Do not upload this copyright pdf document to any other website. Breaching copyright may result in a criminal conviction and large payment for Royalties.

This pdf document was generated by me Colin Hinson from a Crown copyright document held at R.A.F. Henlow Signals Museum. It is presented here (for free) under the Open Government Licence (O.G.L.) and this pdf version of the document is my copyright (along with the Crown Copyright) in much the same way as a photograph would be.

The document should have been downloaded from my website https://blunham.com/Radar, or any mirror site named on that site. If you downloaded it from elsewhere, please let me know (particularly if you were charged for it). You can contact me via my Genuki email page: https://www.genuki.org.uk/big/eng/YKS/various?recipient=colin

You may not copy the file for onward transmission of the data nor attempt to make monetary gain by the use of these files. If you want someone else to have a copy of the file, point them at the website (https://blunham.com/Radar). Please do not point them at the file itself as it may move or the site may be updated.

It should be noted that most of the pages are identifiable as having been processed by me.

I put a lot of time into producing these files which is why you are met with this page when you open the file.

In order to generate this file, I need to scan the pages, split the double pages and remove any edge marks such as punch holes, clean up the pages, set the relevant pages to be all the same size and alignment. I then run Omnipage (OCR) to generate the searchable text and then generate the pdf file.

Hopefully after all that, I end up with a presentable file. If you find missing pages, pages in the wrong order, anything else wrong with the file or simply want to make a comment, please drop me a line (see above).

If you find the file(s) of use to you, you might like to make a donation for the upkeep of the website - see https://blunham.com/Radar for a link to do so.

Colin Hinson
In the village of Blunham, Bedfordshire, UK.

AP 117A-0104-1A

July 1979

CONCISE DETAILS OF PREFERRED GENERAL PURPOSE ELECTRICAL ENGINEERING TEST EQUIPMENT

(Chapters 1 to 5)

BY COMMAND OF THE DEFENCE COUNCIL

Ministry of Defence

Sponsored for use in the ROYAL AIR FORCE by DDSM(Av)11(RAF)

Prepared by: CSDE(RAF) Test Systems Flight
Publications authority: MOD ATP(RAF)

CONTENTS

Preliminary Material

```
Title Page
Amendment Record
Contents (this list)
Preface
```

AP 117A-0104-1A

Chapters	
1	POWER MEASURE INSTRUMENTS
. 2	Wattmeters
. 2	Radiation Hazard Monitors
2	POWER SUPPLIES
. 1	Power Supplies
. 2	Current and Voltage Calibrators
3	FREQUENCY, WAVEFORM \& TIME MEASURING DEVICES
. 1	Waveform Analysers
. 2	Spectrum Analysers
. 3	Modulation Meters
. 4	Counters, Counter Timers \& Frequency Meters
. 5	Time Interval Meters
. 6	Data/Transmission Line Testers
4	SIGNAL SOURCES
. 1	Noise Generators
. 2	Signal Generators
. 3	Pulse and Waveform Generators
. 4	Radio Test Equipment
5	IMPEDANCE MEASURING INSTRUMENTS (R L C Q G B \& Y)
. 1	Bridges
. 2	Insulation Testers
. 3	Decade Boxes
. 4	Continuity Testers
. 5	Thermocouple Testers
. 6	Slotted Line Systems

AP 117A-0104-1B
6 CURRENT, VOLTAGE AND FIELD STRENGTH MEASURING INSTRUMENTS
. 1 Multimeters
. 2 Voltmeters
. 3 Ammeters
- 4 Safety Meters
.5 Galvanometers
7 FILTERS, ATTENUATORS, TRANSFORMERS AND MATCHING PADS
Filters
Attenuators
Micromatch Transformers

```
Chapters
    8
        . }
    9
    . }
1 0
1 1
    . }
    . }
1 2
1 3
1 4
    . }
    . }
15
    .1
1 6
    . }
    . }
17 WATCHES AND CLOCKS
1 8
    . }
1 9
    . }
20
2 1
    . }
22
    .1 Synchro Transmitters
    .2 Ground Isolation Devices
    .3 Measuring Instruments
23
WORKPLACE ENVIRONMENT MONITORING EQUIPMENT
    Atmosphere
    . 2 Illumination
    . 3 Radiation
    .4 Noise
```


PREFACE

1. This Air Publication (parts 1 A and 1 B) contains Concise Details of "Preferred" general purpose electrical engineering test equipment (GPEETE). All the items listed have full engineering support and are either currently available on the commercial market or are RAF stock held items. Project staff and sponsors should endeavour to satisfy any new requirement for EETE from the items given in this AP (paragraphs 9 and 10 refer).
2. Note that:
2.1 General Purpose Electrical Engineering Test Equipment (GPEETE) is defined as EETE designed for use on more than one main equipment, notwithstanding that it may be introduced initially for one application.
2.2 Special to Type (STTEETE) is defined as EETE designed specifically for use on one main equipment only.

DEFINITION OF TERMS USED

3. Environment. Environmental limitations are indicated by a code letter:
3.1 Items suitable for use only in sheltered controlled environments, eg electronic bays, workshops etc indicated by"A"
3.2 Items suitable for use in sheltered but uncontrolled conditions, eg hangars, mobile workshops, tents etc indicated by" B^{\prime}
3.3 Items suitable for use in unsheltered conditions. These instruments are weather resistant, but not necessarily weatherproof
4. Maintenance Policy. The maintenance policy stated indicates the depth of maintenance (excluding recalibration) permissible at specific lines of servicing, defined as per DCI S88/76.
5. Recalibration. The recalibration location and periodicity is shown as a two element code:
5.1 First Element. Location:
5.1.1 At approved recalibration laboratories only" "A"
5.1.2 On site, but only by an approved recalibration agency....."B"
5.1.3 On site by user using an approved recalibration procedure"'C"
5.2 Second Element. The period in months between recalibrations:
5.2.1 Daily before use. ..."DBU"
5.2.2 Recalibrate when calibration state is suspect...."SCAN"
5.2.3 Recalibration not required "CNR"
6. Availability. A numerical code to indicate the availability of instruments is included as follows:

> 6.1 Instruments usually available from RAF stock 1 "
> 6.2 Instruments commercially available but normally no surplus assets held.. ${ }^{2} 2^{\prime \prime}$
> $\begin{aligned} & \text { 6.3 Instruments commercially available but normally } \\ & \text { reserved for Calibration and } 3 \text { rd line establishments } \\ & \text { only .. } 3^{\prime \prime}\end{aligned}$
7. There are five main reasons why GPEETE will be superseded:
7.1 No longer commercially available.
7.2 Rationalisation, whereby several instruments can be economically replaced by the introduction of one new instrument.

7.3 Significantly less expensive alternatives available.

7.4 Supporting the instrument is becoming either too difficult or too expensive.
7.5 Unreliability is such that replacement is justifiable.
8. When an instrument is superseded it will either be reclassified or removed from the publication, depending on the circumstances. In either case, details of the replacement instrument will be inserted in this AP as a category 2 instrument. In all cases the original item nominated, or scaled, will continue to be issued against AFDEETEC Bids until stocks are exhausted. At that time the replacement instrument will be issued to satisfy further demands. Because supersession of instruments is primarily a scaling and supply management responsibility, no supersession information is included in this publication.

HOW TO USE THIS AP WHEN COMPILING LISTS OF TEST EQUTPMENT
9. Staff involved in the selection of EETE to meet a servicing application should use the following procedure:
9.1 Determine the full specification of the requirement in terms of the electrical parameters, range, accuracy etc, and the environmental use, temperature, humidity etc.
9.2 Identify within the Publication the section and chapter dealing with the type of instrument.
9.3 Compare the specification of the requirement with that of the instruments available and identify all that are capable of meeting the requirement.
9.4 By considering such factors as price, performance, calibration periodicity etc select the most cost effective instrument to satisfy the requirement. Whenever possible instruments with an availability code ' 1 ' should be selected.
10. Where an application cannot be satisfied by GPEETE contained within this publication the MOD GPEETE Sponsor (MOD SE4 (RAF)) should be informed in order that, a task may be placed on CSDE to identify a suitable item of GPEETE from the commercial market. Alternatively, advice may be obtained from CSDE, Electrical Engineering Wing, Test Systems Flight (Swanton Morley 291, Extension 430, 310 or 417). Under no circumstances should GPEETE that is not already in service be nominated for an application without the prior approval of MOD SE4 (RAF).

GENERAL PURPOSE INTERFACE BUS (GPIB) - BRIEF DESCRIPTION
11. Basically, GPIB is a standard interfacing system whereby programmable instruments marketed by various manufacturers can operate with each other in a complete testing role. Depending on the test requirements, units under test can be interlinked with measuring instruments and a controller, normally in the form of a computer, is used for the over-all management of the text system. Each participating device in the test system must be able to perform at least one of the following functions:

> 11.1 Talker - transmits data only
> 11.2 Listener - receives data only
> 11.3 Controller - manages the operation of the bus system mainly by detailing which devices are to send and receive data. The term "computing controller' is often used to describe such a device which is, in effect, the system manager.
12. Configuration. In its most simple form a CPIB system can consist of only one talker and one listener. However, the power and flexibility of the system can be better exploited by considering several interconnected devices which stimulate and inter-react with each other via the controller. Therefore, the controller must be capable of:
12.1 Scheduling measurement tasks.
12.2 Setting up instruments to perform specified tests and measurements.
12.3 Monitoring processes on line.
12.4 Processing data, analysing and interpreting the results.
13. Principles of operation. The heart of the GPIB concept lies in the bi-directional flow of data between the various devices which are connected with each other. These devices consist of any commercially available programmable instruments which are connected to the bus by means of a GPIB interface card. These cards, which are peculiar to each instrument, act as translators or converters between the instrument and the bus itself. The cafds may be either added on to an existing instrument or more commonly, included in the design of the more recently introduced range of instruments either as a standard feature or as a plug-in optional extra. Physically the interface bus consists of 2 elements: the interface card just described together with one or more 'bus interface cables'. These cables contain 16 active signal lines and have a well-defined, 'piggy back' connector at each end; these double-sided male/female connectors may be stacked one on another, thus allowing several cables to be connected to one source quite
simply. The signal lines within the cable, which is passive itself, are grouped into 3 sets:
13.1 Data Lines. The 8 Data lines carry coded messages - such a addresses, program data, measurements, and status bytes - to and from as many as 15 devices interconnected with a single bus (using as many cables as necessary).
13.2 Data Byte Transfer Control Lines. For unambiguous and intelligible communication between instrument and computer devices, some rules or protocol must apply to the communication process itself. Thus the exchange of data is controlled by the second set of signal lines, the 3 Data Byte Transfer Control Lines.
13.3 General Interface Management Lines. The remaining 5 General Interface Management lines are used for such things as activating a11 the connected devices at once, clearing the interface, remotely controlling the devices connected to the bus, or 'attention getting' request by the devices.
14. Device interconnections. The device or instrument to be connected to a GPIB need only have the 'interface card' and mechanical provision to accept the standard GPIB cable connector: these are the only two essential characteristics. In all other respects (the functional operation, internal design, size and shape of the instrument) the GPIB standard allows complete freedom of choice.
15. GPIB specification summary
15.1 Interconnected Devices. Up to 15 devices (maximum) can be connected to one bus. Additional devices, on one or more separate buses, can be controlled by the same computing controller.
15.2 Interconnection Path. GPIB instruments are connected together on a Star or linear bus network. The total transmission path length is 2 metres (6.6 feet) times the number of devices or 20 metres (66 feet) whichever is less. This path length can be extended by means of common carrier interface modules interconnected by a dedicated and shielded 2-twisted pair cable.
15.3 Message Transfer Scheme. Byte-serial, bit parallel asynchronous data transfer is employed using an interlocked 3-wire handshake technique.
15.4 Data Rate. One megabyte per second (maximum) can be achieved over limited distances. Over full transmission paths, this data rate falls to 250 to 500 kilobytes per second, depending on the devices.
15.5 Address Capability. The system can deal with primary addresses (31 Talk and 31 Listen) and secondary (2-byte) addresses (961 Talk and 961 Listen). A maximum of 1 Talker and up to 14 Listeners is permissible at a time.
15.6 Control Shift. In systems with more than one controller, only one can be active at a time. A currently active controller can pass control to another, but only a designated system controller can assume control over others.
15.7 Interface Circuits. Driver and receiver circuits are TTL
(Transistor to Transistor Logic) compatible.
16. GPIB page legend

GPIB facility can be made available by:
(1) modification action or
(2) purchase of a fully compatible model.

GPIB facility is fully incorporated in the subject model.

ASSOCIATE PUBLICATIONS

AP

Concise details of Non-Preferred and Obsolescent General Purpose Electrical Engineering Test Equipment

117A-0105-1

Note ...
This publication has been produced primarily for the use of Electrical Engineering Test Equipment Co-ordinators (EETEC's) to assist in the identification of Non-Preferred and Obsolescent GPEETE and their comprising items. The AP is not for use in identifying or selecting GPEETE to satisfy any new or existing requirements; AP 117A-0104-1A and -1B are to be used for this purpose.
Service and civilian organisations having a responsibility for calibration, repair, storage, transfer or use of GPEETC, without the involvement of EETEC's may consider AP 117A-0105-1 to be of use to them. If this is so, demands should be submitted through the usual channels. CSDE (EEW/TSF/ DEA41), on behalf of the sponsor (MOD SE4c (RAF)) will approve all issues of the AP).

Chapter 1

POWER MEASURING INSTRUMENTS

Chapter 1

POWER MEASURING INSTRUMENTS

CONTENTS

Chap
Nomenclature
1.1 WATTMETERS

.1	Wattmeter Absorption AF
.2	Wattmeter Set
.3	RF Power Meter Set
.4	Thermocouple Power Sensors
.5	Wattmeter Directional RF
.6	Wattmeter Absorption CT418
.7	To be issued later
.8	To be issued later
.9	To be issued later
.10	Wattmeter Electronic
.11	Directional Power Meter
.12	RF Power Meter Set
.13	Laser Energy Meter FMk2

1.2 RADIATION HAZARD MONITORS

. 1 Radiation Hazard Monitor
. 2 Personal RF Radiation

Sect/Ref/Stock No. Manf/Part No.

6625-99-9149811	Marconi TF893A
6625-99-651879	Bird 4112 Opt 010
10S/6625-99-4066428	Marconi 6960B Opt 1,3,4
-	Hewlett Packard
	8480 Series
6625-00-6495070	Bird 43
6625-99-1019916	Marconi TFil52A
6625-99-6641965	Feedback
	Instruments EW 604
10S/7600677	Farnell TMio
10S/2809266	Hewlett Packard 435
	Opt C51
10S/7477729	GEC A79-600

GEC A79-600

General Microwave Raham 4A
Loral Narda 8841C Series

This instrument is a wattmeter for use in the audio frequency range.

2 Specification

Power Ranges:
Impedance: $\quad 2.5,3,4.5,6,8,6.25,7.5,10,12.5,15$ and 20Ω with $\mathrm{X} 1, \mathrm{X} 10, \mathrm{X} 100$ and $\times 1000 \mathrm{multipliers}$.
$2 \frac{1}{2} \%$ of fsd up to half scale deflection
5% of fsd from half scale to full scale.

Impedance Accuracy: 5\%

3 Comprising

Instrument only

4 Accessory Items

None.

5 Associated Equipment

None.

1 Description

A robust in-line power meter for measuring forward and reflected power in the $2-30 \mathrm{MHz}$ range. The forward power is 200 W and reflected (selected by a spring loaded switch) is 20 W .

2 Specification

Power Rating: Forward 200 W
Reflected 20 W
Insertion VSWR 1.1 max
Frequency Range: $2-30 \mathrm{MHz}$

- Accuracy: $\quad 10 \%$ of full scale

Connectors: Female type N
Construction: Die cast housing, finished in light grey backed enamel.
Chap 1.1.2
Page 1

3 Comprising
Instrument case.
4 Accessory Items
None.
j Associatad Equipment
Yone.

Section Refere $10 S / 6625$	66428	Nomenclature: RF POWER ME	SET	
Manufacturer: MARCONI	MENTS	6960B OPT 1,3,4		Cost/Date: £1838/FEB 94
Height: $108 \mathrm{~mm}$	Width: $256 \text { mm }$	Depth: 369 mm	weight: 3.5 kg	
Power supplies:Switchable 105 to 120 V AC and 210 to 240 V AC $\pm 10 \%$, $45-440 \mathrm{~Hz}$ DC Supply (OPT 4) 11 V to 32 V DC			None	
Availability: 2	Envi ionnent: B	Maintenance Policy $2 B / 4 D$	Calibration: TBA	AFDEETEC No: 19527

1. Description

The 6960 can be manually operated or is GPIB programmable, and together with its associated power sensors provides measurements at frequencies from 30 kHz to 40 GHz over a wide range of power levels. Although the 6960B is a true average power measuring instrument, it may be used for pulsed power measurements. The duty cycle of the signal to be measured may be entered in the range 100 to 0.001%. The power meter then calculates the peak power by dividing the measured average power by the duty cycle and displaying a "peak" annunciator. A relative measurements facility is provided to enable the measurement of high powers by entering the calibrated value of an attenuator or coupler directly as a negative number. Positive relative values to account for amplifier gains can also be entered. For remote location operation a DC supply unit is available and can accept any voltage within the range 11 to 32 volts. For more information on its use, refer to paragraph 3, KEY FUNCTIONS.
2. Specification

Frequency Range:
30 kHz to 40 GHz depending on sensor used.
2. Specification (continued)

Power Range:	$-70 \mathrm{dBm}(100 \mathrm{pW})$ to +35 dBm (3 W) depending on sensor used.
Power Reference:	$0 \mathrm{dBm} 1 \mathrm{~mW}), 50 \mathrm{MHz}$, Type $\mathrm{N}(\mathrm{F})$, 50 ohms
Uncertainty:	$\pm 0.7 \%$
Accuracy:	$\pm 1.2 \%$ worst case for one year.
Display	Four digit LCD.
	Over-range, Remote, Peak, Under-range, $\mathrm{dB}, \mathrm{dBm}, \mathrm{dB}$ REL, nW to kW, Zero.
Instrumentation Accuracy:	Watts mode $\pm 0.5 \%$
	dBm mode $\pm 0.02 \mathrm{~dB}$
	dB REL mode $\pm 0.02 \mathrm{~dB}$
Zero	
Set:	$\pm 1 \%$ of FSD on most sensitive range.
Carryover:	$\pm 0.03 \%$ of F SD (when zeroed on most sensitive range).
Drift:	$\pm 0.1 \%$ of FSD ($\pm 2 \% 6920$ series) on
	range 1 (most sensitive). Decreasing
	by factor 10 for each higher range. (Over one hour at constant temperature
	after 24 hours stabilization).
Noise:	Less than 1% of FSD (2% for 6920
	an average factor greater than 19.
Outputs (BNC sockets)	
Fast levelling:	0 to 1 V each range, 1 kohm impedance, excludes correction for Cal Factor,
	Linearity Factor and Average Number. (For external levelling of RF source.)
Recorder:	$\pm 1 \%$.
	dB mode: $1 \mathrm{~V} /$ decade, 7 V maximum on range 5 .
	Watts mode: 5 V linear.
	Fully corrected for Cal Factor,
	Linearity Factory and Average Number. (For plots of the full 50 dB dynamic range.)
Blanking:	Maximum voltage: 25 V .
	Maximum current: 50 mA , open collector, short circuit for blank.

Response Time

Range 1
(most sensitive)
Ranges 2 to 5:

1 s , selectable.
250 ms (display update), selectable. 25 ms using GPIB.
2. Specification (continued)
GPIB Interface:
Limit Range of Operation

Temperature:
3. Key Functions

Units:
dB Rel:

Store and Recall:

Max Hold:

Range:

Averaging:

Power Up:

Linearity Factor:
Store and Recall:

-

GPIB unit built into instrument (opt 001). All front panel functions are remotely programmable except for test modes.
$0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$.

Selects either linear (mW) or logarithmic (dBm) units with toggle action.

Displays current offset which may be entered in ranges -99 to +99 dB .

Stores up to nine complete instrument settings for 10 years for any set-up condition (e.g. Cal Factors at different frequencies); store 0 contains instrument settings prior to last power down.

Retains maximum reading of changing signal. When enabled, unit's annunciators flash.

Displays current range in use; "Au" denotes auto ranging. "Hd" indicates held range. Any range may be selected and held at any time.

Enables any integer number in the range 1 to 256 to be set. In Auto Averaging mode the following response times are obtained.

Range Average No. Response Time

5	1	0.25 s
4	1	0.25 s
3	4	1 s
2	20	5 s
1	50	12.5 s

Displays power up mode currently in use. In power-up mode 1 , instrument assumes default settings. Power-up mode 2 reinstates the settings in use at power down.

Provides data entry for individual sensor linearity data to improve accuracy.
3. Key Functions (continued)

Duty cycle:	Enables entry of duty cycle of pulsed signal in range 100% to 0.001%. It then calculates the peak value of the pulsed signal from the average power measured by the sensor. "Peak" annunciator displayed when duty cycle less than 100%.
Calibration Factor:	Allows entry of sensor calibration factor in range 100% to 0.001%.
Local:	Returns instrument to "local" front panel operation when remotely addressed unless "local lock out" is employed. In manual operation, displays current GPIB address.
Auto Zero:	Initiates zero routines to store zero offset for each of five ranges.
Auto Cal:	Initiates self-calibration routine after connection of sensor to Power Reference.
Power Ref:	Toggles internal $0 \mathrm{dBm}(50 \mathrm{MHz})$ power reference on and off.
Resolution:	Resolution may be changed by altering the Average Number in the following format:
	Range Resolution (dB) 0.10 .010 .001
	5 Average Number 1
	$4 \begin{array}{llll}4 & 1 & 1 & 4\end{array}$
	3 l
	2 1 4 4 20
	42050

4. Comprising Items
```
Power Meter 6960B
Storage Pouch
Operating Manual
Operating Summary
2 metre Sensor Cable
Front Panel Cover
Mains Lead
DC Input Lead
20 dB Attenuator
N Type (F) to BNC(F) Adaptor
```

5. Accessory Items

a)	10S/6625-99-7995889	AFDEETEC 19528, Power Sensor 6910
	Frequency Range:	10 MHz to 20 GHz
	Power Range:	```-30 dBm (1 micro watt) to +20 dBm (100 milli watts)```
	Max. I/P Powers:	+25 dBm (300 milli watt) CW
		+42 dBm (15 watts) peak for 2 micro
		secs.
	Connector:	Type N male, 50 ohms
b)	10S/ -99-3826259	AFDEETEC 19526, Power Sensor 6914
	Frequency Range:	10 MHz to 40 GHz
	Power Range:	```-30 dBm (1 micro watt) to +20 dBm (100 milli watts)```
	Max. I/P Powers:	+25 dBm (300 milli watt) CW
		+42 dBm (15 watts) peak for 2 micro
		secs.
	Connector:	2.92 mm male , 50 ohms
c)	10S/ -99-4377782	AFDEETEC 19533, Power Sensor 6920
	Frequency Range:	10 MHz to 20 GHz
	Power Range:	-70 dBm (0.1 nano watt) to -20 dBm (100
		micro watts)
	Max. I/P Powers:	+26 dBm (400 milli watt) CW
		+30 dBm (1 watt) peak for 2 micro secs.
	Connector:	Type N male, 50 ohms
d)	10S/ -99-8313594	AFDEETEC 19529, Power Sensor 6930
	Frequency Range:	10 MHz to 18 GHz
	Power Range:	```-15 dBm (30 micro watt) to +35 dBm (3 watts)```
	Max. I/P Power:	+37 dBm (5 milli watt) CW
		+50 dBm (100 watts) peak for 2 micro
		secs.
	Connector:	Type N male, 50 ohms

6. Associated Equipment

None

1 Description
Power Sensors designed for use with Hewlett Packard 435A Power Meter Set.

Model No
8481A
8481A-001
8482A
8482H 8484A

2 Specification
See overleaf

Chap 1.1.4

TABLE 18480 SERIES SPECIFICATIONS

TABLE 2 UNCERTAINTY OF CALIBRATION FACTOR DATA FOR 8481A/B and 8484A

Frequency (GHz)	Sum of Uncertainties $(\%)^{1}$			Probable Uncertainties $(\%)^{2}$		
	8481 A	8481 B	8484 A	8481 A	8481 B	8484 A
1.0	-	5.8	-	-	3.1	-
2.0	3.45	5.8	4.70	1.92	3.1	2.25
4.0	2.95	5.8	4.36	1.58	3.1	1.97
6.0	2.95	5.8	4.55	1.58	3.1	2.00
8.0	2.85	6.0	4.47	1.46	3.1	1.91
10.0	2.85	6.2	4.42	1.46	3.3	1.89
12.4	2.85	7.8	4.71	1.46	4.1	1.98
14.0	5.05	7.9	7.00	2.95	4.1	3.24
160	5.45	8.0	7.62	3.07	4.2	3.40
18.0	5.45	8.3	7.15	3.07	4.3	3.30

1. Includes uncertainty of reference standard and transfer uncertainty. Directly traceable to NBS.
2. Square root of sum of the individual uncertainities squared (RSS).

3 Comprising

8481A	Sensor only
8481A-001	Sensor only
8482H	Sensor only
8484A	Sensor with 11708A 50 MHz reference attenuator fitted

4 Accessory Items

None.
5 Associated Equipment
10S/6625-99-6402159 Power Meter Set 435A

1 Description

The model 43 Thruline Wattmeter is an insertion type RF wattmeter, designed to measure power flow and load match in 50Ω coaxial transmission lines. It is intended for use on CW, AM, FM and TV modulation envelopes, but not pulsed modes.

The power ranges used are determined by the plug in element used (see attached list).

2 Specification

Meter Ranges:

Accuracy:
Insertion VSWR:

Connectors:
$0-25 \mathrm{~W}, 0-50 \mathrm{~W}$, and $0-100 \mathrm{~W}$
Direct full scale reading, 1 W to $10,000 \mathrm{~W}$ by means of plug in units/element
5% of full scale
1.05 maximum

2 female type N

Page 1

Plug-in elements:

Terminations:

See List in Para. 4. Special elements outside these ranges are available on request.

Where a thruline measurement is not possible, a dummy load is required. See list in Para. 5. Special loads outside the ranges are available on request.

Note . . .
For modulated and SSB signals the Bird 43 is not suitable, the Bird 4311 should be used - elements and loads as for Bird 43.

3
Comprising
Instrument
Case

4
Accessory Items

Chap 1.1.5

1 Description

The model 43 Thruline Wattmeter is an insertion type RF wattmeter, designed to measure power flow and load match in 50Ω coaxial transmission lines. It is intended for use on CW, AM, FM and TV modulation envelopes, but not pulsed modes.

The power ranges used are determined by the plug in element used (see attached 1ist).

2 Specification

Meter Ranges:

Accuracy:
Insertion VSWR:
Connectors:
$0-25 \mathrm{~W}, 0-50 \mathrm{~W}$, and $0-100 \mathrm{~W}$
Direct full scale reading, 1 W to $10,000 \mathrm{~W}$ by means of plug in units/element

5% of full scale

1.05 maximum

2 female type N

Page 1

Plug-in elements:

Terminations:

See List in Para. 4. Special elements outside these ranges are available on request.

Where a thruline measurement is not possible, a dummy load is required. See list in Para. 5. Special loads outside the ranges are available on request.

Note ...
For modulated and SSB signals the Bird 43 is not suitable, the Bird 4311 should be used - elements and loads as for Bird 43.

3
Comprising
Instrument
Case

4
Accessory Items

Sect/Ref No	Descrip	ion			Part No
10ZZ/209259	100 mW	72	- 76	MHz	432-2
10ZZ/209257	100 mW	328	- 336	MHz	430-3
10ZZ/210896	100 mW	400	MHz		430-7
10ZZ / 207923	250 mW	72	- 76	MHz	430-22
10ZZ/209260	250 mW	328	- 336	MHz	430-16
10ZZ/209258	500 mW	105	- 120	MHz	430-26
10AD/6255468	1 W	60	- 80	MHz	060-1
10AD/6255469	1 W	80	95	MHz	080-1
110AD/6252434	1 W	95	- 125	MHz	095-1
110S/1185422	1 W	110	- 160	MHz	110-1
110AD/1162960	1 W	150	- 250	MHz	150-1
10ZZ/207786	1 W	200	- 300	MHz	200-1
10S/2690868	1 W	275	- 450	MHz	275-1
6625-00-502745	1 W	950	- 1260	MHz	1 J
10S/2690869	2.5 W	95	- 150	MHz	095-2
110AD/1162961	2.5 W	150	- 250	MHz	150-2
10ZZ/210897	2.5 W	250	- 450	MHz	250-2
10ZZ/207859	2.5 W	950	- 1260	MHz	2.5 J
10ZZ/207052	2.5 W	1100	- 1800	MHz	2.5K
110AD/6252432	5 W	50	- 125	MHz	5B
10ZZ/210175	5 W	100	- 250	MHz	5C
110AE/1161947	5 W	200	- 500	MHz	5D
6625-00-5027431	5 W	950	- 1260	MHz	5J
10ZZ/207053	5 W	1100	- 1800	MHz	5K
10ZZ/207587	10 W	25	- 60	MHz	10A
110S/6403544	10 W	50	- 125	MHz	10B
110B/4768400	10 W	100	- 250	MHz	10C
110S/9135175	10 W	200	- 500	MHz	10D
10ZZ/206214	10 W	400	- 1000	MHz	10E
110B/5439481	25 W	25	- 60	MHz	25A
110B/6105791	25 W	50	- 125	MHz	25B
110AE/9808255	25 W	100	- 250	MHz	25C
110AD/1163466	25 W	200	- 500	MHz	25D
110B/9456092	50 W	2	- 30	MHz	50 H
110AD/6252433	50 W	50	- 125	MHz	50B
10ZZ/206842	50 W	100	- 250	MHz	50C

Chap 1.1.5

Sect/Ref No
$110 A D / 3077124$
$10 Z Z / 210010$
$110 A D / 5238439$
$10 S / 5317066$
$10 Z Z / 210444$
$6625-00-6780464$
$10 Z Z / 206277$
$110 B / 9542784$
$110 A E / 8684638$
$10 S / 5317067$
$110 B / 8684635$
$110 S / 9823930$
$10 Z Z / 210011$
$110 B / 9542785$
$10 Z Z / 206278$
$10 S / 4709648$
$10 Z Z / 204480$
$5840-99-6270325$
$10 S / 4709649$

Description

50 W	$200-500 \mathrm{MHz}$	50 D
50 W	$950-1260 \mathrm{MHz}$	50 J
100 W	$2-30 \mathrm{MHz}$	100 H
100 W	$50-125 \mathrm{MHz}$	100 B
100 W	$100-250 \mathrm{MHz}$	100 C
100 W	$200-500 \mathrm{MHz}$	100 D
100 W	$400-1000 \mathrm{MHz}$	100 E
250 W	$2-30 \mathrm{MHz}$	250 H
250 W	$100-250 \mathrm{MHz}$	250 C
250 W	$200-500 \mathrm{MHz}$	250 D
500 W	$2-30 \mathrm{MHz}$	500 H
500 W	$400-1000 \mathrm{MHz}$	500 E
500 W	$950-1260 \mathrm{MHz}$	500 J
1000 W	$2-30 \mathrm{MHz}$	1000 H
1000 W	$400-1000 \mathrm{MHz}$	1000 E
2500 W	$2-30 \mathrm{MHz}$	2500 H
2500 W	$200-500 \mathrm{MHz}$	2500 D
2500 W	$950-1260 \mathrm{MHz}$	2500 J
5000 W	$2-30 \mathrm{MHz}$	5000 H

5 Associated Equipment
Termaline Loads:

Sect/Ref No	Description	Part No
10ZZ/207924	5 W	80F
110S/5985-00-5199063	5 W	80M
110S/5985-00-7684069	10 W	8053
110S/5985-00-9462163	25 W	8080
10B/5905-99-6500873	25 W	8340200
10B/5905-99-6500874	40 W	8341030
6625-99-1163534	50 W	8085
10S/5985-00-9735833	50 W	8130
10ZZ/206232	100 W	8160
10ZZ/206893	100 W	8164
10B/5905-99-6500872	100 W	8323
110S/6625-00-7737311	150 W	8135
10ZZ/205090	500 W	8325
110S/6625-00-9301810	500 W	82A
110AD/6273456	1000 W	8251
10S/6625-99-4709647	2500/5000 W	8890
10ZZ/204236	10000 W	8732
10ZZ/204237	10000 W	8736

Chap 1.1 .5

1 Description

A portable meter measuring from 0.5 to 25 W at any frequency up to 500 MHz in 75Ω systems

2 Specification

Power Range:
Frequency Range:

VSWR:
Better than 1.2 from dc to 500 MHz

3 Comprising
Instrument only.
4 Accessory Items
Co-axial plugs, type N for RF input socket.
5 Associated Equipment
None.

1. Description

The Electronic Wattmeter EW 604 is a wide range wattmeter that is exceptionally robust and easy to use. It provides power measurement of any waveform with a power factor in the range 0.25 W to 10 kW . The frequency range covered is from d.c. to 20 KHz .

The wattmeter terminals are arranged as two pairs marked 'SUPPLY' and 'LOAD' to facilitate correct connections. The output is displayed on a moving-coil meter calibrated in watts and mounted on the front panel.

Separate warning lights are provided on the voltage and current inputs to indicate when an overload might affect the reading accuracy. Additional precautions are taken to prevent damage to the instrument in the event of gross overload of current or voltage.

Pushbuttons enable the meter deflections to be reversed to measure reverse power flows and also to increase the meter sensitivity by X2 to improve readability of small deflections.

2. Specification

Three-terminal wattmeter (1 terminal common to voltage and current ranges) connected to four front panel binding posts of which two are for connection to the 'SUPPLY' and two for connection to the 'LOAD'.

Power Ranges:
Voltage Ranges:

Current Ranges:

Overload Indication:

Overload Protection:

Frequency Range:
Burden:

Indication:

Accuracy:

250 mW to 10 kW fsd
Nomina1 5, 10, 20, 50, 100, 200, 500 and 1000 Volts.
Not more than 1.5 kV peak should be applied between the upper pair of terminals and either ground or the lower terminals. The latter must not exceed 400 V peak to ground.

Nominal $50,100,200,500 \mathrm{~mA}, 1,2,5$ and 10 A .

Input peaks of voltage or current in excess of 1.5 X the nominal range can cause overload which is clearly indicated by the appropriate voltage or current overload lamp.

All current circuits are protected by a 10 A, slow-blow, $\frac{1}{4}$ " $\times 1 \frac{1}{4}$ " fuse mounted on the rear panel. The circuit is designed to withstand the transients associated with normal rupturing of this fuse on all current ranges. The voltage circuit will withstand the nominal 250 V a.c. supply indefinitely on any range.
D.C. to 20 KHz

All voltage ranges; $5 \mathrm{k} \Omega / \mathrm{Volt}$. All current ranges less than $60 \mathrm{~m} \Omega$.
$3 \frac{1}{4}$ " mirror scale graduated 0 to 1.0 in 50 divisions. Pushbutton to give X2 scale expansion and pushbutton motor reversal.

All figures are at 50 Hz , unity power factor, $25^{\circ} \mathrm{C}$.
Typically better than 1.5% of fsd measured on 100 V and 0.5 A range at $20,40,60,80$ and 100% of fsd with a 200Ω load (guaranteed better than 2.5% of fsd).
Better than 2% of fsd for all combinations of $0.25 \mathrm{~A}, 0.5 \mathrm{~A}, 0.75 \mathrm{~A}$ and 1 A with $25 \mathrm{~V}, 50 \mathrm{~V}, 75 \mathrm{~V}$ and 100 V applied to the 1 A and 100 V ranges.
2. Specification (Cont)

Range-to-range Accuracy:

Power Requirements:

Errors in the current and voltage range multipliers contribute a combined error to power indication that is typically
less than 1% of reading (guaranteed less than 2.3% of reading).
Line voltage: $200 / 250 \mathrm{~V}$ or $100 / 125 \mathrm{~V}$ rms, $50-60 \mathrm{~Hz}$
Consumption: 4 VA
Fuse: $\quad \begin{array}{ll} & 315 \mathrm{~mA} \text { slow blow (20 mm } \\ & \times 5 \mathrm{~mm}) .\end{array}$

3. Comprising

Instrument and mains lead combined.
4. Accessory Items

None
5. Associated Equipment

None

This instrument replaces Power Meter Set 6625-99-6402159

1 Description

The Farnell TM1O directional power meter is a fully portable instrument complete with carrying case. The instrument measures forward or reflected power and is a thru-line' type and not an absorption type power meter.

2 Specification

Frequency range:
Forward/reflected power range:
*

Characteristic impedance:
Forward/reflected power accuracy:

25 MHz to 1 GHz

20 mW to 100 W in three ranges: $1 \mathrm{~W}(+30 \mathrm{dBm}), 10 \mathrm{~W}(+40 \mathrm{dBm})$ and 100 W (+50 dBm) fsd
50Ω

```
\pm 3% of reading
\pm 2% of fsd 25 MHz to 500 MHz
\pm10% of reading
\pm 5% of fsd 500 MHz to 1 GHz
```

\(\left.\begin{array}{ll}VSWR accuracy: \& \pm 10 \% 25 \mathrm{MHz} to 500 \mathrm{Mhz}

\& \pm 20 \% 500 \mathrm{MHz} to 1 \mathrm{GHz}\end{array}\right]\)| | 1.0 to 3.0 |
| :--- | :--- |

3 Comprising
NYR instrument
NYR RF detector head
4 Accessory Items
None.
5 Associated Equipment
None.
$\pm 10 \% 25 \mathrm{MHz}$ to 500 Mhz $\pm 20 \% 500 \mathrm{MHz}$ to 1 GHz
1.0 to 3.0
$0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ operating $-25^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ storage

Two front panel pushbuttons
Two front panel pushbuttons
Separate head incorporates two N-type connectors and a 1.5 m length cable with locking plug for connection to meter assembly
0.5 dB maximum

Indicates low battery voltage when unit witched on. Indicates battery life by

1000 hours (gives 1 year's use at 4 hours per working day)

Section Reference: $10 S / 2809266$		Nomenclature: RE POWER METER SET		
Manufacturer: HEWLETT PACKARD		Part No: 435B OPT. C51		Cost/Date: $\text { £800 } 1982$
Height: $15.5 \mathrm{~cm}$	Wiath: $13.0 \mathrm{~cm}$	Depth: 27.9 cm	$\begin{aligned} & \text { Weight: } \\ & 2.6 \mathrm{~kg} \end{aligned}$	
Power Supplies:$100-120 \mathrm{~V} / 220-240 \mathrm{~V} ; 48-440 \mathrm{~Hz}$			Air Publication:$117 B-0204-0$	
Availability: 2	Environment: B	Maintenance Policy: B2/D4	Calibration: AH 18	afdeetec No: 19192

1. Description

The HP435B is an analogue power meter compatible with the entire range of 8480 series of power sensors (Chap 1.1.4). Depending upon which sensor is used, power can be measured from -65 dBm to +45 dBm full scale, in the frequency range 100 kHz to 26.5 GHz . This instrument features a less than 1% uncertainty, low noise and drift, auto zero and recorder output.
2. Specification

For over-all specification with a specific power sensor, cross refer to the table in Chapter 1.1.4 (8480 Thermocouple Power Sensors).

Accuracy:

```
Instrumentation:
Zero:
Zero set:
Zero carryover:
```

```
\pm 1% fsd on all ranges
```

\pm 1% fsd on all ranges
Automatic - operated by front panel switch
Automatic - operated by front panel switch
\pm 0.5% fsd on most sensitive range (typical)
\pm 0.5% fsd on most sensitive range (typical)
\pm 0.5% fsd when zeroed on most sensitive
\pm 0.5% fsd when zeroed on most sensitive
range

```
range
```

2. Specification (continued)

Power reference: Internal 50 MHz oscillator with Type N female connector on front panel

Power level: $\quad 1.00 \mathrm{~mW}$
Power accuracy: 0.7%
Cal. factor adjustment: 16-position switch on meter 85 - 100% in 1% steps

Recorder output: $\quad 0-+1 \mathrm{~V}, 1 \mathrm{k} \Omega \mathrm{BNC}$ connector
Cal. adjust: Adjust gain of meter to match power in use.
3. Comprising

NYR	Instrument	
10S/6207364	Mains cable	Pt. No. 8120-1378
10S/6402161	Power sensor cable $(5 \mathrm{ft})$	Pt. No. 00435-60011
5995-01-0943303	Power sensor cable $(10 \mathrm{ft})$	Pt. No. 8120-2264

4. Accessory Items

10S/6402162	Carrying case	Pt. No. 11076A
10S/6402163	Power sensor	Pt. No. 8481A
10S/6402165	Power sensor	Pt. No. 8481A-001
10S/0154412	Power sensor	Pt. No. 8482A
10S/0282882	Power sensor	Pt. No. 8484A
10S/6574821	Power sensor	Pt. No. 8482H

5. Associated Equipment

None

$1 \quad$ Data to be issued later. This instrument replaces the Laser Meter F

Section Reference10S/2297429		Nomenclature RADIATION HAZARD MONITOR				
Manufacturer GENERAL MICROWAVE		Part No. $\begin{aligned} & \\ & \text { RAHAM 4A }\end{aligned}$		Cost/Date		
		£2490/1986				
$\begin{aligned} & \text { Height } \\ & \qquad 498 \mathrm{~mm} \end{aligned}$	Width			Depth		$\begin{aligned} & \text { Weight } \\ & \\ & 1.47 \mathrm{~kg} \end{aligned}$
			41 mm			
Power Supplies INTERNAL	TTERY, MALLOR	6135-99-9232492TYPE TR133 (2 off)		Air Publication117G-0903-1		
Availability	Environment	Maintenance Policy	calibration	AFDEETEC/AFDSEC No.		
2		4BCD		19375		

1. Description

The RAHAM 4A is a portable, battery operated instrument, used for detecting and measuring potentially hazardous electromagnetic radiation from rf and microwave sources. It operates in the range 200 kHz to 26 GHz and uses a single probe giving isotropic response (ie, it detects radiation from all directions except from or through the handle).
2 Specification
Frequency Range
Power Density Ranges
43 dB dynamic range. Four ranges with full scale readings of $0.02 \mathrm{~mW} / \mathrm{cm}^{2}$,
Specification (continued)
Power density ranges (cont.)
Frequency Sensitivity
Calibration accuracy
Average Power Overload
Peak Power Overload
Pulse Energy Density Overload
Isotropy
Noise
Response time
Battery operation
Recorder output
Operating Temperature Range.
3 Comprising
Meter Model 484
Probe Model 84B
Check source $\quad 10 \mathrm{GHz}$
Cable extension
Mating Plug, Recorder
Carry Case
4 Accessory Items
None
5 Associated Equipment
None

Section Reference See text		Nomenclature PERSONAL RF RADIATION MONITORS		
Manufacturer LORAL NARDA		Part No. 8841C series	Cost/Date £314/MAY	
Height $97 \mathrm{~mm}$		Width $70 \mathrm{~mm}$	Depth 27 mm	Weight 90 g
Power Supplies 1 X 12 V Dry battery	X 1.5 V	tton cells	Air Publicat N/A	
Availability CLASS 1	Environment C	Maintenance Policy $4 \mathrm{C} / \mathrm{D}$	Calibration 12 month	AFDEETEC No. See text

1. Description

The Narda 8841 C series of radiation monitors provide personnel wearing then with an audio/visual warning that they have been irradiated by some form of $R F$ energy in the range 1 GHz to 18 GHz . They are designed for use in areas where personnel are likely to be exposed to such hazards i.e. ground radar sites, flight lines and radar maintenance workshops. They are however, only warning devices and quantitive measurements should only be taken using proprietary survey metering instruments. The visual alarm will latch in the live state until reset. Indications are given of unit failure and low battery state. Each instrument comes complete with a carrying case and an acoustic earpiece assembly for use in high noise environments. Two models are available, with different detection levels as follows:

Section Reference	Detection level		Part No	
AFDEETEC No				
$10 \mathrm{~S} / 6625-99-4622240$	$1 \mathrm{~mW} / \mathrm{cm}^{2}$	$8841 \mathrm{C}-01 \mathrm{~S}$	19478	
$10 \mathrm{~S} / 6625-99-7293443$	$5 \mathrm{~mW} / \mathrm{cm}^{2}$		$8841 \mathrm{C}-05 \mathrm{~S}$	19479

2. Specification

Frequency range:
Directional sensitivity:
Alarm level:

Average power overload:
Peak power overload:
Battery life:
3. Comprising Times

RF monitor:

Earpiece assembly set:
Case:

Battery, alkaline:
Battery, button cell:
4. Accessory Items

Earpiece set:
10S/7293439
5. Associated Items

None.

Chap 1.2.2

Chapter 2

POWER SUPPLIES

CONTENTS

Chap		Sect/Ref/Stock No.	Manf/Part No.
2.1	POWER SUPPLIES		
2.1.1	Power Supply	6130-99-0014107	Roband VAREX T60-1
. 2	Bench Power Supplies	See text	Farnell L Series
. 3	Bench Power Supplies Set	6625-99-6458996	Farnell TSV 70
. 4	Power Supplies Stabilised	See text	Farnell B30 range
. 5	DC Power Supply, Amplifier	10S/4415845	Hewlett Packard 6826A
. 6	To be issued later		
. 7	To be issued later		
. 8	AC Voltage Injection	6C/1934586	Smiths 1212/ITE
. 9	Precision Voltage Source	6625-99-1142230	Fluke 415B
. 10	Power Supply	6625-99-1141758	Thorn Automation PS 5040
2.2	CURRENT/VOLTAGE CALIBRATORS		
2.2.1	DC Current Meter	6625-99-6480793	Time Electronics 505
. 2	Voltage Calibrator	6625-99-6475587	Time Electronics 2003N
. 3	Voltage Calibrator	6625-99-5370037	Time Electronics 2003S
. 4	Calibrator AC Precision	6625-99-6331601	Fluke 5200A
. 5	Amplifier, Precision		
	Power	6625-99-6331602	Fluke 5205A
. 6	DC Voltage Standard	10S/3615246	Fluke 335D
. 7	Meter Calibrator	10S/7648293	Fluke 5100
. 7 a	Transconductance		
	Amplifier	10S/7283884	Fluke 5220A
. 8	Millivolt Source	10S/0831171	Time Electronics 404S 4
. 9	Thermal Transfer Standard	10S/2880184	Fluke 540B
. 10	Electronic Load	5P/7825113	Amplicon EL $750 \mathrm{~B}-\mathrm{K}$

Section Reference$10 \mathrm{~K} / 6130-99-0014107$		Nomenclature \quad POWER SUPPLY		
Manufacturer ROBAND		Part No. VAREX	4	$\begin{aligned} & \text { Cost/Date } \\ & \mathrm{E} 232.00 \quad 1977 \end{aligned}$
$\begin{array}{r} \text { Height } \\ 14.29 \end{array}$	Width	$\begin{array}{l\|l} \hline .75 \mathrm{~cm} & \text { Depth } \\ \end{array}$	$16 \mathrm{~cm}$	Weight $8.3 \mathrm{~kg}$
$\begin{aligned} & \text { Fower Supplies } \\ & \qquad 100-125 / 200-250 \mathrm{~V} ; \quad 48-100 \mathrm{~Hz} \end{aligned}$				Air Publication None
$\begin{aligned} & \text { Availability } \\ & 2 \end{aligned}$	Anvironment B	Maintenance Policy B2/D4	Calibration A/12	afDerere/afdsec No. 11096

1 Description

This is a twin power supply with the facility for doubling the current or voltage rating by operating the outputs in parallel or series. It can be operated in 3 modes - constant voltage - constant current and re-entrant current. A manually operated front panel switch selects either the constant current or re-entrant current mode. Re-entrant current mode provides overcurrent protection, safeguarding external loads against fault condition by reducing to a low current in $3 \mu \mathrm{~s}$. It is superior to constant current protection which maintains high energy levels during fault conditions. The point of current trip is adjusted by continuously variable coarse and fine controls and indicated (in the preset position) on the ammeter. Once set, the trip point is constant and independent of the voltage. Both the voltage and current is manually adjusted by continuously variable coarse and fine controls. Remote programming over the entire range of voltage and current is readily available through a rear terminal strip.

Voltage Range:	$2 \times 0-60 \mathrm{~V}$
Current Range:	$2 \times 0-1 \mathrm{~A}$
Drift:	$\pm 0.005 \%$
Mains Variation	
Accommodation:	$\pm 10 \% \max$

Ripple and Noise:
(at Max Output)
Stabilisation Ratio:
Output Impedance:
Output Conductance:
Ambient Temperature:
Temperature Coefficient:
$100 \mu \mathrm{~V}$ peak to peak for voltage. $300 \mu \mathrm{~A}$ peak to peak for current.

10000:1 for voltage; 1000:1 for current
Less than $100 \mathrm{~m} \Omega$ at 100 Hz
$1 / 30000$ mho
$-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
0.01% per ${ }^{\circ} \mathrm{C}$

3 Comprising
Instrument only
4 Accessory items
None.
5 Associated equipment
None.

1 Description
The units can be operated as either constant voltage or constant current supplies, the mode being selected by a simple link. The continuously variable output level is monitored on meter which is switched to read either voltage or current.

Protection against overload and accidental short circuit is provided on all units by adjustable current limiting circuitry.

2 Specification

Voltage/Current Range:

See Selection Chart (page 3)

Output Voltage Variations:
(1) 10% mains fluctuations
(a) Less than 0.01% or 1 mV whichever is greatest (short term).
(b) Less than 0.02% or 2 mV whichever is greatest (long term).
(2) Zero to full load
(a) Less than 0.01% or 2 mV whichever is greatest (short term).
(b) Less than 0.02% or 4 mV whichever is greatest (long term).

Output Current Variations:
(1) 10% mains fluctuation
(2) Zero to max resistance change:

Ripple Voltage (At full load):
Ripple Current (At full load):
Output Impedance:
(a) Less than 0.1% or 1 mA whichever is greatest (short term).
(b) Less than 0.02% or 2 mA whichever is greatest (long term).
(a) Less than 0.01% short term.
(b) Less than 0.02% long term.

Less than 1 mV peak to peak.
Less than 1 mA peak to peak.
0.1Ω measured at 100 kHz at $20^{\circ} \mathrm{C}$.

3 Comprising
Instrument only.

4 Accessory items

None.
5 Associated equipment
None.

SELECTION CHART

Section/ Reference	Type	DC Output	Height mm	Width mm	Depth mm	Weight kg	Approx Cost	AFDEETEC No
5P/6130-99- 6428099	L30-1	P-30 V, 1A	225	132	205	3.86	$£ 80$	18790
$5 P / 6130-99-$ 6428101	L30-5	$0-30 \mathrm{~V}, 5 \mathrm{~A}$	225	228	248	8.06	$£ 179$	18793
$5 \mathrm{P} / 6130-99-$ 6428102	LT30-1	$0-30 \mathrm{~V}, 1 \mathrm{~A}$	225	255	205	7.26	$£ 158$	18795
$5 \mathrm{P} / 6130-99-$ 6428103	LT30-2	$0-30 \mathrm{~V}, 2 \mathrm{~A}$	225	255	230	7.71	$£ 208$	18794

1 Description

The TSV 70 laboratory bench power supply is a source of stabilized d.c. voltage continuously variable over two ranges, 0 to 70 V at 0 to 5 A or 0 to 35 V at 0 to 10 A , selected by a switch.

A switch isolates the output voltage which may be selected by course and fine controls prior to connection to the load. Conversely the load may be disconnected by the same switch without switching off the mains supply. Output voltage and current are monitored independently by dual scale meters.

Remote sensing facilities are provided to ensure optimum performance when supplying distant loads. Overload protection is by adjustable constant current limiting.

Output:	$0-70 \mathrm{~V}$ at 5 A or $0-35 \mathrm{~V}$ at 10 A selected by switch.
Output Impedance:	0.05Ω to 10 kHz
Line Regulation:	Output change for a $\pm 10 \%$ mains change less than $0.01 \%+1 \mathrm{mV}$.
Load Regulation:	Output change for a zero to full load change less than $0.01 \%+1 \mathrm{mV}$
Ripple and Noise:	Content at full load, less than 1 mV peak to peak.
Mains Variation Tolerated:	$\pm 10 \%$ of nominal.
Voltage Adjust:	The coarse and fine controls provide continuous adjustment of output voltage from zero to maximum output.
Current Limit Control:	This sets the point of maximum output current and may be adjusted from zero to 5.5 A or 11 A depending on the setting of the 'range' switch
3 Comprising	
Instrument only.	
4 Accessory items	
None,	
5 Associated equipment	
None.	

1 Description

These are stabilized d.c. power supplies giving a voltage output of $0-30 \mathrm{~V}$ in steps of 6 V with overlapping fine control between each step. Maximum current is available at any voltage setting.

Units may be connected directly in series of paralle1 to obtain increased voltage or current. Feedback terminals are provided for remote sensing of the voltage at the load so that the effects of resistance in the load connecting leads may be minimized if required.

Electronic current limiting circuitry and input and output fuses protect the unit against overload or accidental short circuits. The limiting circuitry automatically resets itself when the overload is cleared.

2 Specification

	B30/10	B30/20
Section Reference	5P/6130-99-9557478	5P/6130-99-6185353
AFDEETEC No	10186	18240
Voltage	0-30 V, fully variable by 5 position switch.	
Current	0-10 A	0-20 A
Height	177 mm	177 mm
Width	160.5 mm	283 mm
Depth	372 mm	406 mm
Line Regulation for a $\pm 10 \%$ Mains change	Less than $0.01 \%+2 \mathrm{mV}$	
Load Regulation for a 0-Fu11 Load change	Less than $0.01 \%+2 \mathrm{mV}$	
Ripple and Noise	Less than $1 \mathrm{mV} \mathrm{p}-\mathrm{p}$, at full 1 oad	
Output Impedance	0.18 at 100 kHz and $20^{\circ} \mathrm{C}$	
Overload Protection	Constant current limiting on lowest range. Re-entrant to 10% of I max on other ranges. Input and Output fuses.	
Mains Variation Tolerated	$\pm 10 \%$	
Cost	£198 (1979)	£ 360 (1979)

3 Comprising
Instrument only.
4 Accessory items
None.

5 Associated Equipment

None.

Section Refer 10S/4415		Nomenclature: DC POWER SUPPLY/AMPLIFIER		
Manufacturer: HEWLETT PACKARD		Part No: $6826 \mathrm{~A}$		Cost/Date: $£ 16651986$
Height: 155 mm	wiath: 198 mm	Depth: $316 \text { mm }$	Weight 8.2 kg	
Power Supplies: $100,120,220$ OR 240 V AC, $-13 \%+6 \%, 48-63 \mathrm{~Hz}$			Air Publication:	
Availability: 2	Environment: B	Maintenance policy: $4 B C D$	Calibration: TBA	afdeetec no: 19372

1. Description

The 6826A is a general purpose instrument which can be operated in one of two basic modes, power supply or amplifier. It features dual range output and constant voltage/constant current operation. Output voltage and current as a DC supply, or gain as a power amplifier are available.

Used as a DC power supply, the unit can provide a bipolar, constant voltage or constant - current output. It can be used as a current sink or source thus permitting it to serve as a variable load device.

Used as a direct coupled power amplifier, the unit offers a signal-to-noise ratio of approximately 80 dB at full output with low distortion and a frequency response up to 40 kHz in the fixed gain mode.

2. Specification

DC output:

$$
\begin{array}{ll}
-5 \mathrm{~V} \text { to }+5 \mathrm{~V} & 0-1.0 \mathrm{~A} \\
-50 \mathrm{~V} \text { to }+50 \mathrm{~V} & 0-1.0 \mathrm{~A}
\end{array}
$$

Specification (continued)

```
Power Supply Performance
    PARD (rms/p-p)
        Voltage 6/35 mV
        Current
    0.8/5 mA
    Transient Recovery
        Time 100 \mus
        Leve1 }50\textrm{mV
    Resolution
        Voltage }100\textrm{mV
        Current 3 mA
    Power Amplifier Performance
        Voltage Gain
            Fixed 1X : Variable 0-2X
                            Fixed 10X : Variable 0-20X
    Frequency Response +1, -3 dB
        Fixed Gain dc - 40 kHz
        Variable Gain dc - 15 kHz
    Distortion at full output
        100 Hz 0.1% THD
        10 kHz 0.5%
```

3. Comprising Items

Instrument
Mains lead
Handbook
4. Accessory Items

10ZZ/211845 Adaptor Frame Pt No 5060-8762
(Allows two 6826A's to be rack-mounted)
5. Associated Equipment

None

1 Description

This is a compact bench instrument providing a continuously variable 400 Hz output between zero and 15 V rms . The output voltage is in phase with the mains supply and is proportional to the mains voltage, the output being at the nominal voltage when the mains supply is at the nominal voltage.

The instrument is intended for general gain testing, on units having 400 Hz a.c. voltage inputs, in conjunction with output measuring devices whose readings are expressed as a ratio of the reference phase voltage.

Chap 2.1.8
Page 1

2 Specification

Ranges:

Accuracy:

Output Impedance:

3 Comprising
Instrument only
4 Accessory items
None
5 Associated equipment
None
$0-1 \mathrm{~V}$ continuously variable and $0-14 \mathrm{~V}$ in 1 V steps. These outputs are additive and subject to $\times 1$ or $\times 0.1$ ranging switch.
$0-100 \mathrm{mV} \pm 2 \mathrm{mV}$
$100 \mathrm{mV}-1.5 \mathrm{~V} \pm 0.2 \%$ of reading $\pm 0.2 \mathrm{mV}$ $1.5 \mathrm{~V}-15 \mathrm{~V} \pm 0.1 \%$ of reading $\pm 2 \mathrm{mV}$

0-1.5 V output Z less than $1 . \Omega$.
$1.5 \mathrm{~V}-15 \mathrm{~V}$ output Z less than 10Ω

1 Description

The 415B is an extremely stable, high voltage dc source. The output voltage level is controlled by five rotary switches on the front panel which give a range from $0-3100 \mathrm{~V}$ with 5 mV resolution. The voltage polarity is controlled by a swich on the front panel which provides either a positive or negative grounded output. The instrument is protected against over-current conditions and the maximum current that can be drawn is 30 mA .

2 Specification

Voltage Output: Continuously variable between 0 and 3100 V dc

Line Regulation:	For 10% fluctuation of supply voltage, $\pm 0.005 \%$ or 2 mV, whichever is the greater.
Load Regulation	Zero to full load, $\pm 0.005 \%$ or 5 mV, whichever is the greater.
Maximum Current:	30 mA (Current trip adjustable 5 to 40 mA)
Ripple:	$1 \mathrm{mV} \mathrm{p-p}$
Resolution:	5 mV

- 3 Comprising

Instrument only
4 Accessory items
None .
5 Associated equipment
None .

Section Reference$5 P / 6625-99-1141758$		Nomenclature		
		POWER SUPPLY		
Manufacturer THORN AUTOMATION		Part No. PS 5040		$\begin{aligned} & \text { Cost/pate } \\ & \text { £3050 DEC } 1979 \end{aligned}$
Height 17.8 cm	Width	48.2 cm	47.0 cm	Weight 52.5 kg
$\begin{array}{r} \hline \text { Power Supplies } \\ 220 \mathrm{~V} \end{array}$	$10 \% \mathrm{ac}$ or $240 \mathrm{~V} \pm 10 \% \mathrm{ac} ; 48$ to 60 Hz	$\mathrm{V} \pm 10 \% \mathrm{ac} ; 48 \text { to } 60 \mathrm{~Hz}$		$\begin{array}{\|l} \text { Air Publication } \\ \quad 116 \mathrm{U}-0525-1 \end{array}$
$\begin{gathered} \text { Availability } \\ 2 \end{gathered}$	Environment B	Maintenance Policy B2/DF	Calibration A/SCAN	$\begin{gathered} \text { AFDEETEC/AFDSEC No } \\ 18818 \end{gathered}$

1 Description

The PS 5040 is designed for test system and general laboratory applications. The unit can be operated in either the Constant Voltage (CV) mode or Constant Current (CC) mode, overvoltage protection is available in both modes. The voltage, current and overvoltage requirements are set locally by individual turn counting controls on the front panel, or by remote programming via a connector at the rear of the unit, the selection being made by the front panel LOCAL/REMOTE switch. A remote sensing facility is provided for control of the set voltage at the user equipment input terminals.

2 Specification

Output Voltage:	0 to 40 V dc fully variable
Output Current:	0 to 50 A fully variable
Line Regulation:	Output change for $\pm 10 \%$ mains change 0.001\% in CV mode 0.02% in CC mode
Load Regulation:	0.015% for a current change of 50 A 0.1% for a voltage change of 40 V

Ripple and Noise:
(at full load)
Remote Programming:
(Selected by Local/Remote switch)

Overvoltage Protection:
Operating Temperature:

3 Comprising

Instrument only.
4 Accessory items

Reference No.
10H/5935-99-0131553
10H/5935-99-0148840 10H/5935-99-1024258 10H/5935-99-0149512 10H/5935-99-0149514
less than $2 \mathrm{mV} \mathrm{p}-\mathrm{p}$ in CV mode 20mA p-p in CC mode

CV mode $200 \Omega / \mathrm{V}$ Overvoltage $200 \Omega / \mathrm{V}$ CC mode $10 \Omega / \mathrm{A}$

0 to 40 V fully variable
$0^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$
Accessory items

Reference No.	Description	Part No.
10H/5935-99-0131553	Socket electrical free (SK1)	508/1/07210/225
10H/5935-99-0148840	Plug electrical free (PL2)	508/1/07231/220
10H/5935-99-1024258	Plug electrical free (PL3)	PT-06E-106P
10H/5935-99-0149512	Accessory set (SK1, PL2)	508/1/03032/1
10H/5935-99-0149514	Accessory set (PL3)	508/1/03033/1

5 Associated Equipment

None.

Section Reference:$10 S-6625-99-7826077$		Nomenclature: D.C. CURRENT SOURCE		
Manufacturer: TIME	TRONICS	Part No: 505 N		$\begin{aligned} & \text { Cost/Date: } \\ & £ 127.00 \quad 1978 \end{aligned}$
Height: 11.0 cm	width: $7.5 \mathrm{~cm}$	Depth: 20.0 cm	Weight: $\quad 2.2 \mathrm{~kg}$	
Rechargeable battery			None	
Availability: 2	Environment: B	Maintenance Policy: B2 / D4	Calibration: IAW 100C-50	AFDEETEC No: 18917

1. Description

The 505 N is a precision $D C$ source suitable for calibration and test application from micro-amp levels up to 100 mA . The basic reference source is a precision aged diode. A current capability of 100 mA is achieved with long battery life by using nickel cadmium rechargeable cells. One panel indicator shows the state of charge of the batteries and doubles as an 'On-Off' indicator whilst a second indicator provides warning of insufficient output drive voltage.

2. Specification

Output:
$0-100 \mathrm{~mA}$ in 3 ranges
$0-99.99 \mathrm{~mA}$ in $10 \mu \mathrm{~A}$ steps
$0-9.999 \mathrm{~mA}$ in $1 \mu \mathrm{~A}$ steps
$0-999.9 \mu \mathrm{~A}$ in $0.1 \mu \mathrm{~A}$ steps

Accuracy:	$\pm 0.1 \%$ of setting $\pm 0.02 \%$ of range		
Voltage Capability:	10 V		
Out of Limit Warning:		\quad	A front panel indicator provides warning
:---			
of insufficient drive voltage.			

1 Description

The 2003 N DC Voltage Calibrator is a portable solid-state instrument. It is suitable for applications requiring a precision voltage source of low internal resistance and the addition of a microvolt null balance display enables it to be used for potentiometric voltage measurement in addition to its basic function as a calibrator. The null zero and sensitivity are adjustable via front panel controls. A high performance null amplifier system enables null balance to within 1 microvolt and a current limiter is fitted to protect the instrument.

The 2003 N is supplied with a rechargeable power supply containing rechargeable cells and an automatic charger. Mains or battery operation is possible, the power supply automatically switching to battery power when the mains supply is disconnected.

