Please do not upload this copyright pdf document to any other website. Breach of copyright may result in a criminal conviction.

This document was generated by me Colin Hinson from a document held at Henlow Signals Museum. It is presented here (for free) and this version of the document is my copyright (along with the Signals Museum) in much the same way as a photograph would be. Be aware that breach of copyright can result in a criminal record.

The document should have been downloaded from my website https://blunham.com/Radar, if you downloaded it from elsewhere, please let me know (particularly if you were charged for it). You can contact me via my Genuki email page:
https://www.genuki.org.uk/big/eng/YKS/various?recipient=colin
You may not copy the file for onward transmission of the data nor attempt to make monetary gain by the use of these files. If you want someone else to have a copy of the file, please point them at the website (https://blunham.com/Radar).

Please do not point them at the file itself as the file may move or be updated.

I put a lot of time into producing these files which is why you are met with this page when you open the file.

In order to generate this file, I need to scan the pages, split the double pages and remove any edge marks such as punch holes, clean up the pages, set the relevant pages to be all the same size and alignment. I then run Omnipage (OCR) to generate the searchable text and then generate the pdf file.

Hopefully after all that, I end up with a presentable file. If you find missing pages, pages in the wrong order, anything else wrong with the file or simply want to make a comment, please drop me a line (see above).

It is my hope that you find the file of use to you personally - I know that I would have liked to have found some of these files years ago - they would have saved me a lot of time !

Colin Hinson
In the village of Blunham, Bedfordshire.

OPERATING AND MAINTENANCE
INSTRUCTIONS FOR
K-156-B \& B/1
F.S.K./A.M. CONVERTERS

OPERATING AND MAINTENANCE
 INSTRUCTIONS
 FOR

K-15t-B \& B/1 F.S.K./A. M. CONVERTERS

Serial No......
Please quote this number when ordering spares or requiring service

CONTENTS

Page
1.00 SPECIFICATION 1
200 GENERAL DESCRIPTION 1
3.00 OPERATING CONTROLS 1 '
310 Shift Switch (S8) 1
3.20 Output Switch (S4) 1
3.30 Limit Switch (S2) 2
3.40 Adjust Black-Normal-Adjust White -w tch (S6) 2
350 Contrast Control (RV3) 2
3.60 Servicing Switch (S1) 2
3.70 Check Input Level Switch(\$9) 2
4.00 OPERAT ION 2
4. 10 Connexions 2
4. 20 Operation Procedure 2
421 Swatching on During a Transmission 3
4. 22 Swatching on Prior to d Transmiseion 4
4.23 To Check Limits 4
5,00 CIRCUIT DESCRIPTION 4
5.10 Limiter and Discrimanator 4
5.20 Remodulator 5
530 Limits Oscillator 5
5.40 Cathode Ray Oscilloscope and Ancilliary Circuits 5
550 Loudspeaker Amplifier 6
5. 60 Power Supplies 6
6.00 TEST VOL,TAGES 6
6.10 Power Supply 6
6.20 Limiter and Discriminator 7
6.30^{-}Remodulator 7
6.40 Loudspeaker Amplifier 7
6.50 Carrier and Limits Oscillator 7
6. $60 \quad \mathrm{X}$ and Y Amplifier 7
7.00 ADJUSTMENT 8
7.10 Discriminator (V4) 8
7.20 Remodulator (V5) 8
7. 21 To Set up the Contrast and Output Levels 8

SPECIFICATION

Input Signal	Centre Frequency $2550 \mathrm{c} / \mathrm{s}$
Frequency Shift	$\pm 400 \mathrm{c} / \mathrm{s}$ or $\pm 150 \mathrm{c} / \mathrm{s}$
Input Level	+10 to -50 dB , ref 1 mW into 600 ohm
Input Impedance	600 ohm balanced
Output Signal	Amplitude modulated carrier frequency of $1800 \mathrm{c} / \mathrm{s}$. (Can be supplied within the range $1500 \mathrm{c} / \mathrm{s}-2400 \mathrm{c} / \mathrm{s}$.)
Output Level	600 ohm
Contrast Ratwo	12 to 30 dB ; continuously variable
Power Supplies	$\left.\begin{array}{l} 105-125 \\ 200-240 \end{array}\right\} 50 / 60 \mathrm{c} / \mathrm{s}$
Power Consumption	60VA approx
Dimensions	17-1/2 in wide $\times 10-1 / 2 \mathrm{in}$ high $\times 13$ in deep ($44.5 \mathrm{~cm} \times 26.7 \mathrm{~cm} \times 33 \mathrm{~cm}$)
Weight	46 lb (21 kg.)

The $\mathrm{K}-156-\mathrm{B}$ and $\mathrm{K}-156-\mathrm{B} / 1 \mathrm{~F} \mathrm{~S} \mathrm{~K} \mathrm{/} \mathrm{A}. \mathrm{M}$. Recorders to operate undtended over radio circlits Once the Converter and Radio Recelver have been set up to the required transmitung station no further adjustments are required, as each transmission phases and closes down the Recorder automatically

The end limit frequencies are checked and adjusted with the ald of the internal cathode ray oscilloscope and check oscillator without interrupting the output signal to the Recorder,

The $\mathrm{K}-156$ - B is normally bench mounted, but extension pleces can be supplied for mounting in a standard 19 inch rack frame.

The $\mathrm{K}-156-\mathrm{B} / 1$ is designed specifically for mounting in a 19 inch iack frame

OPERATING CONTROLS

3.10 SHIFT SWITCH (S8)

This switch is set to the position which corresponds to the frequency shift of the required transmission. For transmassion frequencies below $200 \mathrm{kc} / \mathrm{s}$ the frequency shift will, in general. be $\pm 150 \mathrm{c} / \mathrm{s}$, and for transmission frequencies above $1000 \mathrm{kc} / \mathrm{s}$ it will be $\pm 400 \mathrm{c} / \mathrm{s}$
3.20 OUTPUT SWITCH (S4)

This switch controls the output to the recorder
At OFF, the output to the Recorder is disconnected. The position is normally used while the initial setting up of the Radio Receiver is being carried out

At ON, the output to the Recorder is continuous.

