
f

rw-~...•,.,..

ti

This document descites the foundation 128A Memory Card and the optlonel

Device Service Routine aware.

128K Card Documentation

CONTENTS

Introduction

Specifications

Programming the 128K Card

Introduction

The Foundation 128K card provides 128K bytes of high-speed
random-access memory for the Texas Instruments 99/4A computer. Thies
memory is addressed by an assembly language program as four banks of
32K bytes each, with inter-bank switching performed using
Communications Register Unit instructions. Alternatively, with the
optional Device Service Routine firmware, the upper three banks of
memory are available for use by an application program as if they
were either a single file, "MEM96", or as if they were three files
named "MEM96A", "MFM96B" , and "MFM96C" . In this mode of operation,
the upper banks of memory can be used to greatly expand the
data-handling capabilities of the 99'4A while using the lowest bank
to store either programs or data.

Specifications

Amount of Memory
Organization

Memory Technology
Memory Speed

Support Circuits

Software

131,072 bytes
4 banks of 32KB each mapped as >2000 tc
>3FFF and >A000 to >FFFF
4164 64Kx1 dynamic RAN.
200 nsec. at chip level.
full bus speed at bus level
series 7400 low power Schottky TT'. Joair-
and TMS4500A VLSI memory controller
MEM96 file emulation with DSR option

Page 1

128K Card Documentation

Programming the 128K Card

Using the 128K Card with the DSR Option

Most users of the 128K card will find that its value is greatly
increased when it is coupled with the firmware provided by the DSR
option. Using the DSR option, the memory appears to the user almost
like two different devices. One of them is designed to be used as
32KB of "normal" memory; that is, both programs and data are loaded
into it and programs treat it pretty much as they would memory from
any manufacturer. The other pseudo-device is called MFM96, and it is
the main subject of this section.

MEM96 is provided as a way of circumventing some very basic
limitations that are built into the TI 99/4 computer family. The TI
99 / 4 computers are only capable of addressing 64KB of memory. When T.
designed the machines, they carefully laid out what the requirements
for memory would be and allocated all of the space that was
available. Nevertheless, some people (including you) either need mcr
memory already or can see that they will in the not-too-distant
future.

What Foundation has done is to provide "firmware" (more on this
later) that allows 128KB of memory to appear to a program as if it
both "normal" memory and a group of files that are available just a-
if they were files on some other device such as a disk drive.
Naturally, since the "files" are really in very high-speed memory,
access to them is much faster than it would be to a file on a disk.
How much faster? This varies depending on exactly what yo.: are doinc
but it ranges from being a few hundred to a few thousand times
faster. This means that some jobs that would take an entire afternoo:
on a disk-based system (for example, sorting a large file of names
and addresses), can complete in a few minutes executing in MEM96.

What exactly is MEM96 and how do you go about using it? To start
with, MEM96 is a file that you access just as you would any other
file. That is, you open it, read or write to it, and close it when
you are finished.

Paae 2

128K Card Documentation

The main goal of providing MFM96 was to make additional storaoo
capability available to programs. The model chosen was that of a
fixed-length random-access file in update mode. If opened in othe-•
modes, MEM96 may or may not return an error condition, but resu'ts
are unpredictable. Records may be any size from 4 to 255 bytes, and
may be either "display" or "internal" format. No notification of ar
end-of-file condition is given, but if a program attempts to dcces,.
record numbers that are too large, a DSR error code will be returne
It thus becomes important to calculate the largest record that will
fit in a file somewhere toward the beginning of your program, and t
check that the record number you specify is in-bounds before each
access.

This paragraph is going to tell you how to calculate the maximum
record number. It leads up to a simple formula that you can just
in at the beginning of a program, so you can skip it for now if you
want to. In order to calculate the maximum record number, you shoulr'
think of memory as consisting of 8KB blocks. The MFM96 software and
other follow-on products from Foundation use the highest 8KB block
memory for temporary storage, so MFM96 actually has 88KB available
for file storage. (You start with 128KB; "normal" memory takes Lr
32KB, and the MFM96 software takes up 8KB as discussed.) This works
out to eleven 8KB blocks. When you open MEM96 as a file, you specif'
a record size. If that record size doesn't divide evenly into 8192,
anything left over is not used for storage. To calculate the ma'-:in',
record number, just figure out how many records will fit evenly intc
8192 bytes and then multiply that number by eleven. That is,
somewhere toward the beginning of a program, insert the statement:

30 MAXREC=11*INT(8192/RECSIZE)

where you have previously defined RF.CSIZE. to be the record size and
your OPEN statement looks something like:

100 OPEN #1:"MEM96", FIXED RECSIZE, INTERNAL

Following this, you should check before each read or write to MEM96
that the record number is less than MAXRFC. For example:

200 IF RECNUM>MAXREC THEN 1000
210 INPUT #1: I,A$

1000 REM ERROR - RECNUM TOO LARGE

Page 3

128K Card Documentation

Everything so far has been talking about using the entire upper three
banks of memory as one large pseudo-file called MEM96. Often, it
would be more convenient to consider it as a few smaller files so
that, for example, you can have different record sizes for different
purposes. To accomodate this, there are two different ways that you
can treat the upper three banks. One of them is what we have been
discussing so far, that is, to treat all three banks as ore ar,ne
file called MEM96. The other approach is to treat them as three
smaller files called MFM96A, MFM96B, and MFMQ6C, Nespoct've y. M7M'9I:
and MEM96B are each 32KB, while MEM96C is 24KB. Obviously, if you ar
using MEM96A,-B, and -C, you should not use M^M46 or vice versa -
otherwise you could find yourself accidentally overlaying a record.