2 Specification

Output: \quad	$(0-9.9999 \mathrm{~V}$ in 5 ranges $)$
	$0-9.9999 \mathrm{~V}$ in $100 \mu \mathrm{~V}$ steps
	$0-999.99 \mathrm{mV}$ in $10 \mu \mathrm{~V}$ steps
	$0-99.999 \mathrm{mV}$ in $1 \mu \mathrm{~V}$ steps
	$0-9.9999 \mathrm{mV}$ in $0.1 \mu \mathrm{~V}$ steps
	$0-999.99 \mu \mathrm{~V}$ in $0.01 \mu \mathrm{~V}$ steps

Accuracy:

10 V and 1 V ranges:	$\pm 0.02 \%$ of setting; $\pm 0.005 \%$ of range.
$100 \mathrm{mV}, 10 \mathrm{mV}$ and	$\pm 0.05 \%$ of setting; $\pm 0.005 \%$ of range
1 mV ranges:	$\pm 0.25 \mu \mathrm{~V}$
Output Resistance:	
$10 \mathrm{~V}, 1 \mathrm{~V}$ and 100 mV ranges:	Less than 0.1Ω (typically 0.05Ω)
10 mV and 1 mV ranges:	1Ω
Maximum Output Current:	30 mA max. on $10 \mathrm{~V}, 1 \mathrm{~V}$ and 100 mV ranges with an automatic output current limit set at 35 mA .
10 mV and 1 mV ranges:	Up to short circuit value although it should be noted that loads less than $1 \mathrm{k} \Omega$ will give greater than 0.1% error. The instrument can withstand a continuous short circuit on the output for all ranges.
Output Voltage Stability:	Less than $30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\left(0^{\circ} \mathrm{C}\right.$ to $\left.+50^{\circ} \mathrm{C}\right)$ Less than $5 \mathrm{ppm} / \mathrm{V}$ variation in supply voltage. Less than $75 \mathrm{ppm} /$ year (not cumulative) Less than $10 \mathrm{ppm} /$ hour (short term) at constant temperature.
Output Polarity:	Positive or negative switch selected. A centre 'off' position on this switch provides a short circuit on the output terminals in calibrate mode and open circuit in null mode.

Output Noise Level ($0-10 \mathrm{~Hz}$)
10.0 to 0.1 V ranges: Less than 10 ppm of setting $\pm 2 \mu \mathrm{~V}$
$10 \mathrm{mV}, 1 \mathrm{mV}$ ranges: Less than $\pm 0.05 \mu \mathrm{~V}$

Chap 2.2.2
Page 2

Nu11 Detector:

Maximum Sensitivity:	$\pm 20 \mu \mathrm{~V}$ fsd
Minimum Sensitivity:	$\pm 200 \mathrm{mV}$ fsd
Meter Scale:	$20-0-20$
Input resistance:	$10 \mathrm{M} \Omega$ increasing to $100 \mathrm{M} \Omega$ at null balance
3 Comprising	
Instrument only	
4 Accessory items	
None	

5 Associated equipment

None

Chap 2.2.2
Page 3

Section Reference$10 S / 6625-99-5370037$		Nomenclature D.C. VOLTAGE CALIBRATOR			
Manufacturer TIME ELEC	RONICS	Part No. 2003 S	T 02 PU2	4	$\begin{aligned} & \text { Cost/rate } \\ & £ 300.001978 \end{aligned}$
Height 16.0 cm	Width	$6 \mathrm{~cm} \quad$ Depth	5 cm		$3.32 \mathrm{~kg}$
Power Supplies 240 V ac with rechargeable batteries					publication None
$\begin{gathered} \text { Availability } \\ 2 \end{gathered}$	Fnvironment B	Maintenance Policy B2/D4	Calibration A/6		AFDEETEC/AFDSEC No. 18876

1 Description

The 2003S DC Voltage Calibrator is a portable solid-state instrument suitable for applications requiring a precision voltage source of low internal resistance. A current limiter is fitted to protect the instrument against overloads. The 2003 is supplied complete with a rechargeable power supply containing rechargeable cells and an automatic charger. Mains or battery operation is possible, the power supply automatically switching to battery power when the mains supply is disconnected. Approximately 40 hours of continuous operation is possible from a fully charged set of batteries. The instrument can be used for calibration and measurements normally undertaken with conventional voltage potentiometer. The high stability and low noise levels are particularly advantageous where an extremely stable voltage is required in addition to the normal functions of a precision voltage source.

2 Specification

Output: $\quad(0-9.9999 \mathrm{~V}$ in 5 ranges)
$0-9.9999 \mathrm{~V}$ in $100 \mu \mathrm{~V}$ steps
$0-999.99 \mathrm{mV}$ in $10 \mu \mathrm{~V}$ steps
$0-99.999 \mathrm{mV}$ in $1 \mu \mathrm{~V}$ steps
$0-9.9999 \mathrm{mV}$ in $0.1 \mu \mathrm{~V}$ steps
$0-999.99 \mu \mathrm{~V}$ in $0.01 \mu \mathrm{~V}$ steps
Accuracy:
10 V and 1 V ranges
100 mV , 10 mV and
1 mV ranges
$\pm 0.02 \%$ of setting; $\pm 0.005 \%$ of range
$\pm 0.05 \%$ of setting; $\pm 0.005 \%$ of range $\pm 0.25 \mu \mathrm{~V}$

Output Resistance:
$10 \mathrm{~V}, 1 \mathrm{~V}$ and 100 mV ranges

10 mV and 1 mV ranges: $\quad 1 \Omega$
Maximum Output Current: $\quad 30 \mathrm{~mA} \max$ on $10 \mathrm{~V}, 1 \mathrm{~V}$ and 100 mV ranges with an automatic output current limit set at 35 mA

10 mV and 1 mV ranges:
Up to short circuit value although it should be noted that loads less than $1 \mathrm{k} \Omega$ will give greater than 0.1% error. The instrument can withstand a continuous short circuit on the output for all ranges.

Output Voltage Stability: Less than $30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\left(0^{\circ} \mathrm{C}\right.$ to $\left.+50^{\circ} \mathrm{C}\right)$
Less than 5 ppm per V variation in supply voltage
Less than 75 ppm per year (not cumulative) Less than 10 ppm per hour (short term) at constant temperature.

Output Polarity:
Positive or negative switch selected. A centre 'off' position on this switch provides a short circuit on the output terminals in calibrate mode and open circuit in null mode.

Output Noise Level ($0-10 \mathrm{~Hz}$):
10.0 to 0.1 V ranges: Less than 10 ppm of setting $\pm 2 \mu \mathrm{~V}$
$10 \mathrm{mV}, 1 \mathrm{mV}$ ranges: Less than $\pm 0.05 \mu \mathrm{~V}$

3 Comprising

Instrument on1y.
4 Accessory items
None
5 Associated equipment
None

Section Reference 10S/6625-99-	331601	Nomenclature CALIBRATOR. AC PRECISION		
Manufacturer FLUKE		5200A		$\begin{array}{ll} \hline \text { Cost/Date } \\ \text { £3995.00 } 1978 \end{array}$
Height 17.8 cm	Width	cm	${ }^{\text {Depth }} 53.3 \mathrm{~cm}$	Weight 24.1 kg
				Air Publication NONE
$\begin{gathered} \text { Availability } \\ 2 \end{gathered}$	-nvironment B	Maintenance Folicy B2/D4	calibration A/6	AFDEETEC/AFDSEC No . 18858

1 Description

The 5200A AC Calibrator has a voltage range of $100 \mu \mathrm{~V}$ rms to 120 V rms at currents up to 50 mA . The operational frequency range is 10 Hz to 1.2 MHz . Accurate output amplitude selection is made in six decade ranges of 1 mV to 100 V . (A seventh range of 1000 V is provided by a Precision Power Amplifier Type 5205A, 10S/6331602). The 5200A is fully guarded which allows for floating operation and eliminates the system ground loop problems of nonguarded calibrators.

The oscillator of the 5200A may be phase locked to an external source to effectively produce synchronous signals of precision amplitude and stability. A rear input jack is provided for the external signal and a

- front panel On-Off switch enables the phase lock function to be selected as required.
A quadrature output which is 90° out of phase with the fundamental is provided on the rear panel. Quadrature signal amplitude is proportional
to the dialed output settings of the fundamental, up to 10 V rms maximum for a full scale setting on any range.

The output of the 5200A is protected by current limiting. When the overload is removed, the output will recover automatically to the preset level.

2 Specification

Voltage:

Voltage Ranges:	$\begin{aligned} & 1 \mathrm{mV}, 10 \mathrm{mV}, 100 \mathrm{mV}, 1 \mathrm{~V}, 10 \mathrm{~V}, 100 \mathrm{~V} \\ & \text { (1000 V with } 5205 \mathrm{~A} \text { Power Amp) } \end{aligned}$
Overrange:	20\% on all ranges
Resolution:	0.001% of range (1 nV on 1 mV range)
Accuracy:	1, 10, 100 Volt Ranges ($\mathrm{X} \%$ of setting + $\mathrm{Y} \%$ of range)
	10 Hz to $30 \mathrm{~Hz} \quad(0.1 \pm 0.005)$
	30 Hz to $20 \mathrm{kHz} \quad(0.02+0.002)$
	20 kHz to $100 \mathrm{kHz} \quad(0.05+0.005)$
	100 kHz to $1 \mathrm{MHz} \quad(0.33+0.03)$
	10 Hz to $30 \mathrm{~Hz} \quad(0.1+10)$
	30 Hz to $20 \mathrm{kHz} \quad(0.02+10)$
	20 kHz to $100 \mathrm{kHz} \quad(0.05+10)$
	100 kHz to $1 \mathrm{MHz}(0.33+30)$

Output Current:
Maximum: $\quad 50 \mathrm{~mA}$ rms from 10% to 120% of range
Current Limit: The output is protected against overloads and short circuits by a current 1imiter.

Frequency:
Frequency Ranges: $100 \mathrm{~Hz}, 1 \mathrm{kHz}, 10 \mathrm{kHz}, 100 \mathrm{kHz}, 1 \mathrm{MHz}$
Overrange: $\quad 20 \%$ on all ranges
Resolution: $\quad 0.01 \%$ of Range (0.01 Hz on 100 Hz Range)
Accuracy: $\quad 100 \mathrm{~Hz}$ to 100 kHz Ranges (1.0\% setting +0.1\%

1 MHz Range (3.0\% setting +0.3\% range)
Temperature Coefficient: (0 to $18{ }^{\circ} \mathrm{C}$ and 28 to $50^{\circ} \mathrm{C}$) $\pm 0.025 \%$ of setting per ${ }^{\circ} \mathrm{C}$)

Chap 2.2.4
Page 2
Mar 80 (Amdt 2)

External Frequency Phase Lock Input:

The oscillator of the 5200A has the capability of being phased locked to an external signal. Phase lock accuracy is $\pm(10+0.050$ per kHz$)$ over $\pm 1 \%$ band around the centre frequency

Comprising

Instrument only.
4 Accessory items
None
5 Associated equipments
10S/6625-99-6331602 Amplifier, Precision Power Fluke 5205A

Chap 2.2.4.
Page 3

1 Description
The 5205A Precision Power Amplifier is a d.c. coupled, programmable inverting amplifier with a fixed gain of 100. Designed to extend the range of the Model 5200A AC Ca1ibrator (10S/6331601) to 1200 V rms, the 5205 A is also intended to be operated as an independent amplifier for a wide range of waveforms from d.c. to 120 kHz . D.c. output voltages to 1600 v and a.c. output voltages to 1200 V rms can be achieved. The 5205A has an automatic overload recovery circuit which senses and protects the amplifier from any condition which might cause instability or damage.

2

Specification
Calibrator mode
These specifications apply when using the 5205A and its interface cable with the 5200A Calibrator on the 1000 V range.

Range:	100 V to 1099.999 V rms	
Frequency Range:	d.c. to $>100 \mathrm{kHz}$	
Resolution:	1 mV	
Amplitude Accuracy (1000 V Range) :		
	\% of Setting	\% of Range
10 Hz to 30 Hz	0.12	+0.005
30 Hz to 20 kHz	0.04	+0.002
20 kHz to 50 kHz	0.08	+0.005
50 kHz to 100 kHz	0.1	+0.01

Amplifier mode

These specifications apply when using the 5205 A as a stand-alone amplifier.

Maximum Output Voltage: $\pm 1500 \mathrm{~V} \mathrm{d.c.}$,1100 V rms.		
Frequency Range:	d.c. to $>100 \mathrm{kHz}$	
Gain:	X 100	
Gain Accuracy:		
Maximum Load	d.c. to 20 kHz	20 kHz to 100 kHz
$500 \Omega / 100 \mathrm{pF}$	$\pm 0.05 \%$	$\pm 0.02 \%$
$5000 \Omega / 100 \mathrm{pF}$	$\pm 0.05 \%$	$\pm 0.15 \%$
$1 \mathrm{M} \Omega / 100 \mathrm{pF}$	$\pm 0.05 \%$	$\pm 0.2 \%$
$1 \mathrm{M} \Omega / 500 \mathrm{pF}$	$\pm 0.06 \%$	$\pm 0.4 \%$
$1 \mathrm{M} \Omega / 1000 \mathrm{pF}$	$\pm 0.08 \%$	$\pm 0.8 \%$
$1 \mathrm{M} \Omega / 1500 \mathrm{pF}$	$\pm 0.1 \%$	$\pm 0.12 \%$

Maximum Capacitive Load: 1500 pF
Input Impedance: $\quad 10 \mathrm{k} \Omega<120 \mathrm{pF}$
Maximum Input Voltage: $\quad 50 \mathrm{~V}$ d.c. or rms
Line Regulation: $\pm 0.001 \%$ of setting for 10% line change

3 Comprising

Instrument only.

Chap 2.2.5
Page 2
Mar 80 (Amdt 2)

4 Accessory items
None.
5 Associated equipment
10S/6625-99-6331601 Calibrator, AC Precision Fluke 5200A

1. Description

The FLUKE type 335D combines the functions of a precision dc voltage standard with those of a differential voltmeter and high impedance null detector. It provides a 0.1 ppm resolution using seven in-1ine decade switches.
2. Specification

Voltage ranges:	0 to 11.111110 ($1 \mu \mathrm{~V}$ steps) 0 to 111.111110 ($10 \mu \mathrm{~V}$ steps) 0 to 1111.111110 ($100 \mu \mathrm{~V}$ steps)
Output current:	0 to 50 mA
Accuracy:	$\begin{array}{ll}10 \mathrm{~V} \text { range. } & \pm(0.001 \% \text { of setting }+10 \mu \mathrm{~V}) \\ 100 \mathrm{~V} \text { range. } & \pm(0.001 \% \text { of setting }+20 \mu \mathrm{~V}) \\ 1000 \mathrm{~V} \text { range. } & \pm(0.0015 \% \text { of setting }+200 \mu \mathrm{~V})\end{array}$
Stability:	10 V range. $\quad$$\pm(0.0005 \%$ of setting $+7 \mu \mathrm{~V}) /$ month100 V and 1000 V range. month$\quad \pm(0.0005 \%$ of setting $+30 \mu \mathrm{~V}) /$Chap 2.2 .6

2. Specification (continued)

3. Comprising

Instrument
Power cord
Manual
4. Accessory Items

None.
5. Associated Equipment

None.

Chap 2.2.6
Page 2

1. Description

The $5100 B$ meter calibrator is used to calibrate precision meters that measure $a c$ or dc voltage, $a c$ or dc current, and/or resistance. All data is entered via a calculator-type keyboard. The 5100B performs the mathematical computations associated with calculating the error of the unit-under-test (UUT), in \% or dB. It then indicates to the operator whether the UUT has passed or failed, according to its specified accuracy and the magnitude of the error. All service instruments are supplied with option 05 (IEEE-488 interface), for ATE use.
2. Specification

DC VOLTAGE:

Range	Resolution	Maximum Current	
20 mV	$0.1 \mu \mathrm{~V}$	Limited to 50Ω output resistance or 25 mA using 50 override	
200 mV	$1 \mu \mathrm{~V}$		
2 V	$10 \mu \mathrm{~V}$	$25 \mathrm{~mA} / 1000 \mathrm{pF}$ 20 V $100 \mu \mathrm{~V}$	
200 V	1 mV	$10 \mathrm{~mA} / 400 \mathrm{pF}$	
1100 V	10 mV	$6 \mathrm{~mA} / 400 \mathrm{pF}$	
Chap 2.2 .7 Page 1			

2. Specification (continued)

Accuracy:	$\pm(0.005 \%$ of setting $+0.001 \%$ of range $+5 \mu \mathrm{~V}$) for all ranges, for six months, $20^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$ ambient, non-override.		
	Range	Resolution	Maximum Current/Load
	20 mV	$0.1 \mu \mathrm{~V}$	
	200 mV	$1 \mu \mathrm{~V}$	50Ω source
	2 V	$10 \mu \mathrm{~V}$	$2 \mathrm{k} \Omega / 1000 \mathrm{pF}$
	20 V	$100 \mu \mathrm{~V}$	$25 \mathrm{~mA} / 1000 \mathrm{pF}$
	200 V	1 mV	$10 \mathrm{~mA} / 400 \mathrm{pF}$
	1100 V	10 mV	$6 \mathrm{~mA} / 400 \mathrm{pF}$

Accuracy:

Frequencies
available (Hz):
Frequency accuracy:
DC CURRENT

Accuracy:

AC CURRENT

Range	Resolution	Comp1iance Voltage
$200 \mu \mathrm{~A}$	1 nA	0 to 7 V rms
2 mA	10 nA	
20 mA	100 nA	
200 mA	$1 \mu \mathrm{~A}$	
$2 \mu \mathrm{a}$	$10 \mu \mathrm{~A}$	0 to 1.4 V rms

(continued)
Chap 2.2.7
2. Specification (continued)

Accuracy: $\quad \pm$ (0.07% of setting $+0.01 \%$ of range $+2 \mu \mathrm{~A}$) for compliance voltage up to 1 V rms. Add 0.005% of setting per volt above 1 V rms. Applies for six months in $20^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$ ambient.

RESISTANCE

Range:	1Ω to $10 \mathrm{M} \Omega$ in decade steps.
Accuracy:	$\pm 0.005 \%$, except $\pm 0.02 \%(1 \Omega), \pm 0.01 \%$ (10 Ω
	to $1 \mathrm{M} \Omega)$, and $\pm 0.05 \%(10 \mathrm{M} \Omega)$. Applies for six
	months, $20-30^{\circ} \mathrm{C}$.

3. Comprising

Instrument
Power cord
Manual
4. Accessory Items

None.
5. Associated Equipment

102Z/209166 Transconductance Amplifier Fluke 5220A AFDEETEC No. 19331

1. Description

The model 5220A Transconductance Amplifier is used to calibrate ac or de current meters and shunts and the current functions of digital multimeters and VOM's that measure up to 20 A . The transconductance is $1 \mathrm{~A} / \mathrm{V}$ either dc or rms ac from 30 Hz to 5 kHz . The 5220A is designed to be driven by the $5100 B$ Meter Calibrator. When used with the $5100 B$ the current range of that instrument is extended by a factor or 10:1. Protection is designed to eliminate problems caused by excessive inputs, open inputs, and overcompliance. Indicators on the front panel inform the user of the presence of any of these conditions. Automatic shutdown occurs should the internal temperature rise excessively.
2. Specification

Transconductance:
Output range:
Compliance voltage:
1 Siemens ($1 \mathrm{~A} / \mathrm{V}$)
0 to 20 A dc or rms (28.3 A peak)
$\geqslant \pm 4 \mathrm{~V} \mathrm{dc}$, or 3 V rms ac (4.25 V peak)
(continued)

Chap 2.2.7a
2. Specification (continued)

DC accuracy:
\pm (0.25% of output +1 mA)
AC accuracy:
\pm (0.05% of output +1 mA)
Harmonic distortion and noise:

Load capability:
\pm (0.05% of output $\pm 1 \mathrm{~mA} \mathrm{rms}$) over frequency range of 30 Hz to 1 kHz and measured with a noise bandwidth of 300 kHz , \pm (0.05% of output +1 mA) x from 1 kHz to 5 kHz , where $\mathrm{f}=\mathrm{fr}$ requency in kHz .

Drives all resistive and capacitive loads consistent with current and compliance voltage capability. Drives inductive loads (with reduced accuracy) up to $200 \mu \mathrm{H}$, consistent with current and compliance voltage capabilities.
Maximum isolation voltage: $\pm 20 \mathrm{~V}$ dc or 20 V ac rms.
3. Comprising Items

Instrument
Power cord
Manual
4. Accessory Items

None.
5. Associated Equipment

10ZZ/209117 Meter Calibrator Fluke 5100B AFDEETEC No. 19332

Chap 2.2.7a

Section Reference:$6625-99-7655260$		Nomenclature: MILLIVOLT SOURCE		
Manufacturer: TIME ELECTRONICS LTD.		Part No: 404 S		Cost/Date: $£ 100 \quad 9 / 79$
Height: $8.5 \mathrm{~cm}$	width: $7.5 \mathrm{~cm}$	Depth: 19.7 cm	1 kg	
Power Supplies: 6 ¢ U7 Dry cell batteries			None	
$\begin{gathered} \text { Availability: } \\ 2 \end{gathered}$	Environment: B	Maintenance Policy: B2 / D4	Calibration: IAW 100C-50	AFDEETEC NO: 19049

1. Description

The 404 S is an accurate millivolt source providing, in 3 ranges, adjustable outputs from $1 \mu \mathrm{~V}$ to 1 V . The output is short circuit and overload protected, and the polarity can be reversed by a three-position switch on the front panel. The output range is selected by one of three push-buttons, and the voltage required is set by four thumbwheel switches. Battery life is several months depending on usage - the battery condition is monitored by an indicator which is mounted on the side of the unit.
2. Specification

Output:

Accuracy:

```
0-1 V in 3 ranges
    0-999.9 mV in 100 \muV steps
    0-99.99 mV in 10 \muV steps
    0-9.999 mV in 1 \muV steps
    \pm0.05% of setting, \pm0.02% of range
```

Maximum Output Current:	```20 mA on 1 V and 100 mV ranges. Up to short circuit on 10 mV range, but loads less than l k\Omega will give errors > 0.1%.```
Maximum Overload:	Continuous short circuit on all ranges.
Output Resistance:	Less than $0.1 \mathrm{k} \Omega$ on 1 V and 100 mV ranges. $1 \mathrm{k} \Omega$ on 10 mV range.
Output Stability:	Better than $60 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. Less than 25 ppm per hour at constant temp.
Operating Temperature Range:	$-10^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$
Output Polarity:	Positive or negative switch selected with a centre 'Off' position.

3. Comprising

Instrument only
4. Accessory Items

None
5. Associated Equipment

None

```Section Reference: 5P/1620153```		ELECTRONIC LOAD		
Manufacturer:   AMPLICON		Part No: EL750B-K		Cost/Date:   £1452 (1985
Height: 6 inch	Width: $9 \text { in }$	Depth:   17.3 inch	Weight:	
Power Supplies:$215-264 \mathrm{~V} \text { AC, } 47-63 \mathrm{~Hz}$			Air Publication: $\quad \mathrm{N} / \mathrm{R}$	
$\begin{gathered} \text { Availability: } \\ 2 \end{gathered}$	Environment: B	Maintenance Policy: $1 \mathrm{~A} / 2 \mathrm{~B} / 4 \mathrm{CD}$	Calibration:   IAW 100C-50	AFDEETEC No: $19399$

Photograph to be issued later

1. Description

The EL750B-K is ideal for verification of single output power supply operation, static or dynamic resistance loading tests performance such as output regulation or transient response. External variable load modulation can determine output impedance at specific frequencies. In the constant current mode it functions to test discharge rates of batteries or capacitor banks. U'sed with a DC power source it becomes a variable, constant current supply useful for measurement of resistance values of components or motor coils under operating conditions. The forward voltage drop of rectifier diodes or high current terminal connections can also be tested in this fashion.
2. Specification

Maximum loading power:	750 W (see safe operating curve)
Maximum load voltage:	1.8 V DC
Maximum load voltage:	55 V DC
Maximum load current:	150 A
Operating mode:	Constant current or constant voltage.
Current ripple:	Less than 0.1 A P-P
Dynamic loading:	Allows switching between two current levels at a switch selected rate of $\sim 1 \mathrm{kHz}$ or twice input line frequency. The two current levels are set by front panel controls.
Dynamic Load   Response Time:	1 microsecond per amp or 60 microseconds whichever is greater.
Remote Programming (constant current):	0-10 V is equal to $0-150 \mathrm{~A}$. Accuracy is $\pm 1 \%$. Program voltage input impedance approx $100 \mathrm{k} \Omega$.
Meter Range:	Voltmeter 0-60 V DC   Ammeter 0-10-50-100-200 A
Protection Circuits:	Electronic circuit limits power dissipation to 750 W . Load shuts down in the event of an overvoltage.   Thermal sensors shut off load in the event of an overtemperature condition. Unit is protected against application of reversed polarity voltages.
Current Signal Output:	Voltage proportional to current is provided. 1 mV per amp, $\pm 1 \%$.
Operating Temperature Range:	$0^{\circ} \mathrm{C}-40^{\circ} \mathrm{C}$
Cooling:	Forced air cooling integral in design.
Front Panel Indicators:	Voltmeter, ammeter, power-on indicator, overvoltage-overcurrent indicator (EI), Saturation indicator and overtemperature indicator.

## 2 Specification (cont.)

Rear Panel:
ac power connector, fuse, remote program, input/output connector (MOLEX), positive and negative bus bars.


## Chapter 3

FREQUENCY, WAVEFORM AND TIME MEASURING DEVICES

CONTENTS

| Chap | Nomenclature | Sec/Ref/Stock | No. |
| :---: | :---: | :---: | :---: | Part No.


. 1	Microwave Frequency Counter	$\begin{aligned} & 10 S / 6625-99- \\ & 4094784 \end{aligned}$	Racal Instruments 2101 OPT, 04A. 60
. 2	1.3 GHz Frequency Counter	$\begin{aligned} & 10 S / 6625-99- \\ & 7864628 \end{aligned}$	Racal Instruments 1998 OPT. 04A
. 3	Source Locking Frequency Counter	10S/2255467	EIP 575-09-22
. 4	Universal Counter Timer $1.3 \mathrm{GHz}$	10S/7439270	$\begin{aligned} & \text { Racal Dana 1992- } \\ & 55-04 \mathrm{ES} \end{aligned}$
. 5	Frequency Meter		Hewlett Packard
		6625-00-9666728	546A
		6625-00-9309687	537A
. 6	Not used		
. 7	Not used		
. 8	Not used		
. 9	Not used		
. 10	Not used		
. 11	Frequency Difference Meter	10S/0857707	Tracor 527E
. 12	Strobotorch	6625-99-6368851	Dawe 1222A
. 13	Not used		
. 14	Not used		
. 15	Microwave Pulse Counter	6625-99-6235830	Racal/Dana 451

3.5 TIME INTERVAL METERS
3.6 DATA/TRANSMISSION LINE TESTERS

.1	Protocol Analyser	$10 S / 9085747$	Phoenix Datacom   Ltd. Part No. 9440
.2	Data Tester		Trend DT 108A
.3	Data Transmission Analyser	$10 S / 5731076$	Anritsu Europe   Ltd. Part No. MD
			6401A




1. Description

The 6500 Automatic Amplitude Analyser has features that include an easy to use keyboard, microprocessor control and sophisticated bus programming functions. It has the capability of accurate scaler measurements of transmission loss or gain, return loss and power for microwave systems. It provides versatile and intelligent control of an external swept frequency source, by outputting a programmable ramp voltage at up to 70 ms sweep speeds for easy tuning adjustments to the device under test. Full IEEE-488 data bus compatability is available, and advanced software of the 6500 gives access to a wide range of GPIB programmable features. The analyser is in a standard 19 in rack mounting configuration with integral display.
2. Specification

Frequency Range: $\quad 0-126 \mathrm{GHz}$ (Dependent on detector)
Dynamic Range:
$66 \mathrm{~dB} ;+16 \mathrm{dBm}$ to -50 dBm
71 dB ; +16 dBm to -55 dBm (average mode) A11 channe1s
(continued)
Chap 3.1.1
Page 1
2. Specification (continued)

Resolution (Brightline)

```
 Frequency:
 Amp1itude:
Frequency Linearity:
Markers:
 Digital readout to 10 MHz
 Digital readout to 0.01 dB(m)
 Dependent on linearity of sweeper.
 See Ramp Output Linearity.
Up to eight on-screen markers with 10 MHz
resolution.
```

Front Panel Selectable Parameters

Range:	0.1 to $10.9 \mathrm{~dB}(\mathrm{~m}) /$ division;   $0.1 \mathrm{~dB}(\mathrm{~m})$ increments
Datum:	```\pm99.9 dB(m); 0.1 dB(m) increments. Above parameters individually selectable on A, B and R channels.```
dB Relative:	Enter using BRIGHTLINE position or keyboard.   Range: $\pm 99.99 \mathrm{~dB}(\mathrm{~m})$.   Resolution: $0.1 \mathrm{~dB}(\mathrm{~m})$.
High/Low Limits:	$\pm 99.99 \mathrm{~dB}(\mathrm{~m})$ individually selectable on $A$ and $B$ channels.
F1, F2 (Sweeper Range):	Selectable in Range 0 to 126 GHz ; 10 MHz resolution.
$\Delta \mathrm{F}$ :	Selectable Symmetrical within range F1-F2; Centre Frequency in BRIGHTLINE position. 10 MHz resolution.
Start, Stop (Selected Range) :	Selectable within Range Fl-F2; 10 MHz resolution.
Display Format:	Line or histogram
Sweep Speed:	70 ms to 20 s nominal ( 10 alternative speeds)
X-Y Plotter Output:	Analog plot with nine alternative speeds. Digital plot if TALK ONLY is selected. Live $Y$ output.

Ramp Output

Fixed:
Linearity:
Resolution:
Variable:

Offset:
Linearity:
$0-10 \mathrm{~V} \pm 10 \mathrm{mV}$
$\pm 5 \mathrm{mV}$
4096 points
Adjustable from 1.20 V (approx) using Coarse and Fine rear panel controls.
Bottom of range $=0 \mathrm{~V} \pm 10 \%$ of range. $\pm 0.25 \%$

Chap 3.1.1
2. Specification (continued)

Channel Memories:

Plotter Output
Analog:

Live $Y:$

Digital:
At any time when valid data are available on the screens, the trace may be stored in any of the three memories. New data may be averaged with data already present. When invoked:
A memory is subtracted from A trace.
B memory is subtracted from B trace.
R memory is subtracted from A and/or B
trace, as selected. Recall is avail-
able on all memories.

Menu allows pen locations to be set up, axes drawn and labelled, pen lift polarity to be set. Live $Y$ to be selected. X output: See Ramp Output BNC socket.
Y output: 9 to $10 \mathrm{~V} \pm 50 \mathrm{mV}$, BNC socket.
Z output: Open collector drive with selectable High/Low for pen Up/Down, BNC socket.
0 to 10 V to cover screen display. Resolution is $1 / 256$ of screen range. For example $10 \mathrm{~dB} / \mathrm{div}$ - 100 dB screen range, hence resolution is 0.39 dB .

Menu allows Plot All, Draw Graticule, Label Graticule, Plot and Live Y selection. The standard HPGL command sub-set is used with functions: DF, SC, SR, PA, PU, PD, LB and SP. (SP is Select Pen, but will also function if only one pen is available). Graticule is labelled with sweep speed, vertical scale units, vertical scaling, frequency scaling BRIGHTLINE cursor measurement values, measurement type.

## CRT

Dimensions:

## GPIB Programming:

Transfer Formats:

Speed:
$105 \mathrm{~mm} \times 135 \mathrm{~mm}$ used screen area.
Compatible with IEEE 488-78.
ASC11: Single point read/write or 422 point measurement read/write to any channel data store or memory using NR2* numeric data format. *NR2 as defined in IEEE 728-1982

Binary: 422 point measurement read/write to any channel data store or memory using a block data format.
ASCll format: 800 ms typical for 422 point measurement.
Binary format: 200 ms typical for 422 point measurement.
These times are for an HP Series 200 controller using standard transfer techniques.
2. Specification (continued)

GPIB Programming (continued)

Programmable Functions:

User-accessible display:

Interrupts:

Every front panel key has related GPIB commands. Additional commands are classifield as follows:

Reading status information Reading/writing measurement data Reading/writing instrument settings Digital plotter control (stand-alone mode available)
Single step mode for use with synthesizers
Complete control of displayed text in two modes:

```
Text overlaying normal measurement display
Normal display switched off, giving full vdu facilities.
The full ASCll character set is available, plus additional scientific characters and a complete range of control codes.
The 6500 may be programmed to generate the following interrupts:
```

Any front panel key press
BRIGHTLINE control rotation
End of sweep
User-defined limits exceeded
Plot menu selection required
Error condition detected
General

```
Temperature Range Storage:
Operational:
(full Specification)
Humidity
```

Power Consumption:

```
-40. C to +70 %
0. C to }5\mp@subsup{0}{}{\circ}\textrm{C
10.0}\textrm{C}\mathrm{ to }3\mp@subsup{5}{}{\circ}\textrm{C
95% relative at }3\mp@subsup{5}{}{\circ}\textrm{C
120 VA max.
```

3. Comprising

Instrument
Mains Cable
Operating Handbook
4. Accessory Items

| $10 Z Z / 210994$ | Detector | 6511 | $(0.01-18 \mathrm{GHz}, \mathrm{II}(\mathrm{n}) 50 \Omega)$ |
| :--- | :--- | :--- | :--- | :--- |
| $10 Z Z / 210995$ | Detector | 6512 | $(0.01-18 \mathrm{GHz}, \mathrm{APC}-7)$ |

5. Associated Equipment

None.
Chap 3.1.1
Page 4



1. Description

The HP 3586C is a general purpose instrument used for wave analysis applications in the maintenance of electronic systems. It covers the range 50 Hz to 32.5 MHz allowing measurements of audio, sonar and other low frequency systems as well as high frequency communications and sub-systems.
2. Specifications

## Frequency

* Range :

50/75 $\Omega$ unbalanced input, 50 Hz to $32.5 \mathrm{MHz} 600 \Omega$ balanced input, 50 Hz to 108 kHz

Frequency resolution :
Center frequency accuracy :
Counter accuracy :
0.1 Hz
$\pm 1 \times 10-^{5} /$ year
$\pm 1.0 \mathrm{~Hz}$ in addition to centre frequency accuracy for signals within the 60 dB bandwidth of the IF filter chosen or greater


## Chap 3.1.4

Wideband power accuracy :
after calibration, 100 dB range, average on, -45 to +20 dBm

| $\pm 2.0 \mathrm{~dB}$ | $\pm 1.0 \mathrm{~dB}$ | $\pm 2.0 \mathrm{~dB}$ |
| :--- | :--- | :--- | :--- |
| 200 Hz | $20 \mathrm{kHz} \quad 10 \mathrm{MHz}$ | 32.5 MHz |

Dynamic Range

Spurious Responses :

Image rejection (100-132 MHz) :
IF rejection :
Spurious signals :

Residual spurious :
Distortion
Harmonic distortion :

Intermodulation distortion :
-110 dBm maximum or the following, whichever is greater
$-80 \mathrm{dBC}$
$15625 \mathrm{~Hz},-80 \mathrm{dBc} ; 50 \mathrm{MHz},-60 \mathrm{dBc}$
$>1600 \mathrm{~Hz}$ offset, $>-80 \mathrm{dBc}$;
300 Hz to $1600 \mathrm{~Hz},>-75 \mathrm{dBc}$
-110 dBm maximum; $<350 \mathrm{~Hz},-95 \mathrm{dBm}$
-75 dB below full scale, low distortion mode, above 4 kHz two-tone second and third order, separation 10 kHz to $1 \mathrm{MHz},-78 \mathrm{~dB}$ below full scale. Either tone $\geq 10 \mathrm{MHz},-70 \mathrm{~dB}$

Noise Floor (full scale setting -35 to -120 dBm )

Frequency	Bandwidth	Noise Level
100 kHz to 32.5 MHz	3100	-114 dBm
	$20 \mathrm{~Hz}, 400 \mathrm{~Hz}$	-120 dBm
	All	-105 dBm

The noise floor for full scale settings of -30 to +25 dBm will be 75 dB below full scale for $>100 \mathrm{kHz}$, or 55 dB below full scale for $<100 \mathrm{kHz}$.

Signal Inputs

Impedance	Frequency	Matling Connector
$50 / 75 \Omega$ unbalanced	50 Hz to 32.5 MHz	BNC
$600 \Omega$ balanced	50 Hz to 108 kHz	Dual Banana Plug   0.75 inch Spacing

Return loss :
Balance :
Demodulated Audio Output
Output level :
Output connector :
$50 / 75 \Omega, 30 \mathrm{~dB} ; 600 \Omega, 25 \mathrm{~dB}$
$600 \Omega ; 40 \mathrm{~dB}$

0 dBm into a $600 \Omega$ load
1/4" jack, mates with WECO 347

Auxiliary Signal Inputs/Outputs	
Tracking output :	0 dBm rear panel tracking output
Ext. reference input :	1 MHz to 10 MHz or sub-harmonic input
Reference output :	10 MHz at 8 dBm output
Probe power :	front panel dc output for $H P$ active high impedance accessory probes, ( $+15,-12 \mathrm{~V}$ dc)
HP-IB Interface Functions :	$\begin{aligned} & \mathrm{SH1}, \mathrm{AH1}, \mathrm{~T} 6, \mathrm{~L} 4, \mathrm{SRI}, \mathrm{RL1}, \mathrm{PP1}, \mathrm{DC1} \\ & \mathrm{DT1}, \mathrm{Cl}, \mathrm{C} 3, \mathrm{C} 28 \end{aligned}$
Additional outputs :	audio, phase jitter and meter output

3. Comprising

Instrument Mains lead Handbook
4. Accessory Items

None
5. Associated Equipment

None

Section Reference110S/6625-99-6475401		Nomenclature   AMPLITUDE/DELAY DISTORTION ANALYSER		
Manufacturer   HEWLETT PACKARD		Part No. 3770B Opt	$002 \text { and } 061$	$\begin{aligned} & \text { Cost/Date } \\ & £ 4427.00 \quad 1980 \end{aligned}$
Height 20.0 cm	Width	0 cm Depth	56.0 cm	Weight 12.0 kg
Fower Supplies ${ }^{\text {P }} 90-126 \mathrm{~V} / 195-253 \mathrm{~V} ; 48-66 \mathrm{~Hz}$				Air Publication NONE
$\begin{gathered} \text { Availability } \\ 2 \end{gathered}$	Fnvironment B	Maintenance Folicy $\mathrm{B} 2 / \mathrm{D} 4$	Calibration $\mathrm{A} / 12$	$\begin{gathered} \text { AFDEEREC/AFDSEC No. } \\ 18840 \end{gathered}$



1. Description

The HP 3770B makes point-by-point and sweep measurements of Delay Distortion, Attenuation Distortion and Received Level over the frequency range 200 Hz to 20 kHz . The measuring frequency can be adjusted manually with a tuning control, incremented in 100 Hz steps, or swept over any
$\rightarrow$ part of the band using the continuous or single sweep modes. The HP 3700B supersedes the HP 3770A (10S/6625-99-6362354) which is now out of production.

## 2. Specification

Sender:
Reference carrier: $\quad 0.4$ to 19.9 kHz in 100 Hz steps
Measuring carrier: 0.20 to 20.00 kHz in 10 Hz steps

Modulation envelope 41.66 Hz
frequency:
Chap 3.1.5
June 80 (Amdt 3)
Page 1

Measuring frequency sweep rates:

Measuring frequency
sweep limits:

Carrier level:
Receiver
Operating level range:
Frequency measuring:
Weighted Noise Measurement
Range:
Detector type:
Weighting filters:
Noise With Tone Measurement
Range:
Tone frequency:
Impulse Noise
Threshold:

Dead time:

10, 20, 40, $80,160 \mathrm{~Hz}$ nominal

Settable in range 0.2 to 19.9 kHz ( 100 Hz steps). Accuracy as for measurement frequency

0 to -49 dBm in 1 dB steps
$<-50 \mathrm{dBm}$ to $>+10 \mathrm{dBm}$
$0.1 \%$

0 to -85 dBm
True rms
CCITT telephone and 3 kHz flat

0 to 80 dBm
1004 Hz

Single level, adjustable in 1 dB steps from 0 to -49 dB ( 0 dB is equivalent to 1.1 V
$125 \pm 25 \mathrm{rms}$

An optional slave facility for group delay and attenuation distortion measurements allows the measurement results for both direction of transmission on a 4 wire circuit to be displayed at one end of the circuit.

- The full specification is available on request to CSDE-TSE/EA41.

3. Comprising

Instrument only.
4. Accessory Items

None.

## 5. Associated Equipment

None.

Chap 3.1.5

Section Reference: $10 S / 6625$	$00-8718012$	DISTORTION ANALYSER			
Manufacturer:   HEWLETT	ACKARD	334 A		$\begin{aligned} & \text { Cost/Date: } \\ & £ 2525 \end{aligned}$	1985
Height: 126 mm	width: $426 \mathrm{~mm}$	Depth: $337 \mathrm{~mm}$	Weight: $\quad 8 \mathrm{~kg}$		
Power Supplies: $115 \text { V }$	$230 \mathrm{~V}, 4$	66 Hz	Air Publication:$117 \mathrm{D}-0500-1$		
Availability: $1$	Environment: B	Maintenance Policy:   B2 / D4	Calibration:   IAW 100C-50	AFDEETEC No:$13643$	



1. Description

The HP334A Distortion Analayser measures total distortion down to $0.1 \%$ full scale at any frequency between 5 Hz and 600 kHz ; harmonics are indicated up to 3 MHz . Noise levels as low as 25 microvolts can be measured. The HP334A includes automatic fundamental nulling and amplitude modulation detector.

## 2. Specification

Input Level for Distortion
Level Measurements:
0.3 V rms for $100 \%$ set level or 0.245 V for 0 dB set level (up to 300 V may be attenuated to set level reference.)

Harmonic Measurement Accuracy: Full scale.

Specification (continued)
Fundament Input Less than 30 V :

Range	$\pm 3 \%$	$\pm 6 \%$	$\pm 12 \%$
$100 \%-0.3 \%$	$10 \mathrm{~Hz}-1 \mathrm{MHz}$	$10 \mathrm{~Hz}-3 \mathrm{MHz}$	
$0.1 \%$	$30 \mathrm{~Hz}-300 \mathrm{kHz}$	$20 \mathrm{~Hz}-500 \mathrm{kHz}$	$10 \mathrm{~Hz}-1.2 \mathrm{MHz}$

Fundamental Rejection:
Residual Distortion

Frequency Calibration Accuracy:

Input Impedance: distortion mode:

DC Isolation:

Voltmeter Range:

Noise Measurements:

Output:
Output Impedance:
Automatic Nulling Mode:
Frequency Ranges:

Automatic Null Accuracy:

High Pass Filter:

AM Detector:
> 80 dB
$>-70 \mathrm{~dB}(0.03 \%)$ from 5 Hz to 200 kHz : $>-64 \mathrm{~dB}(0.06 \%)$ from 200 kHz to 600 kHz . Meter indication is proportional to average value of a sine wave.

Better than $\pm 5 \%$ from 5 Hz to 300 kHz . Better than $\pm 10 \%$ from 300 kHz to 600 kHz .
$1 \mathrm{M} \Omega \pm 5 \%$ shunted by<70 pF.
Signal ground may be $\pm 400 \mathrm{~V}$ DC from external chassis.
$300 \mu \mathrm{~V}$ to 300 V rms full scale (13 ranges) 10 dB per range. Average responding calibrated in rms.

Voltmeter residual noise on the $300 \mu \mathrm{~V}$ range; $25 \mu \mathrm{~V}$ rms, when terminated in 600 (shielded) $\Omega$.
$0.1 \pm 0.01 \mathrm{~V}$ rms open circuit.
$2 \mathrm{k} \Omega$.

Set level: at least 0.2 V rms.

X1, manual null tuned to less than $3 \%$ set level; total frequency hold-in $\pm 0.5 \%$ about true manual null. X10 thru X10k, manual null tuned to less than $10 \%$ of set level; total frequency hold-in $\pm 1 \%$ about true manual null.

5 Hz to 100 Hz ; meter reading within 0 to +3 dB of manual null. 100 Hz to 600 Hz ; meter reading within 0 to +1.5 dB of manual null.

3 dB point at 400 Hz with 18 dB per
octave roll off.
550 kHz to 65 Mhz ; $40 \mathrm{~V} \mathrm{p}-\mathrm{p}$ max input.

Specification (continued)
Distortion Introduced by
Detector; Carrier Frequency:
$550 \mathrm{kHz}-1.6 \mathrm{MHz}:<50 \mathrm{~dB}$ ( $0.3 \%$ ) for 3-8 V rms carriers modulated $30 \%$. $1.6 \mathrm{MHz}-65 \mathrm{MHz}:<40 \mathrm{~dB}(1 \%)$ for $3-8 \mathrm{~V}$ rms carriers modulated $30 \%$.
3. Comprising

Instrument only.
4. Accessory Items

None
5. Associated Equipment

None



1. Description

The HP3581A Wave Analyzer resolves and measures the amplitude and frequency of spectral components. Since not all signals originate from a stable frequency source, the HP3581A incorporates an AFC circuit which locks to a drifting signal for stable, accurate measurements.

Digital readout of tuned frequency is located above the analogue meter. Resolution of the digital readout is 1 Hz for any frequency between 15 Hz and 50 kHz . Readout is updated five times per second so delay between tuning and readout is minimized.

Four meter scales are used to provide a wide range of displays. Two scales are used for linear voltage readings. Two log scales provide either a 90 dB or 10 dB display. The same voltage used to drive the meter is also available on the rear panel for driving $X-Y$ recorders.
2. Specification

Frequency Characteristics

## Range:

Display:
Resolution:
Accuracy:
Typical Stability:
Automatic Frequency control (AFC) Hold-in Range:

Amplitude Characteristics
Instrument Range

## Linear:

Log:
Amplitude Accuracy
Frequency Response, 15 Hz - 50 kHz

Dynamic Range:
Noise Sidebands:

Spurious Responses:
Sweep Characteristics
Scan Width:

Sweep Error Light:

External Trigger:

Input Characteristics
Impedance:
Maximum Input Level:
Output Characteristics
Tracking Generator Output:

Range:

15 Hz to 50 Hz
5 digit LED readout
1 Hz
$\pm 3.5 \mathrm{~Hz}$, 0 to $55^{\circ} \mathrm{C}$
$\pm 10 \mathrm{~Hz} /$ hour after 1 hour and $\pm 5 \mathrm{~Hz} /{ }^{\circ} \mathrm{C}$
$\pm 800 \mathrm{~Hz}$

30 V to 100 nV full scale
+30 dBm or dBV to -150 dBm or dBV
Log Linear
$\pm 0.4 \mathrm{~dB} \quad \pm 4 \%$
$>80 \mathrm{~dB}$
greater than 70 dB below CW signal. 10 bandwidths away from signal.
$>80 \mathrm{~dB}$ below input reference level.

50 Hz to 50 kHz , adjustable in a 1-2-5 sequence from 50 Hz to the full frequency range.
This LED indicates a sweep that is too fast to capture full response. When the light is on, response will be lower than it should be.

A short to ground stops the normal sweep. Opening the short then enables a sweep.
$1 \mathrm{M} \Omega, 30 \mathrm{pF}$.
100 V rms, $\pm 100 \mathrm{~V} \mathrm{dc}$.
(also known as BFO or tracking oscillator output).

0 to $>1 \mathrm{~V}$ rms into $600 \Omega$.

Chap 3.1.7

Specification (continued)
Output Characteristics

Frequency Response:	$\pm 3 \% 15 \mathrm{~Hz}$ to 50 kHz.
X-Y Recorder Analogue Outputs	
$\quad$ Vertical:	0 to $+5 \mathrm{~V} \pm 2.5 \%$.
$\quad$ Horizontal:	0 to $+5 \mathrm{~V} \pm 2.5 \%$.
$\quad$ Impedance:	$1 \mathrm{k} \Omega$
Recommended Accuracy:	HP7090A Measurement Plotting System.
Pen Lift:	Contact closure to ground during sweep.
Restored Output:	Acts as a narrow band amplifier.

3. Comprising

Instrument only.
4. Accessory Items

None
5. Associated Equipment

None

Section Reference $10 \mathrm{~S} / 6625-9$	$-6208914$	Nomenclature	SOUND RECORDING TEST SET	ST SET
Manufacturer   FERROGR		Part No. $\quad$ RTS 2		$\begin{array}{ll} \hline \text { Cost/Date } & \\ \text { E370.00 } & 1978 \end{array}$
Height 14.3 cm	Width	4.1 cm	$\text { Depth } 25.4 \mathrm{~cm}$	Weight 6.4 kg
Power supplies$105-120 \mathrm{~V} / 200-250 \mathrm{~V} ; 50-60 \mathrm{~Hz}$				$\begin{array}{\|r} \text { Air Publication } \\ \text { NONE } \end{array}$
$\begin{gathered} \text { Avai lability } \\ 2 \end{gathered}$	Fnvironment   B	Maintemance Policy B2 /D4	Calibration   A/12	$\begin{gathered} \text { AFDFFPEC/AFDSEC No. } \\ 18164 \end{gathered}$



1. Description

Portable test set for the servicing of magnetic tape recorders. It incorporates:
(a) Variable Frequency Audio Generator
(b) Mi11ivo1tmeter
(c) Wow and Flutter Unit
(d) Distortion Measuring Network

A test tape is supplied as a standard for checking Head, Azimuth and Replay characteristics of magnetic tape recorders.

Chap 3.1.8
May 82 (Amdt 7)

## 2. Specification

Generator Section:

Frequency Coverage
Distortion:

Frequency Response:
Output Level:
Output Attenuator:

Output Impedance:

Millivoltmeter Indicator:

Ranges:

Input Impedance:
Accuracy:
Frequency Response:
Wow and Flutter Meter
Internal Oscillator:
Frequency Response:
Input Requirement:
Sensitivity:
Distortion Section
Second Harmonic Rejection:
Bandwidth of Harmonic
Measurement:
Minimum Reading:
Minimum Input Signal:
Input Impedance:

15 Hz to 150 kHz in 4 ranges
$0.025 \%$ at $1 \mathrm{kHz} ; 0.08 \%$ over range
100 Hz to 20 kHz
$\pm 0.2 \mathrm{~dB}$ over range 15 Hz to 150 kHz $600 \Omega$ 1oad

Coarse - Six 10 dB steps
Fine - Continuous over approx 15 dB range

Dependent on attenuator setting. Max $450 \Omega$

Average-reading meter, calibrated in rms for sinusoidal inputs

11 (in 10 dB steps) from 1.0 mV to 100 V fsd
$2 \mathrm{M} \Omega$ (No dc path)
Within $\pm 2 \%$ fsd over range 30 Hz to 20 kHz
$\pm 0.2 \mathrm{~dB}$ over range 10 Hz to 150 kHz
3.15 kHz

4 Hz (3 dB points 1.2 Hz and 12 Hz )
35 mV to 5 V
3 ranges: $0.1 \%, 0.3 \%$ and $1.0 \%$ peak fsd 0.25 dB

15 Hz to 20 kHz
$0.05 \%$
100 mV
$100 \mathrm{k} \Omega$

## 3. Comprising

Instrument Only.

Chap 3.1 .8
4. Accessory Items

None.
5. Associated Equipment

None.

Chap. 3.1.8



1. Description

The 8750A unit offers both digital storage and normalisation to a range of Hewlett Packard Network and Spectrum Analysers.

DIGITAL STORAGE DISPLAY:
By constantly refreshing the CRT at a flicker free rate while updating the stored data at the actual sweep rate, the 8750 A always provides continuous CRT displays regardless of system sweep speed.
In Network Analyser applications, two channels with 256 point horizontal resolution are available for simultaneous displays such as insertion and return loss or magnitude and phase.
In Spectrum Analyser applications, up to two traces can be displayed for the comparison of a stored trace to the current input trace (drift tests) or, for the analysis of two stored traces. Video Peak Detection is provided for accurate signal level measurements.

DIGITAL NORMALISATION:
The 8750 unit will store a reference and automatically display the measurement data minus the reference (normalisation).

Chap 3.1.9

## DIGITAL NORMALISATION (Cont):

High resolution measurements of amplifier, attenuator or filter passband flatness are made easy since the 8750 A normalises out frequency response errors and a unique vector generator always presents a smooth trace free from spikes and transients. The 8750 A allows comparison measurements such as matching two test devices or measuring swept amplifier gain compression by displaying the deviation between two measurements directly.

	MODEL	REFERENCE $N^{\circ}$	AFDEETEC $N^{\circ}$	COST	DATE
$-\quad 8750 A$	110S/6625-01-0512367	19102	$£ 900$	1980	
$8750 A-003$	110AD/6636-99-6235938	19129	$£ 950$	1980	

## 2. Specification

DISPLAY:

Horizontal Memory Resolution:	Two display channels, 256 points per channel ( $0.4 \%$ of full scale, 8 bit word)
Vertical Memory Resolution:	512 points displayed full scale ( $0.2 \%$ of full scale, 10 bit word) plus a $50 \%$ overrange ( 256 points) both above and below full screen. The overrange capability is useful in storing and normalising traces that exceed full scale.
Horizontal Input Sweep Rates:	100smax/10 ms min.
Display Refresh Rate:	6 ns
Video Detection:	
Network Analyser:	Average Detection ( 20 kHz )
Spectrum Analyser:	Peak Detection
Vector Generator:	A vector generation technique is used to connect points on a CRT display or $\mathrm{X}-\mathrm{Y}$ recorder, yielding a smooth continuous display.

INPUT/OUTPUT:

A/D Inputs	
Horizontal Input:	
Network Analyser:	0 to 10 V nominal
	offset $\pm 0.5 \mathrm{~V}$ and gain adjust 6 V to
	15 V
Spectrum Analyser:	$\pm 5 \mathrm{~V}$ nominal
	Offset $\pm 0.5 \mathrm{~V}$ and gain adjust $\pm 4.5 \mathrm{~V}$
	to $\pm 5.5 \mathrm{~V}$
Adjustment:	Gain and Offset potentiometers adjustable
	on rear panel interface card.

Chap 3.1.9

Vertical Input:	
Network Analyser:	```\pm0.8 V min (nominal) and }\pm2.25\textrm{V}\mathrm{ max (nominal) with continuous gain adjust- ment. Offset \pm 0.3 V.```
Spectrum Analyser:	0 to 0.8 V or 0 to -0.8 V nominal. Offset $\pm 0.1 \mathrm{~V}$ and gain adjust $\pm 80 \mathrm{mV}$. Gain and Offset potentiometers adjustable on rear panel interface card.
D/A Outputs:	
Horizontal Output:	
Network Analyser:	```Gain and adjustment from 1 V to 3 V nominal. Offset adjustment allows }\pm1.5\textrm{V}\mathrm{ or 0 V to 3 V sweep output.```
Spectrum Analyser:	```O V to 3 V nominal. Offset \pm 0.5 V and gain adjustment from 0.7 V to 3.5 V.```
Adjustment:	Gain and Position potentiometers adjustable on front panel (Display Adjust).
Vertical Output:	
Network Analyser:	Same as vertical input with $\pm 10 \%$ adjustment range.
Spectrum Analyser:	Same as vertical input with $\pm 10 \%$ adjustment range.
Adjustment:	Gain and Position potentiometers adjustable on front panel (Display Adjust).
X-Y Recorder Outputs:	
Horizontal Range and	
Accuracy:	$0 \pm 20 \mathrm{mV}$ to 1 V nominal, settable within $\pm 3 \%$ of full scale. BNC female output (rear panel).
Sweep Time:	30 s per displayed trace.
Pen Lift:	
Voltage:	20 V maximum.
Interface:	
* Blanking in:	TTL.   Blanked condition is TTL high (typically 3.5 V ).   Unblanked condition is TTL low (typicallY 0 V).
Blanking out:	TTL.   Blanked condition is TTL high (typically 3.5 V ).   Unblanked condition is TTL low (typically 0 V).

Chap 3.1 .9

```
Interface (Cont):
```

Channel Blanking:

TTL.
The 8750 A is a two display channel instrument: either of the two channels can be turned off (blanked) with a TTL low (typically O V).

GENERAL

Controls:
Select:

Network Analyser:

Spectrum Analyser:

Display:
Input:
Input Mem:

Hold:

Reference Memory:
Store Input:

Reca11:

Bypass:

X-Y plot:

Display Adjust:
Current input trace is stored as reference for future normalisation (input mem). Displays stored reference trace.

Bypasses 8750A so display is returned to conventional analogue operation.

Initiates $X-Y$ plots. Data and pen lift are outputted through rear panel BNC connectors.

Gain and Position potentiometers for adjustment of D/A outputs to CRT display requirements (see $D / A$ outputs).
3. Comprising

Instrument
Mains Lead.

Chap 3.1.9
4. Accessory Items

None.
5. Associated Equipment

None.

Chap 3.1 .9



1. Description

The Polyscop SWOB5 is a combined sweep generator and visual display unit. It offers sweep frequency measurements from 0.1 MHz to 1000 MHz with logarithmic or linear display of returns.
2. Specification

FREOUUENCY RANGE:

Sweep Width:
Wide:
Narrow:
Spurious F.M.:
Narrow:
0.1 MHz to 1000 MHz .
(in one band: only centre frequency and sweep width need be adjusted).

Max.
Min.
$\begin{array}{ll}\simeq 1000 \mathrm{MHz} & \simeq 5 \mathrm{MHz} \\ \simeq 50 \mathrm{MHz} & \simeq 0.3 \mathrm{MHz}\end{array}$
$\leqslant 5 \mathrm{kHz}$, typically 3 kHz

Sweep Linearity:	1:1.01
Indication Linearity:	better than 1:1.1
Sweep Adjustment:	$\Delta \mathrm{F}$ and Centre Frequency (course fine).
External:	Via Remote Control input.
Scale Error of Range Indication:	$\pm 4 \%$ of full scale.
Remote Control:	Via 7-pole female connector on rear.
Centre Frequency Adjustment:	5 V to 8 V
Sweep Width Adjustment:   (ext. potentiometer $=5 \mathrm{k} \Omega$ )	$0 \Omega$ for Fmin, Rmax for Fmax.
Sweep Time:	0-5V for 2 s to 0.02 s .
R.F. Monitoring Output:	```50 mV into 50 \Omega BNC female connector on rear.```
Output EMF:	```50\Omega 1V  (can be increased by 6 dB using the rear switch).```
Connector:	N female
Frequency Response Flatness of output voltage with matched termination:	$< \pm 0.5 \mathrm{~dB}$ (typically $\pm 0.25 \mathrm{~dB}$ ) For 0.1 MHz to 1000 MHz $<0.15 \mathrm{~dB}$ for 10 MHz sweep
with 6 dB increase:	$\pm 0.2 \mathrm{~dB}$ in addition   ( 5 MHz to 300 MHz otherwise $\simeq 1 \mathrm{~dB}$ )
Output attenuator:	0 to 70 dB in 1 dB steps.
Error Coarse (10 dB steps)   Fine ( 1 dB steps)	$\left.\begin{array}{l}\leqslant \pm 0.5 \mathrm{~dB} \\ \leqslant \pm 0.2 \mathrm{~dB}\end{array}\right\}$ overall error
Harmonic Suppression:	(For V out $=0.5 \mathrm{~V}$ or 0.35 V )
0.1 MHz to 1 MHz :	$\geqslant 30 \mathrm{~dB}$
> 1 MHz to 1000 MHz :	$\geqslant 36 \mathrm{~dB}$ (typically 40 dB )
Suppression of non-harmonic spurious signals:	$\geqslant 40 \mathrm{~dB}$

FREQUENCY SWEEP:
Auto:
Forward/return with rf blanked during return.

Chap 3.1.10

Man:	Manual Sweep adjustment.
Single:	Triggered by button recorder operation.
Sweep Time: Auto:	Forward 0.02 s to 2 s continuously adjustable return: 0.01 s to 0.3 s .
Single:	$\simeq 0.02 \mathrm{~s}$ to 2 s , continuously adjustable.
Triggering:	In single mode.
Ext. Trigger level:	$\simeq+5 \mathrm{~V}$ (at rear input).
Frequency Markers internal:	100 MHz ; $100 / 10 \mathrm{MHz} ; 10 / 1 \mathrm{MHz}$. Error $< \pm 1 \times 10^{-4}$
external:	1 to $1000 \mathrm{MHz}, \simeq 0.2 \mathrm{~V}(50 \Omega)$
Marker type:	Pulse and vertical line markers.
Orientation along frequency axis internal:	Marker amplitude or brightness modulated to highlight the decades.
Bright up marker:	By man adjustment in auto mode.
Trigger Signal for counter:	T.T.L.H. during unblanked period ( $>10 \mathrm{~ms}$ ), BNC female connector.
Leve1 Lines:	```Two, separate adjustment of vertical position. Common adjustment of intensity.```
Useful Display Area:	$\begin{aligned} & 21 \mathrm{~cm} \times 16 \mathrm{~cm} ; \\ & \text { Screen type M28-12 GM. } \end{aligned}$
Recorder Output:	$\pm 2.5 \mathrm{~V}$ for max. X deflection. 2.5 V for max. Y deflection. $R$ out $\simeq 5 \mathrm{k} \Omega$.
Connector:	6-pole female (1 channel) or BNC female (2 channels).
External X Deflection:	```\pm 1 V (Triangular) for full display width.```
Connector:	7-pole female on rear.
AMPLIFIER PLUG-IN	
Measurement range (fu11 display height):	10/20/40/60/80 dB
Noise level (with demodulator SWOB5Z1 or RF insertion unit SWOB5Z3):	Typically $170 \mu \mathrm{~V}$ (with filter)..
Max test voltage:	1 V

Chap 3.1.10

AMPLIFIER PLUG-IN (Cont)
Level line calibrated in $d B$ :
Reference level:
Shiftable by 10 dB , detent position calibrated at $1 \mathrm{~V}=0 \mathrm{~dB}$.

0 to $<-80 \mathrm{~dB}$, resolution 0.1 dB .
$\gg 0 \mathrm{~dB}$ (setting error $\pm 1.5 \mathrm{~dB}$ typ.)
Switch selected, indicated.
3 dB point:
40 Hz
Connector for measuring head: 7-pole female.

LINEAR AMPLIFIER

Inputs:	AF	Meas Head Connector
Input impedance:	$500 \mathrm{k} \Omega$	$500 \mathrm{k} \Omega$
Connector:	BNC Female	7-pole female
Input selector positions:	$+/-/+\simeq /-\simeq$	```=/\simeq (compensation for spurious rf signals in test item).```
Deflection Coefficient:	$0.2 \mathrm{mV} / \mathrm{cm}$	-
Voltage required for full display height with max sensitivity:	< 3 V	$<15 \mathrm{mV}$
Max permissible input voltage:	$\begin{aligned} & 10 \mathrm{~V} \\ & (=\text { or } \simeq) \end{aligned}$	$\begin{aligned} 5 \mathrm{~V}(\cong) \\ 10 \mathrm{~V}(\cong) \end{aligned}$

MEASURING HEADS
Demodulator SWOB5Z1 (with built-in termination)

Impedance: $\quad 50 \Omega$
Connector N -female VSWR < 1.1

Frequency Range:
Frequency Response Flatness: $\quad< \pm 0.5 \mathrm{~dB}$ typically 0.25 dB .
Max test voltage:
1 V
Max permissible input voltage: $5 \mathrm{~V}(\cong)$ or $10 \mathrm{~V}(=)$
Connection to 1 in/log amplifier:

Via cable ( 1 m ) and 7-pole male connector

Chap 3.1.10
R.F. Insertion Unit SWOB5Z3

Impedance:	$50 \Omega$
Connector:	$\mathrm{N} \mathrm{Male/N} \mathrm{Female}$
VSWR:	$<1.1(75 \Omega: 1.2)$
Frequency Range:	0.1 MHz to 1000 MHz
Frequency Response Flatness:	$< \pm 0.5 \mathrm{~dB}$, typically 0.25 dB.
Max test voltage:	1 V
Max permissible input voltage:	$5 \mathrm{~V}(\simeq)$ or $10 \mathrm{~V}(=)$
Connection to $1 \mathrm{in} / 1 \mathrm{log}$   amplifier:	Via cable (1 m) and 7-pole male

Log Probe 5WOB5Z2
Impedance (depending on
frequency and attenuator): $\quad>3 \mathrm{k} \Omega$ to $>20 \mathrm{M} \Omega \| 0.5 \mathrm{pF}$ to 2.5 pF .
Frequency Range: $\quad 0.1 / 5 / 1$ to 500 MHz (rough indication up to 1000 MHz ).

Frequency Response Flatness: $< \pm 1 \mathrm{~dB}$
Attenuation of probe tips: $\quad 0 / 20 / 40 \mathrm{~dB}$
Input voltage range: $\quad 0.2 \mathrm{mV}$ to $1 \mathrm{~V} / 2 \mathrm{mV}$ to 10 V 20 mV to 100 V (rms).

Demodulator SWOB3-Z (probe with BNC male connector)
Frequency Range: $\quad 0.5 \mathrm{MHz}$ to 400 MHz (rough indication up to 1000 MHz ).

Input impedance at $50 \mathrm{MHz}: \leqslant 30 \mathrm{M} \Omega \| 2$ to 3 pF at $200 \mathrm{MHz}: \leqslant 10 \mathrm{k} \Omega$

Input voltage: $\quad$ Min 50 mV for full display height. Max permissible 5 V rf Superimposed de up to 100 V

Output voltage: $\quad+\mathrm{dc} \geqslant 5 \mathrm{mV}$ into $>500 \mathrm{k} \Omega$ for 50 mV rms ( 0.5 MHz to 400 MHz ).

Active Demodulator (50 $\Omega$ )

Input voltage range:
Frequency Response Flatness: Input VSWR:
$20 \mu \mathrm{~V}$ to 50 mV
$\leqslant \pm 1.5 \mathrm{~dB}$ for 5 MHz to 1000 MHz $\leqslant 1.2$
3. Comprising

SWOB 5	50 $\Omega$ Mode1	333.0019 .52
SWOB 5E1	Log Amp	333.5610 .02
SWOB 5E2	Lin Amp	333.5010 .02
SWOB 5Z1	Demodulator	333.7513 .52
SWOB 5Z3	RF Insertion Unit	333.8010 .52
SWOB 5Z2	Log Probe	333.9016 .22
SWOB 3-Z	Demodulator Probe	241.2116 .00
	Power Cable	

4. Accessory Items

None.
5. Associated Equipment

None.



## 1. Description

The Solatron 51250 frequency response analyser use the 'single sine' measurement technique to provide precise measurement of gain and phase between any points in a dynamic system. This technique is used for analysis which will assess performance, or characterise both simple and complex systems. The device under test is stimulated by a sine wave and the responses analysed at one, two or more points in the system. These responses are then correlated with the stimulus to determine the amplitude and phase relative to the generator. The ratio of the two measured signals can then be calculated to provide the system transfer function. The item has full GPIB compatibility.
2. Specification

GENERATOR

Waveform:	Sine, square, triangle
Distortion:	$<2 \%$
Output impedance:	$50 \Omega+2 \%$
Maximum voltage, Lo to ground:	150 V
Impedance, Lo to ground	100 k , 100 pF
Stop control:	Immediate, or at $0^{\circ}, 90^{\circ}$, $180^{\circ}, 270^{\circ}$
Stop input:	Contact closure or TTL logic 0
Connections	
Front:	Floating, 4 mm
Rear:	Floating, BNC
Frequency	
Range:	$10 \mu \mathrm{~Hz}$ to 65 kHz
Resolution:	1 in 65535
Error:	<0.01\%
Sweep:	Logarithmic, up or down linear, up or down harmonic
Amplitude	
Range:	10 mV to 10.23 V rms (triangle: 5.11 V )
Resolution:	1 in 1023
Error:	<1\% $\pm 1$ digit
Bias	
Range:	$\pm 10.23 \mathrm{~V}$
Resolution:	1 in 1023
Error:	<1\% $\pm 1$ digit

MODULATOR/DEMODULATOR

Input:
Two independent carrier inputs

Impedance, Hi or Lo to ground: $>100 \mathrm{k} \Omega,<100 \mathrm{pF}$
Common mode rejection, up to 100 Hz : $>50 \mathrm{~dB}$
Maximum common mode: 300 V

Maximum input, Hi or Lo to ground: $\quad 350 \mathrm{~V}$ peak, 250 V rms
2. Specification (continued)

## Carriers 1 and 2

Frequency range:	48 Hz to 20 kHz
Voltage range:	6 V to 250 V rms

Generator output
May modulate either Carrier 1 or Carrier 2

