
As you are now the owner of this document which should have come to you for free, please
consider making a donation of £1 or more for the upkeep of the (Radar) website which holds
this document. I give my time for free, but it costs me money to bring this document to you.
You can donate here https://blunham.com/Misc/Texas

Many thanks.

Please do not upload this copyright pdf document to any other website. Breach of copyright
may result in a criminal conviction.

This Acrobat document was generated by me, Colin Hinson, from a document held by me. I
requested permission to publish this from Texas Instruments (twice) but received no reply. It
is presented here (for free) and this pdf version of the document is my copyright in much the
same way as a photograph would be. If you believe the document to be under other
copyright, please contact me.

The document should have been downloaded from my website https://blunham.com/, or any
mirror site named on that site. If you downloaded it from elsewhere, please let me know
(particularly if you were charged for it). You can contact me via my Genuki email page:
https://www.genuki.org.uk/big/eng/YKS/various?recipient=colin

You may not copy the file for onward transmission of the data nor attempt to make
monetary gain by the use of these files. If you want someone else to have a copy of the file,
point them at the website. (https://blunham.com/Misc/Texas). Please do not point them at
the file itself as it may move or the site may be updated.

It should be noted that most of the pages are identifiable as having been processed by me.

I put a lot of time into producing these files which is why you are met with this page when you
open the file.

If you find missing pages, pages in the wrong order, anything else wrong with the file or
simply want to make a comment, please drop me a line (see above).

It is my hope that you find the file of use to you.

Colin Hinson
In the village of Blunham, Bedfordshire.

TEXAS INSTRUMENTS

AMPL
TMAM 6095
EVALUATION MODULE

FOR TMS 9995 MICROPROCESSOR

User's Manual
ZZIA1/4." nr,;AA #,41

IMPORTANT NOTICES

Texas Instruments Reserves the right to make changes at any time in
order to supply the customer with the best possible product.

TI cannot assume responsibility for any circuits shown or represent
that they are free from patent infringement.

Copyright, Texas Instruments Incorporated, 1981

TABLE OF CONTENTS

1.0 INTRODUCTION

1.1 General 1-1
1.2 Board Configuration 1-2
1.3 General Specifications 1-4
1.4 Reference Documents 1-4
1.5 Numerical Representations 1-5
1.6 Glossary 1-6

2.0 INSTALLATION

2.1 General 2-1
2.2 Required Equipment 2-1
2.3 Power Supply 2-1
2.4 Space and Environmental Requirements 2-1
2.5 Unpacking 2-2
2.6 Hookup 2-3

3.0 OPERATION

3.1 General 3-1
3.2 Verification 3-1
3.3 Power-up/Reset 3-1
3.4 Sample Programs 3-2
3.4.1 Sample Program 1 3-2
3.4.2 Sample Program 2 3-3
3.5 Troubleshooting Techniques 3-4
3.5.1 Test Equipment Requirements 3-5
3.5.2 Procedures 3-5
3.5.2.1 Visual Checks 3-5
2.5.2.2 Static Checks 3-5
3.5.2.3 Dynamic Checks 3-6

4.0 THEORY OF OPERATION

I

4.1
4.2
4.2.1
4.2.1.1
4.2.1.2
4.2.1.3
4.2.1.4
4.2.2

General
Major Internal Signals

System Buses
Address Bus
Data Bus
CRU Bus
Control Bus

Auxiliary Control Signals

4-1
4-3
4-4
4-4
4-5
4-5
4-5
4-6

4.3 Clock Oscillator 4-7
4.4 RESET Logic 4-7
4.5 Device Select Logic 4-9
4.6 Memory 4-10
4.6.1 General-Purpose Memory Sockets 4-11
4.6.2 Personality Plugs 4-13
4.6.3 Dedicated Read/Write Memory (RAM)

Sockets 4-15
4.7 Serial Communication Ports 4-16
4.7.1 EIA Interface 4-20
4.7.2 TTY Interface 4-20
4.8 Memory And CRU Address Map Changes 4-20
4.9 Wait State Logic 4-21
4.10 External Instruction Logic 4-22
4.11 Single-Step Logic 4-23
4.12 Prototype Area 4-24

5.0 EVMBUG INTERACTIVE MONITOR

5.1 General 5-1
5.2 User Memory 5-1
5.3 EVM BUG Commands 5-3
5.3.1 Execute Under Breakpoint (EXB) 5-5
5.3.2 Inspect/Change CRU (IC) 5-5
5.3.3 Dump Memory (DM) 5-7
5.3.4 Dump Memory To Digital Cassette/Paper

Tape (DMC) 5-8
5.3.5 Execute Command (EX) 5-12
5.3.6 Find Data Command (FD) 5-12
5.3.7 Hexadecimal Arithmetic (HEX) 5-13
5.3.8 Load Memory From Cassette or Paper

Tape (LMC) 5-13
5.3.9 Inspect/Change Memory (IM) 5-15
5.3.10 Inspect/Change User WP, PC, and

ST Registers (IR) 5-16
5.3.11 Execute In Single Step Mode (SS) 5-17
5.3.12 Toggle Null Flag (TNF) 5-17
5.3.13 Inspect/Change User Workspace

Registers (IWR) 5-18
5.3.14 Assembler Commands: (XA, XAE, XRA, XCL) 5-19

II

5.3.14.1

5.3.14.2

5.3.14.3
5.3.13.4

Execute Assembler With New Symbol
Table: (XA)
Execute Assembler With Existing Symbol
Table: (XAE)
Execute Reverse Assembler: (XRA)
Execute Communications Link: (XCL)

5-19

5-19
5-20
5-20

5.4 User-Accessible Utilities 5-20
5.4.1 Write One Hex Character to Terminal (XOP 8) 5-21
5.4.2 Read Hex Word From Terminal (XOP 9) 5-22
5.4.3 Write Four Hex Characters To

Terminal (XOP 10) 5-23
5.4.4 Echo Character (XOP 11) 5-23
5.4.5 Write One Character To Terminal (XOP 12) 5-24
5.4.6 Read One Character From Terminal (XOP 13) 5-24
5.4.7 Write Message To Terminal (XOP 14) 5-24
5.5 EVMBUG Error Messages 5-25

SYMBOLIC ASSEMBLER

6.1 General 6-1
6.2 TMS 9995 Symbolic Assembler Listing 6-3
6.2.1 Listing Format 6-3
6.2.1.1 Location Counter 6-3
6.2.1.2 Assembled Object Code 6-3
6.2.1.3 Label Field 6-3
6.2.1.4 Op Code Field 6-3
6.2.1.5 Operand Field 6-3
6.2.1.6 Comment Field 6-4
6.3 Labels and Comments 6-4
6.3.1 Dollar Sign To Indicate "At This

Location" 6-4
6.3.2 Expressions 6-5
6.3.3 Cancel Source Statement Being Input 6-5
6.3.4 Translate Characters Into ASCII Code

Using Single Quotes 6-5
6.4 Assembler Directives 6-6
6.4.1 AORG Directive 6-6
6.4.2 BSS Directive 6-7
6.4.3 DATA Directive 6-7
6.4.4 END Directive 6-8
6.4.5 EQU Directive 6-9
6.4.6 TEXT Directive 6-10
6.5 Assembler Action 6-11
6.6 Operation 6-12
6.6.1 Calling The Assembler 6-12
6.6.2 Exiting To The Monitor 6-13
6.7 Entering Instructions 6-13
6.7.1 Label Field 6-13
6.7.2 Opcode Field 6-13
6.7.3 Operand Field 6-13

III

6.7.4
6.7.5
6.7.6
6.8
6.9

The Comment Field
Concluding The Instruction
Examples

Errors
Pseudo-Instructions

6-13
6-14
6-14
6-16
6-18

7.0 EIA COMMUNICATIONS LINK

7.1 General 7-1
7.2 System Description 7-2
7.3 System Requirements 7-4
7.3.1 Host System Requirements 7-4
7.3.1.1 Hardware Requirements 7-4
7.3.1.2 Software Requirements 7-5
7.3.2 Terminal Requirements 7-6
7.4 Communications Link Usage 7-6
7.4.1 Starting The Link 7-7
7.4.2 Terminal Mode 7-7
7.4.3 Command Mode 7-8
7.4.4 Returning Control To EVMBUG Monitor 7-9
7.4.5 Link Use Without Cassette Or Paper Tape

Support 7-9
7.5 Sample Software Development Session 7-10

8.0 PROGRAMMING

8.1 General 8-1
8.2 Programming Considerations 8-3
8.2.1 Program Organization 8-3
8.2.2 Executing TMS 9995 Programs On The

TMS 9995 EVM 8-4
8.2.3 Required Use Of RAM In Programs 8-4
8.3 Programming Environment 8-4
8.3.1 Hardware Registers 8-5
8.3.1.1 Workspace Pointer Register (WP) 8-5
8.3.1.2 Program Counter Register (PC) 8-6
8 3 1-3 Status Register (ST) 8-6
8.3.2 Address Space 8-7
8.3.3 Vectors (Interrupt and XOP) 8-7
8.3.4 Workspace Registers 8-8
8.4 Linking Instructions 8-9
8.4.1 BL (Branch and Link) Instruction 8-11
8.4.2 BLWP (Branch & Load Workspace Pointer)

Instruction 8-13

8.4.3 RTWP (Return With Workspace Pointer
Instruction 8-14

IV

8.4.4 XOP (Extended Operation) Instruction 8-15
8.4.5 Linked-Lists 8-15
8.5 Communications Register Unit (CRU) 8-17
8.5.1 CRU Addressing 8-17
8.5.1.1 CRU Bit Address and Register 12 8-17
8.5.2 CRU Instructions 8-19
8.5.2.1 CRU Multibit Instructions 8-19
8.5.2.2 CRU Single-Bit Instructions 8-21
8.6 Dynamically Relocatable Code 8-22
8.7 Programming Hints 8-26
8.8 Interfacing With EVMBUG 8-27
8.8.1 Program Entry and Exit 8-27
8.8.2 I/O Using Monitor XOPs 8-27
8.8.2.1 Character I/O 8-27
8.8.2.2 Hexadecimal I/O 8-28
8.9 Interrupts and XOPs 8-30
8.9.1 Interrupt and XOP Linking Areas 8-30
8.9.1.1 Interrupt Linking Areas 8-30
8.9.1.2 XOP Linking Area 8-36
8.10 TMS 9995 Interval Timer Interrupt Program 8-39
8.11 Move Block Following Passing of Parameter 8-43
8.12 Block-Compare Subroutine 8-44
8.13 Using Main and Auxiliary TMS 9902s For I/O 8-46

APPENDICES

A Object Record Format A-1
B ASCII Code B-1
C Binary, Decimal and Hexadecimal Numbering Systems C-1
D TMS 9995 EVM Schematics D-1
E TMS 9995 Microcomputer E-1
F TMS 9995 Instruction Set F-1
G Sample Programs G-1

LIST OF ILLUSTRATIONS

Figure 1-1. TMS 9995 Evaluation Module.. 1-1
Figure 1-2. TMS 9995 Evaluation Module Configuration. 1-3
Figure 2-1. Power Supply Hookup. 2-2
Figure 2-2. Terminal Hookup. 2-4
Figure 4-1. TMS 9995 EVM System Block Diagram. 4-2
Figure 4-2. TMS 9995 Control Signals. 4-4
Figure 4-3. TMS 9995 EVM RESET Logic. 4-8

Figure 4-4. TMS 9995 Device Select Logic. 4-9
Figure 4-5. TMS 9995 EVM System Memory Map. 4-10
Figure 4-6. General-Purpose Socket Jumper Logic. 4-11

V

Figure 4-7. General-Purpose Sockets and Personality Plugs. 4-12
Figure 4-8. Personality Plugs. 4-14
Figure 4-9. Dedicated RAM Logic. 4-16
Figure 4-10. Serial Communications Port Logic. 4-17
Figure 4-11. Wait State Logic. 4-21
Figure 4-12. External Instruction Logic. 4-23
Figure 4-13. Single-Step Logic 4-24
Figure 5-1. System Memory Map. 5-2
Figure 5-2. CRU Bits Inspectd By IC Command. 5-6
Figure 5-3. Load Tape Cassette 5-10
Figure 5-4. Tape Write-Protect Tabs. 5-11
Figure 6-1. Sample Assembler Listing. 6-12
Figure 7-1. TMS 9995 Evaluation Modul. 7-2
Figure 7-2. Typical System Configuration. 7-3
Figure 8-1. Source Listing. 8-3
Figure 8-2. Status Register. 8-7
Figure 8-3. Example of Separate Programs Joined

By Branches To Absolute Addresses. 8-11
Figure 8-4. Branch and Link Subroutine. 8-12
Figure 8-5. Linked-List Example. 8-16
Figure 8-6. CRU Address In Register 12 vs Address Bus Lines. 8-18
Figure 8-7. TMS 9995 CRU External Instruction Timing. 8-21
Figure 8-8. STCR Instruction. 8-23
Figure 8-9. Addition of Displacement & R12

Contents To CRU Bit Address. 8-22
Figure 8-10. Example of Program Coding Added

To Make (Coding) Relocatable. 8-24
Figure 8-11. Examples of Non-relocating Code

And Self-Relocating Code. 8-25
Figure 8-12. Interrupt Sequence. 8-33
Figure 8-13. Six-Word Interrupt Linking Area. 8-35
Figure 8-14. Seven-Word XOP Interrupt Linking Area. 8-37
Figure 8-15. Example of Code To Run TMS 9995 Interval Timer. 8-41
Figure 8-16. Move Block of Bytes Sample Routine. 8-44
Figure 8-17. Compare Blocks Of Bytes Sample Subroutine. 8-45
Figure 8-18. Sample Program To Converse Through Main

And Auxiliary TMS 9902s, 8-48

LIST OF TABLES

Table 3-1. Supply Voltage Operational Limits. 3-6
Table 4-1. TMS 9995 EVM Signals. 4-3
Table 4-2. TMS 9995 EVM Control Bus Signals. 4-6
Table 4-3. TMS 9995 EVM Auxiliary Control Signals. 4-7
Table 4-4. Select Line Address Assignments. 4-9
Table 4-5. Jumper Connections. 4-15
Table 4-6. CRU Address Map. 4-18
Table 4-7. External Instructions. 4-22
Table 5-1. EVMBUG Commands. 5-3
Table 5-2. Command Syntax Conventions. 5-4

VI

Table 5-3. User-accessible Utilities. 5-21
Table 5-4. EVMBUG Error Messages. 5-26
Table 7-1. Host System Cable Requirements. 7-4
Table 7-2. Summary Of Communications Link Commands. 7-6
Table 7-3. Summary Of Communications Link Error Messages. 7-7
Table 7-4. Baud Rate Selection Parameters. 7-8
Table 8-1. Assembler Directives Used In Examples. 8-2
Table 8-2. Register Reserved Applications. 8-9
Table 8-3. TMS 9995 EVM Board Predefined CRU Addresses. 8-17
Table 8-4. Alternate Programming Conventions. 8-26
Table 8-5. Preprogrammed Interrupt and User XOP Trap Vectors 8-31
Table 8-6. Interrupt and User XOP Linking Areas. 8-32
Table 8-7. ASRFLAG Values. 8-47

VII

.6. .8. _a. 17) (51
POWER
BUSES

/\ 0 0 0 0 O C=
-C3-

BREADBOARD
AREA

SECTION 1

INTRODUCTION

1.1 GENERAL

The TMAM 6095 Evaluation Module (EVM) is a self-contained,
single-board microcomputer system. It is intended for use as a vehicle
to provide low cost evaluation capability for the TMS 9995
microcomputer hardware/software systems. Throughout this document, the
evaluation module will be referred to as the TMS 9995 EVM.

The TMS 9995 EVM contains firmware that enables programs to be
assembled, edited, and executed. A powerful symbolic assembler also
provides reverse assembly capability. The module will support 24K
bytes of firmware without hardware expansion. Wait states are
individualy selectable for each memory device.

EIA PORT 1
(TERMINAL EIA PORT 2 IDLE
CONNECT) (AUXILLIARY) LIGHT 12)

4=1

161 iEr 4=3-im‘

RANDOM
LOGIC
AREA

.11 .6.
PROTOTYPE
PORT (10)

18)

191

(3)

C1

13)
TMS
9995

1=1-

PROTOTYPE
PORT (10)

_ZN
(4) 14) (4)

8. •

6 MHz
MICROPROCESSOR RESET CRYSTAL

SWITCH FOR CLOCK

FIGURE 1-1. TMS 9995 EVALUATION MODULE.

1-1

The system's features include:

- A debug monitor

- A symbolic assembler

A reverse assembler

- Two EIA RS-232C data communication link ports providing
interfa to a local terminal and to a host system for
upload/download capability.

- Three user-configurable 28-pin memory sockets that will
suport most "by 8" memory devices, i.e., 8K - 64K
ROMs/EPROMs, "by 8" RAMs, and bi-polar PROMs.

- The TMS 9995 microcomputer with 256 bytes of on-chip RAM.

- 1K Bytes of external RAM populated on the board.

- 12 kilobytes of EPROM containing the supplied firmware. In
addition, up to 64K of EPROM may be obtained by populating
the three general-purpose sockets with "by 8" TMS memory
devices.

A large prototyping area providing ample room for
breadboarding with TMS 9995 systems.

- 12 MHz crystal-controlled clock.

- Manual reset switch.

- Most signals are available at the edge of the prototyping
area. Provision for off-board expansion is possible using
dual ribbon cable connectors.

:n addition to the basic TMS 9995 Evaluation Module, the following
)ptions are available:

- Power Supply Unit, part number TM990/519

BOARD CONFIGURATION

1-2

_PORT 2

EIA RS-232-C HOST COMPUTER.
(DX 990/10,

FS 990/4,
PDP-11/70,
IBM 370,
NOVA,

UNIVAC 1108
ETC.) HOST SYSTEM

UTILITIES

TMS 9995
EVM BOARD

EVM BUG
MONITOR

USER
TERMINAL 1

PORT 1

USER
TERMiNAL_2

FIGURE 1-2. TMS 9995 EVALUATION MODULE CONFIGURATION.

1. Jumper Plug: allows the selection of the type of terminal
to be used withthe EVM. A 3-prong plug. If prongs 1 and 2
are connected, a teletype terminal may be used; if prongs
2 and 3 a connected, an RS232C/EIA-type terminal may be
used.

2. Jumper Plug: enables/disables automatic first Wait state.
If prongs 1 and 2 are connected, enables; if 2 and 3 are
connected Wait states are disabled.

3. General-purpose memory sockets: 28 pin.

1-3

4. Corresponding Personality Plugs: connects appropriate
signals to the corresponding general-purpose memory
socket.

5. Jumper Plugs (6): Jl, J2, and J3 plugs determine how the
memory signal to the general-purpose memory sockets is
generated., and J4, J5, and J6 plugs either enable or
disable a Wait state for the corresponding general-purpose
memory socket.

6. The Universal Asynchronous Communications Controller
(UARTS): provides interface between the processor CRU and
the EIA ports.

7. Memory Decode PROMs; determine the memory map.

8. On-board Random Access Memory (RAM): 1K bytes.

9. Buffers for on-board RAM.

10. Two prototype ports, which allow the user to connect
other peripheral equipment (i.e., audio cassette, VDT,
additional terminals, etc.) by means of a wrap-post header
ribbon cable.

1.3 GENERAL SPECIFICATIONS

Board Dimensions: 8.5" x 11"

Memory Size:

RAM: 1024 bytes (1K) on board; 256 bytes in the TMS 9995.

EPROM: 6K, expandable to 24K by populating the general-purpose
memory sockets with TMS 2564 EPROMs.

Clock Rate: 3 MHz

Baud Rates: Variable, dependent upon type of terminal being used.

1.4 REFERENCE DOCUMENTS

The following is a list of documents that will provide supplementary
information for the TMS 9995 EVM user:

1-4

- TMS 9900 Family System Development Manual, part number
LCC4400

- TMS 9995 Microcomputer Data Manual, part number MP021

1.5 NUMERICAL REPRESENTATIONS

For the purposes of delineating between decimal, hexadecimal and
binary number in this manual, hexadecimal numbers are preceeded by a
greater-than sign: (>). Decimal number are unsigned. Binary number are
so noted.

EXAMPLE:

>0000 HEXADECIMAL

1234 DECIMAL

1101(Binary) BINARY

1.6 GLOSSARY

The following are definitions of terms used with the TMS 9995 EVM.

Absolute Address: the actual memory address in quantity of bytes.
Memory addressing is usually represented in hexadecimal from >0000 to
>FFFF.

Alphabetic Character: A to Z. On dual-printed keys, the character
printed on the lower half of the key.

Alphanumeric Character: letters, numbers, and associated symbols.

ASCII Code: a seven-bit code used to represent alphanumeric characters
and control characters.

Assembler: the program that translates assembly language source
statement into machine usable object code.

Assembly Language: mnemonics which can be interpreted by an asembler
and translated into an object program.

1-5

Bit: (Binary DI set) the smallest part of a word; it has a value of
either 1 or 0.

Breakpoint: a memory address where a program is intentionally halted.
This is a program debugging tool.

Byte: eight bits.

Carry: a carry occurs when the most-significant bit overflows in an
arithmetic operation; i.e., when the resultant cannot be contained in
only 16 bits. Same as an overflow.

Central Processing Unit (CPU): the "heart" of the computer.
Responsibilities include instruction access and interpretation,
arithmeitc functions, and I/O memory access. The CPU is contained in
the TMS9995 microcomputer.

Command Scanner: a set of instructions in the debug monitor which
takes the user's input from the terminal and searches a table for the
proper program to execute the command.

Context Switch: a change in the program execution environment.
Includes the new program counter (PC) value and the new workspace
pointer (WP). Usually caused by an interrupt subroutine call.

CPU: see Central Processing Unit.

Effective Address: a memory address resulting from the interpretation
of an instruction; required for the execution of that instruction.

EIA: The acronym as used in this manual signifies a RS232-B or C,
serial interface and implies use of the standard 25 connector as
specified by the Electronic Industries Association.

EPROM: see Read Only Memory.

Hexadecimal: a numerical notation in the base 16. In this manual,
denoted by ">" preceeding a number.

Indexed Addressing: the effective address is the sum of the contents
of an index register and a displacement.

1-6

Indirect Addressing: a method of cross referencing in which one memory
location (the indirect address) contains the address for the desired
operand. The actual address is the contents of the indirect address
register.

Interrupt: an externally generated context switch in which the new
work- space pointer (WP) and program counter (PC) values are obtained
from one of four interrupt vectors in memory addresses >0000 to >0012,
or the non-maskable interrupt (NMI) vector at address >FFFC. The old
PC, WP and status register (ST) values are saved so that a return to
the context prior to the interrupt can be made.

I/O: input/output. I/O lines are the signals which connect an external
device to the data lines of the TMS9995.

Least Significant Bit (LSB): the bit having the smallest value in a
byte or word (smallest power of base 2); represented by the right-most
bit.

Loader: a program that places one or more absolute or relocatable
object programs into memory.

Machine Language: binary code that can be interpreted by the CPU.

Monitor: a program that assists in the real-time aspects of program
execution, such as operator command interpretation and supervisor call
execution. Sometimes called the Supervisor.

Most Significant Bit (MSB): The bit having the largest value in a
byte. Represented by the left-most bit.

Numeric Character: numbers 1-10. On dual-printed keys, the character
printed on the lower half of the key.

One's Complement: binary representation of a number in which the
negative of the number is the complement or inverse of the positive
number (all ones become zeroes and vice-versa). The most significant
bit (MSB) is one for a negative number and zero for positive number.
Two representations exist for zero: all ones or all zeroes.

Op Code: binary operation code interpreted by the CPU to execute an
instruction.

1-7

Overflow: an overflow occurs when the result of an arithmetic
operation cannot be represented in two's complement, i.e., in 15 bits
plus the sign bit. Same as a carry.

Parity: the means for checking validity of a series of bits, usually a
byte. Odd parity means an odd number of bits; even parity means an
even number of logic one bits. A parity bit is set to make all bytes
conform to the selected parity. If the parity is not as anticipated,
an error flag can be set by software. The parity jump instruction can
be used to determine parity.

Program Counter (PC): a hardware register that points to the next
instruction to be executed.

PROM: Programmable Read Only Memory. See Read Only Memory.

Random Access Memory (RAM): memory that can be written to as well as
read from (vs read only memory). Usually loses its contents when power
is turned off.

Read Only Memory (ROM): memory that can only be read from (can't
change the contents). Some can be programmed (PROM) using a PROM
programmer. Some PROMs can be erased (EPROMs) by exposure to
ultraviolet light.

Source Program: programs written in mnemonics that can be translated
into machine language by an assembler.

Status Register (ST): a hardware register that reflects the outcome of
a previous instruction and the current interrupt mask.

Supervisor: see Monitor.

Utilities: routines used by different parts of the program to perform
the same functions.

Wire-OR: externally connecting separate circuits/functions so that the
combination of their outputs results in an "OR' function.

Word: sixteen bits or two bytes.

1-8

Workspace Pointer (WP): a hardware register that contains the memory
address of the beginning of the workspace area; points to Register 0.

Workspace Register Area: sixteen words, designated registers 0 to 15,
located in RAM for use by the executing program.

XOP: Extended Operation. A software generated context switch. Can be
considered as a system jump table.

1-9

SECTION 2

INSTALLATION

2.1 GENERAL

This section provides instructions for the installation of the basic
TMS 9995 Evaluation Module.

The following paragraphs will enable the user to determine the power,
space, and environmental requirements for the TMS 9995 EVM.

2.2 REQUIRED EQUIPMENT

- TMS 9995 EVM Board, part number 1603162

- Power Supply Cable, part number 991747

- TM 990/519 Power Supply, part number 991748

- Terminal: EIA RS-232 or 20ma current loop compatible TTY

2.3 POWER SUPPLY

The TM 990/519 power supply is plugged into a standard AC wall outlet.
Fig. 2-1 shows how to connect the TM 990/519 power supply to the TMS
9995 EVM by means of the power-connect cable supplied with the board.
The connections on each end of the cable are positively keyed and
prohibit misconnection to the power supply. Furthermore, this cable is
wired "one-for-one", and either end may be connected to the power
supply or the board.

2.4 SPACE AND ENVIRONMENTAL REQUIREMENTS

The TMS 9995 EVM setup requires adequate space on a flat,
non-conductive horizontal surface. The space must allow room on the
side for cable connections and placement of the power supply, space to
the rear for placement of the terminal cable, and clearance to the
front for user access to both the module and the terminal. If desired,
space should also be provided for placement of an oscilloscope. The
workspace provided must be free of any material that could block the
ventilation louvers on the underside of the terminal.

2-1

FUSE

TO
AC

OUTLET

ja Et O o -c) B

0 O u o U

LI 0 0 LI LI
u u 11

ON
POWER

OFF

Environmental requirements are the same as for any microprocessor
system: a reasonably open, air conditioned area. Air temperature
should not exceed 80 degrees Farenheit; humidity, 80 percent.

FIGURE 2-1. POWER SUPPLY HOOKUP.

2.5 UNPACKING

Lift the TMS 9995 EVM from its carton and remove the protective
wrapping. Check for shipping damage. If any damage is found, notify
your TI distributor.

Verify that the following components are included:

TMS 9995 EVM

2-2

Power-connect Cable

2.6 HOOKUP

1. Attach Power-connect cable to EVM module and power supply,
as shown in Fig. 2-1.

NOTE: If using a power supply other then the TM990/519,
the user should remove one connector from the cable and
attach the proper connector or plugs for the power
supply to be used. The power cable conductors are color
coded as follows:

+5V - Red
+12V - White
-12V - Green
Ground - Black

2. Connect terminal cable to EVM module, as shown in Fig. 2-2,
below.

3. Plug power supply line into any properly grounded AC wall
outlet.

CAUTION

Be very careful to apply correct voltage
levels to the TMS 9995 EVM. Texas
Instruments assumes no responsibility
for damage caused by improper wiring or
voltage applications by the user.

2-3

FIGURE 2-2. TERMINAL HOOKUP.

2-4

SECTION 3

OPERATION

3.1 GENERAL

This section contains a system check-out procedure to verify that the
system is operational; and presents error and system malfunction
correction procedures, and basic operating procedures.

3.2 VERIFICATION

Verify the following conditions before applying power:

• Power is connected to correct pins on P1 connector.

• Terminal cable is between P2 connector (NOT P3) and
terminal.

• Jumpers are in correct positions:

- J1 joins location 2 and location 3.
- J2 joins location 1 and location 2.
- J3 joins location 1 and location 2.
- J4 joins location 2 and location 3.
- J5 joins location 2 and location 3.
- J6 joins location 2 and location 3.
- J7 joins location 1 and location 2.
- J8 joins location 2 and location 3.

• The baud rate and communications mode are correctly set at
the terminal; terminal is ON LINE.

3.3 POWER UP/RESET

1. Apply power to the EVM and the data terminal.

2. Activate the RESET switch. This activates the EVMBUG
monitor.

3. Press the "A" key on the terminal. EVMBUG measures the
time of the start bit and determines the baud rate. To
account for different terminals used, a carriage return
time of 200 ms is provided for all baud rates at or slower
than 1200 baud.

3-1

4. EVMBUG prints the EVMBUG banner message:

EVMBUG Rl.n (n represents version number)

MON ?

This is a request to input a command to the EVMBUG
scanner. Commands are explained in detail in Section 5.
The instruction set for the TMS 9995 EVM assembler is
defined in Section 6.

NOTE: If control is lost during operation, return control
to the EVMBUG monitor by repeating steps 2 and 3.

3.4 SAMPLE PROGRAMS

The following sample programs can be used immediately to test the EVM.

3.4.1 Sample Program 1

This sample program uses the EVMBUG commands Inspect Memory (IM),
Inspect Registers (IR), and execute (EX).

1. Enter the IM command with a hex memory address of >EDOO.

2. Enter the following values into memory. After typing each
value, press the space bar. Pressing the space bar opens and
displays the next memory location.

Location Enter Value Assembly Language Comments

ED0 0
ED02

2FAO
ED08

XOP @ EDO8,14 PRINT MESSAG3

ED04 0460 B @ 0080 GO TO EVMBUG
ED0 6 0142
ED08 4849 TEXT 'HI' MESSAGE
EDOA ODOA DATA ODOA CR/LF
EDOC 0700 DATA 0700 BELL/END

Enter a carriage return to escape the IM command. As a result,
the monitor will display a question mark.

3. Use the IR command to set the program counter (PC) to the value
EDO°. The user must first space through the workspace pointer
(WP) before the PC is displayed.

3-2

4. Use the EX command to execute the program.

5. The message "HI" will print on the printer, followed by a
carriage return, line feed, and a bell. Your terminal printout
should resemble the following:

ERROR 4
MON? IM ED00
EDOO=F17D 2FAO
ED02=1D57 ED08
ED04=1DF5 0460
ED06=FD4D 0080
EDOS=D9DD_ 4849
ED0A=DCBF _ODOA
EDOC=D1EB 0700
MON? IR

WECOO
P=0244 ED00
MON? EX
HI

MON?

6. Control will then be returned to the monitor. You can re-
execute your program by repeating steps 3 and 4.

3.4.2 Sample Program 2

Using steps 1 to 5 above, enter and execute the following program
which has been assembled by the optional TM 990/402 line-by-line
assembler.

3-3

EVMBUG R1.0
MON? XA EDOO
ED00 2FAO XOP e>E008,14
E002 ED08
ED04 0460 B @)0080
EDO6 0080
ED08 434F TEXT 'CONGRATULATIONS. YOUR PROGRAM WORKS!
EDOA 4E47
EDOC 5241
EDGE 5455
ED10 4C41
E012 5449
ED14 4F4E
ED16 532E
ED18 2059
ED1A 4F55
ED1C 5220
ED1E 5052
ED20 4F47
ED22 5241
E024 4020
ED26 574F
ED2S 5248
ED2A 5321
ED2C 0000
ED2E 0707 DATA)0707
ED30 0700 DATA >0700
ED32 END 0000
MON,

You can re-execute your program by repeating steps 3 and 4 above.

3.5 TROUBLESHOOTING TECHNIQUES

The following paragraphs outline suggested procedures for
troubleshooting a malfunctioning TMS 9995 EVM module.

3-4

3.5.1 Test Equipment Requirements

In order to perform the necessary procedures, the user must have
access to the following test equipment:

- Oscilloscope, preferably dual-trace, triggered sweep

- 10X oscilloscope probes

- VOM meter

Additional equipment which the user may find helpful includes:

- Logic Probe

- Logic Analyzer

It is suggested that the user review the theory of operation of the
EVM, Section 4, before proceeding with the troubleshooting procedures.

3.5.2 Procedures

Visual checkand static check procedures are described in the paragraphs
that follow.

3.5.2.1 Visual Checks

Probably the greatest source of board problems is shorts between
signals caused by foreign objects and/or solder bridges between
adjacent solder joints. Inspect both sides of the board carefully and
remove any shorts observed. Also, brush both sides of the board with a
soft dry brush (such as a drafting brush)to sweep away any loose
objects which were missed in the visual inspection.

Check the jumper connections; make sure all ICs are seated properly.

3.5.2.2 Static Checks

With power applied to the board, measure the three primary supply
voltages and compare the measured values to the operational limits as
listed in Table 3-1. A convenient place to access those voltages is at
the left edge of the prototype area.

3-5

TABLE 3-1. SUPPLY VOLTAGE OPERATIONAL LIMITS.

LIMITS CHECK
SUPPLY MIN MAX AT CURRENTS

+5V 4.5 5.5 +5 line 2A

+12V 11.64 12.36 +12 line .25A

-12V -11.64 -12.36 -12 line .18A

3-6

SECTION 4

THEORY OF OPERATION

4.1 GENERAL

This section presents the theory of operation of the TMS 9995
Evaluation Module. Information from the following manuals may be used
to supplement material in this section:

- TMS 9995 Microcomputer Data Manual (MP021)

- TMS 9900 Family System Design Handbook (LCC4400)

- TMS 9902 Asynchronous Communications Controller
Data Manual (MP004)

- TTL Data Book, Second Edition (LCC4112)

- TTL Data Book, Second Edition Supplement (LCC4162)

- Bipolar Microcomputer Components Data Book (LCC4270)

- The MOS Memory Data Book (LCC4782)

Figure 4-1 shows the major function blocks of the TMS 9995 EVM.
Included are the processing, memory and I/O portions of the system,
along with the primary signal buses.

Major features of the TMS 9995 EVM are EPROM and RAM memories, two TMS
9902 EIA serial communication ports, and a prototyping area. These
features are discussed in the following paragraph.

The TMS 9995 microcomputer is the central processing unit (CPU) of the
EVM. The capabilities of the CPU include:

- Memory, CRU and general bus control

- Instruction acquisition, interpretation, and execution

- Timing of most control signals and data

- General system initialization

4-1

FIGURE 4-1. TMS 9995 EVM SYSTEM BLOCK DIAGRAM.

4-2

(SELECT 1.4(

WAIT

STATE

(MEM-SELECT
1-31

(RAM-SELECT)

PERSONALITY

PLUG
<A3-A5

V
<A6-A15

EPROM
MEMORY

DATA

BUFFER
RAM

MEMORY

(SELECT 7&81

PORT 1

USER

PROTOTYPE

AREA

PORT 2

SYSTEM I/O PORTS

(11 12)

TMS 9902 TMS 9902

(SELECT 5&6(

SELECT

DECODE

LOGIC

PROM <A0-A5

A detailed description of the TMS 9995, its signals, buses, and their
operation is given in Appendix E and also in the TMS 9995
Microcomputer Data Manual. Also covered in the appendix and manual are
details of the TMS 9995 on-chip RAM, Decrementer (timer/event
counter), flag register, and interrupt controller.

RESET

SWITCH

12 MHz

CLOCK

CRYSTAL

TMS 9995

PROCESSOR

SINGLE-

STEP

LOGIC

LOGIC

4.2 MAJOR INTERNAL SIGNALS

The signals used by TMS 9995 EVM logic are listed in Table 4-1. All
system lines can also be traced by referring to the schematics in
Appendix D.

TABLE 4-1. TMS 9995 EVM SIGNALS.

SIGNAL FUNCTIONAL DEVICE CONNECTION

(Address Bus)

AO-A2 Address Decode ROM
A3-A5 Address Decode ROM, all EPROM personality plugs
A6-A9 RAM, EPROMs
A10-A14 9902s, RAM, EPROMs
A15/CRUOUT A15 only (in address mode): RAM, EPROMs

(Data Bus)

DO-D2 All memory devices, external instruction decode
logic (DO = MSB)

D3-D7 All memory devices (D7 = LSB)

(CRU Bus)

CRUIN CRU input line, TMS 9902s
A15/CRUOUT CRUOUT only (in CRU mode): CRU output line,

TMS 9902s
CRUCLK CRU clock, TMS 9902s

(Control Bus)

MEMEN- Address decode logic
DBIN- RAM output buffer, personality plugs
WE- Personality plugs, RAM input buffer, RAM
READY Wait state logic, processor, Reset logic (if

jumpered)

(Auxiliary Controls)

INT1- Processor, prototyping area
INT4-/EC- Processor, prototyping area
HOLD- Processor, prototyping area
IAQ Processor, prototyping area
HOLDA- Processor, prototyping area

4-3

Most of the signals are inputs to or outputs from the TMS 9995
microcomputer. (See Figure 4-2) Timing and other information
concerning the signals are given in Appendix E and also in the TMS
9995 Microcomputer Data Manual.

1 KIM. 1 RESET II13.F2L
3

7AL2/CLKIN 0LRAEADY

A0
DBIN

Al
A2

AS WE/CRUCLK

17 24

2.1..
26

a
12 DO 7 DO
11 01 33 AB 01

34 A9 02

9 D3
Al0 D3

7 04 3s All D4
D5

3s
2

Al3

DS

De 5 EN /

4 07 33 A14
07

20 40 A15/CRUCLK MEMEN

INTl
NMI

D

14
--C INT4/EC- 10

+5 V Vcc p--
15 2110

HOLD IAO/HOLDA
13

CRUIN VSS 3

TMS 9995

U21

7407

MEMENBUF-

R9
820

+5 V

2 SEL EN-

741.808

IA0

HOLDA

U22

12

741914

3

WE

741532

10

13

74L510
741502

DO 12

01 11

741902

3 CRUCLK

FIGURE 4-2. TMS 9995 CONTROL SIGNALS.

4.2.1 System Buses

The four major buses are subdivided by function in Table 4-1. The bus
lines can also be traced by referring to the schematics in Appendix D.

4.2.1.1 Address Bus

The 16-line address bus consists of lines AO through A15/CRUOUT. AO
through A14 are normally used for addressing memory. On-board, the
address lines are routed to the address decoding PROM which selects
onboard memory if the address presented lies within the limits of the
memory map programmed into the PROM.

4-4

4.2.1.2 Data Bus

The data bus consists of eight bidirectional lines which are routed to
and from the TMS 9995, the general-purpose memory sockets, the RAM
sockets, and the prototype area. DO is the most significant bit, and
D7 is the least significant bit.

4.2.1.3 CRU Bus

The three lines in the CRU bus are CRUIN, CRUCLK, and A15/CRUOUT. Also
used by CRU devices are address lines AO to A14, logic zero on data
bus lines DO, D1 and D2, and MEMEN-.

The TMS 9995 performs a CRU operation by putting the CRU address on AO
through A14, logic zero on each of DO-D2, logic one on MEMEN-, and
either strobing in the addressed bit on CRUIN or by supplying the data
bit on A15/CRUOUT and a pulse on WE-/CRUCLK-. (Note that CRUCLK is
obtained by gating WE-/CRUCLK- with MEMEN-.)

4.2.1. Control Bus

A brief explanation of the functions of each control bus signal is
given in Table 4-2.

4-5

TABLE 4-2. TMS 9995 CONTROL BUS SIGNALS.

ACTIVE
SIGNAL STATE GROUP PURPOSE

MEMEN-

DBIN-

WE-

Low & High Memory/CRU Indicates address on address
bus is for memory (MEMEN-=0)
or CRU (MEMEN-=1). Also used
to demultiplex WE-/CRUCLK-
and IAQ/HOLDA.

Low Memory Shows state of TMS 9995 data
bus: low is input to 9995;
high is output.

Low Memory Strobe to memory devices for
writing data to memory. WE-
is obtained by gating WE-/
CRUCLK- with MEMEN-.

READY High Memory/CRU Tells 9995 to finish memory,
CRU, or external instruction
cycle. Wait states are
generated by pulling the line
low.

NOTE: SEE APPENDIX E FOR DETAILS OF THE ABOVE OPERATIONS.

4.2.2 Auxiliary Control Signals

A brief explanation of the function of each auxiliary control signal
is given in Table 4-3.

4-6

TABLE 4-3. TMS 9995 EVM AUXILIARY CONTROL SIGNALS.

ACTIVE
SIGNAL STATE GROUP PURPOSE

INT1- Low Interrupt User defined: requests
interrupt of 9995.

INT4-/EC- Low Interrupt User defined: requests
interrupt of 9995.

HOLD- Low Processor Requests 9995 to give
Activity up control of address

and data buses, WE-/
CRUCLK- and DBIN-.

IAQ High Processor Signifies this memory
Activity cycle to be an instruc-

tion fetch (MEMEM = 0).

HOLDA High Processor Acknowledges that 9995
Activity has given up control of

address and data buses,
WE-/CRUCLK-, and DBIN-
(MEMEN = 1).

4.3 CLOCK OSCILLATOR

The TMS 9995 EVM utilizes the on-chip clock oscillator of the TMS 9995
to generate the system clock signal CLKOUT. A 3 MHz CLKOUT clock is
generated using the 12 MHz fundamental frequency crystal connected to
the TMS 9995. This CLKOUT frequency is the machine state frequency of
the TMS 9995.

4.4 RESET LOGIC

RESET initializes the EVM system and causes the following to occur:

- Clears I/O devices

- Clears single-step logic

- Inhibits memory-write and CRU operations until RESET

4-7

+5 V +5 V

Lin
TMS 9995

R2
4.7K 1222

3
U22 U21

4 5 4

31
33 74LS14 74LS14 7407

T10 v

RESET

R1
R3
820

is released

- Sets TMS 9995 Status Register interrupt mask to 0000 (Binary)

- Gets RESET interrupt vector for the TMS 9995, which activates th
EVMBUG monitor.

- Decides if Auto First Wait State generation will be used or not
(See paragraph 4.9)

RESET is caused by:

- Power-up

- Activating the RESET switch on the EVM

The RESET logic is shown in Figure 4-3.

FIGURE 4-3. TMS 9995 EVM RESET LOGIC.

4-8

4.5 DEVICE SELECT LOGIC

Decoding of addresses to generate select signals for the on-board
memory and CRU devices is accomplished with two 74S188 32x8-bit PROMs,
as shown in Figure 4-4. Table 4-4 lists the TMS 9995 addresses
assigned to each select line.

A5

A4

A3 • 11

10

12
A2

13
Al

14

AO

ADA DO1

ADB D02

ADC D03

ADD D04

ADE D05

DO6
U16

D07

D08

1 SEL7

2 SE L2-j,

3 SE L3

4 SE L4 -j

5 SE L5

6 SE L6

7 SE L7-i

9 SELB

r 3

4
1 5

6 1

7

8 '
9

10 1
1

15
C

+5 V

74S188

U15
2.2K

A5 10

A4 11

A3 12

A2 13

Al 14

U22
AO 1 2

74 LS14

ADA DO1

ADB D02

ADC DO3

ADD DO4

ADE D05

DO6
U14 DO7

D08

1 ML1-

2 SEL2

3 SE L3-,

4 SE L4-,

5 SE L5-/

6 SE L6-1

7 SEL7

9 SE 18-, 15
C

74S188

FIGURE 4-4. DEVICE SELECT LOGIC.

TABLE 4-4. SELECT LINE ADDRESS ASSIGNMENTS.

TMS 9995 PROM
ADDRESS BIT

ASSIGNMENT PATTERN SELECT LINE

0000-03FF ED SEL5/SEL2
0400-07FF DD SEL6/SEL2
0800-OFFF FD SEL2

1000-17FF FB SEL3
1800-37FF F7 SEL4

3800-7FFF BF SEL7
8000-EBFF 7F SEL8

ECOO-EFFF FE SEL1

F000-FFFF FF

4-9

INT-XOP LINK AREA

USjil AP(//

EVMBUG WORKSPAC

COMM. LINK/ASPA WORKSPACE

ADDRESS SPACE
AVAILABLE FOR

EXPANSION.

Z„, IrlyECTORIDECREIRENIERZZ

SCW

ECM

,EM

'FBAS

,05C

FFFA

,FFF

USER RAM

4.6 MEMORY

The TMS 9995 EVM has three general-purpose memory sockets that can be
used for most "by 8" memory devices, i.e., 8K to 64K ROMs/EPROMs, "by
8" RAMs and bipolar PROMs. It also has two sockets for 1Kx4 RAMs.
Memory devices supplied by TI are configured according to the memory
map shown in Figure 4-5.

EVMBUG
FIRMWARE

ADDRESS SPACE
AVAILABLE FOR

EXPANSION.

❑ EPROM

IS3 BOARD RAM

122 ON- CHIP RAM

D

FIGURE 4-5. TMS 9995 EVM SYSTEM MEMORY MAP.

4-10

SEL2-
13

12
11

SE L3-

SE L4- 9

4

74532

10

M
E

M
E

N
S

U
F

., IA
2 w

SEL1-

74S32

74S32

74532

J4 J5 J6

1:203 1F13 1?2?3
+5 V

4.6.1 General-Purpose Memory Sockets.

The general-pqrpose memory sockets (U8, U9, U10) are able to utilize
the many "by 8" memory devices through the personality plugs (U3, U4,
U5) and jumpers Jl - J6. The logic associated with the general-purpose
sockets is shown in Figures 4-6 and 4-7.

RAMSEL-

MEMSEL1-
12

11

0

2
I J1
--0 13

741S32

2
MEMORY DECODE SELECTS MEMSEL2-

J2 •
5 0

741-S32

2 0)
MEMSEL3-

9 J3
10 0

74LS32

4 U17
WAITEN

5

74LS10 WAIT STATE ENABLES

FIGURE 4-6. GENERAL-PURPOSE SOCKET JUMPER LOGIC.

4-11

14 14
15 15

14
15

• 16
10 10 \ A4 16 k A4 16 XA4

17 17 17
\A5 22 A5 22 \A5 3 3

23
• • 19 19

21
4 20 4

21

10
U3

PERSONALITY
PLUG 3

TYPE t e

U5
PERSONALITY

PLUG

U4
PERSONALITY

PLUG

TYPE I

\ DO (19) 17
\ D1 (18) 16
\ D2 (17) 15
\ D3 (16) 14
\ D4 (15) 13
\ 05 (13) 11
\ D6 (12) 10
\ D7 (11) 9

(1)
+5 V E66

(26) 24
114M

= ▪ (27)

TMS 2532 JL-35

08
Q7 A8
06 A7
05 A6

 04 us A
5

03
02 A3
01 A2

AO
VCC VPP

FD FSM
VSS Ala

X

22 (24) A6
23 (25) A7
1 (3) A8
2 (4) A9 I
3 (5) A10

(6) All
(7) Al2
(8) A13
(9) A14
(10 A6
(23

(19) 22

18 (20)

TMS 2516 JL

08
07
06

°5 U9
04 6
03

D7 11) 9 02

+5 V ((2,31

(26) 24 VCC

14) 12 VSS A10

= (27) PD/FaM

22 (24) A6 \ DO (19) 17
23 (25) A7 \ 131 (18) 16
1 (3) A8 172 (17) 15
2 (4) A9 4 \,D3 (16) 14
3 (5) A10 \ D4 (15) 13
4 (6) All 4 D5 (13) 11
5 (7) Alt 1 \D6 (12) 10
6 (9) A13 , \07 (11) 9
7 (9) A14 (1)

A15 1 +5V E.

MN
(14) 12
1
= (27)

22 (24) A6,
23 (25) A7,
1 (3) A84
2 (4) A94
3 (5) A10,
4 (6) All,
5 (7) A124
6 (8) A134
7 (9) A144
8 (10)A15,
21 (23)
20 (22)
19 (21)
18 (20)

U10
4

DO 19) 17
01 16

15
133 :16) 14

\ D4 15) 13
\ D5 13) 11
\ D6 12) 10

A9
A8
A7
A6
A5
A4
A3
A2
Al
AO

VPP
a

8 (10)
21 (23)
20 (22)
19 (21)

8 (20)
(2)

+5 V 5V +5 V
\ A3 24 \ A3 A3 24

2

\A3 • 6

wE

C 13 11 13 11 12

MEMSE L I -

>---
>WE -

>2)

>MEMSEL2

>MEMSEL3 -

Z A

FIGURE 4-7. GENERAL-PURPOSE SOCKETS AND PERSONALITY PLUGS.

Each general-purpose memory socke t has one personality plug and two
jumper plugs associated with it (e.g., general-purpose socket U8:
personality plug U3, and jumpers Jl and J4). The personality plugs
route the appropriate signals to the memory device used.

4-12

A3 6 M • 6
18 \A4 7 18 ‘044 7 18

\A5 a \A5
1 9

H

Jumpers J1, J2 and J3 determine if the MEMSEL signal is to be
generated directly from a SEL signal gated with MEMENBUF-, or if the
MEMSEL signal is to be first gated with SELEN-. (Since MEMSEL is used
to generate the chip select for the memory device, certain RAMs may
require the additional timing information provided by SELEN- to avoid
data bus conflicts.)

Jumpers J4, J5 and J6 provide for either one Wait state or no Wait
states. See paragraph 4.9.

4.6.2 Personality Plugs

The wiring of the personality plugs for most of the more popular "by
8" memory devices is shown in Figure 4-8. Table 4-5 indicates the
jumper connections for these devices.

4-13

DEVICE TYPE: TMS 2532-360

13

14

15

16

17

18

19

20

21

22

23

24

DEVICE TYPE: TMS 2564

12

11

10

9

7

6

5

4

3

2

13

14

15

16

17

18

19

20

21

22

23

DEVICE TYPE: TMS 2508,
TMS 2516,
TBP 2852708

13

14

15

16

17

18

18

20

21

22

23

12

11

10

TYPE VIII

13

14

15

16

17

18

19

20

21

22

23

24

TYPE IX

TYPE I TYPE II TYPE III

DEVICE TYPE: INTEL 2716-1, DEVICE TYPE: INTEL 2732A DEVICE TYPE: INTEL 2764

INTEL 2716-2

13 12 13 12

14 11 14

15 10 15 10

16 16

17 17

18 18

19 6 19

20 5 20

21 21

22 22 3 22

23 • 23

24 • 24

TYPE IV TYPE V TYPE VI

DEVICE TYPE: TMS 4016 DEVICE TYPE: MOSTEK 4801 DEVICE TYPE: TBP 285166

13 12 13

14• ■ 11 14

15 10 15

16• 9 16

17 a 17

la 7 18

19 6 19

20 5 20

21 4 21

22 3 22

23 2 23

24 24

TYPE VII

FIGURE 4-8. PERSONALITY PLUGS.

4-14

DEVICE
PART
NUMBER

TABLE 4-5.

