Please do not upload this copyright pdf document to any other website. Breach of copyright may result in a criminal conviction.

This pdf document was generated by me Colin Hinson from a Crown copyright document held at R.A.F. Henlow Signals Museum. It is presented here (for free) under the Open Government Licence (O.G.L.) and this pdf version of the document is my copyright (along with the Crown Copyright) in much the same way as a photograph would be.

The document should have been downloaded from my website https://blunham.com/Radar, or any mirror site named on that site. If you downloaded it from elsewhere, please let me know (particularly if you were charged for it). You can contact me via my Genuki email page: https://www.genuki.org.uk/big/eng/YKS/various?recipient=colin

You may not copy the file for onward transmission of the data nor attempt to make monetary gain by the use of these files. If you want someone else to have a copy of the file, point them at the website. (https://blunham.com/Radar). Please do not point them at the file itself as it may move or the site may be updated.

It should be noted that most of the pages are identifiable as having been processed by me.

I put a lot of time into producing these files which is why you are met with this page when you open the file.

In order to generate this file, I need to scan the pages, split the double pages and remove any edge marks such as punch holes, clean up the pages, set the relevant pages to be all the same size and alignment. I then run Omnipage (OCR) to generate the searchable text and then generate the pdf file.

Hopefully after all that, I end up with a presentable file. If you find missing pages, pages in the wrong order, anything else wrong with the file or simply want to make a comment, please drop me a line (see above).

It is my hope that you find the file of use to you personally - I know that I would have liked to have found some of these files years ago - they would have saved me a lot of time !

Colin Hinson
In the village of Blunham, Bedfordshire.
C.D. 0896 L

COPY No. 154

CONFIDENTIAL

(Attention is called to the penalties ottoching to ony infraction of the Official Secrets Acts.)

$\mathrm{H}_{2} \mathrm{~S}$ EQUIPMENT MARK IIc (A.R.I. 5590) MARK IIIA(A.R.I.5583) INCLUDING TEST EQUIPMENT

```
PREPARED BY DIRECTION OF THE
```

MINISTER OF AIRCRAFT PRODUCTION
?

PROMULGATED BY ORDER OF THE AIR COUNCIL.

$\mathrm{H}_{2} \mathrm{~S}$ Equipment
Mark IIC (A. R. I. 5590) and Marik IIIA (A. R.I.5583) together with all associated test equipment

ANTANDIAENT RECORD SHEET

Incorporation of an Amendment List in this publication is to be recorded by inserting the imendment list number, signing in the appropriate colum, and inserting the date of making the amendments.

Ar I. No.	Amendments made by	Date

LIST OF CONTHNPS

Chag.		Parae
1	Outline of the H. 2.S. System	
	The Fumctions of H2 2.S.	1-6
	The Nature of the H.2.S. System	7-10
	The Height Tube Display	11-12
	Weasurement of Height	13
	Requirements of Display suitable for Target Identification	14-16
	Development of Display for Target Indications	17
	Resolution of Indications	18
	Reason for Using $C \mathrm{mb}$ Vavelongths	19
	How Target Indications vary with Changing Range	20
	How the Target Display gets its Name	21
	H. 2.S. Hap Scales	22
	The heading or Course Marker	23
	The Track Marker	24
	The Bearing Ring and Map Setting	25
	Range Measurements	26
	The 30 Mile and 100 Mile Range Scales	27
	The 10 xile Range Scale	28
	The Bombing Scales	29
	The Scan Naricer Swritch	30
	The Beacon Switch and Iucero	31-32
	Kiscellaneous Controls	33-39
	Fishpond	40-41
	Power Switches	42
2	What the H. 2.S. Instailation Comprises	
	Functional Subdivisions	43-45
	Mark IIC Installation	46
	Mark IIIA Installation	47
	Component Numbering	48
	Location of Units in the Aircraft	49

3 Power Supplies
Outline of Various Power Supplies 50-65
The Power Unit Supplies 66-74
The Power Unit Relays and Sritching-ON Sequence 75-83
Switching OFF the H. 2.S. Equipment $84-85$
The Power Unit Safety Circuits 86-88
The Modulator Power Pack 89-92
The Modulator Safoty Circuits 93-95
Reforences to Other Supplies 96-104
Voltage Control Panel Types 105-108
The Type EU and E5 Regulator 109-114
Voltage Moasmrement Problems 115-117
Lianor V.C. P. Adjustments 118-121
Setting up V.C.P. Regulators other than E5 122-123
Setting Up the 55 Regulator 124-128
V. C. P. Changeover Panel in Lancaster Aircraft 129
Alternators 130-132
Modification to V.C.P. Type 5 133
4
The H_{0} 2.S. Timebase Circuits
Introduction 134-136
Sumpary of W.F.G 34 Stages 137-142
The Height Tube Timebase $143-145$
The Magsilip 146-147
The Trimebase Woricing Strokes 148
The Shaping of tho P. P. I. Timebase 149
Differentiation of a Sawtooth 150
Action of the Distortion Corrector Control 151
Developing the P.P.I. Timebase 152-153
Development of the Different Scans 154-156
The Diode Clamping Cireuit 157
The Phantertron 158-162
Erfoots of VR. 2 and VR. 3 163
Action of V. 3 164
Fhantastron Stability 165-166
"Squaring" and Itistable Timebase Centre 167-169
Sumary of P.P.I. Timebase Controls 170
Setting Up the P.P.I. Map 171
Noed for D.R. Compass Control 172
Type of Control Required 173
Mothod of Obtaining the Required Control 174
Relevant Vaive Fundamentals 176-184
The Timebase Paraphase Amplipiers 185
The Amplitude Controls 286
The Shift Controls 187
The W.F.G. 34 Voltage Stabiliser 188
The Master 迤位ivibrator 189-193
M and N Relays 194
The Switching Valve and Jineariser 195-198
The Bass Boost Valve 199-202
The Indicator 184 Power Supplies 203-207
Summary 208-209
Outilne of Symchronisation and Timing 210-217
Syachronisation of Signals and Markers to the Timebase 218-220
Control of Tramsmitter Timing 221-225
Outline of the Development of the Modulating Pulso 226-232
Development of the Transmitter Pulse and Behaviour of Magne trons 233-248
The Diode Overswing Eliminator Circuit 249-252
The Modulating Pulse Monitor Points 253-255
The Modulator Overload Trip Safety Circuit 256-257
The Mark IIC Feeder System 258-261