```
Carrier phase shift:
```

```
50 Hz to 300 Hz: <30
```

300 Hz to $3 \mathrm{kHz}<1^{\circ}$
3 kHz to $20 \mathrm{kHz}<6^{\circ}$

Analysers
Either carrier may demodulate any analyser
Analyser quadrature rejection: $\quad>26 \mathrm{~dB}$

Additional errors when demodulating
Mod frequency: $0.05 \times$ carrier
Input $>10 \%$ full scale,
integration time: 200 ms
$r$ : <0.5\%
$\log r: \quad 0.05 \mathrm{~dB}$
$\theta$, single channel: $<0.5^{\circ}$
$\theta$, point to point: $<1^{\circ}$

ANALYSER
Two independent analysers operating in parallel.

Range	Sensitivity	Full Scale pk Input	
			Common Rejection
30 mV	$1 \mu \mathrm{~V}$	45 mV	30 V
300 mV	$10 \mu \mathrm{~V}$	500 mV	30 V
3 V	$100 \mu \mathrm{~V}$	5 V	30 V
30 V	1 mV	50 V	30 V
300 V	10 mV	500 V	30 V
itivity is for integration time $>100 \mathrm{~ms}$			

Maximum input, Hi or Lo to ground: $500 \mathrm{pk}, 300 \mathrm{~V}$ rms
Coupling: dc or ac ( $<1 \mathrm{~dB}$ at 2.5 Hz )
Input configuration
Connection Front: Differential, 4 mm
Rear: Differential, BNC
$\begin{array}{cl}\text { Impedance, Hi or Lo to ground: } & 1 \mathrm{M} \Omega \\ \text { Front sockets: } & <70 \mathrm{pF} \\ \text { Rear sockets: } & <100 \mathrm{pF}\end{array}$
2. Specification (continued)

```
Com mode rejection, dc coupling, to 100 Hz
 up to 50 V pk: }>65\textrm{dB
 over 50 V pk: >60 dB
Cross channel isolation,
1 k\Omega across inputs up to 10 kHz; }>100\textrm{dB
Integration time
 Minimum: the longer of 1 cycle or 10 ms
 Maximum: 106 cycles or }1\mp@subsup{0}{}{5}\textrm{s
Auto-integration
 Minimum: the longer of 3 cycles or
 Maximum:
 1.5 ms
 the programmed integration time
```

    SYNCHRONISER
    Input configuration
Connection: Differential, rear terminals
Coupling:
dc or ac $(<3 \mathrm{~dB}$ at 3 Hz$)$
Impedance, Hi or Lo to ground:
$>200 \mathrm{k} \Omega>100 \mathrm{pF}$
Comm mode rejection,
dc coupling to $100 \mathrm{~Hz}: \quad>50 \mathrm{~dB}$
Maximum rejected: 20 V
Maximum input,
Hi or Lo to ground: $\quad 350 \mathrm{~V}$ peak, 250 V rms
Synchronisation
Frequency range: $\quad 1 \mathrm{mHz}$ to 65 kHz
Sensitivity:
Level adjustment:
Time to synchronise:
0.25 V
$\pm 5 \mathrm{~V}$ in steps of 0.02 V
The longer of 4 cycles or
500 ms
3. Comprising

Instrument
Operating manual
Spare fuses
Rack mount ears
Power cable
$3 \times 4 \mathrm{~mm}$ test leads
4. Accessory Items

None.
5. Associated Equipment

None.



## 1. Description

The Solatron S1253 frequency response analyser use the 'single sine' measurement technique to provide precise measurement of gain and phase between any points in a dynamic system. This technique is used for analysis which will assess performance, or characterise both simple and complex systems. The device under test is stimulated by a sine wave and the responses analysed at one, two or more points in the system. These responses are then correlated with the stimulus to determine the amplitude and phase relative to the generator. The ratio of the two measured signals can then be calculated to provide the system transfer function. The item has full GPIB compatibility.
2. Specification

GENERATOR

Waveform:	Sine wave
Distortion:	$<2$ \%
Output impedance, Hi to Lo:	$50 \Omega \pm 10 \%$
Maximum voltage, Lo to ground:	$\pm 15 \mathrm{~V}$
External stop input:	Contact closure or TTL logic 0 to kill or freeze
Connections	
Front:	Floating, 4 mm
Rear:	Floating, single BNC
Maximum current:	300 mA
Frequency	
Range:	1 mHz to 20 kHz
Resolution:	1 in 4000
Sweep type:	Logarithmic, up or down
Point per sweep:	2 to 9999
Amplitude	
Range:	10 mV to 10.23 V rms
Resolution:	20 mV
Error (driving open circuit):	$\pm 1 \% \pm 10 \mathrm{mV}$
Bias	
Range:	$\pm 10.22 \mathrm{~V}$
Resolution:	20 mV
Error (driving open circuit):	$\pm 1 \% \pm 20 \mathrm{mV}$
Maximum output Hi to Lo (bias +ac):	$\pm 15 \mathrm{~V}$

MODULATOR/DEMODULATOR

Input:	Differential, single BNC
Impedance, Hi or Lo to ground:	>100 k $\Omega,<100 \mathrm{pF}$
Maximum input	
Hi to ground:	$\pm 350 \mathrm{~V}$ peak, 250 V rms
Lo to ground:	$\pm 30 \mathrm{~V}$ peak
Common mode rejection up to 100 Hz :	$>50 \mathrm{~dB}$
Carrier frequency range:	48 Hz to 10 kHz
Phase shift carrier input to generator output	
48 Hz to 300 Hz :	$<3^{\circ}$
300 Hz to 1 kHz :	$<1^{\circ}$
1 kHz to 10 kHz :	< (1 $1^{\circ}+1 / 2 / \mathrm{kHz}$ )

## 2. Specification (continued)

```
Additional analysis error when demodulating
 Mod freq \(=0.05\) carrier freq: \(<1 \%\), \(<1^{\circ}\)
 Analyser quadrature rejection: \(>26 \mathrm{~dB}\)
```


## ANALYSER

Two independent, auto ranging input channels, with common analyser.

| Range | Sensitivity |  | Full Scale pk Input |
| :--- | :--- | :--- | :--- | | Common Rejection |
| :--- |
|  |

Maximum input
Hi to ground: $\quad \pm 500 \mathrm{~V}$ peak, 250 V rms
Lo to ground: $\pm 30 \mathrm{~V}$ peak
Coupling: dc

Connections
Front: Differential, 4 mm
Rear: Differential, single BNC
Impedance, Hi to Lo (grounded): $\quad 1 \mathrm{M} \Omega \pm 2 \%$

Capacitance
Front inputs, Hi to Lo (grounded)
$<70 \mathrm{pF}$
Rear inputs, Hi to Lo
(grounded): $<100 \mathrm{pF}$
Common mode rejection up to 100 Hz : $>60 \mathrm{~dB}$
Integration time range: 0.1 to $10^{\circ}$
Cross channel isolation: $<1 \mathrm{kHz}, 1 \mathrm{k} \Omega$

Across inputs, Lo grounded: $\quad>100 \mathrm{~dB}$

SYNCHRONISER
Connection:
Differential BNC

Impedance, Hi or Lo to ground: $\quad>200 \mathrm{k} \Omega<100 \mathrm{pF}$

Maximum input
Hi to ground: $\quad \pm 350 \mathrm{~V}$ peak, 300 V rms
Lo to ground: $\pm 30 \mathrm{~V}$
Trigger point Positive zero crossing
Minimal signal to trigger $(<1 \mathrm{kHz})$ : $<-0.6$ to $>+0.1 \mathrm{~V}$
2. Specification (continued)

Maximum time to synchronise	
$\quad<12 \mathrm{~Hz}:$	6 cycles
$>12 \mathrm{~Hz}:$	500 mS
Accuracy of period measurement:	$\pm 1 \mu \mathrm{~S}$
Additional analyser error	
(stable trigger signal),	
transfer function mode	
$\quad$ Gain:	$1 \%+0.2 \% / \mathrm{kHz}$
Phase:	$1^{\circ}+0.2^{\circ} / \mathrm{kHz}$

DATA PROCESSING

Scaling:	Division by vector $(a+j b, r \boldsymbol{\theta})$
	Division by last result,

History file
Maximum size: 400 results
Minimum size: 100 results
Battery discharge time: Typically >1000 hrs
PROGRAM STORE
Battery backed RAM
Maximum number of programs: 9
Maximum number of program steps: 400
Permanent key switched ERPROM
Maximum number of programs: 6
Maximum number of program steps: 100
PLOTTING

Type:	Digital, compatible with   Hewlett Packard graphics   language
Parameters	
X-axis:	a, linear scale   Y-axis:   flot lin or log scales   size
	b,r,r(dB), lin scale, degrees

INTERFACES

Serial output:	Suitable for use with printers   and keyboards compatible with   RS232 and RS423
Baud rate:	110 to 9600

2. Specification (continued)

GPIB:	Compatible with IEEE488   $(1978)$ Fully compatible talker/   listener switch selectable talk   only
Maximum data rate:	1000 bytes/sec   Functions implemented:
	SH1, AH1, T5, TEO, SR1, RL1,   PP2, DC1, C0, DT0

3. Comprising

Instrument
Operating manual
Spare fuses
Rack mount ears
Power cable
$3 \times 4 \mathrm{~mm}$ test leads
4. Accessory Items

None.
5. Associated Equipment

None.



1. Description

The HP 3580A is a low frequency high performance spectrum analyser. The frequency coverage is 5 Hz to 50 kHz and the analysers 1 Hz bandwidth allows examination of signals close together. It also has a digital storage and adaptive sweep facilities.

## 2. Specification

Frequency Range:
Display Accuracy: Frequency error between any two points is less than $\pm 2 \%$ of their indicated separation

$$
\begin{aligned}
& \pm 100 \mathrm{~Hz} \quad 20^{\circ} \mathrm{C} \text { to } 30^{\circ} \mathrm{C} \\
& \pm 300 \mathrm{~Hz} \quad 0^{\circ} \mathrm{C} \text { to } 55^{\circ} \mathrm{C}
\end{aligned}
$$

Chap 3.2.1
Sep 94 (Amdt 23)
Page 1

Typical Stability:	$\pm 10 \mathrm{~Hz} / \mathrm{hr}$ after 1 hour; $\pm 5 \mathrm{~Hz} /{ }^{\circ} \mathrm{C}$
Amplitude Range:	Linear 240 V to 100 nV full scale
	$\begin{aligned} & +30 \mathrm{dBm} \text { or } \mathrm{dBV}, \\ & -150 \mathrm{dBm} \text { or } \mathrm{dBV}, \end{aligned} \text { LOG }$
Amplitude Accuracy:	Better than $\pm 1 \mathrm{~dB}$
Dynamic Range:	80 dB
Sweep Characteristics:	Scan width: 50 Hz to 50 kHz   Sweep times: 1 sec to 2000 sec
Adaptive Sweep:	When in adaptive sweep below the threshold level, scan speed is 20 to 25 times faster. Threshold is adjustable to cover 0 to $60 \%$ of screen. Signals greater than about 6 dB above threshold are detected and swept slowly
Options:	001 - internal rechargeable battery   002 - floating input

3. Comprising

Instrument only.
4. Accessory Items

None.
5. Associated Equipment

None.

Chap 3.2.1

Section Reference:10S/0523433		Nomenclature:   SPECTRUM ANALYSER COMMS BAND			
Manufacturer: HEWLETT	PACKARD	```Part No.: HP 8560A OP```	$2 \& \text { H03 }$		Cost/Date:   £13000 Jul 91
Height: $163 \mathrm{~mm}$	Width:	$\mathrm{mm} \quad \|$Depth:   4		Weight: 1	$18.2 \mathrm{~kg}$
Power Supplies:90 to 140 Vac, $47-440 \mathrm{~Hz} / 180$ to $250 \mathrm{Vac} 47-66 \mathrm{~Hz}$				$\begin{gathered} \text { Air Publication: } \\ \text { NONE } \end{gathered}$	
$\begin{gathered} \text { Avallability: } \\ 2 \end{gathered}$	Environment: A	Maintenance Policy: $2 A / 4 C D$	Calibration: TBD		afDeetec no.: $19464$



## 1. Description

The HP 8560A is a Comms band high performance Spectrum Analyser. The

- frequency coverage is from 50 Hz to 2.9 GHz and has selectable 10,30 and 100 Hz resolution bandwidths. With the built-in tracking generator stimulusresponse measurements are possible. Data can be stored in the non-volatile memory or sent directly to an external printer or plotter.


## 2. Specification

Frequency
Frequency Range
Accuracy

Tracking Drift
(nominal)

Minimum RBW
Amplitude
Output Level

Accuracy
Vernier

Absolute
Level Flatness
Effective Source Match
Total Absolute Accuracy
Spurious Output (at +1 dBm )
Harmonic Spurious
Non-harmonic Spurious
(from $50 \mathrm{~Hz}-2.9 \mathrm{GHz}$ )
50 Hz - 2.0 GHz
$2.0 \mathrm{GHz}-2.9 \mathrm{GHz}$
LO Feedthrough
(3.9 GHz - 6.8 GHz )

Power Sweep
Inputs/Outputs
RF Input
RF Output (front panel)
Ext ALC Input (rear panel)

300 kHz to 2.9 GHz
$\pm$ (freg ref accy. $x$ tuned freq $+5 \%$
$x$ span +265 Hz ) After Peaking.
Useable in 1 kHz RBW
after 5 min warmup.
Useable in 300 Hz RBW after 30 min warmup

300 Hz

```
-10 dBm to +1 dBm
-10 dBm to +2.8 dBm (typical) Resolution 0.1 dBm
```

$\pm \begin{aligned} & 0.20 \mathrm{~dB}, \pm 0.5 \mathrm{~dB} \max . \\ & \left(25{ }^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}\right)\end{aligned}$
$\pm 0.75 \mathrm{~dB}$
$\pm 2.0 \mathrm{~dB}$
1.92:1 (nominal)
$\pm 3.25 \mathrm{~dB}$
$-25 \mathrm{dBc}$
$-27 \mathrm{dBc}$
$-23 \mathrm{dBc}$
$-16 \mathrm{dBm}$

10 dB range, 0.1 dB resolution

Type-N female, 50 ohm (nominal)
Type- N female, 50 ohm (nominal)
BNC female
Use with negative detector
3. Comprising

Spectrum Analyser
Part No
c/w OPT 002 \& H03
Mains lead
Cable assy, RF, $50 \Omega$, BNC
Adaptor, BNC to $N$ type
Dummy load, $50 \Omega$
Front cover
Sun hood
Spare fuse X 2
Quick reference guide
Operating and Programming Manual
Installation and Verification Manual
4. Accessory Items

None
5. Associated Equipment

None.

GPIB
COMPATIBLE

Section Reference: $10 S / 5932313$   Manufacturer:   HEWLETT PACKARD		Nomenclature:   SPECTRUM ANALYSER MICROWAVE BAND		
		Part No.:   HP 8563A OPT	104, H09	Cost/Date   $£ 27000 \mathrm{Ju}$
Height: $163 \mathrm{~mm}$	Width:	Depth:		$20.2 \mathrm{~kg}$
Power Supplies:90 to 140 Vac $47-440 \mathrm{~Hz} / 180$ to $250 \mathrm{Vac} 47-66 \mathrm{~Hz}$				Air Publication: None
$\begin{gathered} \text { Availability: } \\ 2 \end{gathered}$	Environment: A	Maintenance Policy: $2 A / 4 C D$	Calibration: TBD	afdeetec no.: $19465$



## 1. Description

The HP 8563A is a Microwave band high performance Spectrum Analyser.

- With a frequency range of 9 kHz to 22 GHz and digitally implemented 10-, 30-, and $100-\mathrm{Hz}$ resolution bandwidths, closely spaced signals of different amplitudes can be resolved. The HP8563A can be used with a tracking generator to provide scalar-measurement capability.

Chap 3.2.3

## 2. Specification

Frequency

Frequency Range	9 kHz to 22 GHz
Accuracy	
Readout Accuracy	```< [(freq readout x freq ref accuracy) +(5% x span) + (15% x RBW)+350 Hz]```
Accuracy at 1 GHz	$< \pm 270 \mathrm{~Hz}$
Counter Resolution	Selectable from 1 Hz to 1 MHz
Frequency Span	$0 \mathrm{~Hz}, 100 \mathrm{~Hz}$ * n to 19.25 GHz
Accuracy	$< \pm 5 \%$
Sweep Time Range	
Span $=0 \mathrm{~Hz}$	$50 \mu \mathrm{~s}$ to 60 s
Span $\geq 100 \mathrm{~Hz} * \mathrm{~N}$	50 ms (minimum)
Accuracy (Span $=0$ )	Sweep Time Accuracy   $\geq 30 \mathrm{~ms}$ $\pm 1 \%$   $<30 \mathrm{~ms}$ $\pm 15 \%$
Sweep Trigger	Free Run, Line, Single, Video, External
Resolution Bandwidth	
Range (-3 dB)	$10 \mathrm{~Hz}-1 \mathrm{MHz}$ in a $1,3,10$ sequence and $2 \mathrm{MHz}(3 \mathrm{MHz} @-6 \mathrm{~dB})$
Selectivity	<15:1 (RBW $\geq 300 \mathrm{~Hz}$ )
(-60 dB/-3 dB)	$<5: 1$ nominal (RBW $\leq 100 \mathrm{~Hz}$ )
Accuracy	$< \pm 10 \%$ ( 10 Hz to 300 kHz )
	< $\pm 25 \%$ ( 1 MHz and 2 MHz )
Switching Uncertainty	$< \pm 0.5 \mathrm{~dB}$ (ref $\mathrm{BW}=300 \mathrm{kHz}$ )
Video Bandwidth Range	$1 \mathrm{~Hz}-3 \mathrm{MHz}$ in a $1,3,10$ sequence

Amplitude

Amplitude range
Displayed average noise level to +30 dBm .

Maximum Safe Input
Average Continuous Power $\quad+30 \mathrm{dBm}$ (input atten $\geq 10 \mathrm{~dB}$ )

Peak Pulse Power
(< $10 \mu$ s pulse width, $\quad+50 \mathrm{dBm}$ (input atten $\geq 30 \mathrm{~dB}$ ) <1\% duty cycle)

DC Voltage
0 V

Displayed Average Noise Level
( 10 Hz RBW, 0 dB atten, 1 Hz VBW, no signal at input)

## Frequency

10 kHz
100 kHz
$1 \mathrm{MHz}-2.9 \mathrm{GHz}$
$2.75-6.46 \mathrm{GHz}$
$5.86-13.0 \mathrm{GHz}$
$12.4-19.7 \mathrm{GHz}$
$19.1-22.0 \mathrm{GHz}$
$-103 \mathrm{dBm}$
$-110 \mathrm{dBm}$
$-130 \mathrm{dBm}$
$-131 \mathrm{dBm}$
$-120 \mathrm{dBm}$
$-115 \mathrm{dBm}$
$-110 \mathrm{dBm}$

Gain Compression Level
$>10 \mathrm{MHz}$
$>2.75 \mathrm{GHz}$

Maximum Dynamic Range

Compression to Noise
128 dB

Signal to Distortion

Harmonic	$<2.9 \mathrm{GHz}$		81 dB
	$\geq 2.9 \mathrm{GHz}$		110 dB

Interdemodulation $<2.9 \mathrm{GHz} 90 \mathrm{~dB}$
$\geq 2.9 \mathrm{GHz} 92 \mathrm{~dB}$

Spurious Responses $<-60 \mathrm{dBc}<-40 \mathrm{dBm}$

Second Harmonic Distortion

$10 \mathrm{MHz}-2.9 \mathrm{GHz}$	$<-72 \mathrm{dBc}$	$<-40 \mathrm{dBm}$
$>2.75 \mathrm{GHz}$	$<-100 \mathrm{dBC}$	$<-10 \mathrm{dBm}$

3rd Order Intermod Distortion
( Two -30 dBm signals at mixer )
$10 \mathrm{MHz}-2.9 \mathrm{GHz}$
$<-70 \mathrm{dBc}$
$2.75-26.5 \mathrm{GHz}$
$<-75 \mathrm{dBC}$

Image Multiple and

Out-of-Band Responses
$10 \mathrm{MHz}-18 \mathrm{GHz}$
$<-70 \mathrm{dBc}$
$10 \mathrm{MHz}-26.5 \mathrm{GHz}$

Residual Responses
$200 \mathrm{kHz}-6.46 \mathrm{GHz}$

Display Range
Viewing Area
Scale Calibration
Log Scale
Linear Scale
Reference Level Range

## $\log$

Linear

Demodulation

Spectrum Demodulation
Modulation Type
Audio Output
Marker Pause Time

Approx 7 cm (V) x 9 cm (H)
$10 \times 10$ divisions
10, 5, 2, 1 dB per division
$10 \%$ of ref level per division

> -120 to +30 dBm in 0.1 dB steps
> $2.2 \mu \mathrm{~V}$ to 7.07 V in $1 \%$ steps

AM and FM
Speaker and phone jack with volume control
100 ms to 60 s (nominal)

Inputs/Outputs

RF Input (Front Panel)	Type - N female, 50 ohm
Second IF Input (Front Panel)	SMA female, 50 ohm
Frequency	310.7 MHz
Full Screen Level	-30 dBm
Gain Compression	-20 dBm
Ist LO Output (Front Panel)	SMA female, 50 ohm
Frequency	$3.000-6.8107 \mathrm{GHz}$
Amplitude	$+16.5 \mathrm{dBm} \pm 2.0 \mathrm{~dB}$
2nd IF Output (Rear Panel)	SMA female, 50 ohm
Frequency	310.7 MHz
Cal Output (Front Panel)	BNC female, 50 ohm
Probe Power (Front Panel)	+15 and $-12.6 \mathrm{~V}, 150 \mathrm{~mA}$ max

10 MHz REF In/Out (Rear Panel)

Shared BNC female, 50 ohm

Output Freq Accuracy
Output Amplitude
Input Amplitude
$10 \mathrm{MHz} \pm(10 \mathrm{MHz} \mathrm{x}$ freq ref acc' y$)$
0 dBm
-2 to +10 dBm

Video Output (Rear Panel) BNC, 50 ohm
Amplitude
0 to +1 V full scale
LO Swp/0.5 V/GHz Output (Rear Panel)
Amplitude (LO Sweep)
Shared BNC female, 2 kilohm 0 to +10 V , no load

Blanking Output (Rear Panel) During Sweep

BNC Female
Low TTL level (sink 150 mA max)
High TTL level (source 0.5 mA max)

Ext Trig Input (Rear Panel)	BNC female $>10$ kilohm   Trigger on rising edge of TTL level
Earphone (Rear Panel)	Subminiature mono jack,      HP-IB (Rear Panel)   Interface Functions   Outputs$\quad$IEEE-488 bus connector
	SH1, AH1, T6, L4, SR1, RLI,   PPO, DC1, DT0, C1, C28, E1
	Direct Printer Output   Direct Plotter Output

3. Comprising Items

Instrument Only
4. Accessory Items

None
5. Associated Equipment

None

Chap 3.2.3




## 1. Description

The 492AP is a high performance, programmable, portable ruggedized instrument. Microcomputer control of most functions simplifies and enhances operation. the following is a list of the main features:
1.1 Synthesized frequency accuracy
1.2, Precise amplitude measurement capability
1.3 Digital storage display
1.4 Single and delta marker modes
1.5 Internal memory to retain front-panel settings and displays
1.6 Front panel data entry
1.7 HELP message readout that describes the function of front-panel pushbuttons and controls as well as messages that explain operating errors.
2. Specification

Frequency Related


Response
Coaxial (direct) input:

Band and Freq. Range	point between   two extremes	Referenced   to 100 MHz
$1(50 \mathrm{kHz}-1.8 \mathrm{GHz}$	$\pm 1.5 \mathrm{~dB}$	$\pm 2.5 \mathrm{~dB}$
$2(1.7 \mathrm{GHz}-5.5 \mathrm{GHz})$	$\pm 2.5 \mathrm{~dB}$	$\pm 3.5 \mathrm{~dB}$
$3(3.0 \mathrm{GHz}-7.1 \mathrm{GHz})$	$\pm 2.5 \mathrm{~dB}$	$\pm 3.5 \mathrm{~dB}$
$4(5.4 \mathrm{GHz}-18 \mathrm{GHz})$	$\pm 3.5 \mathrm{~dB}$	$\pm 4.5 \mathrm{~dB}$
$5(15.0 \mathrm{GHz}-21.0 \mathrm{GHz})$	$\pm 5.0 \mathrm{~dB}$	$\pm 6.5 \mathrm{~dB}$

Centre Frequency Drift
(After 1 hour warm-up):

Frequency Readout Resolution:

Residual FM:

Noise Sidebands:

Resolution Filters:
$\leqslant 50 \mathrm{~Hz}$ per minute of sweeptime (corrected at least every 30 sec .) Bands 1 and $5-12$ with Span/Div $\leqslant 200$ kHz , and band $2-4$ with Span/div $\leqslant 100$ kHz (Phase locked) ; $\leqslant(5 \mathrm{kHz}) \mathrm{N}$ per minute of sweeptime (unlocked).
$\leqslant 10 \%$ Span/Div to 1 kHz minimum ( 100 kHz in Delta Marker mode).
$\leqslant(10+2 N) H z$ peak-peak in 20 ms . Bands 1 and $5-12$ with Span/Div $\leqslant 200 \mathrm{kHz}$, and Bands $2-4$ with Span/Div $\leqslant 100 \mathrm{kHz}$ (Phase locked) ; $\leqslant(7 \mathrm{kHz}) \mathrm{N}$ peak-peak in 20 ms (unlocked).
$\mathrm{dBc} / \mathrm{Hz}$
$\leqslant-95$
$\leqslant-105$
$\leqslant-115$
100 Hz to 1 MHz ( 6 dB bandwidth $\pm 20 \%$ )
in decade steps. Shape factor $\leqslant 7.5: 1$
( $60 \mathrm{~dB} / 6 \mathrm{~dB}$ )

Offset From Carrier
3 kHz
30 kHz
300 kHz
(continued)
2. Specification (continued)

Video Filter Range:
Frequency Span Division:
Amplitude Related
$\quad$ Vertical Display Modes:

Display Dynamic Range:
Reference Leve1 Range:

Reference Level Steps:

Reference Level Accuracy:

Display Amplitude Accuracy:

## RF Attenuator Range: Accuracy:

Resolution Bandwidth Gain Variation:
IF Gain Range:
0.3 Hz to 30 kHz (coupled to resolution filter by front panel pushbuttons).
0 Hz (zero span pushbutton or keypad data entry) : 200 Hz to 10 GHz (in a 1-2-5 sequence) via Span/Div knob: 200 Hz to 15 GHz (to two significant digits) via keypad or start/stop data entry, or marker start/stop: Full band via MAX SPAN pushbutton (12 bands). Accuracy $\pm 5 \%$ of selected Span/Div.
$10 \mathrm{~dB}, 2 \mathrm{~dB}$ and linear via pushbutton; any integer from 1 to $15 \mathrm{~dB} /$ Div via Data Entry keypad.
$80 \mathrm{~dB} \log$ mode; 8 Divisions linear.
Log mode; -117 to $+40 \mathrm{dBm},+30 \mathrm{dBm}$ max.
-130 to $27 \mathrm{dBV},+17 \mathrm{dBV}$ max.
-70 to $87 \mathrm{dBmV},+77 \mathrm{dBmV}$ max.
-10 to $147 \mathrm{~dB} \mu \mathrm{~V}$, $+137 \mathrm{~dB} \mu \mathrm{~V}$ max.
Linear Mode: $39.6 \mathrm{nV} / \mathrm{Div}$ to $2.8 \mathrm{~V} / \mathrm{Div}$ 1 W max.
10 dB coarse, 1 dB fine in 10 dB log; 1 dB coarse, 0.25 dB fine in 2 dB log; 1-2-5 sequence coarse, 1 dB equivalent fine in linear; coarse step = log/Div, fine is 1 dB for $5 \mathrm{~dB} / \mathrm{Div}$ or greater, 0.25 dB for $4 \mathrm{~dB} / \mathrm{Div}$ or less set via Data Entry keypad.
Accuracy is dependant on a combination of RF Attentuator Accuracy, IF Gain Accuracy, Resolution Bandwidth, Display Mode, Calibrator Accuracy, Frequency Band, Frequency Response and Temperature Change ( $\pm 0.15 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$ max.)
$\pm 1.0 \mathrm{~dB} / 10 \mathrm{~dB}$ to a maximum of $\pm 2 \mathrm{~dB}$ over $80 \mathrm{~dB}(10 \mathrm{~dB} \log ) ; \pm 0.4 \mathrm{~dB} / 2 \mathrm{~dB}$ to a maximum of $\pm 1.0 \mathrm{~dB}$ over 16 dB ( $2 \mathrm{~dB} \log$ ) $; \pm 5 \%$ of full scale in linear.

0 to 60 dB in 10 dB steps
dc to $1.8 \mathrm{GHz} ; 0.5 \mathrm{~dB} / 10 \mathrm{~dB}, 1 \mathrm{~dB}$ maximum cumulative error over 60 dB . 1.8 to $18 \mathrm{GHz} ; 1.5 \mathrm{~dB} / 10 \mathrm{~dB}, 3 \mathrm{~dB}$ maximum cumulative error over 60 dB . 18 to $21 \mathrm{GHz} ; 3 \mathrm{~dB} / 10 \mathrm{~dB}, 6 \mathrm{~dB}$ maximum cumulative error over 60 dB .
$\pm 0.4 \mathrm{~dB}$ (After CAL with respect to 1 MHz filter)
87 dB increase; 10 dB decrease in MIN NOISE; 10 dB and 1 dB steps.
(continued)
2. Specification (continued)

IF Gain Accuracy:

## Marker/s Accuracy;

$\leqslant 0.2 \mathrm{~dB} / \mathrm{dB}$ to maximum of $0.5 \mathrm{~dB} / 9 \mathrm{~dB}$ except at the decade transitions -19 to $-20 \mathrm{dBm},-29$ to $30 \mathrm{dBm},-39$ to -40 dBm , -49 to $-50 \mathrm{dBm},-59$ to -60 dBm . An additional $\leqslant 0.5 \mathrm{~dB}$ for a maximum cumulative error of 1 dB over 10 dB ; $\pm 2 \mathrm{~dB}$ maximum deviation over the 97 dB range.

Equal to Reference Level Accuracy plus Display Amplitude Accuracy.

Spurious Responses:
3rd Order Intermodulation
Products

$50 \mathrm{kHz}-21 \mathrm{GHz}$   $($ Bands $1-5)$	At least -70 dBc from   any two on-screen   signals within any   frequency span	$\geqslant-100 \mathrm{dBc}$ when signals   are separated 100 MHz   or more in pre-selected   bands

Harmonic Distortion.

50 kHz to 1.8 cHz   (Band 1)	-60 dBc or less	Measured at -40 dBm   input level in Minimum   Distortion Mode.
1.7 to 21 GHz	Not discernible	Typically -100 dBc
LO Emission	Less than -70 dBm   to 21 GHz	With 0 dB rf   Attentuation

Spurious Responses (Residual): $\leqslant-100 \mathrm{dBm}$
Input Signal Characteristics

RF Input:
Maximum Safe Input Level
(Attentuator Max. Rating) :

1 dB Gain Compression

Type "N" female 50 ohms nominal impedance
$+30 \mathrm{dBm}(1 \mathrm{~W})$ continuous, 75 W peak, pulse width 1 us or less with a maximum duty factor of 0.001 (atcenuator limit) DO NOT APPLY DC VOLTAGE TO THE RF INPUT (See Optional Accessories for dc Block)
$\geqslant-18 \mathrm{dBm}$ in MIN Distortion Mode.

VSWR

Frequency	(Typical) 0 dB   Attenuation	10 dB   Attenuation
50 kHz to 2.5 GHz	$1.9: 1$	$1.3: 1$ max. $1.2: 1$ Typical
2.5 to 6.0 GHz	$1.9: 1$	$1.7: 1$ max. $1.5: 1$ Typical
6.0 to 18 GHz	$2.3: 1$	$2.3: 1$ max. $1.9: 1$ Typical
18 to 21 GHz	$3.0: 1$	$3.5: 1$ max. $2.7: 1$ Typica1
Measured at $\pm 3 \mathrm{MHz}$ of pre-selector peak for Opt.01		

Specification (continued)
Sensitivity

Band and Freq. Range	Equivalent Input Noise in dBm versus Resolution Bandwidth					
	100 Hz	1 kHz	10 kHz	$100 \mathrm{kHz}{ }^{\text {d }}$	$300 \mathrm{kHz}{ }^{\text {a }}$	1 MHz
$1(50 \mathrm{kHz}-1.8 \mathrm{GHz})$	-120	-110	-100	-90	-85	-80
$2 \& 3$ (1.7-7.1 GHz)	-119	-109	-99	-89	-84	-79
$\begin{aligned} & 4 \text { (lower part) } \\ & \quad(5.4-12.0 \mathrm{GHz}) \end{aligned}$	-105	-95	-85	-75	-70	-65
$\begin{gathered} \hline \text { (upper part) } \\ (12.0-18.0) \end{gathered}$	-100	-90	-80	-70	-65	-60
$5(15.0-21.0 \mathrm{GHz})$	-100	-90	-80	-70	-65	-60
Equivalent maximum input noise with internal pre-selection for each resolution bandwidth for frequency bands $1-5$ ( $50 \mathrm{kHz}-21 \mathrm{GHz}$ ), the NARROW Video filter is activated for resolution bandwidths of 1 kHz or less, and the wide filter for resolution bandwidths above 1 kHz .						

## Output Characteristics

Calibrator (Cal Out):
1st and 2nd LO:

Vertical Out:

Horizontal Out:

IF Out:

Pen Lift
GPIB Interface:
$20 \mathrm{dBm} \pm 0.3 \mathrm{~dB}$ at $100 \mathrm{MHz} \pm 1.0 \mathrm{kHz}$.
Provides access to the output of the respective local oscillators (1st LO + 7.5 dBm minimum to a maximum of +15 dBm , 2nd LO -22 dBm minimum to a maximum of +15 dBm ). These ports must be terminated in 50 ohms at all times.
Provides $0.5 \mathrm{~V} \pm 5 \%$ of signal per division of video above and below the centreline.
Provides 0.5 V either side of centre. Full range -2.5 V to $+2.5 \mathrm{~V} \pm 10 \%$.
Output of the 10 MHz i.f. Level is approx. -5 dBm for a full screen signal at -30 dBm input reference level. Nominal impedence is 50 ohms.
TTL: 5V nominal to lift pen
In accordance with IEEE-488 Standard

## Comprising

Instrument plus:

$10 \mathrm{ZZ} / 210068$	50 ohm Coaxial Cable (BNC-BNC)	0.457 m	$012-0076-00$
$10 \mathrm{ZZ} / 210069$	50 ohm Coaxial Cable (N-N)	1.829 m	$012-0114-00$
$10 \mathrm{ZZ} / 210073$	CRT Light filter (Grey)		$378-0115-02$
$10 \mathrm{ZZ} / 210079$	CRT Light Filter (Amber)		$378-0115-01$
$10 \mathrm{ZZ} / 210075$	CRT Mesh Filter	$378-0227-00$	
$10 \mathrm{ZZ} / 210076$	Adaptor N(m)-BNC(f)	$103-0045-00$	
$5995-01-2895697$	Mains Lead	$161-0104-07$	
	Mains Lead Clamp	$343-0170-00$	
	Fuse 4A Fast Blow (Qty 2)	$159-0017-00$	
	Operator's Manual	$070-5562-00$	
	Programmer's Manual	$070-5564-00$	
	Transit Cover	$200-3195-00$	

4 Accessory Items

$10 \mathrm{ZZ} / 210077$	Mixer $18 \mathrm{GHz}-26.5 \mathrm{GHz}$	AFDEETEC 19290
$10 \mathrm{ZZ} / 210078$	Mixer $26.5 \mathrm{GHz}-40 \mathrm{GHz}$	AFDEETEC 19291
$10 \mathrm{ZZ} / 210070$	GPIB Cable	$012-0630-01$

5 Associated Equipment
None
2. Specification

Input Characteristics:

Carrier Frequency Range
(Automatic Operation):

Carrier Frequency Range
(Manual Tuning):

Input Leve1:

Low Input:

High Input:

Level Setting:
Input Impedance:
FM Measurement:

30 to 1000 MHz
Automatic Measurements can also be made in the bands
10 to 13 MHz
6 to 1000 MHz using external local oscillator with a range of 13 to 28 MHz . Input required 200 mV to 1 V rms into 50 ohms

Deviation Ranges:	$1.5,3,5,10,15,30,50$ and 100 kHz peak   deviation fsd   Measurements of positive and negative devi-   ations can be made
Modulation Frequency:	50 Hz to 10 kHz
Accuracy:	Better than $\pm 30 \%$ of fsd and $\pm 2 \%$ of reading   over the modulating frequency range 300 Hz
to $3 \mathrm{kHz} \pm 0.5 \mathrm{~dB}$ wrt above, over the	

AM Measurement:
Modulation Depth Ranges: 5, $10,15,30,50$ and $100 \%$ fsd modulation depth. Measurements of either peak or trough relative to mean carrier can be made.

Modulation Frequency: $\quad 50 \mathrm{~Hz}$ to 10 kHz

Chap 3.3.1

Accuracy: Better than $\pm 3 \%$ of $f s d$ and $\pm 2 \%$ of reading up to $95 \%$ modulation over the modulating frequency range 300 Hz to $3 \mathrm{kHz} ; \pm 0.5 \mathrm{~dB}$, wrt the above, over the modulation frequency range 30 Hz to 10 kHz

Residual am:

FM rejection:
Less than $1 \%$ modulation

Additional am error less than $1.5 \%$ with peak deviations of up to 100 kHz

IF Output:

Frequency:
Leve1:

Output Impedance:
AF Output:

Bandwidth:

Level:

Output Impedance:

Distortion:

500 kHz

100 mV rms emf
$600 \Omega$ nomina1

Normal: 50 Hz to $10 \mathrm{kHz} \pm 0.5 \mathrm{~dB}$ With filter: 300 Hz to 3 kHz at 2 dB points

1 V emf rms when meter is at fsd
$600 \Omega$ nominal

Less than $0.5 \%$ for fm deviations up to 100 kHz Less than $1 \%$ for am depths up to $80 \%$, (typically 0.5\%)

Environmental Conditions:
Operating Temperature: 0 to $55^{\circ} \mathrm{C}, 0$ to $40^{\circ} \mathrm{C}$ with battery pack
Storage Temperature: $\quad-25$ to $+70^{\circ} \mathrm{C},-25$ to $+50^{\circ} \mathrm{C}$ with battery pack
3. Comprising

Instrument only.
4. Accessory Items
$\frac{\text { REF NO. }}{10 \mathrm{~S} / 5905-99-5800511}$
$\frac{\text { DESCRIPTION }}{75 / 50 \Omega \text { Matching Pad }} \frac{\text { PART NO. }}{\text { TM } 6599}$
5. Associated Equipment

None.

Chap 3.3.1
Page 3




## 1. Description

The Modulation Meter 2305 is an automatic tuning instrument suitable for a wide range of measurements on signal sources. Conventional measurements such as fm or pm deviation and am depth are made with excellent resolution and high accuracy over a carrier frequency range from 500 kHz to 2 GHz . Additional measurements such as frequency, rf power, frequency response, signal to noise ratio, etc can be made and a high quality demodulated output is provided for monitoring purposes. An internal calibrator is fitted to ensure optimum accuracy for all modulation measurements.

With its wide range of measurement facilities, the 2305 is suitable for development, production and maintenance testing of equipment for fixed and mobile communications, broadcasting, telemetry and multichannel links. The unit can also be used for measuring and calibrating precision signal sources.

The 2305 is fitted with a GPIB option interface so that all functions can be controlled over the bus. Simple commands set up the required measurement conditions and the unit will then send results to the GPIB controller when requested.

## 2. Specification

RF Input:

Carrier frequency range:
Automatic tuning:

Frequency indication:
Manual tuning:
Sensitivity:

Maximum input:

Overload protection:

Input connector:
Input impedance:
Frequency Modulation:
Maximum deviation:

Range selection:

Accuracy:

AM rejection:

500 kHz to 2 GHz
Selecting 'Auto Tune' causes the instrument to tune automatically to the strongest signal in the carrier frequency range. Acquisition time is typically 500 ms .

8 digit LCD
By front panel keyboard or GPIB entry
$-25 \mathrm{dBm}(13 \mathrm{mV})$ from 0.5 MHz to 1 GHz $-18 \mathrm{dBm}(28 \mathrm{mV})$ from 1 GHz to 2 GHz $+30 \mathrm{dBm}(1 \mathrm{~W}$ or 7 V ms into $50 \Omega$ From 500 kHz to 2 GHz

Automatic trip provides protection against overloads up to 25 W

Type $N$ female
$50 \Omega$

500 kHz peak deviation at modulation rates of 30 Hz to 275 kHz at carrier frequencies above 5.5 MHz . 50 kHz peak deviation at modulation rates of 30 Hz to 15 kHz up to 5.5 MHz .
Ranges automatically selected for best resolution.

After calibration using internal calibrator $\pm 0.5 \%$ of reading $\pm 1$ digit at 1 kHz modulation rate with the 50 Hz to 15 kHz filter selected. Frequency response relative to 1 kHz modulation rate with the 10 Hz to 300 kHz filter selected:
$\pm 0.5 \%$ of reading for modulation
rates from 20 Hz to 20 kHz
$+0.5 \%-1 \%$ of reading for modulation
rates from 20 Hz to 50 kHz
$+0.5 \%-5 \%$ of reading for modulation
rates from 20 Hz to 275 kHz .

Typically 40 Hz peak deviation for $50 \%$ am at 1 kHz modulation rate with the 300 Hz to 3.4 kHz filter selected.
Chap 3.3.3

Phase Modulation:

Carrier frequency range:
Maximum deviation:

Range selection:

Accuracy:

AM rejection:

Amplitude Modulation:
Maximum modulation
depth:
Modulation rates:

Range selection:

Accuracy:

FM rejection:

Residual am noise:

Power Measurement:
Range:
Accuracy:
Frequency response:
VSWR:
5.5 MHz to 2 GHz uscable down to 500 kHz 500 radians for modulating frequencies up to 1 kHz
(500/F)radians for modulating frequencies above 1 kHz , where f is the modulating frequency in kHz .
Ranges automatically selected for best resolution.
After calibration using internal calibrator, $\pm 2 \%$ of reading $\pm 1$ digit for 1 kHz modulation rate. Frequency response relative to 1 kHz modulation rate $\pm 2 \%$ of reading for modulation rates from 300 Hz to 4 kHz . Useable from 50 Hz to 20 kHz .
Typically 0.04 radian peak deviation for $50 \%$ am at 1 kHz modulation rate.

30 Hz to 50 kHz for carrier frequencies from 5.5 MHz to 2 GHz . 30 Hz to 15 kHz for carrier frequencies from 0.5 to 5.5 MHz .
Ranges automatically selected for best resolution.
After calibration using internal calibrator $\pm 1 \%$ of reading $\pm 1$ digit at 1 kHz modulation rate for depths up to 95\%. Frequency response relative to 1 kHz : $\pm 1.5 \%$ of reading for modulation rates from 30 Hz to 50 kHz .
Less than $0.5 \%$ am for 50 kHz peak deviation for carrier frequencies above 5.5 MHz measured with the 50 Hz to 15 kHz filter selected.
Less than $0.02 \%$ rms am measured with the 300 Hz to 3.4 kHz filter selected for input levels above $-17 \mathrm{dBm}(30 \mathrm{mV})$.

10 mW to $1 \mathrm{~W}(+10$ to $+30 \mathrm{dBm})$
$\pm 1 \mathrm{~dB}$ at 800 MHz
$\pm 1 \mathrm{~dB}$ from 500 kHz to 1.5 GHz useable to 2 GHz .
Better than 2:1 from 500 kHz to 1.5 GHz
Chap 3.3.3

Frequency Display:	Front panel keys select display of the following on an 8 digit LCD carrier frequency.   Carrier error - the difference between carrier frequency received and carrier frequency set from the front panel or by GPIB control modulation rate.
Carrier frequency mode:	Range: 0.5 MHz to 2 GHz   Resolution: 10 Hz for carrier frequencies up to $1000 \mathrm{MHz}, 100 \mathrm{~Hz}$ for carrier frequencies up to 2 GHz .
Carrier error mode:	Resolution: 10 Hz for all carrier frequencies.
Modulation rate mode:	Range: 20 Hz to 275 kHz .   Resolution: 0.1 Hz up to 5 kHz and 10 Hz to 5 kHz .
Accuracy (all modes) :	$\pm 1$ count $\pm$ frequency standard error.
Modulation Display:	4 digit LCD indicates results in the following units:
	AM $-\%$ modulation depth   FM - kHz deviation   PM - radians deviation   Power - dBm or W as selected   Relative -dB
Detector modes:	The following detector modes may be selected:
	Average peak (pk-pk)/2   Positive peak   Negative peak   Noise averaging
Display modes:	The following display modes may be selected:
	Absolute - displays absolute value of modulation.
	Relative - displays modulation in $d B$ relative to a reference level entered from the front panel.   Peak hold - holds and displays the peak value of the modulation.
Filters:	Five IF (post detection) filters may be selected:
	10 Hz to 300 kHz Flat within   30 Hz to 50 kHz 0.1 dB   65 Hz to 250 Hz
	50 Hz to 15 MHz   300 Hz to 3.4 MHz nominal 3 dB   bandwidth

Chap 3.3.3

De-emphasis:	Three de-emphasis time constants may be selected: $50 \mu \mathrm{~s}, 75 \mu \mathrm{~s}$ and $750 \mu \mathrm{~s}$ (Deemphasis affects only the IF output and relative measurements not the modulation reading.
IF Output:	IF output is available at front panel BNC socket.
Frequency:	As carrier frequency for inputs up to 1.5 MHz .   250 kHz nominal for inputs from 1.5 to   5.5 MHz .   1.5 MHz nominal for inputs above 5.5 MHz .
Amplitude:	100 mV rms nominal into $50 \Omega$ load.
Output impedance:	$50 \Omega$ nominal.
LF Output:	A demodulated, filtered and de-emphasised IF output is available at a front panel socket.
Level:	Front panel control adjusts level from 0 to at least 3 V rms into $600 \Omega$ for fm deviations greater than 300 Hz , am depth greater than $1 \%$ or pm greater than 0.3 radians (at 1 kHz rate).
FM distortion:	At modulation rates up to 20 kHz : Better than $0.1 \%$ thd for deviations up to 100 kHz .   Better than $0.5 \%$ thd for deviations up to 500 kHz .   At modulation rates up to 100 kHz better than $1 \%$ thd for deviations up to 500 kHz .
AM distortion:	At a 1 kHz modulation rate: better than $1 \%$ thd for modulation depths up to $95 \%$.
Stereo separation:	Better than 50 db at 1 kHz .
Frequency Standard:	Internal standard or external input. Front panel indicator shows when external standard is selected.
Internal standard:	Frequency 10 kHz   Temperature stability: better than $\pm 0.1$ ppm over temperature range of 0 to $40^{\circ} \mathrm{C}$. Warm up time: within 0.5 ppm of final frequency within 5 min from switch on at $20^{\circ} \mathrm{C}$ ambient.
Distortion/Weighting Filter:	A distortion and SINAD measuring facility is available.
Distortion/Sinad:	```Measured frequencies: }300\textrm{Hz},500\textrm{Hz}\mathrm{ and 1 kHz (all \pm 5%). Functional rejection: greater than 65 dB. Distortion range: 0.1 to 100%. Sinad range: 0 to 60 dB. Accuracy }\pm1\textrm{dB}\mathrm{ . Chap 3.3.3```
83 (Amdt 12)	Page 5

3. Comprising

Instrument
10s/6625-99-7770378
10ZZ/210705
10S/6625-99-7770379
10ZZ/210164
10ZZ/210165
Operating Manual

GPIB Module	$54433-001 \mathrm{U}$
GPIB Lead Assy	$43129-189 \mathrm{U}$
Distortion/Weighting Filter Kit	$46883-527 \mathrm{G}$
AC Supply Lead	$43123-076 \mathrm{Y}$
Stereo Jack Plug	$23421-620 \mathrm{H}$
	$46881-431 P$

4. Accessory Items

$10 Z Z / 210166$	RF Connecting Cable (TM4969/3)	
	$50 \Omega, 1.5 \mathrm{~m}, \mathrm{BNC}$	$43126-012 \mathrm{~S}$
$10 Z Z / 210167$	RF Connecting Cable 50 $\Omega$,	
$102 Z / 210168$	457 mm, N Type	$43126-026 \mathrm{~A}$
$10 Z Z / 210169$	Front Handle Kit	$46883-511 \mathrm{R}$
NYR	Rack Mounting Kit	$46883-506 \mathrm{M}$
	Carrying Case	$2019-01 \mathrm{ive}$

5. Associated Equipment

None.

Chap 3.3.3

Section Refer		Nomenclature:		
10S/6625-99-4094784		MICROWAVE FREQUENCY COUNTER		
Manufacturer:		Part No:		cost/Date:
RACAL INSTRUMENTS		2101 OPT 04A		£2700
Height:	Width:	Depth:	Weight:   5.5 kg	
101 mm	212 mm	420 mm		
${ }^{\text {Power Supplies: }} 90-127 \mathrm{~V}, 193-253 \mathrm{~V}, 45-440 \mathrm{~Hz}$			Air Publication:   MANUFACTURER'S HANDBOOK	
Availability:	Environment:	Maintenance Policy:	Calibration:	afdegtec no:
2	B	4 D	AH 12	19521



1. Description

The Racal 2102 Microwave Counter is an easy to use, half rack counter that gives the advantage of high performance by using an advanced single sampler technique. Features of this instrument include Ratio, full Math, signal tracking and acceptance of low FM rates. To minimise the need to change channels, the three inputs have large bandwidth overlaps. Input $C$ has a maximum input of +34 dBm through the use of an internal power limiter. In addition to the automatic operation, a manual mode allows the approximate frequency to be entered giving low acquisition times and increasing data output rates. A track mode also allows the counter to follow drifting signals with optimum performance. Full GPIB is fitted as standard.
2. Specification

INPUT A

Range:
10 Hz to 80 MHz
Sensitivity:
20 mV rms

Input Impedance:
$1 \mathrm{M} \Omega / 35 \mathrm{pF}$
Maximum Input: $\quad 260 \mathrm{~V}$ ( $\mathrm{DC}+\mathrm{AC} \mathrm{rms}$ ) to 2 kHz , decreasing to 10 V rms at 50 kHz and above.

Filter: Low pass filter ( 50 kHz ).
2. Specification (continued)

INPUT B

Range:	40 MHz to 1.3 GHz
Sensitivity:	10 mV (to 1 GHz ) 25 mV (at 1.3 GHz )
Input Impedance:	$50 \Omega$ nominal.
Operating Range:	10 mV to 5 V rms.
Damage Overload:	7 V rms (protected by fuse).
VSWR:	2.3:1 (to 1.3 GHz)
INPUT C (MICROWAVE CHANNEL)	
Range:	500 MHz to 20 GHz
Sensitivity:	-32 dBm (to 12.4 GHz ), -27 dBm (to 20 GHz )
Operating Level:	$+7 \mathrm{dBm}$
Damage Level:	+25 dBm peak
Input Connector:	Precision type N female.
VSWR:	$<2: 1$ (to 10 GHz ), < $3: 1$ (to 20 GHz )
AM Tolerance:	99\%
FM Tolerance:	$60 \mathrm{MHz} \mathrm{pk}-\mathrm{pk}$ (Manual), ( $1 \mathrm{kHz}-10 \mathrm{MHz}$ rates)   20 MHz pk-pk ( 45 Hz to 10 MHz rates).
Acquisition Time:	20 mSec (Manual), 60 mSec (Track), 120 mSec (Auto), 1.25 mSec (Low FM).
Amplitude Discrimination:	20 dB ( 6 dB if within 500 MHz ) (Typical).

Frequencies $A$ and $B$

Range Frequency A:	10 Hz to 80 MHz
Range Frequency $\mathrm{B}:$	40 MHz to 1.3 GHz
Digits Displayed:	3 to 10 digits.
LSD Displayed (Hz):	F X $10 \mathrm{E}-\mathrm{D}(\mathrm{F}=$ Frequency rounded to next   decade, $D=$ Number of digits).

Frequency $C$
Range: $\quad 500 \mathrm{MHz}$ to 20 GHz

```
Specification (continued)
```

Frequency C (continued)
LSD Displayed: $\quad 0.1 \mathrm{~Hz}$ to 1 MHz (Resolution selectable).
Ratio B/A, C/A, C/B

Range (B/A):

Range (C/A) :

Range (C/B):

Check
TIMEBASE SPECIFICATIONS

Frequency:

Ageing Rate:

Temperature Stability:

GENERAL SPECIFICATIONS

Gate Time:

Range:

Sample Rate:
Display:

FEATURES

Low FM:

Track:

Multiply:
0.1 Hz to 1 MHz (Resolution selectable).

500 MHz to 20 GHz 10 Hz to 80 MHz

500 MHz to 20 GHz 10 Hz to 80 MHz

500 MHz to 20 GHz
40 MHz to 1.3 GHz
10 MHz displayed as check function.

10 MHz

3X10E-9/day averages over 10 days after three months continuous operation.
$\pm 3 \mathrm{XIOE}-9 / \% \mathrm{C}$ averaged over range $0^{\circ} \mathrm{C}$ to $+45^{\circ} \mathrm{C}$ (operable to $+50^{\circ} \mathrm{C}$ ).

Automatically determined depending upon resolution set.

1 mSec to $20 \mathrm{Sec}(10 \mathrm{Sec}$ maximum for Channel C).

Selectable display and output rates.
13 digit high brightness 14 mm LED display, separate indicators for $\mathrm{GHz}, \mathrm{MHz}, \mathrm{kHz}$ and Hz .

For accepting very low modulation rates.
For following drift/tuning without reacquisition (1 GHz/Sec).

Displays the measured frequency multiplied by an entered number.
2. Specification (continued)

FEATURES (continued)

Offset:

Smooth:
3. Comprising Items

Mains lead
Fuse 315 mA 240 V working
Fuse 500 mA 115 V working
RF Fuse 1.3 GHz (X5)
Front Cover
Accessory Pouch
Operators Handbook
4. Accessory Items

None
5. Associated Equipment

None

Allows a stored or keyboard entered frequency to be added or subtracted from the measured signal.

Displays the optimum resolution relevant to the stability of the input signal.

Section Refere 10S/6625-	64628	Nomenclature:   1.3 GHz FREQUENCY COUNTER		
Manufacturer:   RACAL IN		Part No:   1988 OPT 4A		Cost/Date:   £1100/JAN 94
Height:   101 mm	width:   238 mm	Depth:   363 mm	Weight:   3.6 kg	
Power Supplies:   $90-110$ V, $103-127 \mathrm{~V}, 193-237 \mathrm{~V}$,   207 - $253 \mathrm{~V}, 45-440 \mathrm{~Hz}$			Air Publication:   MANUFACTURER'S HANDBOOK	
Availability:   2	Enviromment: B	Maintenance Policy $4 D$	Calibration:   AH 12	AFDEETEC No: $19522$

1. Description

The Racal 1988 is a 10 Hz to 1.3 GHz counter offering frequency, period and ratio measurement modes with the capability of external arming, nulling and single shot measurement. It is a reciprocal counter with nine digit resolution in one second. Resolution can be varied between three and ten digits to provide optimum speed/resolution times from 1 msec to 20 seconds. An IEEE488.2 interface is included for use in controlled systems.
2. Specification

INPUT A

Frequency Range: $\quad 10 \mathrm{~Hz}$ to 160 MHz
Input Impedance: $\quad \mathrm{xl}$ att. $\quad 1 \mathrm{M} \Omega / 40 \mathrm{pF}$ ( AC coupled) or $50 \Omega$ (DC coupled)
x 20 att. $\quad 1 / 25 \mathrm{pF}(\mathrm{AC}$ coupled) or $50 \Omega$ (DC coupled)
2. Specification (continued)


INPUT B

Frequency Range:
Input:
40 MHz to $1.3 \mathrm{GHz}, \mathrm{AC}$ coupled.
$50 \Omega$ nominal (BNC connector).

VSWR:

Operating Range:
<2.1( 1 GHz$)$
(Sinewave) <10 mV - 5 V rms to 1 GHz , < 75 mV - 5 V rms to 1.3 GHz .

Maximum Input:
7 V rms (fuse protected).
Damage Level:
25 W
2. Specification (continued)

MEASUREMENT MODES

Frequency $A$ and $B$

Digits Display:	3 to 10 digits.
LSD Displayed (Hz):	FxloE-D (F=Frequency rounded up to next      decade, $D=$ No. of digits.
Resolution (Hz):	$\pm n$ LSD
	$\pm$ (Trigger Error x Freq)/Gate Time
Accuracy (Hz):	$\pm$ Resolution
	$\pm$ (Timebase Error x Freq)

PERIOD A

Range:

Accuracy (Sec):

RATIO B/A:

BURST

Digits Displayed:
LSD Displayed (Sec):

Resolution (Sec):

Input A:
Input B:
LSD Displayed: $\quad 1$ to 8 digits determined by Freq $A$ and gate time selected.
$\pm$ LSD $\pm 1.4$ (Trigger Error (A) x Ratio)/Gate Time.
$\pm$ Resolution
6.25 nS to 100 mS

3 to 10 digits
PxIOE-D ( $P=$ Period rounded up to next decade, $D=$ No. of digits).
$\pm \mathrm{n}$ LSD $\pm 1.4$
(Trigger Error x Period)/Gate Time
$\pm$ Resolution
$\pm$ (Timebase Error x Period)

SPECIEIED FOR HIGHER FREQUENCY APPLIED TO INPUT B.

10 Hz to 100 MHz .
40 MHz to 1.3 GHz .

Resolution:

Accuracy:

Min. Burst Time:
$1 \mathrm{mS}+$ Gate Time
2. Specification (continued)

GENERAL

INTERNAL TIMEBASE

Frequency: $\quad 10 \mathrm{MHz}$
Aging Rate: $\quad 3 \times 10 \mathrm{E}-9 /$ day averaged over 10 days after three months continuous operation.

Temp. Stability:

Warm Up:
FREQUENCY STANDARD OUTPUT

Frequency:
Amplitude:

Impedance:

Max. Reverse I/P:

EXTERNAL STANDARD INPUT

Frequency:
$\pm 15 \mathrm{~V}$.
10 MHz
TTL levels giving approximately 10 V p-p into 50.

90 nominal

## GATE TIME

Automatically determined by the number of digits selected. LED annunciators indicate gate time.
3. Comprising Items

No. of Digits   Selected	Gate Time   (Seconds)
10	20
9	1
8	0.1
7	0.01
$6,5,4,3$	0.001

These nominal gate times will be extended depending on period of input signal.

Gate Output: Available as a TTL compatible signal at the rear panel

Mains lead
Fuse 250 mA 240 V working
Fuse 500 mA 115 V working
RF Fuse 1.3 GHz (5)
3. Comprising Items (continued)

Front Protection Cover
Accessory Pouch
Operators Handbook
4. Accessory Items

None
5. Associated Equipment

None



1. Description

The 575 counter provides fully automatic control in phase-locking virtually any swept signal source to the same accuracy and long-term stability as the timebase oscillator in the counter.

The 575 can also operate as a CW frequency counter. Features include a 5 W input protection, 10 dB amplitude discrimination, frequency offsets, multiply function and frequency limit capability. Option 09 provides a rear input and Option 22 allows 240 V 50 Hz operation.
2. Specification

BAND 1

Range	$10 \mathrm{~Hz}-100 \mathrm{MHz}$
Sensitivity	25 mV rms


2. Specification (continued)

BAND 1 BAND 2

BNC Female
ac

120 V rms $\quad+10 \mathrm{dBm}$
150 V rms* +27 dBm

BAND 3

Precision Type N Female

Coupling	ac	ac	ac
Maximum Operating			+10 dBm
Level	120 V rms	+10 dBm	
Damage Level	$150 \mathrm{~V} \mathrm{rms*}$	+27 dBm	$+37 \mathrm{dBm}(5 \mathrm{~W})$

* above 1 kHz maximum input decreases at $6 \mathrm{~dB} /$ octave down to 3.0 V rms)
Acquisition Time - < 50 ms < 250 ms

BAND 3 only

Automatic Amplitude Discrimination: 10 dB

FM Tolerance:

VSWR:

Frequency Limit:

Overload Indication:
$20 \mathrm{MHz} \mathrm{p}-\mathrm{p}$ up to 10 MHz rate
2.5 : 1 (typical)

Keyboard controlled. Counter will measure largest signal within programmed limits. Signal outside desired range must be separated by 200 MHz (typical) from either limit.

Display indicates "OVERLOAD" when input level exceeds approx. +10 dBm .

Time Base (Standard):

Crystal Frequency:

Stability:
Ageing Rate
Short Term

Temperature
Line Variation

Warm-up Time
Output Frequency

External Time Base

General:

Resolution
Measurement Time

Display
Accuracy

10 MHz
<3 $\times 10-\frac{7}{9}$ /month
<1 x $100^{-}$rms for one second averaging ${ }_{6}$ time
$<2 \times 10^{-}$over the range $0^{\circ}$ to $50^{\circ} \mathrm{C}$ $\pm 10 \%$ change in line voltage pro-
duces frequency shift <1 x 10-
None required
10 Hz , square wave, IV p-p minimum into $50 \Omega$
Requires 10 MHz , $1 \mathrm{~V} \mathrm{p}-\mathrm{p}$ minimum into $300 \Omega$

Front panel keyboard select 1 Hz to 1 GHz 1 ms for 1 kHz resolution 1 s for 1 Hz resolution 12-digit LED sectionalized to read GHz , $\mathrm{MHz}, \mathrm{kHz}, \mathrm{Hz}$
$\pm 1$ count $\pm$ time base error

General (continued)

Sample Rate	Controls time between measurements, variable from 100 ms typical to 10 s . Switchable HOLD position holds display indefinitely.
Reset	Resets display to zero and initiates new reading.
Off sets	Keyboard control of frequency. Displayed frequency is offset by the entered value to 1 Hz resolution.
Multiply	Keyboard controlled. Counter will multiply the measured signal by any integer from 1 to 99 and display to 1 kHz resolution.   Then OFFSET can be added or subtracted to obtain $y=m x \pm b$ result.
Operating Temperature	$0^{\circ}$ to $50^{\circ} \mathrm{C}$

Source Locking Specifications

Frequency Range
Resolution

Accuracy
Long Term Stability
Minimum Phase Lock
Signal Level
Polarity
Bandwidth

Lock Time (Typical)
Coarse Tune

Phase Lock
Recall Stored Data

Controls time between measurements, variable from 100 ms typical to 10 s . Switchable HOLD position holds display indefinitely.
Resets display to zero and initiates new reading.
Keyboard control of frequency. isplayed frequency is offset by the Keyboard controlled. Counter will multiply the measured signal by any integer from 1 to 99 and display to 1 kHz resolution. to obtain $y=m x \pm b$ result. $0^{\circ}$ to $50^{\circ} \mathrm{C}$

10 MHz Max capability of counter.
10 kHz for phase lock freq
$>50 \mathrm{MHz}$
2.5 kHz for $<50 \mathrm{MHz}$

Equal to counter's Time Base
Equal to counter's Time Base
Equal to counter sensitivity
Automatically selected
User select, $10 \mathrm{kHz}, 2 \mathrm{kHz}$ or 500 Hz , or automatically selects widest bandwidth capable of locking.
$50 \mathrm{~ms}+1$ counter acquisition time for source bandwidth greater than 100 Hz ; limited by source timing speed below 100 Hz .
200 ms
1 counter acquisition +100 ms limited by source tuning speed.