MEMORY
TYPE

JUMPER CONNECTIONS.

JUMPER JUMPER
J1,2,3 J4,5,6

CONNECTION CONNECTION
PERSONALITY
PLUG

TMS 2508 EPROM 1-2 2-3 TYPE I
TMS 2516 EPROM 1-2 2-3 TYPE I
TBP 28S2708 PROM 1-2 1-2 TYPE I
TMS 2532-35 EPROM 2-3 2-3 TYPE II
TMS 2564 EPROM 1-2 2-3 TYPE III
INTEL 2716-1&2 EPROM 1-2 2-3 TYPE IV
INTEL 2732A EPROM 1-2 2-3 TYPE V
INTEL 2764 EPROM 1-2 2-3 TYPE VI
TMS 4016 RAM 2-3 2-3 TYPE VII
MOSTEK 4801 RAM 2-3 1-2 TYPE VIII
TBP 28S166 PROM 1-2 1-2 TYPE IX

4.6.3 Dedicated Read/Write Memory (RAM) Sockets

The dedicated RAM sockets provide 1K bytes of fast, no wait state RAM.
The RAM consists of two 1Kx4 devices in U6 (MS Nybble) and U7 (LS
Nybble). The dedicated RAM logic is shown in Figure 4-9. RAMSEL-
signal generation is shown in Figure 4-6.

4-15

A6 15
A7 16
Ati 17
A9 1
A 0
A 1 3
A 2 4
A 3 7

66
A 5 5

I/O

A9 I/00

0 2

41 u6

AS

 AO

DO
DI

D4
D5
D6
07

A3
A4
A5
A6
A7
AO
A9
A10

Al2
A13
A11
A15

RAMSEL

DO 2
3

D2 t
D3 • 5
GA 6
5/5
D6 0
D7

74L5541

A2 Y2
A3 V3

^A.5
A6 Y6

AB
D1

 YB

Gi

I/0
76L5511

At Y1
Y2

A3 Y3
A4 YO
A5 Y5
Afi Ye
A7 7

tnY' .

RAM L -

A6 15 AA 4
,A7 16
,A8 17 A;
,A9 1

A10 2
 ‚1:

2
\411 3

A 12 4 A3
,A137
,A1 6 :21 U7

A15 5
AO rx

Y7Op2

3

SEL1-

MEPASEL3

FIGURE 4-9. DEDICATED RAM LOGIC.

I/O to the RAM is buffered at Ul and U2 (either by two 74LS540s or by
tw 74LS541s) in such a manner that when RAMSEL and WE- are present at
the buffer, data from the data bus is passed to the RAM through Ul
(input). When RAMSEL and DBIN- are present, data is passed to the data
bus through U2 (output).

Note that DBIN- will be asserted while MEMEN- is low during a read
cycle. In the same manner, WE- will also be asserted while MEMEN- is
low. A chip select will not occur during a write cycle until after WE-
drops. This is to prevent fast RAMs (which sample WE- as soon as they
are selected) from sampling WE- before it goes low during a write
cycle.

4.7 SERIAL COMMUNICATION PORTS

Two serial communication ports are provided on the TMS 9995 EVM. Both
of these ports will support EIA RS232 communication, and one of them
(Port 1) can also optionally support TTY communication.

The logic for the two ports is shown in Figure 4-10. Selection of one
of the two TMS 9902 Asynchronous Communications Controller CRU devices
is by SEL5- or SEL6- (See Figure 4-4.). The CRU address map of the TMS
9995 EVM is shown in Table 4-6.

4-16

• 12
• 11
• 10

+12 V

4

5
75188

I

9902BINT—

3

CLKOUT 16c
SEL6— 17a

CRUIN 14 A10

All 13
Al2

A13
A14

• 8
5

16

RS232RCVA

P12 4
1311

rgt RS232 75189
.6 vv 3,Nc

+12 V An 2

P1- 8

ok—
TTYRCV

i
ii .18

4 0
Tr/

A15/CRUOUT
CRUCLK
CLKOUT

6c
13 11 2

a

+5 V —
75188 2-

TMS 9902

4

p 1 20 4
75189

SO CRUIN
Si

S2 INT
S3

S4
CRUOUT
CRUCLK

if U24
CE
RIN
C'S"

61% XOUT
VCC
VSS FIT't

IP P2 1

11. P27

014 10

.015
CRUCLK 15

6

7c

+5
V 18

9

4-17

GND

TMS 9902

3
SELS - 170

DTRA
NC 5 U26

01 TTYXMT

DCDA

R14
3.3K CTSA RV5
3.3K DSRA
w.

GND

SO CRUIN

INT
S3
S4
CRUOUT
CRUCLK

U23

CF
RIN

DER XOUT

VCC
VSS RTS

9902AINT-

' R11
3.3K

CR I
IN914

GND

R12 56,,,,J .5 W TTYXMTRTN 5. PI 24
F113

—12 V •
33u — TTYRCVRIN

—12 V
• PI 23

• P1 13

AST2907

so P125

• P11

• P17

1 P1.3

• P1-8

lo P15

• PI4

♦A10 14
011 13
,Al2 12

A13

RS232RCV5 2 NC U26

P2 2 4 1
11
.
,03

NC 9 U26

P2.20 4 DTRB
10 ec,

75189

75189
2

5

+5

R16
3.3K

• vo.
R17

CTSB

RS232XMTB

3.3K DSRB

• P2-5

IP P24

IP P2 3

► P241

GND
RS232XMTA

DCDB

2 3?

75188

CRU
ADDRESS (HEX)

TMS 9995 EVM CRU MAP

OUTPUT FUNCTION INPUT

0000
0002
0004
0006
0008
000A
000C
000E

SERIAL I/O
PORT A
(TMS 9902)

RBRO
RBR1
RBR2
RBR3
RBR4
RBR5
RBR6
RBR7

DATA00
DATA° 1
DATAO2
DATAO3
DATAO4
DATAO 5
DATA06
DATAO7

0010 0 DATA° 8
0012 RCVERR DATA° 9
0014 RPER DATA10
0016 ROVER LXDR
0018 RFER LRDR
001A RFDB LDIR
001C RSBD LDDATA
001E RIN TS TMD
0020 RB INT RTS ON
0022 XB INT B RK ON
0026 0 RI ENB
0028 TIMINT XB IENB
002A DSC INT TIMENB
002C RBRL DS CENB
002E XBRE NOT USED
0030 XS RE
0032 TIMERR
0034 TIMELP
0036 RTS
0038 DTR
003A CTS
003C DS CH
003E FLAG NOT USED
003F PORT A INT RESET

0400 SERIAL I/O RBRO DATAO 0
0402 PORT B RBR1 DATA() 1
0404 (TMS 9902) RBR2 DATAO2
0406 RBR3 DATAO3
0408 RBR4 DATAO4
040A RBR5 DATA° 5
040c RBR6 DATAO 6
040E RBR7 DATAO7

TABLE 4-6. CRU ADDRESS MAP (Page 1 of 2) .

4-18

CRU
ADDRESS

TMS 9995 EVM CRU MAP (Continued)

(HEX) FUNCTION INPUT OUTPUT

0410 0 DATA08
0412 RCVERR DATA09
0414 RPER DATA10
0416 ROVER LXDR
0418 RFE R LRDR
041A RFDB LDIR
041C RSBD LDDATA
041E RIN TSTMD
0420 SERIAL I/O RBINT RTSON
0422 PORT B XBINT BRKON
0424 (TMS 9902) 0 RIENB
0426 TIMINT XBIENB
0428 DSCINT TIMENB
042A RBRL DSCENB
042C XBRE NOT USED
042E XSRE
0430 TIMERR
0432 TIMELP
0434 RTS
0436 DTR
0438 CTS
043A DSCH
043C FLAG NOT USED
043E PORT B INT RESET

lEE0 FLAG FLAGO FLAGO
lEE2 REGISTER FLAG1 FLAG1
1EE4 (CRU INPUT PLAG2 FLAG2
lEE6
lEE8

AND OUTPUT) FLAG3
FLAG4

FLAG3
FLAG4

1BEA
lEEC

FLAG5
FLAG6

FLAG5
FLAG6

IEEE
lEFO
lEF2
lEF4
lEF6
lEF8
lEFA
lEFC
lEFE

FLAG7
FLAG8
FLAG9
FLAGA
FLAGB
FLAGC
FLAGD
FLAGE
FLAGF

FLAG7
FLAG8
FLAG9
FLAGA
FLAGB
FLAGC
FLAGD
FLAGE
FLAGF

1FDA MID FLAG MID FLG MID FLG

TABLE 4-6. CRU ADDRESS MAP (Page 2 of 2).

4-19

4.7.1 EIA INTERFACE

Both serial communication ports are capable of supporting EIA
communications. The two EIA links utilize one 75188 line driver and
one 75189 line receiver. In addition to handling receive-data and
transmit-data signals, each TMS 9902 inputs the Data-Terminal-Ready
(DTR) signal from its respective connector. Also, each port provides a
Data Carrier-Detect (DCD) signal for the connector terminal via the
Request-To-Send (RTS) and Clear-To-Send (CTS) signal outputs of each
TMS 9902.

4.7.2 TTY Interface

Port 1 has the additional circuitry to enable it to support TTY
communication. A transistor and 560-ohm resistor form the transmit
loop for the 20-mA current loop, TTY interface. The transistor
conducts current while the line driver connected to its base is at a
mark state. As the line driver goes to the space state, the positive
voltage output is clamped to ground through the signal diode on the
transistor base, thereby turning off the transistor and current loop.
See Figure 4-10.

The receive circuit consists of a line receiver which monitors the
receive loop formed by the TTY transmit circuitry and the two supply
resistors. The values of these resistors is such that during a mark
state, the input to the line receiver is held very close to -12 volts.
When the TTY transmit circuitry cuts the loop, the receiver input is
pulled up to +12 volts.

NOTE: the TTY Jumper J8 must be plugged so that the line receiver can
monitor the loop voltage. Plug one and two for TTY; plug two and three
for EIA. DO NOT connect an EIA terminal when Jumper 8 is plugged for
TTY.

4.8 MEMORY AND CRU ADDRESS MAP CHANGES.

The memory and/or CRU address map can be changed by the user by
substituting user-programmed PROMs for the TI-supplied 74S188s in the
address select decoder sockets (U14 and U16). Unprogrammed 74S188
PROMs are available from your Texas Instruments distributor.

CAUTION

When planning a memory or CRU map, or
when using any device in the
prototyping area (such as a 2148 or
2114), the devices on the 9995 EVM

4-20

+5 V

R3 E3 0-- NC
820 U21 E2

RESET 5I6 J
El 7

7407 AFWS

R4
820
^/y•--+5 V

WAITEN

READY

10 74LS14

NC
PRE

U20

U22
11 10

74LS14 1

13

WN;r111)

U22
9

+5 V

CLK
CLR

13 74LS74
74LS10

CLKOUT

SELEN- U21

12 1 3 12

7407

must not overlap in address space
either with each other or with
devices in the prototyping area.
On-board devices MUST be mapped into
unique locations, and no other
prototyping area devices may respond
to addresses intended for an
originally provided on-board device.

4.9 WAIT STATE LOGIC

The TMS 9995 microcomputer can generate Wait states for off-chip
memory cycles, off-chip CRU cycles, and external instruction cycles.
The TMS 9995 also has an Automatic First Wait State Generation
feature. (See Appendix E or the TMS 9995 Microcomputer Data Manual for
detailed information concerning Wait states)

The TMS 9995 EVM has logic to optionally generate a single Wait state
only for memory cycles. The Wait state can be inserted into all
off-chip memory cycles by invoking the Automatic First Wait State
Generation feature i.e., Jumper J7 connected between posts El and E2.
Optionally, the Wait state can be inserted into a memory cycle to any
of the general-purpose memory sockets (See paragraph 4.6.1). The Wait
state logic of the EVM is shown in Figure 4-11.

FIGURE 4-11. WAIT STATE LOGIC.

4-21

4.10 EXTERNAL INSTRUCTION LOGIC

The external instructions are those which, when executed by the TMS
9995, cause a code to be output on DO-D2 and WE-/CRUCLK- to become
active. The external instructions and a description of their operation
on the EVM are listed in Table 4-7. The external instruction logic is
illustrated in Figure 4-12.

TABLE 4-7. EXTERNAL INSTRUCTIONS.

INSTRUCTION OPCODE DO D1 D2

IDLE 0340 0 1 0

RSET 0360 0 1 1

CKON 03A0 1 0 1

CKOF 03C0 1 1 0

LREX 03E0 1 1 1

DESCRIPTION

Suspend processor until
an interrupt occurs.
Lights the Idle LED.

Zeroes TMS 9995 inter-
rupt mask, generates
pulse for user-defined
logic.

Generates pulse for
user-defined logic.

Generates pulse for
user-defined logic.

Causes NMI- (single-
step function).

4-22

+5 V
74LS138

R8
270

-MAr--

D2 1
A YO NC 0_11_

14 CR2
TI L-220

D1 2 14
NC B Y1

DO 3 13
C Y2 IDLE-

WE-ICRUCLK-
4

0
12 RESET- G2A Y3 O

MEMENBUF-
6

G1 Y4 1-
1

NC D-

Y5 10
0 CKON-

U28 Y6 CKOF- 09

Y7 LREX-
07

G28

FIGURE 4-12. EXTERNAL INSTRUCTION LOGIC.

IDLE causes the TMS 9995 to suspend operation. It is, in essence, a
HALT instruction. A RESET, NMI, or other interrupt terminates the idle
state. When in an idle state, the Idle LED is lit.

The LREX instruction is used by the single-step capability of EVMBUG.
See paragraph 4.11.

4.11 SINGLE-STEP LOGIC

The EVMBUG monitor utilizes the LREX external instruction in
conjunction with the logic shown in Figure 4-13 to perform
single-stepping. LREX causes a non-maskable interrupt (NMI) to be
presented to the TMS 9995 after two Instruction Acquisition or IDLE
pulses. This means that the NMI interrupt occurs after two
instructions are executed following the LREX. EVMBUG uses this to

4-23

3
CLK

EXTNMI-

+5

NC

R10
4.7K

V

RESET-

5 12

13 p

9 2

1,
5

6
-

CLR

U20

PRE

CLR

U27

CLK 0
PRE

CLK

CLR

U27

PRE

6
NC

11 8
NC

3

4 I 74LS74 10 Q 74LS74 4 / 74LS74

IAQ OR IDLE

IDLE

IAQ

2
+5 V -

NMI

LREX

perform single step by executing an LREX, followed by an RTWP to exit
the monitor and return to the user instructions. After one user
instruction is executed, the NMI interrupt is active. NMI then traps
back to the monitor.

74LSO2

FIGURE 4-13. SINGLE-STEP LOGIC.

4.12 PROTOTYPE AREA

Capabilities of the TMS 9995 EVM may be expanded by means of the
prototype area, which provides room for breadboarding of TMS 9995
systems. Most of the signals previously discussed are provided at the
edge of the prototyping area for this purpose.

Two plugs, P4 and P5, located at the right side of the prototype area
on either side of the power bus plug, permit the expansion of
prototype capabilities off the EVM board. Off-board devices are
connected to the EVM by means of a wrap-post header ribbon cable.

4-24

SECTION 5

EVMBUG INTERACTIVE DEBUG MONITOR

5.1 GENERAL

This section provides a description of the commands and subroutines
available in the TMS 9995 EVM Debug Monitor (EVMBUG), including syntax
conventions user-accessible utilities, and EVMBUG error messages.

EVMBUG is a debug monitor which provides an interactive interface
between the user and the TMS 9995 microcomputer. It is supplied by the
factory contained in one 2532-35 and one 2516 EPROM.

Initialization of the EVM Debug Monitor is described in Section 3.

5.2 USER MEMORY

The memory provided in the TMS 9995 microcomputer consists of RAM
(read/write memory) and ROM (read only memory). The RAM is for user
programs, while the ROM contains the monitor and assembly programs.
The monitor program provides keyboard commands, I/O programs, and
other user utilities.

Figure 5-1 shows the memory map for the TMS 9995. Interrupt and XOP
instructions extend from >0000 to >007F. EVMBUG monitor workspaces
extend from >0080 to >1800. If the assembler is used, the symbol table
begins at >EC64. Four bytes are used for each label; the number of
labels that are used will determine the beginning address for user
RAM. As an example, if 50 labels are used, 200 bytes will be needed
for for the label table. The end of the label table will be >EC64 +
>C8 (>ED3C). Note that 200 = >C8. Therefore, the start of the
permissible user RAM in this case would be >ED3C.

NOTE: >FOFC thru >FOFF of the address space is available for
expansion.

5-1

>0000

>Iwo

FIRMWARE

EPROM

Eg BOARD RAM

1772 UP RAM

AIJUti C.,• *rm..=

AVAILABLE FOR
EXPANSION.

1161. EVMBUG WORKSPACE 1.163

COMM. LINK/ASM WORKSPACE MI
Ilk COMM. LINK/ASM RAM IIIMI

SYMBOL TABLE

......,

\ilk

USER RAM

616h.
r A0111:11r A
I ird PrA I rA r INT-XOP LINK AREA Ar Ai

ADDRESS SPACE
AVAILABLE FOR

EXPANSION.
>FFFA

>FFFF
to/r111MrVECTOiR/D—ECREMENTER/Z • — — •

FIGURE 5-1. SYSTEM MEMORY MAP.

5-2

>ECOO

>EC64

›M

>F

>FOA

FOK

5.3 EVMBUG COMMANDS

The EVMBUG commands are described in subsequent paragraphs. Table 5-1
summarizes these commands. Table 5-2 presents the syntax conventions
used in command definitions.

TABLE 5-1. EVMBUG COMMANDS

SEE
SECTION

INPUT: NUMBER: RESULTS:

IM 5.3.9 Inspect/Change Memory
DM 5.3.3 Dump Memory
IW 5.3.13 Inspect/Change User Workspace

Registers
EX 5.3.5 Execute User Program
EX 5.3.1 Execute User Prog. To Breakpoint
SS 5.3.11 Execute Single Step
LM 5.3.8 Load Memory From Digital Cassette

(ASR 733)
DM 5.3.4 Dump Memory to Digital Cassette

(ASR 733)
IC 5.3.1 Inspect/Change CRU
IR 5.3.10 Inspect/Change Hardware Register

(PC, WP, ST)
FD 5.3.6 Find Data In Memory (Byte/Word)
HE 5.3.7 Hex Arithmetic
TN 5.3.12 Toggle Null Flag (For ASR 733)
XA 5.3.14.2 Execute Assembler With Existing

Symbol Table
XA 5.3.14.1 Execute Assembler With New Symbol

Table
XR 5.3.14.3 Execute Reverse Assembler
XC 5.3.14.4 Execute Communications Link

5-3

TABLE 5-2. COMMAND SYNTAX CONVENTIONS.

CONVENTION
SYMBOL EXPLANATION

WP Current User Workspace Pointer contents
PC Current User Program Counter contents
ST Current User Status Register contents

caps Other items in capitol letters are to be
entered literally

< > Items to be supplied by the user. The term
within the angle brackets is a generic term

[Optional item. May be included or omitted at
the user's discretion.

{ } One of several optional items shown inside
the brackets must be chosen.

(CR) Carriage Return
A Space Bar

(LF) Line Feed
RO,R1..R15 Registers zero to fifteen

NOTE

Except where otherwise indicated, all numeric
output is assumed to be hexadecimal; the last four
digits input will be the value used. Thus, a
mistaken numerical input can be corrected merely
by making the last four digits the correct value.
If fewer than four digits are input, they are
right-justified.

5-4

5.3.1 Execute Under Breakpoint (EXB)

SYNTAX:
EXB[{",1<address>]<(CR)>

This command is used to execute instructions up to the specified
stopping address. When the stopping address is reached, WP, PC, and ST
register contents are displayed and control is returned to the monitor
command scanner. Program execution begins at the address in the PC
(set by using the IR command). Execution terminates at the address
specified in the EXB command, and a banner is output showing the
contents of the hardware WP, PC, and ST registers, in that order.

The address specified must be in RAM and must be the address of an
instruction. The breakpoint is controlled by a software interrupt, XOP
15.

An XOP instruction takes the place of the instruction at the address
specified. When this replacement is executed, the original instruction
assumes its original place. If the XOP is not executed, or another EXB
is specified before the XOP is executed, then .the XOP will not be
replaced with the original instruction or will be replaced with the
wrong instruction.

If no address is specified, the EXB command defaults to an EX command,
where execution continues with no halting point specified.

EXAMPLE: EVMBUG R1.0
MON'? IR

W=EC16
P=02E2 ED10
MON? EXB ED30
BP EC16 ED30 C600
MON?

5.3.2 Inspect/Change CRU (IC)

SYNTAX:
ICI"‘,1<CRU address>1%1<count><(cR)>

This command reads the number of bits specified by "count", beginning
at the specified CRU address, and displays them, right-justified, in a

5-5

16-bit hexadecimal number. Up to 16 CRU bits may be displayed. "CRT1
address" is a 16-bit number stored in register twelve. (See Append?
F.)

The corresponding CRU output bits may be altered following input bit
display by keying in desired hexadecimal data, right-justified.

A carriage return following data output forces a return to the command
scanner. A minus sign (-) or a space reads and displays the data
again.

Note well: the effective software CRU address is double the hardware
CRU bit address. This is demonstrated in Fig. 5-2, in which >100 is
specified in the command in order to display values beginning with CRU
bit >80.

?IC 100,7
0100=007F

VALUE DISPLAYED

1 4 1 5
I9

10 1 11 1 12 1 13 14'15

>007F

ZERO FILLED 80 CRU BIT
81
82
83
84
85
86

 7 BITS
REQUESTED

FIGURE 5-2. CRU BITS INSPECTED BY IC COMMAND.

EXAMPLES:

(1) Examine eight Port 2 CRU input bits. CRU address is >400.

EVMDUO R1.0
MOW IC 400,8
0400=007F
MOW?

5-6

(2) Check changes in the CRU Port 1 input buffer which result from
typing commands on the terminal.

EVMBUG 81.0
MON? IC 074
0000=000D
0000=0000
0000=000D
0000=0000
MON?

(3) Check the contents of the TMS 9995 Flag Register (Flag 0-15)

EVMBUG R1.0
MON? IC 1EE0
1EE0=7FE0

(4) Using the CRU, configure the TMS 9995 Decrementer as an Event
Counter and start decrementing.

•t
EVMBUG
MON'? IC 'EEO
lEE0=7FE0
1EE0=0003
MOW,

(5) Check the contents of the MID Flag register on the TMS 9995

EVMBUG 81.0
MON? IC 1FDA
1FDA=FFFE
MOW,

5.3.3 Dump Memory (DM)

SYNTAX:
DM [<start address>[{^,}<stop address>]]

Memory is displayed, beginning and ending at the <start address> and
<stop address> respectively, if specified. Each line of output begins
with the address of the first memory word displayed on the line. Eight

5-7

memory words follow on each line.

If no addresses are given, EVMBUG displays the contents of location
>0000 and then returns control to EVMBUG.

If a <start address> is supplied, but no <stop address>, all memory
locations from the <start address> to the end of memory will be output
on the terminal before control returns to EVMBUG.

Supplying both a start and a <stop address> will cause a memory dump
from the <start address> through the <stop address>.

Memory dump can be terminated at any time by typing any character on
the keyboard.

EXAMPLE:

EVMBUG R1.4 •
MON? DM ED20, ED30
ED20=0588 10F9. 2F20 EE38 -04C1 2EC3 06C3 0283
ED30=0020
MON?

5.3.4 Dump Memory To Digital Cassette/Paper Tape (DMC)

SYNTAX:
DMC{",}<start address>{A,}<stop address>{A,}<entry address>{"‘,}

This command causes computer memory to be copied to digital cassette
or paper tape. The memory image is stored in non-relocatable 990
object format. Object record format is explained in Appendix A. The
block of memory stored begins at <start address> and ends at <stop
address>. The <entry address> parameter is for use by the "LMC"
command to initialize the program counter when the memory block is
restored from cassette or paper tape to computer memory. Once these
parameters are entered, the monitor will display the letters "IDT."
The user then enters an IDT (program identifier) of up to eight
characters FOLLOWED BY A SPACE OR CARRIAGE RETURN.

 MONITOR PROMPT

V
IDT=<program name[]<(CR)>>

5-8

NOTE

Termination given after IDT is a space bar or
carriage return. Some other termination will
cause the instruction to function incorrectly.

After the IDT prompt is answered, the monitor will display the prompt
"READY Y/N". When you have readied the cassette or paper tape punch,
enter "Y".

MONITOR PROMPT

V
READY Y/N <Y>

EXAMPLE: Dump To Cassette:

The terminal is assumed to be a Texas Instruments 733 ASR or
equivalent. The terminal must have automatic device control (ADC);
this means that the terminal recognizes the four tape control
characters DC1, DC2, DC3, and DC4.

The following procedure is carried out prior to answering the "READY
Y/N" query:

(1) Load a cassette in the left (Cassette 1) transport
(Figure 5-3).

(2) Place the transport in RECORD mode.

(3) Rewind the cassette.

(4) Load the cassette. If the cassette does not load, it
may be write protected. The write protect hole is on
the bottom right side of the cassette (Figure 5-4).
Cover it with the tab provided with the cassette,
then repeat Steps 1 through 4.

(5) The KEYBOARD, PLAYBACK, RECORD, and PRINTER LOCAL/OFF/
LINE switches must be in the LINE position.

5-9

(A) (B)

CASSETTE
TRANSPORT
DOOR

CAPSTAN

TAPE SIDE UP

WRITE TABS (ON BOTTOM)

REEL ROTOR

TAPE SIDE UP

CAPSTAN

REEL ROTOR

PUSH

CASSETTE TRANSPORT
DOOR FORWARD TO
CLOSE.

CASSETTE RETAINERS

(6) Place the TAPE FORMAT switch in the LINE position.

(7) Answer the "READY Y/N" query with a 'V.; the "Y" will
echo.

FIGURE 5-3. LOAD TAPE CASSETTE.

5-10

oft— TAPE SIDE UP

SIDE 1

WRITE TAB FOR SIDE 1 111)/P I

FIGURE 5-4 TAPE WRITE PROTECT TABS.

EXAMPLE: Dump To Paper Tape:

The terminal is assumed to be an ASR 33 teletypewriter. The following
steps should be completed carefully to avoid punching stray
characters:

(1) Enter the command:

DMC<start address>{A,}<stop address>{",}<entry address>
{ ,}IDT=<name>{A,}READY Y/N<Y>

Do not answer the "READY Y/N" query yet.

(2) Change the teletype mode from ON LINE to LOCAL.

(3) Turn on the paper tape punch and press the RUBOUT
the several times, placing rubouts at the beginning
of key tape for correct-reading/program loading.

(4) Turn off the paper tape punch, and reset the teletype
mode to LINE. (This is necessary to prevent punching

5-11

WRITE TAB FOR SIDE 2

stray characters.)

(5) Turn on the punch and answer the "READY Y/N" query
with 'Y'. The Y will not be echoed.

(6) Punching will begin. Each file is followed by sixty
rubout characters. When these characters appear
(identified the constant punching of all holes),
the punch must be turned off.

5.3.5 Execute Command (EX)

SYNTAX:
EX(CR)

The EX command causes task execution to begin at current values in the
Workspace Pointer and Program Counter.

5.3.6 Find Data Command (FD)

SYNTAX: FDI
A,1<start address>{^,}<stop address>{^,}<value>

The contents of memory locations from <start address> to <stop
address> are compared to <value>. The memory addresses whose contents
equal "value" are printed out.

If the termination character of <value> is a minus sign, the search
will print the addresses of all bytes from <start address> to <stop
address> whose contents are the rightmost byte in <value>. If the
termination character is a carriage return (CR), then the search will
print the addresses of all words from <start address> to <stop
address> whose contents are <value>.

EXAMPLE:

MON? FD E00,EFO 400
0E40
0E74

5-12

OR MON? FD E00,EFO 4-
0E01
0E12
0E30
0E32
0E40
0E5A
OE5C
0E74
OEBC
OEC6
OED2.
0E06
OEEC
MON?

5.3.7 Hexadecimal Arithmetic (HEX)

SYNTAX: HEXI
A,1<number 1>I A,knumber 2><(CR)>

The sum and difference of two hexadecimal numbers are output.

EXAMPLE:

EVMBUG R1.0
MON? HEX 200,100
H1+H2=0300 H1-H2=0100
MON?

5.3.8 Load Memory From Cassette Or Paper Tape (LMC)

SYNTAX:
LMCV',1<bias><(CR)>

Data in 990 object record format (defined in Appendix A) is loaded
from paper tape or cassette into memory. <Bias> is the relocation bias
(starting address in RAM). Its default is >0. Object code saved using
the DMC command, however, is invariably restored using the relocation
bias <starting address> specified for that command. Both relocatable
and absolute data may be loaded into memory with the LMC command.
After data is loaded, the module identifier (See Tag 0 in Appendix A)
is printed on the next line.

5-13

LOAD FROM CASSETTE: (ASR 733):

The 733 ASR must be equipped with Automatic Device Control (ADC). The
following procedure is carried out prior to executing the LMC command:

(1) Insert the cassette in one of the two transports on
733 ASR.

(2) Place the transport in the PLAYBACK mode.

(3) Rewind the cassette.

(4) Load the cassette.

(5) Set the KEYBOARD, PLAYBACK, RECORD, and PRINTER
LOCAL/LINE switches to LINE.

(6) Set the TAPE FORMAT switch to LINE. Loading will be at
1200 baud.

(7) Execute the LMC command: LMCI A,1<(CR)>

LOAD FROM PAPER TAPE: (733 teletype)

Prior to executing the LMC command, place the paper tape in the Reader
and position the tape so the reader mechanism is in the Null field
ahead of the file to be loaded. Enter the load command. If the 733ASR
has ADC, the reader will begin to read from the tape. If the 733ASR
does not have ADC, turn on the reader, and loading will begin.

Each file is terminated with 60 rubouts. When the Reader reaches this
area of the tape, turn it off. The loader will then pass control to
the command scanner.

The User Program Counter (P) is loaded with the entry address if a
1-tag or a 2-tag is found on the tape.

5-14

EXAMPLE:

EVMPUG R1.0
MOM? LMC ED00
READY Y/N
TEST
MOM?

5.3.9 Inspect/Change Memory (IM)

SYNTAX; IMI'',1<start address><(CR)>

Memory Inspect/Change "opens" a memory location, displays it, and
gives the option of changing the data in the location. The
Inspect/Change memory address directs a display of memory contents
from the <start address> each time the space bar is pressed. Each line
of output consis of the address of the data word followed by the data
word itself. A termination character causes the following:

(1) If a carriage return, control is returned to the command
scanner.

(2) If a space, the next memory location is opened and
and displayed.

(3) If a minus sign (-), the previous location is opened and
displayed.

If a hexadecimal value is entered before the termination character,
the displayed memory location is updated to the value entered.

EXAMPLES:

EVMBUG R1.0
MON? IM EDOO
ED00=02E0
ED02=EEA4
EDO4=0200
ED06=000A
MON?

5-15

5.3.10 Inspect/Change User WP, PC, and ST (Hardware) Registers: (IR)

SYNTAX:
IR<(CR)>

The user Workspace Pointer (WP), Program Counter (PC), and Status
Register (ST) are inspected and changed with the IR command. The
output letters WP, PC, and ST identify the values of the three
principal hardware registers passed to the TMS 9995 microcomputer when
an EXB, EX, or SS command is entered. WP points to the workspace
register area, PC points to the next instruction to be executed, and
ST is the Status Register contents.

The termination character causes the following:

• A carriage return causes control to return to the
command scanner.

• A space causes the next register to be opened.

Order of display is: WP, PC, ST.

EXAMPLES:

(1)

EVMBUG R1.0
MON? IR

W=EC16 100
P=02E2 DOO
MON?

(2)

EVMBUG R1.0-
MON' IR

W=EC16
P=0 2E2
S=D600
MON?

5-16

5.3.11 Execute In Single Step Mode: (SS)

SYNTAX:
SS<(CR)>

This command executes one instruction, then returns control to the
monitor.

Each time the SS command is entered, a single instruction is executed
at the address in the Program Counter, then the contents of the
Program Counter, Workspace Pointer, and Status Regiser (after
execution) are printed out. Successive instructions can be executed by
repeated SS commands.

EXAMPLE: EVMBUG R1.0
MON? IR

W=FOCA
P=FOEC ED00
S=2201
MON? SS EDB6 ED04 2201
MON? SS EDB6 EGOS 0201
MON- SS EDB6 EDOA C201
MON? SS EDB6 EDOC C201
MON? SS
MON?

EDB6 ED10 0601

NOTE

Incorrect results are obtained when the
SS instruction causes execution of an
XOP instruction in a user program. (SEE
Appendix E.) To avoid these problems,
the EXB command should be used to
execute any XOP's in a process, instead
of the SS command.

5.3.12 Toggle Null Flag: (TNF)

SYNTAX:
TNF

The TNF command is used to alert EVMBUG that the terminal being used
is a 1200 baud terminal which is not a Texas Instruments" 733 ASR
(e.g., a 1200 baud CRT). To revoke the TNF command, enter it again.

5-17

USE:

TNF is used only when operating with a true 1200 baud peripheral
device. TNF is NEVER used when operating at other baud rates.

In EVMBUG, the baud rate is set by measuring the width of the
character 'A' input from a terminal. When an 'A' of 1200 baud width is
measured, EVMBUG is set up to automatically insert three nulls for
every character output to the terminal. These nulls are inserted to
allow correct operation of the TMS9995 with Texas Instruments' 733ASR
data terminals.

5.3.13 Inspect/Change User Workspace Registers: (IWR)

SYNTAX:
IWR{A ,}[<register number>]<(CR)>

The IWR command is used to display the contents of all workspace
registers or to display one register at a time, while allowing the
user to change the register contents. The workspace begins at the
address in the workspace pointer.

The IWR command, followed by a carriage return, causes the contents of
the entire workspace to be printed. Control is then passed to the
command scanner.

The IWR command followed by a register number in hexadecimal and a
carriage return, causes display of the specified register's contents.
The user may then enter a new value into the register by entering a
hexadecimal value. The following are valid termination characters,
whether or not a new value is entered:

• A space causes display of the next register.

• A minus sign causes display of the previous register.

• A carriage return gives control to the command scanner.

5-18

EXAMPLES:

(1)

EVMBUG R1.0
MuN-) IWR

R0=0000 R1=0000 R2=0AF5 R3=0000 R4=4AE9 R5=OAOO R6=0006 R7=ECOE
R8=0001 R9=0142 RA=4AE9 RB=04AC RC=0000 RD=ECOO RE=0E7A RF=9000
MON?

(2) EVMBUG R1.0
MuN', IWR 2
F2=EC6 :3456
R3=02E2 100
R4=CA01
RS=EC3:3 800F
R6=02A3 0
MON?

5.3.14 Assembler Commands: (XA, XAE, XRA, XCL)

5.3.14.1 Execute Assembler With New Symbol Table: (XA)

SYNTAX:
XA1 A,1<assembly address><(CR)>

The XA command clears the existing symbol table and allows the user to
establish a new symbol table.

MON? XA ED00
ED00

5.3.14.2 Execute Assembler With Existing Symobl Table: (XA)

SYNTAX; XAW,1<assembly address><(CR)>

5-19

The XAE command assembles using the existing symbol table.

EVMB►_IC R1.0
Murr, XAE EDOO
Eli0o

5.3.14.3 Execute Reverse Assembler: (XRA)

SYNTAX:
XRW,1<start address>{A,}<end address><(CR)>

This command allows the EVM user to inspect any memory location and
see the menemonic representation of its contents. The program
effectively recreates a source listing from the object code stored in
memory by printing the memory address, memory data, instruction
mnemonic, and operands.

EVMBUG R1.0
MON! XRA EDOO ED04
EDOO F6BB SOCB *R11+,R10
EDO2 9AA3 CB @>02A3(R3),@>FD7D(R10)
MON!

5.3.14.4 Execute Communications Link: (XCL)

SYNTAX:
XCL<(CR)>

5.4 USER-ACCESSIBLE UTILITIES

EVMBUG contains seven utility subroutines that perform I/O functions
as listed in Table 5-3, below. These subroutines are called through
the XOP assembly language instruction. This instruction is covered in
detail in Appendix F. Locations for XOPs 8 through 14 contain vectors
for utilities that drive the TMS 9995 terminal. XOP 15 is used by the
monitor for the breakpoint facility.

5-20

TABLE 5-3. USER-ACCESSIBLE UTILITIES

XOP FUNCTION

8 Write One Hexadecimal Character
9 Read Hexadecimal Word From Terminal
10 Write 4 Hexadecimal Characters To Terminal
11 Echo Character
12 Write 1 Character To Terminal
13 Read 1 Character From Terminal
14 Write Message To Terminal

(All characters are in ASCII Code.)

NOTES

(1) Initially, EVMBUG will conduct I/O through the TMS 9902
connected to Connector P1. In this mode, >0000 is in
EVMBUG's R12, located at memory address >EC2E. To
change this configuration, change the contents of >EC2E
before executing the I/O XOP. For example, to use the
the auxiliary TMS 9902 at P2, change the contents of
location >EC2E to >0400. CRU programming is discussed
in paragraph 8.5 of Section 8.

(2) The write character XOP (XOP 12) activates the REQUEST
TO SEND signal of the TMS 9902. This signal is never
deactivated by EVMBUG, so that modems may be used.

(3) Most of the XOP format examples herein use a register
for the source address; however, all XOP's cab also use
a symbolic memory address or any of the addressing
forms available for the XOP instruction.

5.4.1 Write One Hexadecimal Character to Terminal (XOP8)

FORMAT:
XOP Rn,8

The least significant four bits of user register Rn are converted to
their ASCII coded hexadecimal equivalent (0 to F) and output on the
terminal. Control returns to the instruction following the extended
operation.

5-21

A.L. XOP

0

R5.8

2 3 4

SEND 4 LSB'S OF R5 TO TERMINAL

5 6 8 9 10 11 12 13
M.L. 0 0 1 0 1 1 1 0 0 0 0 0 0 1

14 15

0 1 >2E05

EXAMPLE:

Assume user register 5 contains >203C. The assembly language (A.L.)
and machine language (M.L.) are shown below:

Terminal Output: C

5.4.2 Read Hexadecimal Word From Terminal (XOP9)

FORMAT:
XOP Rn,9
DATA NULL Address of continued execu-

tion, if NULL is entered.
DATA ERROR Address of continued execu-

tion, if non-hex number
is entered.

(NEXT INSTRUCTION) Execution continued here,
invalid hex number and
terminator are entered.

Binary representation of the last four hexadecimal digits input from
the terminal is accumulated in user register Rn. (More than four
digits may be input, but only the last four are used.) The termination
character is returned in register Rn+l. Valid termination characters
are: space, minus, comma, and a carriage return. Return to the calling
task as follows:

• If a valid termination character is the only output,
return is to the memory address contained in the next
word following the XOP instruction (NULL, above).

• If a non-hex character or an invalid termination charact
is input, control returns to the memory address contained
in the second word following the XOP instruction (ERROR,
above).

• If a hex string followed by a valid termination characte
is input, control returns to the word following the DATA
ERROR statement above.

EXAMPLE:

5-22

If the valid hexadecimal character string 12C is input from the
terminal, followed by a carriage return, control returns to memory
address >FFB6, with register 6 containing >012C, and register 7
containing >OD.

If the hex character string 12C is input from the terminal, followed
by an ASCII plus (+) sign, control returns to location >FFC6.
Registers 6 and 7 are returned to the calling program without being
altered. "+" is an invalid termination character.

If the only input form the terminal is a carriage return, register 6
is returned unaltered, while register 7 contains >ODOO. Control is
returned to address >FFCO.

5.4.3 Write Four Hexadecimal Characters To Terminal (X0P10)

FORMAT:
XOP Rn, 10

The four digit hexadecimal representation of the contents of user
register Rn is output to the terminal. Control returns to the
instruction following the XOP call.

EXAMPLE:

Assume register 1 contains >2C46

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15
M.L. 0 0 1 0 1 1 1 0 1 0 0 0 0 0 0 1 >2E81

Terminal Output: 2C46

5.4.4 Echo Character (XOP 11)

FORMAT:
XOP Rn,11

This is a combination of XOPs 13 (READ character) and 12(WRITE
character). A character in ASCII code is read from the terminal,
placed in the left byte of Rn, then echoed back to the terminal.

5-23

Control returns to the instruction following the XOP after a character
is read and written. By using a code to determine a character string
termination, a series of characters can be echoed and stored at a
particular address:

CLR R2 Clear R2
LI R1,>FE00 Set Storage Address

LOOP XOP R2,11 Echo, Using R2
CI R2,>0D00 Was Character a CR?
JEQ EXIT Yes, Exit Routine
MOVB R2,*R1+ No, Move Character to Stg
JMP LOOP Repeat XOP

EXIT NOP

5.4.5 Write One Character To Terminal (XOP12)

FORMAT:
XOP Rn,12

The ASCII character in the left byte of user register Rn is output to
the terminal. The right byte of Rn is ignored. Control is returned to
the instruction following the call.

5.4.6 Read One Character From Terminal (XOP 13)

FORMAT:
XOP Rn,13

The ASCII representation of the character input from the terminal is
placed in the left byte of user register Rn. The right byte of
register Rn is zeroed. When this utility is called, control is
returned to the first instruction following the call only after a
character is input.

5.4.7 Write Message To Terminal (XOP14)

FORMAT:
XOP @MESSAGE,14

MESSAGE is the symbolic address of the first character of the ASCII

5-24

character string to be output. The string must be terminated with a
byte containing_ binary zeroes. After the character string is output,
control is returned to the first instruction following the call.

Assuming the following program:

MEMORY
ADDRESS OP CODE A.L. MNIMONIC
(HEX)

ED00 2FAO
ED02 EDEO
EDO4

ED00 5445
EDE2 5354
EDE4 00

XOP>ED00,14

TEXT 'TEST'

BYTE 0

During the execution of this XOP, the character string "TEST" is
output on the terminal, and control is then returned to the
instruction at location >ED04. TEXT is an assembler directive to
transcribe characters into ASCII code.

5 5 EVMBUG ERROR MESSAGES

Several error messages have been provided in the EVMBUG monitor to
alert the user to incorrect operation. In the event of an error, the
word 'ERROR' is output, followed by a single digit indicating the
error condition.

Table 5-4 outlines the possible error conditions.

5-25

TABLE 5-4. EVMBUG ERROR MESSAGES.

ERROR CONDITION

0 Invalid tag detected by the loader

Checksum error detected by loader

2 Invalid termination character detected

3 Null input field detected by dump routine

4 Invalid command entered

NOTES

ERRORS 0/1: The program load process is terminated.

If the program is being input from a 733ASR, possible
causes of the error are a faulty cassette tape or dirty
Read heads in the tape transport.

If the terminal device is an ASR33, chaf may be caught
in a punched hole in the paper tape.

TO CORRECT: In either case, repeat the load procedure.

ERROR 2: Invalid Termination Character. Command is terminated

TO CORRECT: Reissue the command and parameters with a
Valid termination character.

ERROR 3: Incorrect Input To Dump Command. Dump command is
terminated.

User either input a null field for start address, stop
address, or the entry address to the dump routine.

Ending address is less than the beginning address.

TO CORRECT: Reissue the dump command and input all
necessary parameters.

ERROR 4: Self explanatory.

TO CORRECT: Enter a valid command

5-26

SECTION 6

SYMBOLIC ASSEMBLER

6.1 GENERAL

This section describes the function of the TMS 9995 EVM symbolic
assembler. Also described are directions for formatting instructions
and operating the assembler.

An assembler is a program that interprets assembly language source
statements into object code. Assembler-directive commands allow the
programmer to generate data words and values based on specific
conditions at assembly time.

The TMS 9995 EVM Assembler is a one-pass symbolic line assembler
designed to permit the use of comments and labels. It assembles the
instructions of the TMS 9995 as well as the pseudo instruction NOP
(which assembles as the instruction JMP $+2, and acts as a "no
operation" or "go to next instruction"), and the following asssembler
directives:

- AORG: Absolute Origin Statement (absolute start locationl'

- BSS: Block of memory reserved with starting symbol

- DATA: Sixteen bits of immediate data

- END: End of program, exit to monitor

- EQU: Symbol equated to value in operand

- TEXT: String of ASCII coded characters

The assembler program is contained in EPROM, along with the rest of
the EVM firmware.

6-1

LOCATION COUNTER (HEXADECIMAL)

ASSEMBLED OBJECT CODE (HEXADECIMAL)

LABEL FIELD

OP CODE FIELD

OPERAND FIELD

COMMENT FIELD

FE24 2F20 EC XOP @LF, 12 DO LINE-FEED, OR

FE26 FF34

FE28 04C1 CLR R1 CLEAR ACCUMMULATOR

FE2A 2E03 XOP R3,11 ECHO CHAR., PLACE IT IN R3

F E2C 06C3 SWAPS R3 PLACE VALUE IN RIGHT BYTE

FE2E 0283

* WAS SPACE, CR, ESCAPE OR CONTROL-H PRESSED?

CI R3, >0020 SPACE BAR PRESSED?

FE30 0020

FE32 1311 JEQ CO YES, COMPARE VALUES

FE34 0283 CI R3, >0000 CARRIAGE RET. PRESSED?

FIGURE 6-1. SAMPLE ASSEMBLER LISTING.

6-2

6.2. TMS 9995 SYMBOLIC ASSEMBLER LISTING

6.2.1 Listing Format

The format of the listing produced by the TMS 9995 is detailed in
Figure 6-1. The elements of this listing are discussed in subsequent
paragraphs.

6.2.1.1 Location Counter

This is the hexadecimal number showing the location of assembled
object code.

Essentially, the value of the location counter is the address of the
corresponding object code after a program has been loaded into memory.
For example, in figure 6-1, the object code at memory address (MA)
>FE24 is >2F20; M.A. FE26 will contain the address of the location
with a label of LF when (and if) that label is defined.

6.2.1.2 Assembled Object Code

This column contains the resulting object code in hexadecimal after
the source statement has been assembled.

6.2.1.3 Label Field

The two-character field contains an alphanumeric label that identifies
the location of the source statement.

6.2.1.4 OP Code Field

This four-character field contains assembly language operaton code
mnemonics. It is separated from the label field and operand field by
one space.

6.2.1.5 Operand Field

This field contains the operands of the instruction. This field is
separated from the OP code and comment fields by one space.

6-3

6.2.1.6 Comment Field

•
Comments are placed in the listing by the user to assist in the
understanding of the instruction or the data flow. The comment field
begins one space to the right of the operand field.

6.3 LABELS AND COMMENTS

Labels may consist of one or two characters. The first character must
be alphabetic (but not an 'R') and a second character must be
alphanumeric. Labels may be used either as resolved (previously
defined) or unresolved (to be defined in upcoming assembly statements)
references. Labels may defined by entering them in the Label Field of
an assembler statement. Labels used as symbolic references in an
instruction that will accept both symbolic and register operands must
have an (@) sign preceeding them.

Comments can be a part of the source statement. The comment field may
include any printable character and is concluded by a return. A
comment line is indicated by an asterisk (*) in column one.

6.3.1 Use Dollar Sign To Indicate "At This Location"

Use the dollar ($) sign to indicate a current value of the location
counter (the location counter contains the next address at which
object will be loaded). If the location counter contains a value of
>EDOO, then the following comments apply as shown in the following
statements:

ED00 D1 EQU $
ED00 • D1 VALUE = LOCATION COUNTER VALUE: >ED00
ED00 El EQU $+4
ED00 • El VALUE = LOCATION COUNTER + 4 = >ED04
ED00 Fl EQU Dl
ED00 • Fl AND D1 HAVE SAME VALUE = >ED00
ED00 0207 LI R7,$ >ED00 TO R7
ED02 ED00
ED04 0208 LI R8,D1 >ED00 TO R8
ED06 ED00
ED08 0209 LI R9,$+2 >EDOA TO R9

6-4

EDOA EDOA
EDOC 020A LI R10 - E1 >ED04 TO R10
EDOE ED04
ED10

NOTE
In EQU (equate) directives, labels must be
equated to either absolute values or defined
labels.

6.3.2 Expressions

Expressions contain addition or subtraction functions. For example:

ED00
ED00
ED00

Al EQU >200

B1 EQU Al+8
Al VALUE = >200

ED00 Bl = Al + 8 = >208
ED00 Cl EQU Al
ED00 Cl = Al VALUE = >200
ED00 0200 LI RO,A1 >200 TO RO
ED02 0200
ED04 0201 LI R1,A1+4 >204 TO R1
ED06 0204
ED08 0202 LI R2,A1+Cl >400 TO R2
EDOA 0400
EDOC 0203 LI R3,Al+Bl+Cl >608 TO R3
EDOE 0608
ED10 0204 LI R4,A1-B1 >FFF8 TO R4
ED12 FFF8
ED14

6.3.3 Cancel Source Statement Being Input

If it is desired to cancel a source statement while in the process of
entering it from the keyboard, press the <ESC> key. The current
location counter contents will be displayed, waiting for new input.
This escape MUST be executed prior to entering a return after the
source statement.

6.3.4 Translate Characters Into ASCII Code Using Single Quotes

If it is desired to translate alphabetical or numerical keyboard
values in ASCII code, enclose the characters in single quotes. This is
the normal procedure for the TEXT assembler directive (paragraph
6.4.2.6); however, it can also apply in other situations. For example:

6-5

ED00 A
ED00
ED00 0201
ED02 4142
ED04 0201
ED06 4142
ED08 4142 Al
EDOA

EQU 'AB'

LI R1,A

LI R1,'AB'

ASCII FOR AB = >4142
LOAD >4142 IN R1

LOAD >4142 IN R1

DATA 'AB' ASSEMBLE >4142 HERE

6.4 ASSEMBLER DIRECTIVES

The symbolic assembler recognizes six assembler directives. The
conventions used in defining these directives are defined below.

< >: Required items to be supplied by the user

[]: Optional items to be supplied by the user, i.e., for
example: [comment] = a space followed by any characters
except <ESC> or <CR>.

EXPW: A well-defined expression (No forward references)

EXP: An expression with no forward reference, or a forward
reference only.

Symbolic addresses must be preceeded by an @ sign to differentiate
from a register number in an instruction that will accept both.

6.4.1 AORG Directive

FORMAT:
[label]< ,><AORG>< ,><EXPW:location><CR>

The AORG directive places a value in the location counter and begins
assembly at the location specified. The location value must be in
decimal or hexadecimal. By default, the location counter for the
assembler begins at >0000 and is incremented by two (bytes), for each
word occupied by the instruction. When a label is used with the AORG
directive, it is assigned the value in the location counter. The
comment field is optional. If an odd value is input for the location,
the value will be decremented to an even value.

6-6

Example:

ED00 AORG >200 Begin assembling source code at location
0200 counter value of >200

ED00 AORG 200 Begin assembling source code at location
0008 counter value of >C8

6.4.2 BSS Directive

FORMAT:
[LABEL]< ,><BSS>< ,><EXPW:no. of bytes><CR>

The BSS (block with starting symbol) directive advances the location
counter a quantity of bytes as specified in the directive. In essence,
it "reserves" a block of bytes starting at the location counter value;
this block will be void of object code. An optional label can be
specified to identify the first location in the block. The byte count
can be in decimal or hexadecimal.

