEVEN TEXT 'AN EXPERT '

FF50 4E
FF51 20
FF52 451
FF53 58
FF54 50
FF53 45
FF56 52
FF57 54
FF58 20

0139 FF51 00 BYTE 0
0140 FF5A 41 NINE TEXT 'ABOVE AVERAGE '

FF5B 42

0007 GUESS TXMIRA 936227 ** 09:22:02
HI-LO GAME FOR TM 990/IXX MICROCOMPUTERS

FF5C 4F

118/78 PAGE

FF5D 56
FF5E 45
FF5F 20
FF60 41
FF61 56
FF62 45
FF63 52
FF64 41
FF65 47
FF66 43
FF67 20

0141 FF68 00 BYTE 0
0142 FF69 41 THIRTN TEXT 'AVERAGE '

FF6A 56
FF6B 45
FF6C 52
FF6D 41
FF6E 47
FF6F 45
FF70 20

0143 FF71 00 BYTE 0
0144 FF72 41 TURKEY TEXT 'A TURKEY '

FF73 20
FF74 54
FF73 55
FF76 52
FF77 4B
FF78 45
FF79 59
FF7A 20
FF7B 20

0143 FF7C 00 BYTE 0
0146 FF7D 20 CNT TEXT' BECAUSE IT TOOK YOU '

FF7E 42
FF7F 45
FF80 43
FF81 41
FF82 55
FF83 53 `
FF84 45
FF85 20
FF86 49
FF87 54
FF88 20
FF89 54
FF8A OF
FF8B IF
FF8C 4B
FF8D 20
FF8E 59
FF8F IF
FF90 55
FF91 20

GUESS TXMIRA 936227 ** 09:22:02
HI-LO GAME FOR TM 990/1XX MICROCOMPUTERS

118/78 PAGE 0008

0117 FF92 0000 NUMBR DATA 0 PLACE ASCII NO. HERE
0148 FF94 20 BYTE -.Y7'0
0149 FF95 51 TEXT 'TRIES!'

FF96
FF97 49
FF98 45
FF99 53
FF9A 21

0150 FF9B 07 BYTE 7,7,7,0 BELLS (ASCII 07)
FF9C: 07
FF9D 07
FF9E 00

0151 WSP EVEN WORKSPACE START (F:0 LOC)
0152 END

0000 ERRORS

TXXREF 937542 *A 09:24:23 118/78 PAGE 0001

CNT 014A 0115
COMPRE 0021 0067
CORECT 01:34 0094
CnUNT 0109 0092 0102 010A
ECHOO 00A1 007
ECH01 0062: 007R
ECH02 0050 0028 0090
EMAL 0094 0025
HIGH 0089 0084
HI) HM 0129 R 009
INCNO 0049 0054
LFCR 0132 0061
LOW 0027 00R3
LOWM 0126 0087
MESS1 0122 0039
MONITR 0079 0071
NEWNO 004R 0052
NINE 0140 0101
NUMBR 0147 0114
RO 001.9 0034 0075 0109
R1 0020 0062 0075 0077 0082
R10 00?5 003A 0081 0095 0099 0103 0111 0113 0111
R12 0024 0037
R2 0021 0076
R3 00.7)-7, 0063 0064 0046 00AR 0070 007 0071 0074 0077
R: t i0 0043 0051 0053 0082
R9 0024 0025 0109 0110 0112 0113
SEVEN 0138 0097
START - 0033 0069 011A
THIRTN 0142 0105
TURKEY 0144 0107
WSP 0151 0033

THERE ARE 0032 SYMBOLS

K-21

,

INDEX

In the page number list of this alphabetical index, subject matter is covered
by a table if a T precedes the page number, or is covered by a figure if an F
precedes the page number.

Page

Addition of Displacement and R12 Contents to Drive CRU Bit Address F5-18
Address Bus 6-4
Address and Data Buffers 6-30
Address Decoding 6-15
Address Space 5-5
Alternate Programming Conventions T5-21
AMPL Grounding 2-11
Applications Section 8
ASCII Code Appendix C
ASRFLAG Values T5-60
Assembler Directives Used in Examples T5-1
Auxiliary Communications Port 6-38

Binary, Decimal, and Hexadecimal
Block Compare Subroutine
BLWP Example
Board Characteristics
Board Jumper Positions as Shipped
Branch and Link (BL)
Branch and Load Workspace Pointer (BLWP)
Branch Instruction (B)
Buffer Control
Bus Signals

Cable, 103/113 Data Set T8-17
Cable, 201 Data Set T8-18
Cable, 202/212 Data Set T8-18
Cable Connections F8-17
Cable Pin Assignments 8-17
Central Processing Unit 6-8
Circuitry to add TMS 9901 0ffboard F8-4
CLRCRU Signal 6-14
Coding Example to Ascertain System Configuration Through Dip Switch