3.30 LIMIT SWITCH (S2)

This switch is usually set at NORMAL and the b. f. o. control of the Radio Receiver adjusted for either the black or the white limit frequency, depending on the transmission content. lf, however, the b. f. o. has been adjusted to the wrong limit frequency, the input signal to the Converter will be inverted. This will cause the Converter, in turn, to send incorrect signals to the Recorder. To save readjustments of the b. f.o. and/or the main tuning controls, the LIMITS switch should be set to REVERSE, when the required inversion will take place.
3.40 ADJUST BLACK - NORMAL - ADJUST WHITE switch (S6)

This switch selects the presentation of the c.r.o. At ADJUST BLACK and ADJUST WHITE lissajous presentations are obtained, whereby the received signals are compared against the internal oscillator, the output of which corresponds to the appropriate limit frequency. When there is no transmission in progress, the received signal is usually 'whiter than white', i.e. the frequency of the Receiver's output is higher than the white limit frequency. Therefore, with the switch in the ADJUST WHITE position, the b. f.o. of the Radio Receiver can be approxımately set before the transmission starts.

With the switch at NORMAL, the output signal from the Converter is displayed on the c. r. o. against the internally generated time base, thus allowing the contrast ratio and waveform shape of the output signal to be checked.
3.50 CONTRAST CONTROL (RV3)

If this control is set fully counter-clockwise, and the radio receiver has been correctly set up, the contrast ratio should be approximately $4: 1$. The contrast of the output signal may be adjusted by this control, but it should be used discriminately keeping the actual chart results in mind. An excessive increase in contrast will tend to intensify the darker grey tones and weaken the lighter ones, producing a thickening of some characters and the removal of others.

3. 60 SERVICING SWITCH (SI)

The various positions of this switch enable certan checks to be made on the operation of the converter without the use of external equipment.

3.70 CHECK INPUT LEVEL SWITCH (S5)

This is a push button switch which, when depressed, connects the line input signal to the panel meter.

CONNEXIONS

Set the voltage selector, at the rear of the Converter, to the position which corresponds to the local power supply.

Connect the power supply to the Converter via the three pin plug (PL3) at the rear. The pin opposite the key-way should be connected to earth.

Connect the lines from the Radio Receiver to the terminal strip (TS1) at the rear of the Converter. (On earlier models, there is also a socket (INPUT) on the front panel, that is in parallel with TS1).

Connect the Converter to the Recorder with a line taken from the terminal strip (TS2) at the rear of the Converte (On earlier models there is also a socket (OUTPUT) on the front panel, that is in parallel with TS2).

OPERATION PROCEDURE

NOTE: This Converter is primarily intended to work with recorders that have Start/Stop signalling facilities, and for operation with these recorders, the procedure is as laid down below.

For those recorders which do not have these facilities, however, unattended operation can be achieved under the control of the OUTPUT ON/OFF switch. Thus with the Converter set up as laid down below, set the OUTPUT switch to ON, on receipt of the phasing signal. The recorder will operate automatically. Similariy, at the end of a transmission, set the OUTPUT switch to OFF. The recorder will close down.

Set the OUTPUT switch to OFF and turn the BRILLIANCE control counter-clockwise.

Set the power supply ON/OFF switch to ON and note that the amber and red lamps light.
Allow approximately five minutes for the Converter to warm up and stabilize.
Check that the SERVICING switch, at the rear of the Converter is at NORMAL.
Determine, if possible, whether the transmission to be received contains the recognised Start/Stop signals and set up the recorder appropriately.

Tune the Radio Receiver to the required station; the input level to the Converter should be approximately 0 dBm to enable it to function satisfactorily despite fading signals. Set the Controls on the Converter to the following positions:-

Set the SHIFT switch to either $\pm 150 \mathrm{c} / \mathrm{s}$ or $\pm 400 \mathrm{c} / \mathrm{s}$ depending upon the required transmission frequency shift.
Set the ADJUST BLACK-NORMAL-ADJUST WHITE switch to NORMAL.
Set the LIMITS switch to NORMAL.
Adjust the volume control until the received signal is clearly audible.
4.21 Switching on During a Transmission

If the note heard is a rhythmic tone, interrupted by regular pulses, then the chart transmission is in progress. Turn the BRILLIANCE control clockwise and view the presentation on the oscilloscope. Adjust the b. f. o. control of the Radio Receiver to obtain a presentation, the appearance of which is similar to that shown in the sketch. This is an approximate setting for the b.f.o. control.

Set the ADJUST BLACK-NORMAL•ADJUST WHITE switch to ADJUST WHITE and adju t the b.f.o. controlfor a 1: 1 lissajous on the oscilloscope. This is a final adjustment of the b.f.o. control and, provided that the approximate setting has been carried out correctly, no great alteration of its setting should be required. Reset the ADJUST BLACK-NORMAL-ADJUST WHITE switch to NORMAL and check that the presentation is clea-ly defined as shown in the sketch.

If this transmission is required, set the OUTPUT switch to ON and operate the recorder manually.
Set the CONTRAST control, as required, to achieve a satisfactory contrast ratio on the record.

If this transmission is not required, set the OUTPUT switch to OFF.

Switching On Prior to a Transmussion
If the noise heard in the loudspeaker is the interval signal berween transmissions - this may be a long whte, a long black or even an inverted phasing pulse - only an approximate setting of the b.f.o. control can be made, the final adjustment being made during the actual chart transmission.

Adjust the b. f. o. control until a clearly defined presentation is obtained on the oscilloscope.
Set the ADJUST BLACK-NORMAL-ADJUST WHITE switch to either ADJUST BLACK or ADIUST WHITE, d. pending upon the interval signal being received, and adjust the b.f.o. control to obtain a $1: 1$ liss ajous.

Set the OUTPLT switch to ON.

When the recorder operates, set the ADJUST BLACK-NORMAL-ADJUST WHITE switch to ADJUST WHITE and trim the b.f.o. control for a 1 : 1 lissajous.

Set the ADIUST BLACK-NORMAL-ADJUST WHITE switch to NORMAL and check that the oscilloscope presentation is clearly defined, as shown in the sketch.