6.4.3 DATA Directive

FORMAT:
Elabell< ,><DATA>< ,><EXP>[,<EXPW>,...,<EXPW>][comment]<CR>

This directive places 16 bit values into (successive) memory
locations. Data is placed at even address locations. Operand values
can be chained (i.e., successive 1 to 16 bit values separated by
commas). The data directive will accept multiple operands seperated by
commas. It will also accept an unresolved reference, but ONLY as a
first operand.

6-7

Example:

ED00 FFFF
ED02 06E4
ED04 OOBB
ED06 0000
ED08 01BC
EDOA 4142
EDOC

DATA FFFF,1764,>BB,0,444,'AB'

Assembles as ASCII code
for string AB

Assemble as >00BB,>0000

6.4.4 END Directive

FORMAT:
[label]< ,><END>< ,>[<entry point>< ,>[comment]<CR>

This directive is mandatory for each program. It designates to the
assembler that this is the final input from the source program and
causes a transfer of control back to the monitor. This is the last
input to the assembler, and the only means of direct transfer from the
assembler to the monitor. When the optional label is used, it is
assigned the current value in the location counter, but forward
references to it will not be resolved. The optional load-point operand
field contains a symbol or absolute memory address specifying the
entry point (execution start) of the program. When the entry-point
operand is used, the entry point address will be placed in the Program
Counter so that the program can be executed by the EX command
immediately after being loaded.

After entry of the END directive is concluded, a number indicating the
number of unresolved labels will be displayed.

Example:

ED02 END ST 0000
MON? Output by assembler: number of

unresolved references.

Location labeled ST is entry point
for program; places address in
program counter.

6-8

6.4.5 EQU Directive

FORMAT:
<label>< ,><EQU>< ,><EXPW><CR>

This directive assigns a value to a label for use during assembly. The
expression field can contain an absolute numeric value or expression.
Expressions are further defined in paragraph 6.3.4. This directive
allows the user to substitute easily remembered mnemonics for absolute
values in program source lines.

Examples:

(1)

ED00 SM EQU 1
ED00 ALLOWS USING SM FOR REGISTER 1 SUCH AS
ED00 C060 MOV @>FC00,SM MOVE QTY TO R1
ED02 FC00
ED04 INSTEAD OF @>FC00,1
ED04 C060 MOV @>FC00,1 MOVE QTY TO R1
ED06 FC00
ED08

(2)

ED00 IN EQU 9681
ED00 * ALLOWS THIS CONSTANT VALUE TO BE USED IN SUBSEQUENT
ED00 * SOURCE LINES
ED00 0201 LI R1, IN PLACE CONSTANT IN R1
ED02 E5D1
ED04

(3) If IN has been previously defined, as above, the following
will result in moving the value located four bytes beyond
location IN into location OT:

ED00 C820
ED02 F004
ED04 FOCO
ED06

MOVE @IN+4,@OT

6-9

(4) A label can be equated to a string of labels being added or
subtracted (expression).

ED00 A EQU 4
ED00 B EQU 10
ED00 C EQU A+B
ED00 0014 NO DATA C+A EQUALS VALUE 20
ED02

NOTE: Value of label "NO" has value equal to sum of
values of "C" and "A".

6.4.6 TEXT Directive

FORMAT:
[label]< ,><TEXT>< ,><'character string'>[comment]<CR>

This directive, like the Data directive, is used to generate absolute
data for program use. The DATA statement operand is interpreted as a
numerical value. The TEXT statement operand contains an alphanumeric
character string of keyboard inputs which are to be interpreted into
ASCII code. Besides keyboard characters, the user can also input
control characters (e.g., carriage return, line feed, DC1, DC2, etc.)
which are output in ASCII code via the keyboard. ASCII code is defined
in Appendix B. Character string inputs in the operand field are
enclosed in single quotes. The assembler begins all character strings
on an even boundary and places a zero byte after the last character
that can be used as a delimiter by the XOP I/O commands. The character
string may contain any characters except the single quotes (") and
<ESC>.

The optional label field will be assigned the value in the location
counter; this value will identify the location of the first character
in the string. If the program counter is odd after the text and zero
bytes are entered, then the program counter will be incremented to an
even number.

6-10

Examples:

(1)

ED00 4C4F CM TEXT 'LOAD TAPE, HIT<CR><LF>'
ED02 4144
ED04 2054 (Followed by a Carriage Return
ED06 4150 and a Line feed.)
ED08 452C
EDOA 2048
EDOC 4954
EDOE 203C
ED10 4352
ED12 3EOD
ED14 0A00
ED16

(2)

ED00 4C4F CM TEXT 'LOAD TAPE, HIT <CR>.'
ED02 4144
ED04 2054
ED06 4150
ED08 452C
EDOA 2048
EDOC 4954
EDOE 203C
ED10 4352
ED12 3E2E
ED14 0000 <— This number will be that which was in memory before
ED16 the TEXT directive is assembled.

6.5 ASSEMBLER ACTION

The Symbolic Assembler accepts assembly language inputs from the
keyboard. As each instruction is input, the assembler interprets it,
places the resulting machine code in an absolute address and prints
the machine code (in hexadecimal) next to its absolute address.

Example:

The user enters:

LWPI >ED20 <CR>

The following display results:

6-11

LWPI >ED20 USER INSTRUCTION ECHOED
ED00 >02F0 RESULTING OBJECT CODE
ED02 >ED02

6.6 OPERATION

6.6.1 Calling the Assembler

1. Call up the monitor by activating RESET on the EVM and
pressing the "A" key.

2. The EVMBUG monitor prints an initialization message on the
terminal: MON? indicating that the command scanner is
available to interpret terminal inputs.

3. Enter either the XA or XAE command and space or carriage
return. If the XA command is used, the previous symbol
table will be cleared.

4. Enter the hexadecimal address at which the program is to be
assembled.

5. Press RETURN key. Entry to assembler is acknowledged by the
display of the address. The cursor is positioned to the
label entry column.

In this and following examples, the underscore marks the cursor
positon within the display.

Display Enter Comments

Move RESET Switch
(CR) Monitor Entry Gained

EVMBUG
MON?

MON? XA

MON? XA ED00

ED00

XA (SP)

ED00

(CR)

Assembler Called

Starting Assembly Add.

Assembler Entry Gained

6-12

6.6.2 Exiting To The Monitor

(SP) to the OPCODE column, then enter: END. Control returns to the
monitor.

6.7 ENTERING INSTRUCTIONS

Any of the 73 instructions applicable to the TMS 9995 microcomputer
can be interpreted by the Symbolic Assembler. An instruction generally
consists of four fields: Label, Opcode, Operand(s), and Comment.

6.7.1 Label Field

The label field is optional and its omission is indicated by a space.
It consists of a maximum of two characters; the first character must
be alphabetic(BUT NOT AN 'R') and the second must be alphanumeric.
Labels may be used as either resolved or unresolved references. The
label field may be followed by one or more spaces.

NOTE: the following fields will not accept unresolved references:
register fields, shift count fields, CRU count fields, and CRU
displacement fields. Instructions containing unresolved references
should not be modified once entered until reference resolution has
occurred or errors may be created.

6.7.2 Opcode Field

There should be a single space only between the opcode and the
operand(s).

6.7.3 Operand Field

Operand fields generally consist of either: (1) one unresolved
reference label, or (2) a succession of constants and defined symbols
linked by plus and minus signs. In the case of multiple operands, a
single comma should be used between the two. The operand field should
be followed by a space if the comment field is desired, or a return if
not.

6.7.4 Comment Field

The comment field may include any printable character and is concluded
by a return.

6-13

6.7.5 Concluding The Instruction

The (CR) at the end of either the operand or the comment field
concludes the instruction. Prior to entering the return, the
instruction may be cancelled by use of the Escape <ESC> command, as
explained in paragraph 6.3.3.

6.7.6 EXAMPLES:

1. LWPI T>220

Single space between mnemonic and operand

Single comma between multiple operands

(SP) after label and opcode fields

2. LI 01.33

3. N1 DATA 10

T T

4. DISPLAY ENTER COMMENTS

ED00

ED00

ED00

(SP) Omit Label Field

LWPI >220 Enter Instruction
LWPI >220

5. INSTRUCTION TERMINATOR

LWPI >220 (A) (CR) - comment field omitted
(B) (SP) - comment field to be used

6. The following example illustrates these functions:

A. Calling the assembler (paragraph 6.6.1)
B. Enter instruction one (paragraph 6.7)
C. Enter instruction two (paragraph 6.7)
D. Exiting to the monitor (paragraph 6.6.2)

6-14

Display Enter Comments

Set RESET Sw.
(CR) Monitor Entry Gained

EVMBUG
MON?

XA ((SP)) Assembler Called
MON? XA

ED00 Starting Assembly Address
MON? XA ED00

(CR)
ED00 Assembler Entry gained

(SP) Skip label field
ED00

LWPI >ED20 Enter first instruction
ED00 LWPI >ED20

(CR)
ED00 02E0 Addresses and machine

LWPI >ED20 code for first
ED02 ED20 instruction.

(CR)
ED04

(SP) Skip label field.
ED04

LI 0,33 Enter second instruction
ED04 LI 0,33_CR)

ED04 0200 Addresses and machine
code for second

ED06 0021 instruction.

ED08
(SP) Skip label field

ED08
END Enter END directive

ED08 END_
(CR) First (CR)

ED08 END 0000
Second (CR)

MON? _

The following additional concepts apply to instruction entry:

1. Register numbers are in decimal or hexadecimal. Only
decimal register numbers can be predefined (preceeded
by an R).

6-15

LI R13,22
LI >D,33

2. Jump instruction operand can be $, $+n, $-n, or M,
where n is a decimal or hexadecimal value of bytes
(+256>n>-254) and M is the value of the memory address.

JMP $+0
JMP $-2
JMP $+2
JMP >210

3. Absolute numerical values can be decimal or hexidecimal
hexadecimal. Decimal values have no prefix in an
operand. Hexadecimal values are preceded by the greater-
than sign (>).

LI R13,>33
LI R13,51

4. Where an address can be either a register or symbolic
memory location, the symbolic address is preceeded by
an at sign @ to differentiate a numerical memory
address from a register number.

MOV @ST,R1 Move ST contents to R1
A @SM,@>FE00 Move SM contents to M.A.>FE00

NOTE:

Jump and immediate operand instructions
do not use the (@) sign, before a symbol.

6.8 ERRORS

Syntax errors are indicated by an 'ERR' message. A displacement range
error (such as with jump instructions and single-bit CRU instructions)
will be flagged with an ERR message.

6-16

1. Syntax error. The instruction syntax was incorrect:

Display Enter Comments

ED00
(SP)

ED00
LDA

ED00 LDA ERR_ Error message (ERR)
(CR) Use Ret and enter

the proper mnemonic.
2. Range error. The operand is out of range of its field.

Display Enter Comments

ED00
(Sp)

ED00
LI R44

ED00 LI R44

ED00 LI R44 ERROR
(CR)

ED00
(Sp)

ED00
LI R4,>ED00

ED00 LI R4,>ED00
(CR)—

ED00 0204 LI R4,>ED00

ED02 ED00

ED04

Skip Label field.

Enter first instr.

Error message.

Enter proper data.

Properly assembled
code.

6-17

ED00

ED00
(Sp)

JNC $+300

ED00 JNC $+300_
(CR)

ED00 JNC $+300 ERROR
ED00

3. Displacement Error. The jump instruction destination is
more than +256 or -254 bytes away.

Display Enter Comments

Skip label field.

Displacement plus
256 bytes.

ERROR message.

6.9 PSEUDO-INSTRUCTION

The assembler also interprets one pseudo-instruction. This
pseudo-instruction is not an additional instruction, but actually is
an additional mnemonic that conveniently represents a member of the
instruction set. The NOP mnemonic can be used in place of a JMP $+2
instruction, which is essentially a no-op (no operation). This can be
used to replace an existing instruction in memory, or it can be
included in code to force additional execution time in a routine. Both
NOP and JMP $+2 assemble to the machine code >1000.

6-18

ED00

ED00

ED00

Display Enter Comments

JMP $+2

(Sp)

JMP $+2

TCR)
ED00 1000 Both JMP$+2

NOP assemble
the machine

ED00 <-- >1000
(Sp)

ED00
NOP

ED00 NOP_
(CR)

ED00 1000

and
to

code

6-19

SECTION 7

EIA COMMUNICATIONS LINK

7.1 GENERAL

This section describes the use of a Software Comminications Link which
allows TMS 9995 microcomputer module to communicate with a DX 990/10
minicomputer via an EIA RS-232-C interface.

This communications link is primarily intended for use as a software
development aid for the programmer. It allows the programmer to create
programs on a larger, more sophisticated minicomputer, taking full
advantage of its utilities, i.e., text editor, macroassembler, linker,
etc. The resulting program can then be downloaded into the 9995EVM for
execution or debugging. The host system is needed to support the
hardware and software necessary to transfer information to an EIA port
using the ASCII character set. (See Appendix B)

EIA RS-232-C asynchronous serial transfer is used by this particular
communications link which enables it to communicate with terminals
that have EIA capabilities.

The EVM hardware supports two serial I/O ports. The local port (Port
1) is jumper selectable for either RS-232-C or teletype terminals.
(See Figure 7-2) This port is controlled by a TMS 9902 asynchronous
communications channel and is the port to which the main programmer's
terminal is connected for support by the EVMBUG monitor. The
auxilliary port (Port 2) is RS-232-C only and is connected via EIA
RS-232-C to the host computer.

7-1

(51

0
CI 0

0
0 0

-C=I-

/N

_N

A- A.
+ -0- -0-

(81

191

POWER
BUSES

PROTOTYPE
PORT (10)

BREADBOARD
AREA

AL (71

131 131 (3)

14) (41 141

I n •

EIA PORT 1
(TERMINAL
CONNECT)

EIA PONT 2
(AUXILLIARY)

IDLE
LIGHT 121

161

PROTOTYPE
RANDOM PORT (10)
LOGIC
AREA

II MHz
MICROPROCESSOR RESET CRYSTAL

SWATCH FOR CLOCK

FIGURE 7-1. TMS 9995 EVALUATION MODULE BOARD.

7.2 SYSTEM DESCRIPTION

Figure 7-2 shows a typical system configuration for utilization of the
communications link software. The TMS 9995 appears as another terminal
to the host system. The communications link allows a user at terminal
2 to interact with the host computer in exactly the same way as if it
were directly connected to the host computer. A user at either
terminal may command the host computer to execute a read or write to
the memory. This read or write to memory is executed by the host
computer as if it were reading or writing to a cassette, paper tape,

system).
or keyboard/printer (if device support was sysgened into the host

7-2

PORT 2

HOST SYSTEM
UTILITIES

HOST COMPUTER
(DX 990/10,

FS 990/4,
PDP-11/70,
IBM 370,
NOVA,

UNIVAC 1108
ETC.)

TMS 9995
EVM BOARD

EVM BUG
MONITOR

EIA RS-232-C
0

USER
TERMINAL 1

PORT 1

USER
TERMINAL 2

FIGURE 7-2. TYPICAL SYSTEM CONFIGURATION.

The communications link does not require any hardware changes to the
host computer, nor does the host system require any changes in device
service routines, except those changes necessary to support a 733 ASR,
ASR 33, or KSR protocol. Data transfers are accomplished using the
ASCII character set over EIA RS-232-C levels at a variety of baud
rates. Data transfers to memory are formatted in TMS 9900 object
record format (see Appendix A

The following is an example of how the communications link can be
implemented:

The TMSW 101T cross support package can be
installed on an already existing DEC PDP-11/70
minicomputer system. Applications software can be
created on the PDP-11/70 and assembled using the
cross support package. The resulting applications
code can then be simulated using the cross support
package, or downloaded for testing on the target
system using the EIA link. Assuming the PDP-11/70
already exists, this communications link allows
actual program development and test for TMS9995
software without the need for additional hardware.

7-3

Using a 990 system minicomputer allows this same opportunity without
the need for the cross support package.

7.3 SYSTEM REQUIREMENTS

7.3.1 Host System Requirements.

The communications link software is capable of communicating to a wide
variety of host computers, ranging from a TM990/101M microcomputer to
a large time-share system. The requirements which must be met by the
host computer are supplied by most existing computers.

7.3.1.1 Hardware Requirements.

The EIA communications link requires at least three signals to
operate:

- Transmit Data
- Receive Data
- Signal Ground

Table 7-1 illustrates how these signals must be interconnected.

TABLE 7-1. HOST SYSTEM CABLE REQUIREMENTS.

HOST INTERFACE TMS9995 INTERFACE

Designation Pin Pin Designation

Receive Data 2 2 Receive Data

Transmit Data 3 3 Transmit Data

Signal Ground 7 7 Signal Ground

These signals, along with other control signals, may be supplied by a
TM990/506 cable assembly. The other control signals are required to
perform the necessary "handshaking" between the EVM board and the host
computer, i.e., DSR, DCD, RTS, and may vary for different host
computers.

7-4

The EVM has no baud rate limitations because the baud rate as used by
the TMS 9902 asynchronous communications channel is software selected.
However, the communications link software only allows baud rates of
110, 300, 600, 1200, 2400, 4800, 9600, and 19200. The baud rate of the
host computer must be that of the terminal connected to Port 1, if
that terminal is to be used as a remote terminal to the host system
(i.e., logon identifiers, listings, etc.) The baud rates need not be
the same to execute uploads or downloads, as the terminal is not
involved. The baud rate to the terminal on Port 1 is automatically set
by the EVMBUG monitor. The baud rate to the host computer is 1200 by
default, but may be changed by the use of the communicatons link "T"
command to any of the baud rates given above. (See also "T" Command,
paragraph 7.4.3.)

7.3.1.2 Software Requirements.

The host system reads and writes to the TMS 9995 EVM and terminal
combination as if they were a teletype, 733 ASR terminal, or
keyboard/printer.

Receipt of a DC2 (ASCII Punch On) places the TMS 9995 EVM into a
download mode of operation until a DC4 (ASCII Punch Off) is received.

Receipt of either a DC1 (ASCII Reader On) or DLE7 (Cassette Block
Forward) command places the TMS 9995 EVM into an upload mode. This
mode is continued until a complete record is output in 733 ASR
protocol, or until the upload is complete in ASR 733 protocol. When
not in either of the above modes, any characters received on EVM Port
2 are echoed to the terminal (which may or may not be present) at EVM
Port 1.

A provision is provided to operate the communications link with a host
computer that cannot supply the DC2 and DC4 commands necessary for
downloads. This provision is described in paragraph 7.4.5 "Use Without
Cassette Or Paper Tape Support".

Control characters entered at EVM Port 1 are recognized at all times
by the TMS9995 EVM, with the appropriate response taken. Noncontrol
characters are ignored during uploads and downloads, but are echoed to
the host system otherwise.

To accomplish downloads, the host system is required to supply
standard TMS 9900 machine code in object record format (see Appendix
A). The code can be either copied from storage media (magnetic tape,
disk, etc.) or actually created by the host computer. This machine
code is the same as that of the host (if the host is a 990 family
minicomputer), due to the software compatibility between all members
of the 9900 family. Cross assemblers are also available to produce TMS
9900 machine code on non-9900 family computers (IBM, DEC, etc.)..

7-5

7.3.2 Terminal Requirements.

The terminal connected to Port 1 of the TMS 9995 EVM Board must be
either EIA RS-232-C or 20-mA current loop (jumper selectable), and
communicate via the ASCII character set.

The allowable baud rates are the same as those listed for the host
computer and are automatically set by the EVMBUG monitor. If this
terminal is intended for use as a remote terminal for the host system,
it must be the same baud rate as the host system and use the same
protocol.

7.4 COMMUNICATIONS LINK USAGE

This section details how the communications link operates from a
user's point of view. Table 7-2 lists the communication link commands
available to the user. The functions which require use of the Control
key are available only in the terminal mode; other functions are
available only in the command mode.

Table 7-3 is a list of error messages which the communications link
produces under certain error conditions. Each mode is described in the
following paragraphs.

TABLE 7-2. SUMMARY OF COMMUNICATIONS LINK COMMANDS.

INPUT RESULTS

Control C Enter Command Mode
T Change Port 2 Baud Rate
D Set Download Bias
U Set Upload Limits
Q Return To Terminal Mode

Control Z Return To EVMBUG Monitor
Control R Initiate Download
Control T Terminate Download

7-6

TABLE 7-3. SUMMARY OF COMMUNICATIONS LINK ERROR MESSAGES

MEANING

Invalid command entered. Reenter
the correct command code, i.e.,
T, U, D, or Q.
Invalid parameter entered. Reenter
a valid parameter.
Checksum error occurred during
download.
Invalid obj. record tag encounter
during download.
Error occurred during upload attempt
or, upload end limit is smaller
than start limit or, upload aborted.

ERROR MESSAGE

CMD ERR

PARM ERR

CKSM ERR

TAG ERR

UPLD ERR

7.4.1 Starting The Link.

On-board RAM provides one workspace area, two flags, and a link area
for handling the communications link software. The location of this
area is from >ECOO to >EC56.

The link is entered by executing the XCL command. At this time, the
EVM is in the terminal mode, and an entry banner: TERMINAL MODE, is
printed on the terminal. This entry banner will be printed every time
the terminal mode is reentered.

7.4.2 Terminal Mode.

Once in terminal mode, the communications link is in its active mode.
The program constantly scans both ports until a character is received
on one or the other. It then takes the appropriate action, depending
on the character received and the function currently being executed.
Downloads, uploads, and listings can be executed under control of the
host computer and all host commands entered at the terminal are echoed
to the host computer.

If an error occurs on the EVM side of the communication link during a
download, the link will wait until the current input from the host
computer ceases and then output an error message. At this time, the
download may or may not be completed. This must be verified by use of
the EVMBUG monitor Inspect Memory Command. If an error occurs during
an upload, the link will output an end-of-file, discontinue output,
and output an error message. (See Table 7-3) These download and upload
error conditions also set the download bias to >FFFF.

7-7

7.4.3 Command Mode.

The communications link also supports a command mode of operation, if
a terminal is present on EVM Port 1. In this mode, commands are
entered from the terminal to:

- Change Port 2 baud rate
- Set upload limits
- Set bias for downloads of reloacatable object files

This mode can be entered from the terminal mode at any time (even
during up or downloads) by simultaneously pressing the Control and "C"
keys. Once in the Command mode, a question mark prompt is displayed at
the terminal.

The commands supported while in the command mode are described below.

"T" COMMAND: A "T" is input to change the baud rate of Port 2. The
link will echo the "T" to the printer, followed by a space, and will
await the entry of a parameter. This parameter must be a valid decimal
digit between 1 and 8, followed by a space, comma, minus sign, or
carriage return. Otherwise, a parameter error will be generated.
According to the value entered, the baud rate of Port 2 (to the host
computer) will be set to the value indicated in Table 7-4, below. If
no parameter is entered, the baud rate will remain unchanged.

TABLE 7-4. BAUD RATE SELECTION PARAMETERS

PARAMETER
RATE

BAUD
RATE

1 19200
2 9600
3 4800
4 2400
5 1200
6 600
7 300
8 110

7-8

"D" COMMAND: A "D" is entered to set the bias of any relocatable
object code received by the downloader. The "D" will be echoed to the
printer, followed by a space. The user may then enter a valid
hexadecimal address, followed by a space, comma, minus sign, or
carriage return. This address will be the download bias until changed.
The default bias address is >ED00. If no address is entered, the
download bias will remain unchanged. The download bias only applies to
relocatable code, as any absolute code will be loaded wherever its
object record tags indicate.

"U" COMMAND: A "U" is entered to set the upload limits. The "U" is
echoed to the printer, followed by a space. The user may then enter
the upload starting address, followed by the upload ending address.
Both must be valid hexadecimal numbers, followed by a space, carriage
return, comma, or minus sign. Either or both may be omitted to leave
the corresponding upload limit unchanged. An invalid address results
in the printing of an error message with no change in upload limits.
Default upload limits are from >ED00 to >EFFO inclusive. Limits must
be reestablished before each upload, as the starting address is
changed by the uploader to equal the ending address at the end of the
upload. An error will result at any time during the upload if the
starting address is greater than the ending address. The host computer
may also set these limits by writing to the appropriate memory
locations (>EC50 and >EC48), using the downloader.

"Q" COMMAND: To exit from the command mode back to the active terminal
mode, a "Q" must be entered. The "Q" will be echoed to the printer,
followed by the terminal mode entry banner.

7.4.4 Returning Control To EVMBUG Monitor.

The communications link execution can be terminated in the terminal
mode by simultaneously pressing the Control and "Z" keys. This returns
control to the EVMBUG monitor. The EVMBUG entry banner will be
displayed on the printer at this time.

7.4.5 Link Use Without Cassette Or Paper Tape Support.

A provision exists which allows the user to initiate and terminate
downloads from the terminal. This provision is necessary if the host
computer software does not support cassettes or paper tape. Downloads
can be accomplished by listing the object file to the TMS9995 EVM as
if it were a printer. Pressing the Control and "R" keys sets the
communication link to download mode. All input on Port 2 is then
transferred to the downloader instead of the terminal.

The Control 'T. command allows the user to exit this download mode at
any time and to return to the terminal mode.

7-9

The Control and "T" keys must be simultaneously pressed to return to
the terminal mode. The two control keys generate the required DC2
(Punch ON) and DC4 (Punch Off), which are normally generated for a
paper tape punch or cassette by the device service routine.

7.5 SAMPLE SOFTWARE DEVELOPMENT SESSION

With a terminal or TTY connected to Port 1 (See paragraph 7.3.2), and
a host computer connected by an EIA RS232-C communication link to Port
2 (See paragraph 7.4), the TMS 9995 EVM may be used for software
development. See Figures 7-1 and 7-2.

If the 990/10 (or 990/12) has not been sysgened to include the use of
a 733 ASR terminal, then a 733 should be installed and the sysgen
executed as follows before a software session begins. Brief details of
a sysgen follow (for experienced programmers only). For full details
of sysgen, refer to the Model 990 Computer DX10 Operating System
Programming Guide, Volume V, part number 946250-9705.

SAMPLE SYSGEN:

NAME = STO1
DEVICE TYPE = ASR
CRU = >0000
ACCESS TYPE = RECORD
TIME OUT = --- SECONDS
CASSETTE TIME OUT = 3 SECONDS
CASSETTE ACCESS TYPE = FILE
CHARACTER QUEUE SIZE = 6
INTERRUPT = 6

The following is a sample software development session using a
DX990/10 as a host computer. This sample shows the basic steps
necessary to load the communications link and begin execution. Then
the same terminal is used as a user terminal to the DX990/10 system. A
program is created using the text editor and macroassembler. The
program listing is printed at the user terminal and the object code is
then downloaded into the TMS 9995 EVM memory. After logging off the
DX990/10, control is returned to the EVMBUG monitor and the sample
program is executed. For this example, the TMS 9995 EVM is connected
to the DX990/10 as a 733 ASR terminal.

Commands preceeded by brackets [] are DX10 commands to the TMS 9995
microcomputer.

7-10

TERMINAL MODE

SYSTEM COMMAND INTERPRETER - PLEASE LOG IN
USER ID: GPSO72
PASSCODE:

RUNTIME TASK ID = >28
C] XE
INITIATE TEXT EDITOR
FILE ACCESS NAME:

*EOF

*EOF
* THIS IS AN EXAMPLE

*EOF'
EVMBUG EQU >0080

*EQF
AORG >ED00

*EOF
LWPI >ED40

*EOF
CLR 0

*EOF
LOOP INC.°

*EOF
CI 0,>EEOO

*EOF .
JLT LOOP

*EOF
XOP @MSG,14

*EOF
8 @EVMBUG

*EOF
MSG TEXT `'PROGRAM EXECUTING'

*EOF
BYTE 0

*EOF
END

*EOF

C] QE
QUIT EDIT
ABORT?: NO

QUIT EDIT
OUTPUT FILE ACCESS NAME: GPS.TST
REPLACE?: YES
MOD LIST ACCESS NAME:
C] XMA

SAMPLE SOFTWARE DEVELOPMENT SESSION

7-11

EXECUTE MACRO ASSEMBLER
SOURCE ACCESS NAME: GPS.TST
OBJECT ACCESS NAME: GPS.TSTO
LISTING ACCESS NAME: GPS.TSTL
ERROR ACCESS NAME:
OPTIONS:
MACRO LIBRARY PATHNAME:

[3 WAIT
--WAITING FOR BACKGROUND TASK TO COMPLETE--
MACRO ASSEMBLY COMPLETE, 0000 ERRORS, 0000 WARNINGS
[3 CC
COPY/CONCATENATE
INPUT ACCESS NAME(S): PRO.TIMERO GPS.TSTL
OUTPUT ACCESS NAME: C803 ST17

—REPLACE?: NG - -
MAXIMUM RECORD LENGTH: 60

1] CC
COPY/CONCATENATE
INPUT ACCESS NAME(S): GPS. TSTL
OUTPUT ACCESS NAME: ST17
REPLACE?: NO
MAXIMUM RECORD LENGTH: 60

SDSMAC 3.2.0 78274 15:41:31 THURSDAY, MAR 19
ACCESS NAMES TABLE
SOURCE ACCESS NAME= R32USR.GPS.TST
OBJECT ACCESS NAME= R32USR.GPS.TSTO
LISTING ACCESS NAME= R32USR.GPS.TSTL
ERROR ACCESS NAME=
OPTIONS=
MACRO LIBRARY PATHNAME=

SAMPLE SESSION (Continued)

7-12

SDSMAC 3.2.0 78.274 15:41:31 THURSDAY, MAR 19

0001 * THIS IS AN EXAMPLE
0002 0080 EVMBUG EQU >0080
0003 ED00 AORG >ED00
0004 ED00 02E0 LWPI >ED40

ED02 ED40
0005 ED04 04C0 CLR 0
0006 ED06 0580 LOOP INC 0
0007 ED08 0280 CI 0,>EE00

EDOA EE00
0008 EDOC 11FC JLT LOOP
0009 EDOE 2FAO XOP @MSG,14

ED10 ED16
0010 ED12 0460 B @EVMBUG

ED14 0080
0011 ED16 50 MSG TEXT 'PROGRAM EXECUTING'

E017 52
ED18 4F
ED19 47
ED1A 52
ED1B 41
EDIC 4D
ED1D 20
ED1E 45
EDIF 58
ED20 45
ED21 43
E022 55
ED 23 54
ED24 49
E025 4E
ED26 47

0012 ED27 00 BYTE 0
- 0013 - END--
NO ERRORS, NO WARNINGS

Cl CC
COPY/CONCATENATE
INPUT ACCESS NAME(S): GPS.TSTL GPS.TSTO
OUTPUT ACCESS NAME: ST17 C503
REPLACE?: NO
MAXIMUM RECORD LENGTH:
(]Q
QUIT
RUNTIME TASK ID = >5E
MON-' IR

SAMPLE SESSION (Continued)

7-13

W=0430
P=ECOO ECOO.
MON? DM EDOO ED28
EDOO=02E0 ED4O 04C0 0580 0280 EEOO 11FC 2FAO
EDIO=ED16 0460 0080 5052 4F47 5241 4D20 4558
ED2O=4543 5554 494E 4700 0003
MON? EX

MON? DM EDOO ED28
EDOO=02E0 ED4O 04C0 0580 0280 EEOO 11FC 2FAO
ED10=ED16 0460 0080 5052 4F47 5241 4D20 4558
ED20=4543 5554 494E 4700 0003
MON? IR

W=5554
P=556C EDOO
MON? EX
PROGRAM EXECUTING

7-14

SECTION 8

PROGRAMMING

8.1 GENERAL

This section is designed to familiarize the user with programming the
TMS 9995. Explanations of the programming environment, using EVMBUG
XOPs, supporting special features of the hardware, and certain
programming practices are included. Programs are provided as examples
for the the user to analyze and follow, and possibly to combine into
the user's system. This section is divided into two general areas: the
first gives background information on the programming environment and
shows suggested coding practices for a variety of situations. The
second part gives specific program examples using special features of
the hardware.

For clarity, source listing examples in this section use assembler
directives recognized by larger assemblers, but not recognized by the
TMS 9995 Symbolic Assembler. These directives are explained in detail
in the "Model 990 Microprocessor Assembly Language Programmer's
Guide". A synopsis of the definitions is presented in Table 8-1.

8 - 1

TABLE 8-1. ASSEMBLER DIRECTIVES USED IN EXAMPLES.

Label Opcode Operand Meaning

AORG XXXX

DATA YYYY

DATA LABEL

Assemble code that follows so that it is
loaded beginning at memory address XXXX
this is similar to the absolute load / re-
quest of the symbolic assembler.

Place the value YYYY in this location (if
preceeded by the greater-than sign (>),
the quantity is a hex representation.

If LABEL represents a memory address, the
memory address value is placed at this lo-
cation, aligned on an even address (word
boundary).

END Signifies end of program for assembler.

AAAA EQU BBBB Wherever the symbol AAAA is found,
substitute the value BBBB.

IDT 'NAME' Program will be identified by NAME.

TEXT 'ABCD123' The ASCII value of the specified
character string is assembled in
successive bytes.

Figure 8-1 is part of a source listing used in this section, as
assembled by TI's TXMIRA assembler. Unless specified otherwise by
directive, the TXMIRA assembler will begin assembling code relative to
memory address >0000 (second column). When resolving an address for an
instruction, as shown at the bottom of Figure 8-1, the instruction
address operator is the same as the relative address in column two of
the listing. Thus, for the label NEXT, the address >004A is assembled,
which is the relative address within the listing. This is useful when
determining such addresses as the destination of a labelled BLWP
instruction. Note that the symbolic assembler does not use labelled
addressing, but assembles the absolute address given.

8 - 2

SOURCE STATEMENT NO.

RELATIVE ADDRESS
OBJECT CODE (ASSEMBLED SOURCE)

LABEL FIELD
OP CODE /

OPERAND

COMMENT FIELD

0079 0034 04C1 CLR 1 CLEAR FOR DECIMAL TO HEX ROUT1

0080 0036 0207 LI 7,CKPARM PROMPT MESSAGES
0038 00BC'

0081 003A 0208 LI 8,5 FIVE PROMPTS
003C 0005

0082 003E 0209 LI 9,CLKWP+4 REGISTER 2 ADDRESS
0040 FF3C

0083 0042 '2F97 LOOP1 WRIT *7 PROMPT USER FOR TIME VALUE

0084 0044 2E40 HEXI 0 GET INPUT

0085 0046 004A' DATA NEXT, ERROR NULL, ERROR RTN ADR
0048 00 6'

0086 0 4A 042 NEXT BLWP @DE EX DECIMAL CHARS TO BINARY
0C C 020A'

ASSEMBLED OBJECT SHOWS RELATIVE

ADDRESS OF "NEXT" AT 004A16

FIGURE 8-1. SOURCE LISTING.

8.2 PROGRAMMING CONSIDERATIONS.

8.2.1 Program Organization

Programs should be organized into two major areas:

- Prodecure area of executable code and data constants
(never modified)

- Data area of program data and work areas whose contents
will be modified.

The executable code and constant data section can be debugged as a
separate entity, and then programmed into EPROM. The work area can be
placed at any address in RAM, and that address does not have to be
contiguous with the program code area, and can even be dynamically
allocated by a Get Memory supervisor call of some kind. Even if the

8 - 3

program parts are loaded and executed together, the organization and
debug ease are enhanced.

In this programming section all example programs are coded, with one
exception, in this manner: the work area is the register set, which is
arbitrarily fixed to a RAM address. The one exception, the
Two-Terminal routine, is coded to reside entirely in RAM because the
workspace is a part of the contiguous extent of code. This method of
coding is used in RAM-intensive systems because the operating system
need not manage workspaces as might be necessary in a system with very
little RAM.

8.2.2 Executing TMS 9995 System Programs On the TMS 9995 EVM

On the TMS 9995 EVM, all interrupt and XOP vectors are programmed, and
a linking scheme in RAM is used as detailed in subsection 8.9.

8.2.3 Required Use Of RAM In Programs

All memory locations that will be written to must be in RAM-type
memory (this is important to consider when the program is to be
programmed into EPROM. Areas to be located in RAM include all
registers, as well as the destination operands of Format 1
instructions and the source operands of most Format 6 instructions.

For example, in the following source lines:

MOV @>0700,@>BDOO MOVE DATA
CLR @>ED00 CLEAR MEMORY ADDRESS
ABS @>ED00 SET TO ABSOLUTE VALUE
INCT @>ED00 INCREMENT BY TWO
S R1,@>ED00 >ED00 - R1, ANSWER IN >ED00

the address >ED00 will be written to; thus, it has to be in RAM.

8.3 PROGRAMMING ENVIRONMENT

The programming environment of a computer is loosely defined as the
set of conditions imposed on a programmer by either the hardware or
the system software or both, and the facilities available to the
programmer because of the design of the hardware and software. The
environment in which a program resides usually determines how that
program is coded. The following paragraphs give explanations of the
major areas of the TMS 9995 EVM from a programmer's point of view.
Note that all program examples given are for a full assembler (e.g.
SDSMAC) and not necessarily for the symbolic assembler. Thus labels
can be used for reader comprehension.

8 - 4

8.3.1 Hardware Registers

The TMS 9900 family of processors are designed around a
memory-to-memory architecture philosophy; consequently, the only
hardware registers inside the processor affecting the programmer are
the Workspace Pointer (WP) Register, the Program Counter (PC)
Register, and the Status (ST) Register There are no dedicated
accumulators or general purpose registers physically residing inside
the microprocessor. All manipulation of data is accomplished by using
these three registers as described below.

8.3.1.1 Workspace Pointer Register (#p)

The Workspace Pointer is the register that holds the address of a
sixteen-word area in memory; this memory area serves as a
general-purpose register set. A memory area is designated as a
workspace or general-purpose register set by loading the address of
the first word (Register 0) of the 16-word space into the WP Register.
Thus, the programmer's register set is in memory, and can be referred
to with register addressing, or if the WP value is known, with memory
addressing. The registers are simply a d area in a program with the
special privileges usually given to processor registers. This approach
has several advantages for the programmer:

1. Register save areas need no longer be kept in
programs, since the actual program registers are
already in memory, and are maintained by the
hardware during program linking by the use of a
special class of instructions.

2. Program debugging is greatly enhanced, since the
registers of questionable program remain intact in
memory during debugging. The debug monitor has its
own set of registers in memory, and there is no
question of which of many program modules has
tampered with the processor registers, since each
program in question can have its own registers.

3. Recursive, re-entrant, and EPROM resident code is
much easier to write, since program calls are
handled by special instructions and new workspace
areas, linked together by hardware, are available
for use at each program call.

8 - 5

4. Linked-list structuring of workspaces is
automatically done by hardware, reducing system
software overhead.

5. Very fast interrupt handling is possible, since
only three processor registers (WP,PC,ST)rather
than a whole register set, are stored by the
hardware during the interrupt, usually by a
software instruction or routine.

8.3.1.2 Program Counter Register (PC)

The Program Counter (PC) Register holds the address of the next
instruction to be executed by the processor.. As such, it is no
different than the PC in any other processor and is incremented while
fetching instructions, unless modified by a program branch or jump, or
during an interrupt sequence.

8.3.1.3 Status Register (ST)

The Status Register holds the processor status and is the only one of
the three processor registers which has nothing to do with memory
directly. It is divided into two parts:

(1) The status bits, which are set to
reflect the attributes of data being
handled by the processor.

(2) Interrupt mask, which governs the
priority structure of interrupt
processing.

The ST is organized as shown in Figure 8-2.

8 - 6

0 1 2 3 4 5 6 7 9 10 11 12 13 14 15

STO ST1 ST2 ST3 ST4 ST5 ST6 ST7 ST8 ST9 ST10 ST11 ST12 ST13 ST14 ST15
L> A> EQ C OV OP X * * * OVEN * INTERRUPT MASK

L> LOGICALLY GREATER THAN OV OVERFLOW

A> ARITHMETICALLY GREATER THAN OP ODD PARITY

EQ EQUAL X XOP BEING EXECUTED

C CARRY OVEN OVERFLOW ENABLE

FIGURE 8-2. STATUS REGISTER.

8.3.2 Address Space

The TMS 9995 microcomputer addresses 65,536 (64K) bytes of 8-bits
each. Although the data bus is 16 bits wide, and the instruction set
is mainly word (16-bit) oriented, the basic unit of address is a byte.
The actual memory architecture is 32,768 (32K) words of two bytes
each, and byte processing is accomplished within the processor after
fetching a word from memory. Because the instruction set is mainly
arithmetically oriented and usually operates on 16-bit words, view the
address space as a collection of words, each containing two bytes.

8.3.3 Vectors (Interrupt and XOP)

Interrupt and XOP vectors are located beginning with address >0000,
and extend through >007F. The first part, addresses >0000 through
>0013, contain the interrupt vectors. There are 7 prioritized
interrupts. Level 0 is the highest priority, with a vector pair at
>0000 and >0002. Level 4 is the lowest priority, with its vector pair
at >0010 and >0012. Level 0 interrupt is synonomous with the RESET
function. A vector pair consists of a workspace pointer and a program
counter, both values identifying the interrupt program environment.

Before an interrupt can occur, the processor must recognize it as
having an equal or higher priority than the interrupt mask in the
Status Register. After a valid interrupt has occurred, the interrupt
vector values are retrieved from memory, and the hardware equivalent
of a BLWP instruction takes place.

There is one additional vector pair, at >FFFC and >FFFE, for the NMI
interrupt. When signaled, this interrupt always occurs and cannot be

8 - 7

disabled by the Status Register interrupt mask. Note also that RESET
being level zero, cannot be disabled, since its Status Register
priority value of zero is always equal to or higher than any value in
the interrupt mask field.

The XOP vectors work in a similar manner. Vector location begins at
>0040 and extend through >007F.These vectors are triggered by
execution of the XOP instruction, with a number from 0 to 15. There
are no priority-setting interrupts, and XOP service routines may
freely execute other XOPs. One additional event occurs during the
vector action: the source operand of the XOP instruction is evaluated
as an address and placed in the new workspace Register 11. This
provides a parameter to the XOP routine.

The EVMBUG monitor uses several XOPs for I/O service from the
terminal; some of these are available for the user, as explained in
paragraph 8.2. In addition, the programmer may wish to program
interrupt and XOP vectors for special functions.

8.3.4 Workspace Registers

The actual workspace registers, in memory, provide general working
areas for a program. Some registers can also be used for special
purposes; these are listed in Table 8-2.

In general, Registers 2 to 10 are available for unrestricted use,
although the programmer can use the reserved registers for other
purposes if proper consideration is given.

One advantage of the workspace concept is that one program can request
an almost unlimited number of register sets, or alternatively, every
module in a program system can have at least one set of its own
registers. Programs are usually written to take advantage of the
benefits associated with program operands in registers.

8 - 8

TABLE 8-2. REGISTER RESERVED APPLICATIONS.

Register Application

0 Bits 12-15 (Least significant nibble) provide the
shift count for shift instructions coded to refer to
this register. Register 0 is also used for operands
signed multiply and signed divide instructions. This
register cannot be used for indexed addressing.

1 Used for operands of signed multiply and signed
divide instructions.

11 Holds return address following execution of a BL
instruction. During XOP service routine, it holds
the resolved memory address of argument in XOP
instructon.

12 CRU base address.

13 During BLWP,
WP contents.

RTWP, interrupts and XOPs holds old

14 During BLWP,
PC contents.

RTWP, interrupts and XOPs holds old

15 During BLWP, RTWP, interrupts and XOPs holds old
ST contents.

8.4 LINKING INSTRUCTIONS

These instructions are of vital interest to a programmer, since they
solve the problem of how to get in and out of a program. These
instructions are:

- B BRANCH

- BL BRANCH with return link in R11

- BLWP BRANCH, new workspace, return link in R13 to R15

- RTWP RETURN, uses vectors in R13 and R14

- XOP BRANCH, new workspace, vectors in low memory

8 - 9

Though not normally considered a program linking instruction, the
BRANCH instruction can be used to link programs in a specific
location, such as the start of EVMBUG. Since the Workspace Pointer is
not affected by the instruction, program systems using this convention
usually delegate the responsibility for establishing workspaces to
each program. Thus, we may have branches to various programs, as shown
in Figure 8-3. Note that each program sets up its own WP (LWPI
instruction). The AORG and EQU directives are explained in paragraph
8.1.

8 - 10

*PGMA PROGRAM *PGMB PROGRAM *PGMC PROGRAM

AORG >0800

PGMB EQU >0A00

PGMC EQU >1000

PGMA LWPI >FF90

PGMA

PGMC

PGMB

AORG >0A00

EQU >0800

EQU >1000

LWPI >FF70

PGMA

PGMB

PGMC

AORG >1000

EQU >0800

EQU >0A00

LWPI >FF50

B @PGMB B @PGMC

B @PGMA

B @>0080

FIGURE 8-3. EXAMPLE OF SEPARATE PROGRAMS JOINED BY BRANCHES TO
BRANCHES TO ABSOLUTE ADDRESSES.

8.4.1 BL (Branch and Link) Instruction

The BL instruction is designed mainly for the calling of subprograms
with a convenient means of returning back to the calling program.
Since the processor puts the address of the next instruction tn
Register 11 (it effectively transfers the PC to R11) before branching,
the return path is established. To return (using the same workspace),
simply execute a B *R11 (or RT instruction).

Note, however, that only one level of subroutine call is possible if
only one workspace area is used, unless Register 11 is saved by the
first subroutine wishing to branch and link to a second routine.

8 - 11

CALLING PROGRAM FIRST LINK

SECOND LINK

BL @FE00 FE00 LI R6,47 FD00 CI R5,22

MOV

BL

R11,R10

@>F000

B *R11)

B *R10

FIGURE 8-4. BRANCH AND LINK SUBROUTINE.

The BL subroutine can include XOP instructions to provide special
services needed to accomplish the subroutine function, as in the
following example :

CALLING PROGRAM SUBROUTINE

BL @RDNUM

•

RDNUM XOP
CI
JL
CI
JH
XOP
B

R1,13
R1,>3000
RDNUM
R1,>3900
RDNUM
41,12
*11

READ A CHARACTER
IS IT BELOW A ZERO?
YES, GO BACK
IS IT ABOVE A NINE?
YES, GO BACK
ECHO THE CHARACTER
RETURN

The very simple routine shown above reads a character from the
terminal and checks for a decimal digit 0-9. If the character is
acceptable, it is echoed back to the terminal, and then control is
returned to the calling program. If the character is unacceptable, the
routine drops it and requests another; the bad character is not echoed
to show the user that another character must be typed.

8 - 12

8.4.2 BLWP (Branch and Load Workspace Pointer) Instruction

This is the most sophisticated linking instruction. It causes a
complete program environment change (context switch), automatically
links the old workspace to the new, and also preserves the old
processor status. As such, BLWP behaves in the same way as the
interrupt sequence or XOP sequence, and it is therefore possible to
vector to an interrupt or XOP service routine without actually causing
an interrupt or executing an XOP. For example, executing a BLWP @0
will vector to the RESET interrupt handler, which if EVMBUG is
resident, causes the user to set the baud rate and start EVMBUG.

The TMS 9995 is a linked-list rather than a stack machine. Programmers
used to a stack for systems programming may need some readjustment of
thinking, but the superior flexibility of linked-lists is simplified
by the fact that the programmer can move nodes around, whereas in a
stack, the nodes are fixed in Last-In First-Out (LIFO) order. The
transition can be made easily, since the hardware completes program
linking with the execution of one instruction, and very little effort
is required on the part of the programmer.

There are two immediate possibilities to discuss in using the BLWP
instruction. For simple subroutine linking the following is an
example:

CALLING PROGRAM SUBROUTINE

ENTRY

•
BLWP @SUBA PCSUBA

RTWP
SUBA DATA WPSUBA WPSUBA

DATA PCSUBA

ENTRY POINT

8 - 13

Note the double word vector pointed to by the BLWP operand, the values
of WPSUBA and PCSUBA. These two Data statements provide the memory
addresses of these vectors. The latter (PCSUBA) is the entry point,
and is well defined. However, the WP value is shown here without a
definition. This raises a fundamental question: if there are many
programs operating together (such as EVMBUG, possibly a user-written
monitor, and a collection of application programs and subroutines),
who is responsible for managing the workspaces? If each individual
program is responsible, then the following definition would be added
to the above subroutine:

WPSUBA EQU >ED70

Note that this defines WPSUBA as M.A. >ED70, and ties down one area of
memory to the subroutine; no other program in the system can call this
subroutine without chancing some conflict by using the same workspace.
Thus, the memory area is reserved for one subroutine.

A second approach is to code a value which is designated as a common
workspace for whichever program is in control at the time. In the EQU
statement above, the value could be (by agreement) the common
workspace. This implies that there are now two entities:

(1) The reserved workspace, which must be
carefully mapped out ahead of time so
that there is no overlap.

(2) The common workspace (of which there may
be more than one), whose status is such
that any program can use it when it is
not already in use.

NOTE: The previous discussion assumes that the program code is
in EPROM. If the code is to be executed from RAM, then
writing the program is simple: put the workspace at the
end of the program as a data area.

In either case, the user is responsible for partitioning his memory so
that user-defined workspaces do not overlap or interfere with EVMBUG
or the XOPs defined by EVMBUG, or with each other.

8.4.3 RTWP (Return With Workspace Pointer) Instruction

The RTWP instruction can be used to both return from a program, and too

8 - 14

link to a program. Because the instruction reloads the processor WP,
PC, and ST Registers from Workspace Registers 13, 14, and 15, the
contents of these registers govern where control will go. If those
registers were initialized by a BLWP instruction, then the action can
be seen as a Return; if special values are placed in these registers,
the action can be viewed as a subroutine call. Program calls are not
limited to a nesting structure, as in stack architecture, but are
generalized so that chains and even rings may be formed. The EVMBUG
monitor uses the RTWP instruction in this manner: using the "IR"
command, the user fills EVMBUG's registers 13, 14, and 15. Using the
"EX" command causes EVMBUG to execute a RTWP instruction using the
values in these registers.

Since the RTWP does not affect the new workspace at all, there is no
way for the called program to return to the caller, unless the caller
had initalized the new workspace registers before executing the RTWP.
This type of program transfer is in a "forward" direction only, and is
usually suitable only for a monitor program in a fixed location, such
as EVMBUG.

8.4.4 XOP (Extended Operation) Instruction

The XOP instruction works almost like a BLWP instruction, except that
the address containing the double-word vector area is between >0040
and >007F, and is selected by an argument of from 0 to 15, and that
register 11 of the new workspace is initialized with the fully
resolved address of the first operand of the XOP instruction. This
means that if the operand is a register, the actual memory address is
computed and placed in the new register 11.

The XOP instruction is meant as a "supervisor call" or special
function operation. As such, a programmer might wish to implement
routines which perform some standard process, such as a character
string search.

EVMBUG supplies definitions for XOPs 8 through 15, leaving 0 through 7
available for the user. XOPs 0 through 7 are programmed as described
in paragraph 8.9.

