This document was generated by me Colin Hinson from a document held at Henlow Signals Museum. It is presented here (for free) and this version of the document is my copyright (along with the Signals Museum) in much the same way as a photograph would be. Be aware that breach of copyright can result in a criminal record.

The document should have been downloaded from my website https://blunham.com/Radar, if you downloaded it from elsewhere, please let me know (particularly if you were charged for it). You can contact me via my Genuki email page:

https://www.genuki.org.uk/big/eng/YKS/various?recipient=colin

You may not copy the file for onward transmission of the data nor attempt to make monetary gain by the use of these files. If you want someone else to have a copy of the file, please point them at the website (https://blunham.com/Radar).

Please do not point them at the file itself as the file may move or be updated.

I put a lot of time into producing these files which is why you are met with this page when you open the file.

In order to generate this file, I need to scan the pages, split the double pages and remove any edge marks such as punch holes, clean up the pages, set the relevant pages to be all the same size and alignment. I then run Omnipage (OCR) to generate the searchable text and then generate the pdf file.

Hopefully after all that, I end up with a presentable file. If you find missing pages, pages in the wrong order, anything else wrong with the file or simply want to make a comment, please drop me a line (see above).

It is my hope that you find the file of use to you personally - I know that I would have liked to have found some of these files years ago - they would have saved me a lot of time !

Colin Hinson
In the village of Blunham, Bedfordshire.

MARCONI'S WIRELESS TELEGRAPH CO., LTD. CHELMSFORD

MARCONL-FRANKLIN VALVE MASTER OSCILLATOR

MANTENANCE INSTRUCTIONS

REFERENCE NO. T/1672

VALVE MASTRR OSCILEATUR
 maintenance inotructions

Technical Handbook
Ref. T. 1672
Amendment No. 1
NOTE:- T. 1672 plus this amendment constitutes T.1672/1
 Cil iLuLISFURD.

ERRATA

VALVE MASTAR UOUILIATUR WAINTEINANCE INNIRUCIILINS NTF. No. T. 1672.

Page 1, eighth line from bottom:- Delete "4V DC or".
Page 2. The third line of the final paragraph above the heading "RELLUVAL UN UNCILLATOR UNII FRUM InANSMITTER PANAL" should read:"meter coil to the $\mathbb{M} 6$ master osuillator valves)", etc. Alter last sentence of same paragraph to read:- The master oscillator frequency range is from 1000 to $1333.333 \mathrm{kc} / \mathrm{s}$.

Page 2. Para. 6 of numbered pararraphs:- After "right hand side", insert:- (Right hand (RH) assembly edition of the master oscillator). At end of Para. 6 add:- In the case of the left hand (LH) assembly edition of the oscillator, the HT terainal is on the left hand side.

Drawings.

Theoretical Diagram of Connections. Sk.WZ. 676, Sh. 1.
Issue 4 of this drawing supersedes Issue 3, the alterations on the new issue being as follows:-
(i) Anode to grid blocking condenser changed from . $002 \mu \mathrm{~F}$ to $.0002 \mu \mathrm{~F}$.
(ii) Output coupling condensers:- After . $00005 \mu \mathrm{~F}$ the following note has been added:- (2 in sories) . $000025 \mu \mathrm{~F}$ effective.
(iii) LC tuned circuit of oscillator:- Lower end of inductance connected to the tapping and to earth so thet the unused turns at the earthy end of the winding are short-circuited instead of being open-circuited.

General Arransement of Oscillator Unit. Dwg. 65011, Sh. 1.
Diagram of Comections for RH Oscillator:-
The bonded ends of the two $80,000 \Omega$ grid resistances have been connected to the aarth strip. This connection had been inadvertently omitted. The new issue of this drawing is Issue 14.

Photographs. Amend the following errors:-
Photographs Nos. 13610 and 13611.
(i) Alter "ANODE ITH THRUINAL" to read GRID TERMCINAL.
(ii) Alter "FILAVENT LT TiRMINAL" to read FILANENT IT TERMNALS. (iii) Add to title:- RH ASS $\operatorname{Ni} M B L Y$.

Photograph No. 13614:- Add to title:- RF ASSUIBLY.

ADDEIVDA

REF. NO. T. 1672

Additional Drawings.
Recalibration of Valve Master Uscillator on site, by means
of 10-way Crystal Uscillator, P.S.l0463/A, B or D
Operating Data for Farmonic Amplifier Coils. S.VB. 8E $\{$ Sk. 2.1217 Sh. 2
and SWB. 8 W Transmitters
Page 2. Insert the following at end of last paragraph above the

In order to extend the radiated frequancy band on certain transmitters, an edition of the master oscillator is available covering a frequency band of 1000 to $1500 \mathrm{kc} / \mathrm{s}$.

Page 3. GANZR A ASOMBLY UN USCLLLTTOR UNIT. at the end of this paragraph, add:-

Two arranements of the oscillator are available, - RH assembly and LH assembly - depending on the mounting position in the transmitter panel. This affects the position of terminals and components as shown on Dwg. 65011 Sh. 1.

Page 7. Add the following to the paragraph headed "RiCaIBRaTION UF

In the case of transmitters fitted with a crystal oscillator in addition to the valve master oscillator, the crystal oscillator may be used as an alternative means of checking the calibration, as described in the subsequent paragraph headed "RECALIBRATIUN UF MASTAR OSCILLATUR NITH UNSEL dOTAD VAUVAS TU NORMAL Cumbracial mimits".