There is one other pseudo-file you should know about. It is called
MEMINIT, and it is important that you call it at the beginning of
each program. It can be called using the following sequence:

10 OPEN #1: "MEMINIT", FIXED 10
20 CLOSE #1

MEMINIT initializes a "first-time flag" for the MFM96 software. 'f _-
is not set, the screen may vanish or strange graphics may appear whe'
you try to run your program. You will be tempted to ignore MFMINIT
because nine times out of ten you can get away with it. However, it
can be a confusing bug to track down on that tenth time, and the bes-
practice is to just make it a habit which you do automatically.

The easiest way to illustrate the workings of MFM96 is with an
example. Here is a sample program that opens MEM96, performs some
reads and writes to it, and then closes it:

Page 4

.00 REM MEMDEMO

) REM THIS SHORT PROGRAM DEMONSTRATES HOW MEM96 CAN BE USED TO
WRITE AND READ RELATIVE RECORDS

.20 REM THE PROGRAM STARTS BY TYPING "OUTPUT ?"

.30 REM IF YOU TYPE "Y" (FOR YES), IT WILL PROMPT YOU TO ENTER
RECORDS UNTIL YOU GIVE IT A RECORD NUMBER

40 REM THAT I5 LESS THAN ZERO. IF YOU TYPE "N", IT WILL ASK YOU
TO ENTER RECORD NUMBERS AND THEN WILL PRINT

50 REM THE RECORD STORED AT EACH RECORD NUMBER.

70 OPEN •1:"MEMINIT",FIXED 10
80 CLOSE *1
90 REM INITIALIZE MEM96 SOFTWARE
00 RECSIZE=64
10 MAXREC-4*INT(8192/RECSIZE)
20 REM WOULD BE 4*THIS EXPRESSION FOR MEM96B OR 3* IT FOR MEM96C
30 PRINT "OUTPUT";
40 INPUT SWITCH$
50 IF SWITCH$="Y" THEN 280
60 IF SWITCH$="N" THEN 280

GOTO 230
80 OPEN •1:"MEM96A",FIXED RECSIZE, INTERNAL,RELATIVE
90 PRINT "RECORD NUMBER"
00 INPUT RECNUM
10 IF RECNUM(1 THEN 430
20 IF RECNUM(MAXREC THEN 350
30 PRINT "RECORD NUMBER TOO LARGE"
40 GOTO 290
50 IF SWITCH$="Y" THEN 390
60 INPUT •1,REC RECNUM:A$
70 PRINT A$
80 GOTO 290
90 PRINT "TEXT ";
00 INPUT A$
10 PRINT •1,REC RECNUM:A$
20 GOTO 290
30 CLOSE •1
40 END

sample run of this program is shown on the next page.

Here is a sample run of the program from the previous page:

R '
OUTPUT? Y
RECORD NUMBER
? 1
TEXT ? THIS SHOULD GO IN RECORD ONE
RECORD NUMBER
? 3
TEXT ? HERE IS DATA FOR RECORD 3
RECORD NUMBER
? 100
TEXT ? ANOTHER RECORD TO BE STORED
RECORD NUMBER
? 1000
RECORD NUMBER TOO LARGE
RECORD NUMBER
? -1

** DONE **

> N
OUTPUT? N
RECORD NUMBER
? 1
THIS SHOULD GO IN RECORD ONE
RECORD NUMBER
? 100
ANOTHER RECORD TO BE STORED
RECORD NUMBER
? -1

** DONE **

128E Card Documentation

Background Technical Information The 128K card behaves like "normal"
memory in that each of its four banks is mapped into four segments
of 8K bytes each. These segments are located at hex addresses >2000
to >3FFF (low segment) and >A000 to >FFFF (high segments). Thus, to a
user application program, the existence of the additional three banks
is ordinarily invisible. When an application program is ready to
switch from one bank to another, it sets the appropriate CRU bits
according to the following table:

CRU Address Bank Number

>1E02 >1F04

0 0 0
1 0 ..
0 1 2
1 1 3

That is, the binary equivalent of CRU bits 1 and 2 offset from CF.'
address >1E00 selects the bank number. The following brief program
segment illustrates this:

LI R12,>1E00 SELFCT CRU BASF ADDRESS
SBO 1 SET CRU BIT >1E02
SBZ 1 CLEAR CRU BIT >1F02

The above example would select bank 1. To execute properly, this cod€
segment would need to appear in an address space outside of the 32K
of expansion memory. For all practical purposes, this means that the
bank-switching code needs to execute in a Ti Mini-Memory Module in
the 4K of RAM located between >7000 and >7FFF. It is also possible to
write a program that loads bank switching instructions into the CPU
PAD area from >8300 to >83FF, but this means a complex routine to
save and restore the contents of PAD before and after using it.

On power-up and whenever the console issues a reset signal to the
expansion box (e.g. whenever a command cartridge is inserted or
removed), the 128K memory resets itself to bank 0. Other than that,
no power-up initialization routines are initiated by the 128K device
service routine. However,it should be noted that when the console is
powered down, the noise on the ribbon cable to the expansion box will
usually corrupt the contents of some memory locations.