8.4.5 Linked-Lists

A linked-list is a system of data organization wherein a collection of
related data, called a node, contains information which links it to
other nodes. A prime example is a workspace register set. It contains
16 words of data. If there are many workspaces present at one time
connected by BLWP instructions, then every register 13 will contain
the address of the previous workspace, forming a linked list. At the

8 - 15

R13-15

BLWP

PGMB

BLWP

RTWP

RETURN

LINKS TO

PGMA

same time, the BLWP also places the previous Program Counter value in
Register 14, providing a means of returning back to the previous
program environment.

For example, the "XE" or execute EVMBUG command uses the RTWP
instruction to begin program execution of the WP, PC and St Registers
values in current Registers 13, 14 and 15. The "IR" or Register
Inspect/Change EVMBUG command can be used to set up these registers
prior to the execute command. In the example in Figure 8-5, program
PGMA is executed using the EVMBUG "EX" command; it later gives control
to program PGMB using the BLWP command. In doing so, the processor
forges links back to PGMA by placing return WP, PC and ST values in
Registers 13, 14 and 15 of PGMB. Likewise, PGMB branches to PGMC with
return links to PGMB forged into R13 to R15 of PGMC. Each can return
to the previous program by executing an RTWP instruction, and the
processor can travel up the linked list until PGMA is reached again.

PGMA

CALL PGMB

RTWP

CALL

PGMC

RETURN

LINKS TO

PGMB

R13-15

FIGURE 8-5. LINKED-LIST EXAMPLE.

8 - 16

8.5 COMMUNICATIONS REGISTER UNIT (CRU)

The CRU is an instruction (software) driven bit-oriented I/O interface
that is separate from the memory interface. The CRU of the TMS 9995
can directly address, in bit fields of one to sixteen bits, up to
32768 input bits and 32768 output bits.

8.5.1. CRU Addressing

The CRU bit address is the value as seen on address lines AO to A14.
These 15 lines allow addresses from 0 to 32767. In other words, the
CRU bit addressing scheme allows the user to addresss up 32768
distinct CRU entities (CRU "bits"). For example, the large address
decoder monitoring these lines could enable up to 32768 devices
through the Address Bus. CRU bit addresses for CRU devices on the TMS
9995 EVM are listed in Table 8.3.

TABLE 8-3. TMS 9995 EVM BOARD PREDEFINED CRU ADDRESSES.

Function

CRU Bit Address
(Address Lines)
(AO to A14)

CRU Base Address
(R12 Bits 0-15)

TMS 9902, Main I/O (lower half) 0000 0000
TMS 9902, Main I/O (upper half) 0010 0020
TMS 9902, Auxiliary I/O (lower half) 0200 0400
TMS 9902, Auxiliary I/O (upper half) 0210 0420
9995 CRU Flag Register OF78 lEFO
9995 MID Flag OFED 1FDA

8.5.1.1 CRU Bit Address And Register 12

When any of the five CRU instructions is executed, the CRU bit address
plus a displacement (TB, SBO and SBZ only) are active on address lines
AO to A14. This address is obtained from 15 bits of Register 12 (R12),
bits 0 through 14. Note that only 15 of the 16 bits of R12 are used,
with bit 15 ignored.

8 - 17

A3 A4 A5 A6 A7 A8 A9 A10 All Al2 A13 A14 4-
ADDRESS

R12 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CRU PORT ADDRESSED

(CRU BIT ADDRESS)

ZEROES IGNORE

FIGURE 8-6. CRU ADDRESS IN REGISTER 12 vs ADDRESS BUS LINES.

Because bit 15 of R12 is not used, some confusion can result while
programming. Instead of loading the CRU address in bits 1 to 15 of
Register 12, e.g., LI R12,>0200 to address the Port 2 TMS 9902 at CRU
address >0200, the programmer must shift the base address value one
bit to the left so that it is in bits 0 to 14 instead of bits 1 to 15.
Several programming methods can be used to ensure this correct
placement, and all of the following examples place the TMS 9902 bit
address of >0200 correctly in R12:

(1) LI R12,>0400 PLACES 200 IN BITS 0 TO 14

(2) LI R12,>0200*2 MULTIPLY BASE ADDRESS BY 2 (NOT
RECOGNIZED BY LINE-BY-LINE ASSEMBLER)

(3) LI R12,>0200 BASE ADDRESS IN BITS 1 TO 15
SLA 812,1 SHIFT BASE ADDRESS ONE BIT TO LEFT

From a programming standpoint, it may be best to view addressing of
the CRU through the entire 16 bits of R12. In this context, blocks of
a maximum of 16 CRU bits can be addressed, and in order to address an
adjacent 16-bit block, a value of >20 must be added or subtracted from
R12. For example, with R12 containing >0000, CRU bits >10 to >1F can
be addressed by adding >20 to R12.

8 - 18

LINES

8.5.2 CRU Instructions

The five instruction that use the CRU interface are:

- LDCR Place the CRU bit address on address lines AO to
A14. Load from memory a pattern of 1 to 16 bits
and serially transmit this pattern through the
CRUOUT pin of the TMS 9995. Increment the address
on AO to A14 after each CRUOUT transmission.

- STCR Place the CRU bit address on address lines AO to
A14. Store into memory a pattern of 1 to 16 bits
obtained serially at the CRUIN pin of the TMS
9995. Increment the address on AO to A14 after
each CRUIN sampling.

- SBO Place the CRU bit address plus the instruction's
signed displacement on address lines AO to A14.
Send a logical one through the CRUOUT pin of the
TMS 9995.

- SBZ

- TB

Place the CRU bit address plus the instruction's
signed displacement on address lines AO to A14.
Send a logical zero through the CRUOUT pin of the
TMS 9995.

Place the CRU bit address plus the instruction's
signed displacement on address lines AO to A14.
Sample the CRUIN pin of the TMS 9995 and place
the bit read into ST2, the equal 1:)_ of the
Status Register.

8.5.3.1 CRU Multibit Instructions

The two multibit instructions, Load Communications Register (LDCR) and
Store Communications Register (STCR) address the CRU devices by
placing bits 0 through 14 of CRU bit address Register 12 on address
lines AO through A14. The first operand addresses the source field or
receiving field, and the second operand supplies the length of the
operation.

If the length is coded as from 1 through 8 bits, only the left byte of
the source or receiving field takes part in the operation, and bits
are shifted in or out from the least significant bit of that left
byte. Thus, an instruction: LDCR R2,1: outputs bit 7 of R2 to the CRU
at the address derived from Register 12. An instruction : STRC R5,2:
would receive two bits of data serially and insert them into bit 7 and

8 - 19

• • •

IGNORE

then bit 6 of Register 5. The CRU address lines are automatically
incremented to address each new CRU bit, until the required number of
bits are transferred. In an STCR instruction, unused bits of the byte
or word are zeroed. In this last example, bits 0-5 are zeroed; the
right bit is unaffected.

An LDCR loads the CRU device serially from memory. An STCR stores data
into memory obtained serially from the addressed CRU device. Figures
8-7 and 8-8 show this operation graphically.

LI R12,>200 LOAD CRU BASE ADDRESS >100 IN BITS 4 TO 14 OF R12

LDCR R5,6 6 BITS TO CRU

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 >020C

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 >0200

0 0 1 1 0 0 0 1 1 0 0 0 1 0 1 >3185

0 7 8 15

0 0 0 0 1 0 R5

► 0 ' CRU Address >100

► 1

► 2

—3

—4

► 5 CRU Address >105

—6

—7

—8

—9

— A

8 BITS OR LESS — BYTE ADDRESS

9 BITS OR MORE — WORD ADDRESS

NOTE: EXAMPLES OF CRU INSTRUCTIONS ADDRESSING THE

TMS 9901 ARE SHOWN IN APPENDIX J.

—B

—C

—D

—E

—F

—10

—11

—12

FIGURE 8-7. LDCR INSTRUCTION.

8 - 20

LI

R12,>120*2

LOAD CRU BASE ADDRESS >120 IN BITS 4 TO 14 OF R12

STCR

R4,10

10 BITS FROM CRU TO R4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 >020C
0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 >0240
0 0 1 1 0 1 1 0 1 0 1 0 0 1 0 1 0 0 >3684

0 6 15

R4 0 0 0 0 0 0

4 `Immilmvammiri
ZERO FILL

UNUSED LEFT-SIDE BITS

4 4

• • •

NOTES: 8 BITS OR LESS — BYTE ADDRESS

9 BITS OR MORE — WORD ADDRESS

THE MULTIPLICATION IN THE DESTINATION OPERAND (>120•2)
IS NOT RECOGNIZED BY THE TM 990/402 LINE-BY-LINE ASSEMBLER.

THIS MULTIPLICATION IS AN EXAMPLE OF THE RELATIONSHIP OF
THE CONTENTS OF THE CRU BASE ADDRESS TO THE CONTENTS OF
REGISTER 12.

— 10

FIGURE 8-8. STCR INSTRUCTION.

8.5.3.2 CRU Single-bit Instructions

The three single-bit instructions are (1) Set Bit To Zero (SBZ), (2)
Set Bit To One (SBO), and Test Bit (TB). The first two are output
instructions, and the last is an input instruction. All three instruc-
tions have only one operand, which is an eight-bit displacement to be
added to the contents of R12 to provide the address for the desired
bit. The SBZ instruction sets the addressed bit to zero (CRUOUT of
zero), and the SBO instruction sets the addressed bit to one (CRUOUT
of one). The TB instruction reads the addressed bit (samples CRUIN)
and places it directly into bit 2 (EO) of the Status Register for
testing with JEQ and JNE instructions.

The displacement is treated as a signed, eight-bit number, and thus,
has a range of values of -128 to +127. This number is added to the CRU

8 - 21

— 0 ,-CRU Address >120

2

— 3

— 4

— 5

— 6

7

8

9 4—CRU Address >129

— A

B

C

— D

- E

- F

0 0 0

8 9 10 11 12 13 14 15

BIT 8 SIGN

EXTENDED

SIGNED

DISPLACEMENT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

ADDRESS BUS

\IIK\AMIr/

SET TO ZERO

FOR ALL CRU

OPERATIONS

EFFECTIVE CRU BIT ADDRESS

bit address derived from bits 0 to 14 of Register 12, and the result
is placed on the address lines. This process is illustrated in Figure
8-9.

Notice that after execution of a TB instruction, A JEQ instruction
will cause a jump, if the bit value is a one, and the JNE will cause a
jump if a zero.

0 1 2 4 5 7 8 9 10 11 12 13 14 15

X X X X

DON'T CARE

VV12

FIGURE 8-9. ADDITION OF DISPLACEMENT AND R12 CONTENTS TO CRU BIT
ADDRESS.

8.6 DYNAMICALLY RELOCATABLE CODE

Most programs written for the TMS 9995 will contain references in
memory. These references are given by means of a symbolic name
preceeded by an at (@) sign. Examples are: @>ED00 (memory address
>ED00, recognized by the LBLA) or, @SUM (recognized by a
symbol-reading assembler, not the LBLA).

8 - 22

For example, a short program, located at M.A. >0900 to >090F, adds two
memory addresses, then branches to the monitor:

0900 MOV @>090C,R1 MOVE VALUE AT M.A. 090C TO R1
0904 A @>090E, R1 ADD VALUE AT M.A. 090E TO R1

(R1=ANSW)
0908 B @>0080 RETURN TO MONITOR
090C DATA 100 FIRST NUMBER
090E DATA 200 SECOND NUMBER

In this program, a number in EPROM is moved to a register in RAM, and
another number in EPROM is added to that register (the destination of
an add must be in RAM in order for the sum to be written into it). If
it is desired to move this entire program to another address (such as
to RAM for debugging purposes to allow data changes as desired), then
the locations in the code must be changed to reflect the new
addresses. For example, to relocate the above example to start at
address >EDO°, each of the addresses of the numbers must be changed
before the program can execute; otherwise, the program will try to
access numbers in M.A. >090C and >090E When they have been relocated
to M.A. >EDOC and >EDOE respectively.

For a variety of reasons, it may be advantageous to have code that is
"self-relocating"; that is, it can be relocated anywhere in memory and
execute correctly. Such "position-independent" or "dynamic-relocating"
code is of great advantage when the code is programmed into EPROM,
since the EPROMs can be installed in any socket, responding to any
address, and the program will still execute correctly. Such programs
are possible with the TMS 9995 EVM by merely beginning the program
with the code segment shown below (Register 10 is used in the
following examples) Thereafter, memory addresses can be indexed,
relative to the beginning of the program (using R10 at the Index
Register, in this case). This code is shown in Figure 8-10.

8 - 23

Memory Address Opcode/Operands Comments

0000 START LWPI FE00 RO AT M.A. FE00.
0004 LI R10,START LOOK AT START ADDRESS.
0008 JEQ RELOC IF NOT BIASED, NEED

RELOCATING.
Base 000A CLR R10 LOADER HAS BIAS, CLEAR
Register BASE REGISTER.
Setup 000C JMP STARTX GO TO PROGRAM.

000E RELOC LI R10,>045B B *R11 OPCODE IN R10.
0012 BL R10 PC VALUE TO R11.
0014 RELOCX AI R11,START-

RELOCX PC-10 = PROGRAM START
0018 MOV R11,R10 PROGRAM START TO R10

001E STARTX MOV @>001A(R10),
R1

MOVE FIRST NUMBER TO Rl.

Reloca-
table

0012 A @>001C(R10,
R2

ADD 2ND NUMBER TO R1,
ANSWER IN Rl.

Program 0016 @>0080 RETURN TO MONITOR.
001A DATA 100 FIRST NUMBER.
001C DATA 200 SECOND NUMBER.

FIGURE 8-10. EXAMPLE OF PROGRAM CODING ADDED TO MAKE (CODING)
RELOCATABLE.

This coding first sets up a program base register which computes the
address of the beginning of the program. This is accomplished by:

- Establishing the beginning workspace register address with LWPI.

- Placing the opcode for the instruction: B *R11 in the designated
index register address (R10 above).

- Executing a branch and link to R10; this places the address of
the next instruction following BL R10 into Register 11; a
branch of R10 means a return indirect through R11.

- Computing the beginning address of the program by subtracting
>10 from the address in Register 11.

- Moving this beginning address to R10, allowing R11 to be further
used as a linking register.

- Indexing all future relocatable addresses using R10.

8 - 24

There are several considerations. Absolute addresses (e.g., beginning
of monitor at >0080) need not be indexed, and other types of memory
indexing should consider the contents of the base register; it may be
necessary tO add the contents of the base register to another indexing
register. Also, an immediate load of an address into a register will
require that the base address in the index register be added to the
register. For example:

LI R2,>0980 ADDRESS OF VALUES IN R2
A R10,R2 ADD BASE ADDRESS

Figure 8-11 is an example of a program that searches a table of
numbers for a value. The example shows both relocatable and
non-relocatable code for comparison. Symbolic addressing is used.

*NON SELF-RELOCATING *SELF-RELOCATING

LI
im.

i LI 3,TABLE POINT TO TABLE 3,TABLE POINT TO TABLE 44
MOV A 10,3 ADD BASE REG @COUNT,2 GET COUNTS

SEARCH C 1,*3+ (R1) IN TABLE? MOV @COUNT(R10),R2 GET COUNT low
JEQ FOUND YES C 1,*3+ (R1) VALUE

DEC 2 NO, DOCK CNTR JEQ FOUND IN TABLE?

JNE SEARCH LOOK AGAIN DEC 2 NO, DEC
COUNTER

JNE SEARCH LOOK AGAIN

COUNT DATA 6 COUNT DATA 6
TABLE DATA 12,15,59,62,73,92 TABLE DATA 12,15,59,62,73,92

FIGURE 8-11. EXAMPLES OF NON-RELOCATING CODE AND SELF-RELOCATING
CODE.

Great care must be taken with B, BL, and BLWP. If linking to other
modules is needed, these modules must be part of a system which is
linked together by the linker program (e.g., TXLINK on the FS990

8 - 25

systems for example), and all modules must be coded as
self-relocating.

When programming the EPROMs, the code must be loaded so that the
address START has the value zero, i.e., the code must appear biased at
location >0000.

8.7 PROGRAMMING HINTS

In any programming environment there are several ways to accomplish a
task. Table 8-4 contains alternate coding practices; some have an
advantage over conventional coding.

TABLE 8-4. ALTERNATE PROGRAMMING CONVENTIONS.

Purpose
Conventional

Code
Alternate
Code

Alternate Code
Advantages

Compare register
contents with 0

CI RX,0 MOV RX,RX Saves one word.

Increment a
register by 4

INCT RX
INCT RX

C *RX+,*RX+ Saves one word.

Access old
workspace
registers

MOV @N(R13),R1 N is twice the
number of the
old register
wanted.

Swap two MOV RX,RHOLD XOR RX,RY Saves a register
registers MOV RY , RX XOR RY,RX ("RHOLD' not

MOV RHOLD,RY XOR RX,RY needed).
Clear a CLR RX XOR RX,RX None.
register

8 - 26

8 8 INTERFACING WITH EVMBUG

The EMVMBUG monitor provides a starting point for the programmer to
consider when looking for program examples. The monitor contains some
basic user facilities, and the user will probably enter and exit
programs through EVMBUG.

8.8.1 Program Entry and Exit

To execute a program under EVMBUG, use the "IR" and "EX" commands, as
explained in Section 5 of this manual.

Exit from a program to EVMBUG can be through: B @>0080. EVMBUG will
print the prompting question mark. Note that the power-up
initialization routine is not entered; instead, control goes directly
to EVMBUG's command scanner.

8.8.2 I/O Using Monitor XOPs

8.8.2.1 Character I/O

Four XOPs deal specifically with character I/O:

- Echo Character XOP 11
- Write Character XOP 12
- Read Character XOP 13
- Write Message XOP 14

The echo (XOP 11) is a read character (XOP 13), followed by a write
character (XOP 12). The following code reads in a character from a
terminal. If an A or E is found, the character is written back to the
terminal and program execution continues; otherwise, the program loops
back, waiting for another keyboard entry:

GETCHR

OK

XOP 81,13 READ CHARACTER
CI R1,>4100 COMPARE R1 TO ASCII "A"
JEQ OK IF "A" FOUND, JUMP
CI R1,>4500 COMPARE R1 TO ASCII "E"
JEQ OK IF "E" FOUND, JUMP
JMP GETCHR RETURN TO READ ANOTHER CHAR
XOP R1,12 WRITE CHARACTER AS ECHO

8 - 27

XOP 14 causes a string of characters to be written to the terminal.
Characters are written until a byte of all zeroes is found.

XOP 13 reads one character and stores it into the left byte of a word;
the right byte is zero filled. The previous coding example could also
have been completed with the following: OK XOP R1.14

Instructions are written in uninterrupted form; thus, messages should
be grouped in a block separated from the continuous executable code.
Each message must be delimited by a byte of all zeroes:

**MESSAGES
CRLF BYTE >OD
LF BYTE >0A,>00
MSG1 TEXT 'BEGIN PGMA'

BYTE 0
MSG2 TEXT 'END PGMA'

BYTE 0
MSG3 TEXT ft # ERRORS (IN HEX):'

BYTE 0
MSG4 TEXT 'ERROR EXP VALUE='

BYTE 0
MSG5 TEXT ',RCV VALUE='

BYTE 0

Note in the preceeding example, that if it is desired to send a
carriage return and a line feed, use the following: XOP @CRLF,14. If
only a line feed is wanted, use: XOP @LF,14.

8.8.2.2 Hexadecimal I/O

Three XOPs handle hexadecimal numbers:

- Write one hexadecimal character
- Read a four-digit hexadecimal word
- Write four hexadecimal characters

XOP 8
XOP 9
XOP 10

8 - 28

Using the message block in paragraph 8.8.2.1, an example code segment
might be:

*ERROR ROUTINE
ERROR XOP @MSG4,14 START ERROR LINE

XOP R1,10 PRINT CORRECT EXPECTED VALUE
XOP @MSG5,14 MORE ERROR LINE
XOP R2,10 PRINT ERRORED RCV VALUE
XOP @CRLF,14 DO CARRIAGE RETURN/LINE FEED
XOP @LF,14 ONE MORE LF FOR DOUBLE SPACE

XOP 8 is actually called four times by XOP 10, after positioning the
next digit to be written into the least significant four bits of the
Work Register.

The following shows how to input values to a program by asking for
inputs from the terminal:

GET XOP R4,9 CALL.TO GET HEX # ROUTINE
DATA NULL,ERROR NO INPUT/BAD INPUT ADDRESSES

OK A R3,R4 ADD OLD NUMBER IN
JMP XXX CONTINUE PROGRAM

NULL LI R4,>3AF1 LOAD DEFAULT VALUE
XOP @DEFMSG,14 PRINT DEFAULT MESSAGE
JMP OK

ERROR XOP @ERRMSG,14 PRINT ERROR MSG
JMP GET TRY AGAIN

DEFMSG TEXT 'DEFAULT USED'
BYTE 0

ERRMSG TEXT 'ERROR: USE 0-9, A-F ONLY'
BYTE 0

Note that the XOP 9 routine stores only the last four digits typed
before the termination character (delimiter) is typed. This means if a
wrong number is entered, continue typing until four correct digits are
entered; then type a delimiter (space, carriage return, or minus
sign). Typing fewer than four digits total (but at least one digit)
causes leading zeroes to be inserted. Typing only a delimiter gives
control to the first address following the XOP, and typing an illegal
character at any time causes control to go to the address specified in
the second word following the XOP call.

8 - 29

8.9 INTERRUPTS AND XOPs

8.9.1 Interrupt and XOP Linking Areas

When an interrupt or XOP instruction is executed, program control is
transferred using the WP and PC vectors located in lower memory.
Interrupt vectors are contained in memory addresses >0000 to >0013;
and XOP vectors are contained in memory addresses >0040 to >007F.
User-available interrupt and XOP vectors are preprogrammed in the
EPROM chip with WP and PC values that allow the user to implement
interrupt service routines (ISRs) and XOP service routines (XSRs).
This includes programming an intermediate linking area as well as the
ISR or XSR code.

When an interrupt or XOP is executed, it first passes control to the
vectors which point to the linking area. The linking area directs
execution to the actual ISR or XSR. The linking areas are shown in
Table 8-5. The linking area is designed to leave as much space free as
possible when not using all the interrupts. that is, the most
frequently used areas are butted up against EVMBUG area, while the
least frequently used areas extend downward into RAM.

Return from the ISR or XSR is through return vectors in R13, R14, and
R15 at the ISR or XSR workspace and at the linking area workspace.

How to program these linking areas is explained in the following
paragraphs.

8.9.1.1 Interrupt Linking Areas

When one of the programmable interrupts (INT1 - INT4) is executed, it
traps to an interrupt linking area in RAM. Each linking area consists
of six words (12 bytes) as shown in Figures 8-11 and 8-12. The first
three words contain the last three registers of the called interrupt
vector workspace (R13, R14, and R15). The second three words, located
at the interrupt vector PC address, are intended to be programmed by
the user to contain code for a BLWP instruction, a second word for the
BLWP destination address, and an RTWP instruction code (all three
words to be entered by the user). When the ISR is completed, control
returns to this linking area's three registers (R13-R15), then the
BLWP instruction (at the PC vector address) is executed using the M.A.
provided by the user. The BLWP instruction consists of two words, the
BLWP operator and the destination address; the destination address
points to a two-word area also programmed by the user.

8 - 30

TABLE 8-5. PREPROGRAMMED INTERRUPT AND USER XOP TRAP VECTORS.

NOTE: Interrupt 4 is used by the timers at the TMS 9902.

Memory Address. Interrupt WP PC

0000 INTO ECOO 022E
0004 INT1 FOD6 FOFO
0008 INT2 FOCA FOEA
000C INT3 FOBE FODE
0010 INT4 FOB2 FOD2

Memory Address Interrupt WP PC

0040 XOPO FOAC FOBE
0044 X0P1 FO9E FOBO
0048 X0P2 F090 FOA2
004C X0P3 F082 F094
0050 XOP4 F074 F086
0054 XOP5 F066 F078
0058 XOP6 F058 FO6A
005C XOP7 FO4A FO5C

8 - 31

TABLE 8-6. INTERRUPT AND USER XOP LINKING AREAS.

MEMORY
ADDRESS 0-1 2-3 4-5 6-7 8-9 A-B C-D E-F

F050 XOP7 xop7
F060 XOP7 XOP7 XOP7 XOP7 XOP7 xop6 xop6 x0p6
F070 x0p6 xop6 xop6 XOP6 XOPS XOP5 XOP5 XOP5
F080 X0P5 XOP5 XOP5 x0p4 x0p4 x0p4 xop4 XOP4
F090 xop4 xop4 XOP3 XOP3 XOP3 XOP3 xop3 XOP3
FOAO XOP3 XOP2 XOP2 XOP2 XOP2 XOP2 XOP2 XOP2
FOBO XOP1 XOP1 XOP1 XOP1 XOP1 XOP1 xopl xop0
F0c0 XOPO XOPO XOPO XOPO XOPO XOPO INT4 INT4
FODO INT4 INT4 INT4 INT4 INT3 INT3 INT3 INT3
FOEO INT3 INT3 INT2 INT2 INT2 INT2 INT2 INT2
FOFO INT1 INT1 INT1 INT1 INT1 INT1

Return from the interrupt service routine is through the RTWP
instruction (routines's last instruction). This places the (previous)
WP and PC values at the time of the BLWP instruction (in the six-word
linking area) into the WP and PC registers. The RTWP code that follows
the BLWP instruction will now be executed, causing a second return
routine to occur, this time to the interrupted program using the
return values in R13, R14, and R15 of the interrupt link area. This is
shown graphically in Figure 8-12.

8 - 32

F006
FIRST REGISTER

IN WORKSPACE

INTERRUPT NO. 1

RECOGNIZED RO

6-WORD INTERRUPT LINK AREA

PC
M.A.t 0000

0002
11111117311E

0004 FOOS

1•11221M R13 (OLD WPI

/ INTERRUPT

VECTORS IN

EPROM

0

R14 (OLD PC)

R15 (OLD ST)

INTERRUPTED

PROGRAM

XXXX

YYYY

R13 FORS

R14 FOEE

R15 (OLD ST)

ZZZZ

RTWP

0

1,2 INTERRUPT EXECUTION TRAPS TO 6-WORD INTERRUPT LINK AREA.

3,4 BLWP EXECUTED TO 2-WORD VECTORS TO INTERRUPT SERVICE ROUTINE (ISR)

5 RTWP FROM ISR TRAPS BACK TO 6-WORD LINK AREA.

6 RTWP FROM LINK AREA RETURNS BACK TO INTERRUPTED PROGRAM.

INTERRUPT SERVICE ROUTINE

FIGURE 8-12. INTERRUPT SEQUENCE.

8 - 33

Each interrupt linking area is set up so that it can be programmed in
this manner. In summary, each six-word linking area can be programmed
as follows:

- Determine the location of the linking area, as shown
by the WP and PC vectors in Table 8-4.

- The PC vector will point to the last three words of
the six-word area. The user must program these three
words respectively, with >0420 for a BLWP
instruction, the address (BLWP operand) of the
2-word vector pointing to the interrupt service
routine, and >0380 for an RTWP instruction, as shown
in Figure 8-13.

- At the vector address for the BLWP operand, place
the WP and PC values respectively of the interrupt
handler.

8 - 34

EXAMPLE USING INT1 LINKING AREA (WP = FOD6, PC = FOEA)

M.A.

FOD6

•
•
•

(ACTUAL ADDRESS OF RO OF INTERRUPT

R13 (OLD WP)

R15 (OLD ST)

R14 (OLD PC) }
USED TO SAVE RETURN VALUES

(TO INTERRUPTED PROGRAM)

0420 (BLWP) INT1 VECTOR PC ADDRESS (CONTAINS BLWP)

XXXX ADDRESS OF 2-WORD VECTOR POINTING
TO WP AND PC VALUES OF ISR

0380 (RTWP) RETURN PC VALUE IN ISR POINTS TO THIS
RTWP INSTRUCTION

FOE4

FF76

F F78

TO BE FF7A

PROGRAMMED FF7C

BY USER FF7E

NOTE

DO NOT USE RO-R12 OF THE LINKING AREA WORKSPACE,

BECAUSE THE OVERLAPPING STRUCTURE WILL DESTROY

THE CONTENTS OF A LINKING AREA FOR ANOTHER INTER-

RUPT OR XOP.

FIGURE 8-13. SIX-WORD INTERRUPT LINKING AREA.

8 - 35

Coding to program the linkage to the interrupt service routine is as
follows (sample only):

*PROGRAM POINTER TO INT1 SERVICE ROUTINE FOLLOWING BLWP INSTRUCTION
AORG >FFEA INT1 PC VECTOR ADDRESS
DATA >0420 HEX VALUE OF BLWP OP CODE
DATA >ED00 LOCATION OF 2-WORD VECTORS TO ISR (EXAMPLE)
DATA >0380 HEX VALUE OF RTWP OP CODE

*PROGRAM POINTER TO 2-WORD VECTORS TO INTERRUPT SERVICE ROUTINE
(EXAMPLE)

AORG >ED00
DATA >EE00 WP OF INTERRUPT SERVICE ROUTINE (EXAMPLE)
DATA >ED04 PC OF INTERRUPT SERVICE ROUTINE (EXAMPLE)

*INT1 ISR FOLLOWS (BEGINS AT M.A. >ED04)

The interrupt service routine which begins at M.A. >ED04 will
terminate with an RTWP instruction.

8.9.1.2 XOP Linking Area

The XOP linking area contains seven two-byte words. The first, second,
and the fourth words must be programmed by the user. Each XOP vector
pair contains the pointer to the new WP in the first word, and a
pointer to the new PC in the second word. These point to the first
instruction to be executed..

In the seven-word XOP linking area, the first word is the destination
of the XOP PC vector. The last three words are the final three
registers (R13, R14, and R15) of the linking area workspace which will
contain the return vectors back to the program that called the XOP.
The third word of the seven-word area is R11, which contains the
parameter being passed to the XOP service routine. This is shown in
Figure 8-14.

8 - 36

M.A.

F090

•
•
•

TO BE

PROGRAMMED

BY USER

0420 (BLWP)

YYYY

R11 (PARAMETER)

0380 (RTWP)

R13 (OLD WP)

R14 (OLD PC)

R15 (OLD ST)

FOA2

FOA4

FOA6

FOA8

FOAA

FOAE

•FOAE

EXAMPLE USING XOP 2 LINKING AREA (WP = FF48, PC = FF5A)

(ACTUAL ADDRESS OF RO OF XOP2

VECTOR WP)

XOP2 VECTOR PC POINTS TO HERE

POINTS TO XSR WP & PC VECTORS

XOP SOURCE ADDR. PARAMETER

RTWP BACK TO CALLING PROGRAM

}
USED TO SAVE RETURN VALUES

(TO INTERRUPTED PROGRAM)

FIGURE 8-14. SEVEN-WORD XOP INTERRUPT LINKING AREA.

For example, when XOP2 is executed, the PC vector points to the BLWP
instruction shown at M.A. >F0A2 in Figure 8-14. This executes,
transferring control to the pre-programmed WP and PC values at the
address in the next word (YYYY, as shown in Figure 8-14). To obtain
the parameter passed to R11 of the vector WP (M.A. >F0A6 in Figure
8-13), use the following code in the XOP service routine:

MOV *R14+,R1 MOVE PARAMETER TO R1

This moves the parameter to R1 from the old R11 (the old PC value in
R14 was pointing to this address following the BLWP instruction
immediately above it, effectively to R11), and increments the XOP

8 - 37

service routine PC value in its R14 to the RTWP instruction at M.A.
>F0A8. Thus, an RTWP return from the XOP service routine will branch
back to the RTWP instruction at memory address >F0A8, which returns
control back to the instruction following the XOP.

In summary, the seven-word XOP linking area can be programmed as
follows :

- Determine the value of the PC vector for the XOP, as
shown in Table 8-4.

- The PC value will point to the first word of the
seven-word linkage area. The user must program three
of the first four words of this area as follows:
>0420 for a BLWP instruction, the address of the
two-word vector that points to the XOP service
routine, ignore the third word, and, >0380 for an
RTWP instruction in the fourth word.

- At the address of the BLWP destination in the second
word, place the WP and PC values respectively to the
XOP service routine.

An example of coding to program the XOP linkage for XOP2, as shown in
Figure 8-14, is as follows:

• PROGRAM POINTER TO XOP SERVICE ROUTINE AT XOP2 LINK AREA
AORG >FF5A XOP2 PC VECTOR ADDRESS
DATA >0420 HEX VALUE OF BLWP ADDRESS
DATA >FA00 LOCATION OF 2-WORD VECTORS TO XSR (EXAMPLE)
DATA 0 IGNORE
DATA >0380 HEX VALUE OF RTWP CODE

• PROGRAM POINTER TO 2-WORD VECOTRS TO XOP2
• SERVICE ROUTINE (EXAMPLE)

AORG >FA00 LOCATION OF VECTORS
DATA >FB00 WP OF XOP SERVICE ROUTINE (EXAMPLE)
DATA >FA04 PC OF XOP SERVICE ROUTINE (EXAMPLE)

XSR CODE FOLLOWS (BEGINS AT M.A. >FA04)

8 - 38

At the XOP service routine, the following code uses the PC return
value (in R14 of the XOP service routine workspace) to obtain the
parameter in R11 (in the link area), as well as set the return PC
value in R14 (in the XOP service routine workspace) to the RTWP in the
link area:

MOV *R14+,R1 MOVE OLD Rll CONTENTS
TO R1 OF XOP SERVICE ROUTINE

Now, R14 points to the RTWP instruction in the link area. The last
instruction in the XOP service routine is RTWP. RTWP execution causes
a return to the link area, where a second RTWP executes, returning
control to the next instruction following the XOP.

8.10 TMS 9995 INTERVAL TIMER INTERRUPT PROGRAM

A Detailed discussion as to how the TMS 9995 Decrementer is configured
to act an interval timer can be found in the TMS 9995 Data Manual.

There are several possible sequences of coding that can program and
enable the Interrupt 3 interval timer, and since the timer has a
maximum period of 87.25 milliseconds before issuing an interrupt, the
programmer must decide whether to set the interval period in the
calling program or in the code handling the interrupt. If the
interrupt period desired is longer the 87.25 milliseconds then it may
be advantageous to reset the timer in the interrupt subroutine, which
also triggers the interrupt and returns control back to the
interrupted program. In any case, the timer must be initially set and
triggered following the general sequence below.

1. Set Flag Register CRU address for the TMS 9995 in
bits 0 to 14 of R12.

2. Set up the Interrupt 3 linking area.

3. Set the Status Register interrupt mask to a value
of 3 or greater.

4. Set the 9995 RAM address for the Decrementer to
the value of the interval desired (bits 0 to 15).

5. Set the 9995 FLAG1 to 1 to enable the Decrementer
countdown.

8 - 39

The TMS
rate of 1
clock).
(65,535)

9995 Decrementer decrements the value set in Step 4 at the
every 4 clock cycles (approximately 750 K Hz with a 3 MHz
The maximum interval register value of all ones in 16 bits
takes approximately 87.25 milliseconds to decrement to zero.

The code in Figure 8-15 is an example of a code to set up and call the
TMS 9995 interval timer and also the code of the interrupt handling
subroutine. Note that the calling program first clears the counting
register (RO) of the interrupt workspace, then it sets up the
interrupt masks at the 9995 after setting the CRU address of the 9995
Flag Register in R12. Then the calling program sets an initial value
in the timer register. Because the desired output on the terminal is a
message every 15 seconds, the miminum 9995 decrement count program is
set up in the calling program while the interrupt handler routine is
responsible for tabulation and clearing of interrupts after they
occur. The handler keeps track of the number of intervals to determine
the 15 second count.

At the bottom of the figure is the interrupt linking area. Since all
the code in this figure is loaded as if at absolute memory address
values (using the AORG assembler directive), data statements are used
here at the appropriate memory address. This program can be loaded and
executed by placing the machine-language assembler output in the third
column at the address shown in the second column. Then execute with
the program start at memory address >EDO°.

The TMS 9995 can also be used as an event timer by starting the
counter at the beginning of an interval and reading the counter after
the event has occurred.

8 - 40

FFFA
TEED

0000
0001
000C

THIS PROGRv, CAUSES AN INTERRUPT THROUGH INT3
EVERY 15 SECONDS USING THE DECREMENT COUNTER AS
AN INTERVAL TIMER IN THE Tm59995. THE AORG
DIRECTIVE CAUSES THE CODE TO HE ASSEMBLED BY
THE TYS9995 EvM SYSHOLIC ASSEMBLER BEGINNING
AT THE ADDRESS SPECIFIED. THIS PROGRAM CAN BE
EXECUTED BY LOADING THE PROGRAM WITH THE EVmBUG
"IM" MAMAND AND EXECUTED WITH THE "EX" COMMAND
AT THE PC ADDRESS >1000. LOAD OBJECT IN THE
THIRD COLUMN OF THE LISTING AT ADDRESS IN
2ND COLUMN.

ICJ 'TIMER'

* REGISTER EQUATES
*

E4U 0
EIAT 1
EGO 12

* WORK AREA DEFINITIONS

M.A. FOR 9995 DECREMENTER
9995 FLAGO CRU ADDRESS

* PROGRAM CALLING THE INTERRUPT
*

AORG >1000 BEGIN ASSEMBLY AT M.A. >ED00
LAPI >ED30 DEFINE CALLING 'FROG WORKSPACE ADORE

LI R1.>8424 SET RI TO CLOCK CNT OF 62,500

CLR w>ED30 CLEAR INTERRUPT REG 0

Muv kl,.)DECADR TRANSFER CLK CNT TO DECREMENTER ADD

LI R12,FLAGO 9995 CRU FLAG ADDRESS IN R12

S,sZ 0 CONFIG 9995 DEC AS AN INTERVAL TIME
LIRI 3 ENABLE THE 9995 INT3

S80 1 START THE DECERMENTER (FLAG1->1)
JNP LOOP HERE, WAIT FOR INTERRUPT

*

BEGIN ASSEMBLY AT M.A. >EE00
BLWP WP VECTOR FOR INT3
BLWP PC VECTOR FOR INT3
DISABLE INTERRUPTS

Cl R0,180 NU INTERRUPTS = 180 = 15 SECONDS?

JED 14,SO YES, PRINT MESSAGE
INC RO NO. INCREMENT THE INTERRUPT COUNTER
St!Z 1 DISABLE DECERMENTER (FLAGI->O)
MO(R1,4DECADR RELOAD STARTING VALUE IN DECREMENTE

0001 0000
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030 EDO()
0031 EDO()

ED02
0032 ED04

E006
0033 ED08

EDOA
0034 EDOC

EDOE
0035 ED10

E012
0036 ED14
0037 ED16

ED18
0038 EDIA
0039 EDIC
0040
0041
0042
0043 EE00
0044 EE00
0045 EEO
0046 EE04

EE06
0047 EE08

EFOA
0048 EEOC
0049 EEOE
0050 EE10
0051 EE12

EE14

02E0
ED30
0201
F424
04E0
ED30
C801
FFFA
020C
1EE0
1E00
0300
0003
1001
TOFF

81)30
EE04
0300
0000
0280
0084
1308
0580
1101
0801
FFFA

HO
RI
R12
*

DECADR >FFFA
FLAGO EGO >1t.E0
*

* INTERRUPT SUBROUTINE
*

AuRG >ELOO
DATA >E030
DATA >EE04

START LIMI U

FIGURE 8-15. EXAMPLE OF CODE TO RUN TMS 9995 INTERVAL TIMER. (1 of 2)

8 - 41

LIM1 3

860 1
RIAP
XUP ,iiMTExT,14

CLR RO
B &START

REENABLE THE 9995 INT3

RESTART THE DECREMENTER (FLAG1—>1)
RETURN TO CALLING PROGRAM AND WAIT
WRITE MESSAGE

RESET INTERRUPT COUNTER
RETURN TO SfART OF INTERRUPT ROUTIN

TLXT '15 SECONDS HAVE ELAPSED.

0052 EE16 0300
LEIB 0003

0053 EE1A 1001
0054 EE1C 0380
0055 EETE 2FAO ASG

EE20 EE28
0056 EE22 0400
0057 FE24 0460

EE26 EE04
0058 EF2P, 31 ATEXT

EE29 35
EE2A 20
EE28 53
EE2C 45
EE2D 43
EE2L 4F
EF2F 4E
EE30 40
E031 53
FF32 20
EE33 48
EE34 41
EF3S 56
EE30 45
EE31 20
EE3H 45
EE39 4C
EE3A 41
EF3U 50
EE3C 53
EE31: 45
EE31 44
EE3E 21

0059 EE4u 0707
EE42 0707

0060 FE44 00
1145 OA
EE46 00
EE47 00

DATA >0707.>0707

HITE >D.>A,0,0

0061
0062
0063
0064 FOOL
0065 FODE 0420
0006 FOEO EE00
0067 FOE2 0380
0008
NO tRROHS.

*
* INTERUPT LINK AREA PROGRAmMING
*

AuRG >F0DE BEGIN ASSEMBLY AT M.A. >FOOL
DATA >0420 BOW INSTRUCTION CODE
DATA >1100 BOW VECTORS LOCATION
DATA >0380 RTAP INSTRUCTION CODE
END

NO aARNINGS

FIGURE 8-15. EXAMPLE OF CODE TO RUN TMS 9995 INTERVAL TIMER. (2 of 2)

8 - 42

8.11 MOVE BLOCK FOLLOWING PASSING OF PARAMETERS

The coding in Figure 8-16 is an example of a called subroutine that
will move a block of data from one location to another. The three
parameters of (1) Move-From-Address, (2) Move-To-Address, and (3)
Length-Of-Block, are provided to the subroutine either through
Registers 0 to 2 or by the three words following the calling program's
BLWP instruction, or by a combination of both. The block move
subroutine first interrogates the words following the calling
program's BLWP instruction; if a zero is found, it looks in a register
for the parameter. In Figure 8-15, the calling program provides the
Move-From and Block-Length parameters in Register, and the Move-To
parameter in the second word following the BLWP instruction.

8 - 43

LI RO,>F100 MOVE-FROM ADDRESS

LI R2,125 MOVE 125 BYTES

BLWP @MOVBLK BRANCH TO SUBROUTINE

DATA 0 MOVE-FROM ADDR IN RO

DATA >F200 MOVE-TO ADDRESS

DATA 0 BYTE COUNT IN R2

(A) CALLING PROGRAM

MVBLK DATA >FF90,MVBLK1 WP, PC OF SUBROUTINE

MVBLK1 MOV 13,12 SAVE WP

MOV *14+,1 GET "FROM" ADR

JNE MVBLK2 NON-ZERO: PARM IN-LINE

MOV *13+,1 PICK UP FROM REG INSTEAD

MVBLK2 MOV *14+,2 GET "TO" ADR

JNE MVBLK3 PARM IN IN-LINE CODE

MOV *13+,2 GET FROM REGS

MVBLK3 MOV +14+,3 GET LENGTH

JNE MVBLK4 IN-LINE PARM

MOV *13,3 GET FROM REGS

MVBLK4 MOVB *1+,*2+ MOVE BYTE

DEC 3 ONE LESS TO GO

JNE MVBLK4 NOT DONE YET

MOV 12,13 RESTORE WP

RTWP RETURN TO CALLING PROGRAM

(B) MOVE BLOCK SUBROUTINE

FIGURE 8-16. MOVE BLOCK OF BYTES SAMPLE ROUTINE.

8.12 BLOCK-COMPARE SUBROUTINE

Figure 8-17 shows a sample block-compare subroutine which accepts
three parameters from the calling program in the same manner as the
block-move subroutine, Figure 8-15. This compare subroutine inspects
two strings, comparing successive bytes until an unequal byte is found
or until the specified string length is exhausted. The Status Register
bits in Register 15 are updated accordingly, and the subroutine
returns to the calling routine with the altered status bits, which may
be used immediately for conditional jump.

8 - 44

The sample calling program is at the top of Figure 8-17. Note that the
conditional jumps follow directly after the calling code, so the
calling program simply compares (through the subroutine) and jumps, in
the normal programming manner.

LI RO,>100 FIRST BLOCK START ADDRESS
LI R1,>F200 SECOND BLOCK START ADDRESS
BLWP @CMBLK BRANCH TO SUBROUTINE
DATA 0 START ADDR IN RO (1ST BLOCK)
DATA 0 START ADDR IN R1 (2ND BLOCK)
DATA 100 COMPARE 100 BYTES
JLE $+10 IF LESS THAN OR EQUAL, JUMP
JGT IF GREATER THAN, JUMP

(A) CALLING PROGRAM

CMBLK DATA >FF90,CMBLK1 WP, PC OF SUBROUTINE
CMBLK1 MOV 13,12 SAVE WP

MOV *14+,1 GET "A" ADR
JNE CMBLK2
MOV *13+,1 GET IN CALLER REG

CMBLK2 MOV *14+,2 GET "B" ADR
JNE CMBLK3
MOV *13+,2 GET FROM IN CALLER REG

CMBLK3 MOV *14+,3 GET LENGTH
JNE CMBLK4
MOV *13,3 GET FROM REG

CMBLK4 CB *1+,*2+ LOOK AT STRINGS
JNE CMBLK5 FOUND UNEQUAL
DEC 3 ONE LESS BYTE
JNE CMBLK4 STILL MORE TO LOOK AT

CMBLK5 STST 15 STORE FINAL STATUS
RTWP RETURN TO CALLING PROGRAM

(B) COMPARE BLOCK SUBROUTINE

FIGURE 8-17. COMPARE BLOCKS OF BYTES SAMPLE SUBROUTINE.

8 - 45

8 13 USING MAIN AND AUXILIARY TMS 9902s FOR I/O

The EVMBUG XOP routines (XOP8 to 14) are written to accomplish input
and output through a TMS 9902. When the EVMBUG monitor is entered, the
address for all I/O is set to the main TMS 9902. Any time a user
program branches back into EVMBUG at address >0080, or when the RESET
function is activated, the CRU address is set to the main TMS 9902.
However, a user program may use all of the above-mentioned XOP calls
to program the auxiliary TMS 9902 in the system by first moving the
desired R12 base address to location >EC28. Figure 8-18 is a sample
program wherein two serial I/O ports are activated for conversation
with each other. Two terminals are assumed to be connected, one to EIA
Port 1 and one to Port 2, and the operators may type messages to each
other. This principle can be expanded to support any of a number of
TMS 9902s. (A variety of custom line interfaces may be used with a TMS
9902.)

The write-character XOP service routine first ensures that the
Request-to-Send signal is active. This signal is not deactivated by
EMVBUG, so that modem users will retain their data carrier. If a modem
user wishes to drop the data carrier, the affected TMS 9902 must be
addressed by the user program, and then the Request-to-Send signal
deactivated through the CRU.

Only the main TMS 9902, at CRU R12 base address >0000 is initialized
by EVMBUG; others in the system must be initialized by the user. Note
the first portion of the example program shown in Figure 8-20. Part of
EVMBUG's initialization is to sense the baud rate of the attached
terminal. If the baud rate is 110, 300, or 1200 baud, then the XOP
routine waits 200 milliseconds after transmitting a carriage return.
In addition, 1200 baud causes every character transmitted to be
followed by 25 milliseconds of delay time. Only at 2400 and 9600 baud
are characters transmitted without delays.

For 110, 300, and 1200 baud, the monitor ASRFLAG is set to one to
cause a 'wait state' following writing of a carriage return. If the
EVMBUG I/O XOP routines are used for the other I/O port, the state of
the monitor's ASRFLAG will also govern delay loops used by the
Write-Character XOP. The user should then swap out the contents of the
ASRFLAG, as listed in table 8-7.

8 - 46

TABLE 8-7. ASRFLAG VALUES.

ASRFLAG * RECOMMENDED
VALUE BAUD RATE

Positive No. 2400, 9600

Zero 110, 300

DESCRIPTION/RECOMMENDATION

No delays. Use for CRTs, modems.

Carriage Return Delay only.
Use for hardcopy terminals.

Negative No. 1200 Carriage Return and Character
padding delays. Use with "TNF"
command if termiinal is not a
TI ASR733.

* ASRFLAG located in RAM at Memory Address >EC44.