Eage 7. Insert the followinc new parafraph immediately below the

Then the master oscillator is first calibrated, the working and spare Type ML6 valves are carefully selected, in order to ensure that changes of frequency, caused by changing the valves, are very small and within the specified tolerence for overall mean frequency stability.

The velves have a very long life, but the need for recalibration or periodical frequency checks will be obviated by the provision of a sufficient quantity of selected spare valves when the oscillator is ordered.

The normal procedure regarding the oscillator valves, which is carried out before despatch, and the routine which should be adhered to by operating staff at the station, will now be described.

The selected valvas are in pairs and must be chanjed as such. The valve bases are marked with the instrument number of the master oscillator to which they apply. The working valves are also markod "Working valve 1 " and "vorking valve 2". The formor valve must be used in valve holdur No. 1 and the latter in holder No.2. The valves of a selected pair must not be interchanged in the two valvoholders.

Spsre pairs are similarly marked "Spare valve 14" and "Spare valve 2 A ", " 1 B " and " 2 B " and so on.

Sumnary of Rules to be observod when changing Velves.
(i) Cnly selectad and marked valves bearing the instrument number of the mastar oscillator should bo used.
(ii) The valves must be used in pairs. When one valve fails, both valves must be ramoved and a new pair substituted.
(iii) The valves of a suluctad pair must not bo intarchanged in the two valveholders.
(iv) The storase of spere Typo ML6 valves at the station should be so errimged that the specially selactod ind marked valves aro kept soparate from normal valves to comercial limits, which wey bo used in other circuits of the trensmitter. (Note oscillator for frequency modulation, monitoring rectifier, etc.).

The observance of the foregoirg rules will permit the overall man frequency stability, and hence the frequency calibration, to be asintained to within ± 1 in 20,000 .
 Cumbrcial LIMITS.

Wher selected and marked spare valves are not available, the radiated frequency should be checked by an external frequency monitoring station, as previously desuribed for the case of recalibration.

Alternatively, in cases whare a crystal oscillator is also supplied, this unit may be ustd to calibrate the valve master oscillator.

Posts have shown that unselected replacement valves will give satisfactory opuration as ragards reliable oscillation and level of output, but to ensures that irequancy adjustment is within the required limits of accuracy, recalioration is essantial. For frequency adjustment to be within the guaranteed limits of ± 1 in 20,000 a recalibration check asainst the crystal oscillator should be made on each of the eight switched ranges of the valve master oscillator, if suitable crystals are available to give one point on each range. Otherwise, readings should be taken for each of the allocatod frequancies for which a crystal is supplicd.

The method about to be described is simple and accurate. The description is writien sspecially for application to Type SWB. 8 X and SwB.lly transmitters, but is applicable to other types of transmitter, although there may be minor differences in setting up in such cases. The following simpla apparatus is required:-

One wavemeter with crystal rectifier, a DC microanmeter or galvanometer of any available range between 250 and 1000 microamperes full scale deflection, and a pair of high resistance headphones.

The meter and headphones should be shunted by a capacitor of about. $1 \mu \mathrm{~F}$ (see diagram $\mathrm{N} \cdot 5756 / \mathrm{B} \mathrm{Sh} .1$).

A few yardis of insulated wire with which to form a single turn coupling coil with leads, for coupling the crystal oscillator RP output to the wavemeter.

In the absence or a wavemeter a simple tuned circuit may be improvised and connected up to the other components as the circuit need not be calibrated. All that is required is a sensitive indicator covering the frequency range of the crystal and valve oscillators, namely, 1000 to 1333.33 or 1000 to $1500 \mathrm{kc} / \mathrm{s}$ depending on the eaitions of the oscillators supplied.

Take as many frequency checks as the number of crystals availabla will parmit, the method of recalibration being as follows:-

In the case of transmitters employing both a crystal oscillator and a variable valve master oscillator, (VMO) as alternative drives, the output of tho crystal oscillator is earthed when the drive changeover switch is set to the Vilu position. For recalibration, it is necessary to operate both oscillators simultancously. The co-axial cable carrying the RF output from the crystal oscillator should therefore be detached from the pin of the 5-point plug and connected directly to the leads from the single turn wavemeter coupling coil, as show on diagram WZ. $5756 / \mathrm{B}$ Sh.l. The AC supply for the crystal oscillator may then be taken through the 5-way plug and socket in the normal manner and the crystal oscillator output earth connection at the changeover switch will be isolated.

The method employed is to set up the VIU to the same frequency as the output frequency of the crystal oscillator by means of its existing calibration chart and pick up both outputs in the wavemeter circuit. The calibration error of the VMO due to the use of unselected Type ML6 valves will give rise to an audible beat frequency in the headphones. By careful adjustment of the vivioning condenser over a range of about four vimior divisions the beat frequency can be reduced approxinately to zero, first by reducing the beat frequency below the audible limit in the headphones, and finally by reducing the swing of the microamator noadle to approximatuly zero. By careful adjustment, the oscillations of the meter pointer can asily be reduced to one swing per socond.

In the absence or an isolator stage, it is inadvisable to couple the waveneter directly to the Viv output, as the oscillator will not be correctly lodded and moreover there is a risk of pulling the oscillator frequency when tuning the wavemeter. The ViAU should therefore be coupled to the harmonic amplifier in the normal manner, and the wavemeter coupled to the lst HA stage anode circuit, using the "A" coil in the case of transmitters Types S.VB. 8 and SWB.ll. With this coil, the list HA stage covers the same frequancy renge as the VMO.