Settings 5-54
Coding Example to Blink LED On and Off F5-55
Command Syntax Conventions T3-3
Communications Register Unit (CRU) 5-11
Compare Blocks of Bytes Example Subroutine F5-51
Comparison of Jumps, Branches, XOP's- T4-30
Connector P2 Connected to Model 743 KSR F2-6
Connector P2 Connected to TTY Device F2-7
Control Bus 6-4
Control Buffers 6-30
Control Bus Functions T6-6
CPU HOLD- and HOLDA Timing F8-9
CRU Addressable LED 5-52
CRU Addressing 5-13
CRU Base and Bit Addresses F5-13
CRU Bits Inspected by C Command F3-4
CRU Bus 6-4

Index-1

Numbering Appendix D
5-51
F4-29
1-5
T2-3
5-7
5-8
5-7
6-19
T6-5

INDEX (CONTINUED)

CRU Inspect/Change (C) 3-4
CRU Instruction and Addressing Examples Using TMS 9901 Appendix J
CRU Instructions 5-14
CRU Select 6-19
CRU Timing 5-14
Crystal-Controlled Operation F6-8

Data Bus 6-4
Data Buffers T6-30
Data Terminal Cable T8-19
Debug Checklist 2-10
Decoding Circuitry for CRU I/O Addresses F6-20
Dedicated Interrupt Description T6-31
Device Supply Voltage Pin Assignments T6-3
Direct Memory Access (DMA) Applications 8-7
Direct Memory Addressing Examples F4-12
Direct Memory Addressing, Indexed Example F4-13
Direct Register Addressing Examples F4-9
Direct Register Addressing 4-8
DMA Bus Control F8-8
DMA Controller Timing F8-16
DMA Controller F8-14
DMA Device Controller F8-13
DMA System Block Diagram F8-13
DMA System Guidelines 8-11
DMA System Timing 8-7
DMA System Timing F8-10
DTR Hardware and Software Options T6-40
Dump Memory to Cassette/Paper Tape (D) 3-5
Dynamically Relocatable Code 5-19

Echo Character (XOP 11) 3-17
EIA Interface 6-35
EIA RS-232-C Cabling Appendix B
EIA Serial Port Applications 8-17
Enabling and Triggering TMS 9901 Interval Timer F5-31
EPROM Expansion 7-1
Example Code to Check Board ID at. DIP Switch (Multidrop) F5-54
Example of Code to Run TMS 9901 Interval Timer F5-33
Example of Program with Coding Added to Make it Relocatable F5-19
Example of Programming Timer Interrupts for TMS 9901 and TMS 9902A 5-32
Example of Separate Programs Joined by Branches to Absolute Addresses F5-7
Example Program to Converse Through Main/Auxiliary TMS 9902As F5-57
Example Program Using Timer Interrupts 3 and 4 F5-38
Example Programs Appendix K
Examples of Non Self-Relocating Code and Self-Relocating Code F5-20
Execute Command (E) 3-8
Execute in Single Step Mode (S) 3-12
Execute Under Breakpoint (B) 3-3
Executing TM 990/100MA on the TM 990/101MA 5-3
Extended Operation (XOP) 5-9
External Instructions 6-14
External Instructions T6-14
External System RESET/LOAD 7-12
Extra RS-232-C Terminal Port 8-6

Index-2

INDEX (CONTINUED)

Find Command (F) 3-8
Five-Switch DIP and Status LED 2-8
Format 1 Instructions 4-18
Format 2 Instructions 4-20
Format 3/9 Instructions 4-22
Format 4 (CRU Multibit) Instructions 4-24
Format 5 (SHIFT) Instructions 4-25
Format 6 Instructions 4-27
Format 7 (RTWP, CONTROL) Instructions 4-30
Format 8 (IMMEDIATE, INTERNAL REGISTER LOAD/STORE) Instructions 4-31
Format 9 (XOP) Instructions 4-33
Four Interrupt-Causing Conditions at TMS 9902A F7-8

General Specifications 1-5
General, Applications 8-1
General, Installation and Operation of the TM 990/101MA 2-1
General, Options 7-1
General, Programming 5-1
General, Theory of Operation 6-1
General, TIBUG Interactive Debug Monitor 3-1
General, TM 990/101MA Instruction Execution 4-1
Glossary 1-7

Half-Duplex Multidrop System F7-11
Hardware Registers 4-1
Hardware Registers 5-4
Hexadecimal Arithmetic (H) 3-9
HOLD-, HOLDA, and DMA 6-31