Page 6

FOUNDATION COMPUTING

Disk File Emulator
Table of Contents
1 Contents

2 Overview
2.1 Organization of Document
2.2 Disk Emulator Functions
2.3 Getting Started

3 Loading and Saving Basic Programs
3.1 Loading and Saving from a Disk File
3.2 Loading and Saving from DSKX
3.3 Chaining Programs in Extended Basic
3.4 Warning About Size Constraints

4 Memory Manager Module
4.1 Introduction
4.2 "MMM" - Yet Another Device
4.3 Convenient Places to Access MMM

5 Using Sequential Files
5.1 TI Writer
5.2 Editor/Assembler
5.3 Terminal Emulator II
5.4 Multiplan

6 Programming with Sequential Files
6.1 OPEN
6.2 INPUT
6.3 PRINT
6.4 CLOSE
6.5 RESTORE
6.6 EOF
6.7 Delete

7 Summary of all pseudo-devices

8 Error Messages

9 Program License Agreement

Program License Agreement

YOU SHOULD READ CAREFULLY THE TERMS AND CONDITIONS SET FORTH IN THE PROGRAM LICENSE
AGREEMENT . POSSESSION OF THIS PRODUCT INDICATES YOUR ACCEPTANCE OF THESE TERMS
AND CONDITIONS. IF YOU DO NOT AGREE WITH THEM, YOU SHOULD PROMPTLY RETURN THE PRODUCT
AND YOUR MONEY WILL BE REFUNDED.

OveFview
Organization of Document
Every "how-to" manual has to make some choices as to how information ought to be presented.
This one is aimed at people that have had their computer for a while, that have just received the
disk-file emulator firmware for the 128K card, and that are trying to figure out how to use it. It
should be read in a comfortable chair not too far from your computer, because a lot of the things
that it talks about will be clearer if you can just try them out on the machine. The easy things
are covered first, and all the details of how you write programs to use the disk emulator are
pushed toward the back.

Disk Emulator Functions
Just what does the disk file emulator do? The easiest way to approach this is by relating it to
something you are already familiar with, the standard "MEM96" software that is built into every
128K card. MEM96 provided one function for your computer. it allowed you to treat the extra
three banks of memory as files of relative records that programs could write to or read from. The
disk file emulator provides three new functions: (1) now you can use the upper three banks of
memory to save or load programs, (2) you can treat them as sequential files, and (3) you can in-
teract with a built-in program to keep track of memory files.

It does this by providing a new pseudo-device called "DSKX". DSKX is like MEM96 in that it pro-
vides three files, each corresponding to one bank of memory. It is more general in that these files
can be given any file-name; for example, you could use "DSKX.MYFILE" to refer to memory bank
2. Like MEM96, files in DSKX do not interfere with the use of bank 0 "regular" memory.

The files in DSKX correspond very closely to files on a Ti disk, so that application programs like
Multiplan or TI-Writer can send their output into memory files. Also, for many application pro-
grams including most of TI's Solid State Software, you can save and load data from DSKX. Thus,
for example, you can save word processing files into DSKX and reload them more quickly than
you could from disk. Also, you can store source text that you have created with the
Editor/Assembler into a DSKX file and assemble it from there. Section 5 discusses ways to do
this.

Getting Started
Just a brief word about installing or reinstalling the 128K Card ... do remember to power down
the expansion box and wait a full two minutes before inserting any expansion module. You really
can damage modules if you hurry too much.

From here on, the assumption will be that you've installed your 128k card and that your computer
is available to try out examples. Here's a quick one: turn on your Expansion Box then your 99/4A
console and press 1 to go into Basic. Type DELETE "MEMINIT". The screen should then, without
complaining at all, display a Basic prompt. If It succeeds, the odds are that your 128k card
survived shipping and everything is working. If it didn't, you either typed "MEMINIT" in small let-
ters or you should call Foundation about a possible hardware problem. What you just did was in-
itialize the 128k card. For now, don't worry about what this was supposed to prove; it will be ex-
plained later.

Loading and Saving Basic Programs

Loading and Saving from a Disk File
One of the first things that people learn to use their disks for is loading and saving programs.
Let's relate DSKX to a disk by first recalling how you would save a program to a disk file. First,
go into Console Basic. Here is a sample session that will save and reload a short program:

Disk File Emulator

TI BASIC READY

>10 FOR I=1TO3
>20 PRINT I
>30 NEXT I
>40 STOP
> SAVE "DSK1.TEST"
> NEW

(the screen clears)
TI BASIC READY

Loading and Saving from a Disk File

> OLD "DSK1.TEST"
> RUN

1
2
3

"DONE"

>
The reason for going through all this is so that you can see that DSKX behaves exactly like DSK1 as far as
saving and loading programs.

Loading and Saving from DSKX

At the end of the last example, you were left with a short program in memory. Now try the following:

>SAVE "DSKX.TEST"
>NEW

(the screen clears)
TI BASIC READY

> OLD "DSKX.TEST'
> RUN

1
2
3

•• DONE ••

>

As you can see, there is really no difference between saving to DSKX and saving to DSK1. (By the way, the
assumption is that you started off this session by typing DELETE "MEMINIT' as discussed in Getting
Started. If you didn't, do so now and retry the SAVE command.)

Chaining Programs in Extended Basic

The last example was done In Console Basic. It could just as well have been in Extended Basic, except
that there was a point to be made. At this point, type "<FCTN> =" (better known as Quit) and go into Ex-
tended Basic. One note of warning: if you turn the console off the contents of DSKX will probably be cor-
rupted. This means that if you need to change modules, you have to do it without turning the power off. In-
cidentally, to make module swapping easier, you might want to consider getting a "Widget" adapter from
Navarrone Industries.

