Please do not upload this copyright pdf document to any other website. Breach of copyright may result in a criminal conviction.

This Acrobat document was generated by me, Colin Hinson, from a document held by the Henlow Signals Museum, believed to be out of copyright. It is presented here (for free) and this pdf version of the document is my copyright in much the same way as a photograph would be. If you believe the document to be under other copyright, please contact me.

The document should have been downloaded from my website https://blunham.com/Radar, or any mirror site named on that site. If you downloaded it from elsewhere, please let me know (particularly if you were charged for it). You can contact me via my Genuki email page: https://www.genuki.org.uk/big/eng/YKS/various?recipient=colin

You may not copy the file for onward transmission of the data nor attempt to make monetary gain by the use of these files. If you want someone else to have a copy of the file, point them at the website. (https://blunham.com/Radar). Please do not point them at the file itself as it may move or the site may be updated.

It should be noted that most of the pages are identifiable as having been processed by me.

I put a lot of time into producing these files which is why you are met with this page when you open the file.

In order to generate this file, I need to scan the pages, split the double pages and remove any edge marks such as punch holes, clean up the pages, set the relevant pages to be all the same size and alignment. I then run Omnipage (OCR) to generate the searchable text and then generate the pdf file.

Hopefully after all that, I end up with a presentable file. If you find missing pages, pages in the wrong order, anything else wrong with the file or simply want to make a comment, please drop me a line (see above).

It is my hope that you find the file of use to you personally - I know that I would have liked to have found some of these files years ago - they would have saved me a lot of time!

Colin Hinson
In the village of Blunham, Bedfordshire.

No. 54
 PAGE TELEPRINTER

MAINTENANCE INSTRUCTIONS
(Ist Edition - Issued November 1954)

Creed \& Company Limited

TELEGRAPH HOUSE
 CROYDON, ENGLAND

CONTENTS

Pag,
Introduction 3
CIRCUITS AND CIRCUIT DIAGRAMS
A. Signal Circuit 3
B. Motor Circuit 4
ADJUSTMENT INSTRUCTIONS
A. Operating Magnet and Cam Unit 6
B. Printing Mechani sms 12
C. Two-Colour and A/B Trip Control Mechanisms 15
D. Control Lever Unit 17
E. Page Attachment Unit 17
F. Starter Switch and Switch Control Unit 21
G. Motor and Govemor 25
H. Adjustments with the Motor Running 26

1. Single-Current Adju stments 27
J. Double-Current Adju stments 29
SPRING TENSIONS 31
LUBRICATION INSTRUCTIONS 37

COMBN №.	LETTERS CASE	FIGURES CASE	$\begin{aligned} & \stackrel{r}{\boldsymbol{x}} \\ & \stackrel{\rightharpoonup}{6} \\ & \underset{\sim}{2} \end{aligned}$	CODE ELEMENTS	号
1	A	-	0	$0 \cdot 000$	\bullet
2	B	?	0	00000	\bigcirc
3	C	:	0	$0 \cdot 0 \cdot 0$	\bigcirc
4	D	WHO ARE YOU?	0	-0000	\bigcirc
5	E	3	0	-0000	\bullet
6	F	OPTIONAL	0	-0000	\bigcirc
7	G	OPTIONAL	0	00000	\bullet
8	H	OPTIONAL	0	00000	\bigcirc
9	1	8	0	00000	\bullet
10	J	BELL	0	-0000	\bullet
11	K	(0	00000	\bigcirc
12	L)	0	00000	\bullet
13	M	-	0	00000	\bullet
14	N	,	0	00000	\bigcirc
15	0	9	0	0000	\bullet
16	P	0	0	00000	\bigcirc
17	Q	1	0	00000	\bullet
18	R	4	0	00000	\bullet
19	S	1	0	00000	\bigcirc
20	T	5	\bigcirc	00000	\bullet
21	U	7	0	-0000	\bullet
22	V	=	0	$00 \cdot 0 \cdot$	\bullet
23	W	2	0	00000	\bigcirc
24	X	$/$	0	00000	\bullet
25	Y	6	0	-0000	\bigcirc
26	2	$+$	0	00000	\bullet
27	CARRIAGE	RETURN	0	00000	\bullet
28	LINE	FEED	0	00000	\bullet
29	LET	TERS	0	-0000	\bullet
30	FIG	JRES	0	00000	\bullet
31		ACE	0	00000	\bigcirc
32	ALL SP	PACING	0	00000	-

MARK ELEMENT
SPACE ELEMENT O

START-STOP CODE

FIG. I

NO. 54 TELEPRINTER

MAINTENANCE INSTRUCTIONS

Introduction

This instruction manual applies to the No. 54 Teleprinter receiver only, Supplementary instructions for the keyboard and reperforating attachment are published separately as follows:-
(1) N-Series Keyboard Instruction Booklet No. 47K.
(2) Commercial Typewriter Keyboard Instruction Booklet CTK/78.
(3) Reperforating Attachment Instruction Booklet No. R/5.

CIRCUITS AND CIRCUIT DIAGRAMS

Circuit diagrams for No. 54 Teleprinter are given in Figs. 2-4.
Fig. 2 is a component layout diagram, depicting the positions of the electrical components on the machine main base as viewed from underneath, the names and values of the se components being listed at the bottom of the figure.

Fig. 3 is a combined point-to-point and schematic diagram for the signal circuit, showing the alternative connections for external 9 -pin and 12 -pin plugs. The letters on this figure refer to the component designations on Fig. 2.

Fig. 4 is a diagram of the motor circuit, with the End-of-Line Indicator shown connected for an A.C. motor supply. The modifications that are necessary when a D.C. supply is used are described in the motor circuit section below.

A. SIGNAL CIRCUIT

(Figs. 2 and 3)

Electromagnet

The electromagnet is fitted with two ' P ' type coils, the resistance and inductance of each coil being 363 ohms and $4-4 \frac{1}{2}$ henries :espectively. These coils are terminated on block AD, Fig. 3, which provides facilities for strapping them in parallel or in series, and for connecting across them a $.5 \mu \mathrm{~F}+330$ ohm capacitor-resistor when this is required.

The main types of circuit arrangement that are obtainable are as follows:-
(a) Single Current. In this case the coils are connected in parallel by strapping AD2 to AD3 and AD4 to AD5.

FIG. 2 ELECTRICAL COMPONENTS

FIG. 3 SIGNAL CIRCUIT

FIG. 4 MOTOR CIRCUIT
(b). Double Current. The coils are connected in parallel as for single current but the .5 $\mu \mathrm{F}+330$ ohm capacitor-resistor is connected across the coils by strapping ADI to AD 2 and AD5 to AD6.
(c) V.F. Working. For applications in which the teleprinter is to be used with B.P.O. type V.F. tel egraph converters $9(A C)$ and $10(D C)$, ' P ' type coils may be used provided they are connected in series by strapping AD3 to AD4 and that the $2-\mu \mathrm{F}$ capacitors in the V.F. unit, which shunt the electromagnet windings, are replaced by $1-\mu \mathrm{F}$ capacitors. A centre-tap is available, in this case, at AD3 or AD4.

The arrow and word 'mark' written beside the electromagnet coils are intended to indicate that the armature will move to mark when a current flows through the coils in the direction of the arrow.

Signals R.I.S.Unit

Radio interference suppression for the keyboard transmitter and send-receive switch is provided by a self-contained R.I.S. unit T, Fig. 2, located on the receiver main base. The leads from this unit are all terminated on a separate block AC (see also Fig. 3).

Bell Signal Switch

The usual bell signal switch is included for use with an extemal bell and power supply.
If the machine is fitted with an external 9-pin plug AH, Fig. 3, the external circuit must be completed by connecting one side of it to socket 4 of the corresponding 9 -way socket and the other side to earth.

If a 12-pin external plug $A G$ is fitted, the extemal circuit may be completed either through sockets 10 and 11 of the external 12 way socket, or through socket 10 only, the other side of the circuit being connected to earth. This latter method of connection has the advantage of freeing lead 11 for other purposes.

B. MOTOR CIRCUIT

(Figs. 2 and 4)

Motor

The standard motor for the No. 54 Teleprinter, the circuit for which is given in Fig. 4, is a single voltage $A C / D C$ motor which is supplied to cover any nominal voltage in steps of 5 volts from 90-270V.

A motor field strapping block V, Fig. 2, is provided on the side of the motor casting for strapping the field windings in parallel for A.C. and in series for D.C. supplies.

Motor Plugs and Cords

The motor circuit is terminated on an internal 4-pin plug, of which only three pins, numbered 13,14 and 15 , are used. Connection to the power supply is made via a 3 -way external power cord with a 4 -way socket on one end and a 3 -pin plug on the other (not illustrated).

Pin 14 (live) of the internal plug is connected via a red lead to terminal 6 on the 10 -way block M, pin 15 (neutral) via a black lead to terminal 8 and pin 13 via a green lead to the teleprinter frame. This latter pin should be earthed through the external power cord.

Since the polarity of the mains does not affect motor performance, the above connections may be used with D.C. supply systems irrespective of whether the positive or negative side of the mains supply is earthed.

Governor Resi stor

The governor resistor L, Fig. 2 consists of two 500 -ohm sections with a centre tap. These sections must be strapped to correspond to the voltage of the power supply, in parallel for voltages between 90 and 155 and in series for voltages between 160 and 270, identical strappings being used for A.C. and D.C. supplies.

The method of strapping (see Fig. 2 - the schematic in Fig. 4 is shown strapped for the higher range) is as follows:-
(a) Series arrangement - strap M2 to M3.
(b) Parallel arrangement - strap M1 to M2 and M3 to M4.

Governor R.I.S.

To obtain satisfactory radio interference suppression for the governor contacts over the full motor voltage range of $\mathbf{9 0 - 2 7 0}$ volts, it has been found sufficient to employ an R.I.S. resistor of 1.7 ohms to cover the range $90-155$ volts and one of 6.8 ohms to cover the range 160-270 volts.

The appropriate resistor is fitted in the factory and does not require special attention in the field.

EndoofoLine Indicator

Provision is made on the No. 54 Teleprinter for the option of using a carriage-operated End-of-Line Indicator.

For A.C. mains supplies of $220-240$ volts, the current for the indicator lamp is derived from the motor circuit by a special transformer P, Fig. 2. The circuit connections for this case are those illustrated in Fig. 4.

For A.C. mains supplies of voltages other than $220-240$, and for all D.C. mains supplies, a separate external D.C. power supply must be provided. (Alternatively, for A.C. mains supplies other than 220-240 volts, special transformers to replace P, Fig. 2, may be obtained from Creed and Co., if required).

The circuit for an external D.C. supply to the indicator lamp may be set up by making the following changes to the standard circuits in Figs. 2-4:-
(1) Remove the straps connecting terminal s 4 and 7 and 9 and 10 on block M, Fig. 4.
(2) Transfer lead G12 (light blue), Fig. 3, from block H, terminal 1, to block M, Fig. 2, terminal 10.

The external voltage if supplied between socket 12 of the internal 12 -way socket AF, Fig.3, and an external earth.

ADJUSTMENT INSTRUCTIONS

> N.B.: Screws and nuts that are painted red should not be slackened unless a specific instruction to this effect is given.
> The majority of such screws and nuts are located by a special gauge in the factory and if disturbed it will be necessary to return the parts effected to the factory for readjustment.

A. OPERATING MAGNET AND CAM UNIT

N.B.: To avoid damage to the machine, a separation has been made between static and dynamic adjustments, the latter being left until after the machine is in correct static adjustment. Dynamic adjustments for the cam unit are given in Section H, Adjustments Nos. 71 and 73.

I. Preparatory

1.1 Remove the two nuts and the washer securing the electromagnet armature link to the armature and lift off the link.
1.2 Remove the two screws securing the electromagnet to the main base and lift off the electromagnet.
1.3 Remove the two screws securing the right-hand ribbon-feed bracket to the main base. Disengage the ink ribbon from the ribbon jumper and move the ribbon-feed bracket to one side.

2. Operating Magnet (Fig. 5)

N.B.: This adjustment should require attention only at major overhouls.
2.1 Slacken the four screws D, Fig. 5(a), and remove the electromagnet cover.
2.2 Check that the top of the armature is approximately level with the top of the field Iaminations with an estimated vertical play of $.003-.005 \mathrm{in} .(.08-.13 \mathrm{~mm})$, and that the movement of the armature from side to side is symmetrical with respect to the pole faces. If either of the se conditions is not satisfied, adju stments $2.3-2.8$ should be carried out.
2.3 Unhook the rear bias spring and the spring attached to the rear of the adjustable magnet. Remove the screw and washer securing the retaining plate and remove the plate, with the retaining plate collar. Unhook the remaining front spring. Remove the screw securing the safety plate and remove the plate. Lift off the field unit.
2.4 Obtain the correct height for the armature by means of the top and bottom central adjustment screws L, Fig. 5(b), securing the screws with their locknuts.
2.5 Slacken the four screws K securing the upper and lower armature bearing blocks so that the armature pivots are free to move laterally.
2.6 Swing the armature clockwise and adjust the lateral position of the bearing blocks so that the armature touches diagonally opposite pole faces. Tighten screws K sufficiently to prevent free lateral movement of the armature.
2.7 Swing the armature anti-clockwise. If it again touches both diagonally opposite pole faces, the correct adjustment has been obtained and the four screws K may be tightened.
2.8 If the armature touches only one pole face, measure the gap between the armature and the other pole face. Slacken the four screws K and adjust the bearing blocks laterally until the gap is halved. Tighten screws K.
2.9 Reassemble the electromagnet by following instructions 2.1-2.3 in the reverse order.

3. Receiving Cam Sleeves

3.1 Check that the translator and function cam sleeves rotate freely and with negligible end-shake.
3.2 If not, slacken the locking screw in the collar of the selector cam driving gear. Hold the main camshaft stationary and rotate the selector driving gear in the appropriate direction on the threaded section of the cam shaft.
3.3 Tighten the locking screw carefully. If this screw is left loose, and the machine run under power, complete dismantling may be necessary to rectify the error.

4. Rockshaft

4.1 Check that the cone-pointed rear pivot of the rock shaft is so adju sted that the rockshaft pivots freely, with a minimum of end-shake.

5. Selector Cam Detent - Preliminary (Fig. 6)

5.1 Set the orientation adjusting block to ' 120^{\prime} ' on the scale.
5.2 With the unit at rest, release the selector cam detent E and rotate the selector camshaft until the detent just rests on stop arm D.
5.3 Check, with Adjustment Tool TA. 1174 , that the larger end of the pin, of diameter $.078 \mathrm{in}$. (1.98 mm), just fails to pass between the release lever C and the lug on the retaining plate A, i.e. at point B.
5.4 Repeat the test, using the smaller end of the pin, of diameter . 072 in . (1.83 mm). The pin should pass between the release lever and the lug.
5.5 If either of these conditions is not satisfied, slacken nut F clamping the release lever to the trip shaft. Hold the selector detent against its stop arm by pressing, in an anti-clockwise direction, the screw securing the collar on the selector trip shaft just behind its front bearing block G. Adjust the position of the release lever C in accordance with instructions 5.3 and 5.4 and tighten clamping nut F.
5.6 Restore the orientation adjusting block to its original position on the scale.

6. Translator Cam Retention Lever (Figs. 7 and 8)

N.B.: If during a routine check of adjustments, it is found necessary to alter adjustments 6.2 or 6.4 , then adjustment 9.3 must be done again.
6.1 Disengage the translator cam detent F, Fig. 8, from the pawls and rotate the cam slightly so that a spring balance can be applied to each pawl engagement face. A force of 3-4 ozs. (85-113 grams) should be required to press the pawls back against their seating on the cam sleeve, as indicated by the arrow.
6.2 Slacken the clamping nut and adjust the retention lever eccentric C, Fig. 7, so that the pivot is in its lowest position.
6.3 With the unit at rest, check that the retention lever roller D is properly seated in the bottom of its hollow in the cam sleeve.
6.4 Adjust the eccentric pivot C until the pawls can be pressed away from the detent by an estimated clearance of , 002-, 004 in. (.05-. 10 mm), i.e, dimension ' a '. This can be checked by inserting a thin blade in front of the nose of the detent and depressing the pawls.
6.5 Reclamp the locknut on the eccentric pivot.

Translator Cam Detent (Figs. 8 and 9)

7.1 Rotate the selector cam until the trip lever A, Fig. 9, rests on the peak of its cam. Slacken locknut B and adjust abutment screw C to give a clearance of . $018-.022 \mathrm{in}$. (.46-. 56 mm) between the screw and its abutment face on the trip lever, i.e. dimension 'c'. Clamp locknut B.
7.2 With the unit at rest, release detent F, Fig. 8, from the pawls E and hold it against the pawl tails. Slacken detent clamping screw D and place a gauge of $.011-.015 \mathrm{in}$. (. $28-.38 \mathrm{~mm}$) between the abutment face on the trip lever and the abutment screw C, i.e. dimension 'b'. Press the abutment up against the gauge and tighten detent clamping screw D.

8. Function Cam Retention Lever (Figs. 10 and 11)

8. 1 Remove the typehammer pivot fixing screw and washer and the collar securing the typehammer link to the typehammer lever. Remove the typehammer. Remove the gear cover and support plate and lift off the typehammer lever, carefully retaining the roller on its pin.
8.2 Disengage the function cam detent B, Fig. 10, from the pawls and rotate the cam slightly so that a spring balance can be applied to each pawl engagement face. A force of $3-4$ ozs. ($85-113$ grams) should be required to press the pawls back against their cam setting, as indicated by the arrow.
8.3 With the unit at rest, check that the retention lever roller A, Fig. 11(a), is properly seated in the bottom of its hollow in the cam sleeve.
8.4 Slacken locknut C, Fig. 11(b), and adjust the eccentric pivot D until the pawls can be pressed away from the detent by an estimated clearance of . 002-. 004 in . (.05-. 10 mm), i.e. dimension ' e ', Fig. $11(\mathrm{a})$. This can be checked by inserting a thin blade in front of the nose of the detent and depressing the pawls in the direction of the arrow in Fig. 10.
8.5 Clamp the eccentric pivot by means of locknut C, Fig. 11(b).