I/O Using Monitor XOP's 5-22
IMmediate Addressing 4-13
Implicit Decoded CRU Bit Addresses T6-25
Indirect Register Addressing Example F4-10
Indirect Register Addressing 4-8
Indirect Register Autoincrement Addressing Example F4-10
Indirect Register Autoincrement Addressing 4-11
Inspect/Change User Workspace (W) 3-13
Inspect/Change User WP, PC, and ST Registers (R) 3-11
INSTALLATION AND OPERATION OF THE TM 990/101MA Section 2
Instruction Description Terms T4-14
Instruction Formats and Addressing Modes 4-7
Instruction Set, Alphabetical Index T4-15
InStruction Set, Numerical Index T4-17
Instructions 4-14
Interfacing with TIBUG 5-21
Interrupt and User XOP Linking Areas T5-25
Interrupt and XOP Linking Areas 5724
Interrupt. Characteristics T6-31
Interrupt Example Program Description T5-35
Interrupt Sequence F5-26
Interrupt Structure 6-31
Interrupts and XOP's 5-24

Jumper Pins by Board Dash Number (Factory Installation) T7-5
Jumper Placement F7-2

Index-3

INDEX (CONTINUED)

LDCR Instruction F5-16
Line-by-Line Assembler Output F7-14
Linked List Example F5-11
Linked-Tests 5-10
Linking Instructions 5-6
LOAD Function 6-13
Load Memory from Cassette or Paper Tape (L) 3-9

Main and Expansion EPROM and RAM F1-5
Main Communications Port 6-35
Major Components used in I/O F8-2
Manual Organization 1-4
Master Jumper Table T7-4
Master-Slave Full Duplex Multidrop System F7-10
MEMCYC- 6-27
Memory Address Decode PROM F6-18
Memory Address Decoding 6-15
Memory and Capacitor Placement F7-3
Memory Cycle Timing 8-11
Memory Cycle Timing F8-12
Memory Expansion Maps F7-6
Memory Inspect/Change, Memory Dump (M) 3-10
Memory Map Change 7-12
Memory Map F4-2
Memory Timing Signals 6-26
Minimum Memory Requirements for TIBUG F3-2
Miscellaneous Equipment 2-2
Modem (Data Set) Interface Signal Definitions 8-19
Move Block Following Passage of Parameters 5-50
Move Block of Bytes Example Subroutine F5-50
Multidrop Cabling F7-9
Multidrop Interface 6-37
Multidrop Interface 7-8
Multidrop Interface F6-38
Multidrop Jumper Table T7-10
Multidrop System F7-9
Multiple-Device Direct Memory Access Controller 8-12

OEM Chassis Backplane Schematic F7-17
OEM Chassis 7-13
Offboard Eight-Bit I/O Port 8-1

• Offboard Memory F8-3
Offboard RAM 8-1
Offboard TMS 9901 8-1
Onboard Device CRU Address T6-25
Onboard Memory Expansion 7-1
Operation 2-8
OPTIONS Section 7

P1, P2, P3, and P4 Pin Assignments Appendix H
Parallel I/O and System Timer 6-32
Parallel I/O Connector 2-2
Parallel I/O 6-34

Index-4

INDEX (CONTINUED)

Parts List Appendix E
Power Specifications . 6-1
Power and Terminal Hookup 2-2
Power Cable/Card Cage 2-2
Power Supply Connections 2-3
Power Supply Hookup F2-4
Power Supply 2-1
Power-Up/Reset 2-8
Preprogrammed Interrupt and User XOP Trap Vectors T5-24
Product Index 1-4
Program Counter (PC) 4-3
Program Counter Relative Addressing 4-13
Program Entry and Exit 5-21
Program Organization 5-3
PROGRAMMING Section 5
Programming Considerations 5-3
Programming Environment 5-4
Programming Hints 5-21

RAM Expansion 7-6
Random Access Memory 6-28
Random Access Memory F6-29
Read Hexadecimal Word from Terminal (XOP 9) 3-15
Read One Character from Terminal (XOP 13) 3-17
Read-Only Memory 6-27
Read-Only Memory F6-28
Reading the DIP Switch F5-53
Ready 6-26
Reference Documents 1-6
Register Reserved Application T5-6
Remote Communications 7-12
Required Equipment 2-1
Required Use of RAM in Programs 5-3
Reset and Load Filtering 6-14
RESET and LOAD Logic F6-13
RESET Function 6-10
RESET/LOAD Logic 6-10
Return with Workspace Pointer (RTWP) 5-9
RS-,232-C Interface 7-7
RS-232-C Port r8-6
RS-232-C/TTY/Multidrop Interfaces (Main Port, P2) 7-7

Sample Program 1.. 2-8
Sample Program 2 2-10
Sample programs ,2-8
SCHEMATICS Appendix F
Serial Communication Interrupt 7-7
Serial I/O Port EIA Interface F6-36
Serial I/O Port TTY Interface F6-37
Seven-Word XOP Interrupt Linking Area F5-29
Six-Word Interrupt Linking Area F5-27
Slow EPROM 7-7
Slow EPROM T7-7
Software Registers 4-4
Source Listing F5-2