Chap.		Para.
	The Larik IIC Output Matching	262-266
	The Mark IIIA Feeder System	267-269
	The TR. 3555 R. F. Output Matching	270-284
	The Magnetron Safety Circuits with TR. 3555	285-289
	The TR. 3523	290-291
	The Transmitter Timing Valve, V. 505	293-296
	The Modulator Multivibrator	297-302
	The Trigger Valve	303-304
	The Spark Gap Switch	305-307
	The Modulating Line and Charging Choke	308-309
	The Duamy Loads	310
6	The Receiver Chain	
	General Considerations	311-312
	The Mark IIC Receiver	
	Input Matching	314-315
	The Soft Rhumbatron TR. Switch, CV. 43	316-326
	The Crystal Sixer Stage	328-334
	The Local Oscillator, CV. 67	335-356
	The Head Anplifier	357
	Viscellaneous Transmitter Unit Receiver Troubles	358-360
	The I. F. Abuplifier	361
	Gain Control	362
	Suppression	363-364
	The Second Detector	365
	The Monitor Network	366
	The Receiver Output Stage	367-369
	The Mark IIIA Receiver using the TR. 3555	
	Outline	370-371
	Input Matching	372-374
	The Soft Rhumbatron TR. Switch, CV. 114	375-377
	The Crystal Mixer	378-385
	The Local Oscillator, CV. 129 and Power Pack	386-399
	The Head Amplifier	400-404
	The I.F. Amplifier	405-408
	The Gain Control Valve	409
	Effect of the Lucero Switch	410
	I.F. Amplifier Tuming	411
	Suppression	413
	The Diode Detector	414
	The Cathode Follower	415
	The Receiver Output Valve	416
	The Receiver Power Pack	417-418
The Marker Circuits		
7	General	
	The Heading and Track Marker	479
	Outline	420-421
	Mechanical Details	422
	How the Marker Pulse is developed	424-426
		428-429
	Control Action of the B.R. Compass	430-432
	Setting-Up the Heading Marker	433
	Bombsight Control of the Track Contact	$434-435$
	Setting-Up the Track Contact	436
	Marker Difficulty	437-441
	The Course - Track Link in the W. F. G.	442-444
	The Basic Height and Range Marker Cirouit	445-455
	Calibration of the Marker Scales	456-462
	The Timing Valve Circuit	463-469
	The Himiter Valve	470
	The Actual Height and Range Marker Circuits	471-472
	The 10 Mile Marker Range	473-475
	Ground Speed Measurement	476
	Direct Release Lines	477

Chap.		Para.
$\frac{7}{(\text { contd.) }}$		
	Thirty Second Lines	478-479
	The Blackout Range Marker	480
	Adjustment of the Height and Range Zeros	481-486
	The Voltage Stabiliser, V. 404	487
	The Switch Unit Marker Control Network	488-492
	The H. 2.S. Pulse Lines and Networks	
	Range Karker Pulse-Forming Iine	493-495
	Height Marker Pulse-Forming Line	496
	Height Larker Delay Line	497-499
	The Suppression Network	500
	General Artificial Line Principles \& Appiications	501-509
8	Bright-Up, Xixing, Output and Display Circuits	
	Summary	510-511
	The Receiver Output Valve	522
	Mixing the Range Marker and Receiver Output	513
	The Receiver-Timing Unit Xixor	514-515
	Bright-Up Circuits in the W.F.G.	
	The Bright-Up Requirements Considerations in the Design of the W.F.G.	516-517
	Bright-up Circuit	518
	Operation of the Bright-Up FilpmFlop	519-522
	The Bright-up Controls	523-527
	The Bright-up Flip-Fiop Waveforms	528-535
	The Buffer Cathode Follower, V. 512	536-537
	The W.F.G idixer and the Video Axplifier	533-539
	Sotting of the Contrast Control Required for Fishpond	540
	The Contrast Control as a Top Cutter and Limiter	541-542
	Contrast Setting for ilarimm Target Detail	543
	The Sloping Bright-up Top	54.4
	The P.P.I. D.C. Restorer	545-547
	The Phantastron Bright-up	548-54,
	The Height Tube Paraphase Amplifier	550-559
	The Height Tube D.C. Restorers	560
	The Height Tube Blackout Circuit	561-564
	The Height Tube Vertical Shift	565
	Helght Thibe and P.P.I. Bleeder Supplies	567-570
9	The Roll-Stabilised Scanner	
	Purpose of Stabilisation	571
	Stabilisad Scanner Types	572
	isajor Components and their Primary Functions	573
	Accessories Mounted Independent of Platform	574
	Principle of Operation	575-576
	The Misaligment Voltage Channel	577-578
	The Amplifier Unit	579-582
	The Amplifier Unit Fower Pack	583-585
	The Motor Generator TYpe 74	586-595
	The Vacuum Pump Asseribly for D.I. ${ }^{\text {'s }}$	596-598
	Units Assooiated mith the Stabilised Scanner	
	Speed Control lmit Type 477	599
	Track idariser Control Unit Type 468	$600-601$
	Heading Coxitrol Unit Type 446	602-604
	Hechanical Details of the Stabilised Scanners	605-622
	The Rotating Joints	623-624
	Sumary of Main Scanner Items for Ifye 71	625-635
	The Bulkhead Panels	636-639
	Provision for Fitting Scanners without the Stabilised Platform	
		647
	General Installation Points	642-655
	D.I. Procedure	656-666