9. Function Cam Detent (Figs. 10 and 12)

9.1 With the machine at rest, release detent B, Fig. 10, from the pawls E and hold it against the pawl tails.
9.2 Slacken the two screws securing the stop plate C and adjust the plate by means of the screwdriver adjustment to give a clearance of $.020-.023 \mathrm{in} .(.51-.58 \mathrm{~mm}$), i.e. dimension ' d ', between the underside of its top lug and the top of the detent bellcrank D. Tighten the screws.
9.3 With the unit again at rest, slacken the locknut and adjust the rocker lever pivot $C_{\text {, }}$, Fig. 12, vertically in its slot to give a clearance of . $031-.035 \mathrm{in}$. (.79-. 89 mm), i.e. dimension ' f ', between the rocker lever and the top of the translator cam retention lever. Tighten the locknut.
9.4 Replace the typehammer lever, the gear cover and the support plate.

10. Finger Resetting (Figs. 13, 14 and 15)

10.1 Slacken screws C, Fig. 15 , securing the finger push rod keep plate D, and move the plate as far as it will go towards the right.
10.2 With the unit at rest, slacken the locknut and adjust the resetting link pivot F, Fig. 13, in its slot until, with the resetting link G pressed forward against stop pin A, there is a clearance of $.010-.015 \mathrm{in}$. (.25-. 38 mm), i.e. dimension ' g ', between the resetting link lever E and the abutment face on the resetting bell crank B. This can be done as follows: turn the machine by hand to the rest position. Slacken the resetting link pivot F and insert a .012 in. (.30 mm) gauge between the resetting link lever E and the abutment face on the resetting bellcrank B. Press the resetting link forward against stop pin A and the link lever against the gauge and tighten the pivot locknut.
10.3 Adjust screw B, Fig. 14, after slackening its clamping screw, so that, when the fingers are reset, there is a clearance of $.012-.018 \mathrm{in}$. (.30-. 46 mm), i.e. dimension ' h ', between the fingers G and the ends of the comb extensions A. Tighten the clamping screw.
10.4 Maintain this clearance and adjust the position of the push rod keep plate until it clears the ends of the push rods by .003-. $008 \mathrm{in} .(.08-.20 \mathrm{~mm}$). Tighten the two securing screws.
10.5 Replace the typehammer and link.

11. Finger Springs (Fig. 16)

N.B.: This adjustment should require attention only at major overhaul periods. If a fault condition arises, making it necessary to perform adjustment 11.2 at any other time, the cam unit will have to be taken off the machine.
11.1 Rotate the camshaft by hand until the fingers are lowered. A force of 1-2 ozs. (28-57 grams) should be required to set each finger inwards, when applied at the top of the finger, horizontally along its line of travel.
11.2 If this condition is not satisfied, the finger springs should be checked. Place each spring on a flat surface so that its ends are touching the surface. A force of 8-9 ozs. (227-255 grams) should be required to depress the centre flat. Replace the finger springs C and dampers B as illustrated in Fig. 16.

12. Bellcrank Lift (Figs. 17 and 18)

12.1 Set up the ' N ' combination (-34-). Turn the machine by hand until the top bellcrank has fallen. Slacken the clamping screw A, Fig. 18.
12.2 With the cam roller on the straight part of its cam track, and with the backlash taken up by pressing the bellcrank lifting collar in the direction of withdrawal, adjust the bellcrank lifting lever eccentric B to give a clearance of .006-. 008 in . (.15-. 20 min) between the tail of the fallen bellcrank A, Fig. 17, and the lifting collar D, i.e. dimension ' i '.
12.3 Reclamp screw A, Fig. 18.
12.4 Turn the machine by hand until the bell cranks are fully lifted. Lift each comb extension to see that the combs are free and return snappily under the action of their springs.
13. Finger Lift (Figs. 17 and 19)
13.1 Turn the machine by hand and set up the " N ' combination (-34-). Continue turning until the fingers are fully raised and the selected bell crank has dropped into the slot in the comb dises.
13.2 Check whether the clearance between the bellarank and the left-hand side of the slot (viewed from the bellcrank lifting collar end of the combination head) is greater than $.012 \mathrm{in}.(.30 \mathrm{~mm})$ and, between the bellarank and the right-hand side of the slot, is greater than $.006 \mathrm{in} .(.15 \mathrm{~mm})$.
13.3 If not, turn the cam until the fingers are lowered. Slacken the cap stan-headed screw G, Fig. 19, and by means of the screwdriver adjustment, adjust the relationship between the two hal ves of the fingerliftlever. Fully tighten screw G and repeat 13.2.
13.4 Repeat instructions 13.2 and 13.3 until the dimensions in 13.2 are satisfied.
13.5 Turn the machine by hand and set up an all-spacing combination. Continue to turn until the bellcrank lifting lever has just released the combs and the comb extensions have dropped. Slacken screw B, Fig. 17, and allow the comb stop plate C to drop. Raise the plate until it touches the lowest of the comb extensions and tighten screw B.

14. Ribbon Feed (Fig. 19)

14.1 Turn the machine by hand and check that the ribbon feed pawl feeds its ratchet regularly.
14.2 If not, turn the machine by hand until the fingers are fully raised. Slacken the feed pawl eccentric clamp screw D. Adjust the knurled eccentric until the pawl is in its uppermost position. Tighten the clamp screw.
14.3 Turn the machine by hand and check the ribbon feed. If the feed is unsatisfactory, slacken clamp screw D and move the eccentric bush clockwise through approxi-
mately 90 degrees. Tighten the screw and recheck the feed.

15. Magnet Bias and Field Strength (Fig. 5)

15.1 Replace the electromagnet on the main base and secure with the two screws. Do not, of this stage, replace the armature link.
15.2 Slacken clamping screw B, Fig. 5(a), thereby releasing adjusting screw C .
15.3 Remove the centralising springs G. With no current in the operating magnet windings, adjust the field unit by means of screw C until the force required to move the armature from side to side, measured on the pin in front of the armature stop plate, is the same for both directions.
15.4 Adjust the field force by means of knurled screw A until this force is:-
(a) 9-11 ozs. (255-312 grams) for double-current operation; and
(b) 7-9 ozs. (198-255 grams) for single-current operation.
15.5 Tighten clamping screw B.
15.6 For Double-Current Operation. Re-connect the centralising springs G. Check that the armature change-over forces are still equal. If not, slacken the knurled locking screw F and adjust the spring slide by means of nut E until the forces are equal. They should now both be reduced to $3 / 2-5$ ozs. ($99-142$ grams).
15.7 For Single-Current Operation. Re-sonnect the centralising springs. The method of adiusting these springs is given in Section I, since this must be done after the machine is in correct adjustment.
16. Electromagnet Armature Link (Fig. 20)
16.1 Slacken the nut securing the armature link eccentric pivot C, and adjust the pivot to the top of its throw. Tighten the nut.
16.2 Connect the armature link to the armature, ensuring that it seats down without strain, and replace the washer, nut and locknut.
17. Rocker Blade - Vertical Adjustment (Figs. 15 and 20)
17.1 With the fingers reset and the armature in the 'Marking' position, slacken nut B, Fig. 20, clamping the armature link lever to the rock shaft.
17.2 Rotate the rockshaft until the top face of the rocker blade E, Fig. 15, is level, by eye, with the horizontal clearance faces of the sequential levers L. Clamp nut B, Fig. 20.

18. Rocker Blade - Horizontal Adju stment (Fig. 15)

18. 1 With the fingers reset and the armature in the 'Marking' position, slacken screw F securing the rocker blade to the rockshaff and slide the blade away from the sequential levers as far as it will go.
18.2 Release the selector cam detent and rotate the selector camshaft until the first
code lever J is on the peak of its cam K, giving maximum movement to the sequential leverL.
18.3 Insert a. $012 \mathrm{in} .(.30 \mathrm{~mm}$) gauge between the push rod B and the finger M. Now push the rocker blade E forward until the finger touches the comb stop plate A or the resetting link N, whichever is the nearer. Tighten the rocker blade clamp screw F.
is.4 Remove the gauge. Turn the camshaft, setting the remaining fingers forward. Check that, in each case, there is a clearance of $.003-.020 \mathrm{in}$. (.08-. 51 mm) between the rear edge of the finger and the comb stop plate or the resetting link, whichever is the nearer.
18.5 If not, slacken screw F, straighten rocker blade E, and repeat adjustments 18.1-18.4.
18.6 Secure the right-hand ribbon feed bracket to the main base.

19. Pilot Cam Detent (Fig. 20)

19.1 With the armature in the 'Spacing' position, slacken nut E clamping the pilot detent link lever to the rockshaft D. Slide the lever along the rockshaft until it just touches the felt lubricating washer at its front end. The washer should not be compressed against the rockshaft end plate F. Check that, at its other end, the link does not foul the machined face of the casting and that it is free on both its pivots.
19.2 With the machine at rest, adjust the detent link lever radially on the rock shaft sc that, with the armature on its 'Spacing' stop, there is a clearance of .013-.017 in. (.33-. 43 mm) between the inner face of the detent G and the outer face of the lug on the pilot carn A, i, e. dimension ' k '.

B. PRINTING MECHANISMS

$$
\begin{aligned}
& \text { N.B.: The adjustment for the typehead clutch torque } \\
& \text { is given in Section } H \text {, Adjustment } 72 \text {. } \\
& \text {. }
\end{aligned}
$$

20. Type Retaining Springs (Figs. 21 and 23)
20.1 Check that a force of 7-8 ozs. (198-227 grams), applied to a type in the direction of the arrow in Fig. 21, at the three positions marked ' A ' in Fig. 23, will move the type ${ }_{8}^{\frac{1}{8}}$ (3.2 mm) from its rest position.
20.2 If, at any point, the force required to move the type is too low, measure the tension of each spring. The correct tension is given in the section on Spring Tensions on page 31 under PG.7341.
20.3 If the force required to move the type is too high, it may be due to a bent type, bent type racks, rough edges or dirt.
21. Typehead Latch (Fig. 22)
21.1 Check that the typehead latch A moves snappily under the action of its spring.

22. Clutch Body (Figs. 65 and 66)

N.B.: This adjustment need not be checked unless the clutch body has, for any reason, been removed from the machine.
22.1 Press the typehead towards the combinaiion head and check whether the latch engagement, dimension ' c ', Fig. 56, is .055-. 066 in . ($1.40-1.68 \mathrm{~mm}$). (If any difficulty is experienced in measuring this dimension, the following method of obtaining it may be employed:-
(a) Set up the ' N ' combination ($-34-$).
(b) Rotate the govemor slowly by hand, holding the typehead inwards until the leading edge of the latch just touches, but is not deflected by, the selected bellcrank.
(c) In this position, measure the distance between the point B, Fig. 65, of the latch, and the bell crank, i.e. dimension ' b '. This measurement should be made by laying a steel rule along the sloping edge of the latch as shown in Fig. 65.
(d) If the reading on the rule is between 4 and 4.75 mm , the latch engagement, i.e. dimension ' c ', Fig. 66, will be correct.
22.2 If the foregoing check is not satisfied, it will be necessary to remove the typehead and clutch body (using special spanner TA. 1127) and to change the number of shims between the clutch body and the ball race. In this case, care should be taken, when reassembling, to engage the driving spring of the typehead clutch inside the eye of the clutch band.

23. Typehead Support Bracket (Fig. 21)

23.1 Check the amount of play between the face of the bearing bush in the bracket C and the shoulder on the typehead spindle A, i.e. dimension ' 1 '.
23.2 If this does not lie between . $001-.005 \mathrm{in} .(.03-.13 \mathrm{~mm}$), add or remove shims at B until the correct end-play isobtained. Not more than seven shims should be required.
24. Typehammer Unit (Fig. 24)
24.1 Set up the ' N ' combination (--34-) on the fingers. Turn the machine by hand until the ' N ' bellcrank has fallen, and then latch the typehead on this bellcrank.
24.2 Check the clearance ' m '. This should be $1 / 32 \mathrm{in}$. $(.8 \mathrm{~mm}$). To correct the adjustment, alter the positions of the two nuts D and E and lock them again.
24.3 Turn the machine until the typehammer is fully forward. Release screw F and move the leaf spring G until the centre of the typehammer head B is aligned with the centre of the type bar. Reclamp screw F.
24.4 Remove the typehammer from the machine and screw up the typehammer rod C until the spring enclosed in the shackle is closed right up. Then release for approximately one turn and replace on the machine. Secure with screw, washer and collar.

25. Typehammer Overthrow Stop (Fig, 25)

25.1 Slacken the locknuts for screws H and J and fully withdraw the screws. Loosen fixing screws L and K.
25.2 With the end-play in the typehead taken up towards the combination head, adjust the position of the stop plate until the outer face of the stop lug is clear of the ends of the types by $.005-.010 \mathrm{in} .(.13-.25 \mathrm{~mm})$. Tighten the fixing screws.
25.3 Turn the machine by hand and set up a non-printing combination, latching the typehead manually. With the typehammer moved fully forward, press lightly with the thumb on the rear of the hammer head to take up back-lash.
(a) If the hammer frame is now clear of the stop plate lug, check whether the contour of the frame is parallel, as judged by eye, with the radius of the stop lug face.
(b) If the frame is in contact with the stop lug, check whether the frame is in contact with the whole radius of the lug.
25.4 If either of the conditions (a) or (b) is not satisfied, slacken fixing screws L and K again and change the position of the stop plate to obtain the required condition. Tighten screws L and K. Check that this does not up set adjustment 25.2.
25.5 Screw in the abutment screws H and J until they touch the abutment lugs M and N and clamp them with their locknuts.

26. Ribbon Change-Over

N.B.: See al so Section H, Adjustment 74.
26.1 Remove the left-hand ribbon feed bracket. Ensure that the right-hand ribbon feed change rod is lifted (the presence of ribbon on the spool will ensure this). Adjust the length of the bias spring so that it bears equally each side of the jockey bush when the ribbon driving shaft is pushed from side to side.
26.2 Adjust the ribbon driving shaft change-over force by slackening one of the jockey spring clamping screws and tightening the other to give 12-16 ozs. (340-454 gram s) in either direction. Replace the left-hand ribbon feed bracket.
27. Ribbon Jumper (Fig. 27)
27.1 Slacken screws A and adjust guide bracket B so that the ribbon jumper C slides freely in its guides.
27.2 Slacken the two nuts D and adjust the ribbon jumper steady plate E to obtain a clearance of . 002 in . (. 05 mm), i.e. dimension ' a ', between the ribbon jumper and the steady plate.
27.3 Check that there is an adequate clearance between the ribbon jumper and all parts of the platen, when the play of the jumper is taken up towards the platen. If there is not, 'set' the jumper to obtain this condition.
28. Ribbon Liff (for Single-Colour Ribbons) (Fig. 26)
N.B.: For machines adapted for two-colour printing, see Section C, Adjustments 31 and 33.
28.1 Check that, when the type strikes the ribbon, the top edges of a type pad and of the ribbon are level, except when long fractional types are used (e.g. 7/), when the ribbon should be raised by an additional $1 / 32^{\prime \prime}(.8 \mathrm{~mm})$.
28.2 If this is not so, turn the cam by hand until the traversing link is in its extreme position of movement towards the back of the machine. Slacken nut B and adjust the abutment screw A until the ribbon is at the required height. Reclamp nut B.

C. TWO-COLOUR AND A/B TRIP CONTROL MECHANISMS

N.B.: Adjustments 31-33 are applicable to machines adapted for two-colour printing; adjustments 34-35 to machines fitted with an A / B trip suppressor mechanism.
29. Bowden Cable Plungers (Fig. 29)
N.B.: This adjustment should require attention only at major overhauls.
29.1 Press in the rear plunger K until the front plunger J is fully forward and the play in the system is taken up. Check dimension ' b '. This should be approximately $1 / 16$ in. $(7.6 \mathrm{~mm})$.
29.2 If this is not so, slacken screw L and push in or withdraw some of the cable outer covering under screw L until dimension ' b ' is satisfied. Tighten screw L.
30. Latching Lever (Figs. 30, 34 and 35)
30.1 Depress any key, thus allowing the transmitter ratchet to engage, and turn the machine by hand until the latch lever V, Fig. 35, is latched in its uppermost position.
30.2 Slacken screw W, Fig. 34, and by means of the slotted hole in the drop lever X, adiust the height of the latch lever V so that it engages with the rack Y with a small overshoot. Tighten screw W.
30.3 With the page attachmentunit on the receiverlatched inits normal working position, and with a sheet of paper in the platen, tum the machine further by hand. Adjust the eccentric pin Z, Fig. 35, by means of the nut $A A$ so that the latch lever V is iust pushed off the rack Y when the typehammer moves to its extreme forward position.

3?. Ribbon Lift (Black) (Fig, 32)
31.1 Complete the operating cycle. Withdraw the function cam detent and turn the machine by hand again until the traversing link is fully foward. Slacken screw P.
31.2 By placing a finger under the lifting arm, raise the ribbon jumper until the top of the ribbon is level with the top of the type ped and adiust arm T so that it supports the jumper in this position, whilst resting on rolier U. Tighten screw P.
32. Trip Lever (Figs. 30, 31 and 35)
32.1 Turn the machine by hand until it resumes the rest position. Raise the latching lever V, Fig. 35, with the finger until it engages in its uppermost position in the rack Y.
32.2 Slacken screw S, Fig. 30, and ensure that the raised end of the trip lever Q is opposite arm $R_{\text {. }}$. Adjust trip lever Q to obtain a clearance of $3 / 64 \mathrm{in}$. (1.2 mm), i.e. dimension ' d ', between the upper edge of lever Q and arm R. Tighten screw S.
33. Ribbon Lift (Red) (Figs. 31, 33 and 34)
33.1 Slacken screw $A B$, Fig. 33. Withdraw the function carn detent and turn the machine by hand until the traversing link O is fully advanced.
33.2 Raise the ribbon jumper by hand until the dividing line between the red and black portions of the ribbon is level with the top of a type pad.
33.3 Adjust arm R so that it touches the trip lever Q and, at the same time, position the am so that its side is flush with the end of lever Q, as in Fig. 31. Tighten screw AB, Fig. 33.
33.4 Check that, when the latch lever V, Fig. 34, resumes its 'down' position after being unlatehed by the pin Z, arm R, Fig. 33, clears the trip lever Q by at least $1 / 32$ in. (. 8 mm) when the traversing link is fed forward.
34. Latch Trip Lever (Figs. 35 and 68)
34.1 Complete the operating cycle. Remove the control lever unit from the machine. Latch the latch lever V, Fig. 35, in its upper latching position.
34.2 Slacken nut and screw C, Fig. 58, and adjust the position of trip lever D until there is a clearance of approximately $.055 \mathrm{in} .(.13 \mathrm{~mm})$, i.e. dimension 'b', Fig. 68, between the bottom of extension B and the latch E. Tighten nut and screw C.
35. Lock Lever (Figs. 67 and 68)
35.1 Replace the control lever unit on the machine. Depress any key other than the WRU key and turn the machine by hand until the corresponding bell crank has just fallen.
35.2 Slacken screw G, Fig. 68, and move the extension F to the middle of its adjustment. Tighten screw G.
35.3 Slacken nut and screw A, and swing the lock lever about its pivot until it is arrested by the inner side of the hook on latch E. Tighten nut and screw A.
35.4 Slacken serew G again and adiust extension F horizontally until dimension ' a ' is not greater than $.003 \mathrm{in} .(.08 \mathrm{~mm})$. Tighten screw G until it is finger tight.
35.5 Tum the machine until it reaches the rest position. Trip extension B, allowing latch E to turn anti-clockwise. Depress the WRU key and turn the machine by hand until the WRU bell crank drops.
35.6 Adjust the vertical position of extension F, Fig. 67 , taking care not to alter its horizontal position, until it clears the left-hand raised part of the latch by approximately .005 in . (. 13 mm), i.e. dimension ' c '. Tighten screw G.