8 - 47

0001
0002
0002
0004
0005
0006

0000

IDT "TWOTRM`

TWO TERMINAL PROGRAM EXAMPLE
THIS ROUTINE INITIALIZES THE AUXILIARY I/O PORT
OF THE TM89995 MICROCOMPUTER. BOTH SERIAL

0007 # PORTS ARE THEN USED IN THE CONVERSATIONAL MODE
0008 WITH EACH OTHER. THE PROCEDURE IS TO INSPECT-
0009 Ur THE RECEIVE BUFFER BIT IN THE ADDRESSED TM59902.
0010 # TO SEE IF A CHARACTER HAS BEEN ASSEMBLED
0011 # IN THE UART. IF SO, IT IS ECHOED TO THE
0012 # ORIGINATING TERMINAL, AND THEN TRANSMITTED-
0012 # TO THE OTHER TERMINAL. THEN THE OTHER
0014 # TERMINALIS INSPECTED FOR A CHARACTER, ETC.
0015 # 1) THE AUXILIARY TM89902 -MUST BE INITIALIZED.
0016 # 2) THE OLD "ASR"-FLAG MUST BE SAVED.
0017 # AND A NEW ONE DETERMINED FOR THE
0018 # NEW TERMINAL (AUXILIARY PORT).
0019 3) EVERY WRITE OPERATION CONSISTS OF
0020 # MOVING THE DESIRED ADDRESS TO EVMBUG,
0021 # AND MOVING THE DESIRED "ASR"-FLAG TO EVMBUG.
0022
0023 0000 02E0 LWPI REGS USE SPARE SPACE AT END OF PROG

0002 0086'
0024 0004 020C LI 12,>0400 AUXILIARY PORT ADDRESS

0006 0400
0025 INITIALIZE AUXILIARY SERIAL PORT
0026 0008 1D1F SBO 31 RESET TIMING DELAY
0027 000A 1000 NOP RESET TIMING DELAY
0028 000C 3220 LDCR @CTL,8 LOAD CONTROL CHARACTER

000E 0082'
0029 0010 lEOD SBZ 12 BYPASS INTERVAL REGISTER
0030 0012 04C0 CLR 0 BAUD RATE LOOP COUNTER
0031 0014 0402 CLR 2 ASR FLAG FOR THIS PORT
0032 0016 IFOF TSTSP TB 15 LOOK AT RIN
0033 0018 13FE JEO TSTSP WAIT FOR USER TO TYPE SOMETHING
0034 001A 0580 SPLOOP INC 0 UP BAUD LOOP COUNTER
0035 0010 1FOF TB 15 RIN NOW HAS A SPACE:
0036 001E 16FD JNE SPLOOP DROP OUT ON A MARK
0037 0020 0201 LI 1, TABLE BAUD RATE TABLE

0022 00A2'
0038 NOW INSPECT BAUD RATE TABLE FOR A LOOP
0039 COUNT WHICH MATCHES, THE LOAD BAUD RATE.
0040 0024 3040 BDLOOP C 0,*1+ LOOK AT ATABEL LOOP COUNT
0041 0026 1202 JLE MATCH IF < OR = WE HAVE A MATCH
0042 0028 0501 INCT 1 SKIP BAD BAUD RATE, NEXT LOOP
0043 002A 10FC IMP BDLOOP LOOK AT NEXT LOOP COUNT
0044 002C 3311 MATCH LDCR *1,12 LOAD BAUD RATE CONTROL VALUE
0045 002E 0051 MOV *1,1 GET VALUE ITSELF
0046 0030 0201 CI 1,>01A0 1200 BAUD 7'

0032 0140
0047 0034 1103 JLT HIRATE NO, HIGHER BAUD RATE
0048 0036 1603 JNE BEGIN NO, LOWER BAUD RATE
0049 0038 0702 SETO 2 SET LOCAL ASR FLAG
0050 003A 1001 JMP BEGIN AND PRINT BEGIN MESSAGE
0051 003C 0582 HIRATE INC 2 MARK NO (CR> DELAY
0052 # THE AUXILIARY PORT IS NOW UP. PRINT GREETING.
0053 003E 0820 BEGIN MOV @PRT2,01XOPCRU AUX. PORT ADR. TO EVMBUG

0040 00440'
0042 EC2E

FIGURE 8-18. SAMPLE PROGRAM TO CONVERSE THROUGH MAIN AND AUXILIARY
TMS 9902s. (1 of 3)

8 - 48

0054 0044 COED NOV SAVE MAIN PORT ASR-FLAG
0046 EC44

0055 0048 0802 NOV 2,eASRFLG AUX. PORT ASR-FLAG
004A EC44

0056 004C 2F40 x0P 0,13 READ BY OLD INIT. CHAR.
0057 004E 2FAO XOP eBGNmSG,14 PRINT BEGIN MESSAGE

0050 0083'
0058 0052 C820 MOV @FRTI,exoPCRu MAIN PORT ADR TO EVMBUG

0054 009E'
0056 EC2E

005 0058 f803 MOV 3,@ASRFLG MAIN FORT ASR-FLAG
005A EC44

0060 005C XOP @BGNMSG,14 PRINT BEGIN MESSAGE HERE, TOO
005E 00B3'

0061 THIS IS THE MAIN LOOP.
0062 * FIRST ADDRESS MAIN PORT, THEN THE AUXILIARY PORT
0063 0060 C320 LOOP NOV @PRT1.12 ADDRESS FOR MAIN PORT

0062 009E'
0064 0064 1F15 TB 21 CHARACTER TYPED HERE
0065 0066 1608 JNE NEXT MO. TRY OTHER PORT
0066 0068 CSOC MOV 12,eXOPCRU YES, GIVE ADDRESS TO EVMBUG

006A EC2E
0067 006C C803 MOV 3,@ASRFLG MOVE ASR-FLAG

006E EC44
0068 0070 2ECO XOP 0,11 READ/ECHO CHAR TO ORIGINATING
004.9 0072 C820 NOV ePRT2,ex0PCRU AUXILIARY PORT ADDRESS

0074 0040'
0074 EC2E

0070 0078 0802 NOV 2,eASRFLG AUXILIARY PORT ASR-FLAG
007A EC44

0071 007C 2F00 XOP 0,12 WRITE CHARACTER TO OTHER TERMINAL
0072 007E 0320 NEXT NOV @PRT2,12 ADDRESS FOR AUXILIARY PORT

0080 0040'
0073 0082 1F15 TB 21 CHARACTER TYPED HERE
0074 0084 16ED JNE LOOP NO, TRY MAIN PORT
0075 0086 C80C MOV 12,eXOPCRU YES, GIVE ADDRESS TO EVMBUG

0088 EC2E
0076 008A C802 NOV 2,eASRFLG MOVE ASR-FLAG

0080: EC44
0077 008E 2ECO XOP 0,11 READ/ECHO CHAR TO ORIGINATING
0078 0090 0:320 NOV epRTI,ex0PCRu MAIN PORT ADDRESS

0092 009E'
0094 EC2E

0079 0096 0803 NOV 3,@ASRFLG MAIN PORT ASR-FLAG
0098 EC44

0080 009A 2F00 XOP 0,12 WRITE CHARACTER TO MAIN TERMINAL
0081 009C 10E1 .IMP LOOP
0082 *DATA AREA
0083 *
00P4 009E 0000 PRT1 DATA >0000 MAIN PORT R12 BASE ADDRESS
0085 0040 0400 PRT2 DATA >0400 AUXILIARY PORT RI2 BASE ADDRESS
0086 EC44 ASRFLG EOU `EC44 EVMBUG ASR FLAG ADDRESS
0087 EC2E x0pCRu EG'U ?EC2E EVMBUG XOP R12 ADDRESS
008: 0042 0010 TABLE DATA >I0,>34 9600 BAUD

0044 0034
0089 0046 0040 DATA >40,>D0 2400 BAUD

00AS 00D0
0090 0044 0200 - DATA >200, >40*) 300 BAUD

00AC 04DO
0091 00AE 0400 DATA >400,>6:;E: 110 BAUD

FIGURE 8-18. SAMPLE PROGRAM TO CONVERSE THROUGH MAIN AND AUXILIARY
TMS 9902s. (2 of 3)

8 - 49

00B0 06-3.8
oo~z 00a2 a22 on- BYTE ~62 p902 cowrnoL
oopo ooao oo aowmao BYTE -~01:1. -1 oA,~oo

ove4 oA
ooa5 vo

o094 o^e6 0000 Rsea DATA o.o,o,o.o,^.o.^,o.o,o.o.o.o,o.o
ooaa 0000
o^ao o^oo
0000 ovuo
000s o^vo
ooco 0000
o^c2 o^vo
0000 oouo
ovca 000v
oocu 0000
oocA ovvo
oocc 000n
oocs ovo^
0000 0000
0002 oouo
0004 0000

««95 ENE,
NO ERPFIRS, NF, WARNINGS

FIGURE 8—I8. SAMPLE PROGRAM TO CONVERSE THROUGH MAIN AND AUXILIARY
IMS 9902s. (3 of 3)

8-50

APPENDIX A

990 OBJECT RECORD FORMAT

A.1. GENERAL

The TMS 9995 uses the standard 990 family object record format.

The required object Code can be produced during execution of the TMS
9995 EVM assembler or on any assembler present on a 9900 host system.
This object format has a tag character for each 16-bit word 'of coding
which flags the loader to perform one of several operations.These
operations include:

- Load the code at a user-specified absolute address and
resolve relative addresses. (Most assemblers assemble a
program as if it were loaded at memory address >0000;
thus, relative addresses have to be resolved.

- Load entire program at a specific address.

- Set the program counter to the entry address after
loading.

- Check for checksum errors that would indicate a data error
in an object record.

A.2. STANDARD 990 OBJECT CODE

Standard 990 object code consists of a string of hexadecimal digits,
each representing four bits, as shown in Figure A-1, below:

A-1

TAG CHARACTERS

00000SAMPROG 90040C0000A0020BCO6D B000290042C0020A0024BC81BC002A7 F 21AF
A0028B024160000BCB416000260380A0OCAC0052C00A21302E0C003260200B0F0F7F1DEF
AOOD6BCOAOCOOCABO4C3BC16000OCCBC1A000ODOBC072B0281B2A00A00ECB02217F 151 F
AO0E EB0900606C1A00EAB1102A00F2B0543611F8B2C20C0032BC101B0B44BE0447F 18E F
A0100BDD6680003130282C00A2B11E0B03407F832F
200CE0010C 7FCABF

CHECKSUM FIELD

LENGTH OF RELOCATABLE CODE

RELOCATABLE ENTRY ADDRESS (BEGINNING OF EXECUTABLE CODE)

END OF OBJECT CODE MARKER

FIGURE A-1. SAMPLE OBJECT CODE.

The object record consists of a number of tag characters, each
followed by one or two fields, as defined in Table A-1. The first
character of a record is the first tag character, which tells the
loader which field or pair of fields follows the tag. The next tag
character follows the end of the field or pair of fields associated
with the preceeding tag character. When the assembler has no more data
for the record, the assembler writes the tag character 7, followed by
the checksum field, and the tag character F, which requires no fields.
The assembler then fills the rest of the record with blanks, and
begins a new record with the appropriate tag character.

A-2

TABLE A-1. OBJECT OUTPUT TAGS SUPPLIED BY ASSEMBLERS.

TAG
CHARACTER

HEXADECIMAL FIELD
(FOUR CHARACTERS)

SECOND FIELD

0 Length of all relo- 8-char program
catable code identifier

1 Entry address None

2 Entry Address None

3 Loc of last
appearance of
symbol

6-char symbol

4 Loc of last
appearance of
symbol

6-char symbol

5 Location 6-char symbol

6 Location 6-char symbol

7 Checksum for
current record

None

8 Ignore checksum None

9 Load address None

A Load address None

B Data None

C Data None

MEANING

Program
start

Absolute
entry
address

Relocatable
entry
address

External
ref last
used in
relocatable
code

External
ref last
used in
abs code

Relocatable
external
definition

Absolute
external
definition

Checksum

Do not
checksum
for error

Absolute
load add

Relocatable
load add

Absolute
data
Relocatable
data

A-3

D Load bias value* None Load point
specified

F None None End-of-record

G Location 6-char symbol Relocatable
symbol
definition

H Locatio- 6-char symbol Absolute
symbol
definition

Tag character 0 is followed by two fields. The first field contains
the number of bytes of relocatable code, and the second field contains
the program identifier assigned to the program by an IDT assembler
directive. When no IDT directive is entered, the field contains
blanks. The loader uses the program identifier to identify the
program, and the number of bytes of relocatable code to determine the
load bias for the next module, or program. The PX9ASM assembler is
unable to determine the value for the first field until the entire
module has been assembled, so PX9ASM places a tag character 0,
followed by a zero field, and the program identifier at the beginning
of the object code file. At the end of the file, PX9ASM places another
tag character zero followed by the number of bytes of relocatable code
and eight blanks.

Tag characters 3 and 4 are used for external references. Tag character
3 is used when the last appearance of the symbol in the second field
is a relocatable code. Tag character 4 is used when the last
appearance of the symbol is absolute code. The hexadecimal field
contains the location of the last appearance. The symbol in the second
field is the external reference. Both fields are used by the linking
loader to provide the desired linking to the external reference.

For each external reference in a program, there is a tag character in
the object code, with a location or an absolute zero, and the symbol
that is referenced. When the object code field contains absolute zero,
no location in the program requires the address that corresponds to
the reference (an IDT character string, for example). Otherwise, the
address corresponding to the reference will be placed in the location
specified in the object code by the linking loader. The location
specified in the object code similarly contains absolute zero or
another location. When it contains absolute zero, no further linking
is required. When it contains a location, the address corresponding to
the reference will be placed in that address by the linking loader.
The location of each appearance of a reference in a program contains
either an absolute zero or another location into which the linking
loader will place the referenced address.

A-4

Tag characters 5 and 6 are used for external definitions. Tag
character 5 is used when the location is relocatable. Tag character 6
is used when the location is absolute. Both fields are used by the
linking loader to provide the desired linking to the external
definition. The second field contains the symbol of the external
definition.

Tag character 7 preceedes the checksum, which is an error detection
word. The checksum is formed as the record is being written. It is the
2's complement of the sum of the 8-bit ASCII values of the characters
of the record from the first tag of the record through the checksum
tag 7. If the tag character 7 is replaced by an 8, the checksum will
be ignored. The 8 tag can be used when object code is changed in
editing and it is desired to ignore checksum.

Tag characters 9 and A are used with load addresses for data that
follows. Tag character 9 is used when the load address is absolute.
Tag character A is used when the load address is relocatable. The
hexadecimal field contains the address at which the following data
word is to be loaded. A load address is required for a data word that
is to be placed in memory at some address other than the next address.
The load address is used by the loader.

Tag characters B and C are used with data words. Tag character B is
used when the data is absolute; an instruction word or a word that
contains text characters or absolute constants, for example. Tag
character C is used for a word that contains a relocatable address.
The hexadecimal field contains the data word. The loader places the
word in the memory location specified in the preceeding load address
field, or in the memory location that follows the preceeding data
word.

To have object code loaded at a specific memory address, preceed the
object program with the D tag, followed by the desired memory address
(e.g., DFD00).

Tag character F indicates the end of record. It may be followed by
blanks.

Tag characters G and H are used when the symbol table option is
specified with other 990 assemblers. Tag character G is used when the
location or value of the symbol is relocatable, and tag character H is
used when the location or value of the symbol is absolute. The first
field contains the location or value of the symbol, and the second
field contains the symbol to which the location is assigned.

The last record of an object code file has a colon (:) in the first

A-5

character position of the record, followed by blanks. This record is
referred to as an end-of-module separator record.

EXAMPLE:

Figure 5-2, Section 5 is an example of an assembler source listing and
corresponding object code. A comparison of the object tag characters
and fields with the machine code in the source listing will show how
object code is constructed for use by the loader.

SOURCE STATEMENT NO.

LOCATION COUNTER (ADDRESS RELATIVE TO FIRST OBJECT BYTE)

/ MACHINE CODE

SAMPLE SDSMAC 945278 **

0001 IDT 'SAMPLE'
002 0000 0006' DATA WSPACE

03 0002 008A' DATA START
0004 0004 0000 DATA 0
0005 0006 WSPACE BSS 32
0006 0026 TABLE BSS 100
0007 008A START
0008 008A 04CC CLR 12
0009 008C 04C0 CLR 0
0010 008E 0202 LI 2, TABLE

0090 0026'
0011 0092 0800 MOV 0, @TABLE+2

0094 0028'
0012 0096 1001 JMP $+4

0013 0098 LOOP
0014 0098 0204 LI 4, >1234

009A 1234 •
0015 009C 0244 ANDI 4, >FEED

009E FEED
0016 00A0 DC84 MOVB 4, .2+
0017 00A2 0205 LI 5, >5555

00A4 5555
0018 00A6 C805 MOV 5, @TABLE

00A8 0026'
0019 END

NO ERRORS

FIGURE A-2. SAMPLE ASSEMBLER SOURCE LISTING AND OBJECT CODE

A-6

APPENDIX B

ASCII CODE

TABLE B-1. ASCII CONTROL CODES

CONTROL
BINARY
CODE

HEXADECIMAL
CODE

NUL - Null 000 0000 00
SOH - Start of heading 000 0001 01
STX - Start of text 000 0010 02
ETX - End of text 000 0011 03
EOT - End of transmission 000 0100 04
ENQ - Enquiry 000 0101 05
ACK - Acknowledge 000 0110 06
BEL - Bell 000 0111 07
BS - Backspace 000 1000 08
HT - Horizontal tabulation 000 1001 09
LF - Line feed 000 1010 OA
VT - Vertical tab 000 1011 OB
FF - Form feed 000 1100 OC
CR - Carriage Return 000 1101 OD
SO - Shift out 000 1110 OE
SI - Shift in 000 1111 OF
DLE - Data link escape 001 0000 10
DC1 - Device control 1 001 0001 11
DC2 - Device control 2 001 0010 12
DC3 - Device control 3 001 0011 13
DC4 - Device control 4 (stop) 001 0100 14
NAK - Negative acknowledge 001 0101 15
SYN - Synchronous idle 001 0110 16
ETB - End of transmission bloc 001 0111 17
CAN - Cancel 001 1000 18
EM - End of medium 001 1001 19
SUB - Substitute 001 1010 lA
ESC - Escape 001 1011 1B
FS - File separator 001 1100 1C
GS - Group separator 001 1101 1D
RS - Record separator 001 1110 lE
US - Unit separator 001 1111 1F

DEL - Delete/rubout 111 1111 7F

NOTE

Hexadecimal codes 01-1F can be generated using most
keyboard devices with the CONTROL (SHIFT) key pressed
while pressing another keyboard key. For example,
hexadecimal codes 01-19 can be generated on the TMS 9995
using the SHIFT key and keys A through Y respectively,
with the exception of keys V and X, which have shift
functions dedicated to display right and cancel
respectively.

TABLE B-2. ASCII CHARACTER CODES

ASCII BINARY HEX ASCII
CHARACTER CODE CODE CHARACTER

BINARY
CODE

HEX
CODE

Space 010 0000 20 @ 100 0000 40
! 010 0001 21 A 100 0001 41
"(dbl quote) 010 0010 22 B 100 0010 42
010 0011 23 C 100 0011 43
$ 010 0100 24 D 100 0100 44
% 010 0101 25 E 100 0101 45
& 010 0110 26 F 100 0110 46
'(sgl quote) 010 0111 27 G 100 0111 47
(010 1000 28 H 100 1000 48
) 010 1001 29 I 100 1001 49
*(asterisk) 010 1010 2A J 100 1010 4A
+ 010 1011 2B K 100 1011 4B
,(comma) 010 1100 2C L 100 1101 4C
-(minus) 010 1101 2D M 100 1101 4D
.(period) 010 1110 2E N 100 1110 4E
/ 010 1111 2F 0 100 1111 4F
0 011 0000 30 P 101 0000 50
1 011 0001 31 Q 101 0001 51
2 011 0010 32 R 101 0010 52
3 011 0011 33 S 101 0011 53
4 011 0100 34 T 101 0100 54
5 011 0101 35 U 101 0101 55
6 011 0110 36 V 101 0110 56
7 011 0111 37 W 101 0111 57
8 011 1000 38 X 101 1000 58
9 011 1001 39 Y 101 1001 59

011 1010 3A Z 101 1010 5A
; 011 1011 3B [101 1011 5B
< 011 1100 3C 101 1100 5C

011 1101 3D] 101 1101 5D
> 011 1110 3E 101 1110 5E
? 011 1111 3F -(underin) 101 1111 5F

B-2

TABLE B-2. ASCII CHARACTER CODES (CONTINUED)

ASCII BINARY HEX ASCII BINARY
CHARACTER CODE. CODE CHARACTER CODE

HEX
CODE

110 0000 60 p 111 0000 70
a 110 0001 61 q 111 0001 71
b 110 0010 62 r 111 0010 72
c 110 0011 63 s 111 0011 73
d 110 0100 64 t 111 0100 74
e 110 0101 65 u 111 0101 75
f 110 0110 66 v 111 0110 76
g 110 0111 67 w 111 0111 77
h 110 1000 68 x 111 1000 78
i 110 1001 69 y 111 1001 79
j 110 1010 6A z 111

111
1010 7A

k 110 1011 6B 1011 7B
1 110 1100 6C 111 1100 7C
m 110 1101 6D 111 1101 7D
n 110 1110 6E 111 1110 7E
o 110 1111 6F

B-3

APPENDIX C

BINARY, DECIMAL AND HEXADECIMAL NUMBERING SYSTEMS

C.1. GENERAL

This appendix covers the numbering systems which are used throughout
this manual:

- BINARY (Base 2)

- DECIMAL (Base 10)

- HEXADECIMAL (Base 16)

C.2 POSITIVE NUMBERS

C.2.1 Decimal (Base 10)

When a numerical quantity is viewed from right to left, the right-most
digit represents the base number to the exponent 0. The next digit
represents the base number to the exponent 1, the next to the exponent
2, then exponent 3, and so on. For example, using the base 10
(decimal):

1,000,000
100,000

11,
 10,000

1000 100 10 1
x, xxx , x x x

OR

106 105 104 103 102 101 100

x, X X X,

For example, 75,265 can be broken down as follows:

C-1

T 1x20 =1x 1 = 1

1 x 21= 1 x 2 = 2

Ox 22= 0 x 4 = 0

1 x 23= 1x 8 = 8

1 x 24 = 1 x 16 = +16

or, Binary 11011 equals 27.

7§, 264

4x 100=4x 1 = 4

6 x 101= 6 x 10 = 60

2 x 102= 2 x 100 = 200

5x 103 = 5 x 1000 = 5000

7 x 104 = 7 x 10,000 = +70000

7526410

C.2.2 Binary (Base 2)

Base 10 numbers use ten digits, base 2 numbers use only 0 and 1. When
viewed from right to left, they each represent the number 2 to the
powers 0, 1, 2, etc., respectively, as shown below:

21 20

(2) 0)

X X

For example, Binary 11011 can be translated into base 10 as follows:

215 26 25 24 23 22

(32,768) ••• (64) (32) (16) (8) (4)

••• X X X X X

2710

C-2

Binary is the language of the digital computer. For example, to place
the decimal quantity 23 into a 16-bit memory cell, set the bits to the
following:

BIT 0 15

0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1

which is 1 + 2 + 4 + 16 = 23.

C.2.3 Hexadecimal (Base 16)

Whereas binary uses two digits and decimal uses ten digits,
hexadecimal uses 16 (0 to 9, A, B, C, D, E, and F).

The letters A through F are used to represent the decimal numbers 10
through 15, as shown below:

N10 N16 N10 N16

0 0 8 8
1 1 9 9
2 2 10 A
3 3 11 B
4 4 12 C
5 5 13 D
6 6 14 E
7 7 15 F

When viewed from right to left, each digit in a hexadecimal number is
a multiplier of 16 to the powers 0, 1, 2, 3, etc., as shown below:

163 162 161 160

(4096) (256) (16) (1)

X X X X

For example, >7BA5 can be translated into base 10 as follows:

C-3

7 A

5 160 = x 5 x 1 = 5

10 161 = x 10 x 16 = 160

11 x 162 = 11 x 256 = 2816

7 x 163 = 7 x 4096 = 28672

3165310

Or, >7BA5 equals 31,653.

Because it would be awkward to write out 16-digit binary numbers to
show the contents of a 16-bit memory word, hexadecimal is used
instead. Thus:

>003E

is used instead of
0000 0000 0011 1110 (Binary)

to represent 62, as computed below:

BASE 2

02

0x20 = 0

1 21 x = 2

1 22 x = 4

1 x 23 = 8

1 x 24 = 16

1 x 25 = 32

6210

(Note that separating the 16 binary bits into four-bit parts
facilitates recognition and translation into hexadecimal.)

C-4

0000 0000 0011 11102

BASE 10 0 0 3 E16 BASE 16
6 210

E16

2 x 100 = 2

6 x 101 = 60

6210

14x 160 = 14

3x 161 = 48

6210

Table C-1 is a chart for converting decimal to hexadecimal and
vice-versa. Table. C-2 shows binary, decimal and hexdadecimal
equivalents for numbers 0 to 15. Note that Table C-1 is divided into
four parts, each part representing four of the 16 bits of a memory
cell or word (bits 0 to 15), with bit 0 being the most significant bit
(MSB) and bit 15 being the least significant bit (LSB). Note also that
the MSB is on the left and and represents the highest poer of 2, and
the LSB is on the right and represents the 0 power of 2, or 1. As
explained later, the MSB can also be used to signify number polarity
(+ or -).

To convert a binary number to decimal or hexadecimal, convert the
positive binary value, as described in paragraph C-4.

C-5

TABLE C-1. HEXADECIMAL/DECIMAL CONVERSION CHART

MSB LSB

16 16 16 16

BITS 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

HEX DEC HEX DEC HEX DEC HEX DEC

0 0 0 0 0 0 0 0
1 4 096 1 256 1 16 1 1
2 8 192 1 512 1 32 2 2
3 12 288 3 768 3 48 3 3
4 16 384 4 6 024 4 64 4 4
5 20 480 5 1 280 5 80 5 5
6 24 576 6 1 536 6 96 6 6
7 28 672 7 1 792 7 112 7 7
8 32 768 8 2 048 8 128 8 8
9 36 864 9 2 304 9 144 9 9
A 40 960 A 2 560 A 160 A 10
B 45 056 B 2 816 B 176 B 11
C 49 152 C 3 072 C 192 C 12
D 53 248 D 3 328 D 208 D 13
E 57 344 E 3 584 E 224 E 14
F 61 440 F 3 840 F 240 F 15

To convert a number from hexadecimal, add the decimal equivalents for
each hex digit. For example, >7A82 would equal in decimal 28,672 +
2,560 + 128 + 2. To convert hexadecimal to decimal, find the nearest
decimal number in the above table less than or equal to the number
being converted. Set down the hexadecimal equivalent, then subtract
this number from the nearest decimal number. Using the remainder(s),
repeat this process. For example:

31,362 = >7000 + 2690 7000
2,690 = >A00 + 130 A00

130 = >80 + 2 80
2 = >2 2

>7A82

C-6

TABLE C-2.

BINARY

BINARY, DECIMAL, AND HEXADECIMAL EQUIVALENTS.

DECIMAL HEXADECIMAL
>)

0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 9
1010 10 A
1011 11 B
1100 12 C
1101 13 D
1110 14 E
1111 15 F

1 0000 16 10
1 0001 17 11
1 0010 18 12
1 0011 19 13
1 0100 20 14
1 0101 21 15
1 0110 22 16
1 0111 23 17
1 1000 24 18
1 1001 25 19
1 1010 26 1A
1 1011 27 1B
1 1100 28 1C
1 1101 29 1D
1 1110 30 1E
1 1111 31 1F
10 0000 32 20

C-7

+

= 0 + 1 carry

= 0 + 1 carry

0 + 0 = 0

carry 1 + carry 1

Borrow the 1

100

1000

-
0111

0110

— 1

0111

C.3. ADDING AND SUBTRACTING BINARY

Adding and subtracting in binary uses the same conventions as for
decimal (i.e., carrying over in addition and borrowing in
subtraction).

Basically:

0 1 10

+ 1 + 1 — 1

1 10 (the carry, 1, is carried to the left) 01 (1 is borrowed from top left)

= 0 + carry 1

= 0 (from above) + 1 = 1

11 101

carry carry 1 + 1 = 10

C-4. POSITIVE/NEGATIVE CONVERSION (BINARY)

To compute the negative equivalent of a positive binary or hexadecimal
number, or interpret a binary or hexadecimal negative number (to
determine its positive equivalent), use the two's complement of the
binary number:

NOTE

To convert a binary number to decimal, convert the positive binary
value, NOT the negative binary value, and add the sign.

Two's complementing a binary number involves two simple steps:

C-8

1. Obtain the one's complement of the number(l's become 0's;
0's become l's (i.e., invert the bits]).

2. Add 1 to the one's complement.

For example, with the MSB (left-most bit) being a sign bit:

010 (+22) 111 (-121 110 (-22) 101 (-32)

101 Invert 000 Invert 001 Invert 010 Invert

+ 1 Add 1 + 1 Add 1 + 1 Addl + 1

110 (-22) 001 (+12) 010 (+22) 011 (+32)

This can be expanded to 16-bit positive numbers:

=39F6161 0011 1001 1111 0110 (39F616 = +14,83810)

1100 0110 0000 1001 Invert

+1 Add 1

C60A16) 1100 0110 0000 1010 -14,83810) (C60A16 = Two's Complement

SIGN BIT (—)

And to 16-bit negative numbers:

(=C60A16) 1100 0110 0000 1010 (C60A16 = —14,83810)

0011 1001 1111 0101 Invert

(=39F616)

+1 (Add

39F 61 16 = +14,83810) Two's Complement 0011 1001 1111 0110

SIGN BIT (+)

C-9

I
2 2I

740 7

3142 ."2V

UV.

7407

4 CA

END

+3v

Itsv

END

C - 126

I ° '5 ,o1

544 2

1 >V -12V 5012 -12°54'

4 43 2 5 3

E,0315 !041 • :7 if' :1

• 1:
0 9621 1603150

ANA I 144 • 01 1.006111.5 — OPPINIKAIlein 11. OPWINAM II•ITSICATIOne 0•••••••

1
7

ROES UNLESS 011•311110 94T11213

L ALL CAPACITANCE VALUES ARC Al
MICROFAPAOS

E. ALL RESISTANCE VALUES APE IN ORES

3. ALL RESISTORS ARE .25W, ST

El SOCKETS AT POSITIONS INDICATED
PILL ACCEPT ETTNER DA OA 25 POI
MEMORY DEVICES NJ CONJUNCTION
11144 APPPOPRIAll PERSONALITY PLUS

PIN FUNCTIONS 34401314 ARE TOR -
EMS 2532 ./L-35 OIALT

P144 rumcmosS 54404111 APE FOR
WA 2515 A. 0141.1

A RES

1=1
L I

DIAGRAM, L OGIC

TmS 9995 EVALUATION

00
OC

RFRATNct DESONAreas

USED NUT USED

C/ C2.1
CAE CR2

-.45
PI- PS

01
RI- RN

31
tor-u211
TI

O 0

000

O 000

O 0000

O 00900

O 000000

00000000

O 00000000

O 000000000

O 0000000000000000.0000000000000000000000

0

L

000.600000000000000 0 000000 o oo ono 0Oa 000
O 000.600o
O o 0000o o

o 0000000 0
O 00000 o a
O 0000 00
O 000 0

O 0

111E

• OF Id
‘C)

pd

c'd--4jc , 5E6 to,
i^yrEpd

 • Pd
.

pd €2

FZ•t,o

 e 0d

• ,,>

• ° > • a c, o<]
o o0 7a Etd

O 000 d'01 , 00

O 0000 0..0-0

000000 0

O 000000000

O 000000000

00000000000
, .,7rTir*

.5

9 ..

d 0±2'' EL - / = Ed 1 __
9.

, 9

V.
S

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 —71-0
0000

000 g —re'
—sr* 0 9 0 0

o

 o
0 —se"

° ° ?
^ C I'
000

00

r° ,4. ? c o ,s— _—=.7. 44 Ea
 —7 ': " ,. -a

; o; d
,
21-4-..wzy 5F 5

, ___ , €4 4a

,r-‚" ''' G-Sci
0/--- .-
,---4sz•,e

62 'd

dam
-el 0

`:(:-.4„.;,4 (7! .!'
C ,—,,,So.. ; ,'

°,2-401-;-, - - S0 So

or,
_ 11.) , sa

G ,Sol
t, ;1, ,_

'-• ' •55 6
9 • Sd

4 F Ed

2 id
Ed

41:

D-2

741.5 38

3 I. I

2 4.511 r "8--NC 8'7
21217 •20

D&
7W E

17

4r8es
-

R3ET-

1OON-014- 158 2
COO
LAI

82* 1121

el d I 3,its,4

822 lop
4514

CI
180„

,

I IF—r---1,2 TA(14

•Ing

An-8;

rj
-,n214.12 2 C(12114

1/81, 017:7

3.i.j:„.: D2 2 02
35 A10 03 * DS

080 .4.3

___,AWSE5A554T
At4

.°.8•5848.2 , A ,Aµ.,10

A., "All 04 7 D4
Alt 4 418 05 , ---C '

38 5 DO
Dell: 07 .4---k1—.

INT 1- 042121r. Writ ," ,„,{Dn.,.
140LP -

04 Male IAC &•58
'4,- '45K-8 MO.. A
'30 RUIN 055 2L,

- - 85
4,78

O A
4.18

p-r
4.7 it

450 -

0.....,
24.? Buy; 40

6112•{=113

8/1 244—g "A4
43 0 _AP

D.2.48,„n
AA ,49 WM-Ca.

4.8.41 A8
of '2 DO

A9

r3o1 _ j o Al

MO

a", DAVIN

SOS 9995

__Cu

14 508
74L510 7.07

•

':4L5 74

02
D3
Da

DO

Ds
Dl

82.5

ICSOLUt-
mErstreUf-

07

022
1340

741,4

R8 '°;,
5v

Li- 2
Il 220 (502

458 0 '20 r 0 0
1120 U27

--4224 OR-82 -tkcipt 40-..r. -14cux74*-8,‘

Igiit574 741514 4 74 514 niso_ 3.2

ISO OP IDLE

EX

340 582

8E5E7-

_De 1502

7 0

21
141'-'2

CRUC(4
5224

41.510

382 5

•
74,5,2

I 1.7

1603150_r_
-.88. I 40 4.

7 5 • 3

O

C

—13

A

14
13
12

a

Atg
AIS
Alt
AIGICR0777.72

1310
All

CRUCIA
CLICOUT

741510 WAIT SUIT 10146775

6517901

303

au 213

302

WAITEkl

CRUIM
9902 A WE -

R12
StO

«20 I
013
330

77771637RTN > 2, 24

717 ACVOIN) Po 25
-12V > 0, .3

> P2 a

+42 ,L

S) 02-S

3' -'11$ 02-6
R 232 46176

ocoe

, I 1

14572

riap4

4532

532

7163Z
J4

60
J5

.5„, 2rP 3

75188

", kW--
75188

4 I

Ill 3

TTY 26
 P11:3

6ND > "
RSZIacZTA P. 3 o

 r« a
Alt

412 v "a PI
f75.,

) P.-6

61./D > 02 g

61.0 > 02 7

- 9132.213.11,11= 362

134

04E1.13E41-

143.315E13

POEMS

IN 1
5189

u2,
pf.s < R52321104

m)0 'Cu;'

P2-20 < °Re
75.89

<
2
to '6

Pi 20 (DUIA

< 17513286184

I.
_R5

14

NC UZ6
73 11

5169
.SV

6

73.13 8302
SO CRUM 4—

; NT 1
S:

8007. T
I70,13

023

Rw
TS

OSI7
TI

vCC Il
vSS /7,T

6 3

741532 3,1034843+ DECOOE 5E1E173

.12

741532

2-a
Jaj3

741530

SN 2,3,5

511 2,3

AI
At
A3
A2
Al

AO

11 0B 0 SELZ- 4! yN
 ▪ 0,3 5E1-3- 4 5,

73,A
4..00 „ DooS

o f, SEL6-

SEES- ,s4 •Ao.

7451138 U15
2.211

A4 /1 De 0132
: :tit

AZ
' AS 12 AOC 0105

0 ,,,,„, 2 SE t
Al DO

.._.2041.u14 0,,,,,t, rEtti:

.9 3E1.8

AS /0 001 1 SEL1 - DA

145488

4

•Sv

5E17-
1 3EL e-)ss 2

SE11.-25

3112

P1-1.

7

_61.131.3

5 LS-

SC 4

45v -443 "
I

I .314 a
75188

-4,43

ll

EaT9
.,...
6

,..
:2141 1()150 r

2

-135PIPH HVI 0, p_
Iv
fF

7

tr

I MAI.

s
9nn IS
nn

to
zv

 IM 1.

7
vat I

9
WI 4

❑ 1611

A1, -1,9400003
Fn

--
r erne 27

AltlY14050ld T

on '9

—i

24 L
„ 96 1PY

 LA IV I PO
ff PA 99 SO fL I0913 191
4 IA IP

91 SA iv , LO
Ad 01 Iy0 Id
R IA IV! Od

n(990(1.

r2

110169i P 00

M010119/54
1SV
of

c v
116

rFt Ns

6Y

LV
} WV 17716

96

:1—)st2Ri
6 (SD

(0ri 67‘v
92-lr2 FSZ 9wt

2

-6 11919.9

_ 0(00

— 1175PI3P.

St HS

iI 6V

ASs

,rx...rv.,
" (01 L'

ow , ,_,,

CL '1 i:': 1

'''''':::::u'' 0!): "'. 00

501.06 C75 I. ',: (ii- AS.
E4 9 9 ,,,
216 tr0

''-- 06 9 100 '
OW 9 1 ,, so 6, to to
66 9 rt

C
(9, 3 %I

96 6 I ''
L. (2) ff " MO la
PY (2 re" 11

9 91S> $00 1
(6!) oa

3 110 " 77r41;_v- -1191) (n ,ecIA 3.,,,,,

S00 Cl 07 WI ,.
"-- PH, a. / '

ni') 0 La
,.• 1 m— '''--471;Mo 6 os. (9)

016 IS) FLv
90 "'St (01) 00

6 (I, t,i, PM LI

H 91,12 X01
i V

nn
mt, 'ort BEY,

"c

U 9V —I, ton LV

enu--79-
-if 601m

--P

r71
02)9I

2)61
(22)00 (2000
(60)19

S(6 (On
IV (6)6

(61)9
VW (6)0
06 (9)
oN (9)6
116 (t)
96 (V) I
6V NMI
96 ny a

rch =

an

Ac.
(0) Le

of (0) 90
, Ng go
ign 90
(19 Fa

9 OA
(P)

Al (60 00

99 IF

La

a fa
10

Ni

la

9

APPENDIX E

TMS 9995 MICROCOMPUTER

ARCHITECTURE

E-1

1. INTRODUCTION

1.1 DESCRIPTION

The TMS 9995 microcomputer is a single-chip 16-bit central processing unit (CPU) with 256 bytes of on-chip

random access memory (RAM). A member of the TMS 9900 family of microprocessor and peripheral circuits, the

TMS 9995 is fabricated using N-channel silicon-gate MOS technology. The rich instruction set of the TMS 9995 is

based upon a unique memory-to-memory architecture that features multiple register files resident in memory.

Memory-resident register files allow faster response to interrupts and increased programming flexibility. The inclu-

sion of RAM, timer function, clock generator, interrupt interface, and a flexible flag register on-chip facilitates

support of small system implementations.

All members of the TMS 9900 family of peripheral circuits are compatible with the TMS 9995. Providing a per-

formance upgrade to the TMS 9900 microprocessor, the TMS 9995 instruction set is an opcode-compatible super-

set of the TMS 9900 processor family.

1.2 KEY FEATURES

• 16-Bit instruction word

• Memory-to-Memory architecture

• 65,536 byte/32,768 word directly addressable memory address space

• Minicomputer instruction set including signed multiply and divide instructions

• Multiple 16-word register files (Workspaces) residing in memory

• 256 bytes of on-chip RAM

• Separate memory and interrupt bus structures

• 8-Bit memory data bus

• 7 prioritized hardware interrupts

• 16 software interrupts (XOPS)

• Programmed and DMA I/O capability

• Serial I/O via communication register unit (CRU)

• On-chip time/event counter

• On-chip programmable flags (16)

• Macro instruction detection (MID) feature

• Automatic first wait state generation feature

• Single 5-volt supply

• 40-pin package

• N-Channel silicon gate MOS technology

• On-chip clock generator

2. ARCHITECTURE

2.1 MEMORY ALLOCATION

The basic word of the TMS 9995 architecture is 16 bits in length. These 16 bits are divided into 8-bit bytes for

external memory in the manner shown in Figure 1. A word is, therefore, defined as two consecutive 8-bit bytes in

memory. All words (instruction opcodes, operand addresses, word-length data, etc.) are restricted to even address

boundaries, i.e., the most significant half, or 8 bits, resides at an even address and the least significant half resides at

the subsequent odd address. Any memory access involving a full word that is directed by software to utilize an odd

address will result in the word starting with this odd address minus one to be accessed.

1

EXTERNAL
IOFFCHIPI
MEMORY
ADDRESS
SPACE

INTERNAL ION-
CHIPI MEMORY
ADDRESS SPACE

EXTERNAL TOFF
CHIP) MEMORY
ADDRESS SPACE

INTERNAL ION-
CHIP) MEMORY
ADDRESS SPACE

0000

0001

0002

0003

0004

0005

0006

0007

000e

000F

0010

0011

0012

0013

0014

0031

0040

0541

0042

0043

0044

0078

007C

0070

007E

0071

0080

EFFF

F000

FOFB

FOFC

FEES

FFFA

EFFe

FF IC

FEED

FIFE

FIFE

LEVEL 0 (RESET)
VECTOR

LEVEL 1
INTERRUPT
VECTOR

LEVEL 28 LEVEL 3
INTERRUPT
VECTORS

LEVEL 4
INTERRUPT
VECTOR

GENERAL USE
MEMORY ADDRESS
SPACE

XOPO
VECTOR

XOPI x01,14
VECTORS

x0P15
VECTOR

). GENERAL USE
MEMORY AD
DRESS SPACE

— — — — — — ...

GENERAL USE
INTERNAL

INTERNAL
RAM

RAM ADDRESSES
— •••• —.

GENERAL USE
MEMORY ADDRESS
SPACE

1 INTERNAL
DECREMENTE MEMORY-

MAPPED
110

VECTOR R
PC NMI INTERNAL

MSB
OR
SIGN
BIT

EVEN ADDRESS 0 2 3 4 5 6 7
WORD
FORMAT

ODD ADDRESS 9 10 12 13 14 15

(ODD ADDRESS -
EVEN ADDRESS 4. I(LS8

MSB
_ .
SIGN
BIT LS8

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

EVEN ADDRESS

ODD ADDRESS

BYTE
FORMAT

FIGURE 1 - WORD AND BYTE FORMATS

The instruction set of the TMS 9995 allows both word and byte operations. Byte instructions may address either

byte as necessary. A byte access of this type will not affect the other byte of the word involved since the other

byte will not be accessed during the execution of the byte instruction.

The TMS 9995 memory map is shown in Figure 2. Shown are the locations in the memory address space for the

Reset, NMI, other interrupt and XOP trap vectors, and the dedicated address segments for the on-chip RAM and

the on-chip memory-mapped I/O.

NOTE: Addresses are byte addresses in hex

FIGURE 2 - TMS9995 MEMORY MAP

2

ADDRESS
DECODE

CRUIN

A15/CRUOUT •

A0.A14 .41.••••••••••1•

ME MEN •

°BIN •

Fir,enUCLK •

IAG,HOLDA

READY

HOLD

.411.•••

••••• •••••
CRU

CONTROL

FLAG REG.

INTERNAL
INTERRUPT
LATCH CRU

INPUTS

IR

MICROCODE
ROM

MICRO
CONTROLLER

MA. PC, WP,
AND

TEMPORARY
REGISTERS

4

INTERRUPT
CONTROL

ALU

CONSTANTS

TEMP REG.

RESET

• D— NMI

INT1

INT4/EC

-71
MU X

SHIFT REG. LATCH 4

STATUS REG. XTAL1

XTAL2 /CLKIN

CL KOUT

SWAP
MUX DECREMENTER

LATCH

CONTROL
LOGIC

FIGURE 3 - TMS9995 BLOCK DIAGRAM

3

2.2 TMS 9995 ORGANIZATION

The block diagram of the TMS 9995 is shown in Figure 3. A flow chart, representative of the TMS 9995 functional
operation, is shown in Figure 4.

8

VECTOR 0 000816,
NEW INTERRUPT

MASK . 0001
PC 2 PC READ NEW WP

VECTOR IP FF FC16,
NEW INTERRUPT

MASK • 0000
OLD WP
NEW WRI3

NEW INTERRUPT
MASK •-•

ST12 ST15 VECTOR 0 000816,
NEW INTERRUPT

MASK - 0001

CLEAR 5T7 ST11

•—.14

CLEAR LEVEL 4
INTERNAL
INTERRUPT

REQUEST LATCH

VECTOR P 000016
NEW INTERRUPT

MASK - 0002

VECTOR 6 001016.
NEW INTERRUPT

MASK • 0003

CLEAR LEVEL 3
INTERNAL
INTERRUPT

REQUEST LATCH

CLEAR. TO•ST6,
FLAGO, F LAGI.
THE MID FLAG,
AND AL INTER-
NAL INT HAUPT

REQUEST LATCHES

11••••••1

VECTOR 0 000016,
NEW INTERRUPT

MASK - 0000

PC -• PC

READ NEW PC

VECTOR P 000416,
NEW INTERRUPT

MASK - 0000

CLEAR LEVEL 1
INTERNAL
INTERRUPT

REQUEST LATCH

OLD PC
NEW WRI4

ST -• NEW WR IS

RESET ACTIVE CAUSES
IMMEDIATE ENTRY HERE

FE II NEX T iNsTRu TION

PC 2 -PC

FETCH NEXT INSTRUCTION
USING NEW PC

START EX ECUTiON OF NEW
INSTRUCTION OE REQUIRED,

NEW PC LOADED HERE!

ALL.
FIEQuESTS

MASKED Elv !Nit,
ROPE MASK

T1251!

NM!
LEVEL 1 2 I

OR 4 INTERRUPT
RECILIEST

LOCK IN PENDING
INTF ARLIE!! REQUESTS

N

uNFAAs,
iNTERRIIPT
HEOuEST
PENDING

OVERFI OW
ENABI ED WIG

AND 51,Si

NEXT
INSTHuol ION

MI!)
OPC0DE

CuMP! E IF EXEPIITION GE
CURRENT INS TNUC TON

!WRITE PESO) IS IF ANSI

SF ! MiU FLAG TO ONE

FIGURE 4 - TMS9995 FLOW CHART

2.2.1 Arithmetic Logic Unit

The arithmetic logic unit (ALU) is the computational component of the TMS 9995. It performs all arithmetic and
logic functions required to execute instructions. The functions include addition, subtraction, AND, OR, exclusive
OR, and complement. A separate comparison circuit performs the logic and arithmetic comparisons to control bits
0 through 2 of the status register. The ALU is arranged in two 8-bit halves to accommodate byte operations. Each
half of the ALU operates on one byte of the operand. During word operand operations, both halves of the ALU
function in conjunction with each other. However, during byte operand processing, results from the least significant
half of the ALU are ignored. The most-significant half of the ALU performs all operations on byte operands so that

the status circuitry used in word operations is also used in byte operations.

2.2.2 Internal Registers

The following three (3) internal registers are accessible to the user (programmer):

• Program Counter (PC)

• Status Register (ST)

• Workspace Pointer (WP)

2.2.2.1 Program Counter

The program counter (PC) is a 15-bit counter that contains the word address of the next instruction following the
instruction currently executing. The microprocessor references this address to fetch the next instruction from
memory and increments the address in the PC when the new instruction is executing. If the current instruction in
the microprocessor alters the contents of PC, then a program branch occurs to the location specified by the altered
contents of PC. All context switching (see Section 2.2.2.3.2) operations plus simple branch and jump instructions

affect the contents of PC.

22.2.2 Status Register

The status register (ST) is a fully implemented 16-bit register that reports the results of program comparisons, indi-
cates program status conditions, and supplies the arithmetic overflow enable and interrupt mask level to the inter-
rupt priority circuits. Each bit position in the register signifies a particular function or condition that exists in the
microprocessor. Figure 5 illustrates the bit position assignments. Some instructions use the status register to check
for a prerequisite condition; others affect the values of the bits in the register; and others load the entire status
register with a new set of parameters. Interrupts also modify the status register. The description of the instruction

set later in this document details the effect of each instruction on the status register (see Section 3).

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

STO ST1 ST2 ST3 ST4 ST5 ST6 ST7 ST8 ST9 ST10 ST11 ST12 I ST13 I ST14 I ST15

L> A> EC) C OV OP X • . OV
EN

.
INTERRUPT MASK

•NOTE: ST7, ST8, ST9, and ST11 are not used in the TMS9995, but still physically exist in the register. These bits could therefore be used as
flag bits, but software transportability should be kept in mind when doing so as these bits are defined in other 9900 microprocessor

family and 990 minicomputer family products.

L> : Logical Greater Than C : Carry Out X : XOP In Progress

A> : Arithmetic Greater Than OV : Overflow OV EN : Overflow Interrupt Enable

EQ : Equal/TB Indicator OP : Parity (Odd No. of Bits)

FIGURE 5 — STATUS REGISTER BIT ASSIGNMENTS

22.2.3 Workspace

The TMS 9995 uses blocks of memory words called workspaces for instruction operand manipulation. A work-
space occupies 16 contiguous words in any part of memory that is not reserved for other use. The individual
workspace registers may contain data or address, or function as operand registers, accumulators, address registers,
or index registers. Some workspace registers take on special significance during execution of certain instructions.
Table 1 lists each of these dedicated workspace registers and the instructions that use them. Figure 6 defines the

workspace registers that are allowed to be used as index registers.

5

DATA

OR

ADDRESSES

INDEX

CAPABILITY

TABLE 1 — DEDICATED WORKSPACE REGISTERS

REGISTER NO. CONTENTS USED DURING

0 Shift count (optional)

Multiplicand and MSW

of result

MSW of dividend and

quotient

Shift instructions (SLA, SRA,

SRC, and SLC)

Signed Multiply

Signed Divide

1 LSW of result

LSW of dividend and

remainder

Signed Multiply

Signed Divide

11 Return Address

Effective Address

Branch and Link Instruction (BL)

Extended Operation (XOP)

12 CRU Base Address CRU instructions (SBO, SBZ, TB,

LDCR, and STCR)

13 Saved WP register Context switching (BLWP, RTWP,

XOP, interrupts)

14 Saved PC register Context switching (BLWP, RTWP,

XOP, interrupts)

15 Saved ST register Context switching (BLWP, RTWP,

XOP, interrupts)

WORKSPACE REGISTERS

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

NOTE: The WP register contains the address of workspace register zero.

FIGURE 6 — WORKSPACE REGISTERS USABLE AS INDEX REGISTERS

6

2.2.2.3.1 Workspace Pointer

To locate the workspace in memory, a hardware register called the workspace pointer (WP) is used. The workspace
pointer is a 16-bit register that contains the memory address of the first word in the workspace. The address is
left-justified with the 16th bit (LSB) hardwired to logic zero. The TMS 9995 accesses each register in the work-
space by adding twice the register number to the contents of the workspace pointer and initiating a memory re-
quest for that word. Figure 7 illustrates the relationship between the workspace pointer and its corresponding
workspace in memory

WORKSPACE POINTER WORKSPACE
(WP) ADDRESS

WORKSPACE
REGISTERS

WP + 0016 0
WP

WP + 0216

WP + 0416 2

3 WP + 0816
MICROPROCESSOR ADDS
WORKSPACE POINTER

WP + 0816
IWP) TO TWICE THE

4

REGISTER NUMBER TO
DERIVE ACTUAL
REGISTER ADDRESS

5 WP + 0A16

6 WP + 0C16

7 WP + 0E16

8 WP + 1016

9 WP + 1216

10 WP + 1416

WP + 1616 11

NOTE: All memory word addresses Cr. even, 12 WP + 1816

WP + 1A16 13

14 WP + 1C16

15 WP + 1E16

FIGURE 7 - WORKSPACE POINTER AND REGISTERS

For instructions performing byte operations, use of the workspace register addressing mode (see Section 3.2) will
result in the most significant byte of the workspace register involved to be used as the operand for the operation.
Since the workspace is also addressable as a memory address, the least significant byte may be directly addressed
using any one of the general memory addressing modes.

2.2.2.3.2 Context Switching

The workspace concept is particularly valuable during operations that require a context switch, which is a change
from one program environment to another, as in the case of a subroutine or an interrupt service routine. Such an
operation using a conventional multi-register arrangement requires that at least part of the contents of the register

7

TMS9995

file be stored and reloaded using a memory cycle to store or fetch each word. The TMS 9995 accomplishes this
operation by changing the workspace pointer. A context switch requires only three store cycles and two fetch
cycles, exchanging the program counter, status register and workspace pointer. After the switch, the workspace
pointer contains the starting address of a new 16-word workspace in memory for use in the new routine. A corre-
sponding time saving occurs when the original context is restored. Instructions in the TMS 9995 that result in a
context switch include: Call subroutine (BLWP), Return from Subroutine (RTWP) and the Extended Operation
(XOP) instruction. All interrupts also cause a context switch by forcing the TMS 9995 to trap to a service sub-
routine.

2.3 TMS 9995 INTERFACES

Each TMS 9995 system interface uses one or more of the signals from one or more of the signal groupings given in

the pin description list in Section 3. Each interface is described in detail in the following paragraphs.

2.3.1 TMS 9995 Memory Interface

The signals used in the TMS 9995 interface to system memory are shown in Figure 8.