Disk File Emulator

Chaining Programs in Extended Basic

At this point, you should be in Extended Basic. Type "OLD DSKX.TEST" and then list the file you have in
memory. It should be there, intact. The point that is being illustrated is that DSKX is a handy place to put
data when you are switching from one application to another ... in this case, you were switching from
Basic to Extended Basic. Another useful case is printing Multiplan output into a file that can be edited by
TI-Writer, but we'll get to this later.

Extended Basic offers a statement that makes It possible to split one large program into several smaller
ones—the "RUN" statement. Combined with the fast load from DSKX, this is a very powerful capability.
Here is how you use it: (again, this assumes that our short test program is still in main memory)

>LIST
10 FOR 1=1 TO 3
20 PRINT I
30 NEXT I
40 STOP

>5 PRINT "THIS WAS LOADED FROM DSKX"
> SAVE "DSKX.TEST'
>40 RUN "DSKX.TEST'
> RUN
THIS WAS LOADED FROM DSKX

1
2
3

THIS WAS LOADED FROM DSKX
1
2
3

• READY •

What you Just did was write a program that automatically ran a second program. The first group of
messages above was displayed by the program in memory. When it got to line 40, it loaded and ran
DSKX.TEST, which printed out the second group of messages. You can use the RUN statement to build up
complicated systems of programs that interact with one another. One warning Is that Extended Basic takes
up time initializing a program when it is run, so for long programs you will not get the near instantaneous
response that you just saw.

Warning About Size Constraints

One restriction needs to be mentioned. The three extra banks of memory provided by the 128k card offer
32K, 32K, and 24K of memory, respectively. (The upper 8K of the last bank are used by the disk emulator
software). An Extended Basic program can grow to more than 32K of combined stack and program space,
so you may come across a program that cannot be stored in DSKX. Please send us a copy if you do; none
of the test programs that we put together ran into any problems.

Memory Manager Module

Introduction

Disk File Emulator
You should still have the short test program in memory from the last example. By way of introducing the
next topic, try the following:

> SAVE "DSKX.TEST1"
>SAVE "DSKX.TEST2"
>SAVE "DSKX.TEST3"
' I/O ERROR 64

What happened? If you dig out your User's Reference Guide and check the Error Messages section (pp
III-11,12), you will find that I/O ERROR 64 means that you ran out of space on a SAVE operation.
Remember, DSKX provides three files; when you tried to save a fourth there was no room left for it. There
is an easy way to check on how you are using DSKX. Try the following:

> DELETE "MMM"

("MMM" stands for Memory Management Module. For the poor typists among us, it's handy that the name
lets you type the same key several times.) The following interesting display should appear:

Memory Map

1 MEM96A = DSKX.TEST
Seq Display
Fixed 80 Pgm
Size 81 Bytes

2 MEM96B = DSKX.TEST1
Seq Display
Fixed 80 Pgm
Size 81 Bytes

3 MEM96C = DSKX.TEST2
Seq Display
Fixed 80 Pgm
Size 81 Bytes

Delete Rename !nit F9

What does all this mean?

"MMM"—Yet Another Device

As you may have guessed, there is yet another pseudo-device lurking in your 128k card. This one is called
MMM, and its purpose is similar to that of TI's Disk Manager Module. By the way, about using "DELETE"
statements to access pseudo-devices like MMM and MEMINIT: since Foundation is unable to modify the
solid-state software built into the 99/4A console, the only way to trick the 99/4A into allowing special soft-
ware is by pretending that it is an I/O device. The DELETE command is the easiest way to access this
special software from Basic, since it is the only I/O command that doesn't have various types of error
checking built in to it. You are not really deleting anything; using the DELETE command is just a way of
transferring control to MMM.

Getting back to the screen that MMM displays: what you see is a directory of the upper three banks of
memory. Bank 1 corresponds to MEM96A. It contains the file DSKX.TEST. By default, files are sequential,
so the next line starts off with "Seq". If it were a relative files, the display would say "Rel". Similarly, the
screen shows "Display" rather than "Internal" because Display is the default. "Fixed 80" shows that you are
using fixed length 80 byte records, "Pgm" shows that this a stored Basic program, and the "Size" line is
self explanatory.

Disk File Emulator

The line across the bottom of the screen shows memory management commands that are available.
"Delete" will delete a file. Try it now. Type "D" and when the computer asks you for a file number, type "3".
The directory will immediately change to show that file 3 has been deleted. Now try typing "R" for
"Rename". Select file 2 and press the <ENTER> key. In response to "New Name?", type some legal file
name of less than eleven characters, for example FILE2<ENTER>. The directory entry for file 2 should
change to match the new name.

The last command, "Wilt", will delete all three files and re-initialize DSKX. Try typing "I". The computer will
ask you "Really?", and if your reply is a Y for Yes, it will delete all three files Just as if you had typed
"DELETE MEMINIT' from Basic. Go ahead and delete them; we will have no further need of this test
program.

Finally, to exit from MMM, hold down the <FCTN> key and the 9 key at the same time. Some of the
plastic strips that come with software packages label this key combination as "ESCAPE", which is what
you want to do. Incidentally, if you want to escape in the middle of a command, just type <FCTN> 9
before you hit <ENTER>.

Lastly, notice that when you return to Basic the screen is exactly as you left it before you entered MMM. If
you were in the middle of some complicated display, this can be a handy thing.