D. CONTROL LEVER UNIT

36. Control Lever Shoes (Fig. 36)

36.1 Allow the levers to rest against their bell cranks. Check whether the shoe on each control lever A rests approximately centrally on its bellcrank N and clears the combination head front plate M by an estimated minimum of $.010 \mathrm{in} .(.25 \mathrm{~mm}$), i.e. dimension 'kk'. Each shoe should engage its bellcrank by an amount not less than $3 / 64 \mathrm{in}$. (1.2 mm).
36.2 If it is found that a control lever shoe touches the body front plate M, the shoe must be ground to give the required small clearance.

37. Buffer Plate and Spring (Fig. 36)

37.1 Turn the motor by hand until the bell cranks are fully raised. Adjust the buffer plate E (see inset), after releasing the two fixing screws D, to give a clearance of $.010-.015 \mathrm{in} .(.25-.38 \mathrm{~mm}$), i.e. dimension 'ii', between the underside of the buffer plate E and the top edges of the control levers A. Secure the plate with the fixing screws.
37.2 Tum the motor by hand and select any non-functional combination (e.g. -234-). Continue to turn until the cam is arrested by its detent. Slacken the buffer spring fixing screws D and adjust spring C so that there is a clearance of .005-. 015 in . (.13-. 38 mm), i.e. dimension ' 11 ', estimated by eye, between the feed throw-out lever trunnion and the control levers.
37.3 Again select the combination -234- and continue to turn the motor until the bellcranks fall. In falling, the control levers should not move the feed throw-out lever. If they do, increase the clearance slightly. (N.B.: In the case of the 'Bell' control lever, a slight movement of the feed throw-out lever is unavoidable but this should be kept to a minimum.).

E. PAGE ATTACHMENT UNIT

38. Latch (Figs. 37 and 39)
38.1 Release screw D, Fig. 37. With the page attachment unit abutting against casting C, adjust the latter until a clearance of $1 / 8 \mathrm{in}$. (3.2 mm), i.e. dimension ' nn ', Fig. 39, is obtained. Reclamp screw D, Fig. 3
38.2 Release screws F and position pin A by means of the abutment plate E until the latch functions correctly, i.e. until the latch is fully engaged over the pin A, but without any free play. Reclamp screws F.
39. Clutch Crosshead (Figs. 37, 40 and 41)
39.1 Turn the machine by hand until the traversing link is in its extreme position of movement away from the carriage. Unlatch the page attachment unit and remove the screw, spring washer and washer covering the eccentric pivot A, Fig. 40, between the feed lever and the traversing link. Slacken clamping screw B.
39.2 Latch the page attachment unit and adiust eccentric A by means of its screwdriver slot until dimension 'p', Fig. 41, i.e. .015-. 025 in . (.38-. 64 mm), is obtained. Only the 180 degrees away from the feed lever pivot may be used to obtain this adjustment. (N.B.: This dimension is most easily seen from the rear of the machine).
39.3 Unlatch the page attachment unit. Lock the eccentric by means of clamping screw B, Fig. 40, and replace the screw, washer and spring washer. Latch the page attachment unit.
39.4 If the eccentric A provides insufficient adjustment, change the number of .015 in . (. 38 mm) buffer plates behind the buffer plate B, Fig. 37 (Part No. 1831/108A).

40. Line Feed and Carriage Return Dogs (Fig. 41)

40.1 Remove the unit from the machine. Release nut T at the back of the casting and, by means of the eccentric pin U, adjust the dogs to give a clearance of . $010-.015$ in. (.25-. 38 mm), i.e. dimension ' o ', between the dogs and the clutch crosshead. Lock with nut T.
40.2 Check that the movement of the dogs under the action of their springs is lively. Stiffness of movement may be due to an accumulation of dirt and grease round the pivot.
40.3 Replace the uniton the machine. Check al so that pin U is not fouled by the carriage return control lever when the latter is operated.
41. Control Levers (Fig. 36)
41.1 Check whether the control levers clear their associated feed dogs H and G on the page attachment unit by at least $.010 \mathrm{in} .(.25 \mathrm{~mm})$, i.e. dimension 'mm', when in their normal, or unoperated, position.
41.2 If this is not so, the control levers must be set.
42. Letter Feed Dog (Fig. 38)
42. 1 Position the adjustable plate M on the letter feed $\operatorname{dog} N$ so that there is a clearance of $.006-.010 \mathrm{in}$. (. $15-.25 \mathrm{~mm}$), i.e. dimension ' n ', between the feed throwout lever G and the plate, when the feed throwout lever is not selected.
43. Carriage Retaining Pawl (Fig. 42)
43.1 Remove the unit from the machine. Operate the crosshead until the carriage is in its extreme left-hand position. Check that the retaining pawl F has engaged the correct tooth in the ratchet wheel G.
43.2 Slacken clamping screw A (on the back of the frame behind the letter feed levers) and adjust eccentric B until the clearance between the platen end plate E and stop Dis .015-. 020 in . (. $38-.51 \mathrm{~mm}$), i.e. dimension ' $\mathrm{q}^{\text {' }}$. Tighten screw A.

44. Adjustable Platen Stop (Fig. 43)

44.1 Depress the carriage retum key on the page attachment unit and ensure that the carriage is in its extreme right-hand position.
44.2 Examine the engagement between the retention pawl F and the first too th on the
spring drum ratchet G. The pawl must engage at the intersection of the tooth slope and the flat portion of the wheel, as shown in the in set.
44.3 If necessary, correct the engagement by slackening clamping screws H and adjusting the position of the stop K. Tighten screws H.

45. Carriage Feed Pawl (Fig. 44)

45.1 Feed the carriage a few spaces to the left.
45.2 Slacken clamping screw P. Adjust eccentric pivot N until there is a clearance of $.005-.008 \mathrm{in} .(.13-.20 \mathrm{~mm}$), i.e. dimension ' r ', between the feed pawl and the next tooth of the ratchet wheel. Clamp screw P.

46. Adjustable Pawl Throwout Lever (Fig. 45)

N.B.: The pawl throwout lever is adjusted correctly in the factory and should not normally require aftention. If, however, new parts are fitted, or wear develops in the carriage return linkage, the lever should be readjusted as follows:- .
46.1 Move the carriage to approximately its mid-position. Hold the crosshead to the right (so that the feed pawl L is as high as possible) and measure the clearance between the feed pawl and the operating edge of the pawl throwout lever, i.e. dimension 'rr'.
46.2 The clearance under these conditions should be .001-. 005 in . $(.03-.13 \mathrm{~mm}$). If necessary, slacken clamping screws R and adjust the tail of the pawl throwout lever Q.

47. Air Valve (Fig. 46)

47. 1 Loosen screw W and adjust the position of the air valve lever X relative to the air valve V so that the apertures in the air valve that appear at the extremes of the carriage travel are equal. Tighten screw W.
48. Line Feed (Figs. 47, 48 and 49)
48.1 Check that the line feed positioning disc B, Fig. 49, is clamped between the knurled knob A and the hexagonal nut so that the maximum eccentricity of the eccentric Q, Fig. 47, is at right angles to the gaps in the disc. The adjustment is set before the machine leaves the factory and stould not normally require attention.
48.2 For sprocket feed carriages, adjust the retention lever eccentric K, Fig. 47, so that the typing lines up with the printed matter on the forms.
48.3 Turn the knurled knob A, Fig. 49, to the double-line feed position. Slacken screws E, F and G. Engage the line feed dog in the clutch crosshead and turn the machine by hand until the line feed pawl is just bedding in the bottom of its tooth, but has not rotated the ratchet, i.e. until it occupies the position shown in Fig. 48. Adjust plate P, Fig. 47, until a clearance of .005-. 010 in . (. $13-.25 \mathrm{~mm}$), i.e. dimension ' t ', Fig. 48, is obtained between the eccentric Q and the feed pawl G. Tighten screws E, F and G, Fig. 49.
48.4 Continue to turn the machine by hand until the feed pawl is fully down. In this position, slacken screw D, Fig. 49, and turn eccentric C until the retention pawl M, Fig. 47, bottoms fully in a tooth. Tighten screw D, Fig. 49, and the retaining nut on the end of screw D. Continue to turn the machine by hand and confirm that, as
the feed pawl rises, there is no further rotation of the platen in either direction.
48.5 Turn the machine by hand until the feed pawl is again fully down. Slacken the screws clamping stop plate D, Fig. 47, and push the stop plate against the feed pawl. Tighten the clamping screw. Slacken locknut H and adjust screw J until it touches the back of the stop plate. Reclamp nut H .

49. Chariot Rail and Chariot

49.1 Adjust the carriage support bar so that, after slackening its fixing screws, the chariot is free in all positions, without undue shake.
49.2 Check that, when the carriage is in its extreme right-hand position, the flat spring at the right-hand end of the chariot is lightly in contact with the track rail.
49.3 Adjust the position of the paper chariot with respect to the paper carriage so that the centre of the chariot is within $\pm 1 / 32$. (.8 mm) from the centre of the casting. The adjustment m ay be obtained in the following way:-
(a) Place a roll of paper in the chariot. Pass the end of the paper under the tension roller, but not under the platen. Hold the roll with one hand and pull the end of the roll taut with the other.
(b) Push the roll against the left-hand chariot end-plate and note the clearance between the paper and the carriage right-hand end-plate.
(c) Push the roll against the chariot right-hand end-plate and note the clearance between the paper and the left-hand carriage end-plate.
(d) Adjust the position of the chariot by means of the pivot screws until the two clearances, measured in (b) and (c), differ by less than $1 / 16 \mathrm{in}$. (1.6 mm).

50. Carriage Spring Tension (Fig. 45)

50.1 Place the carriage in its extreme left-hand position. Using a $0-4 \mathrm{lb}$. spring balance, measure the force necessary to prevent the carriage from moving when the carriage return key is depressed. This should be between $21 / 2-3 \frac{1}{4} \mathrm{lbs}$. ($1.1-1.5 \mathrm{kgs}$.).
50.2 If the tension is incorrect, slacken the screw clamping the spring drum spindle (this screw is in the frame at the rear of the unit). Do not slacken this screw more than is necessary to rotate the spindle.
50.3 To decrease the spring tension, actuate the pawl by means of the pin T. To increase, turn screw S clockwise. Tighten the screw on the back of the frame.
50.4 Check the operation of the carriage by means of the 'Short Line' and 'Long Line' tests given in Section H, Adjustment No. 75.

51. Switch Contacts (Fig. 52)

51.1 Check that the spring blade M rests against arm L with a pressure of $10-20$ grams. If not, 'set' blade M to satisfy this condition.
51.2 Check that there is a clearance of . $012-.015 \mathrm{in}$. (.30-. 38 mm) between the contacts on blades M and N. If not, 'set' blade N as necessary.

52. Switch Trigger Bracket (Fig. 50)

52.1 Slacken screws A and slide bracket C until trigger B engages the full thickness of the lug on the trigger plate D.
52.2 Lock bracket C in this position by tightening screws A.
53. Switch Operating Lever (Figs. 51 and 52)
53.1 Trip latch E, Fig. 51, so as to release the resetting lever F, which will thus strike the switch operating lever J, Fig. 52, and move this until it stops against plate K.
53.2 With the mechanism in this position, slacken nut H , Fig. 51 , and turn eccentric pivot pin G until the contact blade M, Fig. 52, is deflected sufficiently to give a clearance of $.010-.020 \mathrm{in} .(.25-.51 \mathrm{~mm}$), i.e. dimension ' a ', between blade M and armL.

54. Pressure Rollers

N.B.: With the Langitex platen it is very necessary to relieve the pressure of the pressure rollers on the platen when the machine has to be left idle for considerable periods, otherwise irregularities will be formed on the surface of the platen and the feeding of the paper will be impaired.
54.1 Check that the pressure rollers are pressing firmly against the platen. The pressure should be such that a force of $3-4 / 2 \mathrm{lbs} .(1.36-2.04 \mathrm{kgs}$.), applied ot the ends of the pressure roller bearings, will just cause the rollers to lift off the platen. Readings should be taken at both ends of the rollers. Differences in pressure between the ends of each roller and each pair of rollers should not exceed $1 / 2-16 .(227$ grams $)$.
54.2 If either of these conditionsisnot satisfied, the springs should be 'set' accordingly.

F. STARTER SWITCH AND SWITCH CONTROL UNIT

55. Switch Arm (Fig. 54)

55.1 Check that, when the switch arm XD is moved up and down to 'break' and 'make" the starter switch, the contacts open and close when the arm is within approximately $1 / 16 \mathrm{in}$. (1.6 mm) from the top and bottom respectively of the hole in the weight stop plate $A U$.
55.2 If this is not so, 'set' arms G and H to obtain this condition.
56. Switch Blades (Figs. 53 and 54)
56.1 Check that, with the tail ' l ' of blade J, Fig. 53 , pressing against blade H, the clearance between the riveted head of the contact and blade is $.010 \mathrm{in} .(.25 \mathrm{~mm})$, i.e. dimension ' b '.
56.2 If this is not so, bend tail ' i ' upwards or downwards to obtain the required clearance.
56.3 With the switch in the 'Off' position, check the clearance ' c ', Fig. 54, between the two contacts. This should be not less than .045 in . (1.14 mm).
56.4 If this clearance is too small, say by \times ins., then 'set' arm G until the clearance is increased by not less than $x / 2$ ins., and 'set' blade H until it is increased by a further equal amount.

57. Switch Operating Force (Fig، 54)

57.1 Check that the forces required to 'make' and 'break' the switch, applied in the direction of arrows K and L, are equal and between $2 / 2-31 / 2$ ozs. ($71-99$ grams).
57.2 If this is not so, slacken screws CS and adjust the operating shaft bridge SB in the direction of arrows A and B until the correct forces are obtained.
58. Switch Control Unit - Preliminary (Figs. 54, 55, 56, 58 and 61)
58.1 Check the freedom of spinde N, Fig. 55. If necessary, slacken screws CT and adjust the position of the bearing bracket to give complete freedom.
58.2 Check that, when the weight is in the 'down' position, it is resting on the weight stop plate AU, Fig. 54, and is not on the switch arm XD.
58.3 Check that, when the weight-lifting arm X, Fig. 55, is in full engagement with the ratchet gear W, the other end of spindle N is vertically above the centre of trip shaft P. If this is not so, slacken the screw in the weight-lifting arm and adjust the position of the arm along the spindle, taking care to clamp the arm afterwards on the flat provided on the spindle.
58.4 Check that, when the weight-lifting arm X is in the same position as for the preceding adjustment, there is a clearance of $1 / 32 \mathrm{in}$. (.8 mm) between cam T and the bearing bracket, i.e. dimension ' c '. If this is not so, slacken the screw in cam T, slide the cam along the spindle to the correct position, and clamp it again, ensuring that the screw engages on the flat provided.
58.5 Remove all load from the weight-lifting arm X. With the roller H , Fig. 56, at the bottom of the hollow in cam T, depress spring-setting arm G, Fig. 58, so that only the roller lever spring is operating on the cam. Measure the force required in direction ' m ', Fig. 55, to disengage the weight-lifting arm X from the ratchet gear W . This force should not exceed $4 / 2$ ozs. (128 grams).
58.6 Check that the weight-lifting am X, when disengaged from ratchet gear W and then released, snaps back easily into engagement.
59. Throwout Lever (Figs. 55, 56 and 57)
59.1 Position the weight-lifting arm X, Fig. 55 , so that roller H , Fig. 56 , is at the bottom of its hollow in cam T.
59.2 Check that set collar $A Q$ is at the end of trip shaft P. If this is not so, slacken the screw securing the set collar and move the collar to the correct position. Tighten the clamping screw.
59.3 Slacken the screw securing the throwout lever O to the trip shaft P. Push the trip shaft towards the rear until the set collar is in contact with the front support plate. Bring the throwout lever into contact with the other side of the plate and clamp it in position so that end-play does not exceed .005 in . (. 13 mm).
59.4 Slacken the screw securing the latch lever M, Fig, 57 , to the trip shaft P and adjust the position of the latch lever along the shaft until it just touches the side of the vertical shoulder on latch L, as shown in Fig. 56. Clamp latch lever M in this position.
59.5 Depress latch lever M to rest on top of latch L, as shown in Fig. 56, and check that the weight-lifting arm X, Fig. 55 , is fully engaged in the first available tooth of ratchet gear W. If this is not so, rai se the weight-lifting arm slightly.
59.6 Slacken the screw securing the throw-out lever O, Fig. 57, and swing the lever to give a clearance of . $015-.025 \mathrm{in}$. (.38-. 64 mm) between lever O and the end of spindle N , i.e. dimension 'd'. Clamp throwout lever O in this position, making sure, at the same time, that the condition specified in adjustment 59.3 is unaltered.
60. Latch Lever Block (Figs. 56, 57, 58 and 59)
60.1 Return roller H , Fig. 56 , to the bottom of its hollow in cam T , if this was moved in the previous adjustment. This can be done by disengaging the weight-lifting arm from the ratchet gear.
60.2 Slacken the screw securing latch lever block J, Fig. 58 , to the trip shaft P and position the block laterally so that the vertical latch lever AN, Fig. 59, moves freely in its slot in bearing bracket AR. Clamp latch lever block J, Fig. 58, lightly in this position.
60.3 Slacken nut AS, Fig. 59, to ensure that the latch operating lever A does not interfere with the following adju stment.
60.4 Rotate and hold trip shaft P, Fig. 57, so that latch lever M rests on top of latch L. Rotate the latch lever block J, Fig. 58, on trip shaft P until there is a clearance of $.002-.005 \mathrm{in}$. (.05-. 13 mm), i.e. dimension ' e ', between the spring setting arm G and the roller arm K. Clamp latch lever block J tightly in this position, ensuring that the condition specified in 60.2 is unaltered.
61. Latch Lever (Figs. 57 and 59)
61.1 Advance the weight-lifting arm slightly, thus rotating trip shaft P, Fig. 57, until the latch lever M rests on latch L.
61.2 Position the latch operating arm A, Fig. 59, until there is a clearance of $1 / 16-3 / 32$ in. ($1.6-2.4 \mathrm{~mm}$) between the lower face of the vertical latch lever AN and the latch seating on bracket $A R$, i.e. dimension ' f '. Clamp lever A in this position with nut $A S$.
62. Trip Spring Blade (Figs. 59 and 60)
62.1 With the machine in the same position as for adjustment 61, adjust the height of the trip spring blade AL, Fig. 59, on the armature link AM, by 'setting' the spring guide, until there is a clearance of $1 / 64-3 / 64 \mathrm{in}$. (.4-1.2 mm) between the blade and the latch face, i.e. dimension ' g '.
62.2 Advance the weight-lifting arm until latch lever AN, Fig. 60, is allowed to seat on its stop on bearing bracket AR. With the electromagnet on its 'Marking' stop, loosen screw CH on the armature link $A M$. Adjust the position of spring blade AL until there is a clearance of $.002-.006 \mathrm{in}$. (.05-. 15 mm) between the tip of the blade and the face of lever AN, i.e. dimension ' h '.