```
+ 10 V into 5 k \Omega min
\pm 10 V into 5 k \Omega min for source
gain constant < 64 MHz/V.
\pm 7 5 \mathrm { mA } \text { into } 1 0 \Omega \mathrm { max } \text { for source}
gain constant < 3.2 MHz/mA.
\pm.6 V into 5 k \Omega min for source
gain constant > 64 MHz/V.
```

Output Drive (Maximum)

Coarse Tune Output Phase Lock Output

Output Drive (continued)   (Maximum)	
Phase Lock Output	$\pm 4.5$ MA into $10 \Omega$ max for source gain constant > $3.2 \mathrm{MHz} / \mathrm{mA}$.
Capture Range	
Coarse Tune	Entire range of selected counter band limited by maximum output drive.
Phase Lock	Source gain constant X maximum output drive.
Output Connector	
Coarse Tune	Rear panel BNC, female
Phase Lock	Rear panel BNC, female
Phase Locked Spectrum	
Noise Floor vs Input Frequency	The noise floor extends from the carrier to approximately the loop bandwidth. Beyond this the noise floor decreases $12 \mathrm{~dB} /$ bandwidth octave. The noise floor is the greater of:
	1. NOISE FLOOR $=70 \mathrm{dBC} / \mathrm{Hz}$   2. NOISE FLOOR $=(20 \log \mathrm{~F}-65)$ $\mathrm{dBC} / \mathrm{Hz}$ where $\mathrm{F}=$ Input frequency in GHz
Required Source Characteristics	
External Sweep	
(Coarse Tune) Input:	
Bandwidth	5 Hz minimum
Tuning Sensitivity	$10 \mathrm{MHz} / \mathrm{V}$ minimum;   $10 \mathrm{GHz} / \mathrm{V}$ maximum
FM (Phase Lock) Input:	
Bandwidth	2 kHz minimum
Tuning Sensitivity	
Voltage Driven Input	$\pm 2 \mathrm{MHz} / \mathrm{V}$ minimum
	$\pm 1000 \mathrm{MHz} / \mathrm{V}$ maximum
Current Driven Input	$\pm 0.1 \mathrm{MHz} / \mathrm{mA}$ minimum   $\pm 50 \mathrm{MHz} / \mathrm{mA}$ maximum
Maximum FM	The counter will still frequency stabilize if maximum FM is exceeded, but accuracy and long term stability vill not equal the counter's time base.

Chap 3.4.3

3. Comprising

Instrument
Power lead Manual

## 4. Accessory Items

10ZZ/211073 Rack Mounting Kit 2010008-01.
5. Associated Equipment

None

Section Refer 10S/743927		Nomenclature:   UNIVERSAL COUNTER TIMER, 1.3 GHz		
Manufacturer:   RACAL - DANA		Part No: 1922-55-04ES		Cost/Date: $£ 2484 / 1985$
Height:   88 mm	Width:   210 mm	Depth: $320 \mathrm{~mm}$	Weight:$3.63 \mathrm{~kg}$	
Power Supplies: $100,115,215,230 \mathrm{~V} \mathrm{AC} \pm 10 \%, 45-450$ Hz			Air Publication:	
Availability:   2	Environment:	Maintenance Policy: $2 \mathrm{AB} / 4 \mathrm{CD}$	Calibration:   AH 12	AFDEETEC/AFDSEC No: $19362$

1. Description


The model 1992 is a compact, lightweight Counter Timer providing frequency measurement up to 1.3 GHz with a 9 -digit resolution in one second at any frequency. Measurement functions, in addition to frequency, include frequency ratio, time interval, totalise, phase, period and peak amplitude. Other features include GPIB control, auto-trigger and attenuator, direct digital trigger entry, external arming, time interval delay and offset and normalise capability.
2. Specification

Input Characteristics
Channels $A$ and $B$

Frequency range:
Channel A, dc coupled 0 to 160 MHz
(10 Hz ac coupled)
Channel B, dc coupled 0 to 100 MHz
(10 Hz ac coupled)
25 mV rms sine wave dc to 100 MHz
( 50 mV to 160 MHz )
2. Specification (continued)

Sensitivity:

Trigger Level
Range:

Accuracy:

Auto Trigger
Frequency range:
Minimum amplitude:
Attenuator:
Auto Attenuation:

Coupling:
Trigger Slope:
Impedance:
Separate Mode:
Common Mode:
Low-Pass Filter (Chan A):

Channel C

Range:
Sensitivity:

Maximum Input
Total Impedance

Measurement Functions

Frequency $A$
Range:
Resolution (LSD):
Frequency C
Range:
Resolution (LSD):

Period A
Range:
Resolution (LSD):

Time Interval (A to B)
Range:
Input Channel
Common:
Separate:
Resolution (LSD) :

75 mV p-p minimum pulse width 5 ns
$\pm 5.1 \mathrm{~V}$ in 20 mV steps (x1 attenuator)
$\pm 51 \mathrm{~V}$ in 200 mV steps (x10 attenuator)
$\pm 30 \mathrm{mV} \pm 1 \%$ of trigger level reading (x1)
dc and 50 Hz to 100 MHz
50 mV rms sine wave, $150 \mathrm{mV} \mathrm{p}-\mathrm{p}$

1 or 10 independently selectable

Selected with auto trigger.
$a c$ or $d c$
Positive or negative
$50 \Omega$ or $1 \mathrm{M} \Omega / 45 \mathrm{pF}$
$50 \Omega$ or $1 \mathrm{M} \Omega / 55 \mathrm{pF}$

50 kHz nominal

40 MHz to 1.3 GHz
10 mV rms 40 MHz to 1.0 GHz ( 75 mV to 1.3 GHz )

7 V rms (fuse protected)
$50 \Omega$ nominal
dc to 160 MHz
Up to nine digits + overflow

40 MHz to 1.3 GHz
Up to nine digits + overflow
6.25 ns to $1.7 \times 10^{3} \mathrm{~s}$

Up to nine digits + overflow

Minus 2 ns to $8 \times 10^{3} \mathrm{~s}$
START and STOP Channel A
START Channel A, STOP Channel B
1 ns

```
Time Interval Delay (Time Interval
and Totalize measurements)
 Range : 200 ns to 800 ms
 Step Size (nominal) : \(25 \mu s\) (entered via keyboard)
Ratio \(A / B^{1}\)
 Range : dc to 100 MHz (both channels)
Ratio C/B
 Range : \(\quad 40 \mathrm{MHz}\) to 1.36 GIIz , Channel C
 dc to 100 MHz , Channel B
Totalize (A by B) \({ }^{1}\)
 Range :
 0 to \(\left(10^{18}\right)-1\)
 Maximum Rate :
 100 MHz
```

Phase A relative to $B^{1}$
Range :
$0.1^{\circ}$ to $360^{\circ}$
Resolution (LSD) :
$0.1^{\circ}$ to 1 MHz

Read Peak Amplitude :
Maximum or minimum input signal peaks to Channel $A$ and $B$ may be displayed.

Frequency Range :
Resolution :
Math (Not applicable to
phase measurement function) :
$\frac{\text { Result }-X}{Z}$

## General

## Gate Time :

Resolution :

Accuracy :

3 to 6 digits, 1 ms
7 digits 10 ms
8 digits 100 ms
9 digits 1
frequency and period modes)
uncertainty due to the noise and
For frequency measurements,
Resolution $=$
$\pm 2 \times \mathrm{LSD}+(\underline{\text { ( } 4 \times \text { trig. error }} \mathrm{x} \times$ freq.
The accuracy for absolute
measurement functions depends on
the frequency standard (time base)
uncertainty and resolution.
For frequency measurements;
Accuracy $= \pm$ resolution $\pm$ (time

3 to 6 digits, 1 ms
7 digits $\quad 10 \mathrm{~ms}$
8 digits $\quad 100 \mathrm{~ms}$
9 digits 1 s
9 digits + overflow, 10 s (in
frequency and period modes)
Generally resolution depends
upon the least significent digit
(LSD) and the trigger
uncertainty due to the noise and
the slew rate of the input signal.
For frequency measurements,
$\pm 2 \times$ LSD $+\frac{(1.4 \times \text { trig. error })}{\text { gate time }}$ freq.
The accuracy for absolute
measurement functions depends on
the frequency standard (time base)
uncertainty and resolution
Accuracy $= \pm$ resolution $\pm$ (time
base uncertainty) $x$ frequency

External Arming :	Independently selectable, positive, negative or off on START and STOP (TTL/CMOS compatible).
Time Base	
Internal Reference Oscillator	(Option 04ES)
Long term stability	$<5 \times 10 \mathrm{E}-10 /$ day
Short term stability	<1 x 10E -10 RMS
	Averaged for 1 s after a 30 minute warm-up period
	<5 x 10E -11 RMS
	Averaged for ls within five hours
Temperature stability	$< \pm 7 \times 10 \mathrm{E}-9$ over the temperature range 0 to $50^{\circ} \mathrm{C}$
Line Voltage Stability	$< \pm 1 \times 10 E-10$ for a $10 \%$ line voltage change
Warm-up	$< \pm 5 \times 10 \mathrm{E}-9$ of final frequency within five hours of warm-up
	Note . . .   Standby mode allows the oscillator to be continuously powered
Output	```A lO MHz signal derived from the internal timebase is available from the rear panel```
Input	An external frequency standard input is provided for operation from primary frequency standards
Option 55 - GPIB Interface	IEEE Std-488 (1978)
Control Capability	All front panel controls except Power On/Off and Standby/Charge
Interface Functions	$\begin{aligned} & \text { SH1, AH1,T5,TEO,L4 ,LEO,SR1,RL1, } \\ & \text { PPO,DC1,DT1,CO, } \mathrm{E} 2 \end{aligned}$
Power Requirements	$\begin{aligned} & 100,115,215,230 \mathrm{~V} \text { ac } \pm 10 \% \\ & 45-450 \mathrm{~Hz} \end{aligned}$
Consumption	35 VA approx
Operating Temperature	$0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ (excluding battery option)
Dimensions	Height © O mm , Width 210 mm , Depth 320 mm
Weight	3.63 kg ( 8 lb ) excluding battery option.

3. Comprising

Instrument
Mains lead
Operator's Manual
4. Accessory Items

None
5. Associated Equipment None

Section Reference		Nomenclature					
+		FREQUENCY METER					
Manufacturer   HEWLETT PACKARD		Part No. $\begin{array}{lll} \\ & 536 \mathrm{~A} & \& 537 \mathrm{~A}\end{array}$		Cost/Date			
		+					
$\begin{aligned} & \text { Height } \\ & 23.2 \mathrm{~cm} \end{aligned}$	Width			Depth		Weight	
		cm 1	15.2 cm	5.9 kg			
Power Supplies _-				Air Publication NONE			
Availability	Environment	Maintenance Policy	calibration	AFDEETEC/AFDSEC No.			
2	B	B2/D4	A/12	+			



## 1. Description

A series of direct reading frequency meters measuring frequencies in coax. The instruments comprise a special transmission section with a high $Q$ resonant cavity which is tuned by a choke plunger. A 1 dB or greater dip in output indicates resonance. Tuning is by a precise lead screw, spring loaded to eliminate backlash.

Mode1	Reference No	Afdeetec No	Cost	
536 A	$110 \mathrm{~T} / 6625-00-9666728$	13317	$£ 838$	1980
537 A	$110 \mathrm{~T} / 6625-00-9309687$	17124	$£ 646$	1980

Chap 3.4.5
Page 1

## 2. Specification

Mode1	Frequency   Range   (GHz)	Overal1   Accuracies   $(\%)$	Calibration   Increments   (MHz)	W/G- Coax   Equivalent   Flange   (Connector)
536 A	$0.96-4.20$	$0.22-0.96$   to 1 GHz   $0.17-1 \mathrm{to}$   4.2 GHz	2	Coax   (Type $\mathrm{N}(\mathrm{f})$ )
537 A	$3.7-12.4$	0.170	10	Coax   (Type $\mathrm{N}(\mathrm{f})$ )

3. Comprising

Instrument on1y.
4. Accessory Items

None.
5. Associated Equipment

None.

Chap 3.4.5


Set 15020 at ' $n$ ' on the counter front panel.
3. Comprising

- Instrument
- Mains Lead (Some counters have the mains lead wired in permanently and others have a detachable plug-in lead).

4. Accessory Items

None.
5. Associated Equipment

None.

Section Reference:		Nomenclature:   FREQUENCY DIFFERENCE METER		
10S/0857707		FREQUENCY DIFFERENCE METER		
Manufacturer:		Part No:		Cost/Date:
TRACOR		527E		£4538/1978
Height:	Width:	Depth:	Weight:$6.8 \mathrm{~kg}$	
8.9 cm	42.6 cm	32.4 cm		
Power Supplies:$115 \mathrm{v} / 230 \mathrm{~V} \pm 15 \% ; 48 \text { to } 420 \mathrm{~Hz}$			Air Publication: NONE	
Availability:	Environment:	Maintenance Policy:	Calibration:	AFDEETEC/AFDSEC No:
2	B	B2/C3/D4	AH 12	19009



1. Description

The Tracor $527 E$ meter gives an instant reading of the fractional frequency difference, with an accuracy of one part in $10^{11}$ or better, between two stable oscillators. A second panel meter indicates the phase relationship between the two input frequencies and its use increases the accuracy to one part in $10^{12}$.
2. Specification

Input

Frequencies:	$100 \mathrm{kHz} \pm 0.25 \% ; 1 \mathrm{MHz} \pm 0.50 \%$
	$2.5 \mathrm{MHz} \pm 0.50 \% ; 5 \mathrm{MHz} \pm 0.50 \%$
	$10 \mathrm{MHz} \pm 0.50 \%$ (Signal only - not
	reference).
	Reference and signal frequencies need not
	be the same.
Voltages:	0.5 V to 10.0 V rms
Impedance:	$1 \mathrm{k} \Omega$ nominal

2. Specification (continued)

Output
Frequencies: $\quad 1 \mathrm{MHz}$ derived from reference input
$1 \mathrm{MHz}+10^{\mathrm{N}} \Delta \mathrm{F}$ signal input
$2 \mathrm{~V} p-\mathrm{p}$
$2 \mathrm{k} \Omega$ nominal

Frequency Difference Indicators
Frequency meter:

Phase meter:

Overrange Lamp:

Difference Multiplication:

Accuracy:

Filter:

Front panel mounted; centre zero. Scale from -10 to +10 parts in (10) ${ }^{\mathrm{N}}$.

The phase of the signal with multiplied differential error is shown with respect to the reference.

Indicates excessively noise input signal or frequency difference exceeding meter range.

Fractional frequency is multiplied by 10, 100, 1000, or 10,000 . (Use of the latter with 100 kHz input requires exceptionally pure and stable input signal).
$\pm 5 \%$ of full scale reading on all ranges.

Crystal filter with front panel switch allows operation with relatively noisy input signals.
3. Comprising

Instrument only.
4. Accessory Items

None
5. Associated Equipment

None



1. Description

The Type 1222 A is a compact and portable general purpose stroboscope with a high intensity white light and a comprehensive range of facilities.

The instrument employs a transistorized oscillator which triggers the Xenon flash tube and also drives an analogue frequency meter. Facilities are provided for switching the internal oscillator out of circuit and triggering the instrument from an external source such as an oscillator, an electromagnetic pickup, phototransistor pickup, photoelectric pickup, vibration meter or vibration analyser. In all cases the flashing rate of the lamp

- is accurately indicated on the meter. The lamp may also be triggered at the supply frequency to check the calibration of the meter.

WARNING
Beryllium is used in the construction of this instrument.
Chap 3.4.12
Page 1
Oct 82 (Amdt 10)

## 2. Specification

Range:

Accuracy:

Colour of Light:
Flash Duration:

Mean Flash Tube Power:

External Trigger:

Input Impedance:
Output:

External Contact:

Calibration Check:

Accessories:
3. Comprising

Instrument only.
4. Accessory Items

Hand Lamp Type 1222-1A
5. Associated Equipment

None.

300 to 36000 flashes/min in 4 over-lapping ranges. Speeds up to $360000 \mathrm{rev} / \mathrm{min}$ may be measured indirectly.
$\pm 1 \%$ of fsd when standardized. On the 2 highest ranges, above quarter scale $\pm 1 \%$ of reading, when standardized at nearest available calibration point on the meter.

White
5 to $10 \mu \mathrm{~s}$

12 W maximum
Minimum 200 mV rms
Maximum 200 V rms at 50 Hz
$100 \mathrm{k} \Omega$ in parallel with approx 50 pF
The instrument has an output to drive a counter. This give a minimum 4 V peak to peak pulse, over all ranges of the instrument, into a $100 \mathrm{k} \Omega$ load.

The flash may be initiated by closing a pair of external contacts. Potential across contacts prior to closing 2 V approx. Capacitance across contacts $0.1 \mu \mathrm{~F}$.

Multi-point calibrator derived from the supply.

Handlamp Type 1222-1A. An external lamp unit for the type 1222 A for stroboscopic observation in restricted locations. When the handlamp is in use the lamp in the Type 1222 A is switched off.

Maximum Input Panels:

AGC :

Frequency Standard:
Frequency:
Ageing Rate:

Warm-up Time:
Temperature Stability:

Standard Frequency
Output:
Frequency:
Pane1:
Waveform:
External Standard Input:
Frequency:
Minimum Leve1:
Maximum Level:
Input Impedance:
Environmental Conditions:
Temperature Range:
Specification:

Safety Standard:
250 V rms up to 10 kHz
50 V rms up to 100 kHz
10 V rms above 100 kHz
400 V dc
Approx 50 dB range. A clipping circuit
becomes effective above 10 V pp becomes effective above 10 V pp

5 MHz
$\pm 3$ parts in $10^{9} /$ day after 3 months continuous operation

Better than $\pm 2$ parts in $10^{7}$ within 6 minutes Better than $\pm 3$ parts in $10^{9}$ per ${ }^{\circ} \mathrm{C}$ over the range of $10^{\circ} \mathrm{C}$ to $+45^{\circ} \mathrm{C}$

1 MHz
500 mV rms
1 MHz
Standard TTL output
Approx rectangular

10 V rms 400 V dc Approx $200 \Omega$ (ac coupled)
$0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Tested in accordance with IEC 68 (BS 2011) recommendations

Designed to meet IEC 348 (BS 4743)
recommendations

## 3. Comprising

Operators Manual
Spare Fuses
Supply Voltage Label
4. Accessory Items

None .
5. Associated Equipment

None.

Chap 3.4.13



1 Description
The 451 microwave Pulse Counter is capable of automatically measuring the frequency of pulse modulated microwave signals up to 18 GHz . Pulse widths of 100 ns can be measured and there are no limitations on pulse repetition frequencies. The display is a seven digit LED giving 10 kHz resolution.

2 Specification
Frequency range: $\quad 925 \mathrm{MHz}$ to 18 GHz
Pulse characteristics:
Pulse width (3dB points) : 100 ns minimum
PRF: Minimum - $50 \mathrm{~Hz}, 0 \mathrm{~Hz}$ rear panel selected. Maximum - No 1imit.

Accuracy:
CW or pulses $>100 \mu \mathrm{~s} \quad$ Time base accuracy $\pm 1$ count

Pulses $<100 \mu \mathrm{~s}$	Time base accuracy $\pm$ ave      gate error.
Averaging error:   (kHz rms)	$\sqrt{\text { Pulse width }}-0.03 \mu \mathrm{~s}$
Gate error (max) :	$\pm \frac{40 \mathrm{kHz}}{\text { Pulse width }}-0.03 \mu \mathrm{~s}$

## Time Base:

Crystal frequency
10 MHz
Stability:
Ageing rate:
Temperature $0-50^{\circ} \mathrm{C}$ :
$<3 \times 10^{-7} /$ month
$<3 \times 10^{-5}$
Line voltage: $\quad \pm 10 \%$ change produces frequency shift $<1 \times 10^{-7}$

Sensitivity: $\quad 925 \mathrm{MHz}$ to $10 \mathrm{GHz}-10 \mathrm{dBm}$ peak. 10 GHz to 18 GHz - 5 dBm peak.

FM tolerance: $\quad 40 \mathrm{MHz} \mathrm{p}-\mathrm{p}$ deviation worst case for modulation rates from dc to 10 MHz

Max. input level (peak) :
Operating - +10 dBm
Burnout level - +30 dBm

Input impedance:
Connector:
$50 \Omega$ nominal

Type $N$ precision
Measurement speed:
Acquisition time:

$$
\begin{array}{ll}
\mathrm{PRF}>100 \mathrm{~Hz}: & 100 \mathrm{~ms}+50 \mathrm{~ms} / \mathrm{GHz} \\
\mathrm{PRF}<100 \mathrm{~Hz}: & 100 \mathrm{~ms}+\frac{5}{\operatorname{prf}} \mathrm{sec} / \mathrm{GHz}
\end{array}
$$

Reading time:

Display:

Resolution:
$\frac{1}{\text { prf }} \times \frac{100}{\text { pulse }}$ width( $\left.\mu \mathrm{s}\right) \mathrm{sec}$.
Seven digit LED with fixed decimal point. Leading zero suppression.
$10 \mathrm{kHz}, 100 \mathrm{kHz}, 1 \mathrm{MHz}$.

Comprising
NYR Instrument
NYR Power cord
NYR Instruction manual (Initial issue only).
4 Accessory items
NYR Racal/Dana Model 400 Delay Generator.
(being assessed for introduction into Service)
5 Associated equipment
None.


This instrument replaces Universal Counter Timer 10S/6457782


1 Description
The 9904 is a sophisticated Universal Counter in the 99 Hundred series; it has a frequency range from dc to 50 MHz , a seven-digit display and can be operated from all normal ac line supplies. The trigger Hold-off and Start Inhibit features provide a fully variable trigger window and improved versatility in all timing measurements. Tri-state level indication simplifies the adjustment of trigger level and prevents errors.

2 Specification

Frequency Range:
Measuring Functions:
dc to 50 MHz
Frequency manual
Single and Multiple Period
Single and Multiple Ratio
Single and Double-1ine Time Interval
Single and Double-line Time Interval
Averaging
Single and Multiple Totalizing

Chap 3.4. 20

## Display:

Format:
Units indicator:
Display time:

Reset:
Channel A Input (ac coupled):
Frequency range:
Sensitivity:
Maximum input level:

Input Z:
Channel A-B (dc coupled):
Frequency range:
Input attenuator:
Sensitivity:

Trigger levels:
Maximum signal level:

Input Z:
Pulse duration:
External gate:

Trigger hold-off:
Frequency Measurement:
Input:
Coupling:
Frequency range:
Accuracy:
Gate times:

Seven, 7-segment LEDs
$\mathrm{kHz}, \mathrm{s}, \mathrm{ms}, \mu \mathrm{s}$ or ns
Gate time plus 150 ms in Frequency, Period and Ratio modes 1.5 s in other modes

Manual or automatic

10 Hz to 50 MHz
10 mV rms sinewave maximum
250 V rms up to 20 kHz
50 V rms up to 100 kHz
10 V rms above 100 kHz
400 V dc
$1 \mathrm{M} / 25 \mathrm{pF}$
dc to 20 MHz
Two-position switch $\times 1$ and $\times 10$
$\pm 140 \mathrm{mV}$ about trigger level $\pm 3 \mathrm{~V}$
$\pm 1.4 \mathrm{~V}$ about trigger level $\pm 30 \mathrm{~V}$
Variable between $\pm 3 \mathrm{~V}$
100 V rms up to 1 MHz decreasing to 10 V rms at 20 MHz
$1 \mathrm{M} \Omega / 25 \mathrm{pF}$ falling to $100 \mathrm{k} \Omega$ at 5 V
25 ns at trigger points
Controlled in Time Interval, Time Interval Average and Totalize modes
Time Interval or Totalize mode

Channel A
ac or dc
$\mathrm{dc}-50 \mathrm{MHz}$
$\pm 1$ count $\pm$ timebase accuracy
1 ms to 100 s in decade steps

Single and Multiple Period Measurement:

Input:
Range:
Clock unit:
Coupling:
Periods averaged:
Resolution:

Channel A
$1 \mu \mathrm{~s}$ to 10 s (Single Period) 100 ns to 10 s (Multiple Period)
$1 \mu \mathrm{~s}$
ac or dc
1 to $10^{5}$ in decade steps
10 ps maximum

Chap 3.4.20

Time Interval Single and Double Input:
Input:
Single input: Channel B
Double input: Start Channel B
Stop Channel A
100 ns to $10^{5} \mathrm{~s}$ (28 hours approx)
100 ns to 10 ms decade steps
Clock units:
dc
Start/stop signals:
Trigger slope selection:
Electrical or contact
Positive or negative slope selected by Stop and Start signals

Time Interval Averaging Single and Double Inputs
Input:
Single input:
Double input:

Time range:
Clock unit:
Time interval averaged:
Ratio:
Higher frequency input:
Higher frequency range:
Lower frequency input:
Channel B
Start Channel B
Stop Channel A
150 ns to 1 s
100 ns
1 to $10^{5}$ in decade steps

Lower frequency range:
Channel A
dc to 50 MHz
Channel B
dc to 10 MHz
Reads:

Multiplier $\mathrm{n}:$
Totalizing:
Input:
Maximum rate:
Pulse width:
Standard Frequency Output:
Frequency:
Leve1:

Impedance:
External Timebase:
Frequency:
Waveform:

Input:
$\frac{\text { Freq } A}{\text { Freq } B} \times \Omega$
1 to $10^{5}$ in decade steps

Channel A ( 10 MHz maximum)
$10^{7}$ events per second
50 ns minimum at trigger points

1 MHz
TTL compatible output
600 mV peak to peak into $50 \Omega$
$50 \Omega$

1 MHz
Sinewave or rectangular wave of mark to space ratio up to $4: 1$
Channel B
Chap 3.4.20

Input/Output Data:
Display: Serial BCD output TTL logic levels
Static outputs:

Control inputs:
Environmental Conditions:
Operating temperature:
Storage temperature:
Humidity:
Function, timebase and overflow information
Print Hold and Reset

Frequency Standard Option 04A:
Frequency:
Temperature stability:

Warm-up time:
$0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$95 \% \mathrm{RH}$ at $40^{\circ} \mathrm{C}$

5 MHz
Better than $\pm 3$ parts in $10^{9}$ per ${ }^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$
Six minutes for an accuracy better than $\pm 2$ parts in $10^{7}$

Comprising

-	Instrument	
$10 \mathrm{AH} / 6436425$	Power Lead	Pt.No. 10-2394
-	Fuse 250 mA	Pt.No. 23-0031
-	Operators Manual	
10 /6575088	Rigid carrying case	Pt.No. 15-0450

4 Accessory Items
6625-99-6450029 Rack Mounting Kit
5 Associated Equipment
None.


This instrument replaces Digital UHF Frequency Meter 10S/6459261


## 1 Description

The 9916 is a 520 MHz frequency counter with an eight-digit display; signals of short duration can be measured using the frequency burst capability. For ease of use, AGC is included on both channels. Fast acting overload protection by a PIN diode attenuator and reed relay is provided for the highly sensitive UHF input channel.

2 Specification
Display:

Format:
Unit indicator:
Display time:
Reset:

Eight, 7-segment LEDs
$\mathrm{MHz}, \mathrm{kHz}$ or Hz
Gate time plus 1 ms
Manual or automatic

Channe1 A Input - cw and Burst:

Frequency range:	$40 \mathrm{MHz}-520 \mathrm{MHz}$
Input impedance:	$50 \Omega$
Overload protection:	Up to 35 V rms maximum by PIN diode,   and reed relay
AGC:	50 dB minimum range
Burst measurement:	Minimum measurement time comprises a

Channel B Input - cw and Burst:

Frequency range:
Input impedance:
Maximum input level:

AGC:

Burst measurement:
Frequency Measurement:
Frequency range:

Accuracy:
Gate times:
Burst mode:

10 Hz to 60 MHz (directly gated)
$1 \mathrm{M} \Omega / 25 \mathrm{pF}$
250 V rms up to 10 kHz
50 V rms up to 100 kHz
10 V rms above 100 kHz
400 V dc
50 dB minimum range. A clipping cct operates above 10 V peak to peak
as Channel A

A CHAN - 40 MHz to 520 MHz
B CHAN - 10 Hz to 60 MHz
$\pm 1$ count $\pm$ Timebase accuracy
$0.01 \mathrm{~s}, 0.1 \mathrm{~s}, 1.0 \mathrm{~s}, 10 \mathrm{~s}$
Gate remains closed until signal is detected. Gate opens after a 40 ms arming period - display held until manually reset

Internal Timebase:
Frequency:
Option 04A:
Standard Frequency Output:
Frequency:
Leve1:

Impedance:
External Timebase:
Frequency:
Waveform:

Minimum level:
Input impedance:

5 MHz
as for 9904 10S/6575085 (Chap 3.4.20)

1 MHz
TTL compatible output 600 mV peak to peak into $50 \Omega$
$200 \Omega$

1 MHz
Sinewave or rectangular wave of mark/ space ratio up to $4: 1$
100 mV rms
$1 \mathrm{k} \Omega$ (ac coupled)

## Input/Output Data:

Display:	Serial BCD output provided at standard   TTL logic level
Static outputs:	Function, timebase and overflow informa-   tion
Control inputs:	
Environmental Conditions:	
As for 9904 Print Hold and Reset	

3 Comprising

-	Instrument	
10AH/6436425	Power Lead	Pt.No. 10-2394
-	Fuse 250 mA	Pt.No. 23-0031
-	Operators Manual	
$10 S / 6575088$	Rigid Carrying Case	Pt.No. 15-0450
$10 \mathrm{~B} / 6339354$	Telescopic Antenna	Pt.No. 23-9020

4 Accessory Items
10ZZ/211309 Rack Mounting Kit Pt.No. 11-1126

5 Associated Equipment
None.

Section Reference:$10 S / 7703037$		Nomenclature: PROTOCOL ANALYSER		
Manufacturer:   PHOENIX DATACOM LTD		9440		Cost/Date:   £8041/1991
Height:   18.0 cm	Width: $33.5 \mathrm{~cm}$	$\begin{array}{r} \text { Depth: } \\ 40.0 \mathrm{~cm} \end{array}$		$7.5 \mathrm{~kg}$
Power Supplies:90 to $250 \mathrm{Vac}, 45-66 \mathrm{~Hz}$ single phase				Air Publication: None
$\underset{2}{\text { Availability: }}$	Environment: B	Maintenance Policy: 2A/4CD	Calibration: TBA	afdeetrc no: 19437



## 1. Description

The 9440 Protocol Analyser is for use on Synchronous/Asynchronous and bit orientated protocols SDLC/HDLC, SNA, X25. Has full screen VT-100 terminal emulation. BERT facility has 63, 511, 2047, 4095, Alt 1-0, 1, 0 , FOX and user definable messages. The 9440 has an integral Breakout Box for true in-line monitoring. The unit can utilize HEX, ASCII, EBCDIC, BAUDOT, IPARS, JISC7 \& JISC8 codes. Cable testing on RS-232/V24 cables can detect open and short circuit faults as well as cross connects. The Analyser has a 3.5 inch disc drive with 1.44 Megabyte capacity for data storage.

## 2. Specification

Protocols
Synchronous, asynchronous, and bit-orientated protocols (SDLC/HDLC), SNA, X.25, Transparent (binary)
ISDN LAPD/Q. 931 optional
DDCMP Analysis optional

Codes
HEX, ASCII, EBCDIC, BAUDOT, IPARS, JIS7 \& JIS8
Monitoring Speeds
Asynchronous: 30 bits per second to 38.4 kbps
Synchronous: internal clock to 19.2 kbps
Synchronous: external clock to 64 kbps
BOP: Internal clock to 19.2 kbps
BOP: External clock to 64 kbps
Breakout Box
Complete including 25 individually numbered switches, access pins and voltage source pins
Provides true in-line monitoring capability
Can be used purely as a breakout box
Interfaces
RS-232/V. 24 (internal)
V.35, X.21, RS-449, Mil-188 optional (external)

ISDN BRA optional (internal)
Information Windows
Instant access to pop-up windows from most menu or result screens RS-232/V24 interface listing
V. 35 interface listing

Hex/decimal/EBCDIC code chart
Hex/decimal/ASCII code chart
Autoconfigure
Unit automatically determines these lines characteristics: Protocol, Speed, Stop bits, Parity, BCC, Code, Level

```
 Filter by X. }25\mathrm{ Logical Channel Number (LCN)
 Filter by SNA Physical Unit (PU)
 Filter by SNA Logical Unit (LU)
 Filter SNA Receiver Readys (RR's)
 Filter out of sync interframe data (SYNC, BSC, BOP, X.25, SNA)
```

Timing Measurements
Measure time between events, data and/or interface while examining
captured data
Simultaneous Real Time Displays
Asynchronous: data or data \& interface, stats
Synchronous: data or data \& interface, stats
BOP: data or data $\&$ interface, stats, frame level, stats
SNA: data, frame level, SNA level, frame stats, SNA stats
X. 25 : data, frame level, packet level, frame stats, packet stats, LCN
stats [32]
Additional decodes available after halt
Real Time Statistics for Performance Analysis
Automatic real time compilation for both DTE \& DCE simultaneously
BOP, X. 25 , \& SNA show total frames, info frames, frame rejects,
invalid frames, rejects, selective rejects, SABMs, SARMs, SARM(DM)s,
SNRM(E)s, FCS errors, aborts
SNA shows negative responses, ACT PUs, Deact PUs, Act LUs, Deact LUs,
Binds, Unbinds
X. 25 shows for each of first active 32 LCNs: total packets, data
packets, reject packets, reset packets, call packets, invalid
packets, characters, chars/pkt, segments, chars/segment
X. 25 shows totals for all LCNs, total packets, data packets, reject
packets, reset packets, call packets, invalid packets, characters,
chars/pkt, segments, chars/segment
Error Check
Parity, LCR-8, CRC-6, CRC-16, CRC-CCITT

## Traps

On character string: up to 16 characters, including up to 4 bit masks and up to 15 don't-care characters
On user message
On buffer full
On interface transition
On error: parity, BCC, abort, any error
On frame type: Info, UA, SNRM, DISC, DM, RR, RNR, REJ, SREJ, FRMR, SABM, SRM/DM

```
On SNA request, SNA response, SNA request/response, SNA negative response: DACTPU, APU, DACTLU, ALU, bind, any, unbind, LUSTAT, cancel, clear, notify, RTR
On packet type: Q-bit, D-bit, call, clear, reject, interrupt, diagnostic, reset, restart. RNR
```


## Trap Actions

Halt data capture, or automatically count, tag, and rearm Trap with or without audible alarm and definable video attribute (blinking, inverse...)

Termination Emulation

Normal async ( $16 \times 40$ )
VT-100 (24×80)
6 user definable text strings
XMODEM protocol for PC compatible file transfer with no file size restriction

Cable Testing
tests RS-232/V. 24 cables
detects opens, shorts, crossconnects

BERT

Messages include:

- 63, 511, 2047, 4095, Alt 1-0, 1, 0, FOX
- any user definable message

Emulate DTE or DCE
Block size 1000 bits or CCITT
Duration definable in blocks or minutes
Asynchronous, synchronous
Full duplex, half duplex, or multidrop
Up to 64 kbps full duplex
Internal or external clock
Insert error capability
Reset counters while running
Full CCITT G. 821 compatibility
Bits received, bit errors, blocks received, block errors, error free seconds, errored seconds, sync loss seconds, elapsed seconds, percent errored seconds, sync losses, BER calculation, degraded minutes, severely errored seconds, available seconds, unavailable seconds Automatic Error logging capabilities
Automatic circuit analysis determines line quality and provides definable English interpretation
Supports flow control for start mux testing
3.5 inch disk drive with 1.44 Megabyte capacity. Wrap or halt on buffer full. Continuous disk capture supported at 64 kbps FDX on 9440. Disks formatted on unit are MSDOS 3.3 compatible $64 k$ bytes RAM for data plus interface status Data can be saved as PC compatible file

## User Messages

Unlimited number, up to 1000 characters each
Print Functions

RS-232/V. 24 port for connection to local printer
Can print out test results, setups, user messages, data buffer, programs, any screen
Supports XON/XOFF and DTR flow control up to 19.2 kbps Supports autoprint of BERT results while running BER tests

Remote File Transfer

Transfer any file over asynchronous circuits using XMODEM protocol or direct ASCII transfer.
File transfer between $9440,9460, P C, X T, A T, ~ P S / 2$

Programming

Ability to execute state programs is standard on 9440

Printer/Terminal Auto Configure

Automatically determines a printer/terminal's speed, parity, data level, and flow control
Manual DTE testing also supported

Keyboard

Full QWERTY plus 6 soft keys, 4 hard keys

Display

800 to 1920 character high resolution 5" CRT PC compatible TTL video output

Weight
$7.5 \mathrm{~kg}, 16.5 \mathrm{lb}-9440$
$8.2 \mathrm{~kg}, 18.0 \mathrm{lb}-9460$

Dimensions
h 18 cm , w 33.5 cm , d 40 cm
h 7.1", w 13.2", d 15.7"
Temperature
Operating Range
$5^{\circ} \mathrm{C}$ to $40{ }^{\circ} \mathrm{C}$

Power
90 to 250 Vac, $45-66 \mathrm{~Hz}$ single phase
3. Comprising items

10S/7703038 Mains Lead
10S/7703039 Storage Pouch
10S/7703040 1 Set of Jumper Leads (quantity 5)
10S/7703041 Master System Disc
10S/7703042 Blank Disc
10S/7703044 Operating Guide
10S/7703043 V24 Interface Lead
4. Accessory Items

None
5. Associated Equipment

10S/9677774, X21 Plug in Module, AFDeetec 19457 10S/5231320, RS449 Plug in Module, AFDEETEC 19458

Section Reference		Nomenclature		
10S/5731076		DATA TESTER		
Manufacturer		Part No.	Cost/Date	
TREND		DT 108A	£990/1991	
Height		Width	Depth	Weight
9.5 cm		12.2 cm	24.5 cm	1.5 kg
Power Supplies			Air Publicat	
220/250 Vac and Rechargeable NiCad			None	
Availability	Environment	Maintenance Policy	Calibration	AFDEETEC/AFDSEC
1	B	$2 \mathrm{~A} / 4 \mathrm{CD}$	TBA	19454



## 1. Description

The Data Tester 108A will test synchronous and asynchronous systems at speeds of up to 19.2 kbits per second. The tester is battery or mains powered with a Liquid Crystal Display of 64 characters, which provides easy checking of transmit and receive data, test messages, parameters and results. The data tester features a standard V24/V28 (RS232) interface with integral breakout box. D type connectors are provided to configure as a DTE/DCE. Interface signals can be monitored by the tri state LED indicators while dual-in-line switches provide interrupt and cross patch facilities.

## 2. Specification

Test Modes:

Memory:

Bit Rates:

Test Data:

Data Codes:

Hardware Flow Control: DCE - Raises CTS in response to RTS

- Raises DSR in response to DTR

DTE - Raises RTS and looks for CTS

- Raises DTR and looks for DSR

1, 1.5 or 2 available on all test data including $\mathrm{P}-\mathrm{R}$ (except Binary 0,1 and $1: 1$ ).

Parity: Mark, Space, Even, Odd or None.
(Odd and Even only on 8 bit data).
64 character LCD dot matrix. 16 characters per line. Separately configurable for:- Set Up, Data, Status and Results.

Test Lengths:

Function Keys:

Indicators:
Full Duplex, Half Duplex, Single Shot Character, Single Shot Message, Multi-drop, X-on/X-off, RFS Delay, Trap (Mon), Carrier Control.

Receive Store 4K data +4 K status, Edit \& Transmit Store 4 K , Save Store 12 K Partitioned as 3 x 4 K bytes individually addressable.
$50,75,100,110,134.5,150,200,300,600,1200$, 1800, 2400, 3600, 4800, 7200, 9600, 14400, 19200.
External clocking up to 20K bps (selection of pins 15,17 or 24 for synchronous working).
Separate Tx \& Rx Bit Rates.
The following test data may be selected:
Binary 0, Binary 1, 1:1, 63 P-R, $511 \mathrm{P}-\mathrm{R}$, (8, 7, 6 and 5 bit characters plus odd, even, mark or space parity).
2047 P-R, QBF, QBFN, QBFT, User Message, Receive Buffer, 3 Saved Messages. ITA No2 (5 bit), ITA No5/ASCII (7 bit), EBCDIC, HEX5, HEX6, HEX7, HEX8.
$10^{4}, 10^{5}, 10^{6}$ bits
$10^{4}, 10^{5} \quad$ blocks
$10^{4}, 10^{5}, 10^{6}$ characters
$10^{4}, 10^{5} \quad$ messages
Continuous
Stop when receive store full.
Stop on trap.
Run, Release, Inject Error, Results, Tx/Rx Data, Tx

+ Control, Rx + Control, Reset, Edit, Delete,
Cursor Left, Cursor Right, Select, Step Up, Step
Down, Enter.
Test in progress, Parity Error, Editor Mode,
TxSync/Phase, Charging, Battery Low, RxSync/Phase.

Interface:	V24 in the form of a break-out box.   Tri-state LED indicators show signal condition   (Red +V, Green -V).   Software configurable for:- DTE, DCE, MONitor and Positive/Negative mark polarity.
Outputs:	$+6 \mathrm{~V},-6 \mathrm{~V}, \mathrm{~V} 24,0 \mathrm{~V}$.
Inputs:	Events, Tri-state LED Monitor.
Switches:	Power ON/OFF, V24 +6 V or -6 V , RTS/CTS ON/AUTO, DTR/DSR ON/AUTO, LED ON/OFF.
Power Supply:	```Internal Batteries: Battery life (fully charged): Approx. 5 hours minimum. Rechargeable nickel-cadmium cells, 220/250 VAC via integral battery charger/eliminator. Consumption: }8\mathrm{ watts. 120 volts/60 Hz option also available.```
Operational Conditions: Dimensions (Overall)	Length: 245 mm   Width: 122 mm   Depth: 95 mm   Weight: 1.5 kg approx.
Safety	Meets the requirements of IEC 380.
Environmental   Temperature	Operating Range $+5^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$.
Storage and Transportation	$-29^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.
Humidity	40\% to 90\% ambient.

3. Comprising Items

10S/2576654 Ribbon Cable Y Lead 10S/5226439 Jumper Leads Operating Manual.
4. Accessory Items

None
5. Associated Equipment

None

Section Reference:10S/5393133		Nomenclature: ${ }^{\text {DATA }}$ TRANSMISSION ANALYSER				
Manufacturer:   ANRITSU EUROPE LTD		Part No: MD 6401A				Cost/Date: $£ 13247 / 1991$
Height: $17.7 \mathrm{~cm}$	Width:$28.2 \mathrm{~cm}$		Depth:$35.0 \mathrm{~cm}$		Weight:$7.8 \mathrm{~kg}$	
Power Supplies: 85 to 13	$\mathrm{Vac} / 170$	250 Vac, 47 to 64 Hz			Air Publication: None	
$\begin{gathered} \text { Availability: } \\ 2 \end{gathered}$	Environment: B	Maintenance Policy: 2A/4CD		Calibration: TBA		AFDEETEC No: 19436



## 1. Description

The MD 6401A Data Transmission Analyser is a light-weight integrated measuring instrument, for analysing devices from low speed modems to high speed digital lines. Up to five plug-in interfaces can be mounted in the instrument, allowing maintenance and monitoring of multi-media devices using differing interfacing standards. The unit has an integral printer which prints measurement conditions and measurement results. Error rate and performance can be measured and displayed simultaneously. Signal generation includes FOX, eight pseudo-random patterns, word patterns and 1 kHz tone signals. One touch operation allows the measurement of frequency, pulse count and voltage.

## 2. Specification

## Sending clock signal

Internal clock signal (ST1, ASYNC, ST/SP)
Fixed (b/s)
Low speed: $50,75,100,110,200,300,600$, $1.2 \mathrm{k}, 1.8 \mathrm{k}, 2.0 \mathrm{k}, 2.4 \mathrm{k}, 3.0 \mathrm{k}, 3.6 \mathrm{k}, 4.8 \mathrm{k}$, $7.2 \mathrm{k}, ~ 8.0 \mathrm{k}, ~ 9.6 \mathrm{k}, ~ 14.2 \mathrm{k}, ~ 16 \mathrm{k}, ~ 19.2 \mathrm{k}$.
High speed: $24 \mathrm{k}, ~ 32 \mathrm{k}, 48 \mathrm{k}, 56 \mathrm{k}, ~ 64 \mathrm{k}, ~ 72 \mathrm{k}, ~ 96 \mathrm{k}, ~ 112 \mathrm{k}$, 128k, 144k, 168k, 192k, 256k, 320k, 384k, $512 \mathrm{k}, 1,024 \mathrm{k}, 2,048 \mathrm{k}, 4,096 \mathrm{k}, 8,192 \mathrm{k}$.

Variable
Low speed: $50 \mathrm{~b} / \mathrm{s}$ to $20 \mathrm{~kb} / \mathrm{s}$ (In units of $5 \mathrm{~b} / \mathrm{s}$ ) High speed: 0.1 to $400 \mathrm{~kb} / \mathrm{s}$ (In units of $100 \mathrm{~b} / \mathrm{s}$ )

Accuracy
Self oscillation: $\pm 10 \mathrm{ppm}$ Subordinate oscillation: Subject to $8 \mathrm{~kb} / \mathrm{s}$ or $8 \mathrm{~kb} / \mathrm{s}$ of ( $64 k+8 k$ ) external input

External Input
Operated by the external input clock signal (TTL level or sine waves)

External clock signal (ST2)
Clock (inversion can be used) by each $50 \mathrm{~b} / \mathrm{s}$ to $10 \mathrm{mb} / \mathrm{s}$ interface

Receiving clock signal
External clock signal (RT)
Clock (inversion can be used) by each $50 \mathrm{~b} / \mathrm{s}$ to $10 \mathrm{mb} / \mathrm{s}$ interface

Internal clock signal (ASYNC, ST/SP)
The same as the sending clock signal (only for fixed clock)

Pattern
Code: $\quad$ A, $2,1: 1,3: 1,1: 3,4: 1,1: 4,7: 1,1: 7$.
Programmable pattern:
8 bit repetition (5 to 8 bits for ST/SP)
Pseudo-random pattern:
$2^{n}-1$ bits repetition ( $n: 6,7,9,11,15$, 19, 20, 23), positive/negative logic

Word pattern:
8 bits $x$ 8k words (manual input, remote setting, user's pattern)

FOX pattern:
Conforms to CCITT
Error Insertion
Manual error:
Single-bit error whenever the key is pressed or single-bit error every second

Cyclic error:
$2.5 \times 10^{-1}$ to $1.7 \times 10^{-7}$
$\left(\mathrm{Nx} 10^{-\mathrm{n}} \mathrm{N}: 1.0,1.1,1.3,1.5,1.7,2.0,2.5,3.0,4.0\right.$, $5.0,6.0,7.0,8.0,9.0)$

Start and stop synchronisation
Start/stop bit length:
Start bit: 1
Stop bit: 1, 1.5 and 2 bits
Data Length:
5, 6, 7 and 8 bits
Parity:
none, odd, even
Error measurement
Detection error:
Bit error, code error, parity error and CRC error are selected

Measurement error:
Error count, error rate, block error count, block error rate, ES, \%ES, DM, \%DM, SES, \%SES

Block Length:
$2^{5}$ to $2^{16}$ or $10^{1}$ to $10^{6}$ bits
Measurement time:
$10^{2}$ to $10^{9}$ bits measurement and repetition of 10 seconds to 1000 hours

Display of measurement results:
Among the measurement results, three optional items can be displayed simultaneously. The buzzer sounds if an error is detected (the volume can be adjusted). The lapsetime after the measurement starts is displayed in units of seconds

```
Pattern trace
 No. of trace bytes:
 32k bytes max.
 Trace stop trigger:
 Manual, Code detection, Not code detection,
 signal lines ON/OFF, No. of trace bytes, external input signal
 ON/OFF, error signal (parity error etc.)
 Delay trace aftertrigger detection:
 0-8000 bytes
 Trace data display:
 Displays together with trace stop time in HEX,
 JIS8, ASCII, EBCDIC, EBCDIK
Voltage measurement
 Measuring range:
 -30 v to +30 v
 Error difference:
 \pm2% \pm 1 digit
Frequency measurement and count
 Measuring range:
 DC to 10 MHz
 Error:
 \pm 5ppm \pm1 digit
 Display:
 Decimal }7\mathrm{ digits
Time measurement
 Measuring range:
 0 to 10 sec. (10 \mus steps)
 Error:
 \pm5 ppm, \pm 1 digit
 Display:
 Decimal }7\mathrm{ digits
Signal monitor
 Monitor lamp:
 Displays the status of each signal line ("1", ON:
 Green; "0", OFF: Lamp off)
 Monitor terminal:
 Outputs signal lines to monitor terminals
Error output
 Error output:
 Issues error pulse at TTL level
```

Clock signal output:
Issues receiving clock or sending 8 kHz clock signal

Print output
Printing in error measurement
At start of measurement:
Prints measurement conditions and time at start of measurement

During measurement:
Prints time and error count in 1 second. Prints time and measurement result after start of measurement. Prints time and error count if an error occurs at termination of each measurement cycle.

At end of measurement: Prints time and measurement result at termination of measurement

Other printing
Prints measurement conditions, measurement results, and time in manual measurement.

Internal Timer
Year, month, day, hour, minute, second

## Power

85 to $132 \mathrm{~V} / 170$ to 250 Vac (changeable), 47 to 64 Hz , $\leq 50 \mathrm{VA}$

Rated operating temperature range
0 to $50{ }^{\circ} \mathrm{C}$

Connectable Units
5 units max

Dimensions and weight
177H, 282W, 350D(mm), 7.8kg approx. (including printer)
3. Comprising items Part No

10S/4772604 V24/V28 Module MD0601A
10S/1073288
V36 Module
MD0601C
10S/2159442
G703/HDB3 Module
MD0603A1
10S/1033623
CODEC Module
MD0610B
10S/4510698
RS232C remote control module
MD0620B
10S/9106801
Carrying Case
B0252
4. Accessory Items

Printer Paper type TH 57 from HMSO via station APFS
5. Associated Equipment

None

Section Reference 10S/1920841		Nomenclature   V35 BREAKOUT BOX			
Manufacturer   TREND		Part No.	Cost/Date$£ 417 / 1993$		
		960025			
Height		Width   4.5"	Depth $\quad$ Weight		
7.01			2.01018 oz		
Power Supplies   Duracell MN1604 9 Volt Alkaline Battery X2			Air Publication None		
Availability	Environment	Maintenance Policy	Calibration	AFDEETEC No.	
2	B	$2 \mathrm{~A} / 4 \mathrm{CD}$	CNR	19426	



## 1. Description

The V. 35 Input/Output tester has been designed to monitor data lines where the electrical characteristics of the interchange conform to CCITT Recommendations V.35. The cabling allows connection to both Data Terminal Equipment (DTE) and Data Communication Equipment (DCE). The LEDs are powered by the battery and are bi-colour. Two types of circuits are provided in the equipment. Both are high input impedance and are powered by the battery rather than the data lines. One of these is the differential receiver circuit for the $V .35$ modem signals and the other is a single input receiver for the RS232 control lines. When a signal pair with CCITT V. 35 characteristics of 0.55 volts ( $+/-20 \%$ ) is applied to a standard V. 35 load impedance the LED associated with the buffered high impedance receiver will respond as follows:
a. Glow Red when the A wire of the signal pair is positive with respect to the $B$ wire.
b. Glow Green when the A wire of the signal pair is negative with respect to the $B$ wire.
c. Glow Red and Green when the signal pair rapidly alternates between conditions 1 and 2 above.

## 2. Specification

Input - Signal $\pm 0.55( \pm 20 \%)$ volts, differential Control $\pm 3$ to $\pm 25$ volts single ended
Power Source - Two 9 volt alkaline batteries
Size - Height - 7" Width - 4.5" Depth - 2"
Weight - 18 ounces (including batteries)
Case - Durable vinyl SoftPak case
Front Pane1 - Clear acrylic faceplate silkscreened on the back to eliminate marring.
3. Comprising Items

Instruction Manual
10S/5226439 Qty 10, Jumper leads
6135-99-6348080 Qty 2, Duracell 9 Volt Alkaline Battery type MN1604
4. Accessory Items

None.
5. Associated Equipment

None.



## 1. Description

The RS422/423 (X26/x27) Input/Output Tester is designed to monitor data interchange complying with CCITT Recommendations X26/X27 and EIA Recommendations RS422/RS423. Allows access to all 37 signal lines without altering information passing through it. Cabling allows connection to Data Terminal Equipment (DTE) and data Communications Equipment (DCE). Power for the LEDs is derived from a 9 volt battery.

## 2. Specification

```
 Input Signal - RS422 + 6 V nominal, }\pm25 V maximum differential.
 RS423 \pm 6 V nominal, \pm 25 V maximum single ended.
 Power Source - One 9-volt battery
 Size - Height: 5.55"
 Width: 2.90n
 Depth: 1.45"
 Weight - 10 ounces including battery
 Case - Durable polypropylene injection moulded case with an
 integral living hinged cover.
 Front Panel - Injection moulded clear acrylic plastic.
3. Comprising Items
 Instruction Manual
 10S/5226439 Qty 10, Jumper leads
 6135-99-6348080 Qty 1, Duracell 9 Volt Alkaline Battery type MN1604
4. Accessory Items
 None.
5. Associated Equipment
```

None.

Section Reference$10 \mathrm{~S} / 2999530$		Nomenclature   X21/V11 BREAKOUT BOX		
Manufacturer		Part No.	Cost/Date	
TREND		960016	£164/1993	
Height		Width	Depth	Weight
5.55"		2.9"	1.45"	10 oz
Power Supplies			Air Publication	
Duracell MN1604 9 Volt Alkaline Battery X2 Duracell MN2400 1.5 Volt Alkaline Battery X1			None	
Availability	Environment	Maintenance Policy	Calibration	afdeetec No.
2	B	$2 \mathrm{~A} / 4 \mathrm{CD}$	CNR	19427



## 1. Description

The X.21/X.27/V.11/RS422 Input/Output tester has been designed to monitor data lines where the electrical characteristics of the interchange conform to CCITT Recommendations X. 21 or V. 11 (balanced double current circuits) or EIA Recommendations RS 422 (balanced voltage digital interface). The cabling allows connection to both Data Terminal Equipment (DTE) and Data Communications Equipment (DCE). The LEDs are powered by internal batteries and driven by internal amplifiers. Power is derived from two 9 volt batteries. An additional 1.5 Volt AAA size battery, isolated from all circuits, is provided to strap signal lines to a fixed high or low condition. Pulse trap circuits are provided to catch and display fast signal transitions. An RS232 monitor output is available.

## 2. Specification

## INTERFACE SIGNAL TRANSLATION

X.21/X.27/V. 11 signals are defined as follows:


(A-B) Signal Voltage	Data 0 (space)   Control On	LED: RED
	Undefined Area	LED: OFF
	Data 1 (mark)   Control Off	LED : GREEN

## INPUT SIGNAL LIMITS

$\pm 8$ volts maximum with respect to pin 8
$\pm .3 \mathrm{~V}$ minimum between leads of a pair for LED indication
$\pm 16 \mathrm{~V}$ max between leads of a pair
LINES MONITORED
All 14 signal lines defined by the X.21/X.27/V.11 and RS422 interface specifications.

## LINE SWITCHING

Seven double pole, single throw switches are provided for opening or closing the signal line pairs. Test pins on each side of the switches enable cross connection or strapping of test signals.

LINE JUMPERS
Eight, 6 inch jumpers are provided for line swapping.
POWER SOURCE
Two 9 V alkaline batteries
One 1.5 V alkaline 'AAA' cell, isolated from all circuits.

SIZE
Height: 5.55"
Width: 2.90"
Depth: 1.45"
WEIGHT
10 oz . including batteries
CASE
Durable polypropylene injection moulded case with integral living hinge cover.

FRONT PANEL
Clear acrylic plastic with silkscreened legend on back to preserve appearance.

## 3. Comprising Items

Instruction Manual
10S/5226439 Qty 10, Jumper leads
6135-99-6348080 Qty 2, Duracell 9 Volt Alkaline Battery type MN1604 6135-99-1173143 Qty 1, Duracell 1.5 Volt Alkaline Battery type MN2400
4. Accessory Items

None.
5. Associated Equipment

None.

Section Refer $10 S / 6419$		Nomenclature:   MAINTENANCE SET		
Manufacturer:   PHOENIX	M LTD.	Part No: PHOKIT 3		Cost/Date: £6154/1993
See specification				
Power Supplie See spec	on		Air Publication	
Availability: $2$	Environment:   B	Maintenance Policy: $2 \mathrm{~A} / 4 \mathrm{CD}$	Calibration: CNR	AFDEETEC No: $19473$



1. Description

The Phoenix Maintenance Set Phokit 3, consists of a Phoenix 1542-2 Quick Send and a Phoenix 1541-2 Quick Test for ascertaining the status of G.703 (2.048 Mbit ccts). The Phoenix $1542 / 1541$ test sets provide a rapid and easy method of determining the status of a $2.048 \mathrm{Mbit} c \mathrm{ct}$. These units are battery operated
and hand held which permits ease of operation. Also included in the test kit are two Datatest 3 BER testers, these are menu driven testers capable of running at $64 \mathrm{kbit} / \mathrm{s}$. Power is provided by an ac adaptor or rechargeable ni-cad batteries.
2. Specification

Phoenix 1542-2 Quick Send

Line Code:
Framing:
Output Rate:
Output Signal:
Power Requirements:
Size:
Weight:
Phoenix 1542-2 Quick Test

Line Code:
Framing:
Line Rate:
Signal Level:
Input Impedance:
TERMINATE
BRIDGE
Overvoltage:
Power Requirements:

Size:
Weight:

## Datatest 3

Test Pattern:

AMI or HDB3
Framed or CRC4 Multi-framed
$2.048 \mathrm{Mbps} \pm 25 \mathrm{ppm}$
2 pattern IAW CCITT G. 703 when terminated in 75 ohms.
Internal 9 V Alkaline Battery type 6AM6/MN1604 or Mains Adaptor.
$3.75 \times 6 \times 1.25$ in.
8 ozs