Adequate coupling can be obtained by standing the wavemeter so that its coil is opposite the tuning slot of the lst HA stage. Set up the Vim and the lst HA stage to the crystal oscillator output frequency, (which is five times the crystal frequency, for crystal oscillators marked P.S. $10463 / \mathrm{A}, / \mathrm{B}$ or $/ \mathrm{D}$), using the existing calibrations for VMU and lst stage EA. The remaining HA stages should be set up using the coil seluion chart and calibrations provided in the transmitter handbook. The harmonic and radiated frequancy however, must be chosen so as to satisfy certain conditions. An example based on the Iype SWB. 8 W transmitter will illustrate the mothod of setting up, the appropriate harmonic amplifier coil chart being Sk.Z.1217, Sh. 2.

The HA coil chart shows the correct coil for aach stage for the various radiated frequency ranges of the 4th stage anode circuit and the appropriate harmonic (or overall frequency multiplication) for any givon frequonoy range.

For any given crystal, the overall frequency multiplication chosen, must five a radiated frequency which falls within the 4 th stage frequency range shown on the chart for that harmonic, and must also involve the use of coil "ي" in the lst stage.

Example

Suppose the crystal frequency, fo $=205 \mathrm{kc} / \mathrm{s}$
Then the crystal oscillator output frequenoy, fl $=\mathrm{fox} 5$
Therefore fl $-(205 \times 5)=1025 \mathrm{kc} / \mathrm{s}$
Let the radiated frequency in the 4 th stage anode circuit $=$ fr and
let the overall frequency multiplication in the harmonic amplifier $=\mathbb{M}$ Then $\mathrm{fr}=\mathrm{fl} \times \mathrm{M}$
Now refer to the coil chart Sk. Z. 1217 Sh .2 and find a value of \mathbb{M} which satisfies the two following conditions for the chosen crystal:-
(i) lst stage coil must be coil A.
(ii) Radiated frequency produced in the 4 th stage must fall within the 4th stage output frequency range in column 2 of the chart.
$\operatorname{Try} M=10 \quad f c=205 \mathrm{kc} / \mathrm{s}$ and $\mathrm{fl}=1025 \mathrm{kc} / \mathrm{s}$
$\mathrm{fr}=1025 \times 10=10250 \mathrm{kc} / \mathrm{s}$
It will be seen from the chart that although coil A is used in stage 1 , the resultant vilue of $f r=10250$ doos not come within the frequency band $10345-12765$ in column 2.

Similarly, the use of the 6th harmonic gives a value of fr $=(1025 \times 6)=6150 \mathrm{kc} / \mathrm{s}$ which is also outside the band $6250-8000$ kc / s.

The 5 th harmonic makes $\mathrm{fr}=5125 \mathrm{kc} / \mathrm{s}$ which is also outside the band $5172-6250 \mathrm{kc} / \mathrm{s}$.

The 4th, 3 rd and 2nd harmonics, however, give values of fr $=4100,3075$ and $2050 \mathrm{kc} / \mathrm{s}$ respectively, each of which is within the relevent frequenoy band in column 2. Any one of these harmonics would therefore be suitable for this hypothetical case and the appropriate set of coils for each of these harmonios is shown on the chart.

Summarizing the setting up of the VMO and HA, the required adjustments are as follows:-

Set the VMO range switch and tuning condenser so that the frequency is the same as the crystal oscillator output frequency.

Insert the correct set of $\mathrm{H} A$ coils as previously described.
Using the calibration charts for the $H A$ stagos, set the tuning condenser scales for the radiatad (4th stage) frequency chosen by the method just described.

Set the VMO/crystal oscillator changeover switch to the VMO position.

The crystel oscillator AC supply switch should be left "on" as the crystal oven requires about 4 hours to reach stable operating temperature but the oscillator switch on the crystal unit should be switched "off".

Switch on the filament supplios for the VNO, HA and main transmittor filaments and the grid bias supply for HA and main stages of the transmitter. Switch on the VMO and HA anode supply and make final adjustiments of the four HA tuning condensers.

Now tune the wavemeter, and adjust its position in front of the open tuning slot of the lst Ha stage in order to obtein a suitable deflection of the microammeter neudle. Switch off the VNo and HA anodo supply.

Place the single turn coupling coil, which is connected to the RF output co-axial cable from the crystal uscillator, close to the wavemetar coil. Sat the crystal selector switch to the correct position for the crystal which is to be used for calibrating the VMO. Close the crystal oscillator switch and observe the wavemeter microammeter. Tune the wavemeter for maximum doflection on the microammeter and adjust the position of the single turn coupling coil to give about the same deflection as was obtained with the VWo.

Now switch on the VNC and HA anude supply so that the wavemeter is picking up the RF output from both oscillators and producing a beat frequency. If this beat frequency is not already audible in the headphones, carefully adjust the VMO tuning condenser over a range of about four vernier divisions, using the tunirg aporture in the door of the compartment. On finding the beat note turn the control knob in the direction which reuuces the beat frequency and continue until the pitch of the note in the hoadphones is reduced below the audible limit. On reaching this point, the beat frequency should be sufficiently low to give a visual indication on the microammeter. Continue the adjustment of the VMO tuning condenser until the oscillations of the meter pointor disappar, or are as slow as possible. It is possible to reduce the oscillations of the metar to at least one per second without any difficulty.