63. Control Unit Timing (Figs. 57 and 61)

63.1 With the motor control switch on, lower the weight-lifting arm manually until the roller lies at the bottom of its hollow in the cam. Release set collar AT, Fig. 61, and screw QS clamping weight $A B$ to the rod $A S$.
63.2 With the weight $A B$ resting on its bottom stop plate, push rod $A S$ down into the weight to the full extent permitted by the wire link. Position collar AT so that it rests on top of the weight and clamp in that position.
63.3 Raise rod AS in the weight until there is a clearance of . 005-. $015 \mathrm{in} .(.13-.38 \mathrm{~mm}$) between collar AT and weight AB. Clamp screw QS. Release collar AT. Allow it to rest on top of the weight and elamp in that position. The wire link will now hang completely free.
63.4 Check the minimum tıme delay as follows: raise the weight-lifting arm from the fully 'down' position and count the number of ratchet teeth passed from the moment when latch L, Fig. 57, is withdrawn from under latch lever M to the moment of switch-off. The number of teeth passed must be at least eleven (46 seconds). If not, check the a dju stment of the starter switch (Adjustments 55-57).

64. Knock-out Cam (Fig. 62)

64.1 Raise the weight-lifting arm to its highest position. Disengage the tooth from the ratchet gear, insert a $.005 \mathrm{in} .(.13 \mathrm{~mm})$ feeler gauge between the tooth and the gear.
64.2 Slacken the two screws securing the knock-out cam B. Position the cam until it just touches the chamfered screw head in the weight-lifting arm. Clamp the cam in this position.
65. Spring Check (Figs. 58 and 61)
65.1 With the vertical latch lever AN, Fig.61, just engaged with its slot on bearing bracket $A R$, check that a force of 5 ozs. (142 grams) is required to part the anchor pin F, Fig. 58, from the bottom of its slot in the spring stop D, when applied vertically above the anchor pin.
65.2 If less force is required, move the lower end of spring E to the lower anchor hole in the spring setting arm G and repeat the adjustment.
66. Front and Rear Trip Levers (Figs. 61 and 62)
66.1 With the latch lever AN, Fig. 61, engaged on its seat on bearing bracket AR, and with the front trip lever AFL held up against its stop pin AV, slacken the screw securing the rear trip lever AFR, Fig. 62, to spindle AH. Adjust the position of the trip lever AFR until there is a clearance of $1 / 32-3 / 64 \mathrm{in} .(.8-1.2 \mathrm{~mm}$), i.e. dimension ' i ', between the trip lever AFR and the vertical latch lever AN, Fig. 61.
66.2 With the vertical latch lever still engaged in its stop on bearing bracket AR, slacken the screw in collar BA, Fig. 62. Check the force on the end of trip lever AFL, in the direction of arrow ' n ', that is required to trip the mechanism. This force should not exceed $3 / 4 \mathrm{oz}$. (21 grams).
66.3 Position and clamp collar BA on spindle AH so that the tension of spring AG is such that a force of $1 / 2-1 / 2$ ozs. ($14-43$ grams), applied at the tip of lever AFL in the direction of arrow ' n ', is just sufficient to depress the lever from its stop pin.

67. 'Letters' Key Trip Connection (Figs. 62 and 63)

67.1 Slacken screw A, Fig. 63, and with the keybar connecting link B held taut, adjust the position of pin C until it clears trip lever AFL, Fig. 62, by 1/32-3/64 in. (.8-1.2 mm). Clamp screw A, Fig. 63.

G. MOTOR AND GOVERNOR

68. Motor Governor Brushes

68.1 If the governor brushes are new, check that they are set so that the tip of the back of the governor brush spring, when the governoris removed, is $3 / 4 \mathrm{in}$. (19.1 mm) from the motor support plate. Check al so that the governor brush backing spring lies flat against the governor brush spring.
58.2 If the governor brushes are worn, check the force that they exert on the governor slip rings. This should be $41 / 2-5 \frac{1}{2}$ ozs. ($128-156$ grams). The pressure of the brushes will fall as they wear and the springs must be set slightly to compensate for this. This may be done by measuring the distance between the tip of the back of the worn governor brush spring and the motor support plate, removing the governcr , and pushing back the brush by means of a spring balance to the position it occupies when in contact with the governor.
68.3 Replace the governor, ensuring that it is pushed on to the motor shaft as far as it will go.
69. Governor Contacts (Fig. 64)
69.1 Using the governor contact adjusting clamp TA. 1110 , extend the governor spring A until the contact arm saddle E is just touching the stop face of the contact arm stop spring D.
69.2 Slacken screw C just enough to free contact screw F, and adjust contact screw F to give dimension 'l', .015-. 020 in . (.38-. 51 mm). Tighten screw C.
69.3 Relax the govemor spring A and remove the adjusting clamp.

70. Motor Brush Boxes

70.1 Adjust the brush boxes to obtain a clearance of . $010-.015 \mathrm{in} .(.25-.38 \mathrm{~mm})$ between the brass brush slide and the periphery of the commutator.
N.B.: Two brushes should be used at a time in vertically opposite positions, i.e. in contact with the same track. On renewal, the new brushes should be placed in the adjacent slides. The purpose of this is to distribute the wear equally between the two tracks.

H. ADJUSTMENTS WITH THE MOTOR RUNNING

71. Rocker Blade - Final Adjustment (Figs. 5 and 20)

71.1 Adjust the armature link eccentric pivot B, Fig. 20, to obtain the following conditions: with the motor running, and with a .013 in . (.33 mm) gauge gripped between armature J, Fig. 5, and its 'Spacing' stop, an 'all-space' combination should be set up when the selector detent is released by hand.
71.2 When a. $017 \mathrm{in} .(.43 \mathrm{~mm})$ gauge is similarly placed, an 'all-mark' combination should be set up.
71.3 With the motor stopped, check that adjustment 19.2 is unaltered. If not, readjust to obtain dimension ' k ', Fig. 20. It will also be necessary to check adjustment 62 . 1.

72. Typehead Clutch Torque

72.1 Select the letter ' J ' on the combination head so that the typehead clutch latches on the ' J ' bellcrank with the large gap in the types uppermost.
72.2 Apply a spring balance to the typehead by placing the hook of the balance over the ' J ' type and tension the balance to 9 ozs. (255 grams). Hold the balance fimly in this position.
72.3 Depress the space bar, or operate the magnet armature to 'Space'. The spring balance should now give a reading between 10 and 12 ozs . (284-340 grams).
72.4 When a new elutch lining is fitted, the spring balance will give a reading which is too high. Before the machine is restored to service, it should be run continuously until the clutch pressure is reduced to within the limits specified in 72.3.

73. Selector Cam Detent - Final Adjustment (Fig. 6)

73.1 With the motor running, insert the smaller end of adjustment tool TA. 1174 (of diameter . $072 \mathrm{in} .(1.83 \mathrm{~mm}))$ between the release lever C and the lug on the retaining plate A, i.e. of point B. Check that detent E is not withdrawn clear of its stop arm D.
73.2 Repeat the test, using the larger end of the adjustment tool (of diameter . 078 in . $(1.98 \mathrm{~mm})$). Detent E should now be withdrawn clear of stop arm D.
73.3 If either of the se conditions is not satisfied, refine adjustment 5.

74. Ribbon Change-over Mechanism

74.1 Remove the ribbon spools and check that each feed change rod falls freely into contact with the feed change spindle.
74.2 Hold the electromagnet armature on its 'Spacing' stop. Switch on the motor and allow the machine to 'run away'. Check that the ribbon driving shaft alternates be tween its two positions, due to both rods having fallen. If it does not do so, check whether there is an accumulation of dirt or grease round the feed change rods, wear ot their lower ends, binding of the rods or stiffness of the change rod bellcranks.
74.3 Check also whether the bias spring bears equally each side of the jockey bush as the ribbon driving shaft automatically alternates. If not, remove the left-hand ribbon feed bracket. Readjust the length of the bias spring slightly to obtain this condition. Reset the change-over force to the value given in adjustment 26.2. Replace the ribbon feed bracket and re-check the jockey spring engagement.

75. Carrlage Operation Tests

75.1 Short Line Test. With the motor running and signal power connected to the machine, depress the C.R., L.F. and LETTERS keys, and confirm that the carriage has retumed to the extreme right of its travel. Depress the letter ' A ' key, followed by the C.R., L.F. and letter ' A ' in quick succession. Repeat this procedure several times and confirm that, in all cases, the characters are printed immediately underneath each other.
75.2 Long Line Test. Move the carriage to the extreme left of its travel. Depress the C.R., L.F., LETTERS, letter 'A' and SPACE keys in quick succession. The carriage should now have returned to the right and printed the character immediately below the ' A ' of the short line test. Repeat this procedure a number of times.
75.3 If the results of the tests in adjustments 75.1 and 75.2 are un satisfactory, this may be due to excessive friction or to a damaged part.

I. SINGLE-CURRENT ADJUSTMENTS

N.B.: (a) The adjustment for the magnet field strength given in instruction 15.4, and the following adjustments, are based on the use of $11-1 \mathrm{l} . / \mathrm{in}$. centralising springs, and give optimum results only on circuits using a signalling supply of 90-120 volts and a receive current of 40 mA . For circuits employing lower signalling voltages, these adjustments may be tried, but if unsatisfactory results are obtained, application should be made to Creed and Company for alternative spring arrangements and adju stments.
(b) Different adjustment procedures are given in the following instructions for 'short' and 'long' lines. By a 'short' line will be meant one whose capacitance is less than that of 20 km , of $20-\mathrm{lb}$. loop-mile copper underground cable. A 'long' line, correspondingly, will be one who se capacitance is greater than this. If there is any doubt as to whether the line is 'short' or 'long' according to the above definition, adjustment procedure 78 , which is provided to cover this case, should be followed.
(c) It is assumed that the source of signals for these adjustments is either a T.D.M.T. (or other high-grade source) or a correctly adjusted keyboard transmitter. The measurement of receiver tolerance is as sumed to be made with the orientation device. If a T.D.M.T. is used for this purpose, however, the orientation device should be initially set at 60 .
(d) If no keyboard is fitted to the receiver, or if one is fitted but no local record is required, the 'long' line procedure should be followed, irrespective of the length of the line.

76. Short Lines (Fig. 5)

76.1 Check that the electrical connections are for single-current working.

76.2 Set the orientation lever to 20 .

76.3 Slacken clamping nut F, Fig. 5 (a), and determine the approximate setting for the bias spring adjustment E by transmitting a succession of Rs from the local transmitter and increasing the bias from zero towards 'Space' until correct selection just occurs.
76.4 Refine adjustment 76.3 as follows: Determine the lowest setting of the orientation lever for which the receiver correctly selects both one line of Rs and one line of Ys. Let this setting be $\times 1$.
76.5 Move the orientation lever towards 120. Determine the highest setting of the lever for which the receiver correctly selects one line of Rs and one line of Ys. Let this setting be y 1 .
76.6 Increase the bias spring tension in steps of two or three divisions and repeat the tests in 76.4 and 76.5 until $y_{1}-x_{1}$ is a maximum. Lock the adjustment with clamp nut F, Fig. 5(a).
76.7 Repeat adiustments 76.4 and 76.5 for signals from the distant transmitter. Let the upper and lower settings of the orientation lever in this case be y_{d} and x_{d}.
76.8 Set the orientation device lever in the centre of the range found in 76.7 , i.e. on $1 / 2\left(x_{d}+y_{d}\right)$.

77. Long Lines (Fig. 5)

77.1 Carry out adjustments 76.1 and 76.2 ,
77.2 Slacken clamping nut F, Fig. 5(a), and determine the approximate setting for the bias spring adjustment E by transmitting a succession of Rs from the distant transmitter and increasing the bias from zero towards 'Space' until correct selection just occurs.
77.3 Refine adjustment 77.2 as follows: Determine the lowest setting of the orientation lever for which the receiver correctly selects both one line of Rs and one line of Ys. Let this setting be x_{d}.
77.4 Move the orientation lever towards 120. Determine the highest setting of the lever for which the receiver correctly selects both one line of Rs and one line of Y s. Let this setting be y_{d}
77.5 Increase the bias spring tension in steps of two or three divisions and repeat the tests in 77.3 and 77.4 until $y_{d}-x_{d}$ is a maximum. Lock the adjustment with the clamp nut F, Fig. 5(a).
77.6 Set the orientation lever in the centre of the range found in 77.5 , i.e. on $1 / 2\left(x_{d}+y_{d}\right)$.

78. Lines of Unknown Characteristics (Fig. 5)

78.1 Slacken clamping nut F, Fig. $5(a)$, and adjust the bias spring tension nut E to give maximum tolerance to distant signals, as in adju stments 77.1-77.5.
78.2 Check the margin to local signals, as in adjustments 76.2-76.5.
78.3 If the local margin is adequate, centralise the orientation lever to the settings for the distant signals found in 78.1.
78.4 If the local margin is inadequate, increase the bias spring tension two or three divisions of the bias adjustment nut E.
(a) If the local margin is thereby increased, the receiver should be adjusted as for 'short' lines, i.e. in accordance with adjusiment 76.
(b) If the local margin is decreased still further, the line is too long (i.e. the line capacitance is too great) for sati sfactory operation.
78.5 Lock the adjustment with the clamping nut F.
79. Short Lines (Alternative Method) (Fig. 5)
N.B.: The 'Short Lines' procedure given in adjustment 76 is designed to give optimum results. The following simpler procedure may be used, however, in cases where a slight loss of distant margin (not more than 5 per cent) can be tol erated.
79.1 Place the machine in a purely resistive circuit, e.g. in the base workshop.
79.2 Transmitting signals from a T.D.M.T. or a correctly adjusted keyboard transmitter, slacken clamping nut F, Fig. 5(a), and adjust the bias spring tension nut E until the optimum margin is obtained for one line of Rs and one line of Y s. Clamp the bias adju stment locknut F.
79.3 Place the machine in the line circuit in which it is required to operate.
79.4 Measure the margin from the distant end and centralise this by means of the orientation device.

J. DOUBLE-CURRENT ADJUSTMENTS

N.B.: It is assumed in the following odjustments that the receiver tolerance is measured with the orientation device.
80. Margin Measurement and Centralisation (without T.D.M.T.)
80.1 Check that the electrical connections are for double-current operation.
80.2 Check the adjustment of the keyboard transmitter which is to be used as a source of signals.
80.3 Connect the output of the transmitter to the receiver (e.g. by working the transmitter and receiver 'in local').
80.4 Transmit a succession of Rs and move the orientation lever towards zero to determine the lowest position for which the receiver correctly selects one line of characters.
80.5 Leaving the orientation lever in the position found in the last adjustment, transmit one line of Ys. If the machine fails to select correctly, move the lever to wards 120 until the receiver just selects correctly. Note the reading, i.e. the orientation
setting for which the receiver just correctly selects one line of Rs and one line of Ys. Let this setting be x.
80.6 Move the orientation lever past 60 towards 120 and determine, as in $80.4-80.5$, the highest orientation setting for which the receiver correctly selects one line of R s and one line of $Y s$. Let this setting be y.
80.7 The difference between x and y provides an approximate measure of the receiver tolerance. If this is less than the required amount, the adjustment of the machine should be checked.
80.8 Setthe orientation lever in the centre of the range determined in 80.7, i.e. on $1 / 2(x+y)$.