```
AMI or HDB3 Continuous Monitor
Framed, Multi-framed or CRC4 Multi-framed.
2.048 Mbps \pm 300 Hz
+6dbDsx to -27dbDsx ALBO for Cable Loss in
Terminate
75 or 120 ohms \pm 5%, switch selectable.
1000 ohms }\pm5
Secondary Transient Protection
Internal }9\mathrm{ V Alkaline Battery type
6AM6/MN1604 or Mains Adaptor.
3.75 x 6 x 1.25 in.
ozs
```

Fox: 5 level Baudot, 6 level IPARS, 7 level ASCII asynchronous and 8 level EBCDIC synchronous.

A-Z: printable character set (20-FE Hex). asynchronous only. 5 level uses Baudot, 6 level uses EBCD, 7 level uses ASCII and 8 level uses Extended ASCII.

Pseudo Random Words (PRW): 63, 511, 2047 and 4095.

Alternate $I / 0$, all Mark or all Space.

Two user messages, USR1 and USR2.

Continuous
10E(0-7)blocks
1 min., 5 min., 10 min., 15 min., 1 hour.
2. Specification (continued)

Datatest 3 (continued)

Bit Rates:
50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 3600, 4800, 7200, 9600, 14400. 19200 BPS, 75/1200(SPL1-TD/RD), 1200/75(SPL2TD/RD), 150/1200 (SPL3-TD/RD), 1200/150 (SPL4-TD/RD), SPLI-SPL4 only operate in async. protocol. All BERT bit rates can be internally or externally clocked.

HSPD BERT:

HDX:

Block Size:

56000 , 57600 and 64000 bps .
Certain clocking restrictions apply, i.e. internal or external, depending on emulation (see Operator's Manual).

Same as for BERT, but does not support SPLlSPL4.

62 to 1003 characters depending on the type of pattern or message being run. The Option key of the DT3 will allow the user to see the block size of all patterns and messages.
3. Comprising Items
Sect Ref.
6625-99-4320084
4920-99-5938243
5805-99-2192144
51TT $\quad 7703040$
$6145-99-7208513$

4920-99-0513571
6135-99-6348080
$6625-99-4094433$
$6625-99-7359451$
$5805-99-8622910$
$6145-99-5178489$
$4920-99-0513570$
4. Accessory Items

None
5. Associated Equipment

None

Nomenclature	Part No.	Qty.
Navtel Datatest 3		
V11/V24 Converter/Monitor	085831	2
Power Supply Unit	$40-100636 \mathrm{~A}$	2
Jumper Lead Set	085511	4
Interface Cable	RT15M1MF	2
Interface Cable	SO25-01	2
Carry Case	CCDT3SP	2
DT3 Operators Manual	$96085831 R 2$	2
Volt Alkaline Battery	MN1604	2
Phoenix Quick Test	$1541-2048-1$	2
Phoenix Quick Send	$1542-2048-2$	1
Power Supply Unit	TA-381	1
Coaxial Lead	$34-00050$	2
Carry Case	CCQTQS	2
$1542-2$ Instruction Manual	$34-00063$	1
1541-2 Instruction Manual	$34-00064$	1




1. Description

The Phoenix 5500A Telecommunications Analyzer is designed for Bit Error Rate Testing and system analysis on circuits and links operating from 50 bps to 13 Mbps. The 5500 A is equipped with a high resolution CRT to provide a display of results and set ups. The analyzer features a range of plug-in interface modules for testing to international standards. Powerful trigger and trap features enable the capture and examination of live traffic. An RS232 port allows results to be output to a printer.
2. Specification

INTERNAL BIT RATE

Synthesizer controlled:	Tuning increments -
	$50 \mathrm{~Hz}-500 \mathrm{kHz}$ at 1 Hz increments.
$500 \mathrm{kHz}-6.5 \mathrm{MHz}$ at 1 Hz increments.	
Clock Sources:	$6.5 \mathrm{MHz}-13 \mathrm{MHz}$ at 2 Hz increments.
	Internal clock (as above.
	User clock (user supplied TTL clock - 50 bps
	to 13 Mbps ).

2. 



Specification (continued)

Selected Test Results (continued)

EFS Error Free Seconds
ESR Errored Second Rate FBES Frame Bit Errored Seconds FEFS Frame Bit Error Free Seconds FLS Frame Loss Seconds
ALRM Alarm Status
FLOS Occurrences of Frame Losses
LOS Pattern Sync Loss
PF Power Failures
RBPV Received Bipolar Violations
CBE Current Bit Errors
RSL Receiver Sync Losses
TBPV Transmitter Bipolar Violations
TVR Transmitter BPV Rate
TSL Transmitter Sync Losses
WND+ Positive Peak Wander
WND- Negative Peak Wander
15Z Occurrences of more than 15 consecutive zeros.
\%1sD Percentage Ones Density

Frequency Measurement:

Selections:	TC - Transmit Clock
	RC - Receive Clock
	XC - External Clock
	BR - Bit Rate
Range:	$150 \mathrm{~Hz}-16 \mathrm{MHz}$
Accuracy:	$\pm 0.0005 \% \pm$ LSD
Resolution:	$\pm 1 \mathrm{~Hz}$

Event Timing:
(low speed modules)
Start Stop Sources: TD, RD, CTS, RTS, DCD, DSR, DTR, SQ
Measurement range: $1 \mu \mathrm{sec}$ to 4.67 minutes.
Resolution: $\pm 1 \mu \mathrm{sec}$.

Network Loop Delay:
Measurement Range
$1 \mu \mathrm{sec}$ to 17 minutes

Resolution: $\pm 1 \mu \mathrm{sec}$
Bias Measurement:

Source:	Receive data
Range:	0 to $100 \%(0 \%=$ all zeros, $100 \%$ - all ones)
Accuracy:	$\pm 1 \%$

2. Specification (continued)

Graphs:

Graph Parameters:

Vertical Scaling
Factors (Data):
Horizontal Scaling (Time):

Jitter - Low Speed:
Frequency Range:
Measurement (in \% of one bit time):

Bit Errors, Errored Blocks, Errored Seconds, Error Free Blocks, Error Free Seconds, Sync Loss. Transmit BPVs (T1), Receive BPVs (T1), Transmit BPV Seconds (T1), Receive BPV Seconds (T1), Transmit BPV Free Seconds (Tl), Receive BPV Free Seconds (TI).
$10^{\circ}$ through $10^{5}$, storage of approximately 5000 events before overflow.
$1 \mathrm{sec} / \mathrm{div}, 10 \mathrm{sec} / \mathrm{div}, 1$ minute/div and 1 hour div.

60 bps to 72 kbps
Positive Peak Jitter Average Jitter Negative Peak Jitter Peak to Peak Jitter

Jitter - High Speed (Optional):
Available Frequencies:

Amplitude Range:
Modulation Range:
Available Masks:
1.544 Mbps (T1-J02 option) and 2.048 Mbps (G.703-J05 option)

0 - 12.75 unit intervals, generator/received.
10 Hz to 40 kHz generator/receiver.
AT\&T and CCITT
Remote Control:
Connections:

Controllable
Functions:

Display:
RS-232 Printer/Remote Control Interface and IEEE Bus Interface.

All menu selections, hexadecimal keypad entries and front panel keys.

High resolution, 5 in. monochrome, cathode ray tube.

Environmental:
Operating Temp.:
Storage Temp.:
Humidity:
$0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
$-10^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
90\% non-condensing.
3. Comprising Items


## 5. Associated Equipment

None

Section Reference:   $6 C / 0000905$		Nomenclature:   DATA BUS TESTER		
Manufacturer:   SDE LTD.		Part No:S2470		Cost/Date: £5279 93/94
Height:   100 mm	wiath: $220 \text { mm }$	Depth:   220 mm	Weight:   3.5 kg	
Power Supplies:   240 V AC RECHARGEABLE BATTERIES INTEGRAL CHARGING UNIT			Air Publication:	
Availability:   1	Environment:   C	Maintenance Policy: B2 /D4	Calibration:   AN 12	AFDEETEC No: $19481$



1. Description

The S2470 is a compact and Ruggedised, MIL-STD-1553 Bus tester. It is a simple to use, lightweight and portable unit designed to detect simultaneously, open and short circuits, crossovers, short circuits to screen and insertion loss measurements. It has a special feature enabling it to differentiate between short circuits to screen on the main bus or on the stubs. Suitable for use at first or second line, the $\$ 2470$ data bus tester can easily be operated by one man without the requirement to disconnect the main bus. The transmitter can be removed from the case facilitating remote operation from the detector.
2. Specification

Transmitter: Output terminated into 75 ohm.
Measurement of insertion loss 5.5 volts peak to peak, frequency 200 KHz .

Measurement of open circuits, short circuits, crossovers and short circuits to screen 4.5 volts 5 KHz repetition rate.
2. Specification (continued)

Receiver:

Functions Measured:

Displays:
3. Comprising

Mains cable (Part No. S2470B)
4. Accessory Items

Sect/Ref.	Nom
6C/7108830,	1.5
6C/6634105	1.5
$6 \mathrm{C} / 8958722$	Ca
Associated Equipment	

None

Battery powered, life before recharge 30 hours minimum.

Measured insertion loss between any two stubs in decibels in the range 0 dB to -31 dB . The nominal stub to stub loss of the data bus network is -12 dB , above enables very long buses ( 300 m ) to be measured.

Resolution of insertion loss 0.1 dB .

Short circuits between the twisted pairs of bus or stubs.

Open circuits on bus or stubs.
Crossovers of the twisted pairs, on bus or stubs.

Short circuits between either of the wires of the twisted pair to the screen system.

Short circuits between either of the wires of the bus twisted pair to the screen systems.

Detection of open circuit or short circuit bus terminating resistors.

Insertion loss in dBs between any two remote terminals.

GREEN/RED LED giving a pass/fail indication, for open circuits, short circuits, crossovers and short circuits to screen.

LCD giving insertion loss information in dB between any two remote terminals.

## Chapter 4

SIGNAL SOURCES

## Chapter 4

## SIGNAL SOURCES

## CONTENTS

## Chap

Nomenclature
4.1 NOISE GENERATORS
4.2 SIGNAL GENERATORS
.1
.2
.3
. 9 Frequency Standard
Noise Generator

Noise Figure Meter Set

Noise Gain Analyser

Signal Generator
Function Generator

Signal Generator

Sine/Square Oscillator
Signal Generator
Oscillator

TV Pattern Generator
Test Oscillator

Frequency Standard
Not used
Not used
Not used
Not used
Quartz Oscillator

Not used
Not used
Sweep Oscillator Mainframe
Not used
Not used
Not used
Sine Square Oscillator
Not used
Signal Generator
Programmable Function Generator

Oscillator (Sine/Square)

Sec/Ref/Stock No Manuf/Part No

6625-12-1239860	Rhode \& Schwarz
SKTU/BN4151/2/50	
10S/7531184	Magnetic
	AB117/B(Set)
$10 S / 5476077$	Eaton Airtech 2075


10S/8016596	Rhode \& Schwarz AN62
10S/0831172	Hewlett Packard 3314A-001-908
10S/0006555	Marconi 52032-599 Opt 001, 002 and 006
6625-99-6473466	Farnell LFM4
10S/0006598	Hewlett Packard 83731A
10S/5184659	Hewlett Packard 200CD
10S/7968697	Philips PM 5515
10S/0543483	Hewlett Packard $625 \mathrm{~A}$
	Hewlett Packard 5065A
10S/6370540	Racal-Dana 9475

6625-00-4808675 Hewlett Packard 105A

Hewlett Packard

Farnell LMF3

Marconi 2019A

Hewlett Packard 3325A
Levell TG200DMP

Chap
. 27 High Power Signal Source (Mainframe)
Test Oscillator
4.3 PULSE AND WAVE FORM GENERATORS

.1	Function Generator
.2	Signal Generator
.3	Function Generator
.4	Not used
.5	Time Mark Generator
$.5 a$	Mainframe (Power Supply)
.6	Pulse Generator, High Power
.7	Not used
.8	Not used
.9	50 MHz Pulse Generator


10S/8001360	Toellner GMBH TOE
10S/9520447	Marconi TF 2005R   10S/6597757
	Hewlett Packard   3312A
6625-00-5205199	Tektronix TG501
$6625-00-5006646$	Tektronix TM501
$10 S / 6573577$	Hewlett Packard   $214 B$

10S/5178462 Philips Test and Measurement PM 5715
Tektronix TG 501A

$10 S / 7982646$	HR Smith (Tech-   test)Ltd 12-602-4
10S/7976535	Avionics Systems   ASH 7700AA
$10 S / 7774431$	Techtest 210 (AM)
$10 S / 7774432$	Techtest 220 (FM)
$6625-99-7990257$	Techtest 230 (AM)   $10 S / 7702661$
Marconi   Instruments	
$10 S / 1969817$	$52955-324 \mathrm{~L}$   Rhode \& Schwarz   CMS33
	Republic   Electronics MTS-
	300A




## 1 Description

This is a white-noise generator for use in the range 1 MHz to 1000 MHz , with a continuously adjustable power output. A special diode, operating in the temperature-1imited region, generates the continuous frequency spectrum; there is a direct relation between saturation current and noise current and, with a given source impedance, the available noise power. The saturation current is varied by controlling the diode heating current. The saturation current is a measure of the noise figure.

2 Specification

Frequency Range:
Source Impedance:
VSWR:
1 to 1000 MHz
$50 \Omega$
$<1.1$ : 1

Noise Power:
Max. variation of noise power with $10 \%$ ac supply variation:

Noise Figure Ranges (dB):
Indication Error:
below 300 MHz above 300 MHz

Output Connector:
3 Comprising
Instrument only
4 Accessory items
None
5 Associated equipment
None
continuously adjustable
$< \pm 2.5 \%$
$0-8 \quad 0-15$
$< \pm 0.5 \mathrm{~dB}$
$< \pm 1.0 \mathrm{~dB}$
adaptable R\&S Dexifix B



1. Description

In conjunction with a Magnetic $A B$ Noise Source, the model 117B automatically measures the noise figure of amplifiers and receivers. Expanded scale design gives a very high resolution for indicating changes during adjustments of receivers. The $117 B$ has been designed for simplicity of operation with pushbutton controls and LED's for activated functions. By setting the value of the excess noise of the noise source used on a digital switch, the operator can read the correct noise figure directly. The 117B features a new automatic range switching function with a display indication of the range switching which can be set to manual override if required.
2. Specification

Frequency Range:

Noise Figure Range:

5 MHz to 40 GHz , depending on noise source.
$0-30 d B$ indication to infinity, in six ranges.
(continued)
Chap 4.1.2
2. Specification (continued)

Accuracy:

Input Frequencies:
Bandwidth:
Input Vo1tage:
$0-9 \mathrm{~dB} \pm 0.1 \mathrm{~dB}$
$9-18 \mathrm{~dB} \pm 0.2 \mathrm{~dB}$
$18-25 \mathrm{~dB} \pm 0.5 \mathrm{~dB}$
$25-30 \mathrm{~dB} \pm 1.0 \mathrm{~dB}$
$10.7,30,36.15,42,50$ and 60 MHz
$1.0 \mathrm{MHz} \pm 0.2 \mathrm{MHz}$
$40 \mu \mathrm{~V}-0.1 \mathrm{~V}$
Noise Sources:

Freq. Range	Type No.	Discharge   Current	Termination	Type
$2.6-3.95$	GHz	S 121	200 mA	S 912
$3.95-5.8$	GHz	G 121	175 mA	G 912
$5.3-8.2 \mathrm{GHz}$	J 121	175 mA	J 912	Waveguide 10
$8.2-12.4$	GHz	X 121	175 mA	X 912
$0.01-4.0 \mathrm{GHz}$	125 E	-	Waveguide 12	

3. Comprising

$10 Z Z / 210959$	Noise Figure Meter	117 B
$6625-99-6429810$	Amplifier	1172 B
$6625-99-6429811$	Modulator (for gas tube)	1175
$102 Z / 210960$	Modulator (solid state)	1179

4. Accessory Items

$10 B / 2236004$	Noise Source	S121	AFDEETEC No. 16452
$10 \mathrm{~B} / 2236005$	Noise Source	G121	AFDEETEC No. 16453
$10 \mathrm{~B} / 2235988$	Noise Source	J121	AFDEETEC No. 16449
$10 \mathrm{~B} / 2235989$	Noise Source	X121	AFDEETEC No. 16450
$10 \mathrm{ZZ} / 210961$	Noise Source	125 E	AFDEETEC No. 19336
$10 \mathrm{BB} / 2236006$	Termination	S912	
$10 \mathrm{~B} / 2236007$	Termination	G912	
$10 \mathrm{~B} / 2236008$	Termination	J 912	

5. Associated Equipment

None.

Chap 4.1.2



## 1. Description

The EATON 2075 Noise Gain Analyzer is a programmable microprocessor controlled instrument providing both noise and gain measurement facilities from 10 MHz to high microwave frequencies. The Analyzer can be controlled in its local mode using its front panel controls or, in the remote mode, by an external controller via an IEEE 488 GPIB
(General Purpose Interface Bus).

## 2. Specification

Noise Measurement:

Noise Figure Range:
Measurement Accuracy:

0 to 30 dB
$\pm 0.05 \mathrm{~dB}$
A) 0 to 12 dB Noise Figure
B) $+10^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$
C) ENR 5 to 18 dB
(Continued)
Chap 4.1.3
2. Specification (Continued)

	$\pm 0.01 \mathrm{~dB}$   A) 12 to 30 dB Noise Figure   B) $\begin{aligned} \mathrm{T} & <10^{\circ} \mathrm{C} \\ & >40^{\circ} \mathrm{C} \end{aligned}$
Resolution:	0.01 dB
Measurement accuracy specifications are valid for uncorrected noise figure over the full gain measurement range of the instrument.	
Gain Measurement:	
Gain Range:	-20 to $>50 \mathrm{~dB}$
Measurement Accuracy:	$\pm 0.2 \mathrm{~dB}$
Resolution:	0.01 dB
Input:	
Frequency Range:	10 to 1800 MHz , tuneable
Tuning Accuracy:	$\begin{aligned} & \pm(0.5 \mathrm{MHz}+0.0005 \mathrm{~F}), \quad(\mathrm{F}=\text { tuned } \\ & \text { frequency }) . \quad \pm 3 \mathrm{MHz} \max . \end{aligned}$
Frequency Response:	0.1 MHz
Noise Figure:	$<7 \mathrm{~dB}+0.002 \mathrm{~dB} / \mathrm{MHz}$   A) Input leve1 $<-40 \mathrm{dBm}$
Input VSWR:	$<1.5$
Maximum Input Power:	$+20 \mathrm{dBm}$
Maximum Net External Gain:	$>75 \mathrm{~dB}$
General:	
Noise Source Drive (ON):   (OFF):	$+28 \mathrm{~V}-0.05 \mathrm{~V}$ up to 100 mA available < 1 V
Operating Temperature:	0 to $55^{\circ} \mathrm{C}$
Storage Temperature:	-55 to $75^{\circ} \mathrm{C}$

Supplemental Characteristics:
Bandwidth: 5 MHz (nominal)

Measurement Speed: 6 to $10 \mathrm{meas} / \mathrm{sec}$
Maximum Safe Input Level: $\quad \pm 20 \mathrm{Vdc} ;+25 \mathrm{dBm} \mathrm{RF}$
3. Comprising

Mains Lead
4. Accessory Items

10ZZ/212206 Noise Source Generator 7618 E , 10 MHz to 18 GHz solid state AFDEETEC No. 19391
(Continued)
Chap 4.1.3
4. Accessory Items (Continued)

10ZZ/212207 Noise Source Generator 7626 , 10 MHz to 26.6 GHz solid state AFDEETEC No. 19392
5. Associated Equipment

None

Section Reference		Nomenclature		
10S/6625-99-8016596		SIGNAL GENERATOR SET		
Manufacturer		Part No.	Cost/Date	
ROHDE \& SCHWARZ		APN 62	£2,731 1993	
Height		Width	Depth	Weight
103 mm		435 mm	350 mm	7.5 kg
Power Supplies			Air Publication	
94-127V/188-265 V. $45-440 \mathrm{~Hz}$			None	
Availability	Envi ronment	Maintenance Policy	Calibration	Afdeetec No.
1	B	-	A/12	19439



## 1. Description

The APN 62 is a synthesised signal generator producing sine and square waveforms in the range 1 Hz to 260 kHz or triangular and sawtooth waveforms in the range 1 Hz to 20 kHz . It has 3 modes of operation; CONTINUOUS, FREQUENCY SWEEP and LEVEL SWEEP. Parameters are easily selected by means of the keypad and LCD display, or remotely, as the instrument is GPIB compatible. Up to 20 different sets of parameters can be stored in the non-volatile memory.

Outputs are BALANCED (floating/non-floating), UNBALANCED or through an output transformer. Separate square wave and TTL/HCMOS outputs are provided. Source impedance may be set to any value between 10 and 640 ohms in 5 ohm steps. The interconnecting cable supplied is 2 -core shielded with polarised 3 -contact connector (DIN 41 628) for connecting to the instrument, terminated with 3 'banana' type plugs.

## 2. Specification

## Frequency:

Range:
Sine \& Square: $\quad 1 \mathrm{~Hz}$ to 260 kHz .
Triangle \& Sawtooth: $\quad 1 \mathrm{~Hz}$ to 20 kHz .
Resolution:
Squarewave:
Rise/Fall Time: <100 ns.
Over/Undershoot: $<5 \%$.
Tilt (f $>500 \mathrm{~Hz}$ ): $<5 \%$.
Switching time after last
character via IEC bus): 15 ms .
Frequency error (after 10
minute warm-up time): $<4 \times 10^{-5}+$ ageing error.
Ageing:
Signal Output:
Configurations: Balanced Floating.
Balanced Grounded.
Unbalanced.
Transformer.

Balanced Floating:
Impedance:
Levels:
10 to 640 ohms in 5 ohms steps.
$100 \mu \mathrm{~V}$ to 20 V EMF.
( $\mathrm{I} \max =200 \mathrm{~mA}$; 10 V into
50 ohms).

Balanced Grounded:
Impedance:
Level:
2 x (5 to 320 ohms) in 2.5 ohm steps.
2 x (50 $\mu \mathrm{V}$ to 10 V ) EMF.
(I max $=200 \mathrm{~mA} ; 2 \times 5 \mathrm{~V}$ into 25 ohms).

Unbalanced:
Impedance:
Level:
10 to 640 ohms in 5 ohm steps. $100 \mu \mathrm{~V}$ to 20 V EMF.
( $\mathrm{I} \max =200 \mathrm{~mA}$; 10 V into
50 ohms).

Transformer:
Frequency Range:
Impedance:
Level:

Impedance error:
Level Units:
20 Hz to 25 kHz . 2 kilohm.
$100 \mu \mathrm{~V}$ to 30 V into 2 kilohm.
</= 2 ohms.
$\mathrm{V} ; \mathrm{dBV} \& \mathrm{dBm}$.
Level Resolution:
$\min 10 \mu \mathrm{~V}$ or 0.1 dB .

Total Level error:
$<+/-0.5 \mathrm{~dB}$; Transformer
$<+/-1 \mathrm{~dB}$
Frequency Response:
$<0.5 \mathrm{~dB}$; Transformer <1.2 dB.

Attenuator error: $<0.3 \mathrm{~dB}$; Transformer $<0.6 \mathrm{~dB}$.

```
 Level Setting Time (after
 last character via IEC
 bus):
15 ms.
Spectral Purity:
 10 Hz to 100 kHz: <-60 dBc (<0.1%; typical -70 dBc).
 Sum 2nd to 9th harmonic
 10 Hz to 20 kHz
 Harmonics & nonharmonics
 100 to 260 kHz: <-46 dBc (<-55 dBc typical).
SYNC Output:
 Frequency:
 Impedance:
 Level:
 Duty Cycle:
Same as signal.
50 ohms.
TTL/HCMOS.
2
Sweep Mode:
 Modes: Frequency or Level, digital start-
 stop, automatic after sawtooth or
 triangular signal, single shot,
 manual with knob.
 Types:
Linear or Logarithmic
 Step Time:
1 ms to 65 s.
 Frequency:
 Sweep Range: Any value from 1 Hz to 260 kHz.
 Step Width: Any value }>/=1\textrm{Hz}\mathrm{ (linear) or 1%
 (logarithmic).
 Level:
 Sweep Range: Any value }</=20\textrm{dB
 Step Width:
 Any value }>/=10\mu\textrm{V}\mathrm{ (linear) or
 0.1 dB (logarithmic)
SINAD (Signal to Noise and Distortion)
Measured at f = 1 kHz; R source = R load = 600 ohms; balanced and
unbalanced; bandwidth = 22 Hz to 22 kHz}\mathrm{ .
 Level:
```

1 V:
$100 \mu \mathrm{~V}$
Remote Control:
System:
Functions:

Address:
Interface functions:

General:
Working Temperature

80 dB .
40 dB .

IEC 625-1 (IEEE 488).
All front panel functions which can be set manually, except power ON/OFF \& variation.
Set via keypad, 00 to 30.
Listener \& talker; SH1; AH1; T6;
L4; SR1; RLI; PPO; DC1; DT0; C0.
$0{ }^{\circ} \mathrm{C}$ to $+55{ }^{\circ} \mathrm{C}$.
3. Comprising

REF NO.	DESCRIPTION	MAKERS PART NO.
IOS $/ 8016597$	GENERATOR APN 62	844.6001 .62
NONE	OPERATING MANUAL	844.7889 .12
10S/2554590	POWER CABLE	NOT KNOWN
10S $/ 2554589$	INTERCONNECTING CABLE	APN-Z1
10S/2554592	ACCESSORY CASE	ZZT-97
10S/1243145	SPARE FUSES (X2)	0207417.00
		0207475.00
10S/2554591	PROTECTIVE COVERS (X2)	NOT KNOWN
Accessory Items		

5. Associated Equipment

None.


Section Refer $105 / 08$		Nomenclature $\quad$ FUNC	FUNCTION GENERATOR	
Manufacturer HEWLETT		Part No. $3314 \mathrm{~A}-001$		Cost/Date $£ 3860$
$\begin{aligned} & \text { Height } \\ & 132 \mathrm{~mm} \end{aligned}$	212 mm	Depth		Weight   7.3 kg
$\begin{aligned} & \text { Power Supplis } \\ & 100,120 \end{aligned}$	240 V ac	$10 \%, 48-66 \mathrm{~Hz}$		Air Publication
$\begin{gathered} \text { Availability } \\ 2 \end{gathered}$	Invironment B	Maintenance Policy	$\mathrm{A} / 12$	AFDEETEC/AFDSEC No. $19371$



## 1. Description

The 3314A is a Function/Waveform generator with the precision and versatility to produce numerous waveform shapes. It's features include the generation of accurate sine, square and triangular waves, with ramps and pulses available using variable symmetry. Additional features include counted bursts gate, $\operatorname{lin} / \log$ sweeps, AM, FM/VCO, dc offset and phase lock. For increased versatility, the Arbitrary Naveform mode allows a countless number of user defined waveforms.

Since complete programmability is provided, all these capabilities are available for ATE systems as well as bench applications.

Frequency
Frequency range :

Resolution :
0.001 Hz to 19.99 MHz sine, square and triangle waveforms, 0.001 Hz through 2 MHz range when symmetry = 50\%
$3 \frac{1}{2}$ digits

Frequency Accuracy

$\underset{\#}{\text { GPIB }}$	Range	Minimum Frequency		Maximum   Frequency	Accuracy
		Range Hold	Autorange		
1	2 Hz	. 001 Hz	. 001 Hz	1.999 Hz	$=(0.4 \%$ setting +
2	20 Hz	0.01 Hz	1.50 Hz	19.99 Hz	0.2\% range)
3	200 Hz	00.1 Hz	15.0 Hz	199.9 Hz	
4	2 kHz	001. kHz	150. Hz	1999. Hz	$=(0.2 \%$ setting +
5	20 kHz	0.01 kHz	1.50 kHz	19.99 kHz	0.1\% range)
6	200 kHz	00.1 kHz	15.0 kHz	199.9 kHz	
Synthesized					
7	2 MHz	001. kHz	$150 . \mathrm{kHz}$	1999. kHz	= (0.01\% setting
8	20 MHz	0.01 MHz	1.50 MHz	19.99 MHz	+50 ppm/year)

Accuracy applies in the Free Run mode, with VCO Off, and Symmetry $=50 \%$ (Fixed)

## Amplitude

Amplitude range :
Resolution :
$1.0 \mathrm{mVp}-\mathrm{p}$ to $10 \mathrm{Vp}-\mathrm{p}$ into $50 \Omega$
$3 \frac{1}{2}$ digits

HP-IB   $\#$	Range	Minimum	Maximum	Step   Attenuator
1	10 mV	1.0 mV	10.00 mV	60 dB
2	100 mV	10.0 mV	100.0 mV	40 dB
3	1 V	.100 V	1.000 V	20 dB
4	10 V	1.00 V	10.00 V	0 dB


Absolute Amplitude Accuracy :	$\begin{aligned} & \pm(1 \% \text { of display }+0.035 \mathrm{~V}-\mathrm{p}), \\ & \text { sine and square wave } \\ & \pm(1 \% \text { of display }+0.06 \mathrm{~V} \mathrm{p}-\mathrm{p}) \text {, triangle } \end{aligned}$
Amplitudes :	$1.00 \mathrm{Vp}-\mathrm{p}$ to $10.00 \mathrm{Vp}-\mathrm{p}$ (Range 4)
Frequency :	10 kHz , Autorange ON
Flatness-sine wave :	relative to $10 \mathrm{kHz}, 1.00 \mathrm{~V}$ to 10.0 V (Range 4)
	20 Hz to $50 \mathrm{kHz}-0.07 \mathrm{~dB}$
	50 kHz to $1 \mathrm{MHz}-0.33 \mathrm{~dB}$
	1 MHz to $19.99 \mathrm{MHz}-1.5 \mathrm{~dB}$

Chap 4.2.2
Page 2

Frequency Sweep

	Range   (decades)	Start   Freq	Stop   Freq	Sweep   Time
LINEAR	0 to 2	$\geq .001 \mathrm{~Hz}$	$\leq 19.99 \mathrm{MHz}$	7.2 ms to   $1999 \mathrm{~s} /$ sweep
LOG	1 to 7   (integer only)	$\geq 0.2 \mathrm{~Hz}$	$\leq 19.99 \mathrm{MHz}$	40 ms to   $1999 \mathrm{~s} /$ decade

Manual Sweep

X Drive Start/Stop Voltage
Z Axis Output

Modulation Inputs

	Bandwidth	Sensitivity	Range	Z
AM	dc to 100 kHz	$2 \mathrm{Vp}-\mathrm{p}$ for $100 \%$   -1 Vdc for   suppressed carrier	$>100 \%$	$10 \mathrm{k} \Omega$
FM	100 Hz to 100 kHz	$\pm 1$ Vp for $=1 \%$   of range deviation	$1 \%$ of Freq.   range	$10 \mathrm{k} \Omega$
VCO	dc to 100 kHz	$10 \%$ volt	+1 to -10 V	$10 \mathrm{k} \Omega$

Modify knob tunes between start and stop frequencies. X drive follows sweep
-5 V to +5 V into $1 \mathrm{k} \Omega$ load
Blanking Pulse, $>+5 \mathrm{~V}$
Baseline, $0 \mathrm{~V} \pm 1 \mathrm{~V}$
Marker Pulse, <-5 V into $1 \mathrm{k} \Omega$ load

Waveform Characteristics
Sine Harmonic Distortion

Square Wave Rise/Fall Time $N$ Integer

Function Invert

Phase Offset-Phase Lock Modes
Resolution :
Range :
Accuracy :
$0.1^{\circ}$
Individual harmonics will be below these levels, relative to the fundamental. Offset $=0$ V. Function Invert $=0 F F$. Range Hold $=$ OFF. 20 Hz to 50 kHz , -55 dB * 50 kHz to $1490 \mathrm{kHz}-40 \mathrm{~dB}$ *add 4 dB for ambient temperature 0 to $5^{\circ} \mathrm{C}$ and 45 to $55^{\circ} \mathrm{C}, 20 \mathrm{~Hz}$ to 50 kHz $<9 \mathrm{~ns}, 10 \%$ to $90 \%$ at $10 \mathrm{Vp}-\mathrm{p}$ output $N=1$ to 1999 , Preset to 1 For Phase-lock Fin $\div \mathrm{N}$, Fin X N or N CYCLE (counted burst)

Invert ac portion of signal outputs Sine, square, triangle, ramp, pulse, and ARBs. Does not affect Sync and Trigger outputs or dc offset setting

$$
\pm 199.9^{\circ}
$$

$\pm 2^{\circ}$ ( 50 Hz to 15 kHz )

Phase Offset is Referenced to

Start/Stop Phase - Burst Modes
Resolution :
Range :
Accuracy :
Trigger
Internal Trigger
Range :

Period Accuracy :

Trigger output :

External Trigger

Frequency range :
Trigger slope :
Trigger level :
Trigger level hysteresis :
Symmetry
Symmetry range :
Frequency range :
Arbitrary Waveforms :
signal output for Fin $\div \mathrm{N}$
signal input for Fin $X \mathrm{~N}$
$0.1^{\circ}$
$\pm 90.0^{\circ}$ for frequencies to 19.99 MHz
$\pm 3^{\circ}$ (applies from. 001 Hz to 1 kHz )
$.002 \mathrm{~ms}(500 \mathrm{kHz})$ to $1999 \mathrm{~s}(0.5$
mHz ) square wave
$\pm(0.01 \%+50 \mathrm{ppm} /$ year $)$ of displayed interval (excluding sweep intervals)
low $<0.5 \dot{\mathrm{~V}}$, high $>2.5 \mathrm{~V}$; output resistance $1 \mathrm{k} \Omega$

For Gate, $N$ Cycle, $\frac{1}{2}$ Cycle, Fin X N, Fin $\div N$, and external sweep triggers
50 Hz to 20 MHz
Selectable, positive or negative
Selectable to 0 V or +1 V
$\pm 0.15 \mathrm{~V}$ Input resistance $=1 \mathrm{k} \Omega$
$5 \%$ to $95 \%$ of period
2 Hz to 2 MHz ranges
Output consists of a series of voltage ramps called vectors. Arbitrary waveforms can be composed of 2 to 150 vectors. A maximum of 160 vectors can be stored in six available storage registers with a minimum of 2 vectors per waveform (\#1 and return-to-start vectors).

Waveform Parameters

Key	Range	Description
$\Delta t$	$\begin{aligned} & 0.2 \mathrm{~ms} \mathrm{to} \\ & 19.99 \mathrm{~ms} \end{aligned}$	sets the time value for each unit of $V$ LEN (length)
V HGT	0 to $\pm 1999$	sets the relative height of an individual vector
V LEN	1 to 127	sets the length in time of an individual vector in integral multiples of $\Delta t$
V MKR	1 to 150	marker is used to select an individual vector
INS		insert is used to add a vector before the marker location
DEL		deletes the vector at marker location
FREQ	$\begin{aligned} & .002 \mathrm{~Hz} \text { to } \\ & 2.5 \mathrm{kHz} \end{aligned}$	$\text { Freq } \left.=\operatorname{tanten}_{1}+\operatorname{VLEN}_{2} \ldots . \operatorname{VLEN}_{\mathrm{n}}\right)$
AMPTD	$\begin{aligned} & .01 \mathrm{mV} \text { to } \\ & 10 \mathrm{Vp}-\mathrm{p} \end{aligned}$	sets amplitude window for ARB waveform
OFFSET	0 to $\pm 5 \mathrm{~V}$ dc	offsets the ARB waveform independent of AMPTD setting
PHASE	$+90^{\circ}$ to $-90^{\circ}$	sets wave start/stop voltage within the window defined by AMPTD
Marker output :		located on $Z$ axis rear panel connector
Sync output :		low during the return-to-start vector
Gate mode :		allows external gating of ARB output complete ARB waveforms only

Option 001
Voltage Amplifier :
Simultaneous X3 amplitude output on rear panel (into $>500 \Omega$ ) 30 V $\mathrm{p}-\mathrm{p}$ max., dc to 1 MHz
3. Comprising
Instrument
Mains lead
Handbook
$50 \Omega$ feed-through termination HP 11048C

## 4. Accessory Items

None

## 5. Associated Equipment <br> None




1. Description

The M2032 is a synthesized signal generator covering the frequency range 10 kHz to 5.4 GHz . The output may be frequency pulse, amplitude or phase modulated from internal or external modulation sources. A maximum of four modulation channels can be made available by the use of the two internal oscillators together with two externally applied modulation signals. The instrument has the capability to test ILS/VOR at second line. The instrument can be controlled by the built in General Purpose Interface Bus (GPIB).

## 2. Specification

Carrier Frequency Range:	10 kHz to 5.4 GHz .
Resolution:	0.1 kHz at all frequencies.
Accuracy:	$0.2 \mathrm{ppm} / \mathrm{year}$.
Spectral Purity Harmonics:	For output levels up to +7 dBm , better than -30 dBc to 1 GHz , better than -27 dBc to 1.35 GHz , better than -25 dBc to 5.4 GHz .
Sub-Harmonics:	Better than -90 dBc up to 1.35 GHz , better than -40 dBc up to 2.3 GHz , better than -30 dBc up to 5.4 GHz .
Non-Harmonics:	Better than -70 dBc at offsets from the carrier of 3 kHz or greater.
SSB phase noise:	Less than $-116 \mathrm{dBc} / \mathrm{Hz}$ (typically $-122 \mathrm{dBc} / \mathrm{Hz}$ ) at an offset of 20 kHz from a carrier frequency of 470 MHz .

Output:
Range:

Resolution:

Accuracy:

Reverse Power:
Protection:

Modulation Modes:
Single:

Dual:

Composite:

Dual Composite:
+13 dBm to -140 dBm . Units may be $\mu \mathrm{V}, \mathrm{mV}, \mathrm{V}$ EMF or PD ; dB relative to $1 \mu \mathrm{~V}, 1 \mathrm{mV}$, EMF or PD ; dBm. Conversion between $d B$ and voltage units may be achieved by pressing the appropriate units key ( dB , or V , mV , $\mu \mathrm{V})$
0.1 dBm .

+ or - 1 dB to 1.35 GHz , + or - 2 dB to 2.7 GHz , + or - 2 dB to 5.4 GHz for output levels above -50 dBm .

Reverse Power of 50 W from a source VSWR of up to 5 : 1.

FM, Wideband FM, Phase M, AM or Pulse.

Two independent channels of differing modulation type (e.g. AM with FM).

Two independent channels of the same modulation type (e.g. FM1 with FM2).

A combination of Dual and Composite modes providing four independent channels (e.g. AM1 with AM2 and FM1 with FM2).

Frequency Modulation:
Deviation:

Rate:
Source:

Wideband FM:
Deviation:
Input Level:

3 dB Bandwidth:
Source:

Amplitude Modulation:
Rate:
Deviation:
Resolution:
Distortion:

Source:

Phase Modulation:
Deviation:
Resolution:
Accuracy:

Distortion: Less than $3 \%$ at maximum deviation at 1 kHz modulation rate.

Source:
Internal LF generator or external via front panel sockets.

Sweep:

Control Modes: | Start/Stop values of selected |
| :--- |
| parameters. Number of steps. Time |
| per step. |


3. Comprising

10S/0006553	Signal Generator	$52032-520 \mathrm{C}$
10S/0006556	Carry Case	$34136-665 \mathrm{~B}$
$6150-99-9673658$	Mains Lead	$54341-012 \mathrm{~F}$
$5995-99-7988875$	1 mN Type RF Cable	$54311-095 \mathrm{C}$
$5995-99-5800513$	1.5 m BNC RF Cable	$43126-012 \mathrm{~S}$
$6225-99-7988861$	N to BNC Adaptor	$54311-092 \mathrm{P}$
$5915-99-5374845$	50 ohm to 75 ohm Adaptor	$54411-051 X$

4. Accessory Items

None.
5. Associated Equipment

None.

$\begin{array}{\|r} \text { Section Reference } \\ 10 \mathrm{~S} / 6625-9 \end{array}$	$6473446$	SINE/SQUARE OSCILLATOR		
FARNELL		Part No. ${ }^{\text {L.F.M. } 4}$		$\begin{aligned} & \text { Cost//Date } \\ & \text { £100.00 } 1978 \end{aligned}$
Height $13.2 \mathrm{~cm}$	Width $\quad$ ll	Depth   2.0 cm	23.0 cm	Weight $2.5 \mathrm{~kg}$
Power Supplies B    1	Battery 3 x PP7 or $95-130 \mathrm{~V}$ ac or $190-260 \mathrm{~V}$ ac $50-60 \mathrm{~Hz}$			$\begin{gathered} \text { Air Publication } \\ \text { NONE } \end{gathered}$
$\begin{array}{\|cc} \hline \text { Ava ilability ty } \\ 2 \end{array}$	Fnvironmen B	Maintenance Folicy Calibration   B2/D4 A/12		AFDEEPEC/AFDSEC NO. $18872$



## 1. Description

The LFM-4 is a low cost, portable Wien Bridge Sine/Square oscillator supplying a stabilised but fully variable output into a calibrated 600 ohm impedance. A separate terminal allows a direct sinewave output for oscilloscope triggering or the input of a frequency lock signal. A TTL output socket is also provided when the instrument is functioning in the square wave mode.
2. Specification

Frequency Range:
Calibration Accuracy:

10 Hz to 1 MHz in 5 bands
To within $\pm 3 \%$ (up to 100 kHz )
To within $\pm 4 \%$ ( $100 \mathrm{kHz}-1 \mathrm{MHz}$ )

Chap 4.2.4.
Page 1
$\begin{array}{ll}\text { Harmonic Distortion: } & 10 \mathrm{~Hz}-100 \mathrm{~Hz} \text { less than } 0.5 \% \\ & 100 \mathrm{~Hz}-20 \mathrm{kHz} \text { less than } 0.2 \% \\ 20 \mathrm{kHz}-60 \mathrm{kHz} \text { less than } 0.5 \% \\ & 60 \mathrm{kHz}-100 \mathrm{kHz} \text { less than } 0.9 \% \\ & 100 \mathrm{kHz}-1 \mathrm{MHz} \text { less than } 5 \%\end{array}$
Square Wave Rise Time: Less than 200 ns (Typically 160 ms )
Stability:
$10 \mathrm{~Hz}-100 \mathrm{kHz}$ less than $2 \%$
$100 \mathrm{kHz}-1 \mathrm{MHz}$ less than $10 \%$
Output Voltage: $\quad 1 \mathrm{mV}$ to 12 V peak to peak
Meter Accuracy:
$4 \%$ of fsd to 100 kHz
Sinewave 4 V peak to peak
For 1 V peak to peak, $\pm 0.75 \%$ of output frequency

Tuning:
Directly calibrated dial with 5 push-button multipliers

Meter Ranges:
$1-12 \mathrm{mV} ; 10-120 \mathrm{mV} ; 100-1200 \mathrm{mV} ; 1-12 \mathrm{~V}$
Impedance: $600 \Omega$
3. Comprising

Instrument only
4. Accessory items

10ZZ/210942
Carry Case CDB/RAF
(Note: Case scaled for Victor, Hercules, VC1O tankers and Buccaneer squadrons at lst 1 ine only).
5. Associated Equipment

None

Chap 4.2.4



## 1. Description

The HP83731A is a synthesized signal generator covering the frequency range 1 GHz to 20 GHz . The output may be frequency, pulse or amplitude modulated from internal or external sources with the capability of operating simultaneously with FM, PM and AM combined. The instrument has a non-volatile memory capable of storing up to ten complete front panel settings. The instrument can be controlled by the built in General Purpose Interface Bus (GPIB).
2. Specification

Carrier Frequency
Range: $\quad 1 \mathrm{GHz}$ to 20 GHz .
Resolution: $\quad 1 \mathrm{kHz}$.
Accuracy: $\quad 0.2 \mathrm{ppm} /$ year
Spectral Purity:
Harmonics
Less than -50 dBc at output levels below +8 dBm .

None.

Less than -60 dBc .
Less than $-77 \mathrm{dBc} / \mathrm{Hz}$ at 10 kHz offset @ 18 GHz . Less than $-92 \mathrm{dBc} / \mathrm{Hz}$ at 10 kHz offset @ 2 GHz .
+10 dBc to -100 dBc . Typically +15 dBc to 18 GHz .
0.01 dB.

Better than + or -1 dB .
1 W.
Protection:
Flatness: $\quad+$ or -0.5 dB .

Modulation
Amplitude Modulation
Source: Internal or External. Internal source for AM is a fully variable sine, square, triangle, ramp and White Gaussion Noise Generator.

DC to 100 kHz .
Depth: $\quad 0$ to $99.9 \%$.
Sensitivity: $\quad 10 \mathrm{~dB} / \mathrm{V}$.
Frequency Modulation:
Source: Internal or External. Internal source for FM is a fully variable sine, square, triangle, ramp and White Gaussian Noise generator.

Rate: $\quad D C$ to 1 MHz .
Deviation: $\quad+$ or -10 MHz .

Sensitivity: $\quad 5 \mathrm{MHz} / \mathrm{V}$
Pulse Modulation:

Source:	Internal or External. Internal Pulse   Generator Width range 25 ns to
	419 ns, rate 10 Hz to 3 MHz . Delay
	-419 ns to +419 ns giving a very high
	fidelity pulse modulation with
minimum overshoot and ringing at less	
than $10 \mathrm{~ns} \mathrm{rise/fall} \mathrm{times}$.	
Rate:	DC to 3 MHz.
On/Off Ratio:	Greater than 80 dB typically 95 dB.
Rise/Fall Time:	10 ns typically 5 ns.

## 3. Comprising

Operators Handbook
Mains Lead
Carrying Case
Protective Front Panel
20 dB Attenuator
4. Accessory Items

None.
5. Associated Equipment

None.

Internal or External. Internal Pulse Generator Width range 25 ns to 419 ns , rate 10 Hz to 3 MHz . Delay 419 ns to +419 ns giving a very high minimum overshoot and ringing at less than 10 ns rise/fall times.

DC to 3 MHz .

10 ns typically 5 ns.

Section Reference 10S/5184659		Nomenclature					
Manufacturer		Part No.	Cost/Date				
HEWLETT PACKARD		200CD	£269/JUL 93				
Height		Width	Depth	Weight			
292 mm		187 mm	365 mm	9.9 kg			
Power Supplies$115 \mathrm{~V} / 230 \mathrm{~V} \pm 10 \% ; 48-440 \mathrm{~Hz}$			Air Publication   None.				
Availability	Environment	Maintenance Policy	Calibration	Afdeetec No.			
1	B	-	A/12	13024			



## 1. Description

The HP200CD wide range oscillator has high stability and accurate, easily resettable tuning.

## 2. Specification

Frequency:
Range: $\quad 5 \mathrm{~Hz}$ to 600 kHz in 5 ranges.
Response: $\pm 1 \mathrm{~dB}$ (1 kHz ref).
Dial Accuracy:
$\pm 2 \%$.

## Output:

Level:
Impedance:
Balance:

Attenuator:
Distortion:
20 Hz to 200 kHz :
5 Hz to 20 Hz and
200 kHz to 600 kHz :
Hum and Noise:
3. Comprising

Not known.
4. Accessory Items

None.
5. Associated Equipment

None.
$>160 \mathrm{~mW}(10 \mathrm{~V})$ into $600 \Omega$.
$600 \Omega$.
Balance and floating better than $0.1 \%$ at lower frequencies; approx 1\% at higher frequencies.
Bridged "T".
$0.2 \%$.
$0.5 \%$.
$<0.1 \%$ of rated output.



## 1. Description

The PM 55151 is a colour pattern generator used for testing video and television equipment. Capable of generating up to 70 patterns or combinations, it can test $P A L$ or $R G B$ devices. The generator will store pre-determined user-programs in non-volatile memory and has RF modulation.

Specification
VIDEO CARRIER

## Frequency

Range A:
Range B:
Range A covers:

Range $B$ covers:
Frequency selection:
Fine tuning:

Frequency tuning:

Storage:

Indication:
32.... 300 MHz
470... 900 MHz
$I F+T V$ band $1 \quad 32 \ldots 90 \mathrm{MHz}$ Band S1...S10 104...174 MHz TV band III Band S11...S20
174... 230 MHz 230... 300 MHz
470... 900 MHz
... 900 MHz

Keyboard
250 kHz steps for TV frequencies 100 kHz steps for IF frequencies (32...44.9 MHz)

Either in positive or negative direction Tuning speed increase by holding the step button
a) Possibility of 10 different RF frequencies
b) as a), indicated as TV channel numbers

4 digit 7-segment LED display
a) first digit: memory, store and recall position 0...9
b) 2nd, 3rd and 4th digit.

Three digit indication for frequency in MHz . Separate indication for $250 \mathrm{kHz}, 500 \mathrm{kHz}$ and 750 kHz steps c) via keyboard selectable TV channel numbers (eg C21 of C70)

## RF OUTPUT

RF output:
Impedance:
Output voltage:
Attenuation:

## VIDEO

## Video Modulation

Modulation:	AM internal-external switchable
Polarity:	Negative
RF sync level:	$100 \%$

Chap 4.2.7
2. Specification (cont.)

Video input

Video input:
Input voltage (pp):
Max. permissible input voltage:

Impedance:
Polarity:
Coupling:
Video output

BNC connector (front panel)
1 V
$\pm 5 \mathrm{~V}$
$75 \Omega$
White level positive
dc (clamping on sync)
a) BNC connector
b) SCART connector (Euro-AV-connector) Pin 19 (rear)
$75 \Omega$
a) 1 V fixed
b) Variable between 0.1..5 V

Negative
dc

## CHROMA

Chroma standards:

Tolerance:
Burst:

Amplitude:
PAL and NTSC, selectable at rear, panel PAL according to system $B, D, G, H, I$, ( $\mathrm{M}, \mathrm{N}$ ) NTSC according to system M (switchable)

Subcarrier Frequency:

Chroma vectors
inaccuracy: phase amplitude
4.433619 MHz for PAL B, coupled with D, G, H, I 3.575611 MHz for PAL M according to 3.582056 MHz for PAL N selected 3.579545 MHZ for NTSC standard
$<3 \times 10^{-5}\left(+5 \ldots+40^{\circ} \mathrm{C}\right)$
Position, number of cycles and phase according to selected standard

Chroma with burst
a) fixed ( $100 \%$ )
b) continuous adjustable from 0-150\%

```
<30
\leq}5% relative to luminance amplitud
```

2. Specification (cont.)

## SOUND CARRIER AND MODULATION

Sound carrier (mono) :	on/off switchable
Frequency:	$\begin{array}{ll} 4.5 \mathrm{MHz}, & \text { standard } \mathrm{M}, \mathrm{~N} \\ 5.5 \mathrm{MHz} & \\ 6 . \operatorname{tandard~} \mathrm{B}, \mathrm{G}, \mathrm{H} \\ 6.0 \mathrm{MHz} & \text { standard I } \end{array}$
Tolerance:	$<3.10^{-5}\left(+5 \ldots+40^{\circ} \mathrm{C}\right)$
Vision/sound carrier ratio:	13 dB , standard B, G, H   11 dB , standard D   13 dB , standard M,N   12 dB , standard I
Sound modulation:	```FM intern. on/off switchable extern. on/off switchable```
Pre-emphasis:	$50 \mu \mathrm{~s}$, standard B, D, G, H, I $75 \mu \mathrm{~s}$, standard M , N

## Internal

Frequency deviation:	$\begin{array}{lll}  \pm 30 \mathrm{kHz}, & \text { standard B, G, H } \\ \pm 15 \mathrm{kHz}, & \text { standard M, N } \\ \pm 27 \mathrm{kHz} & \text { standard I } \end{array}$
External	0.4 V will give the same deviation as with internal modulation
Input :	DIN connector   Pin $3+5$ (rear panel)
Impedance:	$0.5 \mathrm{M} \Omega$
Bandwidth:	$40 \mathrm{~Hz}-15 \mathrm{kHz}$
Max input voltage:	$\pm 40 \mathrm{~V}$
Output:	```SCART connector, (Euro-AV-connector) Pin 3 (rear panel)```
Impedance:	$1 \mathrm{k} \Omega$
Voltage:	0.4 V

## SYNCHRONISATION

Line frequency:	$15,625 \mathrm{~Hz}$ for CCIR
	$15,734 \mathrm{~Hz}$ for RTMA
Frequency tolerance	$\left.<0.4 \mathrm{~Hz} \mathrm{(+5} \mathrm{\ldots+40}^{\circ} \mathrm{C}\right)$
Number of lines:	625 for CCIR
	525 for RTMA
Field frequency:	50 Hz for CCIR
	60 Hz for RTMA

Line + frame sync: According to TV standard, interlacing
Output:
Sync signal:

Voltage (open circuit):

Impedance:
Polarity:
Inputs
Contacts:

Impedance:
Bandwidth: $\quad 40 \mathrm{~Hz}-15 \mathrm{kHz}$
Max permissible voltage:
Outputs

Impedance:
Voltage:
Operation mode detection
$54.6875 \mathrm{kHz}\left(83.5 \mathrm{x}^{\mathrm{f}}{ }_{\text {1ine }}\right)$
$<3 \times 10^{-5}\left(+5 \ldots+40^{\circ} \mathrm{C}\right)$
AM
$50 \%$
Identification
frequencies:

Deviation of second
sound carrier:
117.5 Hz ( ${ }^{\mathrm{F}}{ }_{1 \mathrm{ine}} / 133$ ) stereo mode $274.1 \mathrm{~Hz} \mathrm{(fine} / 57$ ) two channels mode
$\pm 2.5 \mathrm{kHz}$ by modulation of carrier with unmodulated pilot

For standards D, $I, M, N$ the stereo versions $X$ and $T X$ offer all Mono facilities.

## POWER SUPPLY

Voltage
Tolerance:

110, 127, 220, 240 V
$-12 \ldots+10 \%$

## Specification (cont.)

Frequency:	$50 / 60 \mathrm{~Hz}$
Tolerance:	$5 \%$
Power consumption:	Depending on version

## DIMENSIONS AND WEIGHT

Height:

- 140 mm

Width:
Depth:
Weight:
ACCESSORIES
Standard.

Option:

- PM 9538 RF cable BNC TV connector $75 \Omega$
- Operating manual
- Mains cable
- PM 9539 RF cable $+300 \Omega$ TRAFO
- PM 9075, $75 \Omega$ BNC-BNC cable
- Service manual

OPTION R-G-B
R-G-B outputs
BNC connectors (rear)
Output voltage (pp):
0.7 V (into $75 \Omega$ )

Impedance:
$75 \Omega$

Subcarrier output
BNC connector (rear)
Output voltage (pp):
1 V (into $75 \Omega$ )
Impedance:
Sync. output
Output voltage (pp):

Impedance:

BNC connector (rear)
1 V (into $75 \Omega$ )
$75 \Omega$

Comprising

| IOS 7968697 | TELEVISION PATTERN GENERATOR | 9452 | 055 | 15025 |
| :---: | :--- | :--- | :--- | :--- | :--- |
|  | OPERATING CARD | 9499 | 520 | 08711 |
|  | OPERATORS MANUAL | 9499 | 520 | 08601 |
|  | SERVICE MANUAL | 9499 | 525 | 01111 |
|  | RF LEADS (QTY 3) | 9538 |  |  |

4 Accessory
None.

5 Associated Equipment
None.

Section Reference		Nomenclature		
10S/0543483		TEST OSCILLATOR		
Manufacturer		Part No.	Cost/Date	
HEWLETT PACKARD		652A	£4208 MAR	
Height		Width	Depth	Weight
133 mm		425 mm	337 mm	11.8 kg
Power Supplies$115 \mathrm{~V} / 230 \mathrm{~V} \text { ac }+/-10 \%, 48-440 \mathrm{~Hz}$			Air Publication   None.	
Availability	Environment	Maintenance Policy	Calibration	Afdeetec No.
2	B	$2 \mathrm{~B} / 4 \mathrm{CD}$	A/12	14250



## 1. Description

The HP 652A test oscillator provides a sinusoidal output of 10 Hz to 10 MHz at an output of +23 to -70 dBm into 50 ohms, variable in 10 steps.
2. Specification

Frequency Range:	10 Hz to 10 MHz .
Dial Accuracy:	$\begin{aligned} & +/-2 \%, 100 \mathrm{~Hz} \text { to } 1 \mathrm{MHz} . \\ & +/-3 \%, 10 \mathrm{~Hz} \text { to } 100 \mathrm{~Hz} \mathrm{\&} 1 \mathrm{MHz} \text { to } 10 \mathrm{MHz} . \end{aligned}$
Flatness:	$\begin{array}{lll} +/-0.25 \%, & 3 \mathrm{~V} \& 1 \mathrm{~V} \text { range. } \\ +/-0.75 \%, & 0.3 \mathrm{~V} \text { to } 0.3 \mathrm{mV} \text { range. } \\ +/-1.75 \%, & 0.1 \mathrm{mV} \text { range. } \end{array}$
Output Voltage:	+23 dBm to -70 dBm variable in 10 steps (1-3-10 sequence)
Output Impedance:	$50 / 600$ ohms.
Attenuator:	90 dB range in 10 dB steps.
Attenuator Accuracy:	$\begin{aligned} & +/-0.075 \mathrm{~dB},-60 \mathrm{dBm} \text { to }+20 \mathrm{dBm} . \\ & +/-0.2 \mathrm{~dB},-70 \mathrm{dBm} \text { to }-60 \mathrm{dBm} . \end{aligned}$
Distortion:	$\begin{aligned} & <1 \%, 10 \mathrm{~Hz} \text { to } 2 \mathrm{MHz} \\ & <2 \%, 2 \mathrm{MHz} \text { to } 5 \mathrm{MHz} . \\ & <4 \%, 5 \mathrm{MHz} \text { to } 10 \mathrm{MHz} . \end{aligned}$
Comprising	
Instrument only.	
Accessory Items	
None.	
Associated Equipment	
None.	


SWEEP MODE	AVAILABLE MARKERS
$\mathrm{FuIl}_{1}$	$\mathrm{~F}_{0}, \mathrm{M}_{1}, \mathrm{M}_{2}$
$\mathrm{~F}_{1}, \mathrm{~F}_{2}$	$\mathrm{~F}_{0}, \mathrm{M}_{1}, \mathrm{M}_{2}$
$\mathrm{~F}_{1}, \Delta \mathrm{~F}$	$\mathrm{~F}_{0}, \mathrm{M}_{1}, \mathrm{M}_{2}$
$\mathrm{~F}_{0} / \Delta \mathrm{F}$	$\mathrm{M}_{1}, \mathrm{M}_{2}$
$\mathrm{M}_{1}, \mathrm{M}_{2}$	$\mathrm{~F}_{0}$

Accuracy :
Resolution :
Display :

Marker Output :

Same as frequency accuracy.
$0.4 \%$ of sweep width.
Front panel pushbuttons select three alternate marker displays:
Video: Positive video pulse of up to 5 V amplitude, adjustable with MARKER AMPLITUDE control.

RF: Attenuated rf pulse of up to 5 dB amplitude, adjustable with MARKER AMPLITUDE control.

Intensity: Intensified dot on trace, obtained by momentary dwell in sweep.
0 to +5 V TTL-compatible pulse, coincident with video markers, $1 \mathrm{k} \Omega$ impedance. Rear panel BNC connector. Adjustable with MARKER AMPLITUDE control.

SWEEP AND TRIGGERING MODES
Sweep Triggering

Auto :
Line :

External :

Single :

Sweep Time :

Retrace RF :

Horizontal Output :

Triggers sweep from power line frequency.
Triggers sweep from externally applied 4 to 25 Vpk or TTLcompatible pulse with $>1 \mu \mathrm{~s}$ width and $>5 \mu \mathrm{~s}$ fall time. Rear panel BNC connector.

EXT OR SINGLE SWEEP selects mode, triggers, aborts and resets single sweep.
Adjustable from approximately 0.01 s to 99 s . Entered on keypad in ms or s .
Front panel pushbutton blanks rf power during sweep retrace.
0 to 10 V ramp coincident with sweep in all sweep modes. In CW mode, output voltage varies in proportion to frequency, 0 V at 0 GHz and 10 V at 26.5 GHz . Rear panel BNC connector.
2. Specification

Frequency Range:	10 Hz to 10 MHz .
Dial Accuracy:	$\begin{aligned} & +/-2 \%, 100 \mathrm{~Hz} \text { to } 1 \mathrm{MHz} . \\ & +/-3 \%, 10 \mathrm{~Hz} \text { to } 100 \mathrm{~Hz} \& \mathrm{MHz} \text { to } 10 \mathrm{MHz} \end{aligned}$
Flatness:	```+/- 0.25%, 3 V & 1 V range. +/- 0.75%, 0.3 V to 0.3 mV range. +/- 1.75%, 0.1 mV range.```
Output Voltage:	+23 dBm to -70 dBm variable in 10 steps (1-3-10 sequence)
Output Impedance:	$50 / 600$ ohms.
Attenuator:	90 dB range in 10 dB steps.
Attenuator Accuracy:	$\begin{aligned} & +/-0.075 \mathrm{~dB},-60 \mathrm{dBm} \text { to }+20 \mathrm{dBm} . \\ & +/-0.2 \mathrm{~dB},-70 \mathrm{dBm} \text { to }-60 \mathrm{dBm} . \end{aligned}$
Distortion:	$\begin{aligned} & <1 \%, 10 \mathrm{~Hz} \text { to } 2 \mathrm{MHz} . \\ & <2 \%, 2 \mathrm{MHz} \text { to } 5 \mathrm{MHz} . \\ & <4 \%, 5 \mathrm{MHz} \text { to } 10 \mathrm{MHz} \end{aligned}$

3. Comprising

Instrument only.
4. Accessory Items

None.
5. Associated Equipment

None.

SWEEP MODE	AVAILABLE MARKERS
Full	$\mathrm{F}_{0}, \mathrm{M}_{1}, M_{2}$
$\mathrm{~F}_{1}, \mathrm{~F}_{2}$	$\mathrm{~F}_{0}, \mathrm{M}_{1}, \mathrm{M}_{2}$
$\mathrm{~F}_{1} \Delta \mathrm{~F}$	$\mathrm{~F}_{0}, \mathrm{M}_{1}, \mathrm{M}_{2}$
$\mathrm{~F}_{0} \Delta \mathrm{~F}$	$\mathrm{M}_{1}, \mathrm{M}_{2}$
$\mathrm{M}_{1}, \mathrm{M}_{2}$	$\mathrm{~F}_{0}$

Accuracy :
Resolution :
Display :

Marker Output :

Same as frequency accuracy.
$0.4 \%$ of sweep width.
Front panel pushbuttons select three alternate marker displays:

Video: Positive video pulse of up to 5 V amplitude, adjustable with MARKER AMPLITUDE control.

RF: Attenuated rf pulse of up to 5 dB amplitude, adjustable with MARKER AMPLITUDE control.

Intensity: Intensified dot on trace, obtained by momentary dwell in sweep.
0 to +5 V TTL-compatible pulse, coincident with video markers, $1 \mathrm{k} \Omega$ impedance. Rear panel BNC connector. Adjustable with MARKER AMPLITUDE control.

SWEEP AND TRIGGERING MODES
Sweep Triggering
Auto :
Line :

External :

Single :

Sweep Time :

Retrace RF :

Horizontal Output :

Triggers sweep automatically.
Triggers sweep from power line frequency.
Triggers sweep from externally applied 4 to 25 Vpk or TTLcompatible pulse with $>1 \mu s$ width and $>5 \mu \mathrm{~s}$ fall time. Rear panel BNC connector.

EXT OR SINGLE SWEEP selects mode, triggers, aborts and resets single sweep.
Adjustable from approximately 0.01 s to 99 s . Entered on keypad in ms or $s$.

Front panel pushbutton blanks rf power during sweep retrace.
0 to 10 V ramp coincident with sweep in all sweep modes. In CW mode, output voltage varies in proportion to frequency, 0 V at 0 GHz and 10 V at 26.5 GHz . Rear panel BNC connector.
2. Specification (continued)

Sequential Sync Output :	+5 V TTL-compatible pulse occurring   at oscillator bandswitching points   and during sweep retrace. Rear panel
BNC connector.	

CW Filter Enable/Disable
Enabled :

Disabled :
Filter inserted for CW mode and sweep widths $<50 \mathrm{MHz}$.

Filter removed for all modes of operation.

Levelling and Modulation
Levelling :
External Detector :
Levels output power at remote test position where directional detector samples rf power and provides a positive or negative polarity detected signal of 5 mV to 500 mV to front panel BNC connector. Front panel BNC

Chap 4.2.8


Reset

Reset Control :	Returns controls of following conditions.
Frequency Range :	Full
Trigger :	Auto
Markers :	Off
RF :	On
Level :	Specified power level
Levelling :	Internal. Not available on 6640 A and $6642 \mathrm{~A}>26.5 \mathrm{GHz}$.
Sweep Time :	50 ms
$\mathrm{F}_{0}, \mathrm{~F}_{1}, \mathrm{~F}_{2}, \mathrm{M}_{1}, \mathrm{M}_{2}, \Delta \mathrm{~F}:$	Frequency varies with model number.
Self-Test :	Performs self-test every time power is applied or when SELF TEST pushbutton is pressed. If an error is detected, a diagnostic code appears, identifying the cause and location of the error.

## General

Power Variation With
Temperature :
Output Connector :
Decrease/Increase Control :

Data Entry :

Shift Key :
$\pm 0.05 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$. Not applicable to 6632A, 6640 A and 6642A.

UG-599/U.
Electronically increases and decreases value of frequency, sweep time, and power. Rate of change is greatest when lever is in extreme position, decreasing as it is moved toward the centre. A "tap" moves the parameter by one increment.
Frequency, sweep time, and power level are entered on keypad with up to 5 digit resolution. Entry is terminated by pressing appropriate unit ( $\mathrm{MHz}, \mathrm{dB}, \mathrm{ms}$ or $\mathrm{GHz}, \mathrm{dBm}, \mathrm{Sec}$ ) pushbutton. Entry errors are cleared by pressing CLEAR ENTRY.
Activates dual function controls-ALT (alternating sweep), CW FILTER (CW filter enable/disable), CW RAMP (horizontal output ramp), and EXTERNAL SWEEP (external sweep input).