Now racord the settings of the VMU range switch and tuning condenser main scalo and varnior against the crystal oscillator output frequency (i.e. fc $\times 5$) in kc/s.

Repeat the foregoing process, taking as many checks of the VIN calibration as possible, dopending on the number of crystals available. In each case, set up the harmonic amplifior as previously described, in order tu find a suitable harmonic for the harmonic amplifier and the corresponding set of coils for HA stages 2,3 and 4 and the radiated frequency which is within the frequency range of the 4 th stage for the chosen harmonic (see coil chart for the transmitter). Remember that coil A must be used in the lst HA stage and the frequency of that stage must be the same as the crystal oscillator jutput frequency, that is, five times the crystal frequency.

Finally, make a new calibration chart for the WWO from the new readings obtained, by plotting curves from the existing tabulated calibration, adding the new calibration check puints and then drawing the new curve parallel to tho old curve through the new points obtained.

CONTENTS

FIGURES

Theoretical diagran of connections	-••	-.	SK. Wh. 676
General arrangement of Oacillator Unit	-••	-••	$\begin{aligned} & \text { Drg. } 65011 \\ & \text { Sheet No. } \end{aligned}$
Conorel exrangment of range mitch ...	-••	-	Drg. 65011 Sheet Mo. 2
cenoral arrangement of frequency modulation condeneor	-••	-••	Dreg. 64673 3heet Mo. 1

PROOTOGRAPHS

VALVE MASTER OSCILLATOR

MAINTENANCE INSTRUCTIONS

GENERAL REMARES

If the master oscillator should cease to function, the station engineer is loft with a temporary expedient of self-exoiting the 2 nd stage of the harmonic amplifier, and the method of doing this is mentioned in the instruotions which accompany the tranemitter.

This procedure can be briefly described as followsy-
1 mica condenser of approximately 0.001 NF. oapacity, 500 volts test, should be connected between the output terminal of the 2nd stage and the control grid of the VT.60A (or HCA 807) valve in the 2nd harmonic amplifier stage.

The tuning condenser of the 2nd stage should then be adjusted to give the maximum grid current to the 3nd stage with the tuning condenser of the 3rd atage at the normal position for the required wavelength.

Providing that the tuning condensers of the 3 rd and 4 th stages romain at their normal positions for the given wavelength and only the 2 nd stage condenser is varied, the emitted frequency can be relied upon to be within commercial tolerance and the atability should be sufficient to enable a service to be maintained pending repairs to the master oscillator unit.

At a convenient moment the overhaul of the master osoillator can be undertaken.

DEBCMIPTION OF MASTER OSCHLATOR UNIT

It must be fully understood that the construction of this unit is of the highest workmanchip and every effort must be made to avoid dismantling as this would undoubtediy affoct the tability of the oscillator.

The theoretical diagras of conneotions is shown in Dwg.No.WZ.676.
The circuit oan best be described as a 2-valve reaiatance-coupled aplifior in a state of "ond-to-ond" oscillation. The natural frequency of oscillation is that of the low decrement L.C. circuit which hae its high potential ond oapacity coupled to both the inputand output of the amplifior, the low potential ond being grounded.

The unit conaists of an outer and an inner case, the casea being soparated by a thick folt lining.

The L.C. combination and associated components are mounted within the innor oage and they are thus protected thermally and meohenically from external disturbances.

The valves and their circuit componente are ascembled on the outer case. Two KL. 6 valves are used, the supplies being 4 v. D.C. or 6.3 v. A.C. for L.T. and 220 v. D.C. for H.T.
in additional ocmponent of considerable importanot is the frequenoy modulation condenser. The vane of this condenser is onpeoity coupled to the inductance within the innor case, the stem of the condenser paeaing through both oases to an insulated cover on the side of the unit.

Frequency compenaation for changes of ambient temperature is obteined by winding the inductance on a loaded obonite former which has a
fairly linear coefficient of expansion. A change of temperature will produce a change in the length and diameter of the former which in turn will cause a change in the value of the inductance.

A compensating condenser is provided for balancing the frequency change by producing a differentiel change in the capacity of the inductance to frame and ground.

The result of a change in temperature, therefore, will be to vary the value of the inductance, at the aame time the oapacity of the compensating condenser is inversely varied, thus the natural frequancy of the L.C. combination is maintained aubstantially constant.

After assombly and before calibration the oseillator unit undergoes a process of "mexing". This continues for namily a fortnitith during which time the unit is subjected to cycles of approximutely elght hours heating and sixteen hours cooling. This treatment is intended to remove any undesirable strains or stresses in the assembly, windings, etc., and this condition must be astisfied before attempts are made at thermal compensation.

Frequency compensation is made for thermal changes of $30^{\circ} \mathrm{C}$. The process is laborious and $1 s$ mainly one of repeated and protract'ed observation 1.e. trial and error. This is neceasary owng to minute variations in the thermal behaviour of the materials used, the tension and the method of winding, etc.

It should now be apparent that repairs should only be undertaken by competent mechanics who have thoroughly faniliarised themeelves with the technicalities involved

Before disconnecting the Master Oscillator from the transmitter, checks should be made with the station hack wavemeter (by coupling the wavemeter coil to the M " Master Oscillator valves), to ascertain that no oscillations are : ing. youluced by the Master Oscillator. Whe Master Oscillator frequenc range i, between 980 to $1350 \mathrm{k} / \mathrm{cs}$.