Convenient Places to Access MMM

It's easy to forget what you had previously stored in DSKX, so MMM is a very convenient tool to have
available. You'll be glad to discover that you can access MMM from within programs like TI-Writer and the
Editor/Assembler. Any time that a program asks you for a file name, you can usually type "MMM" or
"MMM." and take a look at the contents of DSKX. That is, you're not limited to accessing MMM by typing
'DELETE "MMM" from Basic. Any I/O operation except a CLOSE will transfer control to MMM. In many pro-
grams, the most convenient way to get into MMM is by pretending that you want to do a printout to MMM
instead of to the RS232 Interface.

The main restriction on doing this is that MMM formats its display for a thirty-two character screen. If you
run MMM from a program that sets up the screen for forty characters (TI Writer, for example), the MMM
display will be hard to read.

Using Sequential Files
Or, some ways that standard programs can use sequential files.

TI Writer
TI Writer is a well-behaved program in that it lets you specify a device name as part of a
filename. This means that you can load and save TI-Writer files to DSKX. All you have to do is
specify "DSKX.filename" instead of "DSK1.filename" on the command line. For example, there is
a document named "FORMATDOC" on the master diskette that TI Writer is distributed with. Load
this file into memory by typing "LF" on the TI-Writer command line and specifying "DSKI.FOR-
MATDOC" when you get the "LOAD FILE, enter filename:" prompt. Now save it into DSKX by do-
ing a command of "SF". TI-Writer will prompt you with "SAVE FILE, enter filename:". At this point,
all you need to do is type "DSKX.FORMATDOC".

The other way that you can make use use of DSKX is by printing to it. This can be done either
from the Text Editor or the Text Formatter. Along these lines, you might try printing to device
"MMM" to see the directory. Though the directory is visible, screen formatting is incorrect
because TI-Writer uses 40 columns rather than the 32 that MMM requires.

Disk File Emulator

Editor/Assembler
The Editor/Assembler can make use of DSKX to speed up the program development process. The
optimum way to make use of DSKX is by placing a source file into one memory bank, generating
the object file in a second, and the listing in a third. This can be done as follows:

First, load the source file from diskette by doing a Load (Option 1 on the EDIT screen). Do
whatever edits you want to, then use Option 3 to save the file to DSKX.SOMEFILE . Next, load
the Assembler and type "DSKX.SOMEFILE" in response to the "SOURCE FILE NAME?" prompt.
Type "DSKX.OBJFILE" when the Assembler prompts you for an object file name, and
DSKX.LISTFILE in response to the "LIST FILE NAME?" prompt.

Typically, you will go through this process several times until you assemble your program without
errors, then use the Save option on the Edit screen to save the source code to diskette, then do
a final assembly to an object file on diskette.

If you need to access MMM from the E/A package, the most convenient place is from Option 4,
the Print option, on the Edit screen. Just print to MMM then do a <FCTN> 9 escape to get back
to the top of the screen.

Terminal Emulator ll
You can use DSKX to save screen images from TEll by typing DSKX.filename from within the
<CTRL> 2 (Output) Option. Just as with a disk file, subsequent screens will be appended to the
end of the DSKX file until you close it by typing "2" for "no" in response to the OUTPUT TO
PREVIOUS DEVICE prompt. This is all described on page 17 of the Terminal Emulator II manual.

You can also go into MMM by printing to MMM, but you will have to hit <FCTN> 9 two dozen
times to exit; TEII doesn't just open MMM, but goes right ahead and prints each screen line to it.

Multiplan
Multiplan checks to make sure that you are not loading or saving spreadsheets to any device that
is not named DSK1, DSK2, or DSK3. This restriction was probably designed to prevent novice
computer users from accidentally typing in an illegal device name. Unfortunately, it also prevents
you from using DSKX to load or save spreadsheets, so you are limited to printing out worksheets
to DSKX files. This can be useful if you then need to process the files further, perhaps going into
TI Writer to include the spreadsheet in a report you are writing.

To print a spreadsheet to DSKX, select Print and type "0" for Options. In the Options menu,
select the rows and columns that you want to print then tab over to the "Set-up" field. Type
DSKX.filename in the setup field. Now type <ENTER> and type P to begin printing. Multiplan
thinks it is doing a printout, when actually your spreadsheet is being captured in a file in DSKX.

Pseudo-device MMM is not available from within Multiplan.

Programming with DSKX Files

The 128K card "looks like" a regular 32K card plus 88K of file storage. A separate document describes how
to access this file storage from the basic Device Service Routine included with every 128K card. This sec-
tion Is about making use of DSKX, the optional disk-file emulator package. In general, you will be correct if
you think of DSKX as providing three TI diskette files with maximum lengths of 32Kb, 32Kb, and 24Kb,
respectively. Compared to files on a diskette, however, there are two important differences: they lose their
contents when the computer is turned off (unfortunate but inevitable), and they are faster.

Disk File Emulator

In order to use any file, whether it is on diskette or on the 128K card, you need to do three things:

1) "open" it, that is, tell the computer where the file is located, what kind of file it is, etc.
2) "input" or "print' Information to it, and
3) "close" it, that is, tell the computer that you are through with using it.

There are statements in TI Basic and Extended Basic that do each of these things.