```
Frequency Characteristics
 Accuracy (at 25'`) : }\pm20\textrm{MHz}\mathrm{ (CW Mode), }\pm30\textrm{MHz}\mathrm{ (Sweep Mode)
 Stability with temperature : }\pm1\textrm{MHz}/\mp@subsup{}{}{\circ}\textrm{C
 Stability with 10% time voltage
 change :
 \pm200 kHz
 Stability with 10 dB power
 level change : }\pm400\textrm{kHz
 Stability with 3:1 load S.W.R: }\pm400\textrm{kHz
 Stability with time (10 min
 typical) :
 \pm200 kHz
Output Characteristics
Max. levelled power (}2\mp@subsup{5}{}{\circ}\textrm{C}\pm\mathrm{ :
 5}\mp@subsup{}{}{\circ}\textrm{C})
 Spectral Purity :
 Connector type :
Modulation Characteristics
External FM & phaselock
Sensitivity : -12 MHz/v
Max. deviation for Modulation dc - 100 kHz = \pm50 MHz
frequency of : 100-250 kHz = \pm10 MHz
```

3. Comprising

Instrument
Mains lead
Handbook
4. Accessory Items

None
5. Associated Equipment

None

Section Reference SEE TEXT		Nomenclature   RUBIDIUM FREQUENCY STANDARD					
Manufacturer		Part No.	Cost/Date				
HEWLETT PACKARD		5065A	SEE TEXT				
Height		Width	Depth	Weight			
133 mm		425 mm	416 mm	SEE TEXT			
Power Supplies$115 / 230 \mathrm{~V}+/-10 \%, 50 / 60 / 400 \mathrm{~Hz}$			Air Publication   None.				
Availability	Environment	Maintenance Policy	Calibration	afdeetec No.			
2	B	-	A/12	SEE TEXT			

## 1. Description

The HP5065A is an atomic-type secondary frequency standard, having sinusoidal outputs of $100 \mathrm{kHz}, 1 \mathrm{MHz}$ and 5 MHz . There are 2 models in service, the standard HP5065A and the HP5065A with options 002 (Standby Battery) and 908 (Rack Mount Kit).

Model	Sect/Ref	AFDEETEC	Cost/Date
5065 A	10S/0247377	14126	
$5065 \mathrm{~A}-002-908$	$10 \mathrm{~S} / 7229300$	19031	$£ 19,968$ JUN 93

2. Specification

Outputs:
Frequency: $\quad 100 \mathrm{kHz}, 1 \mathrm{MHz}$, and 5 MHz .
Amplitude: $\quad 1$ volt into 50 ohms.
SSB Phase Noise Signal
( 1 Hz BW ). Offset from
signal (frequency): $0.001 \mathrm{~Hz} ;-25 \mathrm{~dB}$
0.01 Hz ; -52 dB .
0.1 Hz ; -72 dB D.C.; -93 dB. 10 Hz ; -120 dB . 100 Hz ; -126 dB 1 kHz ; -140 dB .

Non-Harmonic Related Output: $>80 \mathrm{~dB}$.

Harmonic Distortion: $>40 \mathrm{~dB}$
Stability:
Long Term: $\quad+/-1 \times 10^{-11} /$ month
Short Term ( 5 MHz )
Averaging time:
$10^{-3} ; 7.5 \times 10^{-10}$.
$10^{-2} ; 1.5 \times 10^{-10}$.
$10^{-1} ; 1.5 \times 10^{-11}$.
$10^{0} ; 5 \times 10^{-12}$
$10^{1} ; 1.6 \times 10^{-12}$
$10^{2} ; 5 \times 10^{-13}$.
$10^{3} ; 5 \times 10^{-13}$.

Warm-up Characteristics

$$
\left(\text { at } 25^{\circ} \mathrm{C}\right): 1 \times 10^{-10} ; 1 \text { hour }
$$

$$
5 \times 10^{-11} ; 4 \text { hours }
$$

Range of Frequency
Adjustment: $\quad+/-2 \times 10^{-12}$.
General:
Power Consumption: 5065A; 49 W . 5065A-002-908; 55 W.

Operating Temperature
Range: $\quad 0{ }^{\circ} \mathrm{C}$ to $+50{ }^{\circ} \mathrm{C}$.
Weight: $\quad 5065 \mathrm{~A} ; 15.4 \mathrm{~kg}$.
5065A-002-908; 17 kg .
3. Comprising

Not known.
4. Accessory Items

None.
5. Associated Equipment

None.



## 1. Description

The Racal-Dana 9475 Rubidium Frequency Standard is a stable atomic oscillator which has a fast warm-up time. It provides 3 buffered, short circuit protected outputs at 1 MHz . These outputs are stabilized sinusoidal waveforms of high spectral purity and amplitude greater than 1 volt into 50 ohms. An additional 10 MHz sine wave output is provided, primarily for monitoring purposes.

## 2. Specification

Outputs (x3, isolated and protected):
Frequency: 1 MHz
Amplitude: $\quad>1$ volt RMS into 50 ohms.
Signal-to-Noise Ratio: $\quad>100 \mathrm{~dB}$ measured in a 1 Hz band at 200 Hz from carrier.

Non-Harmonically
Related Spurious:
$<-100 \mathrm{dBc}$.

Hum Related Sidebands:
$<-80 \mathrm{dBc}$.
Harmonic Distortion: <-30 dBc.
Monitor Output:
Frequency: $\quad 10 \mathrm{MHz}$.
Amplitude: $\quad>1$ volt RMS into 50 ohms.
Stability:

Long Term:	Average drift rate less than 4 x   $10^{-11} /$ month.
Short Term:	
Warm-up characteristics:	Less than $3 \times 10^{-11}$ over a sampling   time of one second.
	$2 \times 10^{-10}$ of final frequency within
	15 minutes.
	$1 \times 10^{-10}$ of final frequency within
	1 hour.
	(These times are after switch-on
following 24 hours switched off in	
the temperature range $+5{ }^{\circ} \mathrm{C}$ to	
	$\left.+30{ }^{\circ} \mathrm{C}\right)$.

General:

Power Consumption: 65 VA initially, 40 VA after warm-up.
Operating Temperature
Range:
$0{ }^{\circ} \mathrm{C}$ to $+45{ }^{\circ} \mathrm{C}$.
3. Comprising

Mains Lead.
Manual.
4. Accessory Items

None.
5. Associated Equipment

None.

$\begin{aligned} & \text { Section Reference } \\ & 110 \text { S } / 6625-00-4808675 \end{aligned}$		Nomenclature   QUARTZ OSCILLATOR FREQUENCY STANDARD		
Manufacturer   HEWLETT PACKA		Part No. 105 A		$\begin{array}{cc} \text { Cost/Date } & 1978 \\ £ 1,700 . & 00 \end{array}$
Height 8.8 cm	Width	$5 \mathrm{~cm}{ }^{5}$	28.6 cm	Weight 8.0 kg
Power :supplies $\quad 115 / 230 \mathrm{~V} \quad 50-400 \mathrm{~Hz}$				Air Publication 117E-0118-16
$\begin{aligned} & \text { Availability } \\ & 2 \end{aligned}$	Fnvironment B	Maintenance Folicy B2/D4	Calibration   B/SCAN	afDEETEC/AFDSEC No. 18678



## 1. Description

The HP 105A is a highly stable precision quartz oscillator, its predictable warm up time (retrace) enables this instrument to be switched off at cease work or transported without recourse to a standby power supply.
2. Specification

Output frequencies
Output volts
Frequency accuracy:
Frequency stability:

$$
\text { Long Term (per day) } 5 \times 10^{-10}
$$

Chap. 4.2.15
Page 1


None
5. Associated equipment

None




## 1. Description

The HP8620C replaces the now-discontinued 8620A (110S/0076661) and is fully compatible with the existing range of RF modules as listed at Pages $4,5 \& 6$. The 8620 C offers additional sweep modes and other new operating features to increase flexibility and convenience of swept frequency measurements. Now included are up to 3 markers, Marker Sweep, Fullband Sweep and $\Delta F$ fully calibrated from $0-100 \%$ of band. At the same time, the 8620 C retains such useful features as the CW Vernier and narrow band $\Delta F$. These effectively increase frequency resolution and settability to that of $\mathrm{a}>300$ inch dial scale, making it easy and accurate to increment frequency or set $\Delta F$ sweep widths of 1 MHz even at 18 GHz . The modules in Service use have internal levelling to 12.4 GHz , external from 8 to 18 GHz . Internal modulation at a nominal 1 kHz square wave plus external AM . FM and pulse modulation are possible (see individual module specifications).

Chap. 4.2.18
June 80 (Amdt 3)
Page 1
2. Mainframe specifications
Frequency range:
Generator functions:

Sweep:

Marker:

Sweep modes:
Trigger:
Outputs:
Z Axis (BNC):
Switched between $+6 \mathrm{~V} / 1 \mathrm{k} \Omega$ for pen lift and $-5 \mathrm{~V} / 1 \mathrm{k} \Omega$ for Z axis modulation (Intensity marker), both outputs coincidental with RF blanking.

Sweep output (BNC): Linear ramp (zero to 10 V ).
Inputs:
Ext FM (BNC): DC to 1 MHz

Chap. 4.2.18
Page 2

Ext AM (BNC) :
100 kHz bandwidth
Ext Trigger (BNC) : Not less than $+2 \mathrm{~V} \mathrm{dc}, 0.5 \mu \mathrm{~s}$. Less than 1 MHz prf.

## Options:

001: $\quad B C D$ frequency programming

011: IEC-bus compatibility
3 Comprising
Instrument only Power Cable $7 \frac{1}{2}$ foot
Calibration Scale
4 Accessory Items
See description
5 Associated Equipment
See lists overleaf

HEWLETT PACKARD 8620C SERIES SWEEP OSCILLATOR UNITS
(Individual single band units plugging into the 8620 Mainframe)

Reference No 10S/6625-99-		HP86220A	HP86222B	HP86230B	$\begin{aligned} & \mathrm{HP} 86250 \mathrm{D} \\ & \mathrm{OPT}, \mathrm{OO1} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{HP} 86260 \mathrm{~A} \\ & \mathrm{OPT} \mathrm{OPO} \\ & \hline \end{aligned}$
		6287335	6485826	6287336	6487097	6487098
AFDEETEC No		18382	18980	18421	18905	18906
Frequency Range		$\begin{aligned} & 10-1300 \\ & \mathrm{MHZ} \end{aligned}$	$\int_{\mathrm{GHz}}^{0.01-2.4}$	$\begin{aligned} & 1.8-4.2 \\ & \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 8-12.4 \\ & \mathrm{GHz} \end{aligned}$	${ }_{\mathrm{GHz}}^{12.4-18}$
CW Accuracy		$\pm 10 \mathrm{MHz}$	$\pm 10 \mathrm{MHz}$	$\pm 10 \mathrm{MHz}$	$\pm 40 \mathrm{MHz}$	$\pm 50 \mathrm{MHz}$
Residual FM   (peak less than)		5 kHz	5 kHz	7 kHz	15 kHz	25 kHz
Maximum Levelled Power		$\begin{aligned} & +10 \mathrm{dBm} \\ & (10 \mathrm{~mW}) \end{aligned}$	$\begin{aligned} & +13 \mathrm{dBm} \\ & (20 \mathrm{~mW}) \end{aligned}$	$\begin{aligned} & +10 \mathrm{dBm} \\ & (10 \mathrm{~mW}) \end{aligned}$	$\begin{aligned} & +10 \mathrm{dBm} \\ & (10 \mathrm{~mW}) \end{aligned}$	$\begin{aligned} & +10 \mathrm{dBm} \\ & (10 \mathrm{~mW}) \end{aligned}$
Levelling Mode (Operating)		Internal	Internal	Internal	Internal	Internal
Power Variation (Levelled)		$\pm 0.5 \mathrm{~dB}$	$\pm 0.25 \mathrm{~dB}$	$\pm 0.5 \mathrm{~dB}$	Error of Sampler $\pm 0.1 \mathrm{~dB}$	Error of Sampler $\pm 0.1 \mathrm{~dB}$
Spurious   Signals	Harmonics	-25 dB	$-25 \mathrm{~dB}$	$-20 \mathrm{~dB}$	$-30 \mathrm{~dB}$	-25 dB
	Non   Harmonics	-40 dB	$-30 \mathrm{~dB}$	$-60 \mathrm{~dB}$	-60 dB	-50 dB
Residual AM		$-50 \mathrm{~dB}$				
Source VSWR   (50 $\Omega$ nom.less than)		1.3	1.5	1.6	1.6	1.6
Ext. FM   Peak   Deviation	DC to 100 Hz	$\pm 15 \mathrm{MHz}$	$\pm 75 \mathrm{MHz}$	$\pm 25 \mathrm{MHz}$	$\pm 150 \mathrm{MHz}$	$\pm 75 \mathrm{MHz}$
	DC to 1 MHz	$\pm 500 \mathrm{kHz}$	$\pm 5 \mathrm{MHz}$	$\pm 2 \mathrm{MHz}$	$\pm 7 \mathrm{MHz}$	$\pm 5 \mathrm{MHz}$
Int. AM ON/OFF Ratio		35 dB		25 dB	40 dB	25 dB
Ext. Pulse ( $\mu \mathrm{s}$ )	Risetime	8	8	8	8	8
	Falltime	4	4	4	4	4
Price (1978)		£1,699	£1,700	£. 1,699	£2,062	£2,159

HEWLETT PACKARD 86300 SERIES SWEEP OSCILLATOR MODULE

1. One or two 86300 modules can be installed in the 8621 BF Rrawer. Where double band operation is required OPTION 100 (Multi-band) is required.
2. The 86320 A Heterodyne unit can be installed in addition to one or two modules, it requires the 86330 A as a drive but its installation does not require Option 100.

	HP86320B	HP86331C	HP86341C	HP86342C	HP86350C
Reference No 10S/6625-99	$\begin{aligned} & 10 z Z / \\ & 206768 \end{aligned}$	$\begin{aligned} & 10 \mathrm{ZZ} / \\ & 206492 \end{aligned}$	$\begin{aligned} & 10 \mathrm{ZZ} / \\ & 206489 \end{aligned}$	$\begin{aligned} & 10 \mathrm{ZZ} / \\ & 206490 \end{aligned}$	$\begin{aligned} & 10 \mathrm{ZZ} / \\ & 206491 \end{aligned}$
AFDEETEC No	18387	18910	18907	18908	18909
Frequency Range	$\begin{aligned} & 0.1-2.0 \\ & \mathrm{GHz} \end{aligned}$	$1.7-4.3$   GHz	$3.2-6.5$   GHz	$5.9-9.0$   $\mathrm{GH} z$	$\begin{aligned} & 8-12.4 \\ & \mathrm{GHz} \end{aligned}$
CW Accuracy	$\pm 10 \mathrm{MHz}$	$\pm 20 \mathrm{MHz}$	$\pm 30 \mathrm{MHz}$	$\pm 35 \mathrm{MHz}$	$\pm 40 \mathrm{MHz}$
Residual FM   (peak less than)	15 kHz	7 kHz	7 kHz	15 kHz	15 kHz
Max. Levelled Power	$\begin{aligned} & +13 \mathrm{dBm} \\ & (20 \mathrm{mw}) \end{aligned}$	$\begin{aligned} & +16 \mathrm{dBm} \\ & (40 \mathrm{mw}) \end{aligned}$	$\begin{aligned} & +10 \mathrm{dBm} \\ & (10 \mathrm{mw}) \end{aligned}$	$\begin{aligned} & +7 \mathrm{dBm} \\ & (5 \mathrm{mw}) \end{aligned}$	$\begin{aligned} & +6 \mathrm{dBm} \\ & (4 \mathrm{mw}) \end{aligned}$
Levelled Mod (Operating)	Internal	Internal	Internal	Internal	Internal
Power Variation	$\pm 0.7 \mathrm{~dB}$	$\pm 0.8 \mathrm{~dB}$	$\pm 0.7 \mathrm{~dB}$	$\pm 1.0 \mathrm{~dB}$	$\pm 1.0 \mathrm{~dB}$
Spurious Harmonics	$-30 \mathrm{~dB}$	-20 dB	-25 dB	$-30 \mathrm{~dB}$	-30 dB
Signals NonHarmonics	-30 dB	-60 dB	$-60 \mathrm{~dB}$	$-60 \mathrm{~dB}$	$-60 \mathrm{~dB}$
Residual AM	$-50 \mathrm{~dB}$				
Source VSWR   (50 nom. less than)	1.6	1.6	1.6	1.5	1.5
Ext $\quad \mathrm{DC}-100 \mathrm{~Hz}$	$\pm 75 \mathrm{MHz}$				
Peak DC - 1 MHz	$\pm 5 \mathrm{MHz}$				
tion DC - 2 MHz	$\pm 2 \mathrm{MHz}$				
Int AM ON/OFF Ratio	15 dB	40 dB	25 dB	40 dB	40 dB
Ext.Pulse Risetime ( $\mu \mathrm{s}$ ) Falltime	$2$	$\begin{aligned} & 2 \\ & 1 \end{aligned}$			
Price (1978)	£1,557	£1,723	£1,709	£1, 881	£1,881

Chap. 4.2.18
June 80 (Amdt 3)

Reference	Nomenclature	Part No	Price	Multiband Option
10 S/6625-99-6287344	RF Drawer	HP8621B	$£ 442$	Opt. 100 £354 extra   $10 S / 6625-99-6287345$




1 Description
A general purpose, broadband test oscillator which will provide sine waves from 10 Hz to 10 MHz and square wave from 10 Hz to 1 MHz . The synchronized output may be used to trigger ancillary equipments, it will also produce fixed amplitude, low distortion, sine wave output with a source impedance of about $10 \mathrm{k} \Omega$. Low harmonic distortion and flat response make it ideal for ac bridge measurements and for checking audio and video amplifiers. In addition, the accurately levelled and measured output is suitable for calibration and tests of instruments, setting up Dolby units, tape tests and telephone line checks.

2 Specification
Frequency Range:
10 Hz to 10 MHz sinewave in six switched ranges
10 Hz to 1 MHz square wave (specified) extended unspecified square waves to 10 MHz

Chap 4.2.22


None.



1. Description

The 2019A is a synthesized signal generator covering the frequency range 80 kHz to 1040 MHz . The output may be amplitude, phase or frequency modulated using either the built-in source or an external source. All control settings are entered from a front panel keyboard. Three liquid crystal displays give simultaneous readout of frequency, modulation and output level. Remote control via GPIB is standard.
2. Specification

Carrier Frequency Range 80 kHz to 1040 MHz , usable down to 30 kHz .

Selection	By keyboard entry.
Indication	8 digit lcd.
Resolution	10 Hz up to $520 \mathrm{MHz}, 20 \mathrm{~Hz}$ from 520 MHz   to 1040 MHz.
Accuracy	Equal to the frequency standard accuracy.   See Frequency Standard.

Chap 4.2.24

RF Output

Level	$0.2 \mu \mathrm{~V}$ to 2 V emf ( -127 to +13 dBm ) in cw and fm modes.   $0.2 \mu \mathrm{~V}$ to 1 V emf ( -127 to +7 dBm ) in am mode.
Selection	By keyboard entry. Units may be $\mu \mathrm{V}$, mV, V emf or pd ; dB relative to $1 \mu \mathrm{~V}$, 1 mV , lV emf or pd ; dBm .   Conversion between $d B$ and voltage units may be achieved by pressing the apprpriate unit key ( dB , or $\mathrm{V}, \mathrm{mV}, \mu \mathrm{V}$ ).
Indication	4 digit lcd with units annunciators.
Resolution	0.1 dB or better over entire voltage range.
Output level accuracy	$\pm 1 \mathrm{~dB}$ from 80 kHz to 520 MHz . $\pm 2 \mathrm{~dB}$ above 520 MHz .
Output impedance	$50 \Omega$, type N female socket to MIL 39012/30 - For output levels below 300 mV emf the VSWR is better than 1.2:1 for carrier frequencies up to 520 MHz , and better than 1.5:1 for carrier frequencies above 520 MHz .
Reverse power protection	An electronic trip protects the generator output against reverse power of up to 50 W from dc to 1 GHz . The trip may be reset from the front panel or via the GPIB.

## Spurious Signals

Harmonically
related signals

Sub-harmonics

Non-harmonically
related signals

For output levels less than $1 V$ emf. Better than -30 dBc for carrier frequencies up to 520 MHz and better than -20 dBc for carrier frequencies above 520 MHz .

None for carrier frequencies up to 520 MHz .
-20 dBc for carrier frequencies above 520 MHz .

Better than -70 dBc for carrier frequencies from 2.03126 MHz to 1040 MHz . Better than -60 dBc for carrier frequencies from 80 kHz to 2.03125 MHz .

Chap 4.2.24

Residual fm

Single sideband phase noise

RF leakage

## Frequency Modulation

Range
Selection
Display
Deviation accuracy

Frequency response

Distortion

External modulation

Less than 6 Hz rms in CCITT telephone psophometric band at 520 MHz and improving by approximately 6 dB per octave with reducing carrier frequency down to 2.03126 MHz .

Better than $-130 \mathrm{dBc} / \mathrm{Hz}$ at 90 MHz and 20 kHz offset from the carrier.

Less than $0.5 \mu \mathrm{~V}$ pd generated in a $50 \Omega$ load by a two-turn, 25 mm loop, 25 mm or more from the case of the generator with the output level set to less than -10 dBm and the output terminated in a $50 \Omega$ sealed load.

Peak deviation from 0 to 100 kHz for carrier frequencies up to 2.03125 MHz . Peak deviation from 0 up to $1 \%$ of carrier frequency for carrier frequencies above 2.03125 MHz .

By front panel keyboard, internal source (see AF oscillator) or external input may be selected.

3 digit 1cd.
$\pm 5 \%$ of deviation at 1 kHz modulating frequency excluding residual fm.
$\pm 1 \mathrm{~dB}$ from 50 Hz to 100 kHz relative to 1 kHz . Usable down to 10 Hz with reduced deviation.

Better than 3\% total harmonic distortion at 1 kHz modulating frequency and a deviation of up to $70 \%$ of maximum available at any carrier frequency. Better than $0.3 \%$ total harmonic distortion at 75 kHz deviation at carrier frequencies from 88 MHz to 108 MHz at 1 kHz modulating frequency.

With modulation ALC on, the deviation is calibrated for input levels between 0.8 V and 1.2 V pd. With modulation ALC off, the deviation is calibrated for an input level of 1 V pd . HI and LO led's are provided as an aid to maintaining calibrated modulation in the ALC OFF mode. When the HI and LO led's are extinguished, the input voltage will be in the range $1 \mathrm{~V} \pm 5 \%$.
Input impedance: $100 \mathrm{k} \Omega$ nominal.

Chap 4.2.24

Phase Modulation

Range	Modulation index: 0 to 10 radians for carrier frequencies below 2.03125 MHz ; 0 to a value in radians equal to the carrier frequency in MHz , for frequencies above 2.03125 MHz .
Selection	By front panel keyboard. Internal source (see AF ōscillađō̄) or external input may be selected.
Display	3 digit 1cd.
Accuracy	$\pm 5 \%$ excluding residual ${ }^{\text {dm. }}$
Frequency response	$\pm 1 \mathrm{~dB}$ from 50 Hz to 10 kHz wrt 1 kHz .
Distortion	Better than $3 \%$ total harmonic distortion at 1 kHz modulating frequency.
External modulation	With modulation ALC on, the deviation is calibrated for input levels between 0.8 V and 1.2 V pd. With modulation ALC off, the deviation is calibrated for an input level of 1 V pd. HI and LO led's are provided as an aid to maintaining calibrated modulation in the ALC OFF mode. When the HI and LO led's are extinguished, the input voltage will be in the range $1 \mathrm{~V} \pm 5 \%$.
	Input impedance: $100 \mathrm{k} \Omega$ nominal.

Amplitude Modulation

Range	0 to $99 \%$ in $1 \%$ steps.
Selection	By front panel keyboard. Internal source (see AF oscillator) or external input may be selected.
Display	2 digit lcd.
Accuracy	Better than $\pm$ ( $4 \%$ of depth setting $+1 \%$ ) for modulation depths up to $95 \%$ at 1 kHz modulating frequency and carrier frequencies up to 400 MHz .
Frequency response	$\pm 1 \mathrm{~dB}$ from 20 Hz to 50 kHz relative to   1 kHz at $80 \%$ depth dc coupled.
Envelope distortion	Better than $3 \%$ total harmonic distortion for modulation depths up to $80 \%$ at 1 kHz modulating frequency, and carrier frequencies up to 400 MHz . Better than $2 \%$ total harmonic distortion for modulation depths up to $90 \%$ at 1 kHz modulating frequency for carrier frequencies up to 32 MHz .


External modulation	With the modulation ALC on, the modulation depth is calibrated for input levels between 0.8 V and 1.2 V pd . With the modulation ALC off, the modulation depth is calibrated for an input level of 1 V pd. HI and LO led's are provided as an aid to maintaining calibrated modulation in the ALC OFF mode. When the HI and LO led's are extinguished, the input voltage will be in the range $1 \mathrm{~V} \pm 5 \%$.   Input impedance: $100 \mathrm{k} \Omega$ nominal, dc coupled.
AF Oscillator	
Frequencies	$300 \mathrm{~Hz}, 400 \mathrm{~Hz}, 500 \mathrm{~Hz}, 1 \mathrm{kHz}, 3 \mathrm{kHz}$ and 6 kHz selected sequentially by repetitive pressing of the AF OSC key.
Display	Six led's indicated selected frequency.
Frequent accuracy	$\pm 5 \%$
Output level	0.1 mV to 5 V into a load of $2 \mathrm{k} \Omega$ or greater, selected by keyboard entry. Output may be entered in $m V, V$ or as dBm into $600 \Omega$.   Capable of driving a $600 \Omega$ load for levels below 2 V .
Level accuracy	$\pm 5 \%$ for output levels above 50 mV .   $\pm 10 \%$ for levels below 50 mV .
Frequency Standard	Internal or external frequency standard may be selected from the front panel. Annunciators show which is selected.
Input/Output	A rear-panel BNC socket provides an output from the internal frequency standard at either 1 MHz or 10 MHz when internal standard is selected. This socket becomes the external standard input when external standard is selected.
Internal Frequency Standard	
Frequency	10 MHz
Temperature stability	Better than $\pm 0.1 \mathrm{ppm}$ over the temperature range 0 to $40^{\circ} \mathrm{C}$.
Warm-up time	Within 0.5 ppm of final frequency 5 min. from switch-on at $20^{\circ} \mathrm{C}$ ambient.

Chap 4.2.24

Internal standard output

## External Frequency Standard <br> External standard input <br> External Frequency Standard

Either 1 MHz or 10 MHz at nominally 3 V p-p square wave. Source impedance $100 \Omega$ nominal.

Accepts either a 1 MHz or 10 MHz signal of at least 1 V rms. Frequency is selected by Second Function control.
Maximum input 2.5 V .
Input impedance: $100 \Omega$ nominal.
3. Comprising

NYR	Signal Generator	$52019-910$ E
NYR	GPIB Module	$54433-001 \mathrm{U}$
$10 Z Z / 210168$	Front Handle Kit	$46883-511 R$
$10 Z Z / 210169$	Rack Mounting Kit	$46883-506 \mathrm{M}$

4. Accessory Items

None.
5. Associated Equipment

None.



1. Description

The HP 3225 A is a high performance instrument combining synthesizer, function generator and wideband sweeper. Its eleven digit readout permits frequency coverage from 0.000001 Hz to 20.999999 .999 MHz . It is able to provide precision sine and square waveforms; triangular and ramps with $0.05 \%$ linearity are available up to 10.9 kHz . All waveforms can be dc and phase offset. Its wideband, phase continuous, sweep capability covers the full frequency range of each waveform. All the main functions are programmable on the HP-IB making the HP 3225 A a powerful addition to automatic test systems.
2. Specifications

Waveforms - Sine, Square, Triangle, negative and positive Ramp.
Frequency Range:

| Sine | $1 \mu \mathrm{~Hz}$ | to 20.999 | 999 | 999 MHz |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Square | $1 \mu \mathrm{~Hz}$ | to | 10.999 | 999 | 999 MHz |
| Triangle | $1 \mu \mathrm{~Hz}$ to 10.999 | 999 | 999 MHz |  |  |
| Ramp | $1 \mu \mathrm{~Hz}$ to 10.999 | 999 | 999 MHz |  |  |



Auxiliary Inputs and Outputs Reference input	for phase-locking to an external frequency from 0 dBm to +20 dBm into $50 \Omega$. Ref Sig must be a sub-harmonic of 10 MHz .
Aux Freq output	21 MHz to 60.999999999 MHz .0 dBm ; output impedance $50 \Omega$.
Sync Output	Squarewave with $V$ (high) equal to or greater than 1.2 V . With V (low) equal to or less than 0.2 V into $50 \Omega$.
X Axis Drive	0 to greater than 10 V dc linear ramp proportional to sweep frequency. Linearity $10-90 \% \pm .1 \%$ of final value.
Sweep Marker 0/P	High to Low TTL compatible voltage transition at selected marker frequency.
Z Axis Blank 0/P	TTL compatible voltage levels capable of sinking 200 mA from a positive source.
1 MHz Reference $0 / P$	0 dBm output for phase locking additional instruments to the 3325 A .

3. Comprising

Instrument
Power Cable
Operating Manual
4. Accessory Items

None.
5. Associated Equipment

None.



1. Description

A solid state $R C$ oscillator with frequency coverage 1 Hz to 1 MHz providing both sine and square waves, with a fine frequency control. Output of the oscillator is 7 V rms. The squarewave output is produced by a trigger circuit to ensure that the rise time is independent of the frequency. Output terminals are fed via a low-distortion power amplifier which acts as a buffer to prevent pick-up on the output levels modulating the oscillator.
2. Specification

Frequency:
Output Amplitude:

1 Hz to 1 MHz
7 V rms ( $20 \mathrm{~V} \mathrm{p}-\mathrm{p}$ on sine) source voltage reduceable to less than $200 \mu \mathrm{~V}$ by a continuously variable control and switched attentuator with 10 dB steps up to 70 dB . Power output -74 dBm to $+13 \mathrm{dBm}(20 \mathrm{~mW})$ into $600 \Omega$.

Output Accuracy:
Impedance:
Sync Output:

Sync Input:

Better than $2 \%$ over full range.
$600 \Omega \pm 1 \%$ at all amplitude settings.
Sine wave in phase with output amplitude greater than 1 V rms, source resistance $3.3 \mathrm{k} \Omega$.

The frequency can be locked to an external signal over a range of $\pm 1 \%$ per volt rms input up to 10 V maximum. The frequency control then varies the phase of the output.
3. Comprising

Instrument. Handbook.
4. Accessory Items

None.
5. Associated Equipment

None.

Section Reference		Nomenclature		
10S/4119622		HIGH POWER	SIGNAL SOURCE	(MAINFRAME)
Manufacturer		Part No. 445		Cost/Date
AILTECH				£4847 1983
Height	Width	Depth		Weight
29.2 cm			43.1 cm	18.2 kg
Power Supplies	$115 / 230 \mathrm{~V} \pm 5 \% .50-60 \mathrm{~Hz}, 450 \mathrm{~W}$			Air Publication
				-
Availability	Environment	Maintenance Policy	calibration	AFDEETEC/AFDSEC No.
2	B	B2/D4	AH/12	19293



1. Description

The Ailtech 445 and the two in-service plug-in heads 185 and 186 cover the range 50 to 200 MHz ; and 200 to 500 MHz up to 50 W respectively. The instrument features positive load mismatch protection, and forward and reflected power metering. The plug-in heads incorporate a direct reading dial and have a coupling control that provides for optimization of power transfer to the load. The output power is continuously variable from full rated power down to 50 mW . A low power sample is available for use with an external counter or detector. The positive mismatch protection circuit is designed so that the power supply voltage is automatically switched off when the reflected power exceeds 10 W .

- The Ailtech 445 mainframe and plug-in head 185 together provide 50 MHz to 200 MHz up to 50 W .

The Ailtech 445 mainframe and plug-in head 186 together provide 200 MHz to 500 MHz up to 50 W .

Chap 4.2.27

## 2. Specification

Other than the frequency differences, both systems have identical specifications.

Frequency:
Accuracy: $\pm 1 \%$ at optimum coupling after $\frac{1}{2}$ hour operation at maximum rated power.

Stability: $\quad \pm 0.001 \% / 10$ minutes after $\frac{1}{2}$ hour stabilization at constant power and frequency.

Power:

Metering:	Forward power: 10 and 50 W full scale.   Reflected power: 10 W full scale.
Stability:	$\pm 0.1 \mathrm{~dB} / \mathrm{hr}$ after $\frac{1}{2}$ hour stabilization   at constant power and frequency.
Sample output:	15 to 40 dB below main rf output.   Overload:   Adjustment:
Fully protected against excessive power   reflected back into the output port.	
Residual AM:	Continually variable down to 50 mW.
Residual FM	

Modulation:

Internal: $\quad 100 \%$ squarewave, 1000 Hz adjustable $\pm 10 \%$.
Pulse: zero residual: +15 V required.
3. Comprising

Instrument
Mains lead
4. Accessory Items

None.
5. Associated Equipment

Ailtech 185 10S/3765106 AFDEETEC No 19295 Cost $£ 4356$
Ailtech 186 10S/5938239 AFDEETEC No 19294 Cost £4356

Chap 4.2.27



## 1. Description

The HP 654A test oscillator provides a sinusoidal output of 10 Hz to 10 MHz at an output of +11 dBm to -90 dBm , variable in 1 dB steps.
2. Specification

Frequency Range:
Dial Accuracy:

Flatness (1 kHz ref):

Output Voltage:

10 Hz to 10 MHz
$\pm 2 \%, 100 \mathrm{~Hz}$ to 5 MHz
$\pm 3 \%, 10 \mathrm{~Hz}$ to 100 Hz
$\pm 4 \%, 5 \mathrm{MHz}$ to 10 MHz
( $\pm 10 \mathrm{dBm}$ and $0 \mathrm{dBm}, 1 \mathrm{kHz}$ ref)
$\pm 0.5 \%$ for:
10 Hz to 10 MHz for unbalanced outputs
10 Hz to 5 MHz for $135 \Omega$ and $150 \Omega$ outputs
10 Hz to 1 MHz for $600 \Omega$ output
+11 dBm to -90 dBm in 10 dB and 1 dB steps

Chap 4.2.28

Output Impedance:	$50,75 \Omega$ unbalanced; $135 \Omega, 150 \Omega, 600 \Omega$ balanced
Attenuator:	99 dB range in 10 dB and 1 dB steps with $\pm 0.13 \mathrm{~dB}( \pm 1.5 \%)$ accuracy except $\pm 1 \mathrm{~dB}$ ( $\pm 10 \%$ ) at levels below 60 dBm at frequencies 300 kHz
Distortion:	10 Hz to $1 \mathrm{MHz}, 40 \mathrm{~dB}$ (1\%)   1 MHz to $10 \mathrm{MHz}, 34 \mathrm{~dB}$ (2\%)
Hum and Noise Voltage:	70 dB (.003\%) of rated output
Balance:	50 dB 10 Hz to 1 MHz 40 dB 1 MHz to 10 MHz

3. Comprising

Instrument only.
4. Accessory Items

None.
5. Associated Equipment

None.

Section Reference 10S/3152259		Nowenclature   FUNCTION GENERATOR		
Manufacturer TOELLNER GM		Part No. TOE 7405		$\begin{array}{cc} \text { Cost/Date } & 1988 \\ £ & \end{array}$
$\begin{aligned} & \text { Height } \\ & \quad 135 \mathrm{~mm} \end{aligned}$	Width	mm		Weight $3.5 \mathrm{Kg}$
$\begin{aligned} & \text { Power Supplics } \\ & 115 / 230 \mathrm{~V} \end{aligned}$	$48-60 \mathrm{~Hz}$			Air Publication NONE
Availability 1	Environment A	Maintenance Policy $\mathrm{AB} 2 / \mathrm{CD} 4$	Calibration   A/ 12	AFDEETEC/AFDSEC No. $19408$



## 1 Description

The TOE 7405 Function Generator is compact generator with 9 decades of range。 Sine, triangle, rectangle and pulse functions are available. In a special mode, the instrument will perform as a wide-band atmplifier or generate a bipolar DC output voltage. DC offset and external voltage control provide wide versatility. A fast rise time TTL compatible sync output is provided.

2 Specification

Signal Functions:	Sine, triangle, rectangle, +ve pulse, - ve pulse.   Adjustable symmetry.
Operational modes: $\quad$Free-running oscillator, external frequency control,   amplifier mode, bipolar DC voltage source.	
Frequency Range:	0.00005 Hz to 5 MHz in 9 decade ranges.

Chap 4.3.1

Read-out:	$3 \frac{1}{2}$ digit display
Frequency Offset:	5\%
Frequency Error:	$2 \%$ of full range value, $5 \%$ of full range value in the range xMHz
Signal Amplitude:	```10 mV to 30 V (peak to peak) 15 V (peak to peak) in pulse mode```
Read-out:	$3 \frac{1}{2}$ digit display
Output Impedance:	50 Ohms
DC Offset:	0 V to $\pm 10 \mathrm{~V}$
Output Attenuator:	30 dB continuously variable plus selectable 20 or 40 dB steps.
Frequency Response (Sine, Triangle)	0.3 dB up to $1 \mathrm{MHz}, 0.5 \mathrm{~dB}$ over 1 MHz
Signal Function Data: (at max. output voltage into 50 Ohm load)	```Sinewave Harmonic Distortion: < 0.5% up to 50 kHz < 5% up to 5 MHz Triangle linearity Error: < 1% up to 100 kHz Triangle Symmetry Error: < 1% up to 100 kHz Rectangle/Pulse Transition Time: < 28 ns Rectangle/Pulse Overshoot: < 5% Symmetry Variation: 10% to 90%```
Amplifier Mode Details	Gain: Approx. 17 dB   Frequency Range: DC to approx. 10 Mkz   Harmonic Distortion: $<0.1 \%$ up to 100 kHz   Input Impedance: 10 kohms
Other Signal Inputs and Outputs:	Sync signal output: TTL compatible, source impedance 50 Ohms. Modulation signal input VCO:   Approx 4 V for a frequency variation ratio of 1000:1   OCV-output: 0 to 4 V output voltage for frequency variation of 1:1000   EXT-IN: Amplifier input, max input voltage $\pm 40 \mathrm{~V}$
Comprising:	
Instrument Mains Lead	
Accessory Items	
None	
Associated Equipments	


Section Reference 10S/9520447		Nomenclature   SIGNAL GENERATOR		
Manufacturer		Part No.	Cost/Date	
MARCONI		TF2005R	£3659/JUL 93	
Height		Width	Depth	Weight
190 mm		469 mm	320 mm	13 kg
Power Supplies			Air Publication	
SEE TEXT			117E-0113-13D	
Availability	Environment	Maintenance Policy	Calibration	AFDEETEC No.
1	B	-	-	12287



## 1. Description

The Marconi TF2005R is a two-tone signal source comprising 2 identical AF oscillators and an AF monitored attenuator mounted in a cabinet and provides for measurement of intermodulation distortion. Each oscillator can be used separately or, through the attenuator, both oscillators can be intermodulated.
2. Specification

Frequency Range:
20 Hz to 20 kHz in 6 bands. (Each oscillator can be adjusted independently).

Outputs:
Level:
Reference: Up to +10 dBm from each oscillator.
Attenuator Range: $\quad 111 \mathrm{~dB}$ in 0.1 dB steps.
Distortion Harmonic: Less than $0.05 \%$ between 63 Hz and 63 kHz when using unbalanced output. Generally less than $0.1 \%$ under other conditions.

Intermodulation: Below -80 dB with respect to the wanted signal.

Hum:
Below -80 dB with respect to the wanted signal.

General:

Power Supplies:
$A C$ :
95 V to 130 V or 190 V to 260 V at 45 Hz to 500 Hz ; 105 V to 130 V or 210 V to 260 V at 500 Hz to 1 kHz .

65 V to 90 V.
Power Consumption:
$A C$ :
14 VA

DC:
Load 60 mA .

## 3. Comprising

Not known.
4. Accessory Items

None.
5. Associated Equipment

None.

Section Reference 10S/6597757		Nomenclature   FUNCTION GENERATOR		
Manufacturer   HEWLETT PACKARD		Part No.	Cost/Date   £1285/JUL 93	
		3312A		
Height		Width	Depth	Weight
102 mm		213 mm	377 mm	3.8 kg
Power Supplies			Air Publication	
$100 \mathrm{~V} / 120 \mathrm{~V} / 220 \mathrm{~V} / 240 \mathrm{~V}+5 \%-10 \% ; 48 \mathrm{~Hz}$ to 440 Hz				
Availability	Environment	Maintenance Policy	Calibration	Afdeetec No.
1	B	-	-	19253



## 1. Description

The HP3312A combines two separate, independent function generators with a modulator section. Sweep functions, AM or FM or tone burst are all easily selectable by push buttons on the modulator section. The output is 1 mV to 10 V peak to peak into $50 \Omega$, with a $D C$ offset up to 10 V .
2. Specification

Wave forms:

Frequency:
Range:
Dial Accuracy:
Square wave
rise/fall time:
Aberrations
Triangle Linearity
Error:
Variable Symmetry:
Sinewave Distortion:

Output:
Impedance:
Level:
Level flatness (sinewave):

Attenuator:
Attenuator error:
Sync Output:
Impedance:
Level:
D.C. Offset:

Modulation:
Types:
Source:
Frequency Range:
Output Level:
Amplitude Modulation:
Depth:
Frequency:
Internal:
External:
Carrier 3 dB
Bandwidth:
Carrier Envelope
Distortion:
External Sensitivity:

Sine; square; triangle +ve/-ve ramp; pulse; AM; FM; sweep; triggered and gated.
$0.1 \mathrm{~Hz}-13 \mathrm{MHz}$ in 8 decade ranges. $\pm 5 \%$ of full scale.
$<18 \mathrm{~ns}$ (10\% to 90\%). <10\%.
$<1 \%$ at 100 Hz .
80:20:80 to 1 MHz .
$<0.5 \% ~(-46 \mathrm{~dB})$ THD from
10 Hz to 50 kHz .
$>30 \mathrm{~dB}$ below fundamental from 50 kHz to 13 MHz .
$50 \Omega \pm 10 \%$.
20 V p-p into open cct; $10 \mathrm{~V} \mathrm{p}-\mathrm{p}$ into $50 \Omega$.
$<+3 \%$ from 10 Hz to 100 kHz at full rated output (1 kHz ref). $< \pm 10 \%$ from 100 kHz to 10 MHz . $1: 1$; $10: 1$; $100: 1$; $1000: 1$ and $>10: 1$ continuous control. <5\%.
$50 \Omega \pm 10 \%$.
$>1 \mathrm{~V}$ p-p square wave into open cct. Duty cycle varies with symmetry control.
Variable up to $\pm 10 \mathrm{~V}$. Instantaneous ac voltage + Vdc offset cannot exceed $\pm 10 \mathrm{~V}$ (open cct) or $\pm 5 \mathrm{~V}(50 \Omega)$.

AM; FM; sweep, trigger; gate or burst. Internal or External (all types) 0.01 Hz to 10 kHz .
$>1 \mathrm{~V} \mathrm{p}-\mathrm{p}$ into $1 \mathrm{k} \Omega$.
$0 \%$ to $100 \%$.
0.1 Hz to 10 kHz .
D.C. to $>1 \mathrm{MHz}$.
$<100 \mathrm{~Hz}$ to $>5 \mathrm{MHz}$.
$<2 \%$ at $70 \%$ sine wave modulation with $\mathrm{fc}=1 \mathrm{MHz}$; fm $=1 \mathrm{kHz}$.
$<10 \mathrm{~V}$ p-p ( $100 \%$ modulation).

Frequency Modulation:

Deviation:
Frequency:
Internal: $\quad 0.01 \mathrm{~Hz}$ to 10 kHz .
External:
Distortion:

Sweep Characteristics:
Sweep Width:
Sweep Rate:

Sweep Mode:

Ramp Output:
Gate Characteristics:
Start/Stop Phase
Range:
Frequency Range:
Gating Signal
Frequency Range
(external):
External Frequency
Control:
Range:
Input Requirement:

Linearity:

Input Impedance:
General:
Operating Temperature: $\quad 0{ }^{\circ} \mathrm{C}$ to $+55{ }^{\circ} \mathrm{C}$.
Power Consumption:

0 to $\pm 5 \%$ (internal).

DC to $>50 \mathrm{kHz}$.
$<-35 \mathrm{~dB}$ (fc $=10 \mathrm{MHz}$, fm $=1 \mathrm{kHz}$, $10 \%$ Mod).
>100:1 on any range.
0.01 Hz to 10 kHz ; 90:10 ramp and 0 Hz Range (provides manual setting of "Sweep Start" without modulation generator oscillating).
Repetitive linear sweep between start and stop frequency settings. Retrace time can be increased with symmetry control.
0 to $>-4 \mathrm{p}-\mathrm{p}$ into $5 \mathrm{k} \Omega$.
$+90^{\circ}$ to $-80^{\circ}$.
0.1 Hz to 1 MHz (useful to 10 MHz ).

DC to 1 MHz , TTL compatible.

1000:1 on any range.
With dial set at 10,0 to $-2 \mathrm{~V} \pm 20 \%$ will linearly decrease frequency $>1000$ :1. An ac voltage will FM about a dial setting within the limits ( $0.1<\mathrm{f}<10$ ) x range setting.
$0.5 \%$ of fmax for $f \max \leq 1 \mathrm{MHz}$. $5 \%$ of fmax for fmax $>1 \mathrm{MHz}$. Deviation is from a best fit straight line. VCO frequency span $\leq 100: 1$.
$2.8 \mathrm{k} \Omega \pm 5 \%$. $\leq 25 \mathrm{VA}$.



## 1. Description

The TG501 Time Mark Generator provides marker outputs from 1 nanosecond to 5 seconds. A unique feature is the 'Variable Timing' output on the front panel and is a two digit LED display which indicates percentage of timing error between the normal time interval and a variable interval set to line up the marker pulse with a graticule or division mark on the display.

## 2. Specification

Markers:
Marker Amplitude:

Trigger Output Signal:

1 ns -5 in a 1-2-5 sequence
Greater than 1 V peak on $5 \mathrm{~s}-10 \mathrm{~ns}$ markers Greater than $750 \mathrm{mV} \mathrm{p}-\mathrm{p}$ on 5 ns and 2 ns markers
Greater than $200 \mathrm{mV} \mathrm{p}-\mathrm{p}$ on 1 ns markers A11 into $50 \Omega$

Slaved to marker output from $5 \mathrm{~s}-100 \mathrm{~ns}$

Internal Timebase:

Crystal Frequency:
Stability $0^{\circ}-50^{\circ} \mathrm{C}$ :
Long-term Drift:
Settability:
Timing Error
Readout Range:
Timing Error
Measuring Accuracy:

1 MHz
1 part in $10^{5}$ (after $\frac{1}{2} \mathrm{hr}$ warm-up)
1 part or less in $10^{5}$ per month
Adjustable to within 1 part in $10^{7}$
$T o \pm 7.5 \%$
Device, under test, error is indicated to within one least significant digit (to within one displayed count)
3. Comprising

Instrument only
4. Accessory Items

None
5. Associated Equipment

110S/6625-00-5006646 Mainframe (Power Supply) TM501



## 1. Description

The Tektronix TM501 is a single hole mainframe with integral power supply which will accept a single module from the TM501 series.

## 2. Specification

The mainframe provides all the power requirements for the relevant plug in modules.
3. Comprising

Instrument only
4. Accessory Items

None
5. Associated Equipment

110S/6625-00-5205199 Time Mark Generator TG501
NYR Current Probe Amplifier AM503



1. Description

The HP214B pulse generator has high-power pulse generation up to 10 MHz repetition rate delivering 100 V pulses with 15 ns rise times. The $214 B$ is well equipped for low duty cycle applications. Where changing duty cycle threatens destruction of the device under test, the 214 B Constant Duty Cycle (CDC) mode provides device protection. In CDC operation the duty cycle, hence power, remains constant as frequency is varied. The 214 B is itself protected against excessive duty cycles via an overload protection circuit. Operating into unmatched loads, clean pulse shape is guaranteed by the low reactance ( $50 \Omega$ ) source impedance. Pulse distortions such as preshoot and overshoot are specified as $5 \%$ at all amplitudes.
2. Specification

Timing
Repetition rate:
10 Hz to 10 MHz in six.ranges. In 30 V - 100 V amplitude range, maximum rep. rate is 4 MHz . Calibrated vernier provides continuous adjustment within ranges.
(continued)
Chap 4.3.6
2. Specification (continued)

Timing (continued)

Period jitter:
Pulse delay/advance:

Position jitter: $\leqslant 0.1 \%+500 \mathrm{ps}$
Maximum pulse position duty cycle:
Double pulse: $\quad 5 \mathrm{MHz}$ maximum in all ranges except 30 V -

Pulse width:

Max duty cycle:

Constant duty cycle mode (disabled in ext trigger mode:

Accuracy:
Trigger output:

100 V range which is 2 MHz max. Minimum separation is 100 ns .
$\leqslant 0.1 \%+300 \mathrm{ps}$
Pulse can be delayed/advanced with respect to the trigger output from 10 ns to 10 ms ( $\pm$ fixed delay of 45 ns ) in five ranges. Calibrated vernier provides continuous adjustment within ranges.
$\geqslant 50 \%$

25 ns to 10 ms in six decade ranges. Calibrated vernier provides continuous adjustment within ranges.
$\geqslant 10 \%$ for $30-100 \mathrm{~V}$ range. $\geqslant 50 \%$ all other ranges.

Duty cycle of output pulse remains constant as the period is varied. The duty cycle limits in this mode are typically $8 \%$ fixed for the $10 \mathrm{MHz}-1 \mathrm{MHz}$ range ( $\max 4 \mathrm{MHz}$ ); $2.5 \%$ to $10 \%$ for 1 MHz to 0.1 MHz range; $0.25 \%$ to $10 \%$ for 0.1 MHz to 10 kHz range; $0.1 \%$ for all other ranges. Calibrated vernier provides continuous adjustment within ranges.
$\pm$ ( $15 \%$ of setting $+1 \%$ of full scale).
Amplitude is $\geqslant+5 \mathrm{~V}$ (50 $\Omega$ into open circuit). Pulse width is 10 ns typical.

External Operating Modes:
External input
(Impedance $10 \mathrm{k} \Omega$, dc coupled): Repetition rate: dc to 10 MHz
Sensitivity: $500 \mathrm{mV} \mathrm{p}-\mathrm{p}$, dc coupled
Slope: pos or neg.
Trigger level: +5 V to -5 V adjustable.
May input level: -100 V
Trigger pulse width: $\geqslant 10 \mathrm{~ns}$
EXT. TRIG mode:

GATE mode:

Manual:

Chap 4.3.6
An output pulse is generated for each input pulse.
Gate signal turns on rep rate generator synchronously. Last pulse always completed.

Page 2
Pushbutton can be used for triggering single pulses (EXT TRIG mode), generating gate signals (GATE mode) or triggering pulse bursts (BURST mode).
2. Specification (continued)

Output:

Amplitude:	0.3 V to 100 V in five ranges, Calibrated   vernier provides adjustment within ranges.
Source impedance:	Fixed $50 \Omega$ nominal on ranges up to 10 V,
	Selectable $50 \Omega$ nominal or HI-Z on $10-30-$   100 V ranges (with $50 \Omega / 50 \Omega$ impedance,   amplitude decreases to $5-15-50 \mathrm{~V}$ ).
Polarity:	Pos or neg selectable.
Transition times:	$\leqslant 15$ ns for leading and trailing edges.
Pulse top perturbations:	$\leqslant-5 \%$ of amplitude.

3. Comprising

Instrument
Power cord
Operating and instruction manual
4. Accessory Items

None.
5. Associated Equipment

None.



## 1. Description

The PM 5715 is a universal pulse generator providing pulses of variable duration, delay and transition times within a frequency range of 1 Hz to 50 MHz . Amplitudes up to 10 V can be selected and permit the generator to work directly into circuits using high level logic components. An adjustable DC offset of -2.5 to +2.5 V is available. A second output provides the same signals as the main output but at a fixed amplitude at TTL level.

### 1.1 Modes of Operation

Three pulse modes are available; single pulse, double pulse and square wave with normal or inverted operation. The output can be externally triggered or gated. Two PM 5715 can be interconnected, as shown in Fig. 1 , to form a true dual channel pulse generator


Fig. 1

## 2. Specification

Repetition Rate

Rate: $\quad 1 \mathrm{~Hz}$ to 50 MHz . Variable in 8 ranges with continuous control within the ranges.

Pulse Duration

Range: $\quad 10$ ns to 100 ms . Variable in 7 ranges with continuous control within the ranges.

Jitter: $\quad \leq 0.1 \%$ or 50 ps whichever is the greater.
Duty Cycle: More than $50 \%$ in normal and inverted mode. (Approaching 100\% in inverted mode).
Pulse Delay
Range: $\quad 10 \mathrm{~ns}$ to 100 ms . Variable in 7 ranges with continuous contro? within the ranges.

Jitter: $\quad \leq 0.1 \%$ or 50 ps whichever is greater.
Main Output Characteristics

Amplitude: $\quad 0.2$ to 10 V into $50 \Omega$. Variable in 4 ranges $(0.5 \mathrm{~V}, 1.5 \mathrm{~V}, 5 \mathrm{~V}$ and 10 V$)$ with continuous control within the ranges.

Polarity: Positive or negative (switchable).

```
 Transition Times: \leq 6 ns to 0.5 s. Rise and fall times
 (at 5 V and lower) independently variable within 6 ranges.
 (Transition times remain constant when
 pulse amplitude is varied).
 Source Impedance: Current source at 10 V range
 50\Omega at 5 V, 1.5 V and 0.5 V ranges
 Wave Form
 Aberrations: \leq 5% of set amplitude
 DC-Offset: -2.5 V to +2.5 V into 50 \Omega, continuously
 variable. (Pulse amplitude plus DC-offset
 maximum }\pm10\textrm{V}\mathrm{).
Auxiliary Output Characteristic
 Amplitude: Fixed output level, TTL compatible, 4.5 V
 open circuit.
 Source Impedance: 50 \Omega.
 Timings: As main output (not square wave).
Synchronous Output
 Pulse Duration: Square wave.
 Amplitude: 1.5 V into 50 \Omega.
 Source Impedance: 50 \Omega.
External Triggering
 Input Level: >1 V.
 Maximum Voltage: 12 V.
 Repetition Rage: 0 to 50 MHz.
 Input Impedance: <1.5 V approx 220 \Omega.
 >1.5 V approx 800 \Omega.
 Manual Triggering: Single shot push-button.
External Gating
 Input Voltage: >1 V. (Synchronous, last pulse completed).
 Input Impedance: <1.5 V approx 220 \Omega.
 >1.5 V approx 800 \Omega.
```

Modes of Operation
Single Pulse Mode: Single pulses are continuously generated at a frequency of 1 Hz to 50 MHz in eight ranges within continuous vernier control in each range.

Double Pulse mode: Twin pulses are generated with the time between pulses set by the delay control. Both pulses have the same duration and transition times.

Square Wave (T/2) A square wave of 1 Hz to 50 MHz . Mode:
(Adjustment of pulse delay and duration settings do not affect the output).
3. Comprising

Item	Part Number	Qty	
Pulse Generator	9446	857	15111


Section Reference: 10S/5881683		Nomenclature:   TIME MARK GENERATOR		
Manufacturer:   TEKTRONIX		Part No:   TG 501A		Cost/Date: $£ 3987 / 1993$
Height:	width:	Depth:	Weight:	
Power Supplies:   N/A			Air Publication:$\mathrm{N} / \mathrm{A}$	
Availability: $2$	Environment: B	Maintenance Policy: $2 \mathrm{~A} / 4 \mathrm{CD}$	Calibration: TBN	afDEETEC No: $19518$



1. Description

The TG 501A Time Mark Generator provides marker outputs from one nano-second to five seconds. A feature of the $T G 501 \mathrm{~A}$ is a variable timing output with a front panel two digit LED display. The display indicates percentage of timing error between the normal time interval and a variable interval that lines up the marker pulse with graticule or division marks on the display. This feature provides direct readout in terms of percentage error and also helps eliminate errors associated with visually estimating error from a display.
2. Specification

Markers:

Marker Amplitude:

Trigger Output Signal:

1 ns through 5 s in a 1-2-5 sequence.
Equal or greater than 1 V peak into 50 ohm on 5 s through 10 ns markers.
Equal or greater than 750 mV peak to peak into 50 ohm on 5 ns and 2 ns markers. Equal to or greater than 200 mV peak to peak into 50 ohm on 1 ns markers.

Slaved to marker output from 5 s through 100 ns. Remains at 100 ns for faster markers.
2. Specification (continued)

Internal Time Base:	Crystal frequency 5 MHz ; stability 0 to $50^{\circ} \mathrm{C}$   within five parts in $10,000,000$ after $1 / 2 \mathrm{hour} ;$
long - term drift one part or less in	
$10,000,000$ per month; stability adjustable to	
within five parts in $100,000,000$.	

3. Comprising

Introduction Manual, Part No. 070-1576-02
4. Accessory Items

None
5. Associated Equipment

Sect/Ref No.
Nomenclature

10S 5006646 Tektronix TM 501 Mainframe
IOS 3737528 Tektronix TM 503 Mainframe

10S/7982646		Nomencla ture   ANTENNA TEST SET		
itanufacturer   H R SMITH (TE	HTEST) Lt	Pert No.$12-602-4$		$\begin{aligned} & \hline \text { Cost/Date } \\ & £ 4026 \quad 1987 \end{aligned}$
:leight $203 \mathrm{~mm}$	$305 \mathrm{~mm}$		Depth 212 mm	weight $8.2 \mathrm{Kg}$
```Pover Supplies 28 V dc = 2 V or INTERNAL BATTERY```				Air Publication TBD
Availability 2	Environment B	Maintenance Policy $2 A B / 3 C / 4 D$	calibration TBA	AFDEETEC/AFDSEC No. 19396

1 Description

The 12-602-4 is a versatile and portable test set designed to measure accurately the VSWR of antenna systems or other RF loads referred to 50 ohms. It will also determine any feeder loss by measuring the effective mismatch of a cable when the far end is terminated in a short circuit. The output may be used as a source of modulated RF. The test set covers the frequency ranges 60 to 400 MHz and 850 to 1250 MHz in four bands and is housed in a showerproof, ruggedized metal case.
There are two read-outs, a digital display of output frequency and a moving coil meter with three calibrated scales as follows:

1 VSWR calibrated logarithmically from 1:1 with 5:1 being the mid scale point.
2 Expanded VSWR calibrated logarithmically from $1: 1$ with $2: 1$ being the mid scale point.
3 Line loss in $d B$ calibrated logarithmically for each VSWR scale. In addition Battery level is indicated when a biased toggle switch is operated.

Frequency Coverage: | Band 1 | $60-100 \mathrm{MHz}$ |
| :--- | :--- |
| | Band 2 |
| | Band 3 |
| | Band $400-200 \mathrm{MHz}$ |
| | The frequency is continuously tuneable |
| | and displayed on a digital readout. |

Digital Frequency Readout Accuracy:
$60-400 \mathrm{MHz} \pm 25 \mathrm{kHz} \pm$ LSD
$850-1250 \mathrm{MHz} \pm 500 \mathrm{kHz} \pm$ LSD

Measurement Connector ' N ' Type
RF Level at Measurement
Connector -10 dBM .
Battery Life: $\quad 8$ hours nominal.

Power Consumption (Batteries): 350 mA nominal.

Battery Charger
Characteristics: 28V dc 2A.

Comprising

5935-99-5199828	Coupler	SA/ST 102405
5935-99-5199806	Adaptor	'BNC' Male GE 507
5935-99-5199817	Adaptor	'BNC' Female GE 508
5935-99-5199808	Adaptor	'C' Male GE 503
5935-99-5199819	Adaptor	'C' Female GE 504
5935-99-5199807	Adaptor	'N' Male GE 501
5935-99-5199818	Adaptor	'N' Female GE 502
5935-99-5208432	Adaptor	'TNC' Male GE 511
5935-99-5208433	Adaptor	'TNC' Female GE 512
5935-99-6487566	Short Circuit Plug	'BNC' Female GE 508-4850
5935-99-6487565	Short Circuit Plug	'C' Female GE 504-4850
5935-99-6487564	Short Circuit Plug	'N' Female GE 502-4850
5935-99-6487567	Short Circuit Plug	'TNC' Female GE 512-4850
5935-99-6570506	Cable Assembly	1.5 Metre KA-00-007
5935-99-6554904	Whip Antenna	JA-00-031
5935-99-5199827	Spanner (Qty 2)	JA-00-029
TBA	Mains/Charging cabl	

4 Accessory Items

None

5 Associated Equipment
None
4. Accessory Items

None
5. Associated Equipment

None

1. Description

The Navigation Test Kit is a set of four individual hand-held test sets used for First Line confidence testing of aircraft ILS/VOR systems. There are four testers, Localiser, Glideslope, Marker and VOR giving an over-all system test capability. All test sets are set to one preset frequency at manufacture. The Navigation Test Kit is only a confidence tester and any fault or suspect fault must be followed up by using the CRM555 Comprehensive ILS/VOR Test Set.
2. Specification

Localiser Test Set:

Operating frequency:
Output power:
Modulation tones:
Temperature range:
Frequency stability:

111.95 MHz

-10 dBm to 0 dBm
90 Hz and 150 Hz locked
$-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
$\pm 0.005 \%$

Chap 4.4.2

```
    Tone distortion: 3% maximum
    Tone frequency stability: }\pm0.5
    Modulation depth:
    DDM range:
    DDM centering accuracy:
G1ideslope Test Set:
    Operating frequency: }\quad330.95\textrm{MHz
    Output power:
    Modulation tones:
    Temperature range:
    Frequency stability:
    Tone distortion:
    Tone frequency stability:
    Modulation depth:
    DDM range:
    DDM centering accuracy:
    -10 dBm to 0 dBm
    90 Hz to 150 Hz locked
    -10 % Co +50 % C
    \pm 0.005%
    3% maximum
    -0.5%
    40% \pm 5 each tone
    0 to 0.2 approx.
    -0.01
Marker Tester:
    Operating frequency:
    Output power:
    Frequency stability:
    \pm 0.005%
    Operating temperature range: -10 C to }+5\mp@subsup{0}{}{\circ}\textrm{C
    Tone frequency stability: }\pm1
    Tone frequency stability: }\pm1
    Modulation depth:
    90% \pm 10%
    Modulation frequency:
    3000 Hz(inner), 1300 Hz(middle),
    400 Hz(outer) cw
VOR Tester:
    Frequency:
    Output power:
    108.0 MHz
    -10 dBm to 0 dBm
    VOR accuracy (calibrate):
    VOR setting range:
    Modulation depth:
    VOR multiplex output:
    9960 Hz sub-carrier
    deviation:
    30 Hz stability:
    75 MHz
    -1 dBm, +1 dBm, -4 dBm
    \pm2
    250-360 To or From
    30 Hz, 9960 Hz 30% \pm 5%
    2 V p-p into 100 k\Omega
    960 Hz p-p \pm 100 Hz FM
    \pm 0.3%
```

Chap 4.4 .2
3. Comprising

10ZZ/210449
10ZZ/210450
10ZZ/210451
10ZZ/210452
10ZZ/210454

Marker Tester
VOR Tester Localiser Tester Glideslope Tester Transit Case

0175CA 0180CA 0190CA 0195CA ASH 7010AA
4. Accessory Items

10ZZ/206201 Attenuator 20 dB FP50-20 6135-99-9496083 Battery PP3
5. Associated Equipment

10S/6382785 Comprehensive ILS/VOR Test Set CRM555

1. Description

The Test Oscillator $210(\mathrm{AM})$ is used to check both the operation of the guard frequency receiver and, the homing circuits and indicator of the main receiver on aircraft. The Model 210 operates in the airborne frequency band and provides amplitude modulated signals at switched frequencies of 125 MHz and 250 MHz .

2. Specification

Frequency:
Frequency Accuracy:
Spectral Purity:
VHF 125 MHz
UHF 250 MHz
$\pm 10 \mathrm{ppm}$
Spurious products:
Non-harmonically related below -60 dBc . Harmonically related below -45 dBc .

Modulation:

Type:
Frequency:
Depth:
Spurious FM:
Power Output:
Antenna:
3. Comprising

10S/6625-99-7774433
4. Accessory Items

6135-99-9496083
Battery 9 V
PP3
5. Associated Equipment

None.

1. Description

The Test Oscillator 220 (FM) is used to check both the operation of the guard frequency receiver and, the homing circuits and indicator of the main receiver on aircraft. The Model 220 operates in the marine band and provides frequency modulated signals at 78.4 MHz and 156.8 MHz .

2. Specification

Frequency:

Frequency Accuracy:
Spectral Purity:

VHF 78.4 MHz UHF 156.8 MHz
$\pm 10 \mathrm{ppm}$
Spurious products:
Non-harmonically re1ated below -60 dBc. Harmonically related below -45 dBc .

Modulation:
Type: FM
Frequency:
Deviation:
Spurious AM:
Power Output:
Antenna:
800 Hz nominal
1200 Hz nomina1 $\pm 20 \%$
Less than 1 dB
$>-10 \mathrm{dBm}$ into 50Ω
Flexible and detachable helical whip with BNC connector
3. Comprising

Instrument
Padded Carry case
4. Accessory Items

6135-99-9496083
Battery 9 V
PP3
5. Associated Equipment

None

1. Description

The Test Oscillator is used to check the operation of aircraft V/UHF receivers and airborne sonobuoy equipment. The model 230 operates in the airborne frequency band and provides amplitude modulated signals at switched frequencies of 172 MHz and 344 MHz .

2. Specification

Frequency:

VHF $\quad 172 \mathrm{MHz}$
UHF 344 MHz
Frequency Accuracy:
$\pm 10 \mathrm{ppm}$
Spectral Purity:

Spurious products:

Non-harmonically related below -60 dBC . Harmonically related below $\mathbf{- 4 5} \mathrm{dBC}$.

Specification (continued)
Modulation:

Type: AM
Frequency:
Depth:
Spurious FM:
Power Output:
Antenna:

800 Hz nominal
$50 \% \pm 10 \%$ modulation.
Less than 1 kHz .
$>-10 \mathrm{dBm}$ into 50Ω.
Flexible detachable helical whip with BNC connector.
3. Comprising

Instrument
Padded Carry Case
4. Accessory Items

6135-99-9496083 Battery 9 V, PP3.
5. Associated Equipment

None

1 Description

The 52955-324L Radio Communications Test Set combines all the instruments required for transceiver testing within a single unit. It is designed for bench and field service applications. The instrument may be operated from all standard ac supplies, aircraft or vehicle supplies or battery pack. Comprehensive facilities are provided for testing all types of $A M, F M$ and Phase Modulated radio equipment including, Selcal, low-power hand portables and digital pagers.

The 52955-324L comprises 14 instrument functions for transceiver testing: RF power meter, RF frequency meter, modulation meter, RF signal generator, dual AF signal generators, AF frequency meter, AF voltmeter, $1 \mathrm{kHz} A F$ distortion meter, S / N and SINAD meter, sequential tones encoder/decoder, DTMF encoder/decoder, digitally coded squelch (DCS) encoder/decoder, POCSAG digital pager encoder and digital oscilloscope. Using the relevant directional power head the instrument gives a direct reading of forward power, reverse power and VSWR.

The 52955-324L is provided with 26 non-volatile stores, each capable of retaining a complete front panel set-up, with instant recall when required. One additional storage location provides power fail back-up so that the last front panel setting is restored after a supply failure.

The 52955-324L's GPIB option provides full instrument control and adds further versatility for automatic testing, and computer assisted manual testing. A write-to-screen capability enables the CRT to be used as a VDU for operator instructions and simple straight line graphics.