REMOVAL OF OSCILLATOR UNIT FROM TRANSMITTER PANEL

When it has been established that the oscillator unit is fauity, it should be carefully removed from its cradle mounting in the drive unit. The correct procedure is as f llows:-

1 Remove side screen from the dr.ve unit.
2. Romove the two lower horizontal perforated shelves which screen the lat and 2nd harmonic mplifier otagef.
3. Disconnect the two sooket connections which oasry the output leads from the oscillstor and lst lusponis amplifier stages.
4. Remove the lst harmonic plifier stage completely from its mounting. This operition is described in detail in the main trendmittor fnstructions.
5. Disconnect the filament leads. These leads are flexible and usually maconite covired and should be handled from the front of the panel.
6. Disconnect the H.T lead from the terminal on the right hand side. This is done from the front of the unit.
7. Disconnect the two braided flexible "earth" leads by removing the nuts off the screws mounted on the cradle. These leads are on either side of the case and should be handled from the side of the upit.
8. Disconnect the socket carrying the lead from the frequency modulation condenaer to the diode control valve. This is done from the side of the unit.
9. The entire unit can now be slid forwards out of its wounting crade.

The unit must not be dismantled or the sesls on the outer case and frequency modulation condenser broken until a sequence of tests described below has definitely located the fault to be inside the case.

GENEREL ASSEMBLY OF OSCILLATOR UNIT

Drg. Ho.65011, Sheets 1 and 2, and the accompaning photographe give full datails of the construction and layout of the unit.

The principle components have been given aumerical references on the drawinge and are refarred to by these numbers, e.g. 1 , 14 eto., in the photographs and the following notes.

SERVICING LNSIRUCTIONS BEFORE OPENING CASE

The troubles due to faults in the osoillator unit oan be classified nader the following headings :-
(a) Eon-oscillation
(b) Intermittent or unstable oscillation.
(c) Frequency instebility.
(d) Frequency instability when range-
switch is operated.
(e) Change in calibration.
(f) Unwanted radiation.

The recomended procedure for dealing with these troubles is as follows

(a) Toproncillation.

1. Check applied voltages at oscillator terminals.
2. Check valve feeds. The two Mo. 6 valves should together pase a total current of $28-36 \mathrm{~mA}$. when oscillating and 56 mA . when not oscillatag. This is a rough cheok of the valves but will not necessarily indicate a "soft" valve. See that both filaments are alight when testing.
3. Cheok the circuit continuity of all resistances and choken.
4. Chock the oirouit continuity of the 16 volta. 3 w. "anti-mgigeger lamp 118. See that the lamp is screwed home in its socket and that ita tip Is malding good contaot. Do not use undue force when turning the lamp, otherwise the glass bulb may be loosened or detached from its sorew cap.
5. Cheok oircuit contimuity of all wiring. Look for broken or dry eoldered joints, making good any that are doubtitul.
6. See thet the flexible copper connecting wires are properiy soldered to the two brass contact pins 30, which connect the velve oiroults to the L.C. eirouit in the inner onee.
7. Test all condensers with a "Yagger".
8. Check that the valve pins make good contact in the sockets and that the valves engage Iirmity in the holders. The valve "banana" pins ahould be slightly opened with a knife blade if necessary.
9. If oscillations are still unobtainable, as shown by the valve feed baing about $56 \mathrm{~mA} .$, one or both of the valves may be "eoftc and new valves should be fitted.
10. In homid climates or damp situstions atmoapheric moisture may cause failuse of the oscillator. The remedy will be to thoroughly dry the unit either in the hot sun or in a slow oven.

The foregoing list covers all possible canses of non-oscillation that are likely to be due to external faulte.
(b) Internittent or mustable osoillation.
(a) Irequener ingtability.

Whese two troubles may have similar origine.

1. Using a reliable voltmeter, check the atability of the voltage mases the omcillator terminals.
2. Observe valve feeds for jumps and variations.
3. Yake checks 3, 4, 5, 6, 7 and 8 mentioned in the previous section on "Non-Oscillation".

These cheoks cover all possible causes of trouble under headings (b) and (c) that are likely to be due to external faults.

If the checks mentioned have failed to locate the fault as being outside the oase or, if the trouble experienced is either
(d) Frequency instability due to operation of range-switch
(e) A change in calibration
(f) Unwanted radiation
then it will be necessary to open the case.

OPENING OSCLLLATOR CASE

Hxtreme care should be exercised when opening the oscillator. The inductance former, and particularly its winding, should not be handled.

The bench used mast be free from dust, metallic and otherwise. A particle of solder or other metal, settling on the inductance may partially or totally short-circuit adjacent turns, giving rise either to instability. a change in calibration or perhaps failure to oscillate.
livery effort should be made to prevent moisture and any form of dirt settling on the former and the range switches associated with it.

The oorrect procedure for opening the case is as follows:-

1. Remove seals at rear of outer case and from the frequency modulation condenser at the side of the case.
2. Remove screws holding the cover of the frequency modulation condenser on the side of the case.
3. Looson small hexagonal lock-nut exposed in (2) above.
4. Usian a screv-driver, unserew as far as possible the stem of the frem quency modulation condenser. This condenser cannot be completely withdrawn and force must not be used.
5. Set range-switch to mid-way position between "range 1 " and. range 8".
6. Hemove three 6BA countersunk screws which retain the end-cap 2 at rear of ascillator.
7. The end-cap 189 may now be removed and also the felt disc 186 behind it.