Set the CONTRAST control, as required, to achieve a satisfactory contrast ratio on the record.

4. 23 To Check Limits

During a transmission, the white limit of the received signal may be checked at any time, without interrupting the -ignal to the Recorder, by using the ADJUST BLACK-NORMAL-ADIUST WHITE *witch.

CIRCUIT DESCRIPTION

5.10

LIMITER AND DISCRIMINATOR
The input to the limiter stage is de:ived from th', input transformer Tl via the Band Pass Filter BPF1. The Band Pass Filter has a pass band of $1000 \mathrm{c} / \mathrm{s}-400 \mathrm{nc} / \mathrm{s}$ to allow the idebands of the centre freouency to be accepted without attenuation. The three stage limiter circuit comprising V1, V", V3 and associated components, successively limits and amplifies the rec e:ver's output signal to remove any wariations n amplitude. The resultant constant-amplitude f. m. signal is then fed to the discriminator circuit, V4 and associated components.

The discriminator consists of an amplifier (V4) wirt, two tuned transformers connecred in series for an anode load, their tuning points being above and below the extremes ot the frequency shift. Across the seconda'y winding of each transformer is a bridge rectifier and the resultant d.c. voltage outputs are added in opposinion, one side of the output belr g eartned by the LIMITs switch S2. Thus, $d=$ the input to $V 4$ varies in frequenc),
so the output of the discriminator (at S2) varies in d. c amplitude and polarity; the output for black being positive, and the output for white negative

By means of the DISC BAL potentiometer RV1, the output for a black signal input is arranged to be equal and opposite in sign to the output for a white signal input The output of the discriminator for a centre frequency ($2560 \mathrm{c} / \mathrm{s}$) input is, therefore, zero.

When the frequency shift is $\pm 150 \mathrm{c} / \mathrm{s}$, a capacitor C45 1 s added across the cathode load of V4 to increase the stage gain, so that the output of the discriminator has an amplitude for $\pm 150 \mathrm{c} / \mathrm{s}$ shift similar to that for $\pm 400 \mathrm{c} / \mathrm{s}$ shift.

The Low Pass Filter LPF1 removes all frequencies above $1800 \mathrm{c} / \mathrm{s}$ without influencing the modulation frequenciel of the chart information.

5.20 REMODULATOR

This circuit consists of T2, V5 T3 and associated components. The output of the Low Pass Filter LPF1 is fed to the CONTRAST control RV3, the signal at the slider of which is fed to the centre-tapped secondary winding of transformer T2. The signal at this point is limited in positive amplitude by the clamping action of MR9 which is biased by the positive potential of the divider network R21 and RV4 (SET BLACK)

The carrier frequency for the modulator is derived from the anode tuned oscillator circuit, V11a and associated components The output signal from this circuit is fed via RV2 (MOD. INPUT) to the primary of transformer T2.

From the secondary winding of T2 both the carrier and modulation signals are applied to the grids of V5a and V5b.

The depth of modulation control, RV6 (MOD. CONTRAST) determines the grid blas of the valves and, therefore, the operating point. RV5 (MOD. BAL) enables the remodulator to be balanced for minmum modulation frequencies in the output.

The amplitude modulated output of V5 (a and b) is transformer coupled to the output pad R28, R29, R30 and R31, and the output to line is taken via the OUTPUT switch (S4), in the ON position.
5. 30 LIMITS OSCILLATOR

The limits oscillator consists of V11b and associated components. By means of the SERVICING switch ($\$ 1$) and the SHIFT switch (S8) any of five test signals ($2150 \mathrm{c} / \mathrm{s}, 2400 \mathrm{c} / \mathrm{s}, 2550 \mathrm{c} / \mathrm{s}, 2700 \mathrm{c} / \mathrm{s}$ and $2950 \mathrm{c} / \mathrm{s}$ can be selected. These signals correspond to the limit and centre frequencies for both types of frequency shift normally employed, and are used for checking the operating of the Converter without using an external oscillator. These signals are applied to the input of the Band Pass Filter and Limiter, and enable the discriminator to be balanced, and the Remodulator to be adjusted for output and contrast. In normal use, the limit signals are selected by the ADJUST BLACK-NORMAL-ADJUST WHITE switch, (S6), in conjunction with the SHIFT switch (S8) and are used to set up the b. f. o. of the Radio Receiver
5. 40 CATHODE RAY OSCILLOSCOPE AND ANCILLIARY CIRCUITS

When the ADJUST BLACKNORMAL-ADJUST WHITE switch is at NORMAL, a presentation of the Remodulator output signal is displayed on the $c . r \operatorname{t}$. against a time base derived from V12; a cold cathode diode The time base circuit generates a saw-tooth wave form which is applied to the grid of V13 via the X GAIN potentiometer RV11. The signal on pin 2 of V13 is cathode coupled to Pin 7, and the outputs from the two anodes,
which are in anti-phase, are applied to the X plates of the c.r.t.

A signal from the remodulator output transformer T3 is applied to the grid of V14, via RV14 (Y GAIN control). V14 is a cathode coupled push-pull amplifier and the two anode outputs are applied to the ' Y ' plates of the c.r.t. X \& Y shift is provided by means of RV12 and RV13, which control the bias on the grids of V13 and V14.

When the ADJUST BLACK-NORMAL-ADJUST WHITE switch is in either the ADJUST BLACK or ADJUST WHITE position, the output of the discriminator circuit is applied to the Y amplifier V14 and the appropriate limit frequency from the limits oscillator is connected to the X amplifier V13. This enables the b.f.o. of the radio receiver to be checked and the position to which the ADJUST BLACK-NORMALADJUST WHITE switch is set depends upon whether the received signal contanns a majority of 'black' or 'white'. The presentation on the c.r.o. will be a hissajous of $1: 1$ if the b.f.o. control of the radio receiver has been correctly adjusted.