Specification
RF SIGNAL GENERATOR
Frequency

Range:
Resolution:

Indication:
Setting:

Accuracy:
OUTPUT LEVEL
Range:

Resolution:
Indication:

Setting:

Accuracy: $\pm 2 \mathrm{~dB}$ for levels above -127 dBm

SPECTRAL PURITY

Residual FM:	Less than 30 Hz up to 520 MHz typ. 15 Hz Less than 60 Hz up to 1000 MHz typ. 30 Hz Measured in 300 Hz to 3.4 kHz bandwidth
Residual AM:	<0.5\%, $0.3-3.4 \mathrm{kHz} \mathrm{B.W}$.
Harmonics:	Less than -20 dBc up to 1.5 MHz -25 dBc up to 250 MHz -20 dBc up to 1000 MHz
Sub-harmonics:	None up to 530 MHz Less than -25 dBc to 1000 MHz
Spurious signals:	For carrier frequencies up to 88 MHz Less than -45 dBc up to 110 MHz Less than -35 dBc above 110 MHz For carrier frequencies up to 1000 MHz Less than -60 dBc
Signal/noise at 20 kHz :	$\begin{aligned} & \text { Less than }-106 \mathrm{dBc} / \mathrm{Hz} \text { up } 500 \mathrm{MHz} \\ & \text { Less than }-100 \mathrm{dBc} / \mathrm{Hz} \text { to } 1000 \mathrm{MHz} \end{aligned}$
RF leakage:	Less than $0.2 \mu \mathrm{~V}$ pd generated in a 50Ω load by a 2 -turn 25 mm loop as near as 25 mm to the case of the instrument with the output set to less than -20 dBm and the output terminated in a 50Ω sealed load
Protection:	50 W reverse power trip, automatically resets on removal of power input (BNC socket) Visual alarm warning (REMOVE RF INPUT) and audible alarm provided for added protection
UTPUT IMPEDANCE	50Ω nominal
SWR	Less than 1.2 to 500 MHz , less than 1.35 to 1000 MHz (N-type) Less than 2.2 to 1000 MHz (BNC)

MODULATION

INTERNAL AMPLITUDE MODULATION

CW range:	$\begin{aligned} & 1.5 \text { to } 400 \mathrm{MHz} \\ & \text { usable from } 400 \mathrm{kHz} \text { to } 500 \mathrm{MHz} \end{aligned}$
Mod. depth range:	0 to 99\%
Mod. frequency range:	20 Hz to 20 kHz
Resolution:	1\%
Indication:	2 digits
Setting:	Via keyboard entry. Step change variation by INC/DEC keys and rotary control

Accuracy

EXTERNAL
Input impedance:

Sensitivity:

AM distortion:
$\pm 7 \%$ of reading ± 1 digit at 1 kHz
$\frac{ \pm}{5} 10 \%$ of reading ± 1 digit 50 Hz to ± 1 digit
50 Hz to 15 kHz up to $85 \% \mathrm{AM}$
As internal plus
$1 \mathrm{M} \Omega$ in parallel with approximately 40 pF
1.0 V pp for $30 \% \mathrm{AM}$ at $1 \mathrm{kHz} \pm 15 \%$ reading $\pm 1 \% \mathrm{AM}$

Less than 2% distortion at 1 kHz with $30 \% \mathrm{AM}$ (300 Hz to 3.4 kHz bandwidth)

FREQUENCY MODULATION INTERNAL

CW range:
Modulation range:
Mod. frequency range:
Resolution:

Indication:
Setting:

Accuracy:

EXTERNAL

Input Impedance:

Modulation range:
Mod. frequency range:
Sensitivity:

FM distortion:
0.4 to 1000 MHz

0 to 25 kHz
20 Hz to 20 kHz
25 Hz (<6.25 kHz dev.)
100 Hz (<25 kHz dev.)
4 digits
Via keyboard entry. Step change variation by INC/DEC keys and rotary control
$\pm 7 \%$
$\pm 10 \%$
\pm
$(50 \mathrm{~Hz}$ (at 10 kHz$)$
$(5 \mathrm{kHz}$ to 15 kH
As internal plus:
$1 \mathrm{M} \Omega$ in parallel with approximately 40 pF

0 to 30 kHz

1 Hz to 50 kHz
1 V pp for 5 kHz deviation:
$\pm 10 \%$ at 1 kHz
Less than 1% distortion at 1 kHz with 5 kHz deviation $(300 \mathrm{~Hz}$ to 3.4 kHz bandwidth)

PHASE MODULATION INTERNAL
CW range:
Modulation range:
Mod. frequency range:
Resolution:
Indication:
0.4 to 1000 MHz

0 to 10 rads
300 Hz to 3.4 kHz
$0.02 / 0.03$ rads, up to 6.3 rads
3 digits

Specification (cont.)
Setting:

Accuracy:

ФM distortion:

EXTERNAL

Input impedance:

Sensitivity:

DUAL AUDIO GENERATOR

OUTPUT IMPEDANCE

WAVEFORM SHAPE
FREQUENCY

Range:	50 Hz to 15 kHz (Usable 20 Hz to 20 kHz)
Resolution:	$\begin{aligned} & 0.1 \mathrm{~Hz}(10 \mathrm{~Hz} \text { to } 9.999 \mathrm{kHz}) \\ & 1 \mathrm{~Hz}(10 \mathrm{kHz} \text { to } 20 \mathrm{kHz}) \end{aligned}$
Indication:	5 digits
Setting:	Via keyboard and with rotary control for step change variation
Accuracy:	$\begin{aligned} & \pm 0.01 \mathrm{~Hz} \text { from } 10 \mathrm{~Hz} \text { to } 100 \mathrm{kHz} \\ & \pm 0.1 \mathrm{~Hz} \text { from } 100 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} \end{aligned}$
Distortion:	```Less than 1% from 50 Hz to 15 kHz (sine) Less than 0.5% at 1 kHz```
Residual noise:	Less than 0.1 mV r.m.s. in a psophometric bandwidth
dc offset:	Less than 10 mV dc
OUTPUT LEVEL (emf)	
Range:	```0.1 mV to 4.095 V rms (sine and square) 0.1 mV to 4.095 V peak (triangle and sawtooth)```
Accuracy:	$\pm 5 \% \pm 1$ digit. 50 Hz to 15 kHz
Setting:	0.1 mV steps (0.1 mV to 409.5 mV) 1 mV steps (409.5 mV to 4.095 V)

Specification (cont.)
RF FREQUENCY METER
FREQUENCY

Range:
Resolution:

Typ. acquisition:
1.5 MHz to 1000 MHz

1 Hz or 10 Hz to 200 MHz 10 Hz from 200 MHz to 1000 MHz

Up to 200 MHz , 100 ms with 10 Hz resolution; 1 s with 1 Hz resolution Up to $1000 \mathrm{MHz}, 400 \mathrm{~ms}, 10 \mathrm{~Hz}$ resolution only

Input to type-N socket; $5 \mathrm{~mW}(0.5 \mathrm{~V}), \mathrm{TX}$ mode selected 20 mW (1 V) one/two port duplex $0.05 \mathrm{~mW}(50 \mathrm{mV}) \mathrm{BNC}$ input

As internal standard ± 1 digit

RF POWER METER

INPUT
Range:

Frequency range:
Resolution:
Indication:
Setting:

Accuracy:

VSWR
0.05 mW to 150 W

Input to type-N socket; 50 mW to 75 W continuous. TX mode selected 100 mW to 75 W continuous in single port duplex mode
(150 W max. for typically 2 minutes at
$25^{\circ} \mathrm{C}$ continuous). End of safe working
is indicated by screen warning "REMOVE
RF INPUT" and audible alarm
Input to BNC socket
Usable 0.05 mW to 1.0 W
As RF Frequency Meter
1\% full-scale
$2 / 3$ digits and analog display
Automatic ranging on scales 0 to 30 ,
0 to 10
0 to 300 mW .0 to 1,0 to 3,0 to 10 ,
0 to 30
0 to 100 W and 0 to 300 W
$\pm 10 \% \pm 1$ digit up to 500 MHz
$\pm 15 \% \pm 1$ digit up to 960 MHz
$\pm 20 \% \pm 1$ digit up to 1000 MHz
$\pm 20 \%$ typ. BNC socket

Less than 1.2 to 500 MHz , less than
1.35 to 1000 MHz (N-type)

Less than 2.2 to 1000 MHz (BNC)

MODULATION METER

Manual-tune:

Auto-tune:

Acquisition:
INPUT
Frequency range:
Sensitivity:
AF filters:

AMPLITUDE MODULATION
CW range:
Modulation range:

Mod. frequency range:

Resolution:
Indication:
Accuracy:

Demod. distortion:

Residual AM:

FREQUENCY MODULATION
Modulation range:

Provides frequency offset indication from carrier. 3 Digits and decimal point indicate most significant positive or negative error

Provides:
Measurement and simultaneous display of RF frequency, power, modulation frequency and level, and 1 kHz demod. distortion

Less than 3 seconds at 10 Hz resolution

As RF Frequency Meter
As RF Frequency Meter
The following filters are available:
Bandpass - 300 Hz to 3.4 kHz
Low pass - 300 Hz
Low pass - 15 kHz
1.5 MHz to 400 MHz

0 to 90% up to 100 MHz
0 to 80% up to 400 MHz
in auto-tune mode
0 to 100% up to 400 MHz in manual-tune mode
Automatic ranging (bar chart) 0 to 10 , 0 to 30, 0 to 100\% depth

50 Hz to 10 kHz (usable 10 Hz to 15 kHz)

1\% AM
2 digits and +/- peak analog display
$\pm 5 \% \pm 1$ digit at $1 \mathrm{kHz} \pm 8.5 \% \pm 1$ digit from 50 Hz to $10 \mathrm{k} \overline{\mathrm{H} z}$

Less than 5\% below 21 MHz and less than 2% above. Measured with 300 Hz to 3.4 kHz filter and $30 \% \mathrm{AM}$ at 1 kHz modulation frequency
<1\% at frequency meter sensitivities $+6 \mathrm{~dB}$

0 to 25 kHz
Automatic ranging (bar chart) 0 to 1 , 0 to 3,0 to 10,0 to 30 kHz

Mod. frequency range

Resolution:

Indication:
Accuracy:

Demod. distortion:

Residual FM:

PHASE MODULATION

Modulation range:

Mod. frequency range:

Resolution:
Indication:
Accuracy:

Demod. distortion:

50 Hz to 10 kHz (typically 10 Hz to 15 kHz)

10 Hz up to 2.5 kHz deviation 1\% up to 25 kHz deviation

3 digits and $+/-$ peak analog display

Less than 1.5% at 5 kHz deviation and 1 kHz modulation frequency in a 300 Hz to 3.4 kHz bandwidth

Less than 30 Hz rms up to 500 MHz , typ. 15 Hz
Less than 60 Hz rms up to 1000 MHz , typ. 30 Hz
For inputs above $20 \mathrm{~mW} / 0.2 \mathrm{~mW}$ ($\mathrm{N} / \mathrm{BNC}$) measured in a 300 Hz to 3.4 kHz bandwidth

```
0 to 10 radians
Automatic ranging (bar chart) 0 to 1,
0 \text { to 3, and 0 to } 1 0 \text { radians}
300 Hz to 3.4 kHz. Phase de-modulation
is obtained using 750 \mus de-emphasis
1% or 0.01 radians
3 digits and +/- peak analog display
\pm5% \pm 1 digit at 1 kHz
士 7.5% \pm 1 digit from 0.3 to 3.4 kHz
w.r.t. }\overline{7}50\mus\mathrm{ de-emphasis
Less than \(2 \%\) at 5 rads modulated by 1 kHz measured in 300 Hz to 3.4 kHz bandwidth
```

1 KHz
0 to $18 \mathrm{~dB}, 0$ to 50 dB (SINAD)
0 to 30,0 to $100 \mathrm{~dB}(\mathrm{~S} / \mathrm{N})$
0.1 dB

3 digits plus analog display
$\pm 1 \mathrm{~dB}$
50 mV (100 mV for $40 \mathrm{~dB} \operatorname{SINAD} / \mathrm{S} / \mathrm{N}$)

DISTORTION METER

Frequency:
Range:

1 kHz
0 to 10\%, 0 to 30% distortion

Specification (cont.)
Resolution: 0.1% distortion

Indication:
Accuracy:
Sensitivity:
AF LEVEL METER
Features:
Input impedance:

Frequency range:

Level range:

Resolution:
Indication:
Accuracy:
Frequency response:

AF FREQUENCY METER

Range:
Resolution:
Indication:
Accuracy:

Sensitivity:

3 digits plus analog display
$\pm 5 \%$ of reading $\pm 0.5 \%$ distortion
$50 \mathrm{mV} / 100 \mathrm{mV}$ (100 mV for 1% distortion)
$\mathrm{ac}+\mathrm{dc}$, or ac measurements
$1 \mathrm{M} \Omega$ in parallel with approximately 40 pF

50 Hz to 20 kHz (or dc) usable 20 Hz to 50 kHz

0 to $100 \mathrm{mV}, 0$ to 300 mV 0 to 1 , 0 to 3 0 to 10,0 to 30 , and 0 to 100 V

1 mV on 1% dependent on range
3 digits plus analog display
$\pm 3 \% \pm 3 \mathrm{mV} \pm 1$ digit
Switchable: bandpass 0.3 to 3.4 kHz low pass 300 Hz or 50 kHz

20 Hz to 20 kHz
$0.1 \mathrm{~Hz} / 1 \mathrm{~Hz}$
3, 4 or 5 digits
As internal standard ± 1 digit $\pm 0.1 \mathrm{~Hz}$ or 0.02% (whichever is greater)

50 mV

INTERNAL FREQUENCY STANDARD

OCXO	Oven controlled crystal oscillator, nominal frequency 10 MHz
Temperature coefficient:	Less than ± 5 parts in 10^{8} from 0 to $50^{\circ} \mathrm{C}$
*	Less than 4 parts in $10^{9} / \mathrm{deg} \mathrm{C}$ from 50 to $70^{\circ} \mathrm{C}$
Ageing rate:	Less than ± 1 part in $10^{7} /$ month $^{\prime}$, ± 5 parts in $10^{7} /$ year after 1 month's continuous use
Short-term stability:	Less than ± 1 part in $10^{9} \mathrm{rms}$ frequency error Over a 1 s period

```
    Retrace error: less than +2 parts in 107 over 24 hours
    at constant temperature and after 25
    minutes warm-up
EXTERNAL FREQUENCY STANDARD INPUT
    Frequency: 1 MHz
    Level:
    Impedance:
    100 mV to 3 V rms
    10 k\Omega in parallel with 100 pF
    approximately
```

DIGITAL STORAGE OSCILLOSCOPE
Features: Single or repetitive sweep, available
in TX, RX and Audio Test modes,
calibrated for $A M, F M$ and ΦM
Frequency range: dc to 50 kHz (from 3 Hz on ac)
Voltage range:
$10 \mathrm{mV} / \mathrm{div}$ to $20 \mathrm{~V} /$ div in a $1-2-5$
sequence
Accuracy:
$\pm 5 \%$
FM ranges: $\quad \pm 30,15,6,3,1.5 \mathrm{kHz}$ deviation at
ФM ranges:
AM ranges:
Sweep rates:
Trigger:
Repetitive or single-shot storage

SELCALL ENCODER/DECODER

Tone encoder facilities:	Send continuous, burst, single step, extend any tone, null, repeat or frequency shift up to $\pm 9 \%$ in 1% steps
Tone decoder facilities:	Displays tone number, frequency and percentage error. Screen indicates
	null tones (using CRT) and annotates
out of limit frequencies with for ease	
of identification	

Revertive tones:

ADDITIONAL FEATURES

Frequency:
Level:
Impedance:
Bandwidth:
DEMODULATION OUTPUT SOCKET
Level:
Impedance:
Bandwidth:

IF OUTPUT SOCKET

EXTERNAL MODULATION

ACCESSORY SOCKET

DTMF ENCODE/DECODER

PAGER TESTER

DCS ENCODER

DCS DECODER
DTMF ENCODE/DECODER

SPECIAL KEY FUNCTIONS
RX=TX FREQ:

Available in Receive Test Mode, tones are sent to the radio and the 2955A awaits a response.

110 kHz nominal
Minimum 180 mV
50Ω minimum load $5 \mathrm{k} \Omega$
50 kHz to 350 kHz

400 mV pp for $\pm 1 \mathrm{kHz}$ deviation $\pm 10 \%$
$10 \mathrm{k} \Omega$ nominal
Either $300-3.4 \mathrm{kHz}, 15 \mathrm{kHz} \mathrm{LP}$ or 300 Hz LP set via front panel filter switch

In RX MOD, the 2955A can be configured to measure the modulation at the EXT MOD INPUT. Adjustment will provide the desired modulation level.

Pins 3, 4, 5, 6 accessory control
Pin 2, $+12 \mathrm{~V}, 100 \mathrm{~mA} \max$
Pin 7, AF output, 1 W into 8Ω
Pin 1, pulse output available under GPIB control, approximately 600 ns

Provides DTMF encoder and decoder under Tones menu

Encoding of POCSAG code CCIR No. 1 Rec. 584 Bit rate 400 - 1500 bits/s, deviation 0 to 25 kHz . Allows entry of Radio Identity Code (RIC), 4 addresses, 2 preset numeric messages, 4 alphanumeric messages and insertion of bit errors.

Digitally Coded Squelch encoder, allows entry of Bit rate 100 - 200 bits/s, deviation $0-25 \mathrm{kHz}$. Polarity, normal or inverted, RIC 3 digit code

Displays bit rate, deviation, polarity and all possible codes

Presets the RF signal generator frequency for receiver test mode to that shown in TX mode

Hold Display:	Freezes instrument settings and readings, facilitating high RF power measurements and hard copy printout of TX, RX, Duplex or AF test screens
INC/DEC:	Available in TX, RX, Duplex and AF test modes for defining frequency or level increments of the $A F$ and $R F$ signal generators. Any step size setting within the range and resolution of the test set is permissible
Store/Recall:	26 non-volatile stores (01 to 26) are provided, each capable of retaining all front panel settings for up to 10 years. An additional store (00) is provided to retain the last test setup, in the event of a power fail
Help:	Provides access to SELF TEST, stores lock, RF meter resolution, SINAD or S / N default values, external attentuator offset, variable default deviation, 2955/2955A emulation, default AF filter, RX/TX mod. type lock, USA/Europe tone standard selection, and user help for $T X, R X$, Duplex and $A F$ test modes
Hold range:	The displayed bar chart can be held, ie no autoranging, by use of the scope pushbuttons
Audible output:	For listening to demod output and received audio
Two tone modulation:	In transmit mode, two tones are available under tones menu. In receiver mode, external modulation inputs add to internal modulation

GENERAL

POWER REQUIREMENTS

Rated supply voltage:	$105-120 \mathrm{~V} \mathrm{ac}, 210-240 \mathrm{~V}$ ac all $\pm 10 \%$
Supply frequency range:	$45 \mathrm{~Hz}-440 \mathrm{~Hz}$
Maximum consumption:	100 VA
DC supply voltage:	$11-32 \mathrm{~V} \mathrm{dc}$
DC supply consumption:	Less than 60 W

GPIB INTERFACE

Capabilities:

A GPIB interface is fitted as optional. All functions except the supply switch are remotely programmable

Complies with the following subsets as defined in IEEE 488-1978 and IEC Publication 625-1: SH1, AH1, T5, L4, SR1, RL1, PPO, DT1, E1

Specification (cont.)
RADIO FREQUENCY Conforms with the requirement of EEC INTERFERENCE

SAFETY
RATED RANGE OF USE
LIMIT RANGE OF OPERATION
CONDITIONS OF STORAGE AND AND TRANSPORT

Temperature:	$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$			
Humidity:	Up to 90% humidity			
Altitude:	Up to 2500 m (pressurized freight at 27 kPa differential, i.e. $3.9 \mathrm{lbf} / \mathrm{in}^{2}$)			
DIMENSIONS AND WEIGHT	Height	Width	Depth	Weight
	$\begin{aligned} & 197 \mathrm{~mm} \\ & 7.75 \mathrm{in} \end{aligned}$	$\begin{aligned} & 389 \mathrm{~mm} \\ & 15.3 \mathrm{in} \end{aligned}$	$\begin{aligned} & 584 \mathrm{~mm} \\ & 23.0 \mathrm{in} \end{aligned}$	$\begin{aligned} & 15.5 \mathrm{~kg} \\ & 34 \mathrm{lb} \end{aligned}$
	Includes dimension of handle, feet and front cover			

Comprising
BOX 1: MAIN INSTRUMENT

Item	Part No.	Sect/Ref	Qty
Transit Case	$46662-353 \mathrm{Y}$	TBA	1
Test Set Radio	$52955-910 \mathrm{I}$	TBA	1
dc Supply Lead	$43130-119 \mathrm{U}$	TBA	1
Battery Pack	$54462-023 \mathrm{~W}$	TBA	1
dc Charging Lead	$43130-518 \mathrm{M}$	TBA	1
Mains Lead	$54341-012 \mathrm{~F}$	TBA	1
Fuse Pack	$54377-001 \mathrm{M}$	TBA	1
Operating Manual	$52955-325 \mathrm{~J}$	TBA	1

BOX 2 ACCESSORIES 54717-013E

Item	Part No.	Sect/Ref	Qty
Accessory Case	54112-154L	TBA	1
Microphone PTT Interface	54432-013E	TBA	1
Directional Power Head (HF) $1-50 \mathrm{MHz}$	54421-002L	TBA	1
Dîrectional Power Head (V/UHF 25-1000 MHz	54421-003J	TBA	1
Power Head Cable (3M)	43130-591B	TBA	2
N/BNC Adapter	54311-092P	TBA	1
Telescopic Antenna	54421-001N	TBA	1
IEEE 488 Cable	43129-189U	TBA	1
BNC/BNC 26 cm Cable	43130-499J	TBA	2
N/N 1 m Cable	54311-095C	TBA	2
BNC/BNC Cable	43126-012S	TBA	4
Printer	54211-001D	TBA	1
Printer Ribbon/Paper	46883-877P	TBA	1
20 dB 1 w Attenuator	54431-011D	TBA	1

Item	Part No.	Sect/Ref	Qty
20 dB 20 w Attenuator	$54431-028 \mathrm{Y}$	TBA	1
20 dB AF Attenuator	$54431-023 \mathrm{~A}$	TBA	2
Accessories Operating	$54717-013 \mathrm{E}$		
Manual			1
RAF Interface	$54490-050 \mathrm{D}$	TBA	1
Complete With:			
BNC/BNC 13 cm Cable	$43130-498 \mathrm{~L}$	TBA	3
BNC/BNC 26 cm Cable	$43130-499 \mathrm{~J}$	TBA	4
BNC/BNC 7 cm Cable	$43137-590 \mathrm{R}$	TBA	2
Cable Assy. (Tels 1/Mic)	$43137-586 \mathrm{C}$	TBA	1
Cable Assy. (Tels 2)	$43137-587 \mathrm{R}$	TBA	1
Power Lead	$43137-588 B$	TBA	1
Power Lead	$43137-589 \mathrm{~K}$	TBA	1

Accessory Items None.

5
Associated Equipment
None.

Section Refere 10S/19698		Nomenclature: LIGHTWEIGHT TEST SET (L	MPREHENSIVE S)	MMUNICATIONS
Manufacturer: RHODE \& SCHWARZ		Part No: CMS 33		Cost/Date: £6185 00/95
Height: 175 mm	width: 320 mm	Depth: 375 mm	weight: $18.5 \mathrm{~kg}, 23 \mathrm{~kg}$ WITH BATTERY	
Power Supplies: $100 / 120 / 220 / 240 \mathrm{~V}$ AC $\pm 10 \% 47$ to 420 Hz or 11 to 32 V DC (50 W)			Air Publication: User's Handbook	
Availability: 1	Environment: C	Maintenance Policy: 1A/4BCD	Calibration: 36 Months	AFDEETEC NO: 19539

1. Description

The CMS 33 Lightweight Comprehensive Communications Test Set (LCCTS) tests AM, FM and SSB transceivers in the HF, VHF and UHF bands, including the necessary selective call methods (SELCAL) and also permits analysis of the intercom network. The unit provides signals to enable testing of ILS/VOR, Market Beacon, Homing and ADF. It may be powered from mains AC, an external DC supply (through a locally manufactured dc power lead using accessory item CMS $Z 7$ connector) or when used with the CMS $Z 42$ battery pack, is ideal for field and first line use, yet maintains the accuracy of similar workshop based instruments. The minimum operating time of the battery is one hour.

The CMS 33 has a large LCD display and makes extensive use of 'soft keys', this, in addition to its "off air" capabilities, remote operation and auto-run facilities improve the instrument's useability. The comprehensive measuring facilities incorporate a spectrum monitor and transient recorder, as well as VSWR, enabling all kinds of applications (distance to fault, filter tests etc.), to be undertaken. A PCMCIA smart card facility allows for the development of PC based analysis of test results as well as the use of approved automated test procedure. Locally manufactured MIC/TEL cables are required.
2.

```
Specification
RECEIVER MEASUREMENTS
```

```
SIGNAL GENERATOR
```

Frequency:
Range: $\quad 400 \mathrm{kHz}$ to 1000 MHz (Useable from 300 kHz).
Resolution: $\quad 10 \mathrm{~Hz}$
Accuracy: $\quad \pm 1 \times 10^{\circ} 6$
Harmonics: $\leq-25 \mathrm{dbc}$
Nonharmonics
(at $>5 \mathrm{kHz}$ from
f_{c} and $\left.-3 \mathrm{dBm}\right): \quad \leq-50 \mathrm{dbc}$
Residual Effects:
AM (CCITT, RMS) $\leq 0.03 \%$
FM (CCITT, RMS)
$0.4-250 \mathrm{MHz} \leq 10 \mathrm{~Hz}$
$250-500 \mathrm{MHz} \leq 5 \mathrm{~Hz}$
$500-1000 \mathrm{MHz} \leq 10 \mathrm{~Hz}$
Phase Noise (at
20 kHz from f_{c}) $\leq-110 \mathrm{dbc} / \mathrm{Hz}$
Timebase:
Stability
0 to $50^{\circ} \mathrm{C} \quad \leq 1 \times 10^{-6}$
Ageing: $\quad \leq 5 \times 10^{-8} /$ day
$\leq 5 \times 10^{\circ} /$ month
$\leq 1 \times 10^{-6} /$ year
Warm-up (from switch-on):
$0^{\circ} \mathrm{C}$ Ambient: $\quad 5$ minutes
$+30^{\circ} \mathrm{C}$ Ambient: 1 minute

Modulation:
Modes: Internal single-tone/two-tone), external,
internal + external.

AM:
Modulation Depth: 0 to 90% Resolution: 0.5\% Frequency Range: \quad DC to 20 kHz .
2. Specification (continued)

```
Distortion
(see Note 1)
(at ff fr = 1 kHz
and <80%): }\quad\pm2% Error (see Note 1
(at f faF}=300 H
to 3 kHz and
<80%):
\pm 5% + resolution + residual AM.
```

FM
Deviation at $f_{A F}$:
250 to 500 MHz : $\quad 0$ to 50 kHz
Others: 0 to 100 kHz

Resolution:

$\Delta f<100 \mathrm{~Hz}:$	1 Hz
$\Delta \mathrm{f} \geq 100 \mathrm{~Hz}:$	1%

Frequency Range: $\quad 20 \mathrm{~Hz}$ to 20 kHz
Ext Modulation: $\quad 20 \mathrm{~Hz}$ to 100 kHz
Distortion (at
($f_{A F}=1 \mathrm{kHz}$ and
$\Delta f \geq 10 \mathrm{kHz}: \quad \leq 1 \%$
Error: $\pm 5 \%+$ resolution + residual FM
$\varnothing M$
Deviation (internal)
at $f_{R F}$:

```
250 to 500 MHz 0 to 5 rad
Others: 0 to 10 rad
```

Resolution:
$\Delta \varnothing<0.1 \mathrm{rad}:$
1 mrad
$\Delta \varnothing \geq 0.1 \mathrm{rad}:$
1\%

Frequency Range: $\quad 100 \mathrm{~Hz}$ to 6 kHz
Distortion (at $f_{\text {AF }}$
$=1 \mathrm{kHz}$ and $\Delta \mathrm{f} \geq$ rad):
$\leq 1 \%$
Error: $\quad \pm 5 \%+$ resolution + residual $\varnothing M$

External:

Default
AM Input

AM
1 mV at 1 kHz produces 35% modulation.

Specification (continued)

Output Level
FM, $\varnothing M$, CW: -128 to 0 dBm
$A M: \quad-128$ to -3 dBm (dependent upon modulation depth).

Resolution: 0.1 dB
Fine Variation:

FM, $\varnothing \mathrm{M}, \mathrm{CW}: \quad 0$ to -19.9 dB , non-interrupting.
AM: $\quad 0$ to -4.9 dB , non-interrupting.
Error: (see Note 1): $\leq 2 d B$
DISTORTION METER, SINAD METER AND AF FREQUENCY COUNTER - see transmitter and receiver measurements.

AF VOLTMETER
Frequency Range:
Front Panel: $\quad 20 \mathrm{~Hz}$ to 20 kHz
TEL 1/2: $\quad 50 \mathrm{~Hz}$ to 20 kHz

Level:
Measurement Range:
Front Panel: $\quad 0.1 \mathrm{mV}$ to 30 V
TEL 1/2: $\quad 0.1 \mathrm{mV}$ to 20 V

Resolution:

$\mathrm{V}<100 \mathrm{mV}:$	$100 \mu \mathrm{~W}$
$\mathrm{~V} \geq 10 \mathrm{mV}:$	1%

Error (see Note 2)
(at 1 kHz): $\leq 3 \%+$ resolution.
Input Impedance:
Front Panel: $\quad 1 \mathrm{M} \Omega$

TEL1/2: $\quad 150 \Omega$ and 300Ω

Specification (continued)

TRANSMITTER MEASUREMENTS

RF POWER METER

Frequency Range: $\quad 1.5$ to 1000 MHz
Power:

Measurement Range: $\quad 5 \mathrm{~mW}$ to 125 mW (see Note 3).

Resolution:

$P<100 \mathrm{~mW}:$	1 mW
$\mathrm{P} \geq 100 \mathrm{~mW}:$	1%

Error
(at $\mathrm{P}>20 \mathrm{~mW}$
and 0% mod): $\pm 10 \%+$ resolution.
Selective Level Measurement:

Frequency Range: $\quad 1$ to 1000 MHz

Level Range:

Without weighting
filter: $\quad-60$ to +50 dBm

With 2 kHz
resonance
filter: $\quad-80$ to +50 dBm

VSWR METER

Operating Modes: Direct display of forward and reflected power and VSWR.

Frequency Range: $\quad 70$ to 1000 MHz
VSWR:

Measurement Range:	$1.1: 1$ to $10: 1$
Error:	$<6.5 \%$ of reading.

RE FREQUENCY COUNTER
Frequency:
Range: $\quad 400 \mathrm{kHz}$ to 1000 MHz

Resolution: $\quad 10 \mathrm{~Hz}, 1 \mathrm{~Hz}$

Error: As timebase + resolution.
2. Specification (continued)

Input 1 Level Range: 5 mW to 125 W (see Note 3).
Input 2 Sensitivity: $0.1 \mu \mathrm{~W}$

FREQUENCY DEVIATION METER

Operating Modes: $+\mathrm{PK},-\mathrm{PK}, \pm \mathrm{PK} / 2 . \mathrm{PK}$ HOLD, RMS, RMS $* \sqrt{2}$

Frequency:

RF Range:	1.5 to 1000 MHz
AF Range:	20 Hz to 20 kHz (DC decoupled at demodulator output).

Deviation:

Measurement Range: $\quad D C$ to 100 kHz
Resolution:
$\Delta \mathrm{f}<1 \mathrm{kHz}: \quad 1 \mathrm{~Hz}$
$\Delta f \geq 1 \mathrm{kHz}: \quad 1 \%$

Residual FM (CCITT, RMS)
$0.4-250 \mathrm{MHz} \leq 10 \mathrm{~Hz}$
$250-500 \mathrm{MHz} \leq 5 \mathrm{~Hz}$
$500-1000 \mathrm{MHz} \quad \leq 10 \mathrm{~Hz}$

Error
(see Note 2): $\pm 5 \%$ + resolution + residual FM

Input Level Range: 5 mW to 125 W (see Note 3).
PHASE DEVIATION METER
Operating Modes: $\quad+\mathrm{PK},-\mathrm{PK}, \pm \mathrm{PK} / 2, \mathrm{RMS}, \mathrm{RMS} * \sqrt{2}$

Frequency:

RF Range: $\quad 1.5$ to 1000 MHz

AF Range: $\quad 300 \mathrm{~Hz}$ to 6 kHz
Deviation:

Measurement Range: $\quad 0.001$ to 5 rad

Resolution:
$\Delta \varnothing \leq 0.1$ rad:
0.001 rad
$\Delta ø>0.1 \mathrm{rad}:$
1\%
(Continued)
2.

Specification (continued)

Error
(see Note 2): $\pm 5 \%+$ resolution + residual $\mathrm{FM}+2 \%$ frequency response.

Input Level Range: 5 mW to 125 W (see Note 3).
AM DEPTH METER
Operating Modes: $\quad+\mathrm{PK},-\mathrm{PK}, \pm \mathrm{PK} / 2, \mathrm{RMS}, \mathrm{RMS} * \sqrt{2}$
Frequency:

RF Range:	1.5 MHz to 1000 MHz
AF Range:	20 Hz to 20 kHz

Depth:
Measurement Range: 0.01 to 90%
Resolution:

$<10 \%:$	0.01%
$\geq 10 \%:$	0.1%

Residual AM (CCITT, RMS) :
$\leq 0.03 \%$
Error (see Note 2)
(at $f_{A F}=300 \mathrm{~Hz}$ to
3 kHz and <80\%
mod): $\quad \leq 7 \%+$ resolution + residual $A M$
Input Level Range: $\quad 20 \mathrm{~mW}$ to 125 W (see Note 3).
DISTORTION METER, SINAD METER AND AF FREQUENCY COUNTER - see transmitter and receiver measurements.

RF SPECTRUM MONITOR
Frequency:
Range: $\quad 1$ to 1000 MHz
Span: Zero to 50 MHz
Filters (3 dB
bandwidth): $\quad 150 \mathrm{~Hz}, 6,16,50$ and 300 kHz (dependent upon span).

```
Display Dynamic Range
(at reference level
>-7 dBm): >60 dB
```

2. Specification (continued)

Resolution: $\quad 0.4 \mathrm{~dB}$
Error: $<3 \mathrm{~dB}+$ resolution.
Input I Level Range: $\quad-47$ to +50 dBm

TRANSMITTER MEASUREMENTS AT 2ND RF INPUT

General: Measurement of $R F$ frequency, modulation (AM, FM, \varnothing M), modulation frequency and RF spectrum (level) of small RF signals, e.g. in offair or module measurements.

Input Levels:

RF Frequency
Counter: $\quad 100 \mu \mathrm{~V}$ (Selective frequency counter with presetting).

Modulation Meter (IF Narrow):

Normal Mode:	$20 \mu \mathrm{~V}$
Selective	
Measurement:	$10 \mu \mathrm{~V}$
Selective Level:	
Without Weighting Filter:	-75 to -35 dBm
With 2 kHz Resonance Filter:	-100 to -35 dBm

TRANSMITTER AND RECEIVER MEASUREMENTS

MODULATION GENERATORS 1 AND 2

```
Frequency:
Range:
\begin{tabular}{ll} 
Front Panel: & 20 Hz to 20 kHz \\
\multicolumn{1}{c}{ MIC: } & 100 Hz to 10 kHz \\
Resolution: & 0.1 Hz \\
Error: & As timebase \(+1 / 2\) resolution. \\
Distortion: & \(\leq 0.5 \%\)
\end{tabular}
```

2. Specification (continued)

Output:
Level:
Range:
Front Panel: $\quad 10 \mu \mathrm{~V}$ to $5 \mathrm{~V}_{\mathrm{EMF}}$
Resolution:

$\mathrm{V}<1 \mathrm{mV}:$	$10 \mu \mathrm{~V}$
$\mathrm{~V} \geq 1 \mathrm{mV}:$	1%

Error (at
$\mathrm{V}>1 \mathrm{mV}): \quad \pm 5 \%$
Maximum Current: $\quad 20 \mathrm{~mA}_{\text {peak }}$
Impedance:
Front Panel: 5Ω
MIC: Automatic matching for loads 50 to 400Ω.
DISTORTION METER/MODULATION DISTORTION
Frequency:

Range:	100 Hz to 5 kHz
Resolution:	10 Hz

Input:

Level Range:	100 mV to 30 V
Measurement Range:	0.1 to 100%
Resolution:	0.1%
Inherent	
Distortion:	$\leq 0.5 \%$
Error:	$\pm 5 \%+$ inherent distortion.
Weighting Bandwidth:	$\leq 12 \mathrm{kHz}$
METER	

Frequency:

Range:	100 Hz to 5 kHz
Error:	$\pm 10 \mathrm{~Hz}$

2. Specification (continued)

Input:

```
    Level Range: }100\textrm{mV}\mathrm{ to 30 V
    Measurement Range: 0 to 46 dB
    Resolution: 0.1 dB
    Error (at 12 dB): }\quad\pm1\textrm{dB
Weighting Bandwidth: \leq12 kHz
SIGNAL + NOISE TO NOISE
Measurement Range: 0 to 48 dB
Resolution: 0.1 dB
Error: }\pm5% + resolution
```

AF FREQUENCY COUNTER

Operating Modes: Demodulation, AF, beat (frequency offset), external.

Frequency:

Range (RF superimposed):	20 Hz to 500 kHz
Resolution:	$1 \mathrm{~Hz}, 0.1 \mathrm{~Hz}$
Error:	As timebase + resolution.
Level Range $f \geq 20 \mathrm{kHz}):$	10 mV to 30 V

OSCILLOSCOPE

Bandwidth:

DC Coupled:	DC to 20 kHz
AC Coupled:	10 Hz to 20 kHz

Deflection Scaling:
Horizontal: $\quad 50$ to $0.5 \mathrm{~ms} / \mathrm{div}$.

Vertical:

FM:
kHz
ø M: Radians
(Continued)
2. Specification (continued)

$\mathrm{AM}:$	Percent
$\mathrm{AF}:$	mV, V

Input:

Level Range:	0 to $40 \mathrm{~V}_{\text {peak }}$
Impedance	
(approx.) :	$1 \mathrm{M} \Omega$

AF FILTERS

Highpass:
$f_{\text {cutoff }}$:
300 Hz

Attenuation at
200 Hz :
40 dB (typical)
Lowpass:
$f_{\text {cutoff }}$:
3.4 kHz

Attenuation at
$10 \mathrm{~Hz}: \quad 40 \mathrm{~dB}$ (typical).
Bandpass:
Broadband: Highpass + lowpass.
Narrowband:

Frequency:
Range:
50 Hz to 5 kHz
Resolution:
10 Hz

Attenuation (at
0.8 f and 1.2 f$): \quad 40 \mathrm{~dB}$ (typical)

IF Filter Frequency:
150 Hz

Notch Filter:

Frequency:
Range: $\quad 100 \mathrm{~Hz}$ to 5 kHz

Resolution: $\quad 10 \mathrm{~Hz}$

Attenuation
(at 0.8 f and 1.2 f): $\quad 40 \mathrm{~dB}$ (typical)
2.

Specification (continued)

CCIT Filter
SELECTIVE CALL CODER

Tone Sequences:
SELCAL, ZVEI1, ZVEI2, CCIR, EIA, EEA, EURO, NATEL, CCIT, VDEW, VDEW direct dialling and user defined sequences.

AUDIO MONITOR (LOUDSPEAKER)
Facilities: Demodulated signal, AF signal, beat (frequency offset).

IMPEDANCE MATCHING
Facilities:
Load impedance measurement, automatic output impedance setting.

VOR/ILS GENERATOR (see Note 4)

GENERAL: The Localiser and Glideslope carrier frequencies have the capability of varying the modulation depth of the 90 Hz and 150 Hz tones, thus displaying fly left/right and up/down indications on the aircraft displays. To test the operation of the flag alarm the test set has the capability of deleting either of the 90 Hz or 150 Hz tones. The marker beacon is simulated by transmitting a 75 MHz carrier modulated by one of the three AF tones. VOR signals are simulated by modulating a VHF carrier with two separate 30 Hz tones, the phase of one being variable with respect to the other. Localiser and Glideslope frequencies have specific pairings and the test set automatically selects the paired Glideslope frequency when a Localiser frequency is selected.

VOR
Power Output: $\quad-128$ to 0 dBm dependent upon modulation depth.

Frequency:
Bands: $\quad 108$ to 117.95 MHz . Odd/even 100 kHz spacing.

Error:

0 to $35^{\circ} \mathrm{C}$	$\pm 0.0035 \%$
0 to $50^{\circ} \mathrm{C}$	$\pm 0.005 \%$

Phase Output:

Range:	0 to 360°
Resolution:	0.01°

(Continued)
2. Specification (continued)

Error:
RF:
AF:
$\leq 0.06^{\circ}$
$\leq 0.04^{\circ}$

9960 Hz Carrier:

Modulation:
Frequency: $\quad 7.9$ to 12 kHz

AM Depth:

Range:	0 to 100%
Resolution:	0.1%
Error (at $(30 \%$ mod) : $\pm 2 \%$	

FM Deviation:

Range:	384 to 576 Hz
Resolution:	1 Hz
Error:	$\leq 1 \mathrm{~Hz}$

30 Hz VAR

Modulation:

Frequency: $\quad 7.9$ to 12 kHz
AM Depth:

Range:	0 to 100%
Resolution:	0.1%
Error (at $\pm 2 \%$	

FM Deviation:
Range: $\quad 384$ to 576 Hz

Resolution: $\quad 1 \mathrm{~Hz}$
Error: $\quad \leq 1 \mathrm{~Hz}$

1020 Hz AUX
Switchable: TO or FROM
(Continued)
2. Specification (continued)

```
Modulation:
    Frequency: }\quad50\textrm{Hz}\mathrm{ to 20 kHz
    AM Depth:
```

Range:	0 to 100%
Resolution:	$0.1 \% \mathrm{AM}$
Error (at	
1020 Hz and 10	
to 20% mod):	$\leq 3 \%$

ILS

General:
90 Hz and 150 Hz Phase:
Range (referred to $150 \mathrm{~Hz}): \quad 0$ to 180°

Resolution: $\quad 0.01^{\circ}$
Error: $\pm 0.1^{\circ}$

Modulation:

Erequency:
90 Hz Tone: $\quad 72$ to 108 Hz
150 Hz Tone: $\quad 120$ to 180 Hz

1020 Hz Tone
(AUX): $\quad 50 \mathrm{~Hz}$ to 20 kHz
AM Depth:

Range:	0 to 100%
Resolution:	0.1%
Error (at	
1020 Hz and 10	
to 20% mod):	$\leq 3 \%$

LOCALISER
Modulation:
AM Depth:
Range: $\quad 0$ to 50%
Resolution: 0.1\%
(Continued)
2. Specification (continued)
Error (at 20\%
mod): $\pm 2 \%$

DDM RF Output
(see Note 5)

Range
(at $20 \% \mathrm{mod}): \quad \pm 0$ to 0.4 DDM

Course error
(at - 128 to - 12 dBM)

On course:	$<0.0004 \mathrm{DDM}$
Off course:	$\pm 2 \%+0.0004 \mathrm{DDM}$

DDM AF Output
(see Note 5)

Range
(at 20% mod): ± 0 to 0.4 DDM
Resolution: 0.001 DDM
Error (at AF
level 0.5 to 5 V
and IDDMI $\leq 0.4): \quad \pm 3 \%+0.0002$ DDM

GLIDESLOPE

Frequency Range: $\quad 329.15$ to 333.95 MHz
Modulation:
AM Depth:
Range: $\quad 0$ to 50%
Resolution: 0.1\%

Error (at
40\% mod):
-128 to
$-12 \mathrm{dBm}: \quad<2 \%$ typical
-88 to
$-48 \mathrm{dBm}: \quad \pm 2 \%$

DDM RF Output
(see Note 5)

Range
(at $40 \% \mathrm{mod}): \quad \pm 0$ to 0.8 DDM
(Continued)

Chap 4.4 .7
2. Specification (continued)

```
            Error: 0.001 DDM
            Course error
            (at -128 to
            -12 dBm):
                On course: <0.001 DDM
                Off course
                (at IDDMI
                \pm0.4): }\pm2%+0.0004 DD
    DDM AF Output
    (see Note 5)
        Range
        (at 40% mod): }\quad\pm0\mathrm{ to 0.8 DDM
        Resolution: 0.001 DDM
        Error (at AF
        level 0.5 to 5 V
        and IDDMI \leq0.4): \leq3% + 0.002 DDM
MARKER BEACON
    Carrier Frequency: }\quad75\textrm{MHz
    Modulation:
        Frequency: }\quad400\textrm{Hz},1.3\textrm{kHz}\mathrm{ and 3 kHz.
        AM Depth: 0 to 100%
        Resolution: 0.1%
        Error:
        (at 95% mod): }\pm5
    1020 Hz AUX
    Modulation:
```

```
Frequency: }\quad50\textrm{Hz}\mathrm{ to 20 kHz
```

Frequency: }\quad50\textrm{Hz}\mathrm{ to 20 kHz
AM Depth:
AM Depth:
Range: 0 to 100%
Range: 0 to 100%
Resolution: 0.1% AM
Resolution: 0.1% AM
Error (af faf
Error (af faf
= 300 to 3 kHz
= 300 to 3 kHz
and >80% mod): }\quad\pm5% + resolution + residual AM

```
            and >80% mod): }\quad\pm5% + resolution + residual AM
```

2. Specification (continued)

AUTORUN PROGRAM

VOR and ILS tests able to be undertaken automatically. The tests are initiated and monitored by the user from the Remote Control Box CMS Z 34 . The tests will have to be approved for use on the equipment/aircraft by the relevant authority.

GENERAL:

GPIB Bus:
IEEE 488 with listener/talker function.

Temperature Range

Operating:	0 to $+50^{\circ} \mathrm{C}$
Storage:	-40 to $+70^{\circ} \mathrm{C}$

BATTERY CMS Z42

Minimum Operating Time: $\quad 1$ hour at 0 to $50^{\circ} \mathrm{C}$

NOTES

1. Fine level variation 0 dB .
2. Without weighting filters.
3. Power:
a) 80 W continuous, 125 W for 2 mins. then 10 mins . off.
b) Audio/visual warning in the event of overload.
4. Data for VOR/ILS/MB signals are specified in the RF level range; 128 to - 12 dBm , fine variation 0 dB , for discrete RF frequencies as well as for the following continuous ranges:
a) VOR; 108 to 118 MHz .
b) ILS Glideslope; 329 to 335 MHz .
c) Marker Beacon; 74 to 76 MHz .
5. Difference in Depth of Modulation describes the modulation depth difference between the 90 and 150 Hz tones. IDDMI $=I(90 \mathrm{~Hz}$ modulation in $\%-150 \mathrm{~Hz}$ modulation in $\%$) $\mathrm{I} / 100 \%$.
6. Comprising Items

Sec/Ref.	Nomenclature	Part No.
	Communications Test Set	CMS 33
10S 0518485	```Antenna Base/Front Cover (complete with }15\textrm{m}\mathrm{ antenna cable)```	CMS 235
10S 5831-99-	VSWR Insertion Unit	NAS 25
5648782	(complete with 5 m VSWR cable)	
10S 7478856	$\begin{aligned} & \text { Remote Control Box } \\ & \text { (complete with } 15 \mathrm{~m} \text { cable) } \end{aligned}$	CMS 234
	Power Cable	285.638
	Spare Fuses:	
	0.8 A	0020.7417 .00
	10A	0606.3136 .00
	Operating Manual	1078.1930.12
	User Guide	1078.1947.32
10S 0161034	Carrying Case (complete with battery case)	CMS Z44
Accessory Items		
Sec/Ref.	Nomenclature	Part No.
10S 0874912	External Battery pack AFDEETEC 19543	CMS 242
	External DC Supply Connector	CMS 27
	128 kByte Memory Card CMS Z2	
Additional:		
1OS 1969818	VSWR Cable	084295300
10S 5831-99-0284872	Remote Control Cable	1065446500
Associated Equipment		

Not known.

Section Refere 10S/2156		Nomenclature: LIGHTWEIGHT TEST SET (LC	MPREHENSIVE S) - AUTOLA	MMUNICATIONS OPTION
Manufacturer: RHODE \& SCHWARZ		Part No: CMS B38		Cost/Date: $£ 10,000 \quad 03 / 97$
Height: 175 mm	Width: $320 \mathrm{~mm}$	Depth: 375 mm	weight: $18.5 \mathrm{~kg}, 23 \mathrm{~kg}$ WITH BATTERY	
Power Supplies: $100 / 120 / 220 / 240 \mathrm{~V} \mathrm{AC} \pm 10 \% 47$ to 420 Hz or 11 to 32 V DC (50 W)			Air publication: User's Handbook	
Availability: 1	Environment: C	Maintenance Policy: IAW AP 100C-50	Calibration: 36 Months	AFDEETEC No: 19590

1. Description

The CMS B38 is the Autoland version of the CMS33. The specification is identical to that of the CMS33 (see Chapter 4.4.7) with the exception of a second ILS output to allow simultaneous glideslope and localiser stimulation.

$\begin{aligned} & \hline \text { Section Reference } \\ & 10 \mathrm{~S} 8591661 \end{aligned}$				Nomenclature RADAR STIMULATOR (THREAT SIGNAL GENERATOR)		
Manufacturer REPUBLIC	ELECTRONI			Part No MTS - 300A		$\begin{array}{ll} \text { Cost/Date } & \\ £ 85,000 & 1996 \end{array}$
Height 16 inches	Widt	Width 13 inches		s \quad Dep	Depth 11 inches	Weight 24 lbs
Power Supplies 14 V dc rechargeable battery Supply for battery charger: $100-130 \mathrm{~V}$ rms: $45-66 \mathrm{~Hz}$ or $360-440 \mathrm{~Hz}$ 200-240 V rms: $45-66 \mathrm{~Hz}$ Current less than 3 amperes						Air Publication None
$\begin{gathered} \text { Availability } \\ 2 \end{gathered}$	Environment C		$\begin{gathered} \text { Maintenance Policy } \\ \text { iaw AP100C-50 } \end{gathered}$		$\begin{aligned} & \text { Calibration } \\ & \text { iaw AP100C-50 } \end{aligned}$	AFDEETEC/AFDSEC No 19545

1. Description

The MTS-300A is a portable, battery or external mains power supply operated instrument. It can be used to perform pre-flight and pre/post flight maintenance testing of radar warning receivers and electronic surveillance measures equipment in either a radiate, (via an internal antenna) or direct-connect mode of operation. The MTS-300A is capable of up to 1000 pre-programmed threat type signals in an automatic mode, or manually formulated signals under keypad control.
2. Specification

Frequency Ranges

2. Specification (continued)

Display: (continued)

Automatic Power Down:

```
Pulse Reputation Interval
Battery Voltage
Scan Type
Stagger Level
Jitter
Terminates power to test
after }11\mathrm{ minutes of no keypad
activity.
```

Power Source:
Battery:

Integral rechargeable sealed lead-acid batteries providing four hours of operation at a 50% duty cycle at $-20^{\circ} \mathrm{C}$. External Power Supply/Battery Charger allows ac operation and battery charging with $115 / 230 \mathrm{~V}$ ac, $50-60,400 \mathrm{~Hz}$.

14 V dc (nominal) sealed lead-acid.
3. Comprising Items

NSN	Pt No.	Description	Qty
	EB054000-1	MTS-300A	1
TBN	DB054070-2	Battery Assembly	2
1OS 6130-99-9680257	DB054160-1	Power Supply	1
1OS 6625-99-9682058	XB053996-1	Adapter Kit	1
1OS 6625-99-3017753	AJ024747-1	Transit Case	1

4. Accessory Items

NSN	Pt No.	Description
IOS 8322857	A1056	PCMCIA Flash Card

Note: This item is controlled by OC Fast Jet Ops, Air Warfare Centre, RAF Waddington.
5. Associated Equipment

NSN	Pt No.	Description
10S 5920-99-1263815	F1056	Fuse (located in battery assembly)

Chapter 5

IMPEDANCE MEASURING INSTRUMENTS
(INCLUDING $R, L, C, Q, G, B \& Y$)

Chapter 5

IMPEDANCE MEASURING INSTRUMENTS

(INCLUDING R, L, C, Q, G, B \& Y)

CONTENTS

Chap Nomenclature
5.1 BRIDGES

Sect/Ref/Stock No. Manf/Part No.

```
6625-99-9532597 Cammetric 7383
6625-99-1053847 Wayne Kerr B801B
10S/4955673 Racal Dana 9343M
6625-99-9535239 Wayne Kerr B601
6625-99-9289527 Marconi TM9953
6625-99-1117473 Startronic 100.2S/D
```

6625-99-6506337 Megger BM8 M2
6625-99-1112740 Comark 1905
6625-99-6204072 Miles Hi-volt IT30
6625-99-0149532 Fairey Mk 7
10S/2522320 Megger Instruments
FT6/12
Megger Instruments
ET3/2MIN
Megger Pat $2 / \mathrm{MIN} / \mathrm{R}$
Bradley Electronics
Ltd. 1672 M

Cammetric
JJ Insts R802

Muirhead D801D
Lloyd Inst. SVC5
JJ Insts PVC2
Croydex Precision Insts RBG
Muirhead K175-E1

CONTENTS (Continued)

Chap
Nomenclature
5.4 CONTINUITY TESTERS

MPE Tran Test Mk 1 Martindale PC 8700/400
Hewlett Packard 4815A Algo Instrument PRT2 Lucas Bradley 1671M Robin KMP 3075DL
Robin Electronics SmartPAT3000 Robin Electronics SmartPAT3000G

Cammetric 7556
Hewlett Packard
415E
Hewlett Packard
805 C
Hewlett Packard
817A

Metrix
MX4900

Section Reference 10S/6625-9	-9.532597	BRIDGE SET RESISTANCE		
Manufacturer CAMME		Part No. 7		$\begin{array}{\|ll\|} \hline \text { Cost/Date } & \\ £ 250.00 \quad 1978 \end{array}$
Height $19.0 \mathrm{~cm}$	Width	cm	18.0 cm	Weight 7.5 kg
4.5 V Internal Battery				Air Publication None
$\begin{gathered} \text { Availability } \\ 2 \end{gathered}$	Bnvironment B	Maintenance Policy B2/D4	$\begin{gathered} \text { Calibration } \\ \mathrm{A} / 12 \end{gathered}$	$\begin{gathered} \text { AFDEETEC/AFPSEC No - } \\ 12334 \end{gathered}$

1. Description

A portable Wheatstone Bridge which is completely self-contained and incorporating a built in galvanometer and dry battery.
2. Specification

Measurement Range: 0.0001Ω to $1 \mathrm{M} \Omega$
Series Arm: $\quad 4$ decades in steps of hundreds, tens, units and tenths of ohm

Ratio Arms: Contain 1, 10, 100 and 1000Ω coils
\rightarrow Accuracy: $\quad \therefore 0.04 \%$
3. Comprising

Instrument only.
Chap 5.1.1

4. Accessory Items

None.
5. Associated Equipment

None.

1. Description

A passive instrument for the accurate determination of the constants of lines, antennas, feeders and components, whether balanced or unbalanced.

2. Specification

Measurement Range:

$$
\begin{array}{ll}
\text { Frequency: } & 1 \text { to } 100 \mathrm{MHz} \\
\text { Conductance: } & 0 \text { to } 100 \mathrm{mil1i} \text { mho } \\
\text { Capacitance: } & 0 \text { to } \pm 230 \mathrm{pF}
\end{array}
$$

Accuracy:
Conductance:
$\pm 2 \% \pm 0.1$ milli mho
Capacitance:
$\pm 2 \% \pm 1.5 \mathrm{pF}$
Discrimination:

Conductance:	0.1 milli mho at 100 MHz
Capacitance:	0.2 pF

3. Comprising

Instrument only.
4. Accessory Item

Source Detector 10S/2220561
5. Associated Equipment

None.

Photograph to be issued later

The 9343 M LCR Databrige is a high performance, microprocessor controlled component measuring bridge which automatically measures resistance, capacitance, inductance, quality factor (Q) and dissipation factor (D) to within 0.1% accuracy. Having full autoranging facilities, the 9343 M needs the minimum of operator intervention to obtain fast accurate readings. Both measurement frequency ($100 \mathrm{~Hz}, 1 \mathrm{kHz}$ or 10 kHz) and the measurement mode (parallel or series equivalent circuit) are user selectable.

Once the component has been plugged into the $9343 \mathrm{M}^{\prime} \mathrm{s}$ integral test fixture and the quantity to be measured (L, C, R, D and Q) has been selected, the 9343 M will display the measured value twice each second. A microprocessor controls the internal operation of the LCR Databridge. As well as managing all the measurement functions and computation, it sets the display precision to be compatible with the measurement certainty. It also prompts the user to make any changes to the measurement frequency or mode which will improve this. The automatic mode can be cancelled to enable measurement of the minor term to be carried out.

Specifacation

Variable Measured:
Modes:
Measurement Frequency:

Accuracy of Measurement Frequency: + or -0.01% of nominal
Maximum Voltage Across Component: 0.3 Volts rms
Measurement Update Rate:
Maximum time for Valid Reading:
Display:
Connection to Component
Under Test:

Measurement Ranges

$\mathrm{R}:$	$0.1 \mathrm{~m} \Omega$ to $990 \mathrm{M} \Omega$
$\mathrm{L}:$	$0.001 \mu \mathrm{H}$ to 9900 H
$\mathrm{C}:$	0.001 pF to $9999 \mu \mathrm{~F}$
$\mathrm{D}:$	0.001 to 999
$\mathrm{Q}:$	0.001 to 999

Basic Accuracy:
Range for Basic Accuracy:

Measurement Frequency	100 Hz	1 kHz	10 kHz
Range of Inductance	$4 \mathrm{mH}-2000 \mathrm{H}$	$400 \mu \mathrm{H}-200 \mathrm{H}$	$40 \mu \mathrm{H}-10 \mathrm{H}$
Range of Capacitance	$4 \mathrm{nF}-2000 \mu \mathrm{~F}$	$400 \mathrm{pF}-200 \mu \mathrm{~F}$	$40 \mathrm{pf}-10 \mu \mathrm{~F}$
Range of Inductance	$2 \Omega-1 \mathrm{M} \Omega$	$2 \Omega-500 \mathrm{k} \Omega$	$2 \Omega-100 \mathrm{k} \Omega$

$\mathrm{L}:$	$0.001 \mu \mathrm{H}$
$\mathrm{C}:$	0.001 pF
$\mathrm{R}:$	$0.1 \mathrm{~m} \Omega$

Input Protection:
dc Bias Voltage:

Protected against connection of capacitors of up to 10 mF charged to not more than 50 volts

2 volts for use when testing electrolytic capacitors

Interface:	IEEE-488
Operating Temperature Range:	$0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$

Comprising

```
Instrument Pt No 9343/55M
Extender Cables Pt No 1401
Extender Cables (with Kelvin Clips)
Adaptors Qty 2 (for axial lead component
measurement)
Adaptor Support Plate
Accessory Pouch
Handbook
```

4 Accessory Items
None

5 Associated Equipment
None

Section Reference10S/6625-99-9535239		BRIDGE RADIO FREQUENCY		
Manufacturer WAYN		Part No.		$\begin{array}{ll} \text { Cost/Date } & \\ £ 650.00 & 1978 \end{array}$
Height $28.0 \mathrm{~cm}$	Width	Depth		Weight $8.3 \mathrm{~kg}$
Power Supplies ${ }^{\text {Oscillator giving } 1 \mathrm{~V} \text { into } 100 \Omega}$				Air Publication None
$\begin{gathered} \text { Availability } \\ 2 \end{gathered}$	Environment B	Maintenance Policy $\mathrm{B} 2 / \mathrm{D} 4$	Calibration A/12	$\begin{gathered} \text { AFDEETEC/AFDSEC No. } \\ 12338 \end{gathered}$

1. Description

The Bridge Radio Frequency has separate dials and multiplier switches to enable the resistive and reactive terms of an unknown impedance to be measured simultaneously.
2. Specification

Measurement Range:

Frequency	15 kHz to 5 MHz
Resistance:	10Ω to $10 \mathrm{M} \Omega$
Capacitance:	10 fF to 20 mF (Note $\mathrm{f}=$ femto $=10^{-15}$)

Inductance: $\quad 500 \mathrm{nH}$ to 50 mH
Accuracy: $\quad \pm 1 \%$ up to $3 \mathrm{MHz}, \pm 2 \%$ at 5 MHz
NOTE: The B601 requires a source of RF and a nullmeter; a suitable source/detector is:

10S/2220561 WAYNE KERR SR 268 AFDEETEC 16427
3. Comprising

Instrument only.
4. Accessory Items

10S/2220561 Source Detector
5. Associated Equipment

None.

1. Description

The TM 9953 Rho Bridge is designed for VSWR measurement, by the comparison method, over a wide frequency range in conjunction with a signal source, such as the Marconi TF 2361 sweep generator and a suitable display. The Rho Bridge is a symmetrical rf bridge where the unknown impedance is compared to a calibrated known impedance. The level of the detected dc output is proportional to the degree of mismatch. In the case of spot frequency testing an analogue meter calibrated in VSWR is used, and for sweep frequency measurement an oscilloscope display (external x axis sweep driven from the sweep generator, Y axis indicates the dc level (VSWR) against frequency). Calibration of the display is possible by either use of the calibrated mismatch supplied, or the output attenuator of the sweep generator and the nomograph supplied.

Chap 5.1.5
June 80 (Amdt 3)

One of the problems encountered with low values of VSWR using the bridge method has been that these low values produce low post detection dc levels, often necessitating a high sensitivity display. This has been overcome with the TM 9953 which has a built in battery powered X100 amplifier which can be switched in for low level measurements and allows the use of normal displays.

The system is designed for 50Ω operation, but use of the correct calibrated mismatch as a standard allows measurement on systems of other impedances, eg, $1.5: 1$ mismatch $=75 \Omega$.
2. Specification

Frequency Range:	1 to 1000 MHz
Characteristic Impedance:	50Ω
Maximum Input:	0.5 W (5 V rms)
Residual VSWR:	$\begin{aligned} & 1.01: 1(5 \text { to } 1000 \mathrm{MHz}) \\ & 1.03: 1 \text { (1 to } 5 \mathrm{MHz}) \end{aligned}$
Detector Output:	Negative
Load Impedance:	$500 \mathrm{k} \Omega$ or above
Amplifier Gain:	X100 (provides a detector output of 0.6 V with VSWR of $1.2: 1$ and 0.04 V with VSWR of 1.01:1 with an input (RF) of 0.5 V). Maximum output 2 V pp.
DC Level Adjustment:	$\pm 0.5 \mathrm{~V}$
ALC Output:	Negative
Battery Life:	10000 hours operation $2 \frac{1}{2}$ years shelf life
Connections:	RF Input: Type N socket Test Ports: Precision Type N sockets Detector and ALC Outputs: BNC sockets

3. Comprising

RHO Bridge
TM 9953
Nomograph
Accessory Case
41674-038G
50Ω Termination 54423-011G
Calibrated Mismatch 1.1:1 (55 ת) 54423-021X
Calibrated Mismatch 1.2.1 (60 ת) 54423-031Z
Calibrated Mismatch 1.5.1 (75 Ω) 54423-061K
4. Accessory Items

None.
5. Associated Equipment

None.

- Chap 5.1.5

Page 2

1 Description

The Lohmeter model 100. $2 \mathrm{~S} / \mathrm{D}$ is a portable resistance bridge capable of measuring resistances to a high degree of accuracy. This model has a single decade scale 11 in . in length and which is calibrated 0.5 to 5 so providing a high degree of resolution.

2 Sepcification

Range 1:
Range 2:
Range 3:
Range 4:
Range 5:

0.05Ω	to 0.5Ω
0.5Ω	to 5Ω
5Ω	to 50Ω
50Ω	to 500Ω
500Ω	to $5 \mathrm{k} \Omega$

Accuracy 1.5\%
Accuracy 0.5\%
Accuracy 0.5\%
Accuracy 0.5\%
Accuracy 0.5\%

3 Comprising
Instrument on1y.
4 Accessory Items
None
5 Associated Equipment
None

Section Reference$5 \mathrm{G} / 6625-99-6505337$		Nomenclature ${ }^{\text {MULTIRANGE INSULATION TESTER }}$			
MEGGER		Part No. \quad BM 8	MK	2	$\begin{array}{ll} \hline \text { Cost/Date } & \\ \text { £113.00 } & 1979 \end{array}$
Height $15.3 \mathrm{~cm}$	Wiath	$5 \mathrm{~cm} \quad{ }^{\text {a }}$ (epth	5.9 cm		Weight $0.68 \mathrm{~kg}$
Power Supplies$6 \times 1.5 \mathrm{~V} \text { Batteries (5J/628236 }$$5 \mathrm{~J} / 195670$					$\begin{array}{\|l\|} \hline \text { Air Publicstion } \\ \text { 117F-0306-2 } \end{array}$
$\begin{gathered} \text { Availability } \\ 2 \end{gathered}$	Environment B	Maintenance PolicyB2/D4		$\begin{gathered} \text { Calibration } \\ \text { A/12 } \end{gathered}$	$\begin{gathered} \text { AFDEETEC/AFDSEC No. } \\ 18894 \end{gathered}$

1. Description

The BM 8 Mk 2 operates from 6 x 1.5 V cells, the test voltage being electronically developed to the required level. A battery condition indicator, located below the meter scale, gives an immediate indication of the battery voltage. Five test voltages are available over the range 50 to 1000 V dc and the measurement of insulation resistance covers most insulation requirements.