Chap.		Para.
10	Fishpond	
	Fumetion of Fishpond	667-669
	Outline of Fishpond	670-673
	The Fishpond Circuit	
	Timebase Outline	674
	Sarker Outline	675
	Signal Amplifier Outline	676
	Timebase Control Requirements	677-681
	Bright-up Requirements	682-684
	How the Fishpond Controls are Set Up	685-695
	Checking Karker Cailibration Differences between Indicators 132 and 182A	$696-697$ 699
	Detailed Stuay of the Timebase Amplifiers	700-707
	Detailed Study of the Marker Cirouit	708-709
	The B-C Switch	710
	The Power Pack	711-712
	E.H.T. and Bias Supplies	723-714
	D.C. for Fishpond Relays	715
	The W.F.G. 43	
	Function	716
	Principle	717
	Inputs	718-722
	Circuit Operation	723-730
	The Filter Unit 173	732-737
11	Test Equipment	
	Monitor 28	
	Sumary	738-739
	Controla	
	Use with H. 2.S.	741-747
	Measurement of Lucero Tx. Power	748-751
	D.C. The Circuit Operation Attachment for itonitor 28	-752-766
	Test Set 202	
	Summary	779-731
	Operation of Phantastron Divider Circuits	782-792
	Outline of Circuits	793-800
	Checking the Dividers	801
	Use for Calibration of H. 2.S. Warkers	802-811
	Test Sets 83 and 85	812-815
	Signal Generator type 47	
	Outline	816-822
	The Calibrated Output Ciroult	823-824
	The Kodulation Circuit	825-827
	Setting Up the Controls	
	Comparison of overall Sensitivity of h. 2.S. Sets ifiscellaneous Tests on R.F. side of Lark II H. 2.S.	$829-830$
	The Cambridge Fluxnetor	
	Surmary	838-84]
	Measurements	$842-843$
	The Cable Test Set 209	
	Sumanry	344-849
	Ueasurement of Insulation to Earth	850-851
	Continuity Testing	852-854
	The Test Set 205 or 205A	
	Function	855
	The Test Set Channels	856-365
	Power Supplies	866-869
	The Klystron Oscillator	870-872
	The Safoty Indicators	
	The Safety Circuits Circuit Details	$874-876$ $877-889$

Ghan.		Para.
$\stackrel{11}{(\text { contd. })}$		
	The Junction Box 238	890
	The Kisunatch Unit Type 257	891-892
	The Wavemeter W. 1310	
	Summary	893-394
	Circuit Details	895-908
	Use of the Wavemeter	909-912
	Faults and Checks	913-916
12	Waintenance and Servicing	
	Sumpary of the Signal Channels	917
	Sumary of Controls and Test Points	
	Power Supplies	918
	R.F. Output	919
	R.F. Input	920
	Local Oscillator	921
	Maricers	922
	Timebases	923
	Outputs and Displays	924
	Fishpond	925
	Stabilised Scanner	926
	Bench Setting-up of the H. 2.S. Wark IIC InstallationTest Gear RequiredPower Supply ChecksCrystal ChecksInitial Setting-up of Crystal CurrentCV. 43 ChecksObtaining SignalsNecessary ConditionsPoints to RememberMatching the CV. 64Searching for Signals with Le 0.	927
		928-933
		934
		935
		936
		937
		938
		939
		940
		347
	Final Setting-Up of ReFo Controls	942
	Field Strength of Magnet Check	343
	Setting Suppression	
	Fishpona not used	944
	Setting-Ip the Height Zero	946 947
	Checking Hoight Marker Tracking	947
	Setting-Up the Range Zero	948
	Cheoking Range Marker Tracking	949
	Calibration of Monitor 28 for A / C Setting Sotting-Ip The Indicator 184 Display	950
	Points to Remember	951-952
	Setting the Phantastron Controls	953
	Setting the Hum Eliminator Control	954
	Setting the A.plitude and Shift Controls	955
	Cheoking the Distortion Corrector	956
	Setting Contrast, Brilliance and Focus	957
	Setting Up the Height Tube Controls	958
	Adjusting Synchronisation of the Tx.	959
	Checking the Modulating Pulse	960
	Scanner Speed Check	961
	Checking the Course and Track litarker	962
	Checking the Repeater Notors	963-964
	Checking Scanner Aligrment	965
	Stabilised Scanner and H.C.U. Wiring Fishpond Bench Alignment	966-970
	Preliminary	971-973
	Shifts and Tube Orientation	974
	Centring	975
	Bright-Up and Range Controls	976-980