The controls of the c.r.t. are mounted on the display panel, the shift controls being in the top corners and the gain controls in the bottom corners. The two left hand controls are for the X amplifier and the two right hand controls are for the Y amplfier.
5.50 LOUDSPEAKER AMPLIFIER

This is a conventional two stage amplifier, with feedback from T4 to V6a cathode, used for audio monitoring of the input signals.
5. 60 POWER SUPPLIES

All the power supplies required by the converter are derived from the power supply transformer $T 5$. H.T.1, H. T. 2 and H. T. 3 are derived from the $\sqrt{\text { ame winding, H. T. } 3 \text { being stabllized by V16. }}$
H.T. 4 the -400 V d.c. supply is derived from a separate winding and supplies the additional voltage required by the c.r.t. and the bias voltage for the detector stages.

TEST VOLTAGES

The following voltages are typical values only and a tolerance of $\pm 10 \%$ is allowable. They should be measured with a $20000 \mathrm{ohm} / \mathrm{volt}$ test meter, with the Converter working from a nominal power supply voltage and with the operating controls in the relevant positions. All voltages are with respect to earth.

POWER SUPPLY

TEST POINT

H. T. 1 Junction of R99 \& C42
H. T. 2 Junction of R100 \& R101
H.T. 3 Junction of R101 \& V16 pin 5
H. T. 4 Negative terminal of C44
D.C. VOLTS

320 V
230V
150 V
-400V
6. 20 LIMITER AND DISCRIMINATOR

Set S1 (SERVICING) to CHECK BLACK and S8 (SHIFT) to $\pm 400 \mathrm{c} / \mathrm{s}$.
TEST POINT
D.C. VOLTS
REMARKS
V1 pin 1
125 V
pins 3 \& $8 \quad 1.5 \mathrm{~V}$
pin 6 95V
V2 pin 1
125 V
pins $3 \& 8$ 2.2V
pin 6 - 95V
V3 pin 1
125 V
pins 3 \& 8 $5 \cdot 8 \mathrm{~V}$
pin 6 120V
V4 pins 1 \& 6 125 V
pins 3 \& 8
5 V
6.30 REMODULATOR

TEST POINT	D.C. VOLTS	REMARKS
T3 pin 2	115 V	
RV5 Slider	$1 \cdot 1 \mathrm{~V}$ approx.	Dependent upon the setting of

6.40 LOUDSPEAKER AMPLIFIER
TEST POINT
D.C. VOLTS
V6 pin 1 120V
pin 3
pin 6
1.8 V
pin
280 V
pin 8
3.7 V

REMARKS
6.50 CARRIER AND LIMITS OSCLLLATOR

TEST PONNT	D.C. VOLTS	REMARKS
V11 $\operatorname{pin} 1$	135 V	
pin 3	17 V	
pin 6	63 V	
pin 8	6.5 V	