OPEN

Before using a data file stored on the 128K card, you need to describe the characteristics of the file to the
program. The OPEN statement for the 128K card has the following general form:

OPEN 1lfile-number."device-name" [,file-organization] [,file- type] [,open-mode] [,record-type]

For example,if you intend to read and write thirty character records to a relative file named DSKX.MYFILE,
a file OPEN statement might look like this:

100 OPEN $1:"DSKX.MYFILE", RELATIVE, DISPLAY, UPDATE, FIXED 30
DSKX provides three files that correspond to the upper three banks of memory on the Foundation 128K
card. When a file is opened on DSKX, the lowešt available file slot is used. For example, starting with a
clean slate, If you opened three files they would be placed in banks 1,2, and 3 in that order. If you then
deleted the files in banks 1 and 3, the next file created would be placed in bank 1. The only difference bet-
ween the files that are created in different banks is that banks 1 and 2 provide up to 32Kb of storage while
bank 3 provides up to 24Kb.

file-number - The file-number (1 through 255) is assigned to a file by the OPEN statement. It is a number
that Basic uses to keep track of open files, and it will be used in all later statements that refer to this file,
e.g. INPUT, PRINT, and CLOSE statements. You can assign any file number that is convenient for you.
Most programs number the first file as 1, the second as 2, etc.

device-name - Most of the cards that plug into the TI Peripheral Expansion Box have one or more "device
names" that software uses to refer to them. For example, if you have a disk, you know that you refer to
your first disk drive as "DSK1". Similarly, you use the device name "DSKX" to refer to the disk-file emulator
psuedo-device. If you are using DSKK in a program that also uses the "MEM96" pseudo-device provided
with all 128K cards, you should be aware that these files will overlay each other. That is, DSKX will place a
file in bank 1, 2, or 3 of the 128K card. MEM96A directly corresponds to bank 1, so any changes made to
MEM96A will also change the contents of the first DSKX file. MEM96A,-B, AND -C can coexist with DSKX
as long as this overlap is taken into account. It is also possible to refer to device MEM96 without a suffix
to create one large file that spans all three memory banks. This large file is restricted to being a file of
fixed length relative records, and it is easy to get into trouble by using both MEM96 and DSKX.xxx in the
same program.

file-organization - RELATIVE: Records in a relative file can be read in any order. This is in contrast to a se-
quential file, where records can only be read or written one after the other. This has two implications. First,
when we get to the "INPUT" and "PRINT" statements, you will see that for relative files you need to tell the
computer which record it is that you want to access. Second, all the records in a relative file need to be
the same size. You must decide what size to use in advance, and tell the machine what your decision is.
(See FIXED, below.) Relative files on the 128k card are pre-extended to their full length, since an entire
bank of memory is allocated for each file. SEQUENTIAL For sequential files, the system software keeps
track of where you are in the file so that you do not need to specify a record number on reads or writes.
Sequential files are read back in the order that they were written. Files on DSKX or MEM96A,-B, or -C may
be opened for sequential access. As noted above, pseudo-device MEM96 (with no suffix) can only be open-
ed for RELATIVE access.

Disk File Emulator

file-type - Information stored in the computer can be saved in a form that it is easier for people to read
(DISPLAY format) or that it is easier and faster for the computer to process (INTERNAL format). You need
to decide which format you want to use. Choose INTERNAL format records if the computer is going to do
further processing on the information they contain, or DISPLAY format if the records will be printed or
displayed on the screen as the next step. It should be mentioned that the performance penalty for using
DISPLAY format can be severe - Basic, for example, can take two or three times as long to read a
DISPLAY-formatted record.

open-mode - Specify one of the following: UPDATE, OUTPUT, INPUT, APPEND.
UPDATE: This entry tells the computer that the file being opened can be both written to and read from.
OUTPUT: Opening a file for output will delete the file if it already exists, then open the file as if you had
specified UPDATE mode. INPUT: Opening a file for input will result in an error if the file does not exist.
Otherwise, the file will be opened for reading. APPEND: If a sequential file is opened in APPEND mode,
records will be written starting at the previous end of the file.

record-type - FIXED or VARIABLE FIXED: In a FIXED length file, all records are the same size. The default
record size for files on DSKX is 80 characters. Other record sizes can be specified by following the word
"FIXED" with the number of characters that each record will take up. For example, each line on the TI
screen can contain at most 40 characters, so if you were using DSKX to store a file of one line messages
to be displayed, you would enter "FIXED 40" in this part of the OPEN statement. When you are deciding
how big to make records for an INTERNAL format file, allow eight character positions for each number that
you want to store.
VARIABLE: Variable length records are available for sequential files. Variable length records are stored
preceded by the record length in bytes; when the computer reads a variable length record it relies on this
stored record length.

Examples of OPEN statements:

OPEN #1: "DSKX.SOMEFILE" Creates or reopens a file on device DSKX with a filename of SOMEFILE. If
SOMEFILE already existed, it will be reopened and its previous charactaiistice (reuordši2e, etc.) wiii be
reused. If SOMEFILE is being created, it will assume the default attributes of a DSKX file: variable length
records with a maximum record length of 80 bytes, SEQUENTIAL, UPDATE mode, and DISPLAY format.

OPEN #16: "DSKX.ANOTHER", OUTPUT, FIXED 100, RELATIVE"
If DSKX.ANOTHER existed prior to the file open, it will be deleted. A new file will be created of
100 byte records that can be randomly accessed. The default of DISPLAY format will be used.

OPEN #195: FNAME$, APPEND
String FNAME$ must contain a legal device.filename combination. If FNAME$ was "DSKX.THIRD",
file THIRD on DSKX will be opened and the next write will append data to the existing file.