81. Margin Measurement and Centralis ation (with T.D.M.T.)

81.1 Check that the electrical connections are for double-current working.
81.2 Connect the receiver to the T.D.M.T. and set the orientation lever on 60.
81.3 Transmit a succession of Rs and slowly turn the control knob on the T.D.M.T. so as to shorten the start signal. Determine the shortest start signal for which the receiver correctly registers one line of transmitted characters.
81.4 Leaving the margin control knob in this position, transmit a line of Y . If the machine fails to select correctly, lengthen the start signal until it just selects correctly. Note this reading, i.e. the percentage shortened start signal for which the receiver correctly registers a line of Rs and a line of Y_{s}. Let it be xper cent.
81.5 Slowly turn the margin control knob in the opposite direction and determine, as in 81.3 and 81,4 , the longest start signal for which the receiver correctly registers one line of Rs and one line of Y s. Let this be y per cent.
81.6 If x and y are unequal, the setting of the orientation lever should be changed and tests 81.3 and 81.5 repeated until they are equal.
(The correction to be applied to the orientation device setting is as follows:-
(1) If the bias is towards shortened start, move the orientation lever towards zero by $1 / 2(x-y)$ divisions.
(2) If the bias is towards lengthened start, move the orientation lever towards 120 by $1 / 2(y-x)$ divisions.

It may be necessary to repeat these corre ctions.)
81.7 When a balance is obtained, check that the margin of the machine is sati sfactory.

SPRING TENSIONS

N.B.: References to Part List No. 1078 apply to the 9 th Edition (with corrections).

Spring No.	Reference	Method of Measurement	Tension
	PL. 1078	OPERATING MAGNET UNIT	
PG. 7164	$\underset{\text { and } A L}{\text { Fig. } 22, K}$	Force to give an extension of $3 / 16^{\prime}(4.8 \mathrm{~mm}) \quad . \quad . \quad . \quad .$	3-lb. 1-oz. -3-lb. 7-oz. (1.4 - 1.6 kgs.)
PG. 7368	Centralising Springs (not shown)	Force to give an extension of $1 / 4^{n}(6.4 \mathrm{~mm})$	2-1b. 3-oz. - 3-lb. 3-oz. (1-1.4 kgs.)
	PL. 3750	OVERLAP CAM UNIT	
PG. 7363	Fig. 7, EV	Force to raise the function retention lever out of engagement with the hollow in the cam sleeve, measured under the screw-head above the follower	$\begin{aligned} & 14-18 \text { ozs. } \\ & (397-510 \text { gram s }) \end{aligned}$
PG. 7372	Fig. 6, JM	Force to give an extension of $1 / 8^{\prime \prime}(3.2 \mathrm{~mm}) \quad \cdots \quad . \quad . \quad .$	$\begin{aligned} & 15-17 \text { ozs. } \\ & \text { (425-482 gram s) } \end{aligned}$
PG. 3027 B	$\begin{array}{r} \text { Fig. } 7, \text { GS3 } \\ \text { GZ3 } \end{array}$	Force, applied at the powl abutment face, to depress each pawl . .	$\begin{aligned} & 3-4 \text { ozs. } \\ & (85-113 \text { gram s) } \end{aligned}$
PG. 7100	Fig. 6, LE	Force applied at the screw abutnent face of the translator trip lever just to part the lever from the screw	$\begin{aligned} & 4-6 \text { ozs. } \\ & (113-170 \text { grams }) \end{aligned}$
PG. 7227	Figs. 4, 5, CZ	Force applied at the spring anchor pin of the selector release lever to disengage the selector detent from its stop arm	$\begin{aligned} & 2-30 z \mathrm{~s} . \\ & (57-85 \text { grams }) \end{aligned}$
PG. 5095	$\begin{aligned} \text { Figs. } 4, \\ 5, \mathrm{DN} \end{aligned}$	Force to arrest the pilot cam, with the motor running	125-157 grams
PG. 7367	Fig. 2, AJ	Force applied to the tail of a code lever to depress it from the stop pin ..	$\begin{aligned} & 11 / 4-2 \text { o } \mathrm{zs} . \\ & (35-57 \mathrm{gram} \mathrm{~s}) \end{aligned}$

Spring No.	Reference	Method of Measurement	Tension
PG.7364A	Fig. 2, AG	Force applied to the knife edge of the upper arm of the chopper lever to part the lower arm from the cam	90-135 grams
PG. 2120	Fig. 3, BG	Force applied at the centre of a finger spring to depress it flat	$\begin{aligned} & 8-9 \text { oz s. } \\ & (227-255 \mathrm{gram} \mathrm{~s}) \end{aligned}$
PG. 7322	Fig. 8, HZ	Force to give an extension of $23 / 64^{\prime \prime}(9.1 \mathrm{~mm})$	$\begin{aligned} & 12-13 \text { ozs. } \\ & (340-369 \text { grams }) \end{aligned}$
PG. 7209	Fig. 3, AX	Force to give an extension of 19/32" (15.1 mm)	$\begin{aligned} & 121 / 2-131 / 2 \text { ozs. } \\ & (354-383 \text { gram s }) \end{aligned}$
PG.5097B	Fig. 8, KZ	Force to compress the spring to $9 / 32^{\prime \prime}(7.1 \mathrm{~mm})$	$\begin{aligned} & 41 / 4-51 / 40 z s . \\ & (120-149 \text { grams }) \end{aligned}$
PG. 7100	Fig. 6, FL	Force to give an extension of $7 / 32^{\prime \prime}(5.6 \mathrm{~mm}$)	$\begin{aligned} & 3-3 / 2 \text { ozs. } \\ & (85-99 \text { grams }) \end{aligned}$
PG. 5093 B	Fig. 3, BA4	Force to compress a selector clutch spring to $5 / 16^{\prime \prime}(7.9 \mathrm{~mm})$. .	$121 / 2-14 / 2$ ozs. (354-411 grams)
PG. 7134	Fig. 8, JU	Force to give an extension of $11 / 32^{\prime \prime}(8.7 \mathrm{~mm})$	$\begin{aligned} & \frac{21 / 2-3 ~ o z s ~}{(71-85 \text { grams })} \end{aligned}$
		Two-Colour Printing Only	
PG. 7066	Fig. 7, GB	Force to give an extension of $15 / 16^{\prime \prime}$ (23.8 mm)	$\begin{aligned} & 2 \text { ozs. } \\ & \text { (57 grains) } \end{aligned}$
	PL. 1078	COMBINATION HEAD UNIT	
PG. 3003	Fig. 13, AA	To give snappy action to the receiving combs	
PG. 3009	Fig. 13, ADB	Force applied at the end of the shift comb jockey lever to move the lever in either direction	$\begin{aligned} & 2-30 \mathrm{zs} . \\ & (57-85 \text { gram s) } \end{aligned}$
PG. 7036	Fig. 12, T	Force applied at the typehead end of each shift bellcrank to move the bellcrank outwards	$\begin{aligned} & 41 / 2-71 / 2 \text { ozs. } \\ & (128-213 \text { gram s }) \end{aligned}$
PG. 7166	Fig. 12, S	Force applied at the typehead end of every bellcrank (except the two shift bellcranks) to move the bellcrank outwards	$\begin{aligned} & 1-13 / 4 \circ \mathrm{zs} . \\ & (28-50 \mathrm{grams}) \end{aligned}$

Spring No.	Reference	Method of Measurement	Tension
	T.I.L. 67	TYPEHEAD UNIT	
2852/10A	Attached to Fig. 25, U	Force applied at the latch face just to move the latch	$\begin{aligned} & 1 / 2-31 / 2 \text { ozs. } \\ & (43-99 \text { gram s) } \end{aligned}$
$\begin{aligned} & 2852 / 17) \\ & 2852 / 18) \end{aligned}$	$\begin{aligned} & \text { Fig. 25, T } \\ & \text { Fig. 25, W } \end{aligned}$	Typehead friction damping torque	$\begin{aligned} & 7.95-8.85 \mathrm{lb} . \mathrm{in} \mathrm{s.} \\ & (9.2-10.2 \mathrm{kg.cm} \mathrm{so}) \end{aligned}$
2852/18	Fig. 25, W	Load when compressed to 15/32" $(11.9 \mathrm{~mm})$	$\begin{aligned} & 4 / 2-51 / 4 / \mathrm{lbs} . \\ & (2.0-2.4 \mathrm{kgs}) \end{aligned}$
PG. 7341	Fig. 26, G	Force to give an extension of $7 / 32^{\prime \prime}(5.6 \mathrm{~mm}) .$	$\begin{aligned} & 81 / 2-9 \frac{1 / 2}{2} \text { ozs. } \\ & (241-269 \text { grams }) \end{aligned}$
	PL. 1078	RIBBON FEED MECHANISM	
1828/19	Fig. 20, G	Force applied at the base of the crown wheel to raise the spindle assembly by approximately $3 / 32^{\prime \prime}$ (2.4 mm)	$\begin{aligned} & 10-12 \text { ozs. } \\ & (284-340 \text { gram s) } \end{aligned}$
PG.2015A	Fig. 8, AE	Force applied at the end of the ratchet spring to lift the spring from the ratchet wheel	$\begin{aligned} & 31 / 2-41 / 2 \mathrm{ozs} . \\ & (99-128 \text { gram s) } \end{aligned}$
PG. 5056	Fig. 21, P	Force to give a compression of approximately $5 / 64^{*}(2 \mathrm{~mm})$. .	$\begin{aligned} & 30 \mathrm{zs} . \\ & \text { (85 gram s) } \end{aligned}$
$\begin{aligned} & \text { PG.2081) } \\ & \text { PG. } 2082 \text {) } \end{aligned}$	$\begin{aligned} & \text { Fig. 21, } \mathrm{E} \\ & \text { Fig. 21, } \mathrm{D} \end{aligned}$	Without Period of Operation Counter. Force applied at each end of the driving shaft to reverse its position.	$\begin{aligned} & 12-15 \text { oz s. } \\ & (340-454 \text { grams }) \end{aligned}$
$\begin{aligned} & \text { PG. } 2118 \text {) } \\ & \text { PG. } 21 \text { 19) } \end{aligned}$	$\begin{aligned} & \text { T.I.S. } 13 \\ & \text { Fig. } 18(\mathrm{~b}), 0 \\ & \text { Fig. } 18(\mathrm{~b}), \mathrm{P} \end{aligned}$	With Period of Operation Counter. Force applied at each end of the driving shaft io reverse its position . .	$\begin{aligned} & 12-16 \text { ozs } \\ & (340-454 \text { gram s) } \end{aligned}$
	PL. 1078	CONTROL LEVER UNIT	
PG. 7034	Fig. 14, $\underset{X}{\mathrm{AH}}$	Force to give an extension of $15 / 32^{*}(11.9 \mathrm{~mm}) \quad . \quad . \quad .$	$\begin{aligned} & 11 / 2-21 / 2 \text { ozs } \\ & (43-71 \mathrm{gram}) \end{aligned}$
PG.7105	Fig. 14, T	Force to give an extension of $11 / 16^{\circ}(17.5 \mathrm{~mm}) \quad \text {. }$	$\begin{aligned} & 81 / 2-91 / 2 \text { ozs. } \\ & (241-269 \text { gram s) } \end{aligned}$

Spring No.	Reference	Method of Measurement	Tension
PG. 7229	$\text { Figs. } \begin{aligned} & 14, ~ \\ & 15 \end{aligned}$	Force to give an extension of 15/32" (11.9 mm)	$\begin{aligned} & 15-17 \text { ozs. } \\ & (425-482 \text { gram s) } \end{aligned}$
PG. 7139	$\begin{aligned} & \text { Figs. } 67, \mathrm{H} \\ & \text { (this booklet) } \end{aligned}$	Force to give an extension of $3 / 16^{\text { }}$ (4.8 mm)	$\begin{aligned} & 3-3 / 20 \mathrm{zs.} \\ & (85-99 \text { gram s) } \end{aligned}$
PG. 7120	Fig. 14, T	Force to give an extension of $1 / 2^{n}(12.7 \mathrm{~mm})$	$\begin{aligned} & 161 / 2-17 / 202 \mathrm{~s} . \\ & (468-496 \text { gram s }) \end{aligned}$
	T.I.S. 32	Two-Colour Printing Only	
PG. 7396	Fig. 1, K_{1}	Force to give an extension of $13 / 64^{\prime \prime}(5.2 \mathrm{~mm}$)	$\begin{aligned} & 7-802 \mathrm{~s} . \\ & (198-227 \text { gram s) } \end{aligned}$
PG. 7176	Fig. 1, K ${ }_{1}$	Force to give an extension of 5/16' (7.9 mm)	$\begin{aligned} & 101 / 2-11 / 202 \mathrm{~s} \\ & (298-326 \text { gram s }) \end{aligned}$
	PL. 1078	PAGE ATTACHMENT UNIT	
PG. 2011 A	Fig. 29, CV1	Force applied at the points of contact with the control levers to depress the carriage return and line-feed dogs flush with the link	30-35 grams
PG.2012A	Fig. 29, BQ5	Force applied at the point of contact with the control lever to depress the letter feed dog clear of engagement with the crosshead	30-35 grams
1839/11A	Fig. 33, AB	See Adjustment No. 54.	-
PG. 1503	Fig. 29, AZ	See Adju stment No. 50.	-
Attached to 1831/18	Fig. 29, DA	Force applied at the tooth of the linefeed powl to push the pawl away from the ratchet. .	$\begin{aligned} & 21 / 2 \text { ozs. } \\ & (71 \text { gram s) } \end{aligned}$
PG. 5055	$\begin{aligned} & \text { Figs. } 27, \\ & 29, F Q 4 \end{aligned}$	Force to compress the spring to $7 / 16^{\prime \prime}(11.1 \mathrm{~mm})$.	$\begin{aligned} & 12-1 \mathrm{bs}_{.} \\ & \left(5.4 \mathrm{~kg}_{0}\right) \end{aligned}$
PG. 7034	Fig. 29, CZ	Force applied vertically under the left-hand end of the trip bellcrank just to lift it	$\begin{aligned} & 3 / 4-10 z_{0} \\ & (21-28 \text { grams }) \end{aligned}$

Spring No.	Reference	Method of Measurement	Tension
PG. 7037	$\begin{aligned} & \text { Figs. } 32, \\ & 33^{\prime}, \mathrm{AL} \end{aligned}$	Force to give an extension of $1 / 2^{\prime \prime}(12.7 \mathrm{~mm}) \ldots$	$\begin{aligned} & 18-22 \text { ozs. } \\ & (510-624 \text { gram s) } \end{aligned}$
PG. 7043	Fig. 29, BP	Force applied at the mouth of the crosshead to move it to the right with the feed dog depressed	$\begin{aligned} & 15-17 \text { oz s. } \\ & (425-482 \text { grams }) \end{aligned}$
PG. 7044	$\text { Figs. } \begin{aligned} 27 \\ 29, ~ F X \end{aligned}$	Force applied at the top end of the latch arm to swing the latch clear of the pin	$\begin{aligned} & 7 \text { ozs. } \\ & \text { (} 198 \text { grams) } \end{aligned}$
PG. 7045	Fig. 29, AK	Force applied at the jockey roller to lift it a way from the ratchet	$1 / 2$-lbs. (680 gram s)
PG. 7047	Fig. 29, CR	Tension to be sufficient to restore the carriage-return bellcrank to its normal position without the aid of the carriage return link	-
PG. 7093	$\text { Fig. 29, } \begin{array}{r} \mathrm{BU} \\ \mathrm{CT} \\ \mathrm{DK} \end{array}$	Force to give an extension of $1 / 2^{*}(12.7 \mathrm{~mm})$. .	$\begin{aligned} & 71 / 2-81 / 2 \text { ozs. } \\ & (213-24!\text { gram s }) \end{aligned}$
PG. 7029	E.O.L.1. Trip (not shown)	Force to give an extension of $19 / 64^{\prime}(7.5 \mathrm{~mm})$	$\begin{aligned} & \text { l-lb. 14-oz- - } \\ & 2-1 \mathrm{~b} .2 \text { 2-oz. } \\ & \text { (} 851-964 \text { grams) } \end{aligned}$
PG. 7167	Fig. 29, CE	Force applied at the tooth of each pawl (letter-feed and retention) to disengage the pawl from the ratchet wheel	$\begin{aligned} & 4-5 \text { ozs. } \\ & (113-142 \text { grams }) \end{aligned}$
	PL. 1078	PAGE ATTACHMENT UNIT (Sprocket Feed Carriage only)	
PG. 7053	Fig. 34, K	Force to give an extension of $25 / 32^{n}(19.9 \mathrm{~mm}) \quad \text {. } \quad \text {. . . }$	$\begin{aligned} & 231 / 2-261 / 2 \text { ozs. } \\ & (666-751 \text { grams }) \end{aligned}$
PG. 7137	Fig. 34, N	Force to give an extension of $11 / 64^{\prime \prime}(4.4 \mathrm{~mm})$	$\begin{aligned} & 29-31 \text { ozs. } \\ & (822-879 \text { gram s) } \end{aligned}$
PG. 7101	Fig. 29, DN 6	Force to give an extension of $5 / 8^{\mathrm{m}}$ (15.9 mm)	$\begin{aligned} & 161 / 2-171 / 2 \text { ozs. } \\ & (468-496 \text { grams }) \end{aligned}$

Spring No.	Reference	Method of Measurement	Tension
	PL. 1078	GOVERNOR AND MOTOR UNITS	
PG.2021A	Fig. 8, Z	Pressure to be exerted by the brushes on the governor slip rings	$\begin{aligned} & 41 / 2-51 / 2 \text { ozs. } \\ & (128-156 \text { grams }) \end{aligned}$
PG. 7301	Fig. 8, J	Force applied 21/32" (16.7 mm) from the fitting screw to flatten each motor spring	$\begin{aligned} & 1 / 2-\mathrm{lbs} . \\ & (680 \mathrm{gram}) \end{aligned}$
	This Booklet	STARTER SWITCH AND SWITCH CONTROL UNIT	
PG. 5009	Attached to XD, Fig. 54	See Adjustment 57	-
PG. 5102	AY, Fig. 55	See Adjustment 58.4	1 -
PG. 7387	AX, Fig. 56	Force to give an extension of $1 / 4^{\prime \prime}(6.4 \mathrm{~mm})$. .	$\begin{aligned} & 8-12 \text { ozs. } \\ & (227-340 \mathrm{gram} \mathrm{~s}) \end{aligned}$
PG. 3147	Links Aland AN Fig. 59	See Adju stment 66.2	-
PG. 7386	Attached to front end of G, Fig. 58	Force to give an extension of $17 / 64^{\text { }}(6.8 \mathrm{~mm})$	$\begin{aligned} & 21-28,0 \mathrm{zs} . \\ & (595-794 \text { gram s) } \end{aligned}$
PG.7385A	E, Fig. 58	See Adju stment 65	-
PG. 3149	AG, Fig. 62	See Adjustment 66.3	-
PG. 738	AW, Fig. 56	Force to give an extension of $9 / 64^{\circ}(3.6 \mathrm{~mm})$	$\begin{aligned} & 2-21 / 2 \text { ozs. } \\ & (57-71 \mathrm{grams}) \end{aligned}$
	-	ANSWER-BACK ROCKSHAFT	
PG. 7395	-	Force to give an extension of $47 / 64^{\text { }}$ (18.7 mm)	$\begin{aligned} & 21 / 4-2^{1 / 2} \mathrm{lbs} . \\ & (1-1.1 \mathrm{~kg} .) \end{aligned}$
PG. 7379	-	Force to give an extension of $5 / 32^{\prime \prime}(4.0 \mathrm{~mm})$	1-1b. 2 ozs. -1-lb. 9 ozs. (511-709 grams)

LUBRICATION INSTRUCTIONS

Note: All machines are properly lubricated before they leave the factory, but it should be remembered that some oil is likely to be lost in transit and in storage. It is, therefore, important to lubricate all new machines before they are put into service.