6. 60 X AND Y AMPLIFIER

TEST POINT	D.C. VOLTS	REMARKS
V13 pin 1		
pins $3 \& 8$	220 V	
pin 6	52 V	
V14 pin 1	220 V	
pins $3 \& 8$	220 V	
pin 6	52 V	

```
V15 pins 6, 7,9, & }1
    pin }
    pin 1

250V approx. Dependent upon the setting of RV15

\section*{ADJUSTMENT}

Should it be necessary to change a valve in any of the following stages of the Converter, the appropriate readjustment procedure should be carried out as laid down below.
7.10 DISCRIMINATOR (V4)

Set the SERVIGING switch (S1) to CHECK NULL and connect an external d. c. voltmeter between pin 1 of the Low Pass Filter (LPF1) and earth.

Set the SHIFT switch (S8) to each position in turn, and adjust the DISC. BAL control RV1 so that the two readings obtained are symmetrical about zero.
7.20 REMODULATOR (V5)

Set the SERVICING switch (S1) to MOD. BAL and adjust the MOD. BAL control (RV5) to obtain a minimum signal on the oscilloscope.
7. 21 To set up the Contrast and Output Levels

Set the SERVICING switch (S1) to CHECK BLACK, the SHIFT switch (S8) to \(\pm 400 \mathrm{c} / \mathrm{s}\) and the ADJUST BLACK-NORMAL-ADJUST WHITE switch (S6) to NORMAL.

Turn the SET BLACK control (RV4) fully clockwise and the CONTRAST control (RV3) fully counter-clockwise.
(a) Adjust the MOD. INPUT control for a reading of 0 dB on the panel meter. Note the amplitude of the signal on the oscilloscope.
(b) Set the SERVICING switch to CHECK WHITE, and adjust the MOD. CONTRAST control (RV6) for approximately 12 dB down on the meter reading (or for \(1 / 4\) of the original oscilloscope reading).

Repeat (a) and (b) until the levels stated are obtained without further readjustment of RV2 and RV6. This gives the correct contrast ratio of \(4: 1\) which corresponds to the 12 dB change required from maximum signal (black) to minimurn signal (white).

It is now necessary to reset the SET BLACK control (RV4). Set the SERVICING switch (S1) to CHECK BlaCK and turn the CONTRAST control (RV3) fully counter-clockwise. Slowly rotate the SET BLACK control (RV4) counter-clockwise, until the panel meter reading just begins to decrease. If the CONTRAST control (RV3) is now rotated over its whole range, any change in the meter reading should be less than 0.5 dB . If this condition is not obtained, make a further adjustment of the SET BLACK control RV4 and repeat the check

To ensure speedy attention when ordering spares or replacement parts, please ensure that items are adequately described. The following details should be given when ordering electronic components:-
(a) The Type Number and description of the equipment.
b) The location of the component. (If fitted on a printed-circuit board give the PC number printed on the board).
(c) The component reference as given on the circuit diagram or printed on the printed-circuit board.
(d) A description of the item and the Ordering Reference as quoted in the relevant components code sheet.

Note: When ordering "Value as fitted" components, please give the above information where possible plus any details appearing on the component.

\section*{COMPONENTS LIST}

The following lists give details of components to be used as replacements. Whilst every endeavour is made to supply spare and replacement parts of the same description as those given in the lists,
Muirhead Limited reserve the right to supply alternative components when items listed are unobtainable.
POENTIOMETESS AROWS MOW CLOCWIS ROATION OF SPNOUS

\begin{tabular}{|c|c|c|c|c|c|}
\hline CODE & DESCRIPTION & PEFERENCE & CUDE & DESCRIPTION & ORDERIN REFEREN \\
\hline \multirow{3}{*}{Cl} & \multirow[t]{3}{*}{\begin{tabular}{l}
CAPACITORS \\
\(001 \mu \mathrm{~F} 400 \mathrm{~V}\) Mullard C296AC/ A10K
\end{tabular}} & \multirow{4}{*}{22294156} & \multirow[t]{2}{*}{C42} & \multirow[t]{3}{*}{\begin{tabular}{l}
\(50 \mu \mathrm{~F} 500 \mathrm{~V}\) Ples ey CE \(8053 / 1\) ( \(50+50 \mu \mathrm{~F}\) with C41) \\
\(16 \mu \mathrm{~F} 450 \mathrm{~V}\) Plessey CE 383/1
\end{tabular}} & \multirow{3}{*}{2278000} \\
\hline & & & & & \\
\hline & & & \multirow[t]{2}{*}{\(\mathrm{C4} 3\)} & & \\
\hline \multirow[t]{2}{*}{C 2} & \multirow[t]{2}{*}{© 01 \(\mu \mathrm{F} 400 \mathrm{~V}\) Mullard C296AC/ A10K} & & & ( \(16+16+16\) with C 10 and C 37 ) & \multirow[t]{2}{*}{\[
\begin{aligned}
& 2282001 \\
& 224971:
\end{aligned}
\]} \\
\hline & & \multirow[t]{2}{*}{22294156} & C44 & \(16 \mu \mathrm{~F} 450 \mathrm{~V}\) Plessey CE \(809 / 1\) & \\
\hline \multirow[t]{2}{*}{C3} & \multirow[t]{2}{*}{\begin{tabular}{l}
\(16 \mu \mathrm{~F} 450 \mathrm{~V}\) Plessey CE \(883 / 1\) \\