Index-5

INDEX (CONTINUED)

Status Bits Affected by Instructions T4-5
Status Indicator 6-40
Status Register (ST) 4-3
Status Register F4-3
STCR Instruction F5-17
Switch, DIP, 5-position (S2) 5-52
Switch, RESET (S1) 2-8, 6-10
Symbolic Memory Addressing, Indexed 4-11
Symbolic Memory Addressing, Not Indexed 4-11
System Buses 6-4
System Clock 6-7
System Structure 6-3
System Timer 6-34

Tape Tabs F3-7
Terminal Hookup 2-5
Terminals and Cables 2-1
THEORY OF OPERATION Section 6
TI 733 ASR Baud Rate (T) 3-13
TIBUG Commands 3-1
TIBUG Commands T3-1
TIBUG Error Messages 3-18
TIBUG Error Messages T3-18
TIBUG INTERACTIVE DEBUG MONITOR Section 3
TM 990 Object Code Format Appendix G
TM 990/101MA Block Diagram F6-2
TM 990/101MA Board in a TM 990/510A Card Cage F2-5
TM 990/101MA Configurations T1-4
TM 990/101MA CRU Map T6-21
TM 990/101MA Dimensions F1-2
TM 990/101MA Instruction Formats F4-7
TM 990/101MA INSTRUCTION SET EXECUTION 4-1
TM 990/101MA Major Components F1-1
TM 990/101MA Memory Addressing F6-16
TM 990/101m Predefined CRU Addresses T5-12
TM 990/301 Microte'rminal 7-13
TM 990/301 Microterminal F7-15
TM 990/402 Line-by-Line Assembler 7-12
TM 990/510A OEM Chassis • F7-16
TMS 9900 CPU Flowchart F6-12
TMS 9900 CRU Interface Timing F5-15
TMS 9900 Data and Address Flow F6-11
TMS 9900 Memory Bus Timing F6-26
TMS 9900 Pin Functions F6-9
TMS 9901 Interval Timer Interrupt Program 5-30
TMS 9901 F6-33
TTY Interface 6-36
TTY Interface 7-7

Unit ID DIP-Switch 5-52
Unit ID Switch 6-40
Unpacking 2-2
User Memory 4-1
User Accessible Utilities 3-14
User Accessible Utilities T1-14

Index-6

INDEX (CONCLUDED)

Using Main and Auxiliary TMS 9902As for I/O 5-52

Vectors (Interrupt and XOP) 5-5
Verification 2-8

Wait 6-27
Wiring Teletype Model 3320/5JE for TM 990/101MA Appendix A
Workspace Example F4-6
Workspace Pointer (WP) 4-3
Workspace Registers 5-6
Write Four Hexadecimal Characters to Terminal (XOP 10) 3-16
Write Message to Terminal (XOP 14) 3-17
Write One Character to Terminal (XOP 12) 3-17
Write One Hexadecimal Character to Terminal (XOP 8) 3-15

XOP Example F4-35

Index-7

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199
	Page 200
	Page 201
	Page 202
	Page 203
	Page 204
	Page 205
	Page 206
	Page 207
	Page 208
	Page 209
	Page 210
	Page 211
	Page 212
	Page 213
	Page 214
	Page 215
	Page 216
	Page 217
	Page 218
	Page 219
	Page 220
	Page 221
	Page 222
	Page 223
	Page 224
	Page 225
	Page 226
	Page 227
	Page 228
	Page 229
	Page 230
	Page 231
	Page 232
	Page 233
	Page 234
	Page 235
	Page 236
	Page 237
	Page 238
	Page 239
	Page 240
	Page 241
	Page 242
	Page 243
	Page 244
	Page 245
	Page 246
	Page 247
	Page 248
	Page 249
	Page 250
	Page 251
	Page 252
	Page 253
	Page 254
	Page 255
	Page 256
	Page 257
	Page 258
	Page 259
	Page 260
	Page 261
	Page 262
	Page 263
	Page 264
	Page 265
	Page 266
	Page 267
	Page 268
	Page 269
	Page 270
	Page 271
	Page 272
	Page 273
	Page 274
	Page 275
	Page 276
	Page 277
	Page 278
	Page 279
	Page 280
	Page 281
	Page 282
	Page 283
	Page 284
	Page 285
	Page 286
	Page 287
	Page 288
	Page 289
	Page 290
	Page 291
	Page 292
	Page 293
	Page 294
	Page 295
	Page 296
	Page 297
	Page 298
	Page 299
	Page 300
	Page 301
	Page 302
	Page 303
	Page 304
	Page 305
	Page 306
	Page 307
	Page 308
	Page 309
	Page 310
	Page 311
	Page 312