INPUT

The INPUT statement Is used to read data that you previously saved in DSKX. The data must have been
stored previously In DSKX using PRINT statements, however these PRINT statements do not necessarily
need to be in the same program as the INPUT statement. This is one major way to use the extra memory
provided by the 128K card to allow you to run larger programs. Typically, a program consists of a mixture
of instructions and data. Both take up memory. With the 128K card, you can break up a large program that
will not fit in 32K into two smaller programs that accomplish the same task. You do this by writing a sim-
ple front-end program that does nothing but read data and store it into DSKX.xxx . The second, main pro-
gram then becomes smaller (often considerably smaller) because it does not include data; it opens
DSKX.xxx as a file and reads its data only at the point that it needs to make use of it. If you are doing this
to replace the use of Basic in-memory arrays, it is most common to set up DSKX.xxx as a RELATIVE file.

Disk File Emulator

Taking things one step at a time, first consider the INPUT statement. The INPUT statement has the follow-
ing format:
INPUT Wile-number [,REC record-number]: variable-list for a relative file, or

INPUT #file-number variable-list for a sequential file.

You always need to specify the file-number and variable-list, and may optionally specify a record-number
for relative files.

file-number - The file-number is the number that was assigned to this file in the OPEN statement,
and the discussion from the OPEN statement applies here as well.

record-number - With relative files, you may tell the computer which record you want to retrieve.
The record number varies from 0 up to the largest record that will fit into 32Kb or 24Kb. If record-
number is left blank, the next sequential record will be read.

variable-list - The INPUT statement reads one record from a file in DSKX into the variables that
you specify as "variable-list". These should correspond directly to the variable-list that you used
to write the record. That is , if you wrote out a number followed by a character string, variable-list
should consist of a numeric variable followed by a character string variable.

Suppose that you opened DSKX.F1 with the following statement:

10 OPEN #1: "DSKX.F1", RELATIVE, INTERNAL, UPDATE, FIXED 64

and then stored a list of customer names and telephone numbers, one name to each record. Then later in
the same program or in a different program, you could input the name and phone number stored in the
tenth record with the following line: 100 INPUT #1, REC 10: A$

PRINT

The PRINT statement is used to write data into DSKX files. It has the following format:

PRINT Wile-number, REC record-number: print-list for relative files, and

PRINT #file-number print-list for sequential files.

You always need to specify the file-number and print-list, and may optionally specify a record-number for
relative files.

file-number - The file-number is the number that was assigned to this file in the OPEN statement,
and the discussion from the OPEN statement applies here as well.

record-number - For relative files, you may tell the computer which record you want to store. The
record number varies from 0 up to the largest record that will fit into the current file. If record-
number is left blank, the next sequential record will be written.

print-list - The print-list is the list of variables that you want to place Into DSKX.xxx . It consists
of a list of numeric or string expressions with items in the list sepa- rated by commas or
semicolons.

For example:

PRINT #1, REC 110: .06*COST, "Sales Tax"

Disk File Emulator

CLOSE

At the end of every program that makes use of files, you need to tell the computer that you are finished.
DSKX is no exception. When you have finished using DSKX, insert the following: CLOSE #file-number where
file-number is the same number that you have been using to refer to the file all along, e.g. 900 CLOSE #1

RESTORE

The RESTORE statement is used to position a file to a specified record number. If used with no arguments,
the restore statement will position either a sequential or relative file to its beginning. That is,

RESTORE #16

will position file #16 so that the next read or write will take place at the beginning of the file.

For relative files, the restore statement can optionally include a record number. In this case, the record
number specifies the next record that will be read sequentially, e.g.

RESTORE #5, REC 6

will position file number 5 so that the next read or write operation will take place at record 6.

EOF

Basic uses the EOF function to determine whether it has finished reading a file. If more data remains to be
read, EOF equals 0. If you are at the end of a file, e.g. if you opened the file in APPEND mode, EOF equals
1. In writing programs tilai iest reiaiive files for EOF, remember that all relative files on DSKX are pre-
extended to their full size.

Delete

The DELETE command is used to remove a file from DSKX.

DELETE "DSKX.filename"

will delete a file named SOMEFILE. Also, deleting the pseudo-device "MEMINIT" will delete all files on
DSKX.

Summary of all pseudo devices

This is a summary of all the pseudo-devices available using the disk-file emulator ROM routines for the
Foundation 128K card:

Pseudaowice Function

MEM96 Single large file available for storing relative records only.

MEM96A, MEM96B, Files directly corresponding to memory banks 1, 2, and 3 of the 128K card.
MEM96C Maximum file sizes are 32Kb, 32Kb, and 24Kb, respectively. Each may be opened

as relative or sequential file.

Disk File Emulator

DSKX

MMM

MEMINIT

Device providing three named files, each referred to as DSKX.filename. Files on
DSKX overlay MEM96A, -B, and -C, and have the same capabilities.

Memory Management Module. All I/O operations to pseudo-device MMM start up a
program that can be used to interactively manage the contents of DSKX.

All I/O operations to MEMINIT delete all files from DSKX and initialize internal
variables to a known starting point.