( \(16+16+16\) with \(\mathrm{C}_{5}^{5}\) and C 12 )
\end{tabular}} & & \multirow[t]{2}{*}{C45} & \multirow[t]{2}{*}{12HF 25 : Plessey CE 1375/1} & \multirow[t]{2}{*}{2248301} \\
\hline & & \multirow[t]{2}{*}{\(22820{ }^{\prime} 0\)} & & & \\
\hline \multirow[t]{2}{*}{C4} & \(0.01 \mu \mathrm{~F} 400 \mathrm{~V}\) Mullard C296AC/ & & \multirow[b]{2}{*}{R1} & PESISTORS & \multirow[b]{2}{*}{2040315} \\
\hline & A10K & \multirow[t]{2}{*}{22294156} & & \(10 \mathrm{k} 2+5 \% 1 / 2 \mathrm{~W}\) & \\
\hline \multirow[t]{2}{*}{C5} & \multirow[t]{2}{*}{\begin{tabular}{l}
\(16 \mu \mathrm{~F} 450 \mathrm{~V}\) Plessey CE \(883 / 1\) \\
( \(16+16+16\) with C 3 and C 12 )
\end{tabular}} & & R2 & \[
4 \cdot 7 \mathrm{ks}=5 \% 1 / 2 \mathrm{~W}
\] & 204025 C \\
\hline & & 22820510 & R2 & \multirow[t]{2}{*}{\[
27 \mathrm{Ck} \Omega \pm 5 \% 1 / 2 \mathrm{~W}
\]} & 2040448 \\
\hline C6 & 330 pF Dubilier 635 Silvar Mica & 22165106 & K & & 2040456 \\
\hline C7 & 1000 pF Dubilier 635 Silver Mica & 22224 co & R. & \(47 \mathrm{k} 82 \pm 5 \% 1 / 2 \mathrm{~W}\) & 2040250 \\
\hline C8 & 1000 pF Dubilier 635 Silver Mica & \(22224{ }^{\text {- } 6}\) & R6 & \(270 \mathrm{k} \Omega \pm 5 \% 1 / 2 \mathrm{~W}\) & 2040443 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{C} 9 \\
& \mathrm{Cl} 0
\end{aligned}
\]} & \multirow[t]{3}{*}{\begin{tabular}{l}
\(12 \mu \mathrm{~F} 25 \mathrm{~V}\) Plessey CE \(1375 / 1\) \\
\(16 \mu \mathrm{~F} 450 \mathrm{~V}\) Plessey CE \(883 / 1\) \\
( \(16+16+16\) with C37 and C43)
\end{tabular}} & \multirow[t]{2}{*}{22483 (10} & Ri & & 2040456 \\
\hline & & & \multirow[t]{2}{*}{R8} & \[
4.7 \mathrm{k} \Omega \pm 5 \% 1 / 2 \mathrm{~W}
\] & 2040250 \\
\hline \multirow{3}{*}{ClI} & & \multirow[t]{2}{*}{22820 (1)} & & \[
10 \mathrm{k} \Omega+5 \% 1 / 2 \mathrm{~W}
\] & 2040319 \\
\hline & \multirow[t]{2}{*}{\(0.022 \mu \mathrm{~F} 400 \mathrm{~V}\) Mullard C296AC/ A22K} & & Rio & \[
18 \mathrm{k}!+5 \% \mathrm{I} / 2 \mathrm{~W}
\] & 2040332 \\
\hline & & \multirow[t]{2}{*}{22308 utf} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { R } 1 \\
& \text { R1c }
\end{aligned}
\]} & \(4705 \Omega+5 \%\) I/ 2 W & 2040456 \\
\hline \multirow[t]{2}{*}{C12} & & & & \[
3,2 k \Omega+5 \sigma^{\prime}, 1 / \Omega W
\] & 2040236 \\
\hline & ( \(16+16+16\) with C 3 and C 5 ) & \[
22820 u^{\circ} \mathrm{r}
\] & R.3 & \[
27058=5 \% 1 / 2 \mathrm{~W}
\] & 2240120 \\
\hline Ci 3 & 1000 pF Dubilier 635 Silver Mica & 22 224.06 & \multirow[t]{2}{*}{\[
\begin{array}{r}
114 \\
r .15
\end{array}
\]} & \(1 \mathrm{MN}: 5 \% 1 / 2 \mathrm{~W}\) & 2040515 \\
\hline C14 & \(12 \mu \mathrm{~F} 25 \mathrm{~V}\) Flessey CE 1375/1 & 22483 . 4 & & \[
15 \mathrm{ks} \pm 5 \% 1 / 2 \mathrm{~W}
\] & 2040328 \\
\hline C 27 & \multirow[t]{2}{*}{1000 pF Dubilies 635 Silver Mica \(2 \mu \mathrm{~F}\) 15CV Plessey C: \(1283 / 1\)} & 2222406 & \multirow[t]{2}{*}{\[
\begin{aligned}
& 26 \\
& 27
\end{aligned}
\]} & \[
, I 2 \Omega \pm 5 \sigma_{0} 1 / 2 \mathrm{~W}
\] & 2040300 \\
\hline C28 & & 22441 chr & & \[
27 \mathrm{k}: \pm 5 \% \mathrm{~J} / 2 \mathrm{~W}
\] & 2040340 \\
\hline C 29 & \begin{tabular}{l}
\(2 \mu \mathrm{~F} 15 \mathrm{CV}\) Plessey CE \(1283 / 1\) \\
\(12 \mu \mathrm{~F} 25 \mathrm{~V}\) Plessey CE \(13: 5 / 1\)
\end{tabular} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 22483 \mathrm{Cl} \\
& 22441 \mathrm{4} 1
\end{aligned}
\]} & RIC & \(3 \cdot 3 \mathrm{k} \Omega \pm 5 \%: / 2 \mathrm{w}\) & 2040236 \\
\hline \multirow{3}{*}{Col} & \multirow[t]{3}{*}{\(2 \mu \mathrm{~F} 150 \mathrm{~V}\) Plesscy CE \(1283 / 1\) \(0.15 \mu \mathrm{~F} 400 \mathrm{~V}\) Mullard C236AC/ A150K} & & R19 & \(100 \mathrm{n} \Omega \pm 5 \% 1 / 2 \mathrm{WW}\) & 2040421 \\
\hline & & 22441 4 & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{R}^{2} \\
& \mathrm{R}^{\prime 2}
\end{aligned}
\]} & 1 \(0 \mathrm{kk} 3 \times 5 \% 1 / 2 \mathrm{w}\) & \multirow[t]{2}{*}{\[
\begin{aligned}
& 2040421 \\
& 2040433
\end{aligned}
\]} \\
\hline & & \multirow[t]{2}{*}{2230 ¢ 1 me} & & 104 !." \(\pm 5: 01 / 2 \mathrm{~W}\) & \\
\hline \multirow[t]{2}{*}{C32} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0022 \mu \mathrm{~F} 400 \mathrm{~V} \text { Mullard C296AC/ } \\
& \text { A22K }
\end{aligned}
\]} & & R22 & . \(502=57,1 / 2 \mathrm{~W}\) & 2040108 \\
\hline & & \multirow[t]{2}{*}{\(2<308 \times 16\)} & \multirow[t]{2}{*}{F23
R24} & \[
56 \mathrm{xs}+5 \% 1 \mathrm{~W}
\] & \(2042403:\) \\
\hline \multirow[t]{2}{*}{C.33} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0022 \mu \mathrm{~F} 400 \mathrm{~V} \text { Mullard C296AC/ } \\