Chap.		Para.
13	Principles of Transmission Lines and Waveguides	
	Introduction	1110-1113
	The Concept of Vatching	1114-1117
	Resistive Loads	1118
	Inductive Loads	1119
	Capacitive Ioads	1120
	Summary	1121
	Mixed Loads	1122-1126
	Transmisaion Inne Froperties	
	Types of Lines	1127-1128
	Iine Constants	1129-1130
	Characteristic Impedence	1131
	Rules for Zo of Practical Iines	1132-1134
	What Happons When a Ix thine is connected to a Genorator	1235
	The Infinite line	1136
	The Finite Line with Resistive Load $=20$	1137-1138
	Line with Resistive Load > Zo	1139
	Open Cirouited Lino	1140
	Line with Resistive Load > Zo	1141
	The Short Circuited Line	1142
	Sumenary	1143
	Standing 7aves	2144-1150
	Flat Lines and Resonant Lines	1251
	Losses on Resonant Lines	1152-1154
	Composite Lines	1155
	Functions of Matching Devices	1156
	Impedance Transfornations by Transmission Lines	
	The Correctly Terminated Line	1157
	The Open Circuited Line	1158
	The Short Circuited Iine	1159
	The Line with Resistive Load > Zo	1160
	The Line with Resistive Load $>\mathrm{Z} 0$	1161-1162
	Sunmary	1163
	Matching by Moans of Tx Line Inpedance Transforzations	1164-1167
	Stub Matching	1168-1169
	Matching a Generator to a Line	1170-1174
	Matohing a Cable to a Receiver	1175
	The HalfoWave Dipole	1176-1179
	Voltage Feeding	2180-1181
	Current Feeding	1182
	Current Feeding with Coardal Feeder for Microwave Dipole	1183
	Physical Lengths of Halt-Wave Dipoles	1184
	Parasitic Aerial Elements	1185-1186
	The Shorted Quarter-liave as an Insulator	1187
	Transmission Lines as Tank Cirouits and Resonators	1188-1190
	Limitations of Quarter-Wave Katching Transfomer	1191
	Kooping Returned Signals out of IX in Common T and R	
	Ifimitations of the Coaxial Line for Microwaves	1193
	The Inosphere and Earth's Surface as a Waveguide	1194
	Haveguide Equivalents of Voltage and Current	1195-1197
	The Electromagnetic Wave in Free Space	1198
	The Electromagnetic Wave in a Maveguide .	1199-1202
	Guide Shapes	1203
	Exciting Guides	1204
	The H. 10 Wave in a Rectangular Guide	1205-1208
	The H. 11 Fave in a Circular Guide	1209-1210
	The Eo Wave in a Circular Guide	1211-1214
	Wavelengths in Guides	1215
	Wave Impedarce of Guides	1216
	Tave Guide Watching Problems	1217-1221
	How to Tell when Matching is Achieved	1222-1225
	The Fundarnental Problem of Siatohing a Generator to a Guide	1226

Chap.		Para.
$\stackrel{13}{(\text { contd. })}$	Matching a Magnetron Probe to a Guide	1227-1229
	Matching Guide Sections to liach Other	1230
	Filters as Reactances	1231
	Katching Out Reactance Due to Bends	1232
	Design of Bends to Avoid Reflections	1233
	Matching a Guide to Free Space	1234
	The Wave Guide as a Radiator	1235
	Polarising Shifting	1236
	Rotating Joints and Waveguide Transformers	1237-1239
	Vibrating Joints	1240
	Reasonant Irises and Applications	1241-1246
	Waveguides as Reasonant Cavithes	1247
	Sealing off Branch Lines	1248
	Coupling Into and Out of Resonont Cavities	1249-1251
	Sealing off the Transmitter for Retumed Signal	31252
	Dumay Loads for Waveguides	1253
14	Incero	
	Outline of the Lucero System	1254-1258
	Lucero and Blind Approach	1259-1264
	ynitiple Band Pracilities	1265-1266
	The Lucero Equipment	1267-1269
	Outline of W.F.G. Type 30	1270
	Outline of Rex. Type 159 or 161	1271
	Outline of Tx. Unit Type 105	1272
	Outline of Power Unit Type 532	1273
	Outline of Chassis Assembly Type 101	1274
	Outline of Switch Unit Type 115	1275-1276
	Outline of Control Unit Type 222A	1277
	Outline of Aerial System Type 184	1278
	Outione of Aerial System Type 308	1279
	The Common ToR. Syztem	1280-1281
	The Cabling Installation	1282
	The Lucero Circuits	1283
	Power Switching	1284-1291
	Automatic Frequency Selector System	1292-1297
	The Power Unit Tlype 532 The H. F. G. Type 30	1298-1301
	Counting Dowm Cirouit	2302-1304
	The Tx. Sodulating Pulse	1305-1306
	The Rx. Suppression	1307-1308
	The I.F.F. Suppression	1309-1310
	The Transmitter Urit Type 105	1321-1317
	The Receiver thit Thpe 159	1318-1322
	The Output Switohing	1323
	The Recoiver Unit Iype 161	1324-1328
	The Aerial Systerm 184.	1329-1331
	Switch Unit Maintenance and Servicing	1332-1335
	Bench Setting Up Procedure	$1346-1350$
	Installation in Airoraft	1351-1354
	D. I. Procedure Recocumended by T. R. $\mathrm{S}_{\text {, }}$	1355-1360