After testing and before disconnecting the test leads external circuit, capacitance can be discharged through an internal resistor, by turning the selector switch to 'discharge' and releasing the operating button.

Chap 5.2.1
2. Specification

Insulation Range: Test voltage dc Resistance range

50 V	0.005 to $1000 \mathrm{M} \Omega$
100 V	0.01
to $2000 \mathrm{M} \Omega$	
250 V	0.02
500 V	to $5000 \mathrm{M} \Omega$
1000 V	0.05
to $10000 \mathrm{M} \Omega$	
	0.1

Short circuit current: 0.8 mA approximately
Accuracy: $\quad \pm 1.27 \mathrm{~mm}$ from any marked position on the scale when measured against standard resistors.

Battery Drain: $\quad 200 \mathrm{~mA}$ max.
Terminals: $\quad 4 \mathrm{~mm}$ sockets.
3. Comprising

5G/6501361 Instrument
5G/6501362
Case
5G/6501363 Test Lead Set
$5 \mathrm{~J} / 6282360$ or $5 \mathrm{~J} / 1956708$ Batteries
4. Accessory Items
Qty 6 (Metal clad batteries may used after satisfaction of STI/Test Equipment/64)

None.
5. Associated Equipment

None.

1. Description

The type 1905 Insulation Meter gives direct readings of insulation resistance up to $10000 \mathrm{M} \Omega$, dependent on test voltage. A transistor converter is used to generate test voltages of $1000 \mathrm{~V}, 500 \mathrm{~V}, 250 \mathrm{~V}$, 50 V and 25 V from internal batteries. The output is electronically stabilised and the maximum current is limited to $10 \mu \mathrm{~A}$. The test voltage falls proportionally from its full value under open circuit to zero when the output is short circuited. In this way the risk of destructive breakdown is virtually eliminated and the instrument may be used safely for the measurement of leakage current in semiconductor rectifiers, diodes etc. A push-button ON/OFF switch gives instant onehand operation, eliminating unnecessary battery drain.

NOTE: The Comark Type 1905 is only to be used where a voltage 1imit of 25 V is required.

For all other normal insulation testing the Megger BM 8/Mk 2 5G/6505337 should be used.
2. Specification

$\frac{\text { Test Voltage }}{25 \mathrm{~V}}$	$\frac{\text { Resistance Range }}{0.1 \text { to } 200 \mathrm{M} \Omega}$
Voltage Accuracy	Plus or minus 5% at infinity ohms.
Resistance Accuracy	Plus or minus 5% at mid-scale.
Output Terminals	4 mm sockets.

3. Comprising

Instrument
Case
Test Leads and Probes
4. Accessory Items

None.
5. Associated Equipment

None.

Chap 5.2.2.

Section Reforence5G/6625-99-6204072		Nomenclature INSULATION TESTER HIGH VOLTAGE		
Manufacturer MILES	-VOLT	Part No. IT		$\begin{array}{ll} \hline \text { Cost/Date } \\ £ 1000.00 & 1978 \end{array}$
Height 12.6 cm	Width	. 0 cm (${ }^{\text {chepth }}$	cm	Weight 11.0 kg
Power Supplies Mains $100-125 \mathrm{~V}$ or $200-250 \mathrm{~V}$ 45-66 Hz Battery Operation. 24 V battery supplied with set				Air Publication $117 \mathrm{~F}-0303-2$
$\begin{gathered} \text { Availability } \\ 2 \end{gathered}$	Environment B	Maintenance Policy B2 /D4	Calibration A/12	AFDEETEC/AFDSEC No . 13842

1. Description

The tester is a portable, solid state, non-destructive insulation tester used for measuring leakage currents and is sensitive down to $0.01 \mu \mathrm{~A}$ at voltages up to 30 kV . The tester will run either from a mains supply or from its built-in rechargeable power pack. This provides about $2 \frac{1}{2}$ hours operation at full load. For safety in operation an external interlock, guard terminal and internal discharge path are built in.
2. Specification

Output Voltage Ranges: Two outputs available:
0.5 kV to 5 kV
3.0 kV to 30 kV

Output Voltage Metering: In two ranges, 5 kV and 30 kV FSD.

Output Polarity:	Negative.
Maximum Output Current:	Approx 1 mA at full voltage, ie, 30 kV or 5 kV.
Output Current Metering:	(a) $0-1 \mu \mathrm{~A}$
	(b) $0-10 \mu \mathrm{~A}$
	(c) $0-100 \mu \mathrm{~A}$
	(d) $0-200 \mu \mathrm{~A}$
Trip Circuits:	Four fixed current trips set to: current range in use.

3. Comprising
(a) 5G/6284176 Leather carrying case.
(b) $5 \mathrm{G} / 6207279 \quad 30 \mathrm{kV}$ pistol probe incorporating interlock microswitch.
(c) $5 G / 6284181 \quad 25 \mathrm{ft}$ screened high voltage cable.
(d) 5G/6284178 Battery power pack.
(e) 6625-99-6207278 Mains charging unit.
(f) NYR Mains power lead
(g) NYR Co-axial cable
(h) NYR Instrument
4. Accessory Items

None.
5. Associated Equipment

None

1. Description

The Fairey Safety Ohmmeter has been developed for the direct resistance testing of circuits where the applied current of a conventional ohmmeter would cause the circuit to malfunction. It is intrinsically safe in hazardous environments containing explosives or flammable liquids and gases and complying with Defence Standard 66-6. (ohmmeter safety multirange).

2. Specification

Measurement Ranges: 0 to $1 \Omega, 0$ to $10 \Omega, 0$ to $100 \Omega, 0$ to 1000Ω, 0 to 10000Ω

Accuracy:
$\pm 2 \%$ of range.
Scale Size:
$17.1 \mathrm{~cm}=100$ divisions.

```
    Electrical Output: }\quad\mathrm{ Voltage 1.5 V
    Anti-static: The insulation resistance of the instrument outer
    case is such as to minimise the accumulation of
    static charge.
    RF Rejection: 100% over the frequency range 10 kHz to 10 GHz.
    Sealing: Leakproof with an internal pressure of 5 1b/in}\mp@subsup{}{}{2
    applied.
    Battery: Mallory mercury ce11 1.35 V 6135-90-6613325
3. Comprising
    Instrument + Shoulder Strap
    4. Accessory Items
    Special to type leads to be specified by sponsor of the equipment
    under test.
5. Associated Equipment
None .
```


Description

The RM 215L/2MN Tester is used for the general flash testing and measurement of the breakdown voltage of electrical components and insulating materials. The instrument is mains operated and produces a continuously variable eht output voltage of up to 12 kV dc or 6 kV rms ac each in two ranges. In addition, provision is made for the detection of ionisation in electrical assemblies and the measurement of ac and dc leakage current. Leakage resistance, both ac and dc, and ac capacitive current can be calculated. These facilities enable the non-destructive testing of electrical components and materials. Breakdown and flashover on ac and dc tests are indicated by an amber signal neon mounted on the front panel. The relay controlling this indicator has an additional pair of closing contacts which may be used to operate a remote indication if required. An internal loudspeaker provides audible indication of ionisation or alternatively, provision is made for the external connection of head-phones or an oscilloscope.

Specification

Testing Voltage:

$$
\begin{array}{lllllll}
\text { dc } & 0-4 & \mathrm{kV} & \text { (first indication } 100 & \mathrm{~V} \text {) } \\
& 0-12 & \mathrm{kV} & \text { (first indication } 250 & \mathrm{~V} \text {) } \\
\text { ac } & 0-2 & \mathrm{kV} & \text { rms (first indication } & 100 & \mathrm{~V} \text {) } \\
& 0-6 & \mathrm{kV} & \text { rms (first indication } 250 & \mathrm{~V} \text {) }
\end{array}
$$

Current Metering:
dc leakage current:
ac in-phase current: ac total current:

Output short circuit current:
(Output volts control
set to max) :
Accuracy:
dc voltage (direct

> reading):
dc current (leakage):
ac voltage (direct
reading):
ac current (total):

Ripple content dc:

Waveform:

Power Supply:

Power Consumption:

```
0-100 \muA (first indication 2.5 \muA)
0-110 \muA (first indication 2.5 \muA)
0-1 mA (first indication 25 \muA)
```

$7.4 \mathrm{~A} \mathrm{rms} \mathrm{ac} \pm 20 \%$ at 240 V 50 Hz
2.1 A mean dc $\pm 20 \%$ at 240 V 50 Hz
$\pm 1.5 \%$ of fsd, $\pm 1 \%$ of reading
$\pm 2 \%$ of fsd, $\pm 1 \%$ of reading
$\pm 1.5 \%$ of fsd, $\pm 2 \%$ of reading
$\pm 4 \%$ of fsd.
Less than $5 \% \mathrm{pp}$ of mean dc at output currents up to $100 \mu \mathrm{~A}$ and load resistances greater than $100 \mathrm{M} \Omega$

The ac output waveshape will not deviate from the fundamental by more than $\pm 5 \%$ at any point on the voltage waveform for load impedances greater than $100 \mathrm{M} \Omega$ on the dc range or $6 \mathrm{M} \Omega$ on the ac.
$110 \mathrm{~V}, 220 \mathrm{~V}$ and 240 V ac, $50-60 \mathrm{~Hz}$ (nominal values). Voltage adjusted at rear of instrument.

80 VA maximum.

3 Comprising
Instrument
TBN High Voltage Probe Pt. No. 6110-459
10S/6625-99-6645702
Low Voltage Probe Pt. No. 6330-127
4 Accessory Items
None.
5 Associated Equipment
None.

$\begin{aligned} & \text { Section Reference } \\ & 5 \mathrm{G} / 7556108 \end{aligned}$		Nomenclature TESTER EARTH RESISTIVITY SET		
Nanufacturer MEGGER INSTRUMENTS LTD		Part No. \quad ET3/2 MIN		Cost/Date £264 1982
Height $16.5 \mathrm{~cm}$	\|wiath	$1 \mathrm{~cm} \quad \|$Depth		Weight 3 kg
Power Supplies Integral hand powered ac generator				$\begin{gathered} \text { Air Publication } \\ \text { NONE } \end{gathered}$
$\begin{gathered} \text { Availability } \\ 2 \end{gathered}$	Environment B	Maintenance Policy B2/D4	calibration A/12	AFDEETEC/AFDSEC No . 19244

1 Description

The earth tester is a compact, portable instrument and is supplied with a carrying case and accessory kit (see section 3). Tests provided by the instrument are:
(a) Earth electrode resistance measurement
(b) Soil resistivity measurement
(c) Earth continuity testing
(d) Neutral earth test
(e) Direct resistance measurement within the instrument range

The test current from the integral hand driven ac generator is passed between the earth electrode under test and a current electrode. The pd across the test electrode and a separate intermediate electrode is balanced by the generator output via a current transformer across a digital resistor system. Any out of balance current caused by a potential difference is rectified and applied to a centre zero meter. The three resistor switches are adjusted to give a zero reading on the meter. The readings on the switches combined with the setting of the range switch provides an accurate resistance reading.

Purpose

(a) Earth electrode resistance measurement.
(b) Soil resistivity measurement.
(c) Earth continuity testing.
(d) Neutral earth test.
(e) Direct resistance measurement within the instrument range.

2 Specification

Measurement Range:	0.01Ω to 9990Ω
Ranges:	x $0.01 ; \times 0.1 ; \times 1 ; \times 10$
Accuracy:	At $20^{\circ} \mathrm{C}, \pm 1 \%$ of range in use with
individual spike resistance up to	
	1500Ω
Temperature Effect:	$\pm 0.05 \% /{ }^{\circ} \mathrm{C}$
Temperature Range:	Operating: $-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
	Storage: $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Power Source:	Integral hand-powered ac generator

3 Comprising

-	Instrument	ET3/2 MIN
$5 \mathrm{G} / 3708253$	Instrument Carrying Case	63144

$\begin{cases}1 & \text { Canvas Carrying Case } \\ 1 & 1.13 \mathrm{~kg} \text { Hammer } \\ 4 & \text { Calvanised steel spikes, } 12 \mathrm{~mm} \\ 1 & \text { Square section, } 450 \mathrm{~mm} \text { long } \\ 2 & \text { Spike extractors } \\ 30 \mathrm{~m} & \text { Cable on cable winder complete with connectors } \\ 50 \mathrm{~m} & \begin{array}{l}\text { and clip } \\ \\ 2\end{array} \\ \begin{array}{l}\text { Cable on cable winder complete with connectors } \\ 3 \mathrm{~m} \text { leads complete with connector and clip }\end{array}\end{cases}$

4 Accessory Items
None.
5 Associated Equipment
None.

Chap 5.2.8

1 Description
The Tester PAT 2 is used to check the electrical safety of portable appliances. The tester will also check earthed appliances and double insulated appliances. Fitted to the lid of the tester is an accessory pouch containing the test leads and probes. A basic diagrammatic instruction card is attached to the inside of the lid. Each tester will carry out five tests on an appliance, ie an earth bond test, an insulation test, a flash test, a load test, and an appliance operation test. The appliance to be tested is simply plugged into a standard 3-pin socket on the instrument front panel. Also available is a 200 V Continental version, 10ZZ/211055, AFDEETEC No. 19348, Pt. No. PAT 2 EUR 220.

2 Specification
TESTS AVAILABLE Earth bond, Test 1
Insulation, Test 2
Flash, Test 3
Load test, Test 4
Operation, Test 5
(continued)

Specification (continued)
EARTH BOND TEST

Meter reading range	0 to 0.5Ω
Pass-band limit	$0.1 \Omega+0-0.01 \Omega$
Open-circuit voltage	6 V ac rms (nominal)
Short-circuit current	37.9 A (nominal)

INSULATION TEST

Meter reading range	$0.75 \mathrm{M} \Omega$ to $20 \mathrm{M} \Omega$
Pass-band limit	$2 \mathrm{M} \Omega+0.2 \mathrm{M} \Omega-0$
Open-circuit voltage	600 V dc (nominal)
Short-circuit current	2.0 mA (nominal)

FLASH TEST

Meter reading range	0 to 6 mA (1inear scale)
Pass-band limit	3 mA (nominal)
Open-circuit voltage	1.5 kV ac rms (nominal) for Class 1
	$3 \mathrm{kV} \mathrm{ac} \mathrm{rms} \mathrm{(nominal)} \mathrm{for} \mathrm{Class} 2$
Short-circuit current	6 mA (nominal)

LOAD TEST

Meter reading range Pass-band
Open-circuit voltage
Short-circuit voltage

OPERATION TEST
Meter reading range $\quad 0$ to 3.5 kVA
green/white/red arc green
6 V ac (nominal)
330 mA

3 Comprising

6231-043 Lead Earth Bond with Crocodile C1ip
6331-225 Lead Test HV with Probe
4 Accessory Items
6331-229 Lead Earth Bond with Probe

5
Associated Equipment
None .

Chap 5.2.9

Section Referen $10 S / 85364$		Nomenclature: SAFETY OHMMETER		
Manufacturer: BRADLEY	ONICS LTD.	Part No:$1672 \mathrm{M}$		Cost/Date: $\text { £1250/OCT } 93$
Height: $220 \mathrm{~mm}$	width: 200 mm	Depth: $150 \mathrm{~mm}$	weight: $2 \mathrm{~kg}$	
Power Supplies: 4 X AA SIZE BATTERIES			Air Publication: NONE	
Availability: 2	Environment C	Maintenance Policy: B2 / D2	Calibration: TBN	afdeetec no: 19517

PHOTOGRAPH TO BE ISSUED LATER

1. Description

The Safety Ohmmeter 1672 M is a small, portable, intrinsically safe instrument that enables accurate measurement of resistances below 200 ohms in a hostile environment. It employs four wire resistance measurement techniques and is designed to provide immunity from thermal EMF and contact potentials. Additionally it is designed so that the test voltage will not exceed 1 volt peak and the applied test current is less than 3.5 milliamps. Layout of the controls permits easy operation in the protective carrying case which is fitted with a carrying strap enabling it to be used hung around the neck leaving both hands free. Additionally, the carrying case provides stowage for the wide range of test leads.

The test set utilizes a low frequency $A C$ measurement principle. The AC signal is applied to the resistance under test by two source wires and is monitored by two sense wires which feed the amplifier. After amplification the signal is filtered and rectified before being fed to a 3.5 digit LCD display. Power to the test set is provided by four AA size batteries and a low battery condition annunciator is fitted to indicate when 90% of battery life has been consumed. The instrument is activated by a push button $O N$ switch, but incorporates a timer circuit which automatically switches it OFF after four minutes. Additionally, backlighting for the LCD display is operated by a push switch. The 50 metre accessory lead has a significant inductance which varies according
to how it is deployed. A zero adjustment is therefore provided to trim out this offset which can be up to 4 milliohms.

Note ...

The battery compartment cover is secured with special Allen key-headed tamper proof screws to prevent batteries being changed too easily in an explosive environment. The special allen key should not be kept with the instrument.
2. Specification

Ranges:	000.0 to 199.9 milli-ohms	Resolution 0.1 milli -ohm
	0.000 to 1.999 ohms	Resolution 0.001 ohm
	00.00 to 19.99 ohms	Resolution 0.01 ohm
	000.0 to 199.9 ohms	Resolution 0.1 ohm

Accuracy: $\pm 1 \%$ of reading ± 1 digit

Maximum Applied Voltage: Instrument designed so as not to exceed 1 volt.

Applied Test Current: 3.5 mico-amps to 3.5 milli-amps dependant upon range selected.

Battery Life: Approx. 56 hours.
Operating Temperature: $\quad-20$ to $+60^{\circ} \mathrm{C}$
Storage Temperature: $\quad-40$ to $+60^{\circ} \mathrm{C}$
3. Comprising

Sect/Ref.	Nomenclature	Part No.	Qty
	Safety Ohmmeter Instrument		
10S/5512115	Test Lead - Small Kelvin Clip	162612-A2	2
10S/7606695	Test Lead - Large Kelvin Clip	162613-A2	1
10S/2442864	Test Lead - Probe	162609-A2	2
10S/2999742	Extension Lead - 5 metre	162614-A2	1
	Operator Handbook		1
	Carrying Case	163313-A2	1

4. Accessory Items

| Sect/Ref. | Nomenclature | |
| :--- | :--- | :--- |\quad Part No. \quad Qty.

5. Associated Equipment

None

1. Description

This series of decade resistance boxes give maximum resistances of 1111Ω for type 4403 to $1,111,111 \Omega$ for type 8802 .
2. Specification

Insulation Resistance	$:$ Greater than $20000 \mathrm{M} \Omega$
Residual Resistance	$: 0.005 \Omega /$ decade
Contact Resistance Variation $: ~ L e s s ~ t h a n ~$	$\mu \Omega /$ decade switch
Maximum Potential to Screen $: 400 \mathrm{~V}$ (peak)	

Sect/Ref	AFDEETEC No	Type		10^{5}	10^{4}	10^{3}	100	10	10°	10^{-1}	10^{-2}	Cost Aug 76
	18415	4403				$*$	$*$	$*$	$*$		$£ 145$	
10 S/6327624	18416	5502				$*$	$*$	$*$	$*$	$*$	$£ 172$	
10 S/6327625	18417	5503			$*$	$*$	$*$	$*$	$*$		$£ 175$	
10 S/6327626	18418	6602			$*$	$*$	$*$	$*$	$*$	$*$	$£ 203$	
10 S/6327627	18407	8802	$*$	$*$	$*$	$*$	$*$	$*$	$*$	$*$	$£ 275$	
Current Rating (Amps)		0.002	0.007	0.02	0.07	0.2	0.7	2.0	2.0			

NOTE: The value listed in the decades column is the switchable increment of each decade ie the maximum total will be 10 times the listed colurm eg the maximum range of the 5502 is

$$
\begin{aligned}
& (100 \times 10)+(10 \times 10)+(10 \times 1)+(10 \times 0.1)+10 \times 0.01) \\
= & 1000+100+10+1+.1 \\
= & 1111.1 \Omega
\end{aligned}
$$

3. Comprising

Instruments only.
4. Accessory Items

None.
5. Associated Equipment

None.

1. Description

An 8 decade resistance box giving a maximum resistance of $11,111,111 \Omega$ and a resolution of 0.1Ω.
2. Specification
at $20^{\circ} \mathrm{C}$
Decade Steps Ohms

	10^{6}	10^{5}	10^{4}	10^{3}	10^{2}	10^{1}	10°	10^{-1}
Accuracy:	0.3\%	0.03\%	0.03\%	0.03\%	0.03\%	0.03\%	0.03\%	0.1\%
Maximum Continuous I	$700 \mu \mathrm{~A}$	3 mA	7 mA	20 mA	70 mA	200 mA	1 A	1 A

Resolution: $\quad 0.1\left(10^{-1}\right) \Omega$
Temperature Coefficient: $\quad 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Residual Resistance: $24 \mathrm{~m} \Omega$
Annual Stability: Better than 0.03\%
Insulation Resistance: Between test terminals and case $1000 \mathrm{M} \Omega$ at 500 V de
3. Comprising

Instrument only.
4. Accessory Items

None .
5. Associated Equipment

None.

Section Reference6C/5905-99-1003338		Nomenclature			
		VOLTAGE	DIVIDING RESI	STANCE BOX	
Manufacturer		Part No.	801D	Cost/Date	
Height	Width	Depth		Weight	
12.9 cm		36.8 cm	10.5 cm	2.27 kg	
Power Supplies				$\begin{array}{r} \text { Air Publication } \\ \text { None } \end{array}$	
Availability	EnvironmentB	Maintenance Policy B2/D4	Calibration A/12	$\begin{gathered} \text { AFDEETEC/AFDSEC No. } \\ 10468 \end{gathered}$	
2					

1. Description

This instrument operates as a potential divider in which the total resistance presented to the input is kept constant. The switches are so designed that as resistance is added to one side of the dividing point, an equal resistance is removed from the other side.

Dual decade switches, rotated by a common shaft, are mounted in an aluminium alloy box. The all metal enclosure gives complete electrostatic screening. The resistors have non-reactive windings and possess a good, long-term stability.

The instrument can also be used as a decade resistance box.
2. Specification

Range (Voltage Ratio):	$1: 0.0001$ to unity in steps of 0.0001
Input Resistance:	10000Ω
Accuracy:	$\mathrm{dc} \pm 0.1 \%$
Voltage:	Maximum input voltage 250 V rms

3. Comprising

Instrument only.
4. Accessory Items

None.

5. Associated Equipment

None.

Section Reference:$10 S / 4957821$		Nomenclature: DECADE CAPACITANCE BOX		
Manufacturer: LIOYD INSTRUMENTS		Part No: SVC5		Cost/Date: £2322/OCT 1987
Height: 208 mm	width: 603 mm	Depth: 208 mm	Weight:	
Power Supplies: NONE REQUIRED			Air Publication: NONE	
Availability: 2	Environment: B	Maintenance Policy: $\mathrm{A} 2 / \mathrm{D} 4$	Calibration: AH 12	AFDEETEC No: 19395

1. Description

The instrument consists of four switched decades of sintered silver mica capacitors, coupled to an air space capacitor which is driven through a slow motion drive enabling a resolution and readability of 0.25 pF to be readily achieved on a repeatable basis. Though normally calibrated as a three terminal capacitor, the double screened case permits two terminal use with only slightly reduced accuracy.
2. Specification

Range and Accuracy:

SVC5	DECADE STEPS				VARIABLE	TOTAL RANGE
	$0.1 \mu \mathrm{~F}$	$0.01 \mu \mathrm{~F}$	$0.001 \mu \mathrm{~F}$	100 pF	$50-150 \mathrm{pF}$	$50 \mathrm{Pf}-1.10005 \mu \mathrm{~F}$
Accuracy \%	0.05	0.1	0.1	0.1	$0.5+0.5 \mathrm{pF}$	3 Terminal
Accuracy \%	0.05	0.1	0.1	0.3	$0.5+1 \mathrm{pF}$	2 Terminal

2. Specification (continued)

Maximum Working Voltage:	300 V DC
Resolution:	0.5 pF
Long Term Stability:	Better than $0.03 \%+0.5 \mathrm{pF} /$ annum.
Capacitor Dissipation Factor:	Better than 0.0005 (at 1 kHz)
Residual Capacitance:	0.5 pF

3. Comprising

Instrument only.
4. Accessory Items

None
5. Associated Equipment

None

1 Description
The instrument consists of four switched decades of sintered silver mica capacitors, coupled to an air space capacitor which is driven through a slow motion drive enabling a resolution and readability of 0.25 pF to be readily achieved on a repeatable basis. Though normally calibrated as a three terminal capacitor, the double screened case permits two terminal use with only slightly reduced accuracy.

2 Specification
Range and Accuracy;

SVC5	DECADE STEPS				VARIABLE	TOTAL RANGE
	$0.1 \mu \mathrm{~F}$	$0.01 \mu \mathrm{~F}$	$0.001 \mu \mathrm{~F}$	100 pF	$50-150 \mathrm{pF}$	$50 \mathrm{pF}-1.10005 \mu \mathrm{~F}$
Accuracy \%	0.05	0.1	0.1	0.1	$0.5+0.5 \mathrm{pF}$	3 Terminal
Accuracy \%	0.05	0.1	0.1	0.3	$0.5+1 \mathrm{pF}$	2 Termina1

```
2 Specification (Continued)
    Maximum Working Voltage: 300 V dc
    Resolution:
    Long Term Stability:
    Capacitor Dissipation Factor:
    Residual Capacitance:
0.5 pF
Better than 0.03% + 0.5 pF/annum
Better than 0.0005 (at 1 kHz)
0.5 pF
3 Comprising
Instrument only
4 Accessory Items
None
5 Associated Equipment
None
```

Section Reference5G/2522317		Nomenclature PERSONNEL RESISTANCE TESTER		
Manufacturer ALG SER	INSTRUMENT ICES LTD	Part No.		$\begin{aligned} & \text { Cost/Date } \\ & \qquad 5501989 \end{aligned}$
Height $45.5 \mathrm{~cm} \times 30 \mathrm{~cm}$	Width 6.	\square Depth	$5 \mathrm{~cm}{ }^{\text {We }}$	kg (Inc Ground Plate)
Power Supplies 9 VOLT dc (BATTERY)				Air Publication TBN
Availability 2	Environment B	Maintenance Policy $1 A / 2 B / 4 C D$	Calibration $\mathrm{CH} / 12 \mathrm{M}$	AFDEETEC/AFDSEC No. 19409

1 Description

The Personnel Resistance Tester PRT2 is designed for checking the electrical resistance of personnel, wearing conductive shoes, in explosive testing and assembling departments and in locations where a high concentration of explosive vapours are present. The shoes permit the harmless discharge of static electricity from the body and so eliminate the risk of fire and explosion which might otherwise result.

The PRT2 comprises an aluminium case on which is mounted an insulated chromium plated metal handle. The handle incorporates a momentary switch which operates the tester. The handle forms one side of the resistance testing circuit which is completed via a metal earthplate connected to the earthplate terminal on the tester. The tester incorporates two additional momentary switches for checking the operation of the PRT2 and the state of the battery. Two LEDs are provided to indicate if the measured resistance is above or below 1 $\mathrm{M} \Omega$.

Specification
Green LED lit if body resistance is less than $1 \mathrm{M} \Omega$.
Red LED lit if body resistance is greater than $1 \mathrm{M} \Omega$.
Battery test, Green LED lit above 7 volts and Red LED lit if below.
Comprising
Personnel Resistance Tester
Metal Earthplate
Accessory Items
Battery PP3 9 volt
6135-99-9496083
Associated Equipment
None

1 Description

The Earth Bonding Tester is a small, portable instrument that enables the accurate measuring of low resistances in a hostile environment. It employs 4 wire resistance measurement techniques and is designed to provide immunity from thermal emf's and contact potentials. Layout of the controls permits easy operation in the protective carrying case, which is fitted with a carrying strap which enables it to be used hung around the neck leaving both hands free. Additionally the carrying case provides stowage for the wide range of test leads.

Chap 5.4.5

The test set utilizes a low frequency ac measurement principle. The ac signal is applied to the resistance under test by 2 source wires and is monitored by 2 sense wires which feed an amplifier. After amplification the signal is filtered and rectified before being fed to a 3.5 digit LCD display. Power to the test set is provided by 4 AA size batteries and a low battery condition annunciator is fitted which indicates when 90% of battery life has been consumed. The instrument is activated by a push button ON switch but incorporates a timer circuit which automatically switches it OFF after 4 minutes. Additionally, backlighting for the LCD display is operated by a push switch.

It should be noted that the 50 metre accessory lead has significant inductance which varies according to how it is deployed. A zero adjustment is therefore provided to trim out this offset which can be up to $4 \mathrm{~m} \Omega$.

Specification

Ranges: \quad| 000.0 to $199.9 \mathrm{~m} \Omega$ |
| :--- |
| 0.000 to 1.999Ω |
| |
| |
| |
| 00000 to 19.99Ω |

> resolution $0.1 \mathrm{~m} \Omega$ resolution $0.001 \Omega \Omega$ resolution $0.01 \Omega \Omega$
> resolution 0.1Ω

Accuracy: + or -1% of reading + or -1 digit
Maximum Applied Voltage: Instrument designed so as not to exceed 1 volt

Applied test current:
3.5 micro-amps to 3.5 milli-amps dependent upon range selected

Battery Life:
56 hours
Operating Temperature:
Storage Temperature:

```
-20}\textrm{C}\mathrm{ to +60 C
-40 C to +60 C
```

Comprising

Earth Bonding Instrument Pt No 1671M oty 1
Test Lead - Small Kelvin Clip
Test Lead - Large Kelvin Clip
Test Lead - Probe
Extension Lead 5 Metre
Operator Handbook
Carrying Case
Accessory Items
Extension Lead 50 Metre Pt No 162620-A2 10S/9730399

None

AP 117A-0104-1

Section Reforence 6C/1998743		DECADE CAPACITOR, VARIABLE			
Manufacturer J.J. INS	UMENTS	Part No.		$\begin{aligned} & \text { Cost/Date } \\ & \text { £150.00 } \end{aligned}$	1978
$\begin{aligned} & \text { Height } \\ & \quad 14.0 \mathrm{~cm} \end{aligned}$	Width	.0 cm Depth	3 cm	Weight	
Power Supplies				Air Publication None	
$\begin{gathered} \text { Availability } \\ 2 \end{gathered}$	Environmen B	Maintenance Policy B2/D4	Calibration A/12	AFDEETBC/AFT.	

1. Description

The instrument consists of a single air-spaced capacitor which is fittef with a slow motion dial calibrated directly in picofarads. An additioral single decade is incorporated to extend the range.
2. Specification

Range:

Accuracy:

Maximum Voltage:
Resolution:

20 to 1100 pF .
At $20^{\circ} \mathrm{C} \pm 0.5 \%$ or 0.5 pF whichever is greater
500 V dc
0.5 pF

3. Comprising

Instrument only.

Chap 5.3.5
Nov 79 (Amdt 1)
Page 1

4. Accessory Items

None.
5. Associated Equipment

None .

1. Description

This instrument operates as a potential divider in which the total resistance presented to the input is kept constant. The switches are so designed that as resistance is added to one side of the dividing point, an equal resistance is removed from the other side.
2. Specification

Input Resistance: $\quad 1000 \Omega$
Number of Decades: 4
Range (Voltage Ratio): 1 : 0.0001 in steps of 0.0001
Accuracy: dc 0.05%
Voltage: Maximum input voltage 100 V rms
3. Comprising

Instrument only.
4. Accessory Items

None.
5. Associated Equipment

None.

1. Description

This instrument operates as a potential divider in which the total resistance presented to the input is kept constant. The switches are so designed that as resistance is added to one side of the dividing point, an equal resistance is removed from the other side.
2. Specification

Input Resistance: $\quad 100 \mathrm{k} \Omega$
Number of Decades: 5
Range (Voltage Ratio): $1: 0.0001$ in steps of 0.00001
Accuracy: Dials (dc)
0.1 and $0.01 \pm 0.01 \%$
0.001 and $0.0001 \pm 0.05 \%$
$0.00001 \pm 0.2 \%$
Chap 5.3.7
Page 1

Voltage:
Maximum input voltage 750 V rms
3. Comprising

Instrument only.
4. Accessory Items

None.
5. Associated Equipment

None.

1. Description

This instrument is specifically designed for qualitative testing of continuity in electrical circuits. The discriminatory characteristics of the device are obtained by the use of a circuit arrangement wherein the resistive value of a conductor under test (this comprising the circuit across which the probes are connected) may be assessed in relation to a pre-determined value to which the unit has been adjusted by the user. This discrimination may be in the range 1.0Ω to 20Ω, in standard units. When the resistance of the circuit under test exceeds the preset value the unit will not produce the audible 'pass' signal. On this basis such circuit defects as 'dry joints', poor contacts or actual discontinuities may readily be detected by use of the instrument.
2. Specification

Discrimination:	Adjustable in the range 0.1Ω to 5Ω
Sensitivity:	0.1Ω
AC Test Signal:	Maximum 50 mV across probes

3. Comprising

Instrument with probes attached. Case
4. Accessory Items

None.

5. Associated Equipment

None.

1. Description

The instrument is contained in a robust plastic case with transparent front. The three neon tubes in the top row indicate continuity and the two in the bottom row indicate phase sequence.
2. Specification

Voltage Range: $\quad 100 \mathrm{~V}$ to 220 V
Frequency Range: $\quad 300 \mathrm{~Hz}$ to 500 Hz
3. Comprising

The indicator is supplied with a 36 inch length of three-cored cable terminated in crocodile clips.

Three detachable probes.
4. Accessory Items

None.
5. Associated Equipment

None.

Section Reference$5 \mathrm{G} / \mathrm{I} 022589$		Nomenclature PHASE AND CONTINUITY INDICATOR TYPE 2		
Manufacturer MART		Part No. PC 87		$\begin{array}{\|ll} \hline \text { Cost/Date } & \\ £ 20.00 & 1978 \end{array}$
Height $8.9 \mathrm{~cm}$	Width			Weight $12.0 \text { kg }$
Power Supplies				Air Publication None
$\begin{gathered} \text { Availability } \\ 2 \end{gathered}$	Environment B	Maintenance Policy B2/D4	Calibration CNR	AFDEETEC/AFDSEC No. None

1. Description

The instrument is contained in a robust plastic case with transparent front. The three neon tubes in the top row indicate continuity and the two in the bottom row indicate phase sequence.
2. Specification

Voltage Range:
Frequency Range:
100 to 220 V
300 Hz to 500 Hz
3. Comprising

The indicator is supplied with a 36 inch length of three-cored cable terminated in crocodile clips.
Three detachable probes.

Chap 5.4.2
4. Accessory Items

None.
5. Associated Equipment

None.

Section Reference10S/6625-00-0610225		Nomenclature RF VECTOR IMPEDANCE METER		
Manufacturer HEWLETT	ACKARD	Part No. 48		$\begin{array}{ll} \hline \text { Cost/Date } & \\ \text { £2440.00 } 1978 \end{array}$
Height $17.5 \mathrm{~cm}$	Width	Depth	7 cm	Weight $17.6 \mathrm{~kg}$
Power Supplies$105-125 \mathrm{~V}, 210-250 \mathrm{~V} ; 50-400 \mathrm{~Hz}$				Air Publication None
$\begin{gathered} \text { Availability } \\ 2 \end{gathered}$	Environment B	Maintenance Policy B2/D4	Calibration A/12	$\begin{gathered} \text { AFDBETEC/AFDSEC No. } \\ 18861 \end{gathered}$

1. Description

The 4815A RF Vector Impedance Meter is a versatile instrument that provides fast, direct reading measurements of impedance and phase angle over the frequency range 500 kHz to 108 MHz . It has continuous tuning over this frequency range and does not require balancing or data interpretation, therefore, it is useful for the evaluation of the complex impedance of both active circuits and components. An internal LC oscillator, operating over the range from 500 kHz to 108 MHz , supplies a low-level excitation signal to the circuit under test through a convenient probe attached to a 5 ft cable. A unique sampling AGC loop maintains the excitation constant at $4 \mu \mathrm{~A}$. At the same time, the voltage response of the test circuit is sensed and converted by a second sampling channel, located within the same probe, to read out directly in impedance. A phase detector monitors the difference between the voltage and current channels to the phase angle of the impedance vector. Therefore one probe excites the test circuit and measures its impedance and phase angle.

Where impedance must be determined over a band of frequency, the 4815A may be swept manually or electronically at rates up to 1 MHz per second by an external sweep oscillator. An analogue output of frequency and phase angle are provided so that these values may be recorded on an $\mathrm{X}-\mathrm{Y}$ recorder.

A front panel monitor output allows the internal 500 kHz to 108 MHz oscillator in the 4815A to be monitored with a frequency counter or other frequency measuring device. This output may be also used as a general purpose oscillator, since it provides excellent stability, reasonable power output, and extremely low microphonism.

For direct measurement of inductors and capacitors, the frequency dial can be accurately set to either the 1.592 or 15.92 MHz point. At these frequencies, the impedance magnitude meter reads directly in the numerical value of L or $1 / C$, with range and frequendy determining the correct placement of the decimal point. Values of C ranging from 0.1 pF to $0.1 \mu \mathrm{~F}$ and L from $0.01 \mu \mathrm{H}$ to 10 mH may be measured by this technique.

2. Specification

Frequency:

Range :	500 kHz to 108 MHz in five bands: 500 kHz to 1.5 MHz , 1.5 to 4.5 MHz , 4.5 to $14 \mathrm{MHz}, 14$ to $35 \mathrm{MHz}, 35$ to 108 MHz
Accuracy:	$\pm 2 \%$ of reading, $\pm 1 \%$ of reading at 1.592 MHz and 15.92 MHz .
RF Monitor Output:	100 mV minimum into 50Ω.
mpedance Magnitude easurement:	
Range :	```1\Omega to 100 k\Omega in nine ranges: 10 \Omega, 30 \Omega, 100 \Omega, 300 \Omega, 1 k\Omega, 3 k \Omega, 10 k \Omega, 30 k\Omega, 100 k\Omega.```
Accuracy:	$\pm 4 \% \text { of full scale } \pm\left(\frac{\mathrm{f}}{30 \mathrm{MHz}}+\frac{\mathrm{Z}}{25 \mathrm{k} \Omega}\right) \%$ of reading, where $f=$ frequency in MHz and Z is in ohms; reading includes probe residual impedance.
Calibration:	Linear meter scale with increments 2% of full scale.

Phase Angle
Measurement:
Range:

Accuracy:

$$
\begin{aligned}
& 0 \text { to } 360^{\circ} \text { in two ranges: } \\
& 0 \pm 90^{\circ}, 180^{\circ} \pm 90^{\circ} . \\
& \pm\left(3+\frac{\mathrm{f}}{30 \mathrm{MHz}}+\frac{\mathrm{Z}}{50 \mathrm{k} \Omega}\right) \text { degrees; where } \mathrm{f}= \\
& \text { frequency in } \mathrm{MHz} \text { and } \mathrm{Z} \text { is in ohms. }
\end{aligned}
$$

Calibration:	Increments of 2^{0}
Adjustments:	Front panel screwdriver adjustments for

3. Comprising

Ref No	Nomenclature	Part No
	N7R	Instrument
N7R	Probe	4815 A
		00600A

4. Accessory Items

None
5. Associated Equipment

None

Section Reference10S/1222371		Nomenclature EARTH BONDING TESTER		
ManufacturerBRADLEY ELECTRONICS		Part No. ${ }^{1671 \mathrm{M}}$		Cost/Date $£ 803 / 89$
Height 220 mm	width	0 mm	mm	Weight $2 \mathrm{~kg}$
Power Supplies		eries		Air Publication TBN
$\begin{gathered} \text { Availability } \\ 2 \end{gathered}$	Environment C	$\begin{gathered} \text { Maintenance Policy } \\ \text { B2/D4 } \end{gathered}$	$\begin{gathered} \text { Calibration } \\ \text { AH12M } \end{gathered}$	AFDEETEC/AFDSEC No. 19421

The Earth Bonding Tester is a small, portable instrument that enables the accurate measuring of low resistances in a hostile environment. It employs 4 wire resistance measurement techniques and is designed to provide immunity from thermal emf's and contact potentials. Layout of the controls permits easy operation in the protective carrying case, which is fitted with a carrying strap which enables it to be used hung around the neck leaving both hands free. Additionally the carrying case provides stowage for the wide range of test leads.

The test set utilizes a low frequency ac measurement principle. The ac signal is applied to the resistance under test by 2 source wires and is monitored by 2 sense wires which feed an amplifier. After amplification the signal is filtered and rectified before being fed to a 3.5 digit LCD display. Power to the test set is provided by 4 AA size batteries and a low battery condition annunciator is fitted which indicates when 90% of battery life has been consumed. The instrument is activated by a push button ON switch but incorporates a timer circuit which automatically switches it OFF after 4 minutes. Additionally, backlighting for the LCD display is operated by a push switch.

It should be noted that the 50 metre accessory lead has significant inductance which varies according to how it is deployed. A zero adjustment is therefore provided to trim out this offset which can be up to $4 \mathrm{~m} \Omega$.

Specification

Ranges:	000.0 to $199.9 \mathrm{~m} \Omega$	resolution $0.1 \mathrm{~m} \Omega$
	0.000 to 1.999Ω	
	00.00 to 19.99Ω	
	000.0 to 1999.9Ω	
Acculution 0.001Ω		
resolution 0.01Ω		

Maximum Applied Voltage: Instrument designed so as not to exceed 1 volt

Applied test current:
3.5 micro-amps to 3.5 milli -amps dependent upon range selected

56 hours
Operating Temperature:
$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
3 Comprising
Earth Bonding Instrument
Test Lead - Small Kelvin Clip
Test Lead - Large Kelvin Clip
Pt No 1671M Qty 1

Test Lead - Probe
Extension Lead 5 Metre
Operator Handbook
Carrying Case
162612-A2 Qty 2 10S/5512115
162613-A2 Qty I 10S/7606695
162609-A2 Qty 2 10S/2442864
162614-A2 Qty 1 10S/2999742
162645 Qty 1 10S/4616996
162648-A2 Qty 1 10S/0511523
Accessory Items
Extension Lead 50 Metre Pt No 162620-A2 10S/9730399
5 Associated Equipment
None

Section Reference: $6625-99-8092747$		Nomenclature: Manufacturer: ROBIN		CONTINUITY AND INSULATION TESTER

1. Description

The Tester KMP 3075 DL is a compact high specification digital continuity and insulation tester. The cabinet uses thememory plastics to give an enhanced look as well as durability. The design of the cabinet is such that it is an integral part of the unit. The instrument is protected in transit by its own integral lid. Microprocessor technology provides advanced functionality and maximises the user friendly aspects. In the past digital insulation testers have been renowned for the excessive scatter of digits as capacitive circuits are charging, i.e. digital flicker. These effects have been eliminated with this unit. A backlight for the display is provided in low light conditions. An additional feature of this unit is a function called 'Traclok'. This enables the unit to maintain a display of the reading after the test source voltage has been removed.
2. Specification

INSULATION RESISTANCE RANGES

KMP 3075DL

Test voltage	250 V	500 V	1000 V
Measuring range	0-20 M Ω	$0-20 \mathrm{M} \Omega$	$0-20 \mathrm{M} \Omega$
	0-200 M Ω	0-200 M $\boldsymbol{0}$	0-200 M
	0-2000 M	0-2000 M	0-2000 M
Output voltage on	250 V DC	500 V DC	1000 V DC
Open circuit	$\pm 10 \%$ max	$\pm 10 \%$ max	$\pm 10 \%$ max
Output voltage	$\begin{aligned} & 250 \mathrm{~V} \mathrm{DC} \mathrm{~min} \\ & \text { at } 0.25 \mathrm{M} \Omega \end{aligned}$	$\begin{aligned} & 500 \mathrm{~V} \mathrm{DC} \min \\ & \text { at } 0.5 \mathrm{M} \Omega \end{aligned}$	$\begin{aligned} & 1000 \mathrm{~V} \mathrm{DC} \mathrm{~min} \\ & \text { at } 1.0 \mathrm{M} \Omega \end{aligned}$
Output current (as per BS 7671)	$\begin{aligned} & 1 \mathrm{~mA} \mathrm{DC} \mathrm{~min} \\ & \text { at } 0.25 \mathrm{M} \Omega \end{aligned}$	$1 \mathrm{~mA} D C \mathrm{~min}$ at $0.5 \mathrm{M} \Omega$	$\begin{aligned} & 1 \mathrm{~mA} \mathrm{DC} \mathrm{~min} \\ & \text { at } 1.0 \mathrm{M} \Omega \end{aligned}$
Output short circuit ----.-.-.-.-.-.-.-.-.-. 1.3 mA approx current			
Accuracy	Range		
	20 M ת	$\pm 1.5 \% \mathrm{r}$	dgt
	$200 \mathrm{M} \Omega$	$\pm 1.5 \% \mathrm{r}$	dgt
	$2000 \mathrm{M} \Omega$	$\pm 10 \%$ rd	dgt

CONTINUITY RESISTANCE RANGES

Measuring ranges	$0-20 \Omega$	$0-200 \Omega, 0-2000 \Omega$
Open circuit voltage	$4-9 \mathrm{~V}$	
Short circuit current (BS 7671)	200 mA min	
Accuracy	$0-20 \Omega, \pm(1.5 \% \mathrm{rdg}+5 \mathrm{dgt}), 0-200 \Omega \& 0-2000 \Omega \pm 1.5 \% \mathrm{rdg}$ $+3 \mathrm{dgt})$	

GENERAL

Withstand voltage	5000 V AC maximum for one minute between electrical circuit and housing case.
Overload protection	600 V AC for 30 seconds (insulation resistance ranges)
	500 mA HRC ceramic fuse (continuity resistance ranges)
Safety standard	Designed to comply with the requirements of BS EN
	61010-1 Cat 111, BS 4743

3. Comprising

Comprising: Bag carrying complete with shoulder strap

```
KP 1200-MOD
Pouch, lead
Pouch, accessory
Bag carrying contains:
a. Continuity and insulation tester
b. Pouch, lead
Test lead set, 1 m long
(10S 6625-99-1317750)
Comprising: Pair - red and black leads - l m long
Pair - red and black prods (fitted)
Pair - red and black croc clips
Pair - 10 A HRC fuses (fitted)
Test lead set, 10 m long Comprising: Pair - red and black leads - 10 m long
(10S 6625-99-563965)
921-99-520-ROB
Pair - red and black prods (fitted)
Pair - red and black croc clips
Pair - 10 A HRC fuses (fitted)
Pouch accessory
Battery 1.5 V Cell Size AA x6
(10S-65135-99-1956708)
10 A HRC fuses (loose) x2
10H NIV
Strap carrying and xl
shoulder pad 10H NIV
4. Accessory Items
Nil
5. Associated Equipment
```

Nil

Section Referen $10 S / 35240$		Nomenclature: PORTABLE APP	ANCE TESTE	
Manufacturer: ROBIN ELE	ICS	Part No: SmartPAT3000		Cost/Date:
Height: 350 mm	width: 370 mm	Depth: 210 cm	Weight: 5 kg	
Power Supplies:$110 / 240 \mathrm{~V}$			Air Publication: NONE	
Availability: 1	Environment: C	Maintenance Policy: C4	Calibration: IAW $100 C-50$	AFDEETEC No: 19600

1. Description

Under the Electricity at Work Regulations there is a requirement for all electrically operated equipment and appliances to be tested to ensure the users safety. The SmartPAT3000 Portable Appliance Tester (PAT) carries out all the requirements that are necessary for testing Class I and II appliances. It has a large digital display giving detailed test results and includes a 100 mA business equipment earth bond test and will test 110 V and 240 V appliances.

NOTE
The PAT required for European use is the SmartPAT3000G, 10S/6173854, AFDEETEC No. 19608.
2. Specification

3. Comprising

Nil
4. Accessory Items

Nil
5 Associated Equipment
Nil

Section Referen 10S/61738		Nomenclature: PORTABLE AP	ANCE TESTE	
Manufacturer: ROBIN ELE	ICS	SmartPAT3000G		Cost/Date:
Height: 350 mm	width: 370 mm	Depth: 210 cm	Weight: 5 kg	
Power Supplies:$110 / 240 \mathrm{~V}$			Air Publication: NONE	
Availability: 1	Environment: C	Maintenance Policy: C4	Calibration: IAW 100C-50	AFDEETEC No: 19608

1. Description

Under the Electricity at Work Regulations there is a requirement for all electrically operated equipment and appliances to be tested to ensure the users safety. The SmartPAT3000G Portable appliance Tester (PAT) carries out all the requirements that are necessary for testing Class I and II appliances. It has a large digital display giving detailed test results and includes a 100 mA business equipment earth bond test and will test 110 V and 240 V appliances.

NOTE
The PAT required for UK use is the SmartPAT3000, $10 \mathrm{~S} / 3524078$, AFDEETEC No. 19600 .

	Earth Bond	Business Equipment	$\begin{aligned} & \mathrm{P}-\mathrm{N} \\ & \text { Continuity } \end{aligned}$	Insulation
O/C volts	7.5 V RMS	100 mV AC RMS	7.5 V AC RMS	500 V DC
Current into 0.10 ohms	26A, 8A AC RMS	-	-	-
Current into s/c	-	100 mA AC RMS	$>20 \mathrm{~mA}$	-
Displayed values	0.00-1.99 , > $>2 \Omega$	0.00-1.99 , > ${ }^{\text {2 }}$,	pass/fail	0.1-19.9M,$~>20 \mathrm{M} \Omega$
Accuracy	$\pm 10 \% \pm 2 \mathrm{dgt}$	$\pm 10 \% \pm 2 \mathrm{dgt}$	-	$\pm 5 \% \pm 2 \mathrm{dgt}$
Test time	5 s	5 s	5 s	5s. 30 s

3. Comprising

Ni 1
4. Accessory Items

Nil
5 Associated Equipment
Nil

Section Reforence10S/6625-99-9545656		Nomenclature TEST SET THERMOCOUPLE		
CAMMETRIC		Part No.		$\begin{array}{\|ll\|} \hline \text { Cost/Date } & \\ \text { £285.00 } & 1978 \end{array}$
$\begin{aligned} & \text { Height } 15.0 \mathrm{~cm} \\ & \quad 15 \end{aligned}$	Width	cm Depth		Weight $7.0 \mathrm{~kg}$
Power Supplies Internal Batteries (2 x 1.5 V Typ				Air Publication None
$\begin{gathered} \text { Availability } \\ 2 \end{gathered}$	Environment B	Maintenance Policy B2/D4	$\begin{gathered} \text { Calibration } \\ \text { A/12 } \end{gathered}$	$\begin{gathered} \text { AFDEETEC/AFDSEC No. } \\ 12363 \end{gathered}$

1. Description

The Thermocouple Test Set is portable and is completely self contained combining the functions of a Wheatstone bridge/thermocouple simulator, a potential source and a dc potentiometer. Built into the set are separate batteries for the potentiometer and Wheatstone bridge, a miniature standard cell and a taut suspension pointer galvanometer with graduated scale. In addition a thermometer is incorporated to permit accurate cold-junction temperature compensation. Abridged instructions and schematic diagrams are permanently fixed inside the lid.

The most common uses of the instrument are the complete testing of thermocouple systems and the calibration of thermocouples by comparison with a standard thermocouple. The test set can also be used as a straightforward potentiometer and Wheatstone bridge.

2. Specification

Potentiometer:

Ranges:	20 mV and 100 mV
Resolution:	$10 \mu \mathrm{~V}$ on 20 mV range
	$50 \mu \mathrm{~V}$ on 50 mV range

Accuracy: $\pm 0.1 \%$ or $\pm \frac{1}{2}$ slidewire division whichever is the greater.

Wheatstone Bridge:
Ratio Arms: $\quad 200 \Omega$ each
Variable Arm: $\quad 4 \times 10 \Omega, 10 \times 1 \Omega, 10 \times 0.1 \Omega$
Accuracy: $\quad \pm 2 \%$ or $\pm 0.01 \Omega$ whichever is greater at any setting (this includes ratio arm error).

Potential Source:
Ranges: $\quad-0.4 \mathrm{mV}$ to $20 \mathrm{mV} ;-1 \mu \mathrm{~V}$ to $50 \mathrm{mV} ;-2 \mathrm{mV}$ to 100 mV

Controls: Coarse - 19 equal steps
Fine - continuously variable slidewire, the full sweep being equivalent to one step of the coarse control.

Built-in Galvanometer:

Sensitivity:	Nominally $2 \mathrm{~mm} / \mu \mathrm{A}$
Resistance:	Nominally 15Ω
Period:	Nominally 3 s
Scale:	$25-0-25 \mathrm{~mm}$
Levelling:	Not critical

3. Comprising

Instrument on1y.
4. Accessory Items

None.
5. Associated Equipment

None.

1. Description

The instrument is a tuned amplifier/voltmeter calibrated in dB and SWR for use with square-1aw detectors. The 415 E responds to a standard frequency of 1 kHz and is tunable by 7% for exact matching to the source frequency. A precision 60 dB attenuator ensures high accuracy when making substitution measurements. Both ac and dc outputs allow use of the 415 E as a high-gain, tuned amplifier or for $\mathrm{X}-\mathrm{Y}$ recorder operation.
2. Specification

Sensitivity:	$0.15 \mu \mathrm{~V}$ rms for FSD at max. bandwidth
Range:	70 dB in 10 and 2 dB steps
Input:	Lo and Hi Z unbiased crystal
Bandwidth:	Lo and Hi current bolometer
	Variable 15 to 130 Hz

Meter Scales:

```
SWR 1 to 4, 3.2 to 10 (norm), 1 to 1.25 (expand).
    dB O to 10 (norm), O to 20 (expand)
```

3. Comprising

Instrument only.
4. Accessory Items

None.
5. Associated Equipment

$110 B / 6625-99-1142343$	Slotted Line System	HP 805C (0.5 to 4 GHz)
110B/6625-99-4398100	Slotted Line System	HP 817A (1.8 to 18 GHz)

Section Reference $6625-99-1$	2343	SLOTTED LINE		
Manufacturer HEWLETT	PACKARD	Part No. HP 805C		$\begin{aligned} & \text { Cost/Date } \\ & \text { £ } 950.00 \quad 1978 \end{aligned}$
Height $17.8 \mathrm{~cm}$	Width		17.8 cm	Weight $12.1 \mathrm{~kg}$
Power Supplies				$\begin{array}{r} \text { Air Publication } \\ \text { None } \end{array}$
$\begin{gathered} \text { Availability } \\ 2 \end{gathered}$	Environment B	Maintenance Policy B2/D4	Calibration A/12	$\begin{gathered} \text { AFDEETEC/AFDSEC No. } \\ 12851 \end{gathered}$

1. Description

The HP 805C is a complete slotted line system for use as the sampling component when making VSWR measurements. The probe circuit is tunable and depth of penetration is variable.

2. Specification

Frequency Range:	0.5 to 4 GHz
SWR Max:	1.04
Connector:	N type

3. Comprising

6625-99-1142343 Slotted Line System HP 805C

Chap 5.6.2

4. Accessory Items

None.
5. Associated Equipment

110S/6625-00-9938843 Indicator VSWR

Section Reference 110B/6625-	$0-4395100$	Nomencla ture ${ }^{\text {SL }}$	D LINE S	STEM
Manufacturer HEWLETT	PACKARD	Part No.		$\begin{array}{ll} \hline \begin{array}{l} \text { Cost/Date } \\ \text { f1000.00 } \end{array} \\ \hline \end{array}$
$\begin{array}{\|l\|} \hline \text { Height } \\ \\ 17.8 \mathrm{~cm} \end{array}$	Width	$3 \mathrm{~cm}{ }^{3}$	17.8 cm	$9.9 \mathrm{~kg}$
Power Supplies		-		$\begin{array}{r} \text { Air Publication } \\ \text { None } \end{array}$
$\begin{gathered} \text { Availability } \\ 2 \end{gathered}$	Environment B	Maintenance Policy B2/D4	Calibration A/12	AFDEETEC/AFDSEC No. 18520

1. Description

The 817A consists of a slotted line system, carriage and sweep adaptor complete with two matched detectors. One of the detectors has a probe which fits into the slotted line and its depth of penetration is variable. The other detector can be connected in series with the line and used to level the signal source when making swept measurements.
The probe carriage has a calibrated scale for precise positioning of the probe along the slotted line.
2. Specification

Frequency Range:	1.8 to 18 GHz
SWR Max:	1.06
Connectors:	"N" female and APC-7

3. Comprising

110B/6625-00-4959930	Slotted Line	HP 816A
$110 B / 6625-00-3047213$	Carriage	HP 809C
110AD/6626-00-1963186	Sweep Adaptor	HP 448A

4. Accessory Items

If the system is required to be used with "N" type leads at both ends of the slotted line then an adaptor is required:
$11 \theta \mathrm{~B} / 6625-00-4636037$
Adaptor APC-7 to "N" type HP 11525A
5. Associated Equipment

110S/6625-00-9938843. VSWR Indicator HP 415E

Section Reference:$10 S / 6625-99-7308912$		Nomenclature: INSTALLATION TESTER		
Manufacturer:		Part No:		Cost/Date:
METRIX ELECTRONICS PLC		MX4900		£547/JULY 98
Height:	Width:	Depth:	Weight:	
85 mm	230 mm	220 cm	$1.6 \mathrm{~kg} \mathrm{(I}$	MENT ONLY)
Power Supplies:$4 \times 1.5 \mathrm{~V}$ IEC R14 cells			Air Publication: MANUFACTURER'S HANDBOOK	
Availability:	Environment:	Maintenance Policy:	Calibration:	AFDEETEC/AFDSEC No:
TBN	TBN	TBN	TBN	TBN

1. Description

The MX4900 is a comprehensive, portable, multi-function electrical installati, tester designed to IEC EN 61010-1 and Low Voltage Directive safety standards.

2. Specification
a. Two-wire continuity test of protective conductor and potential equalizir conductor LOW Ω :

c.... Insulation resistance measurement of electric installation using measuring voltage $250 \mathrm{~V}, 500 \mathrm{~V}, 1000 \mathrm{~V}$:

Range $(M \Omega):$	Resolution $(K \Omega):$	Accuracy:
0 to 1.999	1	$\pm 2 \% R+2 \mathrm{~d}$
2.00 to 19.99	10	$\pm 2 \% \mathrm{R}+2 \mathrm{~d}$
20.0 to 199.9	100	$\pm 2 \% \mathrm{R}+2 \mathrm{~d}$

d. Measurement of effective (RMS) value of $A C$ voltage:

Range (V):	Resolution (V):	Accuracy:
0 to 500	1	$\pm 2 \% R+2 \mathrm{~d}$

e. Measurement of frequency:

Range $(\mathrm{Hz}):$	Resolution $(\mathrm{Hz}):$	Accuracy:
14.0 to 99.9 0.1	$\pm 0.1 \% \mathrm{R}+2 \mathrm{~d}$	
100 to 499	1	$\pm 0.10 \% \mathrm{R}+2 \mathrm{~d}$

f. Short-circuit loop impedance measurement between the phase and neutral conductor or between the phase and phase conductor and short-circuit calculation $f, \mathrm{ZPN}, \mathrm{PP}, \mathrm{IK}:$

Range $(\Omega):$	Resolution (Ω):	Accuracy:
0 to 1.999	0.001	$\pm 2 \% \mathrm{R}+16 \mathrm{~d}$
2.00 to 19.99	0.01	$\pm 2 \% \mathrm{R}+2 \mathrm{~d}$
20.0 to 199.9	0.1	$\pm 2 \% \mathrm{R}+2 \mathrm{~d}$
200 to 1999	1	$\pm 2 \% \mathrm{R}+2 \mathrm{~d}$

g. Fault loop impedance measurement between the phase and protective conductor and short circuit current calculation f, ZPE, IK:

Range $(\Omega):$	Resolution (Ω):	Accuracy:
0 to 1.999.	0.001	$\pm 2 \% \mathrm{R}+16 \mathrm{~d}$
2.00 to 19.99	0.01	$\pm 2 \% \mathrm{R}+2 \mathrm{~d}$
20.0 to 199.9	0.1	$\pm 2 \% \mathrm{R}+2 \mathrm{~d}$
200 to 1999	1	$\pm 2 \% \mathrm{R}+2 \mathrm{~d}$

h. Three phase sequence: L1, L2, L3 or L'2, L1, L3
i. Measurement of disconnection time $t \Delta N$ of ordinary and selective current protection switches (RCD), contact voltage UB and earth resistance RE with an AC or DC load, RCD, RCD/DC, RCDs. RCD/DCs: .

Range $\mathrm{t} \Delta \mathrm{N}(\mathrm{ms}):$	Resolution (ms):	Accuracy:
0 to $199.9(21 \Delta \mathrm{~N}$, 0.1 $51 \Delta \mathrm{~N})$ 200 to $1999(1 \Delta \mathrm{~N}$, $0.51 \Delta \mathrm{~N})$ $0.1(1$ if $\mathrm{t}>200 \mathrm{~ms})$	$\pm 2 \% \mathrm{R}+2 \mathrm{~ms}$	

j. Contact voltage UB: UB lim: 25 V or 50 V

Range UB (V):	Resolution (V):	Accuracy:
0 to 100	0.1	$+10 \% /-0 \%$ (of UB lim)

k. Earth resistance RE:

Range $\operatorname{RE}(\Omega):$	Resolution (Ω):	Accuracy:	$1 \Delta \mathrm{~N}(\mathrm{~mA})$
10 to 10 k	10	$\pm 10 \%-0 \% \pm$ resolution	10
3.3 to 3.33 k	3.3	$\pm 10 \%-0 \% \pm$ resolution	30
1 to 1000	1	$\pm 10 \%-0 \% \pm$ resolution	100
0.33 to 333	0.33	$\pm 10 \%-0 \% \pm$ resolution	300
0.2 to 200	0.2	$\pm 10 \%-0 \% \pm$ resolution	500
0.1 to 100	0.1	$\pm 10 \%-0 \% \pm r e s o l u t i o n$	1000

1. Measurement of disconnectipn chefent 1 Δ, disconnection time t Δ at the disconnection curremend contactivitage UB at the disconnection current RCD, RCD/DC:
(1) Disconnection eurrent 1Δ : :

Range $1 \Delta(\mathrm{~mA})$	Resoluaton (mA):	Accuracy:
$(0.5$ to 1.4) $1 \Delta \mathrm{~N}$	0.1 laN	$0.151 \Delta \mathrm{~N}$

(2) Disconnection timént the disconnection current:

Range $t \Delta$ (ms):	Resolution (ms):	Accuracy:
0 to 500	0.1 (1 if $t>200 \mathrm{~ms})$	$\pm(2 \% R+2 \mathrm{~ms})$

(3) Contact voltage UB at the disconnection current: UB $\lim 25 \mathrm{~V}$ or 50 V

Range UB (V):	Resolution (V):	Accuracy:
0 to 100	0.1	$\pm 10 \% /-0 \%$ (of UB lim)

3. Comprising

a. Tester. Electrical Installation (Bag 1 of 2), part of 10S/6625-99-7308912 (see illustration at top of next page)

Item	Ref No	Qty
Tester . electrical installation.	$10 \mathrm{~S} / 6625-99-1311863$	1
Bag; carrying	$10 \mathrm{~S} / 6625-99-3354955$	1
Cable, mains plug (3 x banana)	$10 \mathrm{~S} / 6625-99-5938702$	1
Lead, banana 2 m (banana black)	$10 \mathrm{~S} / 6625-99-8326593$	1
Lead, banana 2 m (banana green)	$10 \mathrm{~S} / 6625-99-6239525$	1
Lead, banana 2 m (banana blue)	$10 \mathrm{~S} / 6625-99-8326624$	1
Test prod (black)	$10 \mathrm{~S} / 6625-99-3020597$	1
Test prod (blue)	$10 \mathrm{~S} / 6625-99-2448773$	1
Crocodile clip (black)	$10 \mathrm{~S} / 6625-99-3020599$	1
Crocodile clip (blue)	$10 \mathrm{~S} / 6625-99-8700525$	1
Crocodile clip (green)	$10 \mathrm{~S} / 6625-99-3020598$	1
Battery, l.5 V	R14 type	4

b. Tester, Electrical Installation (Bag 2 of 2), Earth Test Kit, part of 10S/6625-99-7308912 (see illusrattion at top of next page

Item	Ref No	Qty
Bag, carrying	$10 \mathrm{~S} / 6625-99-2193565$	1
Earth spike	$10 \mathrm{~S} / 6625-99-7232999$	4
Lead, banana, 5 m (crocodile black)	$10 \mathrm{~S} / 6625-99-0758934$	1
Lead, banana, 5 m (crocodile green)	$10 \mathrm{~S} / 6625-99-8111810$	1
Lead, banana, 15 m (crocodile red)	$10 \mathrm{~S} / 6625-99-5914035$	1
Lead, banana, 25 m (crocodile blue)	$10 \mathrm{~S} / 6625-99-3961463$	1

4. Accessory Items

Nil

5
Associated Equipment

Nil