& \mathrm{A} 22 \mathrm{~K} \text {. }
\end{aligned}
\]} & & & 5 ¢k \(\Omega \leq 5 \% 1 \mathrm{~W}\) & 2042403 \\
\hline & & \multirow[t]{2}{*}{2230801} & R"5 & \(33 \mathrm{hs} \pm 5 \% 2 \mathrm{~W}\) & 20363 43 \\
\hline \multirow[t]{2}{*}{C34} & \multirow[t]{2}{*}{\(0 \cdot 1 \mu \mathrm{~F} 400 \mathrm{~V}\) Mullard C296AC/ A100K} & & R「6 & 3Jxの \(5 \% 1 / 2 \mathrm{~W}\) & 2040348 \\
\hline & & \&2, \(2^{m} 1243\) & 122 : & 37 k ¢ \(5 \%\) \% \(1 / 2 \mathrm{~W}\) & 20403 481 \\
\hline C.35 & \(2 \mu \mathrm{~F} 150 \mathrm{~V}\) Plessey CE 1283/1 & 22441000 & R28 & 39 k & 2040244 \\
\hline C36 & \(2 \mu \mathrm{~F} 150 \mathrm{~V}\) Plessey CE 1283/i & 22441040 & K29 & \(\therefore\) U0R \(\pm 5 \%\) I/2W & 20400542 \\
\hline C37 & \(16 \mu \mathrm{~F} 450 \mathrm{~V}\) Plessey CE \(883 / 1\) & & Reo & \(100 \Omega \pm 5 \% 1 / 2 W\) & 20400 54: \\
\hline & ( \(16+16+16\) with C10 and C43) & 2282000 & K3. & 7 \(3 \mathrm{k} \Omega \pm 501 / 2 \mathrm{~W}\) & \(2040244!\) \\
\hline C38 & \(2 \mu \mathrm{~F} 150 \mathrm{~V}\) Plessey CE 1283/1 & \(2244: 640\) & P3¢ & Value as fitted & \\
\hline C39 & 0014 F 400 V Mullard C296AC/ & & R33 & \({ }^{0} 00021 \%\) : \(/ 4 \mathrm{~W}\) & 20751421 \\
\hline & A10K & 22254156 & R34 & 60) & 20751421 \\
\hline C40 & \(0.01 \mu \mathrm{~F} 400 \mathrm{~V}\) Mullard C296AC/ & & R35 & Value as fitted & \\
\hline & A10K & 2.2334156 & R36 & \(\cdots\), 0 S \(\pm 1 \% 1 / 4 \mathrm{~W}\) & 20321381 \\
\hline C41 & 5@uF 500V Plessey CE8053/1 ( \(50+50 \mu \mathrm{~F}\) with C 42 ) & \(22: 80036\) & R37 & 510ss \(\pm 1 \% 1 / 4 \mathrm{~W}\) & 20321381 \\
\hline
\end{tabular}

\subsection*{4.66}

Sheet ;
\begin{tabular}{|c|c|c|c|c|c|}
\hline Code & Description & Ordering Reference & Code & Description & Orcerin Referen \\
\hline R38 & Value as Fitted & & & POTENTIOMETERS & \\
\hline R39 & \(100 \mathrm{k} \Omega \pm 5 \% 1 / 2 \mathrm{~W}\) & 20404215 & RV1 & \(10 \mathrm{k} \Omega \mathrm{lin}\), Reliance MW & 2131000 \\
\hline R40 & \(100 \mathrm{k} \Omega \pm 5 \% 1 / 2 \mathrm{~W}\) & 20404215 & RV2 & \(2 \mathrm{k} \Omega\) lin. Reliance MW & 21250 OC \\
\hline R41 & \(1 \mathrm{k} \Omega \pm 5 \% 1 / 2 \mathrm{~W}\) & 20401545 & RV3 & 10k \(\Omega\) lin. Plessey EH2 & 213100 C \\
\hline R42 & \(470 \mathrm{k} \Omega \pm 5 \% 1 / 2 \mathrm{~W}\) & 20404565 & RV4 & \(2 \mathrm{k} \Omega\) lin, Reliance MW & 212500 C \\
\hline R43 & \(3 \cdot 9 \mathrm{k} \Omega \pm 5 \% 1 / 2 \mathrm{~W}\) & 20402445 & RV5 & \(200 \Omega \mathrm{lin}\), Reliance MW & 21140 OC \\
\hline R44 & \(680 \Omega \pm 5 \% 1 / 2 \mathrm{~W}\) & 20401455 & RV6 & \(200 \Omega\) lin, Reliance MW & 2114000 \\
\hline R45 & \(100 \mathrm{k} \Omega \pm 5 \% 1 / 2 \mathrm{~W}\) & 20404215 & RV7 & \(100 \mathrm{k} \Omega \mathrm{log}\), P lessey EH2 & 214101 C \\
\hline R75 & \(27 \mathrm{k} \Omega \pm 5 \% 1 / 2 \mathrm{~W}\) & 20403405 & RV11 & \(1 \mathrm{M} \Omega \mathrm{log}\), Plessey EH2 & 214701 C \\
\hline R76 & \(51 \mathrm{k} \Omega \pm 5 \% 1 / 2 \mathrm{~W}\) & 20404005 & RV12 & 5k\& lin, Reliance MW & 2128000 \\
\hline R77 & \(470 \mathrm{k} \Omega \pm 5 \% 1 / 2 \mathrm{~W}\) & 20404565 & RV13 & \(5 \mathrm{k} \Omega\) lin, Reliance MW & 21280 OC \\
\hline R78 & \(22 \mathrm{k} \Omega \pm 5 \% 1 / 2 \mathrm{~W}\) & 20403375 & RV14 & 1M & 21470 1C \\
\hline R79 & \(150 \mathrm{k} \Omega \pm 5 \% 1 / 2 \mathrm{~W}\) & 20404285 & RV15 & 50k \(\Omega\) lin, Plessey EH2 & 21380 OC \\
\hline R80 & \(1 \mathrm{k} \Omega \pm 5 \% 1 / 2 \mathrm{~W}\) & 20401545 & RV16 & 100ks lin, Plessey EH2 & 21410 OC \\
\hline R81 & \(1 \mathrm{M} \Omega \pm 5 \% 1 / 2 \mathrm{~W}\) & 20405155 & & & \\
\hline R82 & \(180 \mathrm{k} \Omega \pm 5 \% 1 / 2 \mathrm{~W}\) & 20404335 & & VALVES & \\
\hline R83 & \(470 \mathrm{k} \Omega \pm 5 \% 1 / 2 \mathrm{~W}\) & 20404565 & V1 & 12AX7 & 2307002 \\
\hline R84 & \(6.8 \mathrm{M} \Omega \pm 5 \% 1 / 2 \mathrm{~W}\) & 20405395 & V2 & 12AX7 & 2307002 \\
\hline R85 & \(470 \mathrm{k} \Omega \pm 5 \% 1 / 2 \mathrm{~W}\) & 20404565 & V3 & 12AX7 & 2307002 \\
\hline R86 & \(10 \mathrm{k} \Omega \pm 5 \% 1 \mathrm{~W}\) & 20423195 & V4 & 12AT7 & 2307001 \\
\hline R87 & \(100 \mathrm{k} \Omega \pm 5 \% 1 / 2 \mathrm{~W}\) & 20404215 & V5 & 12AX7 & 2307002 \\
\hline R88 & \(110 \mathrm{k} \Omega \pm 5 \% 1 / 2 \mathrm{~W}\) & 20404215 & V6 & 12AT7 & 2307001 \\
\hline R89 & \(33 \mathrm{k} \Omega \pm 5 \% 1 / 2 \mathrm{~W}\) & 20403435 & V11 & 12AT7 & 2307001 \\
\hline R90 . & \(100 \mathrm{k} \Omega \pm 5 \%\) 1W & 20424215 & V12 & \(\mathrm{XC12T}\) & 2307011 \\