Fig.	Subject	Chap.
1	H.2.S. Beam and P.P.I. Display	1
2	P.P.I. Display, how built up	1
3	Height Tube Display and the Height Control	1
4	Heading Control Unit Panel	1
5	Course (Heading) and Track warkers	1
6	Bearings, how leasured	1
7	Lucero Blind Approach and Howing Beacon Displays	1
8	Indicator type 184 (RPU) Panel	1
9	Tuning Unit type 207 Panel	1
10	Tuning Unit type 444 Panel	1
11	Indicator type 182 or 282A, Fanel (Fishponã)	2
12	Fishpond Display	1
13	Cabling Installation, Mark IIC	2
14	Cabling Installation, Mark IIIA	2
15	T.R. 3191 (Maric IIC T2R) Panel	2
16	T.R. 3555 (Mark IIIA H. F. Box) Panel	2
17	Modulator type 64 Panel	2
18	Power Unit type 280 Panel	2
19	Waveforia Generator type 34, Panel	2
20	R. 3515 (Kark IIC Receiver-Timing Unit) Panel	2
21	R. 3553 (ifark IIIA -do- ${ }^{\text {d }}$ - Panel	2
22	Indicator type 184A (Gramco) Panel	2
23	Indicator type 162 Panel	2
24	Stabilised Platform	2
25	Scanmer Iype 71	2
26	Gyro Control Unit Type 453	2
27	V.C.P. Type V Panal	2
28	Power Unit, type 280 Circuit	3
29	Switch Unit, type 2078 Panel	3
30	Equivalent Circuit of -1800 and +1800 V . Power Pack	3
31	Power Unit Relays	3
32	A Relay Circuit Details	3
33	B Relay Circuit Details	3
34	D Relay and Delay Valve Circuit Details	3
35	C Relay Cirouit Details	3
36	E Relay Circuit Details	3
37	F Rolay Cirouit Details	3
38	Iayout of the Relay Contacts	3
39	Power Unit Overload Transformer Circuit	3
401	V.C.P. Type V Cirouit with E. U. Regulator	3
40(a)	Carbon Pile Charactoristic	3
41	Waveform Generator type 34 and Height Tube Timebase Circuits	4
42	Timebase, Block Schematic	4
43	Height Tube Timebase Waveforras	4
44	Principle of Kagslip Operation	4
45	Timebase Velocity Curves for the Indicator type 184 Scans	4
46	Indicator type 184 Timebase Circuit	4
47.	How a Rotating Timebase is Developed	4
48	How the Different Timebase Velocities are Obtained	4
49	Fhantastron Waveforms	4
50	P.P.I. 10 Mile Timebase Wavefoms	4
51	Master Multivibrator Circuit and Waveforms	4
52	Switching Valve Circuit (simplified) and Weveforms	4
53	Ifneariser and Bass Boost Valve Waveforms	4
54	P.P.I. 20 wile Timebase Waveforms	4
55	Transmitter Chain, Mark IIC	5
56	Transmitter Chain Block Schematic	5
57	Waveforms to Show How the Transmitter Pulse and Markers are Locked	5
58	Waveforms to Show How the Transmitter Timing is Varied	5
59	How the Transmitter Comes Into Operation	5
60	Transmitter Pulso Development Waveforms	5
61	Overswing Diode Circuit and the Modulator type 64 Monitor Points	5
62	Sodulator type 64 Safety Circuits	5

Fig.	Subject	Chap.
63	Feeder System, Mark IIC	5
64	Transmitter Chain, Mark IIIA	5
65	Feeder System, Mark IIIA	5
66	Safety Circuits, Mark IIIA	5
67	Transmitter-Timing Valve Circuit and Waveforms	5
68	Modulator M. V. Circuit and Yaveforne	5
69	Trigger Valve and Spark Gap, with Taveforms	5
70	Equivalent Artificial Line Disoharge Circuit	5
71	Receiver Chain 3lock Schematic	6
72	Receiver Chain, Lark IIC	6
73 (a)	C.V. 43, Construction	6
73 (b)	Equivalent Circuit of the CV. 43	6
73 (c)	CV. 43 Hoater Jacket	6
73 74 74	Difforent CV. 43 Types and Ionising Currents Construction of the Crystal Rectifier	6
74 (b)	Crystal Characteristios	6
74 c.	Equivalent Circuit of the Lixer Line	6
$74(\mathrm{~d})$	Construction of the Mixer Line	6
756	Vixing Haveforns	6
76 (a)	Cryatal Current Cirouit	6
76 (b)	Crystal Current Characteristic	6
$7{ }^{-}$	CV. 67 Circuit and Power Supply	6
78	CV. 67 construction	6
79	Prinoiple of the CV. 67 operation	6
80	Suppression Generator Circuit	6
83	Suppression Waveforms	6
82	Receiver Chain, Mark IIIA	6
83	.R.F. Input \#aveguide Adjustments	6
84	Construation of the CV.ill T. R. Cell	6
85 (a)	Construction of the Waveguide udxer	6
856	Equivalent Circuit of the ixixer Construction of the CV. 129	6
87	CV. 129 circuit and Power Pack	6
88	I.F. Amplifier Response Curves	6
89	Gain Control Circuit	6
90	Marker Circuits	7
91	Simplified Heading Marker Circuit	7
92	Heading Marker Wavelorms	7
93	Heading and Track hiariker Circuit	7
94	Prinoiple of the Repeater Motor	7
95	Basic Height and Range Marker Circuit	7
96	Timing Valve Circuit and Maveforns	7
97	Height Markor Faveforms	7
99.	10 mile Range Mariser Waveforms	7
100	Range Maricer Pulse Forming line	7
101	Height Marker Pulse Forning line	7
202	Height Marker Delay Jine	7
103	Modulating Line Principles	7
104	Bright-Jp, Mixing, Output and Display Circuits	8
105	Block Schomatic of Bright-Up and Output Circuits	8
106	Bright-Up System Waveforms	8
107	Bright-Up Flip-Fiop and Haveforms	8
108	W.F.G Mixer and Video Amplifior Operation	8
209	Height Tube Paraphase Amplifier Operation	8
110	Height Tube Circuits	8
111	Stabilised Scanner Interoonnection Diagram	9
112	Anplifier A. 3562 Circuit	9
113	Anplifier A. 3562 Leyout	9
$\left.\begin{array}{l} 214 \\ 215 \end{array}\right\}$	Scanner Type 71, views of gearing and marker contacts	9
216	Fishpond Cirouit	10
217	Fishpond Layouts	10
118	Principle of the Fishporid Timebase Amplifiers	10
119	Fishpond Waveforns	10
120	Waveform generator type 43 Equivalent and Actual Circuit	10