Error Messages

All error messages generated by an application program accessing DSKX come from bits being set in the
error field of the DSR flag/status byte. Basic and several other programs refer to these as "I/O Errors". The
following errors may be reported:

2 Bad Open Attribute. One or more OPEN options are illegal or do not match the stored file
characteristics. '

3 Illegal Operation. Input/Output command not valid. Also used as a catchall for errors that do not
fall into some other category,

4 Out of Space. No space left on DSKX or out of directory entries.

5 End of File. Attempting to read past the end of a file.

6 Device error. Internal error in DSKX or directory corrupted by file operations.

7 File error. Requested file not found.

Program License Agreement
Foundation Computing, Licensor, provides this program, referred to hereunder as disk-file emulator soft-
ware or Licensed Program, and licenses its use. You assume responsibility for the selection of the program
to achieve your intended results, and for the installation, use, and results obtained from the program.

1. You may use the Licensed Program on a single machine at a time.

2. You recognize the proprietary nature of the Licensed Program and materials and agree to preserve and
protect Foundation Computing's interest herein.

3. Title - Title and Ownership to the Licensed Program resides in Foundation Computing.

4. Term - The License is effective until terminated. You may terminate the license at any time by destroying
the Licensed Program and Materials together with all copies. It will also terminate if you fail to comply
with any term or condition of this agreement. You agree upon such termination to destroy the Licensed
Program and Materials together with all copies In whatever form. Within thirty days after termination,
Licensee shall certify in writing that through its best efforts and to the best of its knowledge all copies, in
part or in whole, of the terminated and/or discontinued Licensed Program and Material relating thereto have
been destroyed.

5. The disk-file emulator software is being made available "as is", without any warranty of any kind ex-
pressed or implied, Including, but not limited to the implied warranties of merchantability and fitness for a
particular purpose. The entire risk as to the quality and performance of this software is with you. Should
the program prove defective, you assume the entire cost of all servicing, repair, or correction.

8. Foundation does not warrant that the disk-file emulator software will meet your requirements or that its
operation will be uninterrupted or error free.

Disk File Emulator

7. In no event will Foundation be liable to you for any damages, including but not limited to lost profits,
lost savings, or any other Incidental or consequential damages arising out of the use or inability to use the
disk emulator software, even if Foundation has been advised of the possibility of such damages, or for any
other claim by any other party.

8. Some states do not allow the limitation or exclusion of liability for incidental or consequential damages,
so the above limitation or exclusion may not apply to you.

9. This license constitutes the entire agreement between the parties and supercedes all prior agreements
and understandings between them relating to the subject matter hereunder.
10. This License and all rights .and obligations of the parties to this license shall be governed by the laws
of the State of California.

11. The provisions of this agreement are severable and if any one or more of such provisions are judicially
determined to be illegal or otherwise unenforceable, in whole or in part, the remaining provisions or por-
tions of the License shall be binding on and enforceable by and between the Licensee and Licensor.

Installing a 32K or 128K Memory
Card

Before going any further, please note the following:

1. NEVER insert or remove the memory card without turning
off power to the expansion box and WAITING A FULL TWO
MINUTES. If you ever forget this simple rule, you run
the risk of destroying your memory card.

2. Do everything possible to avoid static electricity.
Especially during cold winter months, static electri-
city can cause problems for computers, and sometimes
even do permanent damage. You can avoid this by touch-
ing a nearby piece of metal before touching any expan-
sion box cards, and by only handling the memory card by
its case.

Aside from following the above precautions, installing your
memory card is trivial:

1. Turn off your expansion box and wait two minutes. Open
the top of the expansion box.

2. Orient the Foundation 32K or 128K so that the pilot light
points toward the front of the expansion box and the label
faces the disk drive cutout. Gently insert it into any
available slot.

3. Close the top of the expansion box. (This is a tight fit,
especially with the earlier production models of the ex-
pansion box. You need to apply a steady, even pressure to
keep the top of the box flat until you have closed both
latches.)

4. Turn on power to the expansion box. You should see the memory
indicator light come on immediately, indicating that the
memory is ready for use. It should remain on whenever the
peripheral expansion box is powered up, since memory is al-
ways addressable and active.

5. Run some programs that use expansion memory to satisfy
yourself that everything is working properly.

(1)

Using a 32K or 128K Memory Card

The Foundation 32K and 128K memory cards were de-
signed to be an upward compatible replacement for the
equivalent Texas Instruments card. Both plug into the TI
Peripheral Expansion Box as described above, and provide
usable storage of: thirty-two thousand bytes with the 32K
and one hundred twenty-eight thousand bytes with the 128K.
(One byte is the amount of memory it takes to store one
character.)

To make use of this memory, you need a software module
designed to work with it. Examples include: Extended Basic,
Pascal, Logo, and the Editor/Assembler module.

The way in which you use memory varies depending on
which software package you are using. For example, when you
are running Logo, the memory is just there, invisibly. Logo
keeps track of the memory it needs, and you only become a-
ware of it when a program runs out of space. With other
languages and packages, you have more direct control. This
is described in the documentation for each language. For
example, see the Extended Basic Reference Manual for instruc-
tions on how to use INIT, LINK, LOAD, and PEEK. The most
direct access to memory is provided using assembly language,
either with the Editor/Assembler module or the Mini-Memory
module. The documentation provided with either of these
packages goes into great detail on how to address memory.

In Case of Difficulty

1. Check that the memory indicator light is on. If not,
the card is probably not fully inserted into its slot,
or power has not been applied. Turn off the power,
wait two minutes, and retry the installation procedure.

2. If the light is on, check that all connectors from the
computer to its peripherals are inserted into the right
slots.

3. If everything is hooked up properly and it still does not
work, note the symptoms of the problem and report it to
Foundation (AC 415/ 388-3840). Your board was thoroughly
tested before shipment, but it may have been damaged in
transit.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23