\hline R91 & \(10 \mathrm{k} \Omega \pm 5 \% 1 / 2 \mathrm{~W}\) & 20403195 & V13 & 12AT7 & 2307001 \\
\hline R92 & \(10 \mathrm{k} \Omega \pm 5 \% 1 / 2 \mathrm{~W}\) & 20403195 & V14 & 12AT7 & 2307001 \\
\hline R93 & \(18 \mathrm{k} \Omega \pm 5 \% 1 / 2 \mathrm{~W}\) & 20403325 & V15 & DG7-32/01 & 2306000 \\
\hline R94 & \(2 \cdot 2 \mathrm{k} \Omega \pm 5 \% 1 / 2 \mathrm{~W}\) & 20402205 & V16 & OA2 & 2308009 \\
\hline R95 & \(100 \mathrm{k} \Omega \pm 5 \% 1 / 2 \mathrm{~W}\) & 20404215 & & & \\
\hline R96 & \(100 \mathrm{k} \Omega \pm 5 \% 1 / 2 \mathrm{~W}\) & 20404215 & & TRANS FORMERS & \\
\hline R97 & \(33 \mathrm{k} \Omega \pm 5 \% 1 / 2 \mathrm{~W}\) & 20403435 & T1 & Muirhead D-535-A/9 & As Descrip \\
\hline R98 & \(270 \mathrm{k} \Omega \pm 5 \% 1 / 2 \mathrm{~W}\) & 20404435 & T2 & Muirhe ad D-536-A/6 & As Descrip \\
\hline R99 & \(1 \mathrm{k} \Omega \pm 5 \% 6 \mathrm{~W}\) & 20841545 & T3 & Muirhead D-535-A/25 & As Descrip \\
\hline R100 & \(5 \mathrm{k} \Omega \pm 5 \% 6 \mathrm{~W}\) & 20842525 & T4 & Muirhead D-536-B/2 & As Descrip \\
\hline R101 & \(5 \mathrm{k} \Omega \pm 5 \% 6 \mathrm{~W}\) & 20842525 & T5 & Muirhead D-732-A/21 & As Descrip \\
\hline R102 & \(5608 \pm 5 \%\) 1/2W & 20401405 & T6 & Muirhe ad K-102-B/9 & As Descrip \\
\hline R103 & \(470 \mathrm{k} \Omega \pm 5 \% 1 / 2 \mathrm{~W}\) & 20404565 & & & \\
\hline R104 & 10 kr ¢5\% 1/2W & 20403195 & & RECTIFIERS & \\
\hline R105 & \(V\) alue as Fitted & & MR1 & Mullard OA81 & 2311100 \\
\hline - R106 & \(600 \Omega \pm 1 \%\) 1W & 20351421 & MR2 & Mullard OA81 & 2311100 \\
\hline - R107 & \(6008 \pm 1 \%\) IW & 20351421 & MR3 & Mullard OA81 & 2311100 \\
\hline & & & MR4 & Mullard OA81 & 2311100 \\
\hline
\end{tabular}

\footnotetext{
- K-156-B/1A only
}

\section*{A 959CC \\ K-156-B\&B/1A.}

Sheet 2
\begin{tabular}{|c|c|c|c|c|c|}
\hline Code & Description & Ordering Reference & Code & Description & Ordering Reference \\
\hline MR5 & Mullard OA81 & 23111004 & * 58 & N.S.F. DM 8 pole 2 position & 24033223 \\
\hline MR6 & Mullard OA81 & 23111004 & & & \\
\hline MR7 & Mullard OA81 & 23111004 & & LOW PASS FILTER & \\
\hline MR8 & Mullard OA81 & 23111004 & LPF1 & Murrhead D-676-A/26 & As Description \\
\hline MR9 & Mullard OA10 & 22111002 & & & \\
\hline MR10 & 1mA Westinghouse(Supplied with meter) & & BPFI & BAND PASS FILTER Muirhead D-676-B/6 & As Description \\
\hline MR17 & International Rectifier Co. IN 1096 & 23109003 & & DISCRIMINATOR & \\
\hline MR1 18 & \begin{tabular}{l}
International Rectifier Co. \\
IN 1096
\end{tabular} & \(2310900^{2}\) & DISC 1 & Murhe ad D-676-D/4 & As Description \\
\hline 21R19 & \begin{tabular}{l}
International Rectifier Co. \\
IN 1096
\end{tabular} & 23109003 & FS 1 & FUSES
\(1 \mathrm{~A}(200-240 \mathrm{~V}) \mathrm{Be}\) lling Lee L1055 & 23400205 \\
\hline MR20 & International Rectifier CO. & & FS2 & 2A(105-125V) Belling Lee L1055 & 23400208 \\
\hline & IN1096 & 23109003 & FS3 & 500 mA Belling Lee L1055 & 23400211 \\
\hline AR21 & G \& E Bradley DD007 & 23103001 & FS4 & 250 mA Belling Lee L1500 & 23400300 \\
\hline 1 R 22 & G \& E Bradley DD007 & 23103001 & & & \\
\hline MR23 & G\& F Bradley DD007 & 23103001 & & LAMPS & \\
\hline VIR24 & G \& E Bradley DD007 & 23103001 & LP1 & 6V 0.1A Atlas 995-9119 & 23500501 \\
\hline MR25 & Westinghouse 1 mA & 23119000 & LP2 & 6 V 0.1 A Atlas 995-9119 & \[
23500501
\] \\
\hline &  & & LP3 & \(6 \mathrm{~V} 0 \cdot 1\) A Atlas 995-9119 & \[
23500501
\] \\
\hline & SWITCHES & & & & \\
\hline & N.S.F. DM 8 pole 7 position & \begin{tabular}{ll}
23 & 033 \\
24 & 084 \\
\hline 079
\end{tabular} & & LOUDSPEAKER & \\
\hline & N.S.F. DM 2 pole 2 position
N.S.F. DM ? pole 2 position & \(\begin{array}{ll}24 & 033 \\ 24033 & 141\end{array}\) & LS 1 & Rola-Celestion 30(8 ohm) & As Description \\
\hline & N.S.F. DM ? pole 2 position & 24033141 & & & \\
\hline & Burgess M1T1 & 24018008 & & METER & \\
\hline & N.S.F. DM 9 pole 3 position
Arrow \(81058-\mathrm{BT}-34\) & 24
24033
240061 & M1 & Ernest Turner 225 & PE 50039 \\
\hline S7
S8 & Arrow 81058-BT-34
N.S.F. DM 3 pole 2 position & \[
\begin{array}{lll}
24 & 006 & n 13 \\
24 & 033 & 091
\end{array}
\] & & SEALED UNITS & \\
\hline & & & OSC1 & Muirhead D-790-A/1(1800c/s) Muirhead D-790-A/6 & \begin{tabular}{l}
As Description \\
As Description
\end{tabular} \\
\hline & * \(\mathrm{K}-156-\mathrm{B} / 1 \mathrm{~A}\) only & & & & \\
\hline
\end{tabular}
\(3052 / 85 / 86 \mathrm{~A} .87 \mathrm{~B}, 88 \mathrm{C}, 89 \mathrm{C}, 90 \mathrm{~B}, 91 \mathrm{~A}, 174 \mathrm{~A}, 175 \mathrm{~A}\),
rear
```