Hote: The large hexagonal nut in the centre of the brass end-plate must on no account be moved.
8. Remove three 6BA countersunk screws 23, which hold the locating ring 187. This ring has two 2BA screwed holes, 1800 apart, for inserting two screws to act as "draw pins" for easy removal of the ring.
2. Unsolder the flexible copper connections attached to the two brass contact pins 30 and remove the pins by unscrewing with a screwdriver.
10. Remove four 4BA countersunk screws 11 .
11. Firmly grasp the brass end plate 188 and slowly withdraw the inductance unit from the inner case 8 .

Note: In no circumstances shoula the winding on the inductance former be handled during inspection.

The assembly comprises:-

1. An inductance tapped at eight positions, the tappings being connected to an 8-position cam-operated switch 64.
2. A variable condenser 34 operated by a worm drive.
3. A pro-set iixed condenser for neutralising the thermal offects on the inductance.
4. An attachment with gold contacts for connecting the "L.C." combination to the valves etc., - this attachment offers little restraint to thermal expansion.

The suitch contacts are made of a non-tarnishable gold allow. The spring contact blades have wiping contacts of conaiderable tension and normally no trouble should be experienced with them.

The switch-cam operating spindles are spring-loaded by powerful leaf-springs, screwed to the brass end-cap to ensure that the contact resietance to ground of the spindlea should remain constant. These spindles are in the field of the coil and any changes in their electrical resistance to ground will produce frequency disturbances and perturbations.

In addition to the components already mentioned, there is also the irequenc; modulation condenser which has been mentioned previously.

The inductance former having been removed, it is now possible to examine the windings and the awitch-gears for faults causing

> (d) Prequency instability due to operation of runeemswitch, i.e. "non-repeatability".
> (e) Changes in calibrution.

1. Fxamine windings closely in a good light and with the aid of a magnifying glass if yossible. Remove any metallic or other particles that may be seen.
2. Still usine a magnifyinf glass, and in a good light, examine the soldered joints on the switch and inductance tappings. Make sure that the tappinfes on the inductance are not short-circuiting adjacent turns.
3. Bramine the gold contact faces of the switches and switch blades for general cleanliness and freedom from foreign matter. e.g. resin flux etc.
4. Slowiy rotate the switch cams by gripping the brass click plates 72 between the thumb and finger. The action of each of the phosphor-bronze 3witch blades may now be seen and the tension between each of the contacts can be carefully tested with the finger nail. Force should not be usec in this test otherwise the switch blade tested may assume a permanent set and the correct pressure between the contacts will be reduced.
5. The pressure between each of the contacts and blades will usually be found to be considerable and, as the contact is self-cleaning by virtue of its wiping action, it is unlikely that trouble due to switch contact resistance will be experienced.
6. The phosphor-bronze contact springs, with their gold contacts, used for obtaining connection between the L.C. circuit and the valve maintaining circuits, occssionally become bent due to excess pressure by the contact pint. If this is so the phoaphox-bronze epring blades attached to the mios ring should be carefully lifted until the contacts on the ends project slightly above the mica ring.
7. Should the presence of damp be suspected, the complete unit, including the felt lining should be dried by exposure to hot sun or a fire. The felt is highly absorbent and may take up large quantities of moisture in a damp situation.

Wote: On no account should the screws be removed which hold
(i) the inductance former to the brass end-plate or condenser stator. The inductance former must remain rigidly fixed to the end-caps. It is tightly screwed into the brass pieces by screw-threads, the screws round the periphery being merely locking screws.
(ii) The setting of the temperature compensating oondenser should not be altered, i.e. the large hexagonal nut on a fine thread in the centre of the and brass casting must not be disturbed.

The foregoing notes should have proved helpful in exploring the oave of the master osoillator trouble and in clearing the fault.

RE-RSSEMBLING MASTER OSCILLATOR UNIT

The order of assembly should be as follows a-

1. Check that none of the switoh contacts are in operation, i.e. the inductance is "all in", that the large brass operating oam 77 (in the centre between the awitoh apindles and click plates) has its operating teeth on the lower and not on the top side, also that the seratch markings 1 and 2 on the faces of the switch click plates correapond with similar markings on the brass end casting.
2. The range awitch knob on the front of the outer brass case ahould now be set at the white dot mid-way between ranges 1 and 8.
3. Place the phosphor-bronse coil spring 142 , with its two locating washers on the brass compensating rod at the condenser atator end of the inductance unit.
4. Insert the inductance former into the inner case by gripping the brase end casting firmly and sliding the induotance former into position.

Hote: It will be necessary to lever the inductance unit upwards slightly whilst holding it, in order to locate the far end of the brass compensating rod into its housing inside the inner case. Some slight resistance may be noticed due to the phosphor-bronze spring, but the sense of touch should indicate when the inductance unit lines up with its retaining screw holes, and also if the range switch is still in the centre of the neutral position between ranges 1 and 8 . If the awitch knob is not in this position, the inductance unit should be alightly withdrawn, the witch knob placed in its proper position and the switoh gears then re-engaged.
2. Insert the four 4BA screws which hold the inductence unit and acrew them tigntly home.
6. Replace the locating ring 187 in the case and fasten it by screws round the periphery.

1. Replace the two gold tipped brass contact screw pin 30 whioh connect the valve circuits to the inductance.

Hote: These should be screwed down until some defipite resistance is felt when it may be assumed that the screvpins are in contact with the gold-surfaced phosphorbronze springs a.ttached to the inductance former inside the case.
日. Re-solder the two flexible connecting wires to the pins.
2. Screw down, with a screw-driver, the small disc condenser (frequency modulation condenser) in the side of the outer case until contact is just made with the winding inside the inner case.