Fig.	Subjoot	Chep.
127	Filter Unit type 173 circuit	10
122	Wavefonn Generator 43 Waveforms	10
123	Monitor type 28 Panel and top view	11
	uonitor type 28	11
124	Monitor type 28 Right-HanduSide View	11
125	Monitor type 28 Undermside View	11
126	Monitor type 28 Circuit	31
127)	Monitor type 28 Waveforms	11
128)		
129	D. C. Level Attachment for the Lonitor 28	11
130	Test Set 202 Panel	11
131	Phantastron Frequency Divider Circuit	11
132	Phantastron Diviaion Paveforms	11
133	Top Views of the Test Set type 202	11
133A.	Underside view of Test Set type 202	11
134	Left Side View of the Test Set 202	11
135	Test Set 202 Circuit	11
136	Signal Generator 47 Panel and Layouts	11
237	Mechanical Details of the Signal Generator 47	11
138	Signal Generator 47 Circuit	11
139	Signal Noise Ratio Patterns for S. Go 47	11
340	Test Set 209 Panel (Cable Tester)	11
141	Test Set 209 Circuit	11
142	Test Set 205 Circuit	11
343	Test Set 205 Panel	11
144	Wavemeter 1310 Underside View	11
145	Wavameter 1310 Panel	11
146	Waverster 1310 Top View	11
147	Wavemeter 1310 Circuit	21
148	Block Schematic, Uarik IIC	12
149	Block Schamatic, Mark IIIA	12
150	24V. D.C. Circuit	12
151	Checking the Test Set 202 Division	12
152	Test Set 202 Hoak-up for ifarker Calibration	12
153	Repeater Motor Testing Installation	12
154	Junotion Box 238 and Test Set 205 Hook-up	12
255	Dummy Load Tests	12
156	Valve Base Chart	12
157	The Principle of ISatching for Power Outout	13
158	A.C. Power in a Resistive Load	13
159	A. C. Power in an Inductive Load	13
160	A. C. Power in a Capacitive Load	13
161	Asc. Power in a Mired Load ($L+R$)	13
162	An C. Power in a Mixed Load ($\mathrm{C}+\mathrm{R}$)	13
163	Equivalent Circuit of a Transmission line	13
164	Characteristic Impedance Formulae	13
165	How a Voltage Wave Travels Along a Transmission Line	13
166	Refleotioms on Transmission Jines	13
167	Standing Waves and Impedance Values along the O/C. Line	13
168	Standing Haves and Inpedence Values along the S/C. Inne	13
169	Standing Waves and Z Vaiues along Line with ZL (Res.) Zo	13
170	Standing Fraves and 2 Values along Line with ZL (Res.) Fo	13
171	The Quarter Wave Katching Transformer	13
172	Rules for Stub Matohing	13
173	Development of the Half-Wave Dipole	13
174	Voltaice Freoding the Helf-Wave Dipole	13
175	Current Feeding the Half-Wave Dipole	13
176	Coaxial Current Feeding the Half-Wave Dipole	13
177	The H. 10 ($\mathrm{H}, 1$) Have in a Rectangular wave guide	13
278	The H. 11 (H.1) Wave in a Circular wave guide	13
179	The Eo Wave in a Circular wave guide	13
180	Waveguide Assembly of the Mark III H.F. box	13
181	Iris Diaphragms as Reactances	13
182	Bends in Waveguides ${ }^{\text {a }}$ - in	13
183	Polarisation Shifter for $\mathrm{H}_{0} 10$ Wave in Rectangular wave g	de 13
184	Waveguide as a Radiator	13