AFTER EACH 300 HOURS OF OPERATION

No. 1 Lubricant

A. Clean the platen spindle and running bar with a eloth dipped in paraffin oil. Apply few drops of lubricant to the platen spindle and the running bar.
B. Apply a small quantity to the ribbon feed change rods (excessive lubrication may caus sticking).
C. Lubricate the following parts:-
(1) Cam spindle bearings
(2) Periphery of operating cam
(3) Cam roller bearing

No. 2 Lubricant
A. Fill the following oil cups and oil holes:-
(1) Pilot cam detent pivot
(2) Left- and right-hand pivots of pilot cam detent link
(3) Function retention lever pivot
(4) Selector trip shaft front bearing block
(5) Function detent bell crank pivot
(6) Function detent rocker lever pivot
(7) Typehammer lever pivot
(8) Traversing lever roller
(9) Typehammer lever roller
(10) Bellcrank lifting lever roller
(11) Oil hole in cam sleeve
(12) Translator retention lever pi vot
(13) Oil pot on finger lift lever
(14) Barrel camshaft front and rear bearing blocks
(15) Detent trip shaft rear bearing
(16) Selector trip shaft rear bearing
(17) Front and rear selector camshaft bearings
(18) Oil pot on feed lever

Overlap
Cam
Uni \dagger
B. Saturate the following lubricating felts, washers and wicks:-
(1) Function retention lever lubricating pad
(2) Traversing lever lubricating washers
(3) Bell crank lifting lever lubri cating wick
(4) Translator retention lever lubricating pad
(5) Selector cam lubricator frame

(6) Chopper and rocker blade knife-edge lubricating wick
(7) Oiling washers at front and rear ends of rock shaft) Overlap
(8) Typehead lubricator felt - Typehead Unit
(9) Felt washers on lock bar and air valve connector - Page Attachment Unit
C. Lubricate the following pivots, friction faces and couplings:-
(1) Abutment face of pilot cam detent
(2) Orientation roller
(3) Pivot between orientation link and adjusting block
(4) Armature link eccentric pivot
(5) Fork of function detent bellcrank
(6) Function detent pivot
(7) Function detent link pivots
(8) Pivot between traversing lever and traversing link
(9) Point of engagement between translator retention lever and function detent rocker lever
(10) Translator and function cam sleeve ratchets and pawls
(11) Gap between translator and function cam sleeves
(12) All cam tracks
(13) Bellcrank lifting block

Overlap
(14) Translator detent pivot

Cam
(15) Translator detent link pivots
(16) Cone-pointed link pivot on finger plunger
(17) Finger plunger
(18) Slots in push rod rack
(19) Knuckle joints between push rods and sequential levers
(20) Resetting link pivot
(21) Chopper and code lever pivot
(22) Knuckle joints between code and sequential levers
(23) Finger pivot
(24) Finger lifting link pivot
(25) Feed lever trunnion pivot
(26) Pivot between feed lever and rear end of traversing link
(27) Face of finger resetting bell crank
(28) Finger resetting bellcrank pivot
(29) Clutch-band engagement with typehead driving spring
(30) Clutch lining (N.B.: avoid surplus oil)
(31) Typehead latch pivot

Unit
(32) Link guide block
(33) Spring drum ratchet wheel
(34) Platen spindle ratchet
(35) Platen end bearings
(36) Pivots of the rollers at top and bottom of the dashpot lever

Page
Attachment
(37) Control lever bearing bushes and pivots of feed throw-out lever

Unit
(38) Ribion juper groovs in

Control Lever
(38) Ribbon jumper grooves in typehead support bracket

Unit
(39) Ribbon feed pawl pivot
(40) Ribbon driving shaft, ratchet and crown wheel\} mechanism
(41) Ratchet gear teeth Starter Switch
(42) Knock-out cam face $\}$ Control Unit
(43) Bellcrank lifting collar engagement face - Combination Head Unit

No. 4 Lubricant

A. Apply a little grease to the following parts:-
(1) Working faces between spring anchors and retaining plate
(2) Camshaft gear, selector driving gear and selector camshaft gear

Overlap
(3) Working faces of the ears on the stop plate - Typehead Unit
(4) Carriage rack and spring drum gear wheel - Page Attachment Unit
(5) Working edges of the control levers and the feed throw-out Control Lever lever $\}$ Unit
(6) Hammer head spring engagement and shock-absorber spring - Typehammer Unit

No. 5 Lubricant

A. Apply a little grease to the following parts:-
(1) Outsides of the rollers on the dashpot lever - Page Attachment Unit
(2) Jockey bush on the ribbon driving shaft - Ribbon Feed Mechanism
(3) Operating face of the trip spring blade - Starter Switch Control Unit

AFTER EACH 3,600 HOURS OF OPERATION

Dismantle and clean the machine. Lubricate all points as above, with the following additions:-

No. 2 Lubricant
A. Soak the following parts in the lubricant for 2-3 hours:-
(1) Translator and function cam sleeves
(2) Pilot cam friction discs

Overlap
(3) Rocker blade lubricating washer
(4) Selector camshaft front and rear friction discs Cam Unit
(5) Typehead Iatch arm
(6) Typehead stop arm
(7) Clutch body
(8) Clutch friction washers
(9) Typehead support bracket - Control Lever Unit
B. Soak the following part in the lubricant for a few minutes:-
(1) Bellcrank bearing oiling wick - Combination Head Unit
C. Lubricate the following parts:-
(1) Anchor holes and pins of all cam unit tension springs
(2) Operating face of rocker blade
(3) Finger lift lever pivot

Overlap
(4) Comb setting fingers
(5) Guideway in push rod rack for resetting link
(6) Resetting link lever pivot
(7) All oilite bearings
(8) A few drops to the leathemiston washer
(9) A few drops to the oiling pads in the release lever bearing blocks
(10) 'Letters' key transfer lever pin
(11) Keybar connecting link loops
(12) Transfer lever spindle bearings
(13) Switch operating shaft pivot
(14) Switch weight guides
(15) Loops of switch weight wire link
(16) Trip lever spindle bearings
(17) Pivots of the roller lever, spring setting arm and latches
(18) Slot in the spring stop
(19) Trip shaft bearings
(20) Operating face of the latch lever
(21) Pivot between the latch operating lever and the spring setting arm
(22) Pivot between the latch operating lever and the vertical latch lever
(23) Latch and guide faces of the vertical latch lever and the bearing
(24) Pivot of operating bellcrank

Starter
Switch
Control
(25) A smear of lubric ant on the Bowden cable inner wire behind the front plunger
(26) Rear plunger oiler tube on control unit casting
(27) Operating face of delay lever
(28) Bearing of trip lever spindle
(29) Operating face of trip lever
(30) Roller pivot
(31) Ribbon lift roller and its bearings
(32) Drop lever pivot
(33) Counter gear bearing pin - Period of Operation Counter
D. Apply a trace of oil to the ribbon guide pins on the ribbon feed brackets, taking car that none reaches the outside of the rollers.

No. 4 Lubricant

A. Clean and repack the following ball bearings:-
(1) Combination head (2).
(2) Main shaff (2).
(3) Motor (2).
(4) Page attachment unit (2).
B. Apply a light smear of grease to the following:-
(1) Gear train - Starter Switch Control Unit
(2) Ground faces of the armature extension and of the gap in the armature stop plate

[^0]No. 5 Lubricant
A. Smear a little of the lubricant on the following parts:-
(1) Periphery of the bellcrank bearing
(2) Both ends of the bellcranks
(3) Driving worm and gear
(4) Driving pin on the driving gear $\}$
(5) Armature pivots after cleaning -

Combination
Head Unit
Period of Operation
Counter
Electromagnet Unit

LUBRICANTS

The following lubricants are recommended and may be obtained from Creed \& Co. Ltd.

No. 1 Lubricant - Thin Oil, such as:-
(a) Clavus Oil 17 (Shell Oil J.Y.1).
(b) Wakefield Magna R.S. Oil.
(c) G.P.O. Oil No. 12.

No. 2 Lubricant - Medium Oil, such as:-
(a) Talpa Oil 30 (Shell Oil C.Y.2).
(b) Wakefield Castrol XL.
(c) G.P.O. Oil No. 14.

No. 4 Lubricant - Grease, such as:-
(a) Shell Nerita Grease 3 (Shell VW).

No. 5 Lubricant - Grease, such as:-
(a) Mobilgrease No. 2

FIG. 5 (a)

FIG. 5 (b)

FIG. 6
FIG. 7

FIG. 8

DIMENSIONS

$$
' a^{\prime}=\left\{\begin{array}{l}
.002-.004 \mathrm{ins} . \\
.05-.10 \mathrm{~mm} .
\end{array} \quad b^{\prime}=\left\{\begin{array}{l}
.011-.015 \mathrm{ins} . \\
.28-.38 \mathrm{~mm} .
\end{array}\right.\right.
$$

FIG. 9

FIG. 11 (a)
FIG. 11 (b)

$$
\begin{gathered}
\text { D:MENSIONS } \\
{ }^{\prime} c^{\prime}=\left\{\begin{array}{l}
.018-.02 \mathrm{ins} \\
46-.56 \mathrm{~mm} .
\end{array}\right. \\
\mathrm{e}^{\prime}=\left\{\begin{array}{c}
.002-0.04 \mathrm{ins} \\
.05-10 \mathrm{~mm}
\end{array}\right.
\end{gathered}
$$

FIG. 12

FIG. 13

FIG. 14
DIMENSIONS
$f \prime=\left\{\begin{array}{l}.031-.035 \text { ins. } \\ .79 — .89 \mathrm{~mm} .\end{array} \quad ' g '=\left\{\begin{array}{l}.010 — .015 \text { ins. } \\ .25 — .38 \mathrm{~mm} .\end{array} \quad h^{\prime}=\left\{\begin{array}{l}.012-.018 \text { ins. } \\ .30-.46 \mathrm{~mm} .\end{array}\right.\right.\right.$

FIG. 15

FIG. 16

FIG. 17

FIG. 18

FIG. 19

DIMENSION

$$
\mathrm{j}=\left\{\begin{array}{l}
\cdot 006-\cdot 008 \text { ins. } \\
\cdot 15-\cdot 20 \mathrm{~mm} .
\end{array}\right.
$$

FIG. 20

FIG. 21

FIG. 22

DIMENSIONS

$$
k^{\prime}=\left\{\begin{array}{l}
.013-.017 \mathrm{ins} . \\
.33-.43 \mathrm{~mm} .
\end{array} \quad x^{\prime}=\left\{\begin{array}{l}
.001-.005 \mathrm{ins} . \\
.03-.13 \mathrm{~mm} .
\end{array}\right.\right.
$$

FIG. 23

FIG. 24

FIG. 25

FIG. 26

DIMENSION

$$
' m '=\frac{1}{32} \text { ins. }(.8 \mathrm{~mm} .)
$$

FIG. 27

FIG. 28

FIG. 29

FIG. 30

FIG. 31

DIMENSIONS

FIG. 32

FIG. 33

FIG. 34

FIG. 35

FIG. 36

DIMENSIONS

$$
\begin{aligned}
& { }_{\mathrm{ij}},=\left\{\begin{array}{ll}
.010-.015 \mathrm{in} . \\
.25-.38 \mathrm{~mm} .
\end{array} \quad \mathrm{kk}^{\prime}=\left\{\begin{array}{ll}
.010 \mathrm{in} . & \text { (min.) } \\
.25 \mathrm{~mm} . & \left(\mathrm{mi}= \begin{cases}.005-.015 \mathrm{in} . \\
.13-.38 \mathrm{~mm} .\end{cases} \right.
\end{array} \quad \begin{array}{ll}
.010 \mathrm{in} . & \text { (min.) } \\
.25 \mathrm{~mm} . & \text { (m. }
\end{array}\right.\right.
\end{aligned}
$$

FIG. 37

FIG. 38
FIG. 39

FIG. 40

DIMENSIONS

$n^{\prime}=\left\{\begin{array}{l}.006-.010 \mathrm{in} . \\ \cdot 15-.25 \mathrm{~mm} .\end{array} \quad{ }^{n} n^{\prime}=\frac{1}{8} \mathrm{in}.(32 \mathrm{~mm}.) \quad \circ^{\prime}=\left\{\begin{array}{l}.010-.015 \mathrm{in} . \\ .25-.38 \mathrm{~mm} .\end{array} \quad \mathrm{o}^{\prime}=\left\{\begin{array}{l}.015-.025 \mathrm{in} . \\ .38-.64 \mathrm{~mm} .\end{array}\right.\right.\right.$

FIG. 42

FIG. 43

$$
\begin{gathered}
\text { DIMENSION } \\
' q '=.015-.020 \mathrm{in} .(\cdot 38-.51 \mathrm{~mm} .)
\end{gathered}
$$

FIG. 44

FIG. 45

FIG. 46

DIMENSIONS

$$
' r '=\left\{\begin{array}{c}
.005-.008 \mathrm{in.} \\
.13-.20 \mathrm{~mm} .
\end{array} \mathrm{rr}^{\prime}=\left\{\begin{array}{c}
.001-.005 \mathrm{in} . \\
.03-.13 \mathrm{~mm} .
\end{array}\right.\right.
$$

FIG. 47

FIG. 48

DIMENSION

$$
' \mathrm{t}^{\prime}=\left\{\begin{array}{l}
\cdot 005-\cdot 010 \mathrm{ins} . \\
\cdot 13-\cdot 25 \mathrm{~mm} .
\end{array}\right.
$$

FIG. 50

FIG. 51

FIG. 52

DIMENSION
$a^{\prime}\left\{\begin{array}{l}.010-.020 \mathrm{in} . \\ .25-.51 \mathrm{~mm} .\end{array}\right.$

FIG. 53

FIG. 54

DIMENSIONS

'b' $\left\{\begin{array}{c}.010-\mathrm{ins} . \\ .25-\mathrm{mm} .\end{array} \quad\right.$ c' $\left\{\begin{array}{l}.045-.048 \mathrm{ins} . \\ 1.14-1.22 \mathrm{~mm} .\end{array}\right.$

FIG. 56
FIG. 55

FIG. 57

FIG. 58

DIMENSIONS

$\therefore\left\{\begin{array}{l}\frac{1}{32} \text { ins } . \\ .8 \mathrm{~mm} .\end{array}\right.$
$d^{\prime}\left\{\begin{array}{l}.015-.025 \mathrm{ins} . \\ .38-.64 \mathrm{~mm} .\end{array}\right.$

$$
\text { 'e' }\left\{\begin{array}{l}
.002-.005 \mathrm{ins} . \\
.05-\cdot 13 \mathrm{~mm}
\end{array}\right.
$$

FIG. 60

FIG. 59

FIG. 61

FIG. 62

$$
\begin{aligned}
& \text { 'f' }\left\{\begin{array} { l }
{ \frac { 1 } { 1 6 } - \frac { 3 } { 3 2 } \mathrm { ins } . } \\
{ 1 . 6 - 2 . 4 \mathrm { mm } . }
\end{array} \quad ' h \prime \left\{\begin{array}{l}
.002-.006 \text { ins. } \\
.05-15 \mathrm{~mm} .
\end{array}\right.\right. \\
& ' g '\left\{\begin{array}{l}
\frac{1}{64}-\frac{3}{64} \text { ins. } \\
.4-1.2 \mathrm{~mm} .
\end{array} \quad \mathrm{j},\left\{\begin{array}{l}
\frac{1}{32}-\frac{3}{64} \text { ins. } \\
\cdot 8-1.2 \mathrm{~mm} .
\end{array}\right.\right.
\end{aligned}
$$

FIG. 63

FIG. 64

DIMENSION
'I' $\left\{\begin{array}{l}.015-.020 \mathrm{ins} . \\ .38-.51 \mathrm{~mm} .\end{array}\right.$

FIG. 65

FIG. 66

DIMENSIONS
$' b \prime=\left\{\begin{array}{l}\frac{3}{32}-\frac{3}{16} \mathrm{in} . \\ 3.75-4.75 \mathrm{~mm} .\end{array} \quad c^{\prime}=\left\{\begin{array}{l}.055-.066 \mathrm{in} . \\ 1.40-1.68 \mathrm{~mm} .\end{array}\right.\right.$

FIG. 67

FIG. 68

DIMENSION
$a^{\prime} \neq\left\{\begin{array}{l}.003 \mathrm{ins} . \\ .08 \mathrm{~mm} .\end{array} \quad b=\left\{\begin{array}{l}.005 \mathrm{ins} . \\ .13 \mathrm{~mm} .\end{array} \quad c^{\prime}=\left\{\begin{array}{l}.005 \mathrm{ins} . \\ .13 \mathrm{~mm} .\end{array}\right.\right.\right.$

AMENDMENTS TO BOOKLET NO. 54 (1st Edition)
 (No. 54 Teleprinter)

Amendment No. 1

On page 8, adjustment 6.1, delete "3-4 ozs. (85-113 grams)" and insert " $21 / 2-31 / 2$ ozs. (71-99 grams)".

Amendment No. 2

On page 8, adjustment 8.2, delete " $3-40 z \mathrm{~s}$. (85-113 grams)" and insert " $21 / 2-31 / 2$ czs. ($71-99$ grams)".