AO-A14, A15/CRUOUT

DO-D7

MEMEN

DBIN

WE/CRUCLK

MEMORY SYSTEM
AND/OR DMA
CONTROLLER

READY
IAQ/HOLDA AND
HOLD ARE NOT
REQUIRED FOR)
SIMPLE MEMORY
SYSTEMS BUT WILL
BE USED BY DMA
CONTROLLERS

FIGURE 8 - TMS9995 MEMORY INTERFACE

2.3.1.1 External Memory Address Space

The details of memory accesses that are external to the TMS 9995 (off-chip accesses) are given in the following
paragraphs. (See Figure 2 for the addresses that are in the external memory-address space.)

2.3.1.1.1 Memory Read Operations

To perform a memory read operation, the TMS 9995 first outputs the appropriate address on AO-A14 and A15/
CR UOUT, and asserts MEMEN. The TMS 9995 then places its data bus drivers in the high impedance state, asserts

DBIN, and then reads in the data byte. Completion of the memory read cycle and/or generation of Wait states is

determined by the READY input as detailed in Section 2.3.1.3. Timing relationships of the memory read sequence
are shown in Figure 9. Note that MEMEN remains active (low) between consecutive memory operations.

8

4
IAQ/HOLDA

4
HOLD

I 0 ®
MD7 .., ..4

I
Loll <7: I I

MEMEN "lk
.../

I
1 ...
.—..

I

%

°BIN /I 1 /-1-1 1
I 1 1

IAQ/HOLDA /
V

MEMORY READ MEMORY READ
NO WAIT STATE ONE WAIT STATE

NOTES:

0 Valid address

0 In input mode (drivers @ High-Z)

0 Memory Read Data must be valid at CLKOUT edge indicated

0 IAQ/HOLDA will only be asserted during memory read cycles if an instruction opcode is being read (timing shown is for an instruc-

tion fetch from external memory —, i.e., two consecutive byte reads).

FIGURE 9 — TMS9995 MEMORY READ CYCLE

Although not explicitly shown in Figure 9, reading a word (two 8-bit bytes) frcm external memory requires two

memory read cycles that occur back-to-back (a Hold state request will not be granted between cycles). If an

instruction directs that a byte read from external memory is to be performed, only the byte specifically addressed

will be read (one memory read cycle). External words are accessed most-significant (even) byte first, followed by

the least-significant (odd) byte.

During memory read cycles in which an instruction opcode is being read, IAQ/HOLDA is asserted as shown in

Figure 9. Note that since an instruction opcode is a word in length, IAQ/HOLDA remains asserted between the two

byte read operations involved when an instruction opcode is read from the external memory address space.

2.3.1.1.2 Memory Write Operations

To perform a memory write operation, the TMS 9995 first outputs the appropriate address on AO-A14 and A15/

CRUOUT, and asserts MEMEN. The TMS 9995 then outputs the data byte being written to memory on pins DO

through 07, and then asserts WE/CRUCLK. Completion of the memory write cycle and/or generation of Wait

states is determined by the Ready input as detailed in Section 2.3.1.3. Timing relationships of the memory write

sequence are shown in Figure 10. Note that MEMEN remains active (low) between consecutive memory operations.

9

CLKOUT E
AO-A141, A15/CRUOUT =(0 X 0

WE/CRUCLK

•••••••••=1.1

CLKOUT

AO-A141, A15/CRUOUT

130-07

MEMEN

OWN

WE/CRUCLK 1-11
lAWNOLDA

I 0

V

MEMORY WRITE
NOTES: NO WAIT STATE

0 Valid address

0 Valid memory write data

0 I AWHOLOA will never be asserted during a memory write cycle

MEMORY WRITE
ONE WAIT STATE

FIGURE 10 - TMS9995 MEMORY WRITE CYCLE

Writing a word (two 8-bit bytes) to external memory requires two memory write cycles that occur back-to-back.

(A Hold state request will not be granted between cycles.) If an instruction directs that a byte write to external

memory is to be performed, only the byte specifically addressed will be written (one memory write cycle). External

words are accessed most-significant (even) byte first followed by the least-significant (odd) byte.

2.3.1.1.3 Direct Memory Access

The TMS 9995 Hold state allows both external devices and the TMS 9995 to share a common external memory.

To gain direct memory access (DMA) to the common memory, the external device first requests the TMS 9995 to

enter a Hold state by asserting (taking low) the HOLD input. The TMS 9995 will then enter a Hold state following

completion of the cycle (either memory, CRU, external Instruction, or internal ALU cycles) that it is currently

performing. Note, however, that a Hold state is not entered between the first and second byte accesses of a full

word in the external memory address space, and a Hold state is not entered between the first and second clock

cycles of a CRU cycle.

Upon entry of a Hold state, the TMS 9995 puts its address, data, OBIN, and WE/CRUCLK drivers in the high

impedance mode, and asserts IAQ/HOLDA. The external device can then utilize these signal lines to communicate

with the common memory. After the external device has completed its memory transactions, it releases HOLD,

and the TMS 9995 continues instruction execution at the point where it had been suspended. Timing relationships

for this sequence are shown in Figure 11.

10

ANY NUMBER
Of COMPLETE

I CLKOUT CYCLES'

CLKOUT L--.

I I I
A0414, AIB/CRUOUT VALID ADDRESS

) ® S S
1 ‘

,
/i

00-07
J\

VALID WRITE DATA ® SS
i I I

MEMEN .
"*1\ I l

SS
ii
I I I

MIN I
I I k

O.
II 55
I I I

1 1 I - ; ® 55 WE/CRUCLK I

,
\--I\--\10

HOLD
I 1 is ////

IAO/HOLDA

Nmormo w

MEMORY WRITE, NO WAIT
STATES 0

HOLD STATE NEXT CYCLE IMEMORY,
CRU, EXTERNAL INSTRUCTION.

OR INTERNAL ALU CYCLE)

NOTES:

Cycle before the hold state could have been memory (with any number of wait states), CRU, external instruction, or internal ALU

® HOLD must be valid at last low-to-high CLKOUT transition of a cycle for next low-to-high CLKOUT transition to begin a hold

state

0 In high-impedance mode (output drivers)

0 Next cycle will begin after first low-to-high CLKOUT transition at which HOLD Is high .

FIGURE 11 — TMS9995 HOLD STATE

To allow DMA loading of external memory on power-up, the TMS 9995 does not begin instruction execution

after a Reset state until HOLD has been removed if HOLD was active (low) at the time RESET was taken from

low to high RESET released).

External devices cannot access the internal (on-chip) memory address space of the TMS 9995 when it is in the

Hold state.

Since IAQ (Instruction Opcode Acquisition) and HOLDA (Hold Acknowledge) are multiplexed on a single signal,

IAQ/HOLDA, this signal must be gated with MEMEN using external logic to separate IAQ and HOLDA. When

MEMEN = 0, IAQ/HOLDA can indicate IAQ, and when MEMEN = 1, IAQ/HOLDA can indicate HOLDA.

23.1.2 Internal Memory Address Space

Access of the internal (on-chip) memory address space is transparent to the TMS 9995 instruction set. That is,

operands can be read from and written into locations in the internal memory space simply by using the appro-

priate addresses via any of the addressing modes in the TMS 9995 instruction set, and instructions can even be

executed from the internal memory space by loading the appropriate address into the program counter of the

TMS 9995.

11

V
16 BIT INTERNAL

DATA PATH

TO INPUT OF LEVEL,'
 INTERNAL INTERRUPT

REQUEST LATCH

INPUT

FLAG)

LEVEL 3 INTERRUPT
REQUEST LATCH

COUNT • 0
OUTPUT

16 6IT INTERNAL
DATA PATH

DECREMENTING
REGI TER
116 BITS)

PULSE GENERATED WHEN
LEVEL 3 INTERRUPT

CONTEXT SWITCH IS TAKEN

PULSE GENERATED
DURING RESET

INTERRUPT SEQUENCE

YNCHRONIZE

DECREMENT
BY ONE

FLAG'

INTERNAL CLOCK
IMACHINE STATE

FREQUENCY)

FLAGO

1NT4/EC

LEVEL 3
fipy, INTERRUPT

REQUEST

STARTING COUNT
STORAGE

REGISTER 116 BITS)

CLEAR

The TMS 9995 indicates to the external world when these internal memory address space accesses are occurring
by asserting the same signals used for accessing external memory (see Figure 8) in a manner very similar to an ex-
ternal memory address space access. There are a few differences in these cycles, however, and these differences
are detailed in the following paragraphs.

When performing an internal memory address space access, the TMS 9995 outputs the same signals that it would
for an external memory space access, with the same timing (see Figures 9 and 10) except for the following:

(1) A single cycle (read or write) is output as both internal bytes are accessed simultaneously. (Externally, it
appears as though a single byte memory access cycle to an internal address is occurring.)

(2) The cycle always has no Wait states, and the READY input is ignored by the TMS 9995 (see Section 2.3.2.3).

(3) During read cycles, the data bus (D0-D7) output drivers are put in the high-impedance mode. During write
cycles, the data bus outputs non-specific data.

During read cycles to the internal memory address space, the TMS 9995 does not make the read data available to
the external world. If an instruction is executed from the internal memory address space, IAQ/HOLDA is still
asserted, but only during the one read cycle shown externally while the full word is read internally.

When in a Hold state, external devices are not able to access the internal memory address space.

2.3.1.2.1 Internal RAM

The 256 bytes of internal random-access read/write memory (RAM), the memory addresses of which are shown
in Figure 2, are organized internally as 128 16-bit words. Since the TMS 9995 has 16-bit internal data paths, two
8-bit bytes are accessed each time a memory access is made to the internal RAM.

Byte accesses are transparent to the internal RAM. That is, when an instruction addresses a byte in the internal
RAM, the TMS 9995 will: (1) read the entire word but only use the byte specifically addressed for a read opera-
tion and, (2) only write to the specifically addressed byte and not alter the contents of the other byte in the word

during a write operation.

2.3.1.2.2 Decrementer (Timer/Event Counter)

Accessible via one of the word addresses (see Figure 2) of the internal memory-mapped I/O address space is the de-
crementer. The on-chip decrementer logic can function as a programmable real-time clock, an event timer, or as an
external event counter. A block diagram of the decrementer that is representative of its functional operation (but
not necessarily representative of its specific logic implementation) is shown in Figure 12.

CRU INPUT DATA FOR CRU
ADDRESS OF F LAG3 IN

FLAG REGISTER

NOTE: FLAGO and F LAG1 are bits in the Flag Register

FIGURE 12 — DECREMENTER FUNCTIONAL BLOCK DIAGRAM

12

The decrementer is configured as either a timer or an event counter using bit FLAGO of the internal Flag register.

The decrementer is enabled/disabled using bit FLAG1 of the internal Flag register. (See Section 2.3.3.2.1 for de-
tails of the Flag register and accessing the bits in it.) When FLAGO is set to zero, the decrementer will function as
a timer. When FLAGO is set to one, the decrementer will function as an event counter. When FLAG1 is set to
zero, the decrementer is disabled and will not be allowed to decrement and request level 3 interrupt traps. When

FLAG1 is set to one, the decrementer is enabled and will decrement and request level 3 interrupt traps. It should
be noted that when the decrementer is configured as a timer, INT4/EC will be usable as an external interrupt
level 4 trap request. When the decrementer is configured as an event counter, INT4/EC is the input for the "event
counter" pulses, and an interrupt level 4 trap request input is no longer available externally or internally.

The general operation of the decrementer is as follows. FLAGO of the Flag register is first set to select the desired
mode of operation. The desired start count is then loaded into the Starting Count Storage Register by performing
a memory write of the count word to the dedicated internal memory mapped I/O address of the decrementer.
(This also loads the Decrementing Register with the same count.) The decrementer is then enabled and allowed to
start decrementing by setting FLAG1 of the Flag Register to one. (Both FLAGO and FLAG1 are set to zero when

the TMS 9995 is reset. (See Section 2.3.2.1.1.) When the count in the Decrementing Register reaches zero, the
level 3 internal interrupt request latch is set (see Section 2.3.2.2.3), the Decrementing Register is reloaded from the
Starting Count Storage Register, and decrementing continues. Note that writing a start count of 000016 to the

decrementer will disable it.

When configured as a timer, the decrementer functions as a programmable real-time clock by decreasing the count
in the Decrementing Register by one for each fourth CLKOUT cycle. Loading the decrementer with the appro-
priate start count causes an interrupt to be requested every time the count in the Decrementing Register reaches
zero. The decrementer can also be used as an event timer when configured as a timer by reading the decrementer
(which is accomplished by performing a memory read from the dedicated internal memory mapped I/O address
of the decrementer) at the start and stop points of the event of interest and comparing the two values. The dif-
ference will be a measurement of the elapsed time.

When configured as an event counter, operation is as previously discussed except that each high-to-low transition
on INT4/EC will cause the Decrementing Register to decrement. These INT4/EC high-to-low transitions can be
asynchronous with respect to CLKOUT. Note that INT4/EC can function as a negative edge-triggered interrupt by
loading a start count of one.

The decrementer should always be accessed as a full word (two 8-bit bytes). Reading a byte from the decrementer
does not present a problem since only the byte specifically addressed will be read. Writing a single byte to either of

the bytes of the decrementer will result in the data byte being written into the byte specifically addressed and
random bits being written into the other byte of the decrementer.

2.3.1.3 Wait State Generation

Wait states can be generated for external memory cycles, external CRU cycles and external instruction cycles for
the TMS 9995 using the READY input. A Wait state is defined as extension of the present cycle by one CLKOUT
cycle. The timing relationships of the READY input to the memory interface and the CRU interface signals are
shown in Figure 13. Note that Wait states cannot be generated for memory cycles that access the internal memory
address space or for CRU cycles that access the internal CRU address space, as the READY input will be ignored

during these cycles.

The Automatic First Wait State Generation feature of the TMS 9995 allows a Wait state to be inserted in each ex-
ternal memory cycle, regardless of the READY input, as shown in Figure 13. The Automatic First Wait State
Generation feature can be invoked when RESET is asserted. If READY is active (high) when RESET goes through
a low-to-high transition, the first Wait state in each external memory cycle will be automatically generated. If
READY is inactive (low) when RESET goes through a low-to-high transition, no Wait state will be inserted auto-
matically in each external memory cycle. There is a one and one-half CLKOUT cycle time minimum setup time
requirement on READY before the RESET low-to-high transition. The recommended external circuitry for invoking
or inhibiting the Automatic First Wait State Generation feature is shown in Figure 14. Note that this feature does

not apply to internal memory address space accesses, external instruction cycles, or any CRU cycles. Wait states
cannot be generated during internal ALU/other operation cycles. The READY input is ignored during these cycles.

13

FROM
MEMORY

VCC
FROM

MEMORY

RESET REQUEST
(TTL RISE/FALL

TIMES)

TMS9995

READY

RESET

MEMORY CYCLES:

CLKOUT

M / M

>0.0.24,0< i®
READY

Nonmnammo v ommmii

NO WAIT
STATES

CRU CYCLES AND EXTERNAL INSTRUCTION CYCLES:

>00.
 jz..0.0.,iczo<

immimimmo vimorAmmlimomaatoi

ONE WAIT STATE, AUTOMATIC
FIRST WAIT STATE FEATURE

ACTIVE

ONE WAIT STATE, AUTOMATIC
FIRST WAIT STATE FEATURE

NOT ACTIVE

CLKOUT

I I .
\ % \ 1 V

>0.000.0<
x_ ic),.().<

10
.0.0./_ao.<

‘1111111•MEMINIIMIIM MINNIMIN1111111111111/

OBIN of
WE/CRUCLK

READY

NOTES:

NO WAIT STATES ONE WAIT STATE
IAUTOMATIC FIRST WAIT STATE

FEATURE DOES NOT APPLY
TO CPU CYCLESI

VD First sample time of READY in cycle

0 Second sample time of READY in cycle. Additional wait states can be generated by keeping READY low at this and subsequent
sample times.

XXXX denotes "don't care"

FIGURE 13 — WAIT STATE GENERATION FOR EXTERNAL
MEMORY, EXTERNAL CRU CYCLES, AND
EXTERNAL INSTRUCTION CYCLES

VCC VCC

(a) INHIBITING AUTOMATIC FIRST
WAIT STATE, R-C POWER-UP RESET

(b) INHIBITING AUTOMATIC FIRST
WAIT STATE, TTL-SPEED
RESET REQUEST

VCC

FROM
MEMORY
SYSTEM

(c) INVOKING AUTOMATIC FIRST
WAIT STATE (RESET CAN BE
R-C POWER-UP OR OTHER-
WISE)

FIGURE 14 — EXTERNAL CIRCUITRY FOR INVOKING/INHIBITING
AUTOMATIC FIRST WAIT STATE GENERATION FEATURE

14

1.3.2 1 MS BUBb Interrupts

The TMS 9995 implements seven prioritized, vectored interrupts, some of which are dedicated to predefined func-

tions and the remaining are user-definable. Table 2 defines the source (internal or external), assignment, priority

level, trap vector location in memory, and enabling/resulting status register interrupt mask values for each interrupt.

TABLE 2 — INTERRUPT LEVEL DATA

PRIORITY

LEVELS

(In Order of Priority)

VECTOR

LOCATION

(Memory

Address,

In Hex)

MASK VALUES

TO ENABLE

ACCEPTING

THE INTERRUPT

(ST12 THRU ST15)

MASK VALUE

AFTER TAKING

THE INTERRUPT

(ST12 THRU ST15)

ASSIGNMENT

SOURCE AND

0

(Highest Priority)
0000

016 thru F16

(see Note 1)
0000 . External: Reset

(RESET Signal)

MID
0008

(see Note 2)

016 thru F16

(see Note 1)

0001

(see Note 2)
Internal: MID

NMI FFFC
016 thru F16

(see Note 1)
0000

External: User-

defined (NMI

Signal)

1 0004 116 thru F16 0000

External: User-

defined (INT1

Signal)

2
0008

(see Note 2)

216 thru F16

(see Note 3)

0001

(see Note 2)

Internal:

Arithmetic Overflow

3 000C 316 thru F16 0002
Internal:

Decrementer

4 0010 416 thru F16 0003

External: User-

defined (INT4/EC

Signal; see Note 4).

NOTES: 1. Level 0, MID, and NMI cannot be disabled with the Interrupt Mask.
2. MID and Level 2 use the same trap vector and change the Interrupt Mask to the same value.
3. Generation of a Level 2 request by an Arithmetic Overflow condition (ST4 set to 1) is also enabled/disabled by bit ST10 of the

Status Register.
4. INT4/EC is not an input for Level 4 interrupt trap requests (Level 4 is not usable) when the Decrementer is configured as an

Event Counter.

The TMS 9995 will grant interrupt requests only between instructions (except for Level 0 Reset), which will be

granted whenever it is requested, i.e., in the middle of an instruction). The TMS 9995 performs additional func-

tions for certain interrupts, and these functions will be detailed in subsequent sections. The basic sequence that

the TMS 9995 performs to service all interrupt requests is as follows:

(1) Prioritize all pending requests and grant the request for the highest priority interrupt that is not masked by

the current value of the interrupt mask in the status register or the instruction that has just been executed.

(See Section 4.5 for these instructions.)

(2) Make a context switch using the trap vector specified for the interrupt being granted.

(3) Reset ST7 through ST11 in the status register to zero, and change the interrupt mask (ST12 through ST15)

as appropriate for the level of the interrupt being granted.

(4) Resume execution with the instruction located at the new address contained in the PC, and using the new WP.

All interrupts will be disabled until after this first instruction is executed, unless: (a) RESET is requested, in

which case it will be granted, or (b) the interrupt being granted is the MID request and the NMI interrupt is

requested simultaneously (in which case the NMI request will be granted before the first instruction indicated

by the MID trap vector is executed.)

15

This sequence has several important characteristics. First of all, for those interrupts that are maskable with the
interrupt mask in the status register, the mask will get changed to a value that will permit only interrupts of higher
priority to interrupt their service routines. Secondly, status bit ST10 (overflow interrupt enable) is reset to zero by
the servicing of any interrupt so that overflow interrupt requests cannot be generated by an unrelated program
segment. Thirdly, the disabling of other interrupts until after the first instruction of the service routine is executed
permits the routine to disable other interrupts by changing the interrupt mask with the first instruction. (The ex-
ception with MID and NMI is explained in Section 2.3.2.2.1.) Lastly, the vectoring and prioritizing scheme of the
TMS 9995 permits interrupts to be automatically nested in most cases. If a higher priority interrupt occurs while
in an interrupt service routine, a second context switch occurs to service the higher priority interrupt. When that
routine is complete, a return instruction (RTWP) restores the saved context to complete processing of the lower
priority interrupt. Interrupt routines should, therefore, terminate with the return instruction to restore original
program parameters.

Additional details of the TMS 9995 interrupts are supplied in the following paragraphs.

2.3.2.1 External Interrupt Requests

Each of these interrupts is requested when the designated signal is supplied to the TMS 9995.

2.3.2.1.1 Interrupt Level 0 (RESET)

Interrupt Level 0 is dedicated to the RESET input of the TMS 9995. When active (low), RESET causes the

TMS 9995 to stop instruction execution and to inhibit (take to logic level high) MEMEN, DBIN, and WE/CR UCLK.

The TMS 9995 will remain in this Reset state as long as RESET is active.

When RESET is released (low-to-high transition), the TMS 9995 performs a context switch with the Level 0 inter-
rupt trap vector (WP and PC of trap vector are in memory word addresses 000016 and 000216, respectively.)

Note that the old WP, PC and ST are stored in registers 13, 14, and 15 of the new workspace. The TMS 9995 then
resets all status register bits, the internal interrupt request latches (see Sections 2.3.2.1.3 and 2.3.2.2.3 for details
of these latches), Flag Register bits FLAGO and FLAG1 (see Section 2.3.3.2.1 for details of the Flag Register),
and the MID Flag (see Section 23.3.2.2). After this, the TMS 9995 starts execution with the new PC.

If HOLDA is active (high) due to HOLD being active (low) when RESET becomes active, RESET will cause
HOLDA to be released (taken low) at the same time as MEMEN, DBIN, and WE/CRUCLK are taken inactive
(high). HOLD can remain active as long as RESET is active and HOLDA will not be asserted. If HOLD is active
when RESET is released (low-to-high transition), HOLDA will be asserted before the RESET context switch occurs
and the TMS 9995 will remain in this hold state until HOLD is released. This RESET and HOLD priority scheme
facilitates DMA loading of external RAM upon power-up.

Timing relationships of the RESET signal are shown in Figure 15.

Release of the RESET signal is also the time at which the Automatic First Wait State function of the TMS 9995
can be invoked (see Section 2.3.1.3).

16

ANY NUMBER OF
CLKOUT CYCLES

CLKOUT

0

5gTW ><>0000<1 >0•0•000000‹

MicRt-762 ><><>000040.000"0"0‹
ATIET

0 0
t

1s

0 I i i

\\\

10

;

 !() i ©

I 0

OO SWITCH (FETCH
i
t

io
 5)--1--__=1 NIIMM.,1MOMIMMI

N
;

START CONTEXT
WE OF RESET VECTORI

NOTES:

0 Don't care XXX indicates that any type of TMS9995 cycle can be taking place

® RESET is sampled at every high-to-low CLKOUT transition

O RESET is required to be active (low) for a minimum of two samples to initiate the sequence. The context switch would begin one

CLKOUT cycle after © if RESET were inactive (high) at ®

O
The context switch using the Reset trap vector begins one CLKOUT cycle after ITETef is sampled as having returned to the inactive

(high) level.

FIGURE 15 — TMS9995 RESET SIGNAL TIMING RELATIONSHIPS

2.3.2.1.2 Non-Maskable Interrupt (NMI)

The NMI signal is the request input for the NMI level interrupt and allows ROM loaders, single-step/breakpoint/

maintenance panel functions, or other user-defined functions to be implemented for the TMS 9995. This signal

and its associated interrupt level are named "LOAD" in previous 9900 family products.

NMI being active (low) according to the timing illustrated in Figure 16 constitutes a request for the NMI level

interrupt. The TMS 9995 services this request exactly according to the basic sequence previously described, with

the priority level, trap vector location, and enabling/resulting status register interrupt mask values as defined in

Table 2. Note that the TMS 9995 will always grant a request for the NMI level interrupt immediately after execu-

tion of the currently executing instruction is completed since NMI is exempt from the interrupt-disabling-after-

execution characteristic of certain instructions and also the current value of the interrupt mask.

It should also be noted that the TMS 9995 implements four bytes of its internal RAM at the memory address of

the NMI vector. This allows usage of the NMI level in minimum-chip TMS 9995 systems. It also requires, however,

that this vector must be initialized, upon power-up, before the NMI level interrupt can be requested.

MEIJER >00001:;>00.0900•0‹

17

CLKOUT

ANY NUMBER OF
CLKOUT CYCLES

/ /

SYNCHRONIZER

OUTPUT INPUT INPUT

IMMUMVIIMEM1111 NMIIIMIIM INNellan•••••••1111MIN•11111

NOTES:

INTERNAL INTERNAL
CYCLE CYCLE

(WOULD HAVE
BEEN AN IA0
IF NMI HAD

NOT OCCURRED)

CONTEXT SWITCH AND
NMI SUBROUTINE

0 NMI is sampled at every high-to-low CLKOUT transition

0 To be recognized, NMI must be active (low) at the end of an instruction. Since instructions are variable in length, the minimum

active time for NMI is variable according to the instruction being executed. Shown by 0 is the last possible time that NMI must
be recognized at or by before execution of the next instruction will commence. The NMI context switch begins three CLKOUT

cycles after execution of the current instruction is complete.

@ After an NMI context switch sequence has been initiated, NMI can remain active (low) Indefinitely without causing consecutive
• NMI trap requests. To enable another mA-r trap request, NMI must be taken inactive (high) and be sampled at least once at the

inactive level.

FIGURE 16 - TMS9995 NMI SIGNAL TIMING RELATIONSHIPS

2.3.2.1.3 Interrupt Levels 1 and 4 (INT1 and INT4/EC)

The INT1 and INT4/EC signals are the request inputs for the Level 1 and Level 4 interrupts, respectively. (Note

that if the decrementer is configured as an event counter, INT4/EC is no longer a Level 4 interrupt request input,

however. See Section 2.3.1.2.2). Levels 1 and 4 are maskable, user-definable interrupts.

The INT1 and INT4/EC interrupt inputs can accept either asynchronous pluses or asynchronous levels as input

signals. An internal interrupt request latch stores the occurrence of a pulse. A block diagram of the TMS 9995

internal logic for these request latches that is representative of their functional operation (but not necessarily

representative of their specific logic implementation) is shown in Figure 17. Note that with this implementation

only a single interrupt source is allowed if the input signal is a pulse, but multiple interrupt sources can be

wired-ORed together provided that each source supplies a level as the input signal. (The levels are then removed

one at a time by a hardware/software mechanism activated by the interrupt subroutine as each interrupting source

is serviced by the subroutine.)

PULSE GENERATED
OURING RESET

INTERRUPT SEQUENCE

PULSE GENERATED WHEN
CONTEXT SWITCH FOR

ASSOCIATED INTERRUPT
IS TAKEN

LEVEL 1 or
LEVEL 4 INTERRUPT

REQUEST

INT1,
INT4/ECC-5>

CLEAR

RISING-EDGE
INPUT TRIGGERED OUTPUT

LATCH

CRU INPUT DATA
FOR CRU ADDRESS

OF FLAG2 or
FLAG4 IN FLAG

REGISTER NOTES:

0 A separate latch and synchronizer is implemented for Level 1 (INT1) and Level 4 (INT4/EC). For Level 1, the input shown here is
directly from the INT1 pin. For Level 4 the input shown here is from the gating shown in Figure 12.

FIGURE 17 - FUNCTIONAL BLOCK DIAGRAM OF INTERNAL
INTERRUPT REQUEST LATCH

18

The TMS 9995 services each of these requests exactly according to the basic sequence previously described with

the priority levels, trap vector locations, and enabling/resulting status register interrupt mask values as defined

in Table 2 Each internal interrupt request latch will get reset when the context switch for its associated interrupt

level occurs.

2.3.2.2 Internally Generated Interrupts

Each of these interrupts is requested when the designated condition has occurred in the TMS 9995.

2.3.2.2.1 Macro Instruction Detection (MID) Interrupt

The acquisition and attempted execution of an MID interrupt opcode will cause the MID level interrupt to be re-

quested before execution of the next instruction begins (MID interrupt opcodes are defined in Section 4.5.15). In

addition to reauesting the MID level interrupt, the MID flag is set to one "1" (see Section 2.3.3.2.2). The

TMS 9995 services this request exactly according to the basic sequence previously described, with the priority

level, trap vector location, and enabling/resulting status register interrupt mask values as defined in Table 2. Note
that the TMS 9995 will always grant a request for the MID level interrupt since MID is not affected by the interrupt

mask and is higher in priority than any other interrupt except for Level 0, Reset. If the NMI interrupt is requested
during an MID interrupt context switch, the MID interrupt context switch will be immediately followed by the

NMI interrupt service sequence before the first instruction indicated by the MID interrupt is executed. This is done

so that the NMI interrupt can be used for a single-step function with MID opcodes. Servicing the MID interrupt re-

quest is viewed as "execution" of an MID interrupt opcode. NMI allows the TMS 9995 to be halted immediately

after encountering an MID opcode.

It should also be noted that the MID interrupt shares its trap vector with Level 2, the Arithmetic Overflow inter-

rupt. (See Section 2.3.2.2.2.) The interrupt subroutine beginning with the PC of this vector should examine the

MID Flag to determine the cause of the interrupt. If the MID Flag is set to "1", an MID interrupt has occurred, and

if the MID Flag is set to "0", an Arithmetic Overflow interrupt has occurred. The portion of this interrupt sub-

routine that handles MID interrupts should always, before returning from the subroutine, reset the MID Flag

to "0".

The MID interrupt has basically two applications. The MID opcodes can be considered to be illegal opcodes. The

MID interrupt is then used to detect errors of this nature. The second, and primary application of the MID inter-

rupt, is to allow the definition of additional instructions for the TMS 9995. MID opcodes are used as the opcodes

for these macro instructions. Software in the MID interrupt service routine emulates the execution of these instruc-

tions. The benefit of this implementation of macros is that the macro instructions can be implemented in micro-

code in future processors and software will then be directly transportable to these future processors.

Note that the TMS 9995 interrupt request processing sequence does create some difficulties for re-entrant usage of

MID interrupt macro instructions. In general, to avoid possible errors, MID interrupt macro instructions should
not be used in the NMI and Level 1 interrupt subroutines, and should only be used in the Reset subroutine if

Reset is a complete initialization of the system.

2.3.2.2.2 Arithmetic Overflow Interrupt

The occurrence of an arithmetic overflow condition, defined as status register bit 4 (ST4) getting set to one (see

Table 7. for those conditions that set ST4 to one► , can cause the Level 2 interrupt to be requested. Note that this

request will be granted immediately after the instruction that caused the overflow condition. The TMS 9995 ser-

vices this request exactly according to the basic sequence previously described with the priority level, trap vector

location, and enabling/resulting status register interrupt mask values as defined in Table 2.

In addition to being maskable with the interrupt mask, the Level 2 overflow interrupt request is enabled/disabled

by status register bit 10 (ST10), the Arithmetic Overflow Enable Bit (i.e., ST10 = 1 enables overflow interrupt re-

quest; ST10 = 0 disables overflow interrupt request). If servicing the overflow interrupt request is temporarily

overridden by servicing of a higher priority interrupt, the occurrence of the overflow condition will be retained in

the contents of the status register, i.e., ST4 = 1, which is saved by the higher priority context switch. Returning

from the higher priority interrupt subroutine via an RTWP instruction causes the overflow condition to be re-

loaded into status register bit ST4 and the overflow interrupt to be requested again (upon completion of RTWP

instruction). The arithmetic overflow interrupt subroutine must reset ST4 or ST10 to zero in the status word

saved in register 15 before the routine is complete to prevent generating another overflow interrupt immediately

after the return.

19

It should also be noted that the Level 2 arithmetic overflow interrupt shares its trap vector with the MID inter-

rupt. Section 2.3.2.2.1 describes how the interrupt subroutine beginning with the PC of this vector can determine

the cause of the interrupt.

2.3.2.2.3 Decrementer Interrupt

The occurrence of an interrupt request by the decrementer (see Section 2.3.1.2.2) will cause the Level 3 internal

interrupt request latch to get set. This latch is similar to those for Levels 1 and 4 in that it is reset by servicing a

Reset interrupt or when the context switch for its associated interrupt level occurs (Figure 17).

The Level 3 internal interrupt request latch being set constitutes a request for a Level 3 interrupt, and the

TMS 9995 services this request exactly according to the basic sequence previously described with the priority

level, trap vector location, and enabling/resulting status register interrupt mask values as defined in Table 2.

2.3.3 Communication Register Unit Interface

The TMS 9995 accomplishes bit I/O of varying field width through the use of the Communications Register Unit

(CRU). In applications demanding a bit-oriented I/O interface, the CRU performs its most valuable act: transferring

a specified number of bits to or from memory and a designated device. Thus, the CRU is simply a linking

mechanism between memory and peripherals.

Acting as a shift register, the CRU is a separate hardware structure of the TMS 9995 microprocessor. This structure

can serially transfer up to 16 bits of data between the CPU and a specified device in a single operation. The

32768-bit CRU address space may be divided into any combination of devices, each containing any number of

input or output bits. When given the bit address of a device, the CRU can test or modify any bit in that unit.

Several consecutive addresses can be occupied by a device. These CRU applications are controlled by single and

multiple-bit 9995 instructions.

Single-bit instructions facilitate the testing or modification of a particular bit in a device. The device in which a

bit is to be tested (TB), set to zero (SBZ), or set to one (SBO) is designated by the sum of the value in Register 12

and an 8-bit signed displacement value included as an operand of that instruction. Details of these instructions are

given in Section 4.5.7.

Multiple-bit instructions control the serial transfer of up to 16 bits between memory and peripherals. The device

with which communication is to take place is addressed by Register 12. The memory address to or from which

data is to be transferred, as well as the number of bits to be transferred are included as operands of the multiple-

bit instruction. Details of these instructions are given in Section 4.5.6.

The signals used in the TMS 9995 interface to the CRU are shown in Figure 18. The CRU address map is shown

in Figure 19.

)

TIRRIOR6

ARAIR

CRU
DEv,CES

CC.02.

))1 a
haft•EN

OEM
all

WitCAuCLI,

CRUM

IP-

4

• IWCRUOUT

a.

REACT

4

NOTE:

00-02 Ere ueed to diStineuish between CPU end externel instruction cycles_ If •aternal instructions are not used in a system, DO 02

are not necinsuy in the CPU interface.

FIGURE 18 — TMS9995 CRU INTERFACE

20

1EDE

IEEO

1EE2

1EE4

1EE6

1EE8

1EEA

1EEC

IEEE

IEFO

1EF2

I EF4

1 EF6

1EF8

1EFA

1EFC

1EFE

1F00

4)

1F08

1FDA

I FDC

1

 GENERAL USE EXTERNAL (OFF-
CRU ADDRESS CHIP) CRU
SPACE ADDRESS SPACE

F LAGO

FLAG1

FLAG2

FLAW

FLAG4

FLAGS

FLAGS

FLAG? ..., FLAG . INTERNAL ION.

REGISTER CHIP) CRU ,.' .

FLAGS ADDRESS SPACE

FLAGS

FLAGA

FLAGS

FLAGC

FLAGD

FLAGE

FLAGF

1 }
GENERAL USE

SPACE

EXTERNAL (OFF
I CRU ADDRESS CHIP) CRU

ADDRESS SPACE

INTERNAL ((A-
MID FLAG CHIP) CRU

ADDRESS SPACE

GENERAL USE EXTERNAL (OFF-
CRU ADDRESS CHIP) CRU
SPACE ADDRESS SPACE

FFFE
If

NOTE: These hex addresses are the software base addresses and are obtained by placing the 15-bit Address Bus CRU bit address

in a 16-bit field, left-justifying the 15 bits in the field, and setting the LSB of the field to zero.

FIGURE 19 — CRU ADDRESS MAP

The concept of "CRU space" is the key to CRU operations. An ideological area exists in which peripheral devices
reside in the form of an address. The CRU space is this ideological area; it has monotonically increasing bit
addresses. Each bit represents a bistable I/O point which can be read from or written to. CRU address space and
memory address space are independent of each other. Memory space is byte-addressable, and CRU space is bit-

addressable. Therefore, a desired device is accessed by placing its software base address in Register 12 and exercis-
ing the CRU commands.

CRU nomenclature is built around the four address types involved in its operation. The software base address,
hardware base address, address displacement, and CRU bit address interact to link memory to peripherals in
bit-serial communication via the CRU.

The software base address consists of the entire 16 bits of R12. In R12, the programmer loads twice the value of
the CRU hardware address of the device with which he wishes to communicate. Because only bits 0 through 14
of Register 12 are placed on the address bus, the programmer needs to shift the hardware base address left one
position (equivalent to multiplying by two).

Bits 0 through 14 of Register 12 form the hardware base address. For the single-bit instructions, the hardware
base address is added to the address displacement to obtain the CRU bit address. For multiple-bit instructions the
hardware base address is the CRU bit address.

21

BIT ADDR. n
DATA BIT n

BIT ADOR. n+1
DATA BIT n+1

'MON

WE/CRUCLK

A15/CRUOUT

CRUIN

‘eiminmonseeet

CRU INPUT,
SINGLE BIT,

NO WAITS

NOTES:

0 Valid Address

® DO-02 each output logic zero

® Non-specific output bit

CI CRU input bit must be valid on CRUIN at CLKOUT edge indicated

F

•

CLKOUT

AO.A14

00-02

\NIM1/11s1=MIIMIMIININIssel

V
CRU INPUT,

SUCCESSIVE BITS,
NO WAITS

CRU INPUT,
SINGLE BIT,

ONE WAIT STATE

2.3.3.1 External CRU Devices

To input a data bit from an external (off-chip) CRU device, the TMS 9995 first outputs the appropriate address on
AO-A14. The TMS 9995 leaves MEMEN high, outputs logic zeroes on D0-D2, strobes DBIN, and reads in the data
bit on CRUIN. Completion of each CRU input cycle and/or generation of Wait states is determined by the READY

input as detailed in Section 2.3.1.3. Timing relationships of the CRU input cycle are shown in Figure 20.

FIGURE 20 — TMS9995 CRU INPUT CYCLE

To output a data bit to an external (off-chip) CRU device, the TMS 9995 first outputs the appropriate address on
AO-A14. The TMS 9995 leaves MEMEN high, outputs logic zeroes on DO-D2, outputs the data bit on A15/
CRUOUT, and strobes WE/CRUCLK. Completion of each CRU output cycle and/or generation of Wait states is
determined by the READY input as detailed in Section 2.3.1.3. Timing relationships of the CRU output cycle are
shown in Figure 21.

For multiple-bit transfers, these input and output cycles are repeated until transfer of the entire field of data bits
specified by the CRU instruction being executed has been accomplished.

22

MEMEN L._

3(0

CLKOUT

AO-A14

DO-02

•
DEIN

>

1 1

90000<C)

•
•

•

od00000000
d000000'

WE/CRUCLK

A15/CRUOUT

CRUIN

I I
• •

•

CRU OUTPUT
SINGLE BIT,

ONE WAIT STATE

BIT ADDR. n BIT ADDR. n+1
DATA BIT n DATA BIT n+1

\ / V
0 Valid address CRU OUTPUT,

SUCCESSIVE BITS,
DO-D2 each output logic zero NO WAITS

Valid CRU output bit for address being output

® Don't care

CRU OUTPUT,
SINGLE BIT,

NO WAITS
NOTES:

FIGURE 21 — TMS9995 CRU OUTPUT CYCLE

2.3.3.1.1 Single-Bit CRU Operations

The TMS 9995 performs three single-bit CRU functions: Test Bit (TB), Set Bit to One (SBO), and Set Bit to Zero

(SBZ). The SBO instruction performs a CRU output cycle with logic one for the data bit, and the SBZ instruction

performs a CRU output cycle with logic zero for the data bit. A TB instruction transfers the addressed CRU bit

from the CRUIN input line to bit 2 of the status register (bit ST2, the EQUAL bit).

The TMS 9995 develops a CRU bit address for the single-bit operations from the CRU base address contained in

workspace register 12 and the signed displacement count contained in bits 8 through 15 of the instruction. The dis-

placement allows two's complement addressing from base minus 128 bits through base plus 127 bits. The base

address from WR12 is added to the signed displacement specified in the instruction and the result is placed onto

the address bus. Figure 22 illustrates the development of a single-bit CRU address.

23

MSB 0 1 2 3 4 5 6 8 9 10 11 12 13 14 15 LSB

WR12*

8 9 10 11 12 13 14 15

1k.
BIT 8 SIGN
EXTENDED

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

SIGNED
DISPLACEMENT

ADDRESS BUS

V

*Bit 15 of WR12 not used

EFFECTIVE CRU BIT ADDRESS

FIGURE 22 — SINGLE BIT CRU ADDRESS DEVELOPMENT

2.3.3.1.2 Multiple Bit CRU Operations

The TMS 9995 performs two multiple-bit CRU operations: store communications register (STCR) and load com-
munications register (LDCR). Both operations perform a data transfer from the CRU-to-memory or from memory-
to-CRU as illustrated in Figure 23. Although the figure illustrates a full 16-bit transfer operation, any number of

bits from 1 through 16 may be involved.

CRU INPUT BITS CRU OUTPUT BITS

N+1

N

N+1
INPUT (STCR)

0 1 MEMORY WORD 14 15

OUTPUT ILDCRI
N+14

N+15 •

N+14

N+15

N = BIT SPECIFIED BY CRU BASE REGISTER (WR12)

FIGURE 23 — LDCR/STCR DATA TRANSFERS

24

The LDCR instruction fetches a word from memory and right shifts it to serially transfer it to CRU output bits. If

the LDCR involves eight or fewer bits, those bits come from the right-justified field within the addressed byte of

the memory word. If the LDCR involves nine or more bits, those bits come from the right-justified field within

the whole memory word. Register 12, bits 0 through 14, defines the starting bit address. When transferred to the

CRU interface, each successive bit receives an address that is sequentially greater than the address for the previous

bit. This addressing mechanism results in an order reversal of the bits; that is, bit 15 of the memory word (or bit 7)

becomes the lowest addressed bit in the CRU and bit 0 becomes the highest bit in the CRU field.

A STCR instruction transfers data from the CRU to memory. If the operation involves a byte or less transfer, the

transferred data will be stored right-justified in the memory byte with leading bits set to zero. If the operation in-

volves from nine to 16 bits, the transferred data is stored right-justified in the memory word with leading bits set

to zero. When the input from the CRU device is complete, the lowest addressed bit from the CRU is in the least-

significant bit position in the memory word or byte.

2.3.3.2 Internal CRU Devices

Access of internal (on-chip) CRU devices is transparent to the TMS 9995 CRU instructions. Data can be input from

and output to the bits of the internal CRU devices simply by using the appropriate CRU addresses to access these

bits.

The TMS 9995 will indicate to the external world when these internal CRU bit accesses are occurring by asserting

the same signals used for accessing external CRU devices (see Figure 18). The timing of these signals for internal

CRU input and output cycles will be identical to the timing for external CRU input and output cycles (see

Figure 20 and 21) except that during internal CRU cycles, the READY input is ignored, i.e., Wait states cannot be

generated, and, during internal CRU input cycles, the TMS 9995 will ignore the CRUIN input signal. The internal

bit being input will not be available to the external world on CRUIN.

The functional characteristics of the internal CRU devices are described in the following paragraphs.

2.3.3.2.1 Flag Register

Accessible via CRU input and output instructions that are executed to dedicated internal CRU bit addresses (see

Figure 19) is the internal Flag Register. The 16-bit Flag Register contains both predefined TMS 9995 systems

flags and user-definable flags as detailed in Table 3. The predefined system flags are the configuration bit for the

Decrementer, the Decrementer enable bit, and the internal interrupt request latch CRU inputs. Note that CRU out-

put operations to the internal interrupt request latch Flag addresses will not cause these latches to be either set or

reset. These Flag bits are input only and allow the presence of these interrupt requests to be detected when the

occurrence of the interrupts themselves is inhibited by the value of the interrupt mask in the status register.

2.3.3.2.2 MID Flag

Accessible via CRU input and output instructions that are executed to a dedicated internal CRU bit address (see

Figure 19) is the MID Flag. The MID Flag is set to one by a MID interrupt, and reset to zero by the software of

the MID interrupt routine (see Section 2.3.2.2.1). Note that setting the MID Flag to one with a CRU instruction

will not cause the MID interrupt to be requested.

2.3.4 External Instructions

The TMS 9995 has five external instructions (see Table 4) that allow user-defined external functions to be initiated

under program control. These instructions are CKON, CKOF, RSET, IDLE, and LREX. These mnemonics, except

for IDLE, relate to functions implemented in the 990 minicomputer and do not restrict use of the instructions to

initiate various user-defined functions. Execution of an IDLE instruction causes the TMS 9995 to enter the Idle

state and remain in this state until a request occurs for an interrupt level that is not masked by the current value of

the interrupt mask in the status register. (Note that the Reset and NMI interrupt levels are not masked by any

interrupt mask value.) When any of these five instructions are executed by the TMS 9995, the TMS 9995 will use

the CRU interface (see Figure 18) to perform a cycle that is identical to a single-bit CRU output cycle (see

Figure 21) except for the following: (1) the address being output will be non-specific, (2) the data bit being output

will be non-specific, (3) a code, specified in Table 4, will be output on DO-D2 to indicate the external instruction

being executed. Note that completion of each external instruction andfor generation of Wait states is determined

by the READY input as detailed in Section 2.3.1.3.

25

moi7d" AVe/PXFP-FUTAIN MAL mis

BIT
CRU BIT

ADDRESSt
DESCRIPTION

FLAGO 1 EEO Set to 0: Decrementer configured as

Interval Timer.

Set to 1: Decrementer configured as

Event Counter.

F LAG1 1 EE2 Set to 0: Decrementer not enabled

Set to 1: Decrementer enabled (will

decrement and can set in-

ternal latch that requests a

level 3 interrupt).

FLAG2 1 EE4 Level 1 Internal Interrupt Request

Latch CRU Input (Input-only).

0: Level 1 request not present

1: Level 1 request present

FLAG3 1 EE6 Level 3 Internal Interrupt Request

Latch CRU Input (Input-only).

0: Level 3 request not present

I: Level 3 request present

FLAG4 I EE8 Level 4 Internal Interrupt Request

Latch CRU Input (Input-only).

0: Level 4 request not present

1: Level 4 request present

FLAG5

F LAG6

FLAG?

FLAG8

F LAG9

FLAGA

F LAGB

FLAGC

FLAGD

FLAGE

FLAGF

1EEA

1 EEC

IEEE

I EFO

1EF2

IEF4

1 E F6

I EF8

IEFA

1EFC

1EFE

User Defined

I These hex numbers are those obtained by placing the 15-bit Address Bus CRU address in a 16-bit field, left justifying the 15 bits in the field,

and setting the LSB of the field to zero.

TABLE 4 — TMS 9995 EXTERNAL INSTRUCTION CODES

INSTRUCTION
CODE DURING CYCLE

DO D1 02

CRU:

SBO, SBZ, TB,

LDCR or STCR

0 0 0

IDLE 0 1 0
—

RSET 0 1 1

CKON 1 0 1

CKOF 1 1 0

LR EX 1 1 1

26

When the TMS 9995 is in the Idle state, cycles with the Idle code will occur repeatedly until a request for an inter-
rupt level that is not masked by the interrupt mask in the status register occurs.

A Hold state can occur during an Idle state, with entry to and return from the Hold state occurring at the Idle code
cycle boundaries. (See Section 2.3.1.1.3 for details of entry to and return from the Hold state.)

2.3.5 TMS 9995 Internal ALU/Other Operation Cycles

When the TMS 9995 is performing an operation internally and is not using the memory, CRU, or external instruc-
tion interfacest or is not in the Hold state, the TMS 9995 will, for as many CLKOUT cycles as needed, do the

following with its interface signals:

(1) Output a non-specific address on AO-A14 and A15/CRUOUT

(2) Output non-specific data on DO-D7

(3) Output logic level high on MEMEN, DBIN, and WE/CRUCLK

(4) Output logic level low on 1AQ/HOLDA, and

(5) Ignore the READY and CRUIN inputs.

The HOLD input is still active, however, as the TMS 9995 can enter a Hold state while performing an internal

ALU/other operation. Also, all interrupt inputs are still active.

t Internal memory space and internal CRU device accesses are defined as using the memory and CRU interfaces.

.27

APPENDIX F

TMS 9995 MICROCOMPUTER

INSTRUCTION SET

F-1

4. TMS 9995 INSTRUCTION SET

4.1 DEFINITION

Each TMS 9995 instruction performs one of the following operations:

• Arithmetic, logical, comparison, or manipulation operations on data

• Loading or storage of internal registers (program counter, workspace pointer, or status)

• Data transfer between memory and external devices via the CRU

• Control functions

4.2 ADDRESSING MODES

The TMS 9995 instructions contain a variety of available modes for addressing random memory data, e.g., pro-

gram parameters and flags, or formatted memory data (character strings, data lists, etc.). These addressing modes

are:

• Workspace Register Addressing

• Workspace Register Indirect Addressing

• Workspace Register Indirect Auto Increment Addressing

• Symbolic (Direct) Addressing

• Indexed Addressing

• Immediate Addressing

• Program Counter Relative Addressing

• CRU Relative Addressing

31

The following figures graphically describe the derivation of effective address for each addressing mode. The applica-

bility of addressing modes to particular instructions is described in Section 4.5 along with the description of the
operations performed by each instruction. The symbols following the names of the addressing modes (R, *R, *R+,
@LABEL or @TABLE (R) are the general forms used by TMS 9995 assemblers to select the addressing modes for

register R.

4.2.1 Workspace Register Addressing, R

Workspace Register R contains the operand

REGISTER R

(PC)-1 INSTRUCTION (WP)+2RH OPERAND

The Workspace Register addressing mode is specified by setting the two-bit T-field (Ts or TO) of the instruction

word equal to 00.

4.2.2 Workspace Register Indirect Addressing, *R

Workspace Register R contains the address of the operand.

REGISTER R

(PC)--.1 INSTRUCTION

HP' (WP)+2R

The Workspace Register Indirect addressing mode is specified by setting the two-bit T-field (Ts or TD) in the

instruction word equal to 01.

4.2.3 Workspace Register Indirect Auto Increment Addressing, *R+

Workspace Register R contains the address of the operand. After acquiring the address of the operand, the con-

tents of Workspace Register R are incremented.

REGISTER R

INSTRUCTION 1-60 (WP)+2R

The Workspace Register Indirect Auto Increment addressing mode is specified by setting the two-bit T-field (Ts

or To) in the instruction word equal to 11.

32

(PC)

(PC)+2

INSTRUCTION

LABEL OPERAND

(PC) --01 INSTRUCTION

(PC)+2-4 TABLE

1-
10, (WP)+2R 4 INDEX VALUE

OPERAND

(PC)

(PC) + 2

INSTRUCTION

OPERAND

PROGRAM COUNTER OP CODE DISP

ADDRESS NEXT MEMORY WORD

2 • DISP

4.2.4 Symbolic (Direct) Addressing, @LABEL

The word following the instruction contains the address of the operand.