Fig.	Subjoct	Chape
185	Waveguide Transformers for Rotating Joints	13
186	Resonant Irises	13
187	Ring Filler	13
188	Dumumy Loads	13
189	Display Indications	14
190	Lucero Panel and Under View	14
191	Chassis Connections	14
192	Control Unit type 222A Cirouit	14
193	Incero Circuit (T.Re3160)	14
194	Lucero Control Circuits	14
195	Frequency Selector Mechanism	14
196	Power Unit type 532 Cirouit	14
197	Waveform Generator type 30 Circuit	14
198	Waveform Generator type 30 Theorectical Waveforms	14
199	Waveform type 30 Actual Waveforms	14
200	Transmitter type 105 Circuit	14
201	Receiver type 159 Circuit	14
202	Receiver type 161 Circuit	14
203	Aerial Type 184	14
204	Switoh Unit Type 115 Detaila	34
205	Switch Unit type 115 Schematic	14
206	Faveform Generator type 30 Details	14
207	Receiver type 159 Details	14
208	Power Unit type 532 Details	14
209	Transmitter type 105 Details	14
210	Wiring Diagram Mark IIC	
211	Wiring Diagram Mark IIIA	
212	Modulator type 64 Cirouit (below 300 Serial Number)	
213	Modulator type 64 Circuit (above 300 Serial Number)	
214	Modulator type 64 Layouts	
215	Power Unit type 280 Chassis Top View	
216	Power Unit type 280 Chassis Underside View	
217	T.R. 3191 type Circuit.	
218	T.R. 3191 type Internal View	
219	T.R. 3555 type Circuit	
220 \}		
221	T. R. 3555 type Views	
223	Waveform Generator 34 Circuit	
224	Waveform Generator 34 Views	
225	Heading Control Unit type 446. Circuit	
226	Switch Unit type 207B. Circuit	
227	" " " " Internal views	
228	Indicator Unit type 184* Circuit	
229	" " " 184 A. Circuit	
230	" " " Viots of chasas	
231A	Views of chasmis	
232	Indicator Unit type 162. Cirouit	
233)	n " $\quad 1 \quad$ Viers of chasis	
235	Tuning Unit type 207. Circuit	
236	Power Unit type 224. Circuit	
237	R. 3515 Circuit	
238)		
239	R.3515. Views of chassis	
240		
24.1	R.3516. Receiver circuit	
242	R.3516. 'Tuning Unit. Circuit	
243	R.3553. Circuit.	
244 24.5	R.3553. Views of chassia	

```
CHAPIKRR 1 - CUYTHE OR THE H.2.S. STSTNE
```


The Pumotions of H.2.S.

1. H.2.S. is a Padar device cerried in sircraft to produce on a cathode ray tube a ploture of the area over which the aircraft is fining. By comparing this cathode ray tuibe display with target maps the H.2.S. operator can identify coestlines, lakes, large rivers, built-up areas and large man-made atructures. Phe centre of the display will always represent the point on the earth's aurface directily below the airaraft. Prom his identification of indications on the display with points on his target map and by using the appropriate controle and markers, the E.2.S. operator oan do the following:-
$\left\{\begin{array}{l}\text { (a) Pix his position. } \\ \text { b) Deternine range and bearing of built-ap areas. } \\ \text { () Eame onto targets for blind bombing. }\end{array}\right.$
2. Hy means of a second cathode ray tube and an asscaiated mariker and ountrol the height of the airoraft above the earth's surface can be determined.
3. When the appropriate adjustments have been made the ground speed of the aiveraft can easily be determined fram the movement of indications acroas the main H.2.S. H1aplay.
4. If an adational unit compriaing a 1.5 metre transmitter and anitable receiving atages is inoorporated in the H. $2 . \mathrm{S}$. instellation the equipment can be used for homing on long range beacous and blind approsch runway beacons. This additionsl unit is called Incoro.
5. Another indicating unit can be incorporated in the H.2.S. installation to show the range and azimath bearing of aircraft appearing in a heaisphere below the aireraft. The centre of this hemisphere wili be at the aircraft and the radius of the hemiephere will be equal to the airorart height. From the movement of an airoraft indication on this display it oan be ascortained whe ther the alroraft is frienaiy or hostile. This indioating unit is called Flshpond.
6. It follows frcm our preceding paragraphs that the H.2.S. installation including Lucero and Fishpond is a imoltaneousiy:-
(a) An oxtremely voreatile navigatiomi aid.
(b) A blind bombing aid.
(c) A warning devioe which can reauce the danger of coiliaions with friendly airoraft and give warning of attack frcm enemy airaraft provided the attack is not made frcm above.
Aside frcm Lacero applications the equipment is selpmontained in the alreraft and is therefore not subjeot to the range limitations inherent in equigments dependent on ground transmissions.