Amendment No. 3

On page 13, adjustment 22.1, delete ". 055 - . 066 ins. ($1.40-1.68 \mathrm{~mm}$)" and insert ". 050 - . 065 ins. $\left(1.39-1.65 \mathrm{~mm}\right.$)"; and in adjustment $22.1(\mathrm{~d})$ delete " $4-4.75 \mathrm{~mm}^{\prime}$ and insert " $3.8-4.6 \mathrm{~mm}$ ".

Amendment No. 4
On page 16 , adjustment 34.2 , delete "approximately $.005 \mathrm{in} .(13 \mathrm{~mm}$)" and insert "between . $004-.010 \mathrm{in} .(.10-.25 \mathrm{~mm})$.$" .$

Amendment No. 5

On page 16 , adjustment 35.4 , delete "not greater than $.003 \mathrm{in} .(.08 \mathrm{~mm})$ ", and insert "between . 002 - . $006 \mathrm{in} .(.05-.15 \mathrm{~mm}$.)".

Amendment No. 6
On page 16 , adjustment 35.6 , delete "approximately $.005 \mathrm{in} .(.13 \mathrm{~mm}$)" and insert ". $004-.010 \mathrm{in} .\left(.10-.25 \mathrm{~mm}\right.$.) ${ }^{n}$.

Amendment No. 7

On pages 18 and 19 , delete adjustments 43,44 and 45 , and insert the following new adjustments:-
"43. Cariage Feed and Retaining Pawls. (Figs. 42 and 44)
43.1 Remove the unit from the machine. Slacken clamping screw A, Fig. 42, (on the back of the frame behind the letter feed levers), and clamping screw P, Fig. 44. Set the eccentrics B, Fig. 42, and N, Fig. 44, to their neutral positions, i.e. with their slots horizontal.
43.2 Feed the carriage along a few spaces to the left from the extreme righthand position, i.e. until it is retained by the retaining pawl.
43.3 Adjust the carriage feed and retaining pawl eccentrics to give a clearance of . $005-.008 \mathrm{in}$. (. $13-.20 \mathrm{~mm}$.), i.e. dimension ' r ', Fig. 44, between the feed pawl and the next tooth of the ratchet.
(N.B.: The adjustment should be shared between the two eccentrics. As the retaining pawl eccentric has twice the angular throw of the feed pawl eccentric, the slot in the retaining pawl eccentric should be tumed through approximately twice the angle of the feed pawl eccentric).
43.4 Lock the feed and retaining pawl eccentrics.

T.I.S. No. 44

Page 2 / 4
(Issued April 1956)
44. Adjustable Platen Stop. (Figs. 43 and 44)
44.1 Depress the carriage return key and ensure that the carriage is in its extreme right-hand position.
44.2 Check the clearance between the feed pawl and the next tooth of the ratchet once more, i.e. dimen sion 'r', Fig. 44. This should be, as before, . $005-.008$ in. (. 13 - .20 mm .).
44.3 If this is not so, slacken the clamping screws H, Fig. 43, and adjust the position of stop K. Tighten screws H .
(This adjustment ensures that the retention pawl engages correctly at the intersection of the tooth slope and the cut-away in the spring drum, as shown in the inset to Fig. 43)."

Amendment No. 8

On page 22, adjustment 58.4 , delete " $1 / 32 \mathrm{in} .(.8 \mathrm{~mm})$ " and insert ". $020-.040 \mathrm{in}$. (.51-1.02 mm.)."

Amendment No. 9

On page 24 , adjustment 66.3 , delete " $1 / 2-1 / 2$ ozs. ($14-43$ grams)" and insert " $11 / 2$ - 2 ozs. ($43-57$ grams)."

Amendment No, 10
On pages 31 - 35, Spring Tensions, amend as follows:-

Booklet No. 54				Method of Measurement	Tension
Page	Spring No.	Reference			
31	PG. 7164	$\text { Fig. } 22, K$$\text { and } A L$	DELETE	Force to give an extension of $3 / 16 \mathrm{in}$. (4.8 mm).	
			INSERT	Force to give an extension of $1 / 2 \mathrm{in}$. $(12.7 \mathrm{~mm})$.	
31	PG. 7372	Fig. 6, JM	DELETE		$\begin{aligned} & 15-17 \circ \mathrm{zs} . \\ & (425-482 \mathrm{gms}) \end{aligned}$
			INSERT		$\begin{aligned} & 14-18 \text { ozs. } \\ & (397-410 \mathrm{gms}) \end{aligned}$
31	PG. 7100	Fig. 6, LE	DELETE		$\begin{aligned} & 4-602 \mathrm{~s} . \\ & (113-170 \mathrm{gms}) \end{aligned}$
			INSERT		$\begin{aligned} & 21 / 4-4 \mathrm{ozs} . \\ & (71-113 \mathrm{gms}) \end{aligned}$
31	PG. 7227	$\begin{array}{r} \text { Fig. } 4, \\ 5, \mathrm{C} Z \end{array}$	DELETE		$\begin{aligned} & 2-30 \mathrm{zs} . \\ & (57-85 \mathrm{gm} \mathrm{~s}) \end{aligned}$
			INSERT		$\begin{aligned} & 2-2^{1 / 2} \mathrm{ozs} . \\ & (57-71 \mathrm{gms}) \end{aligned}$

Booklet No. 54				Method of Measurement	Tension
Page	Spring No.	Reference			
31	PG. 5095	Fig. 4, 5, DN	DELETE		125-157 gms
			INSERT		$\begin{aligned} & 43 / 4-61 / 4 \text { ozs. } \\ & (135-177 \mathrm{gms}) \end{aligned}$
32	PG.7364A	Fig. 2, AG	DELETE		$90-135 \mathrm{gms}$
			INSERT		225-345 gms
32	PG. 7209	Fig. 3, AX	DELETE		$\begin{aligned} & 121 / 2-131 / 2 \mathrm{ozs} . \\ & (354-383 \mathrm{gms}) \end{aligned}$
			INSERT		$\begin{aligned} & 12-14 \mathrm{ozs} . \\ & (340-397 \mathrm{gms}) \end{aligned}$
32	PG.5097B	Fig. 8, KZ	DELETE		$\begin{aligned} & 41 / 4-51 / 4 \text { ozs. } \\ & (120-149 \mathrm{gms}) \end{aligned}$
			INSERT		$\begin{aligned} & 4 / 2-6 \text { ozs. } \\ & (128-170 \mathrm{gms}) \end{aligned}$
32	PG. 7100	Fig. 6, FL	DELETE		$\begin{aligned} & 3-31 / 2 \text { ozs. } \\ & (85-99 \mathrm{gms}) \end{aligned}$
			INSERT		$\begin{aligned} & 21 / 4-40 \mathrm{zs} . \\ & (71-113 \mathrm{gms}) \end{aligned}$
32	PG.5093B	Fig.3, BA4	DELETE		$\begin{aligned} & 121 / 2-141 / 2 \mathrm{ozs} . \\ & (354-411 \mathrm{gms}) \end{aligned}$
			INSERT		$\begin{aligned} & 131 / 2-151 / 2 \text { ozs. } \\ & (383-439 \mathrm{gms}) \end{aligned}$
32	PG. 7066	Fig. 7, GB	DELETE	Force to give an extension of $15 / 16 \mathrm{in}$. $(23.8 \mathrm{~mm}$)	$\begin{aligned} & 2 \mathrm{ozs} . \\ & (57 \mathrm{gms}) \end{aligned}$
			INSERT	Force to give an extension of $29 / 32 \mathrm{in}$. (23.2 mm)	$\begin{aligned} & 13 / 4-21 / 4 \text { ozs. } \\ & (50-64 \mathrm{gms}) \end{aligned}$
33	PG. 5056	Fig.21, P	DELETE		$\begin{aligned} & 3 \mathrm{ozs} . \\ & (85 \mathrm{gms}) \end{aligned}$
			INSERT		$\begin{aligned} & 21 / 2-31 / 2 \mathrm{ozs} . \\ & (71-99 \mathrm{gms}) \end{aligned}$
33	PG. 7105	Fig. 14, T	DELETE		$\begin{aligned} & 81 / 2-91 / 2 \text { ozs. } \\ & (241-269 \mathrm{gms}) \end{aligned}$
			INSERT		$\begin{aligned} & 71 / 2-91 / 202 \mathrm{~s} . \\ & (213-269 \mathrm{gms}) \end{aligned}$
34	PG. 7229	$\text { Fig. }{ }_{15,}^{4,} \mathrm{AD}$	DELETE	Force to give an extension of $15 / 32 \mathrm{in}$. (11.9 mm)	
			INSERT	Force to give an extension of $7 / 32 \mathrm{in} .(5.6 \mathrm{~mm}$)	

T.I.S. No. 44

Page 4 / 4

(Issued April 1956)

Booklet No, 54			Method of Measurement	Tension
Page	Spring No.	Reference		
34	PG. 7396	Fig. 1, K1	DELETE Force to give an extension of $13 / 64 \mathrm{in}$. (5.2 mm)	$\begin{aligned} & 7-802 \mathrm{~s} . \\ & (198-227 \mathrm{gms}) \end{aligned}$
			INSERT $\begin{aligned} & \text { Force to give an extension } \\ & \text { of } 3 / 16 \mathrm{in} .(4.8 \mathrm{~mm})\end{aligned}$	$\begin{aligned} & 61 / 2-81 / 202 \mathrm{~s} . \\ & (184-241 \mathrm{gms}) \end{aligned}$
34	PG. 5055	$\begin{aligned} & \text { Fig. } 27 \text { í } \\ & 29, \text { Q4 } \end{aligned}$	DELETE	$\begin{aligned} & 12 \mathrm{lb} . \\ & (5.4 \mathrm{kgs}) \end{aligned}$
			INSERT	$\begin{aligned} & 11-13 \mathrm{lb} . \\ & (4.9-5.9 \mathrm{kgs}) \end{aligned}$
34	PG. 7034	Fig.29, CZ	DELETE	$\begin{aligned} & 3 / 4-10 z . \\ & (21-28 \mathrm{gms}) \end{aligned}$
			INSERT	$\begin{aligned} & 1 / 2-2^{1 / 2 o z s .} \\ & (42-71 \mathrm{gms}) \end{aligned}$
35	PG. 7037	$\begin{array}{r} \text { Fig. 32, } \\ 33, ~ A L \end{array}$	DELETE	$\begin{aligned} & 18-22 \text { ozs. } \\ & (510-624 \mathrm{gms}) \end{aligned}$
			INSERT	$\begin{aligned} & 16-24 \text { ozs. } \\ & (454-684 \mathrm{gms}) \end{aligned}$
35	PG. 7043	Fig.29, BP	DELETE	$\begin{aligned} & 15-17 \text { ozs. } \\ & (425-482 \mathrm{gms}) \end{aligned}$
			INSERT	$\begin{aligned} & 101 / 2-11 / 2 \mathrm{ozs} . \\ & (298-326 \mathrm{gms}) \end{aligned}$
35	PG. 7167	Fig.29, CE	DELETE	$\begin{aligned} & 4-5 \text { ozs. } \\ & (113-142 \mathrm{gms}) \end{aligned}$
			INSERT	$\begin{aligned} & 11-13 \mathrm{ozs} . \\ & (312-369 \mathrm{gms}) \end{aligned}$

Amendment No. 11

(i) On Fig. 42, delete dimension ' q '.
(ii) On Figs. 55 - 58, delete dimension ' c ': " $1 / 32 \mathrm{in} .(.8 \mathrm{~mm}$)" and insert $" .020-.040 \mathrm{in} .(.51-1.02 \mathrm{~mm}$.) ".
(iii) On Figs. $67-68$, delete dimensions ' a ', ' b ' and ' c ', and insert the following new dimensions:

$$
\begin{aligned}
" ' a ' & =.002-.006 \mathrm{in} .(.05-.15 \mathrm{~mm}), \\
' b & =.004-.010 \mathrm{in.}(.10-.25 \mathrm{~mm}), \\
' c & =.004-.010 \mathrm{in} .(.10-.25 \mathrm{~mm}),
\end{aligned}
$$

AMENDMENTS TO BOOKLET NO. 54 (1st Edition)
 (Model 54 Page Teleprinter)

Amendment No. 1

At the bottom of page 5, amend the last sentence to read:-
"The external voltage is applied between socket 12 of the extemal 12-way socket AF, Fig. 3, and an extemal earth."

Amendment No. 2

On page 6, insert the following additional note immediately after the heading "ADJUSTMENT INSTRUCTIONS":-
"N.B.: Before removing or replacing the machine silencing cover, remove the page attachment unit and cuttings box, and disconnect the power and line sockets. Raise the reperforator inspection flap and, by observing through this aperture whilst lifting or lowering the cover, ensure that the cover does not foul any part of the reperforator mechanism."

Amendment No. 3

On page 13, Adjustment 23.2, line 2, delete "seven" and insert "thirteen".

Amendment No. 4
On page 21, Adjustment 56.1, delete ". $010 \mathrm{in} .(.25 \mathrm{~mm}$.)" and insert ". $010-.020 \mathrm{in}$. (. $25-.51 \mathrm{~mm}$.) ${ }^{\text {n }}$.

Amendment No. 5
On page 33, PG. 5056, column 4, delete " 3 ozs. (85 grams)" and insert " $3-4 / 2$ ozs. ($85-128$ grams)".

Amendment No. 6

On page 35, PG. 7101 , columns 1-4, delete and re-insert same between PG. 7029 and PG. 7167 , al so on page 35.

Amendment No. 7

Figs. 53-54, dimension ' b ', delete ". $010 \mathrm{in}$. (. 25 mm .)" and insert ". $010-.020 \mathrm{in}$. (. $25-.51 \mathrm{~mm}$.) ${ }^{\prime \prime}$.

AMENDMENTS TO BOOKLET NO. 54 (1st Edition)
 (Model 54 Page Teleprinter)

Amendment No. 1

On page 12, immediately after adjustment 19, insert the following new adjust-ment:-

"19A. Traversing Link Damping Device (Fig. 84)

19A. 1 Check that the pressure required to just lift the friction pad C from contact with the traversing link is $21 / 2 \mathrm{lbs}$. (1.1 kgs .) when a spring balance is applied as shown in Fig. 84.

19A. 2 If the pressure is not correct, slacken locknut A and adjust screw B until the required pressure is obtained.
19A. 3 Tighten locknut A."

Amendment No. 2

On page 19, delete adjustment 46 and insert the following new adjustment:-
"45. Adjustable Pawl Throwout Lever (Fig. 82)
N. B.: The pawl throwout lever is adjusted correctly in the factory and should not normally require attention. If, however, new parts are fitted, or wear develops in the carriage return linkage, then the lever should be readjusted as follows:-
45. 1 With the Page Attachment Unit off the machine and the carriage in its extreme right-hand position, feed the carriage a few spaces to the left. Retain it in this position (e.g. by inserting a block of wood between the carriage unit and the right-hand bearing bracket), and depress the manual carriage return button.
45.2 Fully depress the manual carriage return button and check that there is a clearance of $1 / 64-1 / 32 \mathrm{in}$. (. $4-.8 \mathrm{~mm}$.), i.e. dimen sion ' a ', Fig. 82, between the pawl throwout lever B and the trip bellcrank A.
45.3 If this is not so, slacken screws C and adjust the pawl throwout lever B until the required dimension is obtained.
45.4 Tighten screws C, Fig. 82."

T.I.S. No. 52

Page 2/4
(Issued January 1957)

Amendment No. 3

On page 19, immediately after adjustment 45, insert the following new adjust-ment:-

46. Trip Bellerank (Fig. 83)

46.1 With the Page Attachment Unit off the machine and the carriage in its extreme right-hand position, feed the carriage a few spaces to the left. Holding the carriage in this position by hand, momentarily depress the manual carriage return button so that the trip bellcrank B latches on to the top of the pawl throwout lever A.
46.2 Allowing the carriage to move slowly towards the right, observe that the retention pawl engages approximately in the middle of the first tooth slope, i.e. point 'b', Fig. 83, when the trip bell crank is tripped by the trip projection D and the pawl throwout lever is released.
46.3 If this is not so, slacken screws C and re-position the trip bellcrank tail E until the required condition is obtained.
46.4 Tighten screws C."

Amendment No. 4

On page 26, immediately after adjustment 71 , insert the following new adjust-ment:-

"71A. Selector Cam Clutch (Fig. 6)

71 A .1 With the motor stopped, disengage the selector cam detent E from the stop arm D by moving the release lever C.
71A. 2 Apply the hook of a spring balance under the stop arm D and tension the balance to 500 grams. Firmly retaining the balance in this position, switch on the motor and observe that the torque is $560-620$ grams. Switch off the motor before removing the spring balance.
71A. 3 If the torque is not correct, then the selector cam unit must be dismantled and the number of clutch shims (Part No. PW.5587) decreased or increased (up to a maximum of three shims) until the required torque is obtained.

NOTE: If the required torque cannot be obtained with three shims, check the tensions of the four clutch springs (Part No. PG.5093B) against the table at the rear of this booklet and replace any defective spring. If the correct torque is still unobtainable, then it will be necessary to replace the two felt friction discs in the selector cam unit as follows:-

Thoroughly soak the new felt friction discs in Creed Lubricant No. 2, then reassemble the cam unit with the new discs and no clutch shims inserted. Reassemble the machine, and "run in" the new discs for at least four hours, i.e. allow the machine to run in the "spacing" condition. Following the "running-in" period, check the clutch torque and, if necessary, add clutch shims (up to a maximum of three shims) until the correct torque is obtained.

T.I.S. No. 52

Page 3/4
(Issued Jonuory 1957)

FIG. 82

FIG. 83
DIMENSIONS
$' a '=\left\{\begin{array}{l}1 / 64-1 / 32 \text { ins. } \\ 4-.8 \mathrm{~m} . \mathrm{m} .\end{array} \quad ' b \prime=\right.$ SEE TEXT
T.I.S. No. 52

Page 4/4
(Issued January 1957)

FIG. 84

AMENDMENTS TO BOOKLET NO. 54 (lst Edition)

(Model 54 Page Teleprinter)

Amendment No. 1

On page 12, immediately after adjustment 19, insert the following new adjust-ment:-

"19A. Traversing Link Damping Device (Fig. 84)

19A. 1 Check that the pressure required to just lift the friction pad C from contact with the traversing link is $2 / 2 / 2 \mathrm{bs}$. (1.1 kgs .) when a spring bal ance is applied as shown in Fig. 84.