The Symbolic addressing mode is specified by setting .the two-bit T-field (Ts or To) in the instruction word equal

to 10 and setting the corresponding S or D field equal to 0.

4.2.5 Indexed Addressing, @TABLE (R)

The word following the instruction contains the base address. Workspace Register R contains the index value. The

sum of the base address and the index value results in the effective address of the operand.

REGISTER R

The indexed addressing mode is specified by setting the two-bit T-field (Ts or To) of the instruction word equal to

10 and setting the corresponding S or D field not equal to 0. The value in the S or D field is the register which con-
tains the index value.

4.2.6 Immediate Addressing

The word following the instruction contains the operand.

4.2.7 Program Counter Relative Addressing

The eight-bit signed displacement in the right byte (bits 8 through 15) of the instruction is multiplied by 2 and

added to the updated contents of the program counter. The result is placed in the PC.

JUMP INSTRUCTION

33

OP CODE DISP (PC)

(WP)+2-12

7 8 15

REGISTER 12

CRU BIT

ADDRESS

CRU BASE ADD

4.2.8 CRU Relative Addressing

The eight-bit signed displacement in the right byte of the instruction is added to the CRU base address (bits 0

through 14 of workspace register 12). The result is the CRU address of the selected CRU bit.

INSTRUCTION

0 14 15

4.3 DEFINITION OF TERMINOLOGY

The terminology used in describing the instructions of the TMS 9995 is defined in Table 6.

4.4 STATUS REGISTER MANIPULATION

Various TMS 9995 machine instructions affect the status register. Figure 5 shows the status register bit assignments.

Table 7 lists the instructions and their effect on the status register.

4.5 INSTRUCTIONS

4.5.1 Dual Operand Instructions with Multiple Addressing for Source and Destination Operand

General 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Format: OP CODE B TD D TS S

If B = 1, the operands are bytes and the operand addresses are byte addresses. If B = 0, the operands are words and

the LSB of the operand address is ignored.

The addressing mode for each operand is determined by the T-field of that operand.

Ts or TD S or D ADDRESSING MODE NOTES

00 0, 1 ... 15 Workspace register 1

01 0, 1 ... 15 Workspace register indirect

10 0 Symbolic 4

10 1, 2 ... 15 Indexed 2, 4

11 0, 1 ... 15 Workspace register indirect

auto increment

3

NOTES: 1. When a workspace register is the operand of a byte instruction (bit 3 = 1), the left byte (bits 0 through 7) is the

operand and the right byte (bits 8 through 15) is unchanged.

2. Workspace register 0 may not be used for indexing.

3. The workspace register is incremented by 1 for byte instructions (bit 3 = 1) and is incremented by 2 for word instruc-

tions (bit 3 = 0).
4. When TS = TD = 10, two words are required in addition to the instruction word. The first word is the source operand

base address and the second word is the destination operand base address.

34

TABLE 6 — DEFINITION OF TERMINOLOGY

TERM DEFINITIONS

B

C

D

DA

Byte Indicator (1 = byte; 0 = word)

Bit Count

Destination address register

Destination address

lOP

LS8 (n)

MSB (n)

N

Immediate operand

Least-significant (right most) bit of (n)

Most-significant (left most) bit of (n)

Don't care

PC

Result

S

SA

ST

Program Counter

Result of operation performed by instruction

Source address register

Source address

Status register

STn

TD

TS

W

Bit n of status register

Destination address modifier

Source address modifier

Workspace register

WRn

(n)

a —• b

I n I

Workspace register n

Contents of n

a is transferred to b

Absolute value of n

+

—

AND

OR

Arithmetic addition

Arithmetic subtraction

Logical AND

Logical OR

0
n

•

Logical exclusive OR

Logical complement of n

Arithmetic multiplication

35

TABLE 7 — STATUS REGISTER BIT DEFINITIONS*

BIT NAME

INSTRUCTION

AND/OR

INTERRUPT

CONDITION TO SET BIT TO 1, OTHERWISE

SET TO 0 FOR INSTRUCTION LISTED.

ALSO, THE EFFECT OF OTHER

INSTRUCTIONS AND INTERRUPTS

STO Logical

Greater

Than

C, CB If MSB (SA) = 1 and MSB (DA) = 0, or

If MSB (SA) = MSB (DA) and MSB of

[(DA) — [SA)] = 1.

CI If MSB (W) = 1 and MSB of 10P = 0, or

if MSB (W) = MSB of 10P and MSB of

[10P — (W)[= 1..

ABS, LDCR If (SA)* 0

RTWP If bit (0) of WR15 is 1

LST If bit (0) of selected WR is 1

A, AB, AI, ANDI,

DEC, DECT, LI,

MOV, MOVE, NEG,

ORI, S, SB,

DIVS, MPYS, INC,

INCT, INV, SLA,

SOC, SOCB, SRA,

SRC, SRL, STCR,

SZC, SZCB, XOR

If result # 0

Reset Interrupt Unconditionally sets status bit to 0

All other instructions

and interrupts

Do not affect the status bit (see Note 1)

ST1 Arithmetic

Greater

Than

C, CB If MSBISA) = 0 and MSB (DA) = 1, or

If MSB (SA) = MSB (DA) and MSB of

[(DA) — (SA)1 = 1.

CI If MSB (W) = 0 and MSB of 10P = 1, or

if MSB (W) = MSB of 10P and MSB of

[10P — (W)] = 1.

ABS, LDCR If MSB (SA) = 0 and (SA) * 0

RTWP If bit (1) of WR15 is 1

LST If bit (1) of selected WR is 1

A, AB, Al, ANDI,

DEC, DECT, LI,

MOV, MOVB, NEG,

ORI, S, SB, DIVS,

MPYS, INC, INCT,

INV, SLA, SOC,

SOCK, SRA, SRC,

SRL, STCR, SZC,

SZCB, XOR

If MSB of result = 0 and result * 0

Reset Interrupt Unconditionally sets status bit to 0

All other instructions

and interrupts

Do not affect the status bit (see Note 1)

See Table 6 for definitions of terminology used in this table.

36

TABLE 7 — STATUS REGISTER BIT DEFINITIONS (Continued)

BIT NAME

INSTRUCTION

AND/OR

INTERRUPT

CONDITION TO SET BIT TO 1, OTHERWISE

SET TO 0 FOR INSTRUCTION LISTED.

ALSO, THE EFFECT OF OTHER

INSTRUCTIONS AND INTERRUPTS

ST2 Equal C, CB If (SA) = (DA)

CI If (W) = 10P

COC If (SA) and (DA) = 0

CZC If (SA) and (DA) = 0

TB If CRUIN = 1 for addressed CRU bit

ABS, LDCR If (SA) = 0

RTWP If bit (2) of WR15 is 1

LST If bit (2) of selected WR is 1

A, AB, Al, ANDI,

DEC, DECT, LI,

MOV, MOVB, NEG,

ORI, S, SB, DIVS,

MPYS, INC, INCT,

INV, SLA, SOC,

SOCB, SRA, SRC,

SRL, STCR, SZC,

SZCB, XOR

If result = 0

Reset Interrupt Unconditionally sets status bit to 0

All other instructions

and interrupts

Do not affect the status bit (see Note 1)

ST3 Carry A, AB, ABS, Al,

DEC, DECT, INC,

INCT, NEG, S, SB

If CARRY OUT = 1

SLA, SRA, SRL,

SRC

If last bit shifted out = 1

RTWP If bit (3) of WR15 is 1

LST If bit (3) of selected WR is 1

Reset Interrupt Unconditionally sets status bit to 0

All other instructions

and interrupts

Do not affect the status bit (see Note 1)

ST4 Overflow A, AB If MSB (SA) = MSB (DA) and MSB

of result * MSB (DA)

AI If MSB (W) = MSB of 10P and MSB

of result * MSB (W)

S, SB If MSB (SA) * MSB (DA) and MSB

of result * MSB (DA)

DEC, DECT If MSB (SA) = 1 and MSB of result = 0

INC, INCT If MSB (SA) = 0 and MSB of result = 0

SLA If MSB changes during shift

DIV If MSB (SA) = 0 and MSB (DA) = 1, or if

MSB (SA) = MSB (DA) and MSB of

[(DA) — (SA)) = 0

DIVS If the quotient cannot be expressed as a

signed 16 bit quantity (800016 is a valid

negative number)

ABS, NEG If (SA) = 800016

RTWP If bit (4) of WR15 is 1

LST If bit (4) of selected WR is 1

Reset Interrupt Unconditionally sets status bit to 0

All other instructions

and interrupts

Do not affect the status bit (see Note 11

37

TABLE 7 — STATUS REGISTER BIT DEFINITIONS (Concluded)

BIT NAME

INSTRUCTION

AND/OR

INTERRUPT

CONDITION TO SET BIT TO 1, OTHERWISE

SET TO 0 FOR INSTRUCTION LISTED.

ALSO, THE EFFECT OF OTHER

INSTRUCTIONS AND INTERRUPTS

ST5 Odd

Parity

CB, MOVB If (SA) has odd number of l's

LDCR If 1 < C < 8 and (SA) has odd number of l's.

If C = 0 or 9 < C < 15, does not affect the

status bit.

STCR If 1 < C < 8 and the stored bits have an odd

number of l's. If C = 0 or 9 < C < 15, does

not affect the status bit.

AB, SB, SOCB,

SZCB

If result has odd number of l's.

RTWP If bit (5) of WR15 is 1

LST If bit (5) of selected WR is 1

Reset Interrupt Unconditionally sets status bit to 0

All other instructions

and Interrupts

Do not affect the status bit (see Note 1)

ST6 XOP XOP If XOP instruction is executed

RTWP If bit (6) of WR15 is 1

LST If bit (6) of selected WR is 1

Reset Interrupt Unconditionally sets status bit to 0

All other instructions

and interrupts

Do not affect the status bit (see Note 1)

ST7

ST8

ST9

and

ST11

Unused

Bits

RTWP If corresponding bit of WR15 is 1

LST If corresponding bit of selected WR is 1.

XOP, Any

Interrupt

Unconditionally sets each of these status

bits to 0

All other instructions Do not affect these status bits (see Note 1)

ST10 Arithmetic

Overflow

Enable

RTWP If bit (10) of WR is 1

LST If bit (10) of selected WR is 1

XOP, Any

Interrupt

Unconditionally sets status bit to 0

All other instructions Do not affect the status bit (see Note 1)

ST12

ST13

ST14

and

ST15

Interrupt

Mask

LIMI If corresponding bit of 10P is 1

RTWP If corresponding bit of WR15 is 1

LST If corresponding bit of selected WR is 1.

RST, Reset and

NMI Interrupts

Unconditionally sets each of these status

bits to 0

All other interrupts If ST12 — ST15 = 0, no change

If ST12 = ST15 * 0, set to one

Less than level of the interrupt trap taken

All other instructions Do not affect these status bits (see Note 1)

3TE 1: The X instruction itself does not affect any status bit; the instruction executed by the X instruction sets status bits as defined foi

that instruction.

38

MNEMONIC

OP CODE B

MEANING

RESULT

COMPARED

TO 0

STATUS

BITS

AFFECTED

DESCRIPTION

0 1 2 3

A 1 0 1 0 Add Yes 0-4 (SA) + (DA) -+ (DA)

AB 1 0 1 1 Add bytes Yes 0-5 (SA) + (DA) -+ (DA)

C 1 0 0 0 Compare No 0-2 Compare (SA) to (DA) and set

appropriate status bits

CB 1 0 0 1 Compare bytes No 0-2,5 Compare (SA) to (DA) and set

appropriate status bits

S 0 1 1 0 Subtract Yes 0-4 (DA) — (SA) -. (DA)

SB 0 1 1 1 Subtract bytes Yes 0-5 (DA) — (SA) --. (DA)

SOC 1 1 1 0 Set ones corresponding Yes 0-2 IDA) OR (SA) -+ (DA)

SOCB 1 1 1 1 Set ones corresponding bytes Yes 0-2,5 IDA) OR (SA) -+ (DA)

SZC 0 1 0 0 Set zeroes corresponding Yes 0-2 (DA) AND (SA) -+ (DA)

SZCB 0 1 0 1 Set zeroes corresponding bytes Yes 0-2,5 (DA) AND ISA) -+ (DA)

MOV 1 1 0 0 Move Yes 0-2 (SA) -0 (DA)

MOVB 1 1 0 1 Move bytes Yes 0-2,5 (SA) -+ IDA)

4.5.2 Dual Operand Instructions with Multiple Addressing Modes for the Source Operand and Workspace Register

Addressing for the Destination

General 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Format: OP CODE D Ts S

The addressing mode for the source operand is determined by the Ts field.

Ts S ADDRESSING MODE NOTES

00 0, 1 ... 15 Workspace register

01 0, 1 ... 15 Workspace register indirect

10 0 Symbolic

10 1, 2 ... 15 Indexed 1

11 0, 1 ... 15 Workspace register indirect auto increment 2

NOTES: 1. Workspace register 0 may not be used for indexing.
2. The workspace register is incremented by 2.

39

MNEMONIC

OP CODE

MEANING

RESULT

COMPARED

TO 0

STATUS

BITS

AFFECTED

DESCRIPTION

0 1 2 3 4 5

COC 0 0 1 0 0 0 Compare ones

corresponding

No 2 Test (D) to determine if l's are in each bit

position where 1's are in (SA). If so, set ST2.

CZC 0 0 1 0 0 1 Compare zeroes

corresponding

No 2 Test (D) to determine if 0's are in each bit

position where 1's are in (SA). If so, set ST2.

XOR 0 0 1 0 1 0 Exclusive OR Yes 0-2 (DA) 0 (SA) —Y. (D)

MPY 0 0 1 1 1 0 Multiply No — Multiply unsigned (D) by unsigned (SA) and

place unsigned 32-bit product in 0 (most-

significant) and D+1 (least-significant). If WR15

is D, the next word in memory after WR15 will

be used for the least significant half of the

product.

DIV 0 0 1 1 1 1 Divide No 4 If unsigned (SA) is less than or equal to unsigned

ID), perform no operation and set ST4. Otherwise,

divide unsigned (D) and (D+1) by unsigned (SA).

Quotient (D), remainder--Y. (D+1). If D = 15,

the next word in memory after WR15 will be

used for the remainder.

4.5.3 Signed Multiply and Divide Instructions

General 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Format: OP CODE Ts S

The addressing mode for the source operand is determined by the TS field.

Ts S ADDRESSING MODE NOTES

00 0, 1 ... 15 Workspace register 1

01 0, 1 . . . 15 Workspace register indirect 1

10 0 Symbolic 1

10 1, 2 .. . 15 Indexed 1,2

11 0, 1 ... 15 Workspace register indirect

auto increment

1,3

NOTES: 1. Workspace registers 0 and 1 contain operands used in the signed multiply and divide operations.

2. Workspace register 0 may not be used for indexing.

3. The workspace register is incremented by 2.

40

0 0 1 0 1 1 D TS S

MNEMONIC

0 1 2 3

OP CODE

4 5 6 7 8 9

MEANING

RESULT

COMPARED

TO 0

STATUS

BITS

AFFECTED

DESCRIPTION

MPYS 0 0 0 0 0 0 0 1 1 1 Signed

Multiply

Yes 0-2 Multiply signed two's corn-

plement integer in WRO by

signed two's complement

integer (SA) and place signed

32-bit product in WRO (most-

significant) and WR1 least-

significant.

DIVS 0 0 0 0 0 0 0 1 1 0 Signed

Divide

Yes 0-2,4 If the quotient cannot be ex-

pressed as a signed 16 bit

quantity (8000 (hex) is a valid

negative number), set ST4.

Otherwise, divide signed, two's

complement integer in WRO

and WR1 by the signed two's

complement integer (SA) and

place the signed quotient in

WRO and the signed remainder

in WR1. The sign of the quo-

tient is determined by algebraic

rules. The sign of the remainder

is the same as the sign of the

dividend and I REMAINDER I

< I DIVISOR I

4.5.4 Extended Operation (XOP) Instruction

General 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Format::

The TS and S fields provide multiple mode addressing capability for the source operand. When the XOP is executed,

the following transfers occur:

(4016 + 4D) (WP)

(4216 + 40) (PC)

SA--0. (new WR11)

(old WP) (new WR13)

(old PC) (new WR14)

(old ST) (new WR 15)

After these transfers have been made, ST6 is set to one, and ST7, ST8, ST9, ST10 (Overflow Interrupt Enable),

and ST11 are all set to zero.

The TMS 9995 does not service interrupt trap requests (except for the Reset and NMI Requests) at the end of

the XOP instruction.

41

4.5.5 Single Operand Instructions

General 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Format: OP CODE Ts S

The Ts and S fields provide multiple mode addressing capability for the source operand.

MNEMONIC

OP CODE

MEANING

RESULT

COMPARED

TO ZERO

STATUS

BITS

AFFECTED

DESCRIPTION

0 1 2 3 4 5 6 7 8 9

B 0 0 0 0 0 1 0 0 0 1 Branch No - SA -• (PC)

BL 0 0 0 0 0 1 1 0 1 0 Branch

and link

No - (PC) -* (WR11); SA -. (PC)

BLWP 0 0 0 0 0 1 0 0 0 0 Branch

and load

workspace

pointer

No - (SA) --. (WP); (SA + 2) --. (PC);

(old WP) -. (new WR13);

(old PC) -4. (new WR14);

(old ST) -. (new WR15);

The TMS 9995 does not ser-

vice interrupt trap requests

(except for the Reset and NMI

Requests) at the end of the

BLWP instruction.

CLR 0 0 0 0 0 1 0 0 1 1 Clear No - 0 -. (SA)

Operand

SETO 0 0 0 0 0 1 1 1 0 0 Set to

ones

No - FFFFis -. (SA)

INV 0 0 0 0 0 1 0 1 0 1 Invert Yes 0-2 (SA) (SA)

NEG 0 0 0 0 0 1 0 1 0 0 Negate Yes 0-4 -(SA) -. (SA)

ABS 0 0 0 0 0 1 1 1 0 1 Absolute

value*

No 0-4 I (SA) I--. (SA)

SWPB 0 0 0 0 0 1 1 0 1 1 Swap

bytes

No - (SA), bits 0 thru 7 --. (SA)

bits 8 thru 15; (SA),

bits 8 thru 15 -. (SA),

bits 0 thru 7.

INC 0 0 0 0 0 1 0 1 1 0 Increment Yes 0-4 (SA) + 1 -. (SA)

INCT 0 0 0 0 0 1 0 1 1 1 Increment

by two

Yes 0-4 (SA) + 2 -. (SA)

DEC 0 0 0 0 0 1 1 0 0 0 Decrement Yes 0-4 (SA) - 1 -. (SA)

DECT 0 0 0 0 0 1 1 0 0 1 Decrement

by two

Yes 0-4 (SA) - 2 -* (SA)

X" 0 0 0 0 0 1 0 0 1 0 Execute No - Execute the instruction

at SA.

Operand is compared to zero for status bit.

If additional memory words for the execute instruction are required to define the operands of the instruction located at SA, these words

will be accessed from PC and the PC will be updated accordingly. The instruction acquisition signal (I AQ) will not be true when the
TMS 9995 accesses the instruction at SA. Status bits are affected in the normal manner for the instruction executed.

42

4.5.6 CRU Multiple-Bit Instruction

General 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Format: OP CODE C Ts S

The C field specifies the number of bits to be transferred. If C = 0, 16 bits will be transferred. The CRU base

register (WR12, bits 0 through 14) defines the starting CRU bit address. The bits are transferred serially and the

CRU address is incremented with each bit transfer, although the contents of WR 12 are not affected. TS and S pro-

vide multiple mode addressing capability for the source operand. If eight or fewer bits are transferred (C = 1

through 8), the source address is a byte address. If nine or more bits are transferred (C = 0, 9 through 15), the

source address is a word address. If the source is addressed in the workspace register indirect auto increment mode,

the workspace register is incremented by one if C = 1 through 8, and is incremented by two otherwise. If the

source is addressed in the register mode, and if the transfer is eight bits or less, bits 8 - 15 are unchanged.

MNEMONIC

OP CODE

MEANING

RESULT

COMPARED

TO 0

STATUS

BITS

AFFECTED

DESCRIPTION

0 1 2 3 4 5

LDCR

STCR

0

0

0

0

1

1

1

1

0

0

0

1

Load

communication

register

Store

communication

register

Yes

Yes

0-2,5*

0-2,5*

Beginning with

LSB of (SA),

transfer the

specified number

of bits from (SA)

to the CRU.

Beginning with

LSB of (SA),

transfer the

specified number

of bits from the

CRU to ISA).

Load unfilled bit

positions with 0.

•ST5 is affected only if 1 S C 8.

4.5.7 CRU Single-Bit Instructions

General 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Format: OP CODE SIGNED DISPLACEMENT

The signed displacement is added to the contents of WR12 (bits 0-14) to form the address of the CRU bit to be

selected.

43

MNEMONIC

OP CODE

MEANING

STATUS

BITS

AFFECTED

DESCRIPTION

0 1 2 3 4 5 6 7

SBO 0 0 0 1 1 1 0 1 Set bit to

one

— Set the selected

output bit to 1.

SBZ 0 0 0 1 1 1 1 0 Set bit to

zero

— Set the selected

output bit to 0.

TB 0 0 0 1 1 1 1 1 Test bit 2 If the selected

CRU input bit =

1, set ST2; if the

selected CRU in-

put = 0, set ST2

= 0.

4.5.8 Jump Instructions

General 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Format: OP CODE SIGNED DISPLACEMENT

Jump instructions cause the PC to be loaded with the value selected by PC relative addressing if the bits of ST are

at specified values. Otherwise, no operation occurs and the next instruction is executed since the PC points to the

next instruction. The signed displacement field is a word count to be added to PC. Thus, the jump instruction has

a range of —128 to 127 words from memory-word address following the jump instruction.

No ST bits are affected by jump instructions.

MNEMONIC

OP CODE

MEANING ST CONDITION TO LOAD PC

0 1 2 3 4 5 6 7

JEQ 0 0 0 1 0 0 1 1 Jump equal ST2 = 1

JGT 0 0 0 1 0 1 0 1 Jump greater than ST1 = 1

JH 0 0 0 1 1 0 1 1 Jump high STO = 1 and ST2 = 0

JHE 0 0 0 1 0 1 0 0 Jump high or equal STO = 1 or ST2 = 1

JL 0 0 0 1 1 0 1 0 Jump low STO = 0 and ST2 = 0

JLE 0 0 0 1 0 0 1 0 Jump low or equal STO = 0 or ST2 = 1

JLT 0 0 0 1 0 0 0 1 Jump less than ST1 = 0 and ST2 = 0

JMP 0 0 0 1 0 0 0 0 Jump unconditional Unconditional

JNC 0 0 0 1 0 1 1 1 Jump no carry ST3 = 0

JNE 0 0 0 1 0 1 1 0 Jump not equal ST2 = 0

JNO 0 0 0 1 1 0 0 1 Jump no overflow ST4 = 0

JOC 0 0 0 1 1 0 0 0 Jump on carry ST3 = 1

JOP 0 0 0 1 1 1 0 0 Jump odd parity ST5 = 1

44

4.5.9 Shift Instructions

General 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Format: OP CODE C

If C = 0, bits 12 through 15 of WRO contain the shift count. If C = 0 and bits 12 through 15 of WRO = 0, the shift

count is 16.

MNEMONIC

OP CODE

MEANING

RESULT

COMPARED

TO 0

STATUS

BITS

AFFECTED

DESCRIPTION

0 1 2 3 4 5 6 7

SLA 0 0 0 0 1 0 1 0 Shift left

arithmetic

Yes 0-4 'Shift (WI left.

Fill vacated

bit positions

with 0.

SRA 0 0 0 0 1 0 0 0 Shift right

arithmetic

Yes 0-3 Shift (WI right.

Fill vacated bit

positions with

original MSB

of (WI.

SRC 0 0 0 0 1 0 1 1 Shift right

circular

Yes 0-3 Shift (W) right.

Shift previous

LSB into MSB.

SRL 0 0 0 0 1 0 0 1 Shift right

logical

Yes 0-3 Shift (WI right.

Fill vacated bit

positions with

O's.

4.5.10 Immediate Register Instructions

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

OP CODE 0 W

10P

General

Format:

MNEMONIC

OP CODE

MEANING

RESULT

COMPARED

STATUS

BITS DESCRIPTION

0 1 2 3 4 5 6 7 8 9 10 TO 0 AFFECTED

AI 0 0 0 0 0 0 1 0 0 0 1 Add immediate Yes 0-4 (W) +10P — (W)

ANDI 0 0 0 0 0 0 1 0 0 1 0 AND immediate Yes 0-2 (WI AND 10P —*' (W/

CI 0 0 0 0 0 0 1 0 1 0 0 Compare imme-

diate

Yes 0-2 Compare (WI to

10P and set appro-

priate status bits.

LI 0 0 0 0 0 0 1 0 0 0 0 Load immediate Yes 0-2 10P — (W)

OR I 0 0 0 0 0 0 1 0 0 1 1 OR immediate Yes 0-2 (W) OR 10P —. (W)

45

4.5.11 Internal Register Load Immediate Instructions

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

OP CODE 0 0 0 0 0

!OP

General

Format:

OP CODE

MNEMONIC MEANING DESCRIPTION

0 1 2 3 4 5 6 7 8 9 10

LWPI 0 0 0 0 0 0 1 0 1 1 1 Load workspace

pointer immediate

!OP—). (WP), no ST bits

affected.

LIMI 0 0 0 0 0 0 1 1 0 0 0 Load interrupt

mask

10P, bits 12 thru 15--.

ST12 thru ST15.

4.5.12 Internal Register Load and Store Instructions

General 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Format: OP CODE W

MNEMONIC

OP CODE

MEANING

STATUS

BITS

AFFECTED

DESCRIPTION

0 1 2 3 4 5 6 7 8 9 10 11

STST 0 0 0 0 0 0 1 0 1 1 0 0 Store status — 1ST) — (WI

Register

LST 0 0 0 0 0 0 0 0 1 0 0 0 Load status 0-15 (WI (ST)

Register

STWP 0 0 0 0 0 0 1 0 1 0 1 0 Store work-

space pointer

— (WP) --• (WI

LWP 0 0 0 0 0 0 0 0 1 0 0 1 Load work-

space pointer

— (WI --0 (WP)

4.5.13 Return Workspace Pointer (RTWP) Instruction

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 1 1 1 0 0 0 0 0 0 0

General 0

Format: I 0

The RTWP instruction causes the following transfers to occur:

(WR151-41.(ST)

(WR14)-w(PC)

(WR13)-*(WP)

46

4.5.14 External Instructions

General 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Format: OP CODE 0 0 0 0 0

External instructions cause three data lines (DO through D2) to be set to the levels described below, and the WE/
CRUCLK line to be pulsed, allowing external control functions to be initiated.

MNEMONIC

OP CODE

MEANING

STATUS

BITS DESCRIPTION DATA BUS

0 1 2 3 4 5 6 7 8 9 10 AFFECTED DO 01 D2

IDLE 0 0 0 0 0 0 1 1 0 1 0 Idle — Suspend TMS 9995

instruction execution

until an unmasked

interrupt level

request occurs.

L H L

RSET 0 0 0 0 0 0 1 1 0 1 1 Reset 12-15 Set ST12-ST15

to zero.

L H H

CKOF 0 0 0 0 0 0 1 1 1 1 0 User defined — — H H L

CKON 0 0 0 0 0 0 1 1 1 0 1 User defined — — H L H

LREX 0 0 0 0 0 0 1 1 1 1 1 User defined — — H H H

4.5.15 MID Interrupt Opcodes

The instruction opcodes that will cause an MID interrupt request (see Section 2.3.2.2) are (hex numbers):

0000-007F
00A0-017F
0210-021F
0230-023F
0250-025F
0270-027F
0290-029F
0260-026 F
02D0-02D F
02E1-02FF

0301-033F
0341-035F
0361-037F
0381-039F
03A1-03BF
03C1-03DF
03E1-03F F
0780-07 F F
OCOO-OF F F

4.6 INSTRUCTION EXECUTION

4.6.1 Microinstruction Cycle

Each TMS 9995 instruction is executed by a sequence of machine states (microinstructions) with the length of
each sequence depending upon the specific instruction being executed. Each microinstruction is completed in one
CLKOUT cycle unless Wait states are added to a memory or CRU cycle. (Also, each external memory space access
of a word and each external CRU cycle requires at least two CLKOUT cycles but will be accomplished with a
single microinstruction).

47

4.6.2 Execution Sequence

The TMS 9995 incorporates an instruction prefetch scheme which minimizes, and in some cases eliminates, the

time required to fetch the instruction from memory. Without the prefetch, a typical instruction execution

sequence is as follows:

(1) Fetch instruction

(2) Decode instruction

(3) Fetch source operand, if needed

(4) Fetch destination operand, if needed

(5) Process the operands

(6) Store the results, if required

The TMS 9995 makes use of the fact that during Step 5 the memory interface is not required; therefore, the fetch

of the next instruction can be accomplished in this time. This instruction is then decoded during the state(s) that

is(are) required to store the results of the previous instruction, which creates even more execution overlap. Table 8

illustrates the case of maximum efficiency for an Add instruction (instruction opcodes and operands are located

in the internal RAM). Note that it effectively takes only four machine states to perform all six steps.

TABLE 8 — EXECUTION SEQUENCE EXAMPLE

STEP
STATE

COUNT
MEMORY CYCLE INTERNAL FUNCTION

1 Fetch Instruction Process Previous Operands

2 1 Write Results Decode Instruction

3 2 Fetch Source

4 3 Fetch Destination

5 4 Fetch Next Instruction Add

6 Write Results Decode Instruction

It should be noted that the instruction prefetch scheme employed by the TMS 9995 can cause self-modifying

software to execute incorrectly. Incorrect execution will result when an instruction is supposed to generate the

opcode of the very next instruction to be executed. (The TMS 9995 will begin the fetch of the opcode of the

next instruction before the currently executing instruction stores the results of its execution.)

4.6.3 TMS 9995 Instruction Execution Times

Instruction execution times for the TMS 9995 are a function of:

(1) Machine state time, tc2.

(2) The location of the instruction opcode (internal or external memory).

(3) The location of the workspace and the operand(s) (internal or external memory).

(4) Addressing mode used where operands can be fetched via multiple addressing modes.

(5) Number of Wait states introduced, as appropriate.

48

Table 9 lists the number of clock cycles required to execute each TMS 9995 instruction for various combinations

of on-chip/off-chip location of instruction opcodes, operands, and workspace. (Other combinations can be ex-

tropolated from the ones listed.) For instructions with multiple addressing modes for either or both operands,

Table 9 lists CLKOUT cycles and associated off-chip memory accesses with all operands addressed in the work-

space register mode. To determine the total number of CLKOUT cycles and associated off-chip memory accesses

required for other addressing modes, the appropriate values from Table "A" (Table 10) are added to the base

amounts for that instruction.

The total execution time for an instruction is:

T = tc2 [C1 + C2 + W (XM1 XM211

where

total instruction execution time

CLKOUT cycle time

base CLKOUT cycles

additional CLKOUT cycles for operand address

derivation (values in Table"A" are for one

operand only)

number of Wait states per off-chip (byte length) memory cycle

XM1 = base off-chip (byte length) memory cycles

XM2 = additional off-chip (byte length) memory cycles

for operand address derivation (values in Table "A"

are for one operand only)

Several examples are listed in Table 11.

T =

tc2 =

C1 =

C2 =

W =

49

TABLE 9 — INSTRUCTION EXECUTION TIMES

INSTRUCTION
Opcodes &

All Operands
On Chip

Opcodes &
Immediate

Operands Off
Chip; All Other

Operands On
Chip

Opcodes &
Immediate

Operands Off

Operand Off
Chip; Destination

Operand On
Chip

©

Chip; Source

Opcodes &
All Operands

Off Chip

Operand
Address

Derivation

©

C1 XM1 C1 XM1 C1 XM1 C1 XM1 Source Dest

A 4 0 5 2 6 4 8 8 A A

AB 4 0 5 2 5 3 5 5 A A

ABS 3 0 4 2 6 6 6 6 A —

Al 4 0 6 4 6 4 8 8 — —

ANDI 4 0 6 4 6 4 8 8 — —

B 3 0 4 2 4 2 4 2 A —

BL 5 0 6 2 7 4 7 4 A —

BLWP 11 0 12 2 14© 6© 17 12 A —

C 4 0 5 2 6 4 7 6 A A

CB 4 0 5 2 5 3 5 4 A A

CI 4 0 6 4 6 4 7 6 — —

CKOF 7 0 8 2 8 2 8 2 — —

CKON 7 0 8 2 8 2 8 2 — —

CLR 3 0 4 2 5 4 5 4 A —

COC 4 0 5 2 6 4 7 6 A —

CZC 4 0 5 2 6 4 7 6 A —

DEC 3 0 4 2 6 6 6 6 A —

DECT 3 0 4 2 6 6 6 6 A —

DIV (ST4 is set) 6 0 7 2 8 4 10 8 A —

DIV (ST4 is reset)©) 28 0 29 2 30 4 34 12 A —

D1VS (ST4 is set) 10 0 11 2 12 4 36 8 A —

DIVS (ST4 is reset)(:) 33 0 34 2 35 4 39 12 A —

IDLE© 7+21 0 8+21 2 8+21 2 8+21 2 — —

INC 3 0 4 2 6 6 6 6 A —

INCT 3 0 4 2 6 6 6 6 A —

INV 3 0 4 2 6 6 6 6 A —

JUMP (All Jump Instructions) 3 0 4 2 4 2 4 2 — —

LDCR (C=0) 41 0 42 2 43 4 44 6 A —

LDCR (14C515) 9+2C 0 10+2C 2 11+2C 4 12+2C 6 A —

LI 3 0 5 4 5 4 6 6 — —

LIMI 5 0 7 4 7 4 7 4 — —

LREX 7 0 8 2 8 2 8 2 — —

LST 5 0 6 2 6 2 7 4 — —

LWP 4 0 5 2 6 2 6 4 — —

LWPI 4 0 6 4 6 4 6 4 — —

MOV 3 0 4 2 5 4 6 6 A A

MOVB 3 0 4 2 4 3 4 4 A A

MPY 23 0 24 2 25 4 28 10 A —

MPYS 25 0 26 2 27 4 30 10 A —

NEG 3 0 4 2 6 6 6 6 A —

ORI 4 0 6 4 6 4 8 8 — —

RSET 7 0 8 2 8 2 8 2 — —

RTWP 6 0 7 2 7© 2© 10 8 — —

S 4 0 5 2 6 4 8 8 A A

SB 4 0 5 2 5 3 5 5 A A

SBO 8 0 9 2 9 2 10 4 — —

50

TABLE 9 — INSTRUCTION EXECUTION TIMES (Concluded)

INSTRUCTION
Opcodes &

All Operands
On Chip

Opcodes &
Immediate

Operands Off
Chip; All Other

Operands On
Chip

Opcodes &
Immediate

Operands Off
Chip; Source
Operand Off

Chip; Destination
Operand On

Chip

0

Opcodes &
All Operands

Off Chip

Operand
Address

Derivation

0
C1 XM1 C1 XM1 C1 XM1 C1 XM1 Source Dest

SBZ 8 0 9 2 9 2 10 4 — —
SETO 3 0 4 2 5 4 5 4 — —
SHIFT (C*0) 5+C 0 6+C 2 6+C 2 8+C 6 — —
SHIFT (C=0, Bits 12-15 of WRO=0) 23 0 24 2 24 2 27 8 — —
SHIFT (C=0, Bits 12-15 of WRO=N*0) 7+N 0 8+N 2 8+N 2 11+N 8 — —
SOC 4 0 5 2 6 4 8 8 A A
SOCB 4 0 5 2 5 3 5 5 A A
STCR (C=0) 43 0 44 2 46 6 47 8 A —
STCR (1<C<8) 19+C 0 20+C 2 22+C 6 23+C 8 A —
STCR (9<C<15) 27+C 0 28+C 2 30+C 6 31+C 8 A —
STST 3 0 4 2 4 2 5 4 — —
STWP 3 0 4 2 4 2 5 4 — —
SWPB 13 0 14 2 16 6 16 6 A —
SZC 4 0 5 2 6 4 8 8 A A
SZCB 4 0 5 2 5 3 5 5 A A
TB 8 0 9 2 9 2 10 4 — —
X® 2 0 3 2 4 4 4 4 A —
XOP 15 0 16 2 18® 6© 22 14 A —
XOR 4 0 5 2 6 4 8 8 A —
Interrupt Context Switch (For any

interrupt, including Reset, NMI, MID,

and overflow)

140 0® 17® 6® 170 6® 20() 120 - -

NOTES:

O Additional cycles to be added, if appropriate, are listed in
Table "A" (Table 11).

(2) Execution time is dependent upon the partial quotient after

each clock cycle during execution. Clock cycles shown are
for worst-case operands.

a> Will remain in Idle state until an unmasked interrupt re-

quest occurs (I = number of CLKOUT cycles until request
occurs).

® Execution time shown does not include execution time of
instruction at source address.

• Trap vector off chip; Naw workspace on chip.
© Registers for register-only instructions are on chip (Shift

instructions, STST, LST, STWP, LWP) and registers for
instructions where an additional register is required are on-

chip (Al, ANDI, BL, CI, LDCR, LI, ORI, SBO, SBZ, STCR,
TB, Shift instructions).

(2) Workspace on chip

8 Trap vector on chip; New workspace on chip (NMI only)
• Trap vector and New workspace on chip

51

TABLE 10 — OPERAND ADDRESS DERIVATION (TABLE "A")

ADDRESSING MODE

Workspace Registers,

Base Address For
Index-Addressed

Operands, And

Symbolic (Direct)

Addresses On Chip

Workspace Registers

On Chip; Base
Address For Index-

Addressed Operands

And Symbolic (Direct)

Addresses Off Chip

Workspace 'Registers

Off Chip; Base

Address For Index-

Addressed Operands

And Symbolic (Direct)

Addresses On Chip

Workspace Registers,

Base Address For

Index-Addressed

Operands, And

Symbolic (Direct)
Addresses Off Chip

C2 XM2 C2 XM2 C2 XM2 C2 XM2

WR

(Ts Or TD . 00)
0 0 0 0 0 0 0 0

WR Indirect

(Ts or TD = 01)
1 0 1 0 2 2 2 2

Auto Increment

(Ts or TD = 11)

WR Indirect

3 0 3 0 5 4 5 4

Symbolic

(Ts or TD = 10,

S or 0 = 0)

1 0 2 2 1 0 2 2

Indexed

(Ts or TD = 10,

S or D * 0)

3 0 4 2 4 2 5 4

52

TABLE 11 — INSTRUCTION EXECUTION TIME EXAMPLES

'

EXAMPLE

Opcodes, base addresses for

index-addressed operands,

symbolic (direct) addresses,

workspace registe s, symbolic
(direct) operands and index-

addressed operands all on chip.

Opcodes,

index-addressed

and symbolic
off chip; workspace

base addresses for

operands,
(direct) addresses

registers,

operands, and

operands on chip.

Opcodes, base addresses for

index-addressed operands,
symbolic (direct) addresses,

workspace registers, symbolic

(direct) operands, and index-

addressed operands all off chip.

symbolic (direct)

index-addressed

C1 XM1 C2 XM2

Total Clock

Cycles

C1 XM1 C2 XM2

Total Clock

Cycles

C1 XM1 C2 XM2

Total dlock
Cycles

0 Wait

States

Off Chip

1 Wait

State
Off Chip

0 Wait

States
Off Chip

1 Wait

State

Off Chip

0 Wait

States
Off Chip

1 Wait

State
Off Chip

MOV R1, R2 3 0 0 0 3 3 4 2 0 0 4 6 6 6 0 0 6 12

MOV R1, *R2 3 0 1 0 4 4 4 2 1 0 5 7 6 6 2 2 8 16

MOV R1, *R2+ 3 0 3 0 6 6 4 2 3 0 7 9 6 6 5 4 11 21

MOV R1, @LABEL 3 0 1 0 4 4 4 2 2 2 6 10 6 6 2 2 8 16

MOV R1, @TABLE (R2) 3 0 3 0 6 6 4 2 4 2 8 12 6 6 5 4 11 21

MOV *R2+, @LABEL 3 0 4 0 7 7 4 2 5 2 9 13 6 6 7 6 13 25

MOV @LABEL1, @LABEL2 3 0 2 0 5 5 4 2 4 4 8 14 6 6 4 4 _ 10 20

/

OBJECT CODE (ASSEMBLED SOURCE)
LABEL FIELD

OP CODE
OPERAND

/

SOURCE STATEMENT NO. 1

RELATIVE ADDRESS

0URC 020A`
BLWP @DE EX

APPENDIX G

SAMPLE PROGRAMS

This appendix contains listing of programs that can be loaded into
memory or reassembled into memory for demonstration or entertainment
purposes. These listings are commented to provide ancillary data and
explain the individual programming techniques. Assembly listing format
is as follows:

COMMENT FIELD

0079 0034 04C1
0080 0036 0207

0038 00BC'
0081 003A 0208

003C 0005
0082 003E 0209

0040 FF3C
0083 0042 '2F97 LOOP1
0084 0044 2E40
0085 0046 004A'

0048 00 6'
0086 004A 042 NEXT

CLR 1 CLEAR FOR DECIMAL TO HEX ROUT1
LI 7,CKPARM PROMPT MESSAGES

LI 8,5 FIVE PROMPTS

LI 9,CLKWP+4 REGISTER 2 ADDRESS

WRIT *7 PROMPT USER FOR TIME VALUE
HEXI 0 GET INPUT_
DATA NEXT, ERROR NULL, ERROR RTN ADR

DECIMAL CHARS TO BINARY

ASSEMBLED OBJECT SHOWS RELATIVE

ADDRESS OF "NEXT" AT 004A16

G-1

The code can be reassembled and loaded with the LMC EVMBUG command, or
the change memory command (IM) can be used to insert assembled object
code at the memory addresses shown in the listing.(beginning at >EDO°,
program start). The assembled object code is listed in column 3 of the,
listing, opposite the corresponding memory address in column 2. It is'
important that the programs be entered at the addresses noted, or that
proper consideration be given to the labelled addresses which have
been assembled into absolute addresses relative to the beginning of
the program (address >ED00)> This consideration is important when
entering the code using the enter memory (IM) command with program
start not at address >ED)).

If the code is to be loaded beginning at an address other than >ED00
as a program start address, it must be refigured to the new program
bias. For example, if the program was to be loaded beginning at >ECOO,
labelled addresses must be decreased by >100 (>ED00 - >ECOO = >100).
Note that jump instructions create a displacement value and not a
memory address; thus; jump instructions using labels are not affected
by a new program start address.

At the back of each listing is a cross-reference of labels and number
of the source statement in which they are used (column one of the
listing contains source statement numbers.)

If the Line-By-Line Assembler (LBLA is used, an absolute address must
be substituted for labelled addresses. These hexadecimal values are in
the first column of the cross-reference table of labels.

G.2 MASTERMIND GAME

The printout generated during program execuion of the Mastermind game
is presented below to illustrate how the game is played. The object of
the game is to identify in proper sequence the digits making up a five
digit number. Only the numbers 1 through 8 may be selected for each
digit. The program returns an "0" for each digit entered that is part
of the five digit number. The program returns an "X" when the required
digit is placed in its proper position. The user must identify the
number within 12 attempts to win the game.

G-2

MH3TERMlMD..5UECC MMMMH M=1-8 12 TRIM--
YOU GET X FOR H MATCH, O FOR H HIT

1..11111 X
2..12222 O
3..31333 O
4'.41 .w CAUSES ENTRY roas IGNORED, ALLOWS ENTRY REPEAT onmrnoL-H

XO 4..44144
5.'55415 OO
6..64166 XXO
7..46177 OOOO
9..64718 XXXOO
9..64781 XXXX4 WINNER! M=64781

1..11111
2..weee X
3..LJwJ XXO
4..32434 OOO
5..25353 XXXOO
6.' Q CR RESTARTS PROGRAM

MHCTERMlMD..GUES2 MHMhM H=1-8 12 TRIQ:7~
YOU GET X FOR H MATCH, O FOP H HIT

r

1..11111
2.'2222L
3..a smJ OO
4..32444 XX~
5.'34255 XOO
6'. ~ ESC KEY RETURNS CONTROL TO MONITOR

G_3

MMIND

0001
0002
0003
0004
0005
0006

0000
0000

SDSMAC 3.2.0 78.274 20:25:24 TUESDAY, MAR 17, 1981.
PAGE 0002

IDT MMIND
* * * * A * * * * *
it THIS PROGRAM PLAYS MASTERMIND ON THE TMS99995 MICRO-
* COMPUTER. THE OBJECT OF THE GAME IS TO GUESS, BY

0007 * LOGICAL DEDUCTION, A T-DIGIT NUMBER GENERATED BY THE
0008 it COMPUTER. THE COMPUTER USES ONLY THE DIGITS 1 TO 2. YOU
0009 * HAVE 12 GUESSES TO ACCOMPLISH THIS. THE COMPUTER WILL
0010 INDICATE A CORRECT DIGIT GUESTED BY A LETTER 0 AND
0011 it INDICATE THE DIGIT IS CORRECTLY PLACED WITH THE
0012 * 5-DIGIT NUMBER WITH THE LETTER X. OTHER RULES THAT APPLY
0013 - A CARRIAGE RETURN RESTARTS THE GAME
0014 - AN EQ.CAFE KEY INPUT RETURNS YOU TO THE MONITOR
0015 # - CONFROL H VEY ALLOWS YOU TO SCRAP' PRESENT LINE OF
0016 ENTRIES AND REENTER NEW LINE
0017 * THIS GAME IS ASSEMBLED TO BE LOADED AT M.A. :EDno BY
0012 * USE BO THE AORG ASSEMBLER DIRECTIVE. THI: PROGRAM CAN BE
0019 ASSEMBLED BY THE LPLA AT THE ADDRESSES SHOWN IN COLUMN
002u iP TWO OF THE LISTING. LORI ESFoNDING OBJECT CODE FOP THOSE
0021 * ADDRESSES IS SHOWN IN COLUMN THREE. GOOD LUCI
0022 * * * * * * * * * *
002:: 0000 RO EOU 0 NO. OF GUESSES
0024 0001. R1 EOU 1. RANDOM NO. ARRAY ADDRESS
0025 0002 R2 EOU 2 RANDOM NO. COMPUTATION USE
0026 0003 R3 EOU i RANDOM NO. CONFUTATiON USE
0027 0004 R4 EOU 4 :10 CONSTANT FOR DECIMAL COMPUTATION
0023 0005 R5 EQU 5 CONTAINS ASTI X'
0029 0006 R6 EOM 6 CONTAINS ASH '0'
0030 0007 R7 EQU 7 ADDRESS OF X'S & 0 S BUFFER
0031 0008 RS EQU 8
001:2 0009 R9 EQU RANDOM NO. ARRAY ADDRE;•E
0x_13_: 000A R10 EOU RANDOM NO. ARRAY ADDRES 5
0034 0100E R11 ECU 11 RANDOM NO. SEED
0035 0000 R12 EOU 12 ASCII I 1_ ELOn)
003c• 00oD R13 ECIU 12 CAST OUT CHARACTER MAP
0037 EDou AORG "EDon LOAD AT M.A. .ED00
0038 41 41 if 41 41 *
003Q if

0040 * PROCEDURE AREA OF EXECUTABLE CODE
0041
0042 * i1 * * * i1 i1 if 41 # iF if
0042 ED00 START
0044 ED00 02E0 LWPI WS SET WOFI SPACE POINTER

EDO:. EDD6
0045 ED04 2FAO XOP eRULES,14 PRINT RULES

ED06 EEnC
004 EDOS M005
1)047 EDOS :FAO XOP eCFLF,14 PRINT CF.'-LF

EDOA EE72
0046 EDO:: 0400 CLR RO COUNTS 12 GUESSES
0041 EDGE C049 MOV F:9 R1 R1 POINTS TO RANDOM ARRAY
0050 * CONFUTE RANDOM NUMBER, MOVE TO LOCATION NN
0051 ED10 M010
0052 ED10 0202 LI R2,50.1 COMPUTE RANDOM NUMBER

ED:12 01FD
005: ED14 333B MFY R11,R2
0054 ED16 022L AI R2,291

ED18 0123
0055 EDIA C2C: MDV

G-4

MMIND SDSMAC 3.2.0 78.274 20:25:24 TUESDAY, MAR 17, 1981.
PAGE 0003

0054 CAUSE RANDOM DIGITS TO BE IN RANGE 1-8
0057 ED1C 0953 SRL R3,5
0058 ED1E BOCC AB R12,RS MAKE ASCII, RANGE 1-8
0059 ED20 DC43 MOVB R3,*R1+ PUT IN RANDOM ARRAY
0060 ED22 8281 C R1,R1O TEST FOR END OF LOOP
0061 ED24 1AF5 JL M010 DO UNTIL R1=R10
0042
0043 * DETERMINE NUMBER OF UPCOMING GUESS
0064 PRINT UPCOMING GUESS NUMBER TO PROMPT USER
0065
0041 ED24 M015
0067 ED26 0580 INC R0 GUESS=GUESS+1
0048 * CLEAR ARRAY THAT HOLDS ASCII X'S AND O'S
0049 * IF CONTROL H PRESSED, START HERE
0070 ED2S 0087 RESTRT MOV R7,R2 XOB ADDR TO R2
0071 ED2A 04F2 CLR *R2+
0072 ED2C 04F2 • CLR *R2+
0073 ED2E 04D2 CLR *R2
0074 * CONVERT GUESS NUMBER FOR OUTPUT
0075 ED3O C080 MOV R0, R2 GUESS NO. TO R2
0074 ED32 0401 CLR R1
0077 ED34 3C44 DIV R4,R1 DIVIDE R1R2 BY 10
0078 ED36 0601 SWPB R1 QUOTIENT IN LEFT BYTE
0079 ED38 F081 SOCB R1,R2 MERGE QUOTIENT & REMAINDER
0080 ED3A 1302 JEO M020 PUT IN SPACE IF FIRST DIGIT=0
0081 ED3C 0262 ORI R2,>3030 MAKE ASCII DIGITS

ED 3E 3030
0082 ED40 M020
0083 ED40 0242 ORI R2,>2030 MAKE ASCII SPACE & DIGIT

ED42 20:110
(J04 ED44 C802 MOV R2, @000 PUT IN PRINT BUFFER

ED44 EDF4
0085 ED48 2FA0 XOP @GUESN0,14 PRINT GUESS NUMBER

ED4A EDF2
0084 if

0087
0088 INPUT CHARACTER & TEST FOR COLUMN MATCH
0089
0090 FD41_ C209 MOV R9,R8 RANDOM NUMBER ADOR IN R8
0091 ED4E 0047 MOV R7,R1 X & 0 BUFF ADDR IN R1
0092 ED50 0202 LI R2, INPUT INPUT BUFER ADDR IN R2

ED52 EESA
0093 ED54 040D CLR R13 CLEAR BIT MAP OF CAST OUT CHARACTER
0094 ED56 M030
0095 ED56 2F4:3 XOP R3,I3 READ DIGIT
0096 WAS CR, ESCHAPE, OF: CONTROL-H FEY PRES1ED-
0097 ED 58 0283 CI R2,)0000 CAR. RET. ENTERED-

ED5A ODOO
0098 EDSC 1301 1E0 START YES, RESTART GAME
0099 ED5E 028:3 CI R3,)1B00 ESCAPE KEY ENTERED?