Moto: A galvanometer, or other detector, connected to the blade of the screw-driver and to the frame of the unit will indicate the precise position at which contact occurs.
10. Mark with a pencil the position of the screw-driver slot in relation to the outer case.

Now unscrew the condenser precisely six turna and lock
it in position with the hexagonal nut provided.
11. Replace condenser cover plate.
12. If frequency modulation is not used on the transmitter, the frequency modulation condenser should be grounded to the frame by means of a short piece of 20 sHG copper wire.

replacement of oschlatior unt in transmitter panel

The procedure outlined for removing the oscillator should be follawed in the reverse order.

RECALIBRATION OF MASTER OSCLLLATOR

The oscillator will require recslibrating after being re assembled. It is recomended that frequency checks should be made at two or three points on euch range, using a checking station capable of measurements with an accuracy of at least 1 in 100,000 .

In this way correction curves could be prepared for the original celibrations.

FREOUENCY MODULATION

The principles of frequency modulation are briefly described in the transmitter instructions.

The general assembly of the condenser is shown in Jwe. No. 64673. Sheet 1 , a copy of which accompanies these ingtructions.

The oscillator is calibrated before despatch with this condenser in a definite position. To open the case for inspection, the setting of the condenser has to be iisturbed. ifter the case is closed, the remetting of the condenser stem to $31 x$ turns out (as described above) is only a rough approximation and, to regain the original performance of the oscillator, checks with a hieh-grade station are essential.

RESETTING OF RANGE SWITCH GEAR WHEELS

A few cases have occurred of damage to the Range Jwitch mechanism due to exceptionally rough handling in transit. Sometimes the control knob only is broken, but occasionally the screws securing the housing of the driving pinion on the end of the range switch control spindle are sheared so that the gear wheels become disengaged. Unless this mechanism is carefully re-assembled so as to restore the correct relationship between the position of the control knob, pointer, spindle, and the various gears, the frequency calibrations for the various settings of. switch knob and tuning condenser will be completely deranged.

In the instructions which follow, reference should be made to Drawing 65011 sheet 2 , on which all part references are shown. All necessary steps will be covered, those to be taken depending on the extent of the damage.

OPENING OSCILLATOR CASE

NARNING. Before opening the oscillator case, special attention should be given to the cautionary notes on the following pages of these instructions.

PAGE 1 - GENERAL REMCARKS. These cover operation of the trangmitter while servicing the master oscillator.

PAGE 1 - DESCRIPTION OF HISTER OSCILLATOR UNIT. Refer to first paragraph.

PAGE 4 - OPENING OSCILLATOR CASE. Cautionary notes immediately under this heading, also the note at the bottom of page 4.

1. io inspect the gears, remove the seals at rear of outer case.
2. Remove the three 6.B.A. countersunk screws, Ref.3, which retain the end cap at rear of oscillator.
3. Remove the end cap, Ref.186, and the felt disc, Ref. 189 behind it.
4. NOTE:- The large hexagonal nut, Ref 32, in the centre of the brass end plate must on no account be moved or the critical adjustment of the compenasting condenser will be upset.
5. Now examine the left hand and right hand locating plates which are screwed to the cam gears (Ref.72), which operate the inductance tapping awitches. These are marked 1 and 2 respectively on the locating plate and on the support, either by scriber marks or with paint. Set each cam gear so that corresponding numbers on locating plate and support register with one another, i.e. both switches in the "off" position.
6. Check that the operating gear, Ref. 77 (in the centre between the two cam gears) is set so that its toothed sector is on the lower side and not on the top side.
7. Now set the toothed sector of this gear accurately in the mid position with respect to the two cam gears by locking it with a $1 / 16^{\prime \prime}$ diameter pin passed through the locating holes in bearing plate, Ref. 75 and operating gear, Ref.77.
8. It is assumed that the idier pinion, Ref.78, is already mounted on the bearing plate, Ref. 75 and meahed with the operating gear, Ref.77. See that the driving pinion, Ref.79, on the range switch shaft, Ref. 80 , is disengaged from the idler pinion by removing the two screws Ref. 84 and slightly raising the housing Ref.81.
9. Check that the driving pintion is securely pinned to the shaft. If neoessary inspect by removing the cover plate of the housing, thus exposing the pinion.
10. Fit the new range awitch knob Ref. $8 i$ to the ahaft and soe that the pin engagea in the groove in the back of the knob. Tighten the grub scrov which locks the knob on the shaft.
11. Now set the knob so that the ongraved white dot (midway between engraving diviaions 1 and 8 on the knob) coincides with the pointer.
12. Ro-assemble housing of driving pinion, mesh the latter with the idler pinion, and screw housing to master oscillator case with the two sorews Ref. 84.
13. Don't forrut to remove the $1 / 16^{n}$ locating ping which was used to look the operating gear Rof.77 to the bearing plate, Ref.75.
14. Finally roplace felt disc Rof.189, and cap, Rof.186, and the three screwe which retain the and oap.

EXTERNAL ELEVATION

REAR VIEW WITH END CAP REMOVED

REAR VIEW WITH END CAP AND SUPPORT RING REMOVED

REAR VIEW OF INNER CASE SHOWING VARIABLE CONDENSER AND FREQUENCY MODULATION CONDENSER VANE.