19A. 2 If the pressure is not correct, slacken locknut A and adjust screw B until the required pressure is obtained.
19A. 3 Tighten locknut A."

Amendment No. 2

On page 19, delete adjustment 46 and insert the following new adjustment:-

"45. Adjustable Pawl Throwout Lever (Fig. 82)

N. B.: The pawl throwout lever is adjusted correctly in the factory and should not normally require attention. If, however, new parts are fitted, or wear develops in the carriage return linkage, then the lever should be readjusted as follows:-
45.1 With the Page Attachment Unit off the machine and the carriage in its extreme righthand position, feed the carriage a few spaces to the left. Retain it in this position (e.g. by inserting a block of wood between the carriage unit and the right-hand bearing bracket), and depress the manual carriage return button.
45.2 Fully depress the manual carriage retum button and check that there is a clearance of $1 / 64-1 / 32 \mathrm{in}$. (. $4-.8 \mathrm{~mm}$.), i.e. dimension ' a ', Fig. 82, between the pawl throwout lever B and the trip bell crank A.
45.3 If this is not so, slacken screws C and adjust the pawl throwout lever B until the required dimension is obtained.
45.4 Tighten screws C, Fig. 82."

T.I.S. No. 52

Page 2/4
(Issued January 1957)

Amendment No. 3

On page 19, immediately after adjustment 45, insert the following new adjust-ment:-

46. Trip Bellcrank (Fig. 83)

46.1 With the Page Attachment Unit off the machine and the carriage in its extreme right-hand position, feed the carriage a few spaces to the left. Holding the carriage in this position by hand, momentarily depress the manual carriage return button so that the trip bellcrank B latches on to the top of the pawl throwout lever A.
46.2 Allowing the carriage to move slowly towards the right, observe that the retention pawl engages approximately in the middle of the first tooth slope, i.e. point 'b', Fig. 83, when the trip bell crank is tripped by the trip projection D and the pawl throwout lever is released.
46.3 If this is not so, slacken screws C and re-position the trip bellcrank tail E until the required condition is obtained.
46.4 Tighten screws C."

Amendment No. 4

On page 26, immediately after adjustment 71 , insert the following new adjust-ment:-

"71A. Selector Cam Clutch (Fig. 6)

71A. 1 With the motor stopped, di sengage the selector cam detent E from the stop arm D by moving the release lever C.
71A. 2 Apply the hook of a spring balance under the stop arm D and tension the balance to 500 grams. Firmly retaining the balance in this position, switch on the motor and observe that the torque is $560-620$ grams. Switch off the motor before removing the spring balance.

71A. 3 If the torque is not correct, then the selector cam unit must be dismantled and the number of clutch shims (Part No. PW.5587) decreased or increased (up to a maximum of three shims) until the required torque is obtained.

NOTE: If the required torque cannot be obtained with three shims, check the tensions of the four clutch springs (P art No. PG.5093B) against the table at the rear of this booklet and replace any defective spring. If the correct torque is still unobtainable, then it will be necessary to replace the two felt friction discs in the selector cam unit as follows:-

Thoroughly soak the new felt friction discs in Creed Lubricant No. 2, then reassemble the cam unit with the new discs and no clutch shims inserted. Reassemble the machine, and "run in" the new discs for at least four hours, i.e. allow the machine to run in the "spacing" condition. Following the "running-in" period, check the clutch torque and, if necessary, add clutch shims (up to a maximum of three shims) until the correct torque is obtained.

ADDENDUM TO:-
Booklet No. 47R (Model 47 Tape Teleprinter)
Booklet No. $54 \quad$ (Model 54 Teleprinter)
Booklet No. $71 \quad$ (Models 71,72 and 74 3-Gang Transmitters)
Booklet No. $78 \quad$ (Models 7 and 8 Teleprinters)
Booklet No. 85

KBF MOTOR
MAINTENANCE, DISMANTLING AND ASSEMBLING INSTRUCTIONS
AND PART LIST

A. MAINTENANCE INSTRUCTIONS (Fig. 1)

1. After every $\mathbf{3 0 0}$ hours working

1.1 Remove the brush box covers (23) and the brushes (7) together with their springs (8).
1.2 Examine the brushes. If they have a life of less than 400 hours remaining, i.e. if they are less than $1 / 4^{\prime \prime}(6.35 \mathrm{~mm}$.) long, change them as follows:-
1.3 Insert a new brush and spring $C P$, part number $A A 11 / 1$, in each brush box and replace the box covers.

Note: In order to get maximum life from the motor brushes, the spring should always be replaced at the same time as the brush.
1.4 Clean the commutator with a clean, dry rag and, with a small semi-stiff brush, remove all dust, paying particular attention to that adhering to the end face of the commutator, between the commutator segments, and on the end seals of the capacitor (21).

Note: No attempt should be made to remove the black, glazed surface of the commutator.

2. After $\mathbf{3 6 0 0}$ hours working

2.1 Dismantle the motor in accordance with the dismantling instructions in this T.I.S.
2.2 Soak the ball bearings (13) and (30) in white spirit and remove the old grease. Thoroughly dry the bearings and inspect them for wear.
2.3 If there are unmistakable signs of wear, replace the bearings with new ones (part number BO.3879).

T.I.S. No. 54

Page 2/6
(Issued March 1957)
2.4 Clean the bearing caps (16) and (32) and the clamp plates (3) and (10).
2.5 Pack the bearings with Creed No. 4 lubricant (N.B.: Oil should not be used in these bearings).
2.6 Inspect the sealing gaskets (11), (17), (27) and (31), replace any which are faulty and lightly smear their surfaces with No. 4 lubricant.
2.7 Check the condition of the commutator. If it is pitted or badly worn, do the following:-
(a) Skim up the commutator in a lathe by means of a sharp, pointed tool.
(b) Using a piece of wire of appropriate gauge laid in the slots between the commutator segments, check that the level of the mica insulation is $.025^{\prime \prime}$ to $.035^{\prime \prime}(.64$ to .89 mm .) below the surface of the commutator.
(c) If it is less than this, the mica should be undercut while still in the lathe. With the lathe at rest, run a thin, square-edged tool along the gaps between the segments to cut the mica back to the required depth, ensuring that none is left on the sides of the copper segments.
(d) Take a light finishing cut and then highly polish the commutator with fine glass paper (emery paper or cloth should not be used for this purpose). Obtain as high a degree of polish as possible as this minimises brush wear.
N.B.: The minimum diameter to which the commutator may be reduced is 1.070 ins. (27.18 mms .).
Commutator grinding stones are not recommended.
(e) Remove any burrs that may have arisen at the edges of the commutator segments. Remove all dust with a brush.
2.8 Reassemble the motor in accordance with the assembling instructions given in this T.I.S.
2.9 Carry out instructions 1.1 to 1.4 above.

B. DISMANTLING INSTRUCTIONS (Fig. I)

Note: To carry out these instructions the following special tools are needed:-
Ball bearing extractor (TA.1188)
Pin spanner (TA.1189)

1. Remove the motor from the machine.
2. Remove the screw securing the moulded commutator cover (not shown) and remove the cover.
3. Remove the four screws and washers (36) securing the fan guard (4) and remove the guard.
4. Slide off the brush box covers (23) and remove the brush assemblies (7) and (8) noting the position of each brush in its box.
5. Slacken the screws (19) securing the brush boxes (22) to the mounting plate (20) and slide them out of their slots in the plate, leaving the brush boxes suspended on their connecting wires.
6. Remove the four screws and washers (2) holding the fan-end cover (28) to the motor body.
7. At the commutator end, remove the three screws (12) which hold the bearing cap (16) to the bearing clamp plate (10). Remove the cap (16) and the gasket (17).
8. Using a hide or woaden mallet on end (14) of the shaft, tap out the armature shaft and ball bearing (13) from the commutator-end plate (18) and withdrow the armature together with fan-end parts of the motor.
9. At the fan end of the armature, remove the three screws (33) which hold the bearing cap (32) to the bearing clamp plate (3). Remove the cap (32), the gasket (31) and the special washer (35).
10. Using the mallet on end (34) of the shaft, tap out the armature and ball bearing (30) from its housing in the fan-end cover (28).
11. Using the pin spanner (TA.1189) remove the locking collars (1) and (15) from the shaft.
12. Using the bearing extractor (TA.1188), remove the ball bearings (13) and (30) from the armature shaft.
13. Remove the gaskets (11) and (27), the bearing clamp plates (3) and (10), and the inner race thrust plates (9) and (26).

C. ASSEMBLING INSTRUCTIONS (Fig. 1)

Note: To carry out these instructions the following appliances are required:-
Pin spanner (TA.1189)
Piece of 6BA screwed rod 3 ins. (7.5 cms .) long.

1. Replace thrust plate (26), bearing clamp plate (3) and gasket (27) on the fan end of the armature shaft. Replace ball bearing (30) on the shaft finger tight.
2. Obtain a piece of soft metal tube with a bore that will fit easily over the shaft and a thickness which will allow the end of the tube to abut against the inner ball race of the bearing without touching the ball cage or the outer race.

T.I.S. No. 54

Page 4/6

(Issued March 1957)
3. Insert end (34) of the shaft into the tube and, with the tube downwards, stand it and the armature upright on the bench (N.B.: if the bench has a metal surface, put a wooden pad between it and the tube).
4. Using the mallet, tap end (14) of the shaft until bearing (30) is driven home against the thrust plate (26), taking care not to trap plate (3) or gasket (27) while doing so.
5. Replace locking collar (1) and screw it up tight against the bearing with the pin spanner (TA. 1 189).
6. At the commutator end of the shaft, replace items (9), (10), (11), (12) and (15) by methods similar to those described in 1 to 5 above.
7. At the fan end of the armature shaft, line up the screw holes in the bearing clamp plate (3) and the gasket (27) and engage the screwed rod for a few turns in one of the screw holes in plate (3).
8. Smear lightly the inside surface of the bearing housing in the fan-end plate (28) with Creed No. 4 Iubricant.
9. Replace the fan-end cover on the shaft, threading the screwed rod through one of the screw holes and entering the ball bearing (30) lightly and evenly in its housing.
10. With the armature upright, hold the fan-end cover in one hand and tap end (14) of the shaft with the mallet until bearing (30) is fully entered in its housing.
11. Replace washer (35), gasket (31) and bearing cap (32), i.e. the thinner of the two bearing caps, threading a screw hole of each of items (31) and (32) over the screwed rod.
12. Insert two of the screws (33) in the vacant holes in cap (32) and fan-end plate (28) and enter them for a turn or two into the corresponding holes in clamp plate (3). To do this it may be necessary to pull on the screwed rod while pushing on bearing cap (32), thus lessening the distance between plate (3) and cap (32).
13. Remove the screwed rod and insert the third screw (33). Tighten the three screws in turn, a little at a time.
14. At the commutator end of the shaft, repeat instruction 7 above in respect of bearing clamp plate (10) and gasket (11).
15. Repeat instruction 8 above in respect of commutator-end plate (18).
16. Replace the armature in the motor frame, threading the screwed rod through a screw hole in the commutator-end plate (18) and lightly and evenly entering ball bearing (13) into its housing.
17. Holding the motor in one hand, fan end upwards, tap end (34) of the shaft with the hide mallet so that bearing (13) fully enters its housing in the commutatorend cover.

Page 5/6
N.B. During operation 17, which should be done very carefully, see that the fan-end cover beds evenly over the flange of the motor frame with the respective screw holes in both parts registering accurately. See also that the fan-end cover is so located that the projecting pin (29) will, when the motor is refitted on its machine, be directly below the axis of the armature shaft.
18. Replace the four screws and washers (2). Tighten the screws in turn, a little at a time.
19. Repeat instructions 11,12 and 13 at the commutator end of the machine in respect of gasket (17), bearing cap (16), i.e. the thicker of the two bearing caps, screws (12), commutator-end plate (18) and clamp plate (10).
20. Restore the brush boxes (22) to their mounting plate (20) with the fixing screws in their respective slots, taking care that the washers are between the screw heads and the plate. Slide the boxes inwards until, as measured with a feeler gauge, they are $.010^{\prime \prime}$ to $.015^{\prime \prime}(.25$ to .38 mm .) from the commutator, i.e. dimension ' a '. Tighten the screws (19) and remove the gauge.
21. Carry out, in reverse, dismantling instructions 1 to 4.
22. After reassembling the motor rotate the shaft by hand and make quite sure that none of the leads to the brush boxes is touching the armature or the commutator.
D. PART LIST (Fig. 1)

Fig. Ref. No.	Part No.	Part Name	Quantity per motor
1, 15	* 3905/18	Special Nut	2
1		Sleeve nut (for 3-gang transmitter motors only)	1
2	$\begin{aligned} & \text { (PS. } 1777-1 \\ & \text { (PW. } 2025 \end{aligned}$	Screw 4BA $\times \frac{7}{8}$ " long, Ch.Hd. M.S. Spring Washer Std. 4BA S.C.	$\begin{aligned} & 8 \\ & 8 \end{aligned}$
3,10	*3905/14	Bearing clamp plate	2
4	$\begin{aligned} & \text { (quote) } \\ & (\text { motor }) \\ & \text { (ref.no.) } \end{aligned}$	Fan guard	1
5	* 3905/58A	Motor fan	1
6	3905/17	Field winding clip	2
7)	AA.11/1	(Motor brush (Brush spring and clip) Motor brush C.P.	2

T.I.S. No. 54

Page 6/6
(Issued March 1957)
D. PART LIST (Fig. 1) (continued)

Fig. Ref. No.	Part No.	Part Name	Quantity per motor
9, 26	* 3905/19	Inner race thrust	2
$\begin{aligned} & 11,17) \\ & 27,31) \end{aligned}$	* 3905/16	Gasket	4
12,33	PS.2157-1	Screw 6BA $\times \frac{5 / 8}{\text { / }}$ long C'sk.Hd. M.S.	6
13,30	*BO. 3879	Ball bearing	2
16	3905/15	Bearing cap (commutator end)	1
18	3905/1	Commutator end cover	1
19	$\begin{aligned} & \text { (PS. 2109-1 } \\ & \text { (PW. } 1013-1 \\ & \text { (PW. } 2037 \end{aligned}$	Screw 6BA $\times 7 / 1{ }^{7 \prime \prime}$ long Ch.Hd. M.S. Washer Std. 6BA M.S. Washer spring S.C. Std. 6BA.	4 4 4
20	3905/6	Brush mounting plate	1
21	3905/67	R.I.S. Capacitor C.P. (.01 + . 01 uF)	1
22	3905/21	Brush box	2
23	3905/7A	Brush box cover	2
24	**3905/86	KBF armature C.P. (includes items marked *)	1
25	**3905/34	Field coil	1 pair
28	3905/64	Fan end cover C.P.	1
32	3905/13	Bearing cap (fan end)	1
35	3905/12	Special washer	1
36	$\begin{aligned} & \text { (PS. } 2045 \\ & \text { (PW. } 2037 \end{aligned}$	Screw 6BA $\times 3 / 15$ " long M.S. Ch.Hd. Washer spring S.C. 6BA light	$\begin{aligned} & 4 \\ & 4 \end{aligned}$
Not) shown)	3905/20A	Commutator drip-proof cover	1

(*) These items are included in item 24.
(**) When ordering these items also specify the information given on the motor nameplate.

Fig. 1. DIAGRAM OF KBF MOTOR.
DIMENSION 'a’ . $010-.015^{\prime}$ (.25-. 38 mm .)

Creed \& Company Limited
TELEGRAPH HOUSE
CROYDON - ENGLAND

Page 1/2
(Issued March 1957)

```
AMENDMENTS TO BOOKLET No.54 (Issue No.1)
    (Model 54 Page Teieprinter)
```


Amendment No. 1

On page 12 of Booklet No. 54, amend the title of paragraph 19 to read:- "Pilot Cam Detent Link Lever".

Amendment No. 2

On page 12 of Booklet No. 54, delete sub-paragraph 19.2.

Amendment No. 3

On page 26 of Booklet No. 54, delete sub-paragraph 71.3, and substitute the following instructions:-
"N.B.: After any adjustment has been made to eccentric pivot B, Fig. 20 (see 71.1, above), Adjustment 62.1 should be checked.
71.3 With the motor running, insert a .013 in . (.33 mm.) feeler gauge between the electromagnet armature and its spacing stop, and check that detent G, Fig. 20, is out of engagement with the lug of pilot cam A.
71.4 Substitute a .017 in . (. 43 mm .) gauge for the $.013 \mathrm{in}.(.33 \mathrm{~mm}$.) gauge, and check that detent G is now engaged with the lug of pilot cam A.
71.5 If either of the requirements laid down in 71.3 or 71.4 is not satisfied, slacken nut E, and adjust the link lever, radially, on rockshaft D, by a small amount as follows:-
a) If check 71.3 is unsatisfactory, rotate the link lever clockwise.
b) If check 71.4 is unsatisfactory, rotate the link lever anticlockwise.
71.6 After each adjustment of the link lever, tighten nut E, and carry out checks 71.3 and 71.4.
N.B.: When adjustment of the link lever is satisfactory, check that Adjustment 19 has not been disturbed.

Amendment No. 4

On page 2 of T.I.S. No. 52, insert the following note before sub-paragraph 71A.1:-
"Note: Before carrying out the following Adjustment, the motor should be allowed to run for about 30 minutes.

Amendment No. 5
On page 32 of Booklet No. 54, amend the tension figures of spring No.PG.5093B to read:- " $15-18$ ozs ($425-510 \mathrm{gms})^{"}$.

T.I.S. No. 56

Page 2/2
(Issued March 1957)

Amendment No. 6

On page 38 of Booklet No. 54, amend instruction (30) to read:-
"(N.B.: Avoid surplus oil. If the elutch lining has been removed, it should be so replaced that the arrow heads of the weave point in the direction of normal rotation of the clutch body)"

Amendment No. 7

Delete dimension ' k ' from Fig. 20 of Booklet No. 54.

[^0]: Electromagnet Unit