ED60 1800
0100 ED62 131C JEO MONITR YES, RETURN TO MONITOR
0101 ED64 CI R3,>0800 CONTROL-H PRESSED?

ED66 0800
0102 ED68 13DF JEO RESTRT YES, RESTART THI.7, ENTRY
0102 ED4A CB R3,R12 IS NO. LESS THAN 1-
0104 F0413 1AF4 JL M030 YES, READ ANOTHER
0105 EDGE 0283 CI R3,)3800 US NO. GREATER THAN 3'

ED70 3800
0106 ED72 18E1 JH M030 YES, READ ANOTHER

G-5

MMIND

0107
0108
0109
0110
0111
0112
0113

SDSMAC

ED74 2F03

ED76 9E03
ED78 1603
ED7A 0603
ED7C DC45
ED7E 0582

3.2.0 78.274 20:25:24

XOP R3,12
IS DIGIT A MATCH AND

CB R3,*RS+
JNE M040
:WPB R3
MOVB RS, *R1+
INC R12

TUESDAY, MAR 17, 1981.
PAGE

NO, IN RANGE, ECHO
IN RIGHT COLUMN?
DIGIT IN PITH COLUMN
NO, PUT CHAR IN CHAR BUFFER
YES, PUT BINARY 0 IN MSB OF R3
PUT AN X IN THE XO BUFFER
MAP CAST OUT CHAR

0114 EDS° M040
0115 EDSO DC;3 MOVB P3, *R2+ ZERO OR CHAR TO INPUT BUFFER
0116 ED8 2 OBID SRC R13,1 PUT BIT IN MAP
0117 ED84 S288 C R8,R10 FIFTH NUMBER INPUT?
0115 ED86 1AE7 JL M030 NO, READ ANOTHER GUESS
0119 ED8S 0281 Ci RI,X0B+5 YES, IS XO BUFFER FULL?

ED8A EEOB
0120 EDSC 1A09 JL M050 NO, NO WINNER YET
0121 EDGE 2E40 XOP @XOBP, 14 YES, PRINT XO BUFF (ASS X'S)

ED90 EE04
0122
0123 ED92 2FAO XOP @WINNER,14 PRINT WINNER

ED94 EE6O
0124
0125 ED96 M045
0126 ED96 2FA0 XOP @NUMBER,14 PRINT NUMBER

ED98 EDFA
0127
0128 ED9A 1.0B6 JMP MOOS PLAY ANOTHER GAME
0129 ED9C 0460 MONITR B e>0080 RETURN TO MONITOR

ED9E 00:30
0120
0131
01.32
0123 * TEST FOR :
0134
01S5 EDAO M050
016 EDAO 0202 LT R2, INPUT INPUT BUFFER START IN R2

EDA2 EESA
0137 EE(4 1052
0138 EDA4 DOF2 MOVB *R2+, P.'3 TEST BYTE FROM INPUT BUFFER
0139 EDAM-, 1301= JEO M060 BYTE CAST OUT IF EOUAL TO ZERO
0140 EDAS C209 MOV R9,R8 RS POINTS TO WORK ARRAY
014.1 EDAA 09BD SRL R12,11 POSITION CAST OUT CH MAP
0142 EDAC M055
0143 EDAC OB1D SRC 813,1 TEST FOR CAST OUT CHAR
0144 EDAE 9E03 CB R3,*R8+ DOES BYTE MATCH WORK ARRAY 7
0145 EDBO 1805 n_ M057 IF CAST OUT, M057
0146 EDB2 1404 JNE M057 IF NOT EQUAL, M057
0147 EDB4 DC46 MOVB R6,*R1+ ON HIT, PUT 0 TIN XO BUFFER
0148 ED56 0241' ORI P13,:>8000 MAP CAST OUT CHAR

EDBS 8000
0149 EDBA BOCO AB R:3, R3 SPOIL COMPARISON, FINISH LOOP
0150 EDBC M057
0151 EIS: 828S R8, RIO TEST FOR LAST DIGIT
0152 EDBE 1AF6 JL M055 IF LOW, DO ANOTHER DIGIT
0153 EDCO M060
0154 EDCO 0E:2 CI R2, INPUT+5 LAST DIGIT IN INPUT BUFFER?

EDC2 EESF
0155 EDC4 1AEF JL M052 NO, DO NEXT DIGIT
0154 EDC6 2FAO XOP @XOBP,14 YES, PRINT X0 BUFF

EDCS EEO4
0157 EDCA 0280 CI R0,12 TWELVE GUESSES MADE?

0004

G- 6

MMIND SDSMAC 3.2.0 78.274 20:25:24 TUESDAY, MAR 17, 1981.
PAGE 0005

EDCC 000C
0158 EDCE 1AAB JL M015 NO, MORE GUESSES REMAIN
0159 EDDO 2FAO XOP @SORRY,14 YES, PRINT SORRY

EDD2 EE6A
0160 EDD4 10E0 IMP M045 PRINT NUMBER FOR PLAYER
0161 * * * * * * * * * * * * * * *
0162 tt

0163 * DATA SECTION
0164
01/-5 * * * * * * * * * * it * * *
0166 * WORKSPACE
0167 EDD6 0000 WS DATA 0,0,0,0 RO-R3

EDE'S 0000
EDDA 0000
EDDC 0000

0168 EDDE 000A DATA 10 R4 CONVERSION CONSTANT
0169 EDEO 58 TEXT /X ' R5

EDE1 20
0170 EDE2 4F TEXT '0 ' R6

EDEN: 20
0171 EDE4 EE06 DATA XOB R7
0172 EDE6 0000 DATA. 0- R8
0173 EDE8 EDFE DATA NN R9
0174 EDEA EE03 DATA NN+5 R10
0175 EDEC 5555 DATA)5555 R11-RANDOM NUMBER SEED
0176 EDEE 3100 DATA)3100 R12
0177 EDFO (0000 DATA 0 R13-CAST OUT CHAR MAP
0178
0179 # TEXT STATEMENTS
0180
01:31 * LINE NUMBER OF THIS GUESS
0182 EDF2 ODOA GUESNO DATA)000A CR, LINE FEED
0183 EDF4 0000 GCD DATA $-$ CONVERTED GUESS NUMBER
0184 EDF6 2E TEXT

EDF7 2E
01.8.5 FDF8 07 BYTE 7,0 BELL/STOP

EDF9 00
0136 * RANDOM NUMBER OF COMPUTER IN ASCII
0187 EDFA 20 NUMBER TEXT ' N='

EDFB 20
EDFC 4E
EDFD 30

0188 EDFE 0000 NN DATA 0,0,0
EE00 0000
EE i2 0000

0189 * X'S AND O'S BUFFER SHOWING HITS & MISSES
0190 EE04 2(1 XOBP TEXT " SPACES FOR PRINTING

EE05 20
0191 EE06 0000 XOB DATA 0,0,0

EEO: 0000
EEOA 0000

0192 * RULES OUTPUT AT BEGINNING OF GAME
0172 EEOC. RULES
0194 EEOC ODOA DATA)000A
0195 EEOE 40 TEXT 'MASTERMIND'.

EEOF 41
EE10 52
EE11 54
EE12 45
EE13

G-7

MIND

0196

EE14
EE15
EE16
EE17
EE18
EE19

SDSMAC 3.2.0

40
49
4E
44
2E
2E

78.274 20:25:24 TUESDAY, MAR 17 1981.
PAGE

TEXT '..GUESS NNNNN N=1-8 12 TRIES'

EE1A 47
EE18 59
EE1C 45
EE10 53
EE1E 53
EE1F 20
EE20 4E
EE21 4E
EE22 4E
EE23 4E
EE24 4E
EE25 20
EE26 4E
EE27 30
EE28 31

• EE29 20
EE2A 38
EE2B 20
EE2C 31
EE2E' 32
EE2E 20
EE2F 54
EE3O 52
EE31 49
EE32 45
EE33 53

0197 EE34 000A DATA >000A
0198 EE36 99 TEXT 'YOU GET X FOR A MATCH, 0 FOR A HIT'

EE37 4F
EE38 55
EE39 20
EE34 47
EE.38 45
EE3C 54
EE3D 20
EE3E 58
EE3F 20
EE40 46
EE41 4F
EE42 52
EE43 20
EE44 41
EE45 20
EE46 40
EE47 41
EE48 54
EE49 43
EE4A 48
EE4B 2C
EE4C 20
EE4D 4F
EE4E 20
EE4F 46
EE50 4F

0006

G-8

MMIND SDSMAC 3.2.0 78.274 2025:24 TUESDAY, MAR 17, 1981.
PAGE 0007

EE51 52
EE52 20
EE53 41
EE54 20
EE55 48
EE56 49
EE57 54

0199 EEC 00 BYTE 0
0200 * BUFFER OF NUMBERS INPUT
0201 EE5A 0000 INPUT DATA 0,0,0

EE5C 0000
EE5E 0000

0202
0203 i=E60 20 WINNER TEXT ' WINNER'

EE61 20
EE62 97
EE63 49.
EE64 4E
EE65 4E
EE66 45
EE67 52

0204 EE68 21 BYTE >21,0
EE69 00

0209 EE(A 20 SORRY TEXT SORRY'
EE6B 53
EE6C 4F
EE6D 52
EE6E 52
EE6F 59

0206 EE70 00 BYTE 0,0
EE71 00

0207 EE72 OD CRLF BYTE >D,>A70.0
EE73 GA
EE74 00
EE75 00

0202 if

PTO:, END START
0 EiRRORS, NO WARNINGS

G-9

G.3 HIGH-LO GAME

the printout of this game in execution (below) illustrates game rules
and objectives. The program generates a number between 0 and 999. You
have unlimited guesses to find the number(but you can be an expert,
above average, average, or a turkey, depending upon how many guesses
are needed to solve the problem.

L FE00

W=FFB0
P=0182 FE00
?E

LOAD AND EXECUTE PROGRAM

CAN YOU GUE MY NUMBER TO 999)?
INPUT A NUMBER PRE: THE 'PACE EAR.
500 TOO LOW. TRY AGAIN!!
700 TOO LOW. TRY AGAIN!!
c400 TOO HIGH. TRY AGAIN!
850 TOO LOW. TRY AGAIN!!
875 TOO HIGH. TRY AGAIN!
6 6

CONTROL H PRESSED TO IGNORE ENTRY
860 TOO HIGH. TRY AGAIN!
857 TOO HIGH. TRY AGAIN!
854 CORRECT! YOU'RE ABOVE AVERAGE BECAUE IT TOOK YOU 08 TRIE!

CAN YOU GUES MY NUMBER (0 TO 999)?
INPUT A NUMBER PRE THE :_FACE E:AP.
500 TOO LOW. TRY AGAIN!!
700 TOO HIGH. TRY AGAIN!
i:.5n TOO HIGH. TRY AGAIN!
575 CORRECT! YOU'RE AN EXPERT BECAUSE IT TOOK YOU 04 TRIE!

CAN YOU GUE MY NUMBER (0 TO 999:,?
INPUT A NUMBER THE ::- PACE BAR.
9100 TOO HIGH. TRY AGAIN!
:::00 TOO HIGH. TRY AGAIN!

CR PRESSED TO START NEW GAME

CAN YOU GUE -: MY HUMBER ':11 TO 999)?
INPUT A HUMBER PRE= THE :::PACE EAR.
500 TOO HIGH. TRY AGAIN!
400 TOO HIGH. TRY AGAIN!
300 TOO. HIGH. TRY AGAIN!
200 TOO HIGH. TRY AGAIN!4

ESC PRESSED TO RETURN TO MONITOR

G-10

GUESS SDSMAC '3.2.0 78.274 20:22:07 TUESDAY, MAR 17, 1981.
PAGE 0002

0001 * * * * * * * * * * * * * * * *
0002 ff THIS GUESSING GAME CAN BE RUN ON A TM 990/1XX MICRO-
0002 * COMPUTER WITH 432 ()1B0) WORDS OF USER AVAILABLE
0004 it RAM MEMORY. IT IS WRITTEN TO BE LOADED AT M.A. >ED00
0005 AND CAN BE ASSEMBLED AT THAT ADDRESS USING THE LBLA
0006 OR BY LOADING THE OBJECT (COLUMN 3) AT THE MEMORY
0007 ADDRESSES (COLUMN 2). THE OBJECT OF THIS PROGRAM IS TO
0008 3). GUESS WHICH NUMBER THE COMPUTER HAS GENERATED, AND TO
0009 DO THIS WITHOUT BECOMING A TURKEY. FOLLOWING RULES APPLY
0010 3)' CARRIAGE RETURN BRINGS YOU TO MONITOR
0011 - ESCAPE KEY BRINGS YOU TO MONITOR
0012 - CONTROL-H KEY IGNORES THIS ENTRY
0013 - SPACE KEY CONTINUES GAME
0014 GOOD LUCK.
0015 iP 4- * * * * * * * * * it * *
0016 IDT 'GUESS'
0017 * REGISTER EQUATES
0018 0000 RO EQU 0 TENS MULTIPLIER
0019 0001 R1 EQU 1 GUESS NO. ACCUMULATOR
0020 0002 R2 EQU 2 MULTIPLY ANSWER
0021 0003 R3 EQU ENTERED DIGIT
0022 0008 R8 - EQU 8 CONTAINS COMPUTER'S NUMBER
0023 0009 R9 EQU 9 NO. TRIES/10
0024 000A R10 EQLI 10 NO. TRIES
0025 000C R12 EQU 12 CRU ADDRESS (TMSQ902)
0026 * OBJECT CODE AT ABSOLUTE ADDRESS BEGINNING WITH ...'ED00

-0027 ED00 AORG >ED00
00')R * * * * * * * *
0029 * PROCEDURE AREA: EXECUTABLE CODE
0030 * * * * * * * * *
0031 * INITIALIZE REGISTERS
0032 ED00 02E0 START LWPI WSP SET WORKSPACE POINTER

ED02 EEA4
0033 ED04 0200 LI R0710 RO = TENS MULTIPLIER

EDO4 000A
0034 EDO'S 04c? CLR R? R9 = NO. OF TRIES
0035 EDOA 04CA CLR PlO R10 = NO. TO TRIES
0034 al0C 020C Li: RI2,)0 TM39902 CRU ADDR.

EDOE 0000
00:37 OUTPUT OPENING MESSAGE
0o3e ED10 2F40 XOP @MESE1714 OPENING MESSAGE

ED12 FDBO
0039 * THIS ROUTINE IS A NUMBER GENERATOR THAT GENERATES
0 0 4 0 * A NUMBER FORM 0 TO 99? BASED ON THE TIME TO RESPOND TO TH
0041 OPENING MESSAGE. IT CHECKS A BIT AT THE TMS 9902 SERIAL
0042 INTERFACE THAT SIGNIFIES THAT A DIGIT HAS BEEN RECEIVED F
0043 * THE TERMINAL IN RESPONSE TO THE OPENING MESSAGE. RECEIPT
0044 THIS DIGIT MEANS A NUMBER IS BEING GUESSED. WHILE WAITIN
0045 * FOR THIS FIRST NUMBER, RE IS CONTINUOUSLY INCREMENTED FRO
0044 * 0 TO 999.
0047 ED14 04C8 NEWNu CLR R8 RE TO CONTAIN C S OMJPUTER' NO.
oo4e ED14 1F15 INONO TB 21 DIGIT RECEIVED?
0049 ED1S 1307 JEO ECHO2 YES ECHO CHARACTER
0050 ED1A 0288 CI R87999 NO. INCREMENTED TO 9997

ED1C 03E7
0051 ED1E 13FA JEO NEWNO JEST CLEAR TO 0, RESTART
0052 ED20 05SS INC R8 NO, INCREMENT NO. IN RS
0053 ED22 I0F9 JMP INCNO LOOP, RECHECK FOR DIGIT INPUT
0054 AFTER FIRST DIGIT IS ENTERED. COMJPUTER'S NO, IS IN RE.
0055 3) READ IN GUESSES AND CONVERT THESE TO THEXADECIMAL. SUM

G— 1 1

GUESS

0054
0057

8DSMAC 8.2.0 78.274 20:22:07 TUESDAY, MAR 17, 1981.
PAGE 0003

* FOR COMPARISON TO COMPUTER'S NO. IN RS. AS NEW NUMBER
* IS READ, OLD VALUE IS MULTIPLIED BY 10 AND NEW VALUE

0058 * ADDED TO PRODUCT TO KEEP COMULATIVE TOTAL OF DIGITS
0059 * ENTERED.
0060 ED24 2F20 ECHOO XOP eLFCR,12 DO LINE-FEED, CR

ED26 EE38
0061 ED28 0401 ECH02 CLR R1 CLEAR ACCUMMULATOR
0062 ED2A 2EC2 ECH01 XOP R3, 11 ECHO CHAR. , PLACE IT IN R3
0063 ED2C 0603 SWPB 83 PLACE VALUE IN RIGHT BYTE
0064 WAS SPACE, CR, ESCAPE OR CONTROL-H PRESSED?
0065 ED2E 0283 CI R3,>0020 SPACE BAR PRESSED?

ED30 0020
0066 ED32 1311 JEO CC'MPRE YES, COMPARE VALUES
0067 ED34 0283 CI R3, >000D CARRIAGE RET. PRESSED?

E036 000D
0068 ED3S 13E3 JEO START YES, RESTART PROGRAM
0069 ED3A 0283 CI R3,>0018 ESCAPE PRESSED?

ED3C 001B
0070 ED3E 1309 .JEO MONITR YES, RETURN TO MONITOR
0071 ED40 0283 CI R3,>0008 WAS CONTROL-H PRESSED?

ED42 0008
0072 ED44 I3EF JE0 -ECHOO DO LFCR, RESTART GUESS
0073 ED46 0243 ANDI R3,>000F NO, SAVE 0-9 DIGIT ONLY

E048 000F
0074 ED4A 3840 MPY R0 RI. PREVIOUS NO. X10
0075 ED4C AOC2 A R2 R3 NEW NO. + ABOVE PRODUCT
0074 ED4E 0043 MOV R3,81 ANSWR TO ACCUMMULATOR
0077 ED50 10EC JMP ECH01 GET NEXT DIGIT
0078 ED52 0460 MONITR B @>0080 - GO TO MONITOR

ED54 0080
0079 * COMPARE NUMBERS INPUT TO COMPUTER'S NUMBER
0080 ED56 058A COMPRE INC R10 INCREMENT NOS. GUESSED
0081 ED52 8201 C RI, RS. COMPARE Ti COMPUTER'S NO.
0082 ED5A 1102 JLT LOW NO. IS LESS THAT COMPUTERS
0083 ED5C 1504 JOT HIGH NO. IS MORE THAT COMPUTER'S
0084 ED5E 1:306 JEO EQUAL Ni. IS CORRECT VALUE
00S5 * MESAGES FOR TOO HIGH, TOO LOW
0086 £31.0 2FAO LOW XOP elowm,i4 TOO-LOW MESSAGE

3D42 3E04
0ff47 ED64 10E1 JMP ECH02 GET NEXT NUMBER
0088 ED66 2FAO HIGH XOP @HIGHM,14 TOO-HIGH MESSAGE

EDA8 EE1E
0039 ED6A LODE JMP ECHO2 GET NEXT NUMBER
0090 * CORRECT NUMBER WAS GUESSED
0091 * FIND OUT HOW MANY TRIES WAS USED AND OUTPUT MESSAGE
0092 ED4C 2FAO EQUAL XOP @CORECT,14 CORRECT 'GUESS MESSAGE

EDGE EE3C
0078 ED70 028A CI R10,7 TRY COUNT GREATER THAN 72

ED72 0007
0074 ED74 1503 JOT $+S YES, CHECK AGAIN
0075 ED76 2FAO XOF eSEVEN,14 No, Dn 0-7 TRIES MESSAGE

FD73 EE55
0094 ED7A 100E JMP COUNT GO GET COUNT
0077 ED7C 028A CI R10,7 TRY-COUNT GREATER THAN 9?

ED7E 0009
0098 EDSO 1503 JOT $+:3 YES, CHECK AGAIN
0097 ED82 2E40 XOF @NINE, :14 NO, DO 3-7 TRIES MESSAGE

ED84 EESF
0100 EDS& 1008 JMP COUNT GO 'SET COUNT
0101 ED88 0284 CI P.10,12 TRY-COUNTER GREATER THAT 13?

G-12

GUESS SDSMAC 3.2.0 78.274 20:22:07 TUESDAY, MAR 17, 1981.
PAGE 0004

EIS 000D
0102 EDSC 1503 JGT $+3 YES, OUTPUT TURKEY MESSAGE
0103 EDGE 2FAO XOP @THIRTN,14 NO, DO 10-13 TRIES MESSAGE

ED90 EE6E
0104 EDP 1002 JMP COUNT Gn nET COUNT
0105 ED94 2FAO XOF @TURKEY,14 OUTPUT >12 (TURKEY) MESSAGE

ED96 PE77
0106 * IF CORRECT NUMBER FOUND, OUTPUT NO. OF TRIES
0107 ED98 3E40 CnUNT DIV RO,R9 DIVIDE TRY-NO. BY 10
0108 ED9A 0269 nRI R9 >O03O OR IN >30 FOR ASCII NO.

ED9C 0030
0109 ED9E 026A ORI R10,>0030 OR IN >30 FOR ASCII NO.

EDAO 0030
0110 EDA2 06r9 SWPB R9 REMAINDER IN LEFT BYTE
0111 EDA4 A289 A R9,R10 2-DIGIT DECIMAL IN R10
0112 EDA6 C80A MOV R10,@NUMBER MOVE QTY TO MESSAGE

EDA8 EE96
0113 EDAA 2FAO XUP eCNT,14 OUTPUT NO. OF TRIES

EDAC EE81
0114 EDAE 10A8 JMP START GO TO BEGINNING OF PROGRAM
0115 * * * * * * * * * * * * * * *
0116 DATA AREA: DATA STATEMENTS, TEXT STATEMENTS, - ETC.
0117 * * * * * * * * * * * * * * *
0118 MESSAGES
0119 EDBO OAOD MESS1 DATA >0040D,>0A0A

EDB2 OAOA
0120 EDB4 42 TEXT 'CAN YOU GUESS MY NUMBER (0 TO 9997?

EDB5 41
EDB6 4E
EDB7 20
EDB8 59
EDB9 4F
EDBA 55
EDBB 20
EDBC 47
ELIDE' 5F.
EDBE 43
EEIBF
EDCO 53
EDC1 20
EDC2 4D
ED CS 5
EDC4 20
EDC5 4E
EDC6 55
EDC7 40
Erica 42
EDC9 45
EDCA 52
EDCD 20
EDCC 28
EDC2 "=:0
EDCE 20
EDCF 54
EDDO 4F-
EDD1 20
EDD2 29
EDD3 39
ED04 39
EDD5 29

G-13

GUESS SDSMAC 3.2.0 78.274 20:22:07 TUESDAY, MAR 17. 1981.
PAGE 0005

EDD6 3F
EDD7 20

0121 EDD3 OAOD DATA >0A0D LINE FEED, cR
0122 EDDA 49 TEXT 'INPUT A NUMBER & PRESS THE SPACE BAR.

EDDD 4E
Et DC 50
EDDD 55
EDDE 54
EDDF 20
EDE() 41
EDE1 20
EDE2 4E
EDE3 55
EDE4 4D
EDES 42
EDE6 45
EDE7 9)
EDES 20
EDE9 26
EDEA 20
EDEB 50
EDEC
EDED 45
EDEE
EDEF 53
EDFO 20
EDF1 54
EDF 4S
EDF3 45
E£ F4 20
EDF5 53
EDF& 50
EDF7 41
EDFS 42
EDF? 45
EDFA 20
zdF3 #2
EDF': 41
EDFD 52
EDFE 2E
EDFF 20
EE00 OAOD DATA :-0A0D,0 LINE FEED rR, END MSG
EE02 0000

01 EE04 2020 LOWM DATA :2020 DrINBLE SPACE
0125 EE06 54 TEXT 'TOO LOW, TRY AGAIN!!'

EE07 4F
EEOS 4F
EE09
EE0A 41
EE0B 4F
EEC 57
EEOD
EEOE 20
EEOF 54

. EE10
EE11 59
EE12 20
EE13 41
EE14 47
EELS 41

G-14

GUEqS ~ SDSMAC 3.2.0 78.274 20:22:07 TUESDAY, MAR 17, 1981.
PAGE

EE14 49
EE17 4E
-EE18 21
EE19 21

0124 EE1A OAOD DATA >o D,0 LINE FEED, CR, END MSG
EE1C 0000

0127 EE1E 2020 HIGHM DATA)2020 TWO SPACES
0128 EE20 54 TEXT "TOO HIGH, TRY AGAIN!'

EE21 4F
EE22 4F
EE23 20
EE24 48
EE25 49
EE26 47
EE27 48
EE28 2C
EE29 20
EE2A 54
EE2B 52
EE2C 59
EE2D 20
EE2E 41'
EE2F 47
EE:30 41
EE3I 49
EE32 4E
EE33 21

0129 EE34 OAOD DATA >0A0D,0 LINE FEED, CR, END MSG.
EE36 0000

0120 EE38 OAOD LFCR DATA >0A 0D LINE FEED, CR
0121EC:A 00 BYTE 0 END OF MESSAGE
0122 EESC 0707 CORECT DATA >0707,>0707 BELLS

EE 0707
0133 EE40 2020 DATA >2020 SPACES
0134 EE42 43 TEXT 'CORRECT ! YOUR"RE

FE4.3 4F
FE44 52
8E45 52
EE46 45
EE47 42
EE4S 54
EE49 20
EE4P. 21
EE4B 20
EE4C 59
EE4D 4F
EE4E 55
EE4F 52
EESO 27
FF51 52
EE52 45
EE53 20

0135 EE54 00 BYTE 0 END OF MESSAGE
01:36 EE55 41 SEVEN TEXT 'AN EXPERT'

EE56 4E
EE57 20
EESS 45
FE57 58
EFSA 50
EE5B 45

0006

G-15

GUESS SEISMAC G s o 75.274 20:22:07 TUESDAY, MAR 17, 1981.
PAGE

EE5C 52
EE5D 54

0137 EE5E 00 BYTE o
013S FE5F 41 NINE TEXT 'ABOVE AVERAGE

EE60 42
EE61 4F
EE62 56
EE63 45
EE64 20
E565 41
EEC
EE67 45
EE67 52
EE/,9 41
EE6A 47
EE6B 45
EE6C 20.

0139 EE6D 00 BYTE o
0140 EE6E 41 THIRTN TEXT 'AVERAGE '

EE6F
EE70 45
EE71 52
EE72 41
EE73 47
EE74 45
EE75 20

0141 EE76 00 BYTE
0142 EE77 41 TURKEY TEXT 'A TURKEY

EE7S 20
5E79 7:4
EE7A55
EE7B
EE7C 4B
EE7D 45
EE 7E
'EE 7F

0143 EES0 w m sE r
014=1 7E81 w SmT XT BEAUSE I2 TOO. YOU

EE82
EESS 45
EES4 43
EPS5 41
EES6 52
EES7
EEC 45
SE?? 20
EESA 49
5-53B 54
EESC 25
7E3E. '54
EEE 4F
EE5F 4F
EE9i-_, 4B
EE91 20
EE92 59
EE'7, 3 4F
EEFA 55
EE95 20

0145 EE76 0000 NLMBEF DATA
0146 EE9S 20 BTE •,Z1.1 PLACE NO. ';ERE

0007

G- 16

GUESS SDSMAC 3.2.0 78.274 20:22:07 TUESDAY, MAR 17, 1981.
PAGE

0147 EE99 54 TEXT 'TRIES!'
EE9A .52
EE9B 49
EE9C 45
EE9D 53
EE9E 21

0148 EE9F 07 BYTE 7,7,7,0 BELLS (ASCII 07)
EEAO 07
EEA1 07
EEA2 00

0149 EEA4 WSP EVEN WORKSPACE START (RO LOC)
0150 END
NO ERRORS, NO WARNINGS

0008

G-17

INDEX

ADC 5-9,5-14
ADDRESS BUS 4-3,4-4,4-6,8-17,8-18
ADDRESS SPACE 4-21
ADDRESSING 1-6,4-4
ALLOWABLE BAUD RATES 7-6
ALPHABETIC CHARACTERS 1-5,6-4,6-13
ALTERNATE PROGRAMMING CONVEN 8-26
AORG 6-1,6-6,8-2
AORG DIRECTIVE 6-6
ARCHITECTURE E-1
ASCII CODE 1-5,6-5,6-1
ASRFLAG 8-46
ASRFLAG VALUES 8-47
ASSEMBLED OBJECT CODE 6-3
ASSEMBLER ACTION 6-11
ASSEMBLER COMMANDS 5-19
ASSEMBLER DIRECTIVES 6-6,8-1,8-2
ASSEMBLER-DIRECTIVE 6-1
ASSEMBLERS 7-5,8-1
ASSIGNS 6-9
AUDIO 1-4
AUTOMATIC CONTROL DEVICE 5-9,5-14
AUXILIARY CONTROLS 4-3
AUXILIARY TMS 5-21,8-46,8-48,8-49,8-50
BAUD RATE SELECTION PARAMETERS 7-8
BELL 3-2,3-3
BIAS 5-13,7-6,7-7,7-8,7-9,8-24
BIDIRECTIONAL BUSES 4-5
BINARY DECIMAL AND HEXADECIMAL NUMBERS 1-5,1-6,1-7,4-8,5-22,5-25
BIPOLAR PROMS 1-2,4-1,4-10
BIT-ORIENTED I/O 8-17
BL 8-11
BRANCH AND LINK INSTRUCTION 8-11
BLOCK-COMPARE 8-44
BLOCK-LENGTH 8-43
BLOCK-MOVE 8-44
BOARD CONFIGURATION 1-2
BRACKETS 5-4,7-10
BRANCH AND LINK SUBROUTINE 8-12
BRANCH TO ABSOLUTE ADDRESSES 8-11
BRANCHING 8-11
BREADBOARDING 1-2,4-24
BRIDGES 3-5
BSS DIRECTIVE 6-7
BUFFER 4-3,4-16,5-7
BUSES 4-1,4-2,4-4,4-7
CALLING THE ASSEMBLER 6-12,6-14
CANCEL SOURCE STATEMENT BEING INPUT 6-5
CAPABILITIES 4-1,4-24,7-1
CARRIER 8-46

PAGE 1

CARRIER-DETECT
CARRY
CASSETTES
CHAF
CHAINS
CHARACTER I/O
CHECK-OUT
CHECKSUM
CIRCUITRY
CIRCUITS
CLEAR-TO-SEND
CLEARANCE
CLKOUT
CLOCK OSCILLATOR
COMMAND MODE
COMMAND SCANNER
COMMAND SYNTAX CONVENTIONS
COMMENT FIELD
COMMUNICATIONS LINK USAGE
COMMUNICATIONS REGISTER UNIT
COMMUNICATONS
COMPARE BLOCKS OF BYTES SAMPLE
CONCLUDING THE INSTRUCTION
CONDUCTORS
CONFLICTS
CONNECTIONS
CONNECTORS
CONSTANTS
CONTENTS TO CRU BIT ADDRESS
CONTROL BUS
CONTROLLER
CONVENTIONS
CONVERSATION
CORRECT-READING
COUNTDOWN
CPU
CRU
CRU ADDRESS MAP
CRU ADDRESSING
CRU BIT ADDRESS AND REGISTER
CRU BUS
CRU INSTRUCTIONS
CRU MULTIBIT INSTRUCTIONS
CRUCLK
CRUIN
CRUOUT
CRYSTAL
CURRENTS
CURSOR
DATA BUS
DATA DIRECTIVE
DATA-TERMINAL-READY
DBIN
DEBUG MONITOR

4-20
1-6,1-8

7-9
5-26
8-15
8-27
3-1

5-26,7-7
4-20
1-8

4-20
2-1

3-6,4-7
4-7

7-6,7-8,7-9
1-6,3-2

5-4
6-4,6-6,6-13,6-14

7-6
8-17
7-5

8-45
6-14
2-3

4-13
2-1,3-5,4-13,4-15

1-2
6-13,8-3

8-22
4-3,4-5,4-6

1-4,4-1,4-2,4-16
5-4,8-10

8-46
5-11
8-39

1-6,1-7,4-1
8-17

4-16,4-18,4-19,4-20
8-17
8-17

4-3,4-5
6-16,8-17,8-19

8-19
4-3,4-5,4-6,4-7,4-22

4-3,4-5,8-19,8-21
4-3,4-4,4-5,8-19,8-21

1-2,4-7
3-6

6-12
4-3,4-5,4-6,4-13,4-16,8-7

6-7,6-10
4-20

4-3,4-6,4-7,4-16
5-1,5-5,5-8,5-9,5-17,5-20,5-25

PAGE 2

DECODER 4-20,8-17
DECREMENTER 4-2,5-7,8-39,8-40
DEDICATED ACCUMULATORS 8-5
DEDICATED RAM LOGIC 4-15,4-16
DEDICATED READ-WRITE MEMORY RAM 4-15
DELAYS 8-46,8-47
DELIMITER 6-10,8-29
DEVICE SELECT LOGIC 4-9
DIODE 4-20
DISPLACEMENT 6-18
DISPLACEMENT ERROR 8-21,8-22
DM 5-7
DOLLAR SIGN TO INDICATE "AT THIATION" 6-4
DOUBLE-WORD 8-15
DOWNLOADER 7-9
DUAL-TRACE 3-5
DUMP MEMORY 5-7
DUMP MEMORY TO DIGITAL CASSETTE 5-3,5-8
DYNAMIC CHECKS 3-6
DYNAMIC-RELOCATING 8-23
DYNAMICALLY RELOCATABLE CODE 8-2
ECHO CHARACTER XOP 5-23,8-27
EDITOR 7-1,7-10
EIA COMMUNICATIONS LINK 7-1,7-14
EIA INTERFACE 4-20
END DIRECTIVE 6-8,6-15
END-OF-FILE r 7-7
ENTERING INSTRUCTIONS 6-13
ENTRY-POINT 6-8
ENVIRONMENTAL REQUIREMENTS 2-1,2-2
EPROMS 1-8,4-3,4-10,8-23,8-26
EQU DIRECTIVE 6-9
EQUIPMENT 1-4,2-1,3-5
EVMBUG COMMANDS 3-2,5-3
EVMBUG ERROR MESSAGES 5-1,5-25,5-26
EVMBUG INTERACTIVE COMMANDS 5-1
EVMBUG MONITOR 5-1,5-5,5-8,5-9,5-17,5-20,5-25
EX 5-12
EXAMPLE OF PROGRAM CODING 8-24
EXAMPLE OF SEPARATE PROGRAMS JOINE 8-11
EXB 5-5
EXECUTE ASSEMBLER WITH EXISTING SYMBOL TABLE 5-3
EXECUTE ASSEMBLER WITH NEW SYMBOL TABLE 5-3,5-9
EXECUTE COMMAND 5-12
EXECUTE COMMUNICATIONS LINK 5-20
EXECUTE IN SINGLE STEP MODE 5-17
EXECUTE REVERSE ASSEMBLER 5-20
EXECUTE UNDER BREAKPOINT 5-5
EXITING TO THE MONITOR 6-13,6-14
EXPRESSIONS 6-5,6-9
EXTERNAL INSTRUCTION LOGIC 4-22,4-23
EXTERNAL INSTRUCTIONS 4-22
FACILITIES 8-4,8-27
FD 5-12

PAGE 3

FETCHING
FIND DATA COMMAND
FIRMWARE
FIRST-OUT
FLAGA
FLAGB
FLAGC
FLAGD
FLAGE
FLAGF
FLAGS
FLEXIBILITY
FORMATTING
GATING
GENERAL SPECFICATIONS
GLOSSARY
GREATER-THAN
GROUND
HALT
HALTING
HANDBOOK
HANDLER
HANDSHAKING
HARDCOPY
HARDWARE
HARDWARE REGISTERS
HEADS
HEX
HEXADECIMAL ARITHMETIC
HEXADECIMAL I/O
HINTS
HOLD
HOLDA
HOOKUP
HOST SYSTEM CABLE REQUIREMENTS
HOST SYSTEM REQUIREMENTS
HUMIDITY
I/O USING MONITOR XOPS
IAQ
IC
IDENTIFIERS
IDLE
INCREMENTS
INDEXED ADDRESSING
INDEXING
INSPECT CHANGE CRU
INSPECT CHANGE MEMORY
INSPECT CHANGE USER WORKSPACE
INSPECT CHANGE USER (WP) (PC) (ST)
INSTALLATION
INSTRUCTON
INTERFACING WITH EVMBUG
INTERRUPT AND XOP LINKING AREAS
INTERRUPT SEQUENCE

8-6,8-7
5-12

1-1,1-2,6-1
8-13
4-19
4-19
4-19
4-19
4-19
4-19
7-7

8-13
6-1

4-5,4-6
1-4
1-5

1-5,8-2
2-3,4-20,7-4

4-23
5-5
4-1

8-13,8-34,8-40
7-4

8-47
5-16,7-1,7-3,7-4,8-1,8-4

5-16,8-5
5-26
5-13
5-13
8-28
8-26

4-3,4-7
4-3,4-6,4-7
2-2,2-3,2-4

7-4
7-4
2-2

8-27
4-3,4-6,4-7

5-5
7-5

4-22,4-23
8-37
1-7

8-24,8-25
5-5
5-15

5-2,5-18
5-16
2-1
8-9

8-27
8-30

8-6,8-13,8-33

PAGE 4

INTERRUPTS AND XOPS 8-9,8-30
JUMPER CONNECTIONS 3-5,4-13,4-15
JUMPER PRONGS 1-3
KEYING 5-6
LABEL FIELD 6 3,6-4,6-10,6-13,6-14,6-15,6-16,6-17,6-18
LABELED ADDRESSING 8-2
LABELS 5-1,6-1,6-4,6-5,6-8,6-10,6-13,8-4
LABELS AND COMMENTS 6-4
LDCR INSTRUCTION 8-20
LED 4-22,4-23
LENGTH-OF-BLOCK 8-43
LEVELS 2-3,7-3
LINK USE WITHOUT CASSETTE OR PAPER TAPE 7-9
LINKAGE 8-36,8-38
LINKED-LIST 8-6,8-13,8-15,8-16
LINKED-LISTS 8-13,8-15
LINKER 7-1,8-25
LINKING INSTRUCTIONS 8-9
LINKS 4-20,8-13,8-15,8-16
LISTING FORMAT 6-3
LISTINGS 7-5,7-7
LOAD MEMORY FROM CASSETTE OR PAPER TAPE 5-13
LOAD TAPE CASSETTE 5-10
LOAD-POINT 6-8
LOADER 1-7,5-14,5-26,8-24
LOCATION COUNTER 6-3,6-4,6-5,6-6,6-7,6-8,6-10
LOGGING 7-10
LOGIC 4-7,4-9,4-11,4-16,4-21,4-22,4-23,4-24
LOGON 7-5
MACHINE-LANGUAGE 8-40
MACROASSEMBLER 7-1,7-10
MAJOR INTERNAL SIGNALS 4-3
MALFUNCTION 3-1
MASKS 8-40
MEMORY AND CRU ADDRESS MAP 4-20
MEMORY-WRITE 4-7
MESSAGES 5-1,5-25,5-26,7-6,7-7,8-28,8-46
MODEM 8-46
MODEMS 5-21,8-47
MODES 7-5
MODULES 8-5,8-25,8-26,5-9,5-17,5-20,5-25
MOVE-FROM-ADDRESS 8-43
MOVE-TO-ADDRESS 8-43
MOVING 6-9,8-24,8-46
NIBBLE 4-15,8-9
NODES 8-13,8-15
NON-MASKABLE INTERRUPT 1-7,4-23
NON-RELOCATABLE CODE 5-8,8-25
NUMERICAL REPRESENTATIONS 1-5
OBJECT RECORD FORMAT 5-8,5-13,7-3,7-5
ONE-PASS 6-1
ONES 1-7,8-40
OP CODE FIELD 6-3
OPCODE 4-22,6-13,6-14,8-2,8-24

PAGE

OPCODE FIELD 6-13
OPERAND FIELD 6-3,6-4,6-8,6-10,6-13
OPTIONS 1-2
ORGANIZATION 8-3,8-4,8-15
OSCILLATOR 4-7
OSCILLOSCOPE 2-1,3-5
OUTLINES 5-25
OVERFLOW 1-6,1-8
OVERHEAD 8-6
OVERLAP 4-21,8-14
PADDING 8-47
PAPER TAPE 5-8,5-11,5-13,5-14,7-9
PARITY 1-8
PARTITIONING 8-14
PATH 8-11
PATTERN 4-9,8-19
PERSONALITY PLUGS 1-4,4-3,4-11,4-12,4-13,4-14
PHILOSOPHY 8-5
PIN 1-3,7-4,8-19
PINS 3-1
PLANNING 4-20
PLAYBACK 5-9,5-14
PLUGS 1-4,4-11,4-12,4-13,4-14,4-15
PORTS 4-1,4-16,4-17,4-20,7-1,8-46
POSITIONING 8-29
POSTS 4-21
POWER SUPPLY 1-2,2-1,2-2,2-3
POWER UP RESET 3-1
POWER-CONNECT 2-1,2-3
POWER-UP 4-8,8-27
PRE-PROGRAMMED 8-37
PREPROGRAMMED INTERRUPT AND USER XOP'S 8-12
PRINTOUT 3-3
PRIORITY-SETTING 8-8
PROCEDURE 8-3
PC 8-6
PROGRAM COUNTER REGISTER 8-6
PROGRAM ENTRY AND EXIT 8-27
PROGRAM ORGANIZATION 8-3
PROGRAMMING 8-1
PROGRAMMING CONSIDERATIONS 8-3
PROGRAMMING ENVIRONMENT 8-1,8-4,8-26
PROGRAMMING HINTS 8-26
PROMPTING 8-27
PROMS 1-8,4-9,4-10,4-20
PRONGS 1-3
PROTOCOL 7-3,7-5,7-6
PROTOTYPE AREA 3-5,4-5,4-24
PROTOTYPING 4-1,4-3,4-20,4-21,4-24
PSEUDO-INSTRUCTION 6-18
PULSE 4-5,4-22
PULSES 4-23
QUERY 5-9,5-10,5-11,5-12
QUEUE 7-10

PAGE 6

RAM 1-8,4-3,4-5,4-15,4-16,5-1,8-4
RAM-INTENSIVE 8-4
RAM-TYPE 8-4
RAMS 1-2,4-10,4-13,4-16
RE-ENTRANT 8-5
RE-EXECUTE 3-4
READ ONE CHARACTER FROM TERMINAL 5-24
READY 4-3,4-6
REAL-TIME 1-7
RECEIVE-DATA 4-20
REFERENCE DOCUMENTS 1-4
REFERENCING 1-7
REGISTER ADDRESSING 8-5
REGISTER RESERVED APPLICATIONS 8-9
REGISTERS 5-16,5-18,5-23,8-4,8-5,8-6,8-8,

8-15,8-16,8-26,8-30,8-32,8-36,8-43
REQUEST-TO-SEND 4-20,8-46
REQUESTS 4-7,8-12
REQUIRED EQUIPMENT 2-1
REQUIRED USE OF RAM IN PROGRAMS 8-4
RESERVES 6-7
RESET 3-1,4-7,4-8
RESET LOGIC 4-3,4-7,4-8
RESISTORS 4-20
RETURNING CONTROL TO EVMBUG MONITOR 7-9
REWIND 5-9,5-14
ROM 1-8,4-3,5-1
ROMS 1-2,4-10
RTWP 8-14
RETURN WITH WORKSPACE POINTER 8-14
RUBOUT 5-11,5-12
SAMPLE ASSEMBLER LISTING 6-2
SAMPLE PROGRAMS 3-2,3-3,7-10,8-46,8-48,8-49,8-50
SAMPLE SOFTWARE DEVELOPMENT SESSION 7-10,7-11
SAMPLES 8-21
SAMPLING 4-16,8-19
SAVES 8-26
SCANNER 1-6,3-2
SCHEMATICS 4-3,4-4
SEARCHES 1-6,8-25
SELECT LINE ADDRESS ASSIGNMENTS 4-9
SERIAL I/O PORTS 7-1,8-46
SESSION 7-10,7-11,7-12,7-13
SETUP 2-1,8-24
SHIFT 6-13,8-9,8-18
SHIPPING 2-2
SHORTS 3-5
SIGNALS 4-3,4-4,4-6,4-7
SIGNS 6-13
SINGLE QUOTES 6-5,6-10
SINGLE-STEP LOGIC 4-23
SKIP 6-15,6-17,6-18
SOFTWARE REQUIREMENTS 7-5
SOURCE LISTING 5-20,8-1,8-2,8-3

PAGE 7

SPACE AND ENVIRONMENTAL REQUIREMENTS 2-1
STACK 8-13,8-15
STARTING THE LINK 7-7
STATIC CHECKS 3-5,3-6
STATUS REGISTER 8-6,8-7
STCR INSTRUCTION 8-20,8-21
STROBE 4-6
STROBING 4-5
SUBPROGRAMS 8-11
SUBROUTINES 5-1,5-20,8-14
SUBSTITUTING 4-20
SUBTRACTING 8-24
SUBTRACTION 6-5
SUCCESSION 6-13
SUMMARY OF COMMUNICATIONS LINK COMMANDS 7-6
SUMMARY OF COMMUNICATIONS LINK ERRORS 7-7
SUPERVISOR 1-7,1-8,8-3,8-15
SUPPLY VOLTAGE OPERATIONAL LIMITS 3-6
SWITCHES 5-9,5-14
SYMBOL-READING 8-22
SYMBOLIC ADDRESSING 8-25
SYMBOLIC ASSEMBLER 6-1,8-1
SYMOBLS 5-19
SYNOPSIS 8-1
SYNTAX 5-4
SYNTAX ERRORS 6-16,6-17
SYSGEN 7-10
SYSTEM BUSES 4-4
SYSTEM DESCRIPTION 7-2
SYSTEM MEMORY MAP 4-10,5-2
SYSTEM REQUIREMENTS 7-4
TAB 5-9
TABS 5-11
TABULATION 8-40
TAG 5-13,5-26,7-7
TAGS 7-9
TAPE 5-8,5-11,5-13,5-14,7-9
TAPE WRITE-PROTECT TABS 5-11
TARGET 7-3
TASK 5-12,5-22,8-26
TECHNIQUES 3-4
TELETYPEWRITER 5-11
TEMPERATURE 2-2
TERMINAL HOOKUP 2-4
TERMINAL MODE 7-6,7-7,7-8,7-9,7-10
TERMINAL REQUIREMENTS 7-6
TERMINAL XOP 5 20,5-21,5-22,5-23,5-24
TERMINATION CHARACTERS 5-22
TEST EQUIPMENT 3-5
TEXT DIRECTIVE 6-10,6-11
THEORY OF OPERATION 3-5,4-1
TIME-SHARE 7-4
TIMING 3-6,4-1,4-4,4,13
TMS9995 ARCHITECTURE E-1

PAGE 8

TMS CONTROL SIGNALS
TMS EVALUATION MODULE
TMS EVM AUXILIARY CONTROL SIGNALS
TMS EVM RESET LOGIC
TMS EVM SIGNALS
TMS EVM SYSTEM BLOCK DIAGRAM
TMS EVM SYSTEM MEMORY MAP
TMS INTERVAL TIMER INTERRUPT PROGRAM
TMS SYMBOLIC ASSEMBLER LISTING
TNF
TO MAKE CODING RELOCATABLE
TOGGLE
TOGGLE NULL FLAG
TRANSISTOR
TRANSITION
TRANSLATE CHARACTERS INTO ASCII CODE
TRANSMISSION
TRANSMIT-DATA
TRANSPORT
TRAPS
TRIGGERED
TROUBLESHOOTING
TROUBLESHOOTING TECHNIQUES
TTY
TTY INTERFACE
TURNING
TXLINK
TXMIRA
UARTS
UNPACKING
UPLOADER
UPLOADS
USER-ACCESSIBLE
USER-AVAILABLE
USER-CONFIGURABLE
USER-DEFINED
USER-PROGRAMMED
USER-WRITTEN
USERS
USING MAIN AND AUXILIARY TMS
UTILITIES
VARIATIONS
VECTORS INTERRUPT AND XOP
VENTILATION
VERIFICATION
VERIFY
VISUAL CHECKS
VOID
VOLTAGE
VOLTAGES
WAIT STATE LOGIC
WAITING
WAITS
WAVEFORMS

4-4
1-1,1-2,1-3,2-1,4-1,4-2

4-7
4-8
4-3
4-2

4-10
8-39
6-3
5-17
8-24

5-3,5-17
5-17
4-20
8-13
6-5

8-19
4-20

5-9,5-14,5-26
4-24,8-30

3-5,8-8,8-39
3-4,3-5

3-4
2-1,4-16,4-20,7-10

4-20
4-20
8-25
8-2
1-4
2-2
7-9

7-5,7-7
5-1,5-20,5-21

8-30
1-2

4-22,8-14
4-20
8-14
8-46
8-46

1-8,5-1,5-20,5-21,7-1
3-6
8-7
2-1
3-1

2-2,3-1
3-5
6-7

2-3,3-6,4-20
3-5

4-3,4-21
6-5,8-27

8-46
3-6

PAGE 9

WIRE-OR 1-8
WIRING 2-3,4-13
WORKSPACE POINTER REGISTER 8-5
WORKSPACE REGISTERS 5-3,5-18,8-8,8-15
WORKSPACES 5-1,8-4,8-6,8-10,8-14,8-15
WP 8-5
WRAPPING 2-2
WRITE MESSAGE TO TERMINAL XOP 5-24
WRITE ONE CHARACTER TO TERMINAL 5-24
WRITE CHARACTER 8-46
XCL 5-20
XRA 5-20
XOP EXTENDED OPERATION INSTRUCTION 8-15
XOP LINKING AREA 8-36,8-38

PAGE 10

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199
	Page 200
	Page 201
	Page 202
	Page 203
	Page 204
	Page 205
	Page 206
	Page 207
	Page 208
	Page 209
	Page 210
	Page 211
	Page 212
	Page 213
	Page 214
	Page 215
	Page 216
	Page 217
	Page 218
	Page 219
	Page 220
	Page 221
	Page 222
	Page 223
	Page 224
	Page 225
	Page 226
	Page 227
	Page 228
	Page 229
	Page 230
	Page 231
	Page 232
	Page 233
	Page 234
	Page 235
	Page 236
	Page 237
	Page 238
	Page 239
	Page 240
	Page 241
	Page 242
	Page 243
	Page 244
	Page 245
	Page 246
	Page 247
	Page 248
	Page 249
	Page 250
	Page 251
	Page 252
	Page 253
	Page 254
	Page 255
	Page 256
	Page 257
	Page 258
	Page 259
	Page 260
	Page 261
	Page 262
	Page 263