PART SIDE ELEVATION
SECTIONAL ELEVATION ON A-A
SCALE FULL SIZE

13615.

INDUCTANCE FORMER WITH SWITCH MECHANISM

Marconi-Franklin valve master oscillator.
40) Stage 4 Input Circuit Tunisug Control (usud only on SiSi)

Ssembly

The transmittor unit comprises tha following sub-assomblis:-

1) Iranklin Master uscillator (s'w) .
2) No change-over switching circuit for crystal oscillator.
3) Harnonic mplifier (IL. (4 stases).
4) $\operatorname{stag} 5$.
5) stage 6 .
6) Wutput Circuit.
7) Relay Drawer and Irive Keying Cirouit.
8) Monitoring Onit.
9) Frequency wodulation Equipunt.
10) Partial ibsorber and Signal Curbing Equipuent.

The crystal oscillator forms a soparato warnal unit.

TRANSVITIdiR CLiCUITS

The completo diagram of tha transmittor is givon in 4.25628 and a theorətical diagram in 7.25627 . The transmittor is designod for eithor C. $ل$ or SSB working, but the equipuent to which this handbook applios dous not include the additional units nucusury for iss working. The various circuits are doscribed in turn bslow. Throdghout the Eillowing text the lettors RCU are usud as an abbreviation for recififior and control unit.

Mastur iscillators.

. crystal oscillator, provided is standard squipant has a high desrae of frequency stibility, whd providus a numbur of spot frequincies. It is fittod $3 x t o r n a l l y$ on \mathfrak{l} stand.

In LC oscillator is al so provided on account of its extreine flexibility and is accommodat a at the bottom of the Fw and Het compartment. The type used is the well-known Franklin hester Oscillator. a switch is provided for changing over from the internal drive to the externil drive, the switch being mounted in the bottom of the wil and His compartrent on the right hand side of the Fiwo.

+ link is fitted in the war of the and H_{H} compartment buhind the lower luft niand raor dour, and has two positions marked Hixl. DRIVE 1 and EXT. DRIVI 2. The link is normally kopt at tho former pisition whore it connoots the crystial oscillator via a tuncd turmineting unit to tho Hi. Tho link is only put to wKT. DRIVe 2 when a FSK unit Type FSU. 1 (usad in connction with a Fulu) is suppliod. The RE plug 3XI. DRIVE 2 and the sixpin plug near the link aro cnly usud for connection to a FSU.1 and not whon a FSK unit Typo HD. 12 is suppliod for use with tho crystal secillator.

The RF output from the crystal uscillator is connectod diruct to the torminsl AKT. DNIVE 1 on the link board. The cornection is made to the back of the board after romeing the protecing bress strip which is socured by two scrowrs. α naw type of FSK for usa with tha crystel oscillator is normally provided whon this facility is callod for.

Franklin Master Cscillaior

The Branklin Master Uscillator is provided with automatic compensation for frequency drift due to temperature variation. This is achieved by a compenseting condenser which is adjusted so that an increase in the inductance of the coil is offset by a suitable decrease in the capacity of the condenser, and vice reasa. The oscillating circuit and ccmpenseting condenser are mounted in and screened by a double cylindricel brass case which is lagsed to prevent rapid rises in the temperature of the intermgl perts. Iwo in. 6 velves aire usid, which are mounted on the outside of the case.

The precautions adopted onsure that the fidu has a high degreg of frequency stability, of 1 in 20,000 .

The cirouits are shown in the theoretioal diagram 7.25627 Sh. .
Thu inductance coil has aight tappings which can b seloctad by a switch in front of tho unit. Tho change of inductance, to gother with the variation of the capacity, onables tha oscillator to covar continuously the rance of $1500-1000 \mathrm{kc} / \mathrm{s}(200-300$ motres $)$.

Tho capacitor scal viawed through the 1 oft hand window has 30 divisions. Tha loging scala on the turing control has 100 divisions and rakos isomplute revolution during the movement of ono division on the main scalu, thus providing 100 sub-divisions for aach division on the lattar.
I.dupondent supplies are pruvidod for the Fulu so that it can be switched on and reach a stable condition prior to switching on the trensmitter as 2 while. The supply unit is mountod in che RCU and providos 24UV $D C$ and 6.3 V AC.

The Fill works diroctly int, the first stago of the harmine emplific.

Orysta]. Oscillator

The crystal cscillator amploys thre valves, Types kTN.61, ECC. 32 sind L. 63 respactively, and ton orystals are avilable for output frequencies between 1000 and $1500 \mathrm{kc} / \mathrm{s}$ (200 to 300 metres), the seluction buing mede by a switch on the frunt of tho oscillator.

Ten pre-determined spot frequencies are thus provided within the radiated frequency band of $2-27 \mathrm{Mo} / \mathrm{s}$. If additional frequencies are required, it will be necessary to interchange the new crystals (in their holders) with those not wanted in the oscillator unit.

Although the output frequency range of the crystal oscillator is the same as in the case of the $F M O$, the actual crystal frequency range is from $200 \mathrm{kc} / \mathrm{s}$ to $300 \mathrm{kc} / \mathrm{s}$, as there is a frequency multiplication of 5 in the crystal oscillator itself.

A terminating unit used in conjunotion with the crystal oscillator or the frequency keyed oscillator, is mounted at the rear of the FWD and HA compartment in a small case with a removable covor, held by two sorews. A tuning capacitor, in this unit has a control with a white scale mountod in the front of the compartment just above and t : tin loft of the FWO.