The Natare of the H.2.3. System

7. Before proceeding to study the easentials of the H.2.S. system we may profitably consider an analogy from the field of cotica. We may imagine a revolving lighthouse sending cut its narrow, intense beam. If the lighthouse stands atill this beam will illuninate a sector on the ground or the sea, If a ship, a building or an aircraft appears in the beam some of the light will be reflected. If an operator is standing bohind the light he will be able to see these objects because light is refleoted from them to his eyes. If the light is allowed to rotate through 360° the beam will, in the course of cne revolution, illuminate a circular area of the earth's surface with the lighthouse at the centre of the ofroie. Any objects ounaing reflection as the beam crosses them will then be observed once in every revolution for the anration of the interval of iliumination. rhis interval will depend on the width of the beam and the rate of rotation.
8. The H.2.S. installation in an aircraft is very similar to the lighthouse. A suitable moduiator pulses a magnetron transmitting valve at a recurrence frequency of $670 \mathrm{o} / \mathrm{s}$. The magnetron develops burets of R.F. of 1 miorosecond duration once every 1500 microseconds. For Mark II E.2.S. a magnetron is used
G.D.089G
that develops a wavelength of about 9 oms. For kark III Ko2.S. a different magnetron is used whioh develops a wavelongth of approdimately 3 cms. The 1 miorosecond bursts of radio frequency energy are radiated fram the flared mouth of a waveguide into a parabaloid soamning mirror, or scanner. The mirror ocncentrates the energy into a narrom beam which is radiated out into epace. This bean "flashing" at $670 \mathrm{c} / \mathrm{s}$. serves to "illuminate" a narrow sector of the earth's crust with invisible radiation. This invisible radio frequency radiation differs fram visible light only in the wavelength employed. Like visitule light it travels at a speed of 186,000 miles per second in apace. This is equivalent to a speed of 5.35 microseconds per mile. Henoe if the tranmitter radiates a 1 microseconi burst of energy into space en electromagnetic wave travels outward at a speed of 5.35 microseconds per mile.
9. When this burst of energy strikes a horizontal surface most of the energy is reflected away fram the airaraft. Bence, quiet water will give negligible raflection back to the aircraft. If the radiation strikes rolling country some onergy is refleoted back from slopes, farm hailaings, eto. In the same wey, when the sea is rough some energy is reflected back from the aidos of the wavos. We thus get returns which we call gemeral sea returns or general ground roturns. If the beam strikes steep cliffs, the vertical surfaces of large builaings, or a large number of vertical aurfaces in heavily built-up areas, on appreciable amount of enorgy may be reflected back to the aircraft. If an airoraft flifes through the H .2 .S. beam it will reflect back a quantity of energy depending on its size and orientation with respect to the H.2.S. beam. Hence, we may sumnarise by saying that the K. $2 . S$. beam Fill experience:-
(a) Very littile reflection from quiet water or flat open country.
(b) Limited amount of refleotion froun rough water ar rolling country.
(o) Sonewhat heavior reflection from surburban areas.
(d) Appreciable reflaction firom steep cliffa, Large struoturas and hoavily built-um areas.
10. Since the speed of tho electronagnetic waves is 5.35 microseconds per mile the 'echo timo' is 10.7 microaeconds per mile. Hence the time interval that will elapse between the instant the tranemitter fires and the instant the echo returns will always be given in microseconds by multiplying the slant range of the reflecting objeot by 10.7. An echo fram a target at a slant range of 40 miles woald then retoun in 40×10.7 or 428 mioroseconds. Obvicusly, all echo times must be proportional to the slant range of the reflocting aurface. This is the fundamental principle enplayed in Radar to measure the range of reflecting surfaces.

The Hoight Tube Display

11. Range indications are normaliy displayed on some form of time-base. Every Radar Kochanic is familiar with the usual deflection type of display. An electr strem enitted from the cathode of a cathode ruy tube passoa betwoen derlecting plates. When both plates are at the sane potential the electron atream pasaes down the contre of the tube. If the stream is sufficiontiy intense it will cause the fluorescent screen to glow with a colour characteristic of the screen material. By means of a fooussing adjum ment the electron atream can be made to converge to a fin point so as to cause only a bright doti at the centre of the soreen. If one deflecting plate is given a suitable D.C. potential the bean can be derlected to cense a apot at the side, top, or bottom of the tabe soreen If now a sawtooth roltage is applied to the derieoting plates to drive the one plate positive and the other negative the electron stream is deflected and the bright spot will sweop across the screen to develop a timebase. If the goot travele across the soreen at a oonstant velooity we say the timebase is linear. If the velooity varias the timebase in nan-linear. If we convert radio frequency echoes into video pulees by means of a suitable receiver and app these video pulsea to a pair of delleoting plates at right angles to the timebase plates, these pulses will defiect the eleotron stresm for the pulse duration to give the familiar derleotion presentation. In order that the rearultant derlootions or "blips" may remain stationary they must appear at the same point in the timebere sweop for each transmitter prisee. Honce it is always necessany to

FIG.I
symohrenise the transmitter and the timebase. If the timebase sweep begins when the transmitter fires the first blip to appear on it must be the ocho from the nearest reflooting murface. This will be the ground ocho from the point on the earth's surface directily below the aircraft (if we neglect echoes other aircraft). If the timebase is linear, i.e. the cathode ray tube spot is travelling at a uniform velooity, all blips will appanr at distanoes along the acan which are proportional to their echo time, and hence proportional to their slant range. Such a diaplay is used on the H.2.S. height tabo, which uses a vertionl scan running from the botton to the top. Echoes appear as defleotions to the right. Since the transmitter fires 670 times per second there must be 670 sweeps of the timebase per second.
12. We have stated that the H.2.S. beam is narrow so as to illuminate only a mall seotor of the earth's cruat at one time. Hence, if the scanner is atatiomary the height tube timebase oan only show deflections die to targets lying in the illuminated sector. In operation the scamer will nonnally be rotating at $40-60 \mathrm{r} \cdot \mathrm{p}_{0} \mathrm{~m}$. If we assume the speed to be 60 ropome cri 1 rop. m_{o}. the H.2.S. boam turns through 360° in one second and in this time the timebase will make 670 sweeps and the transmitter will have sent out 670 bursts of radiofrequency energy, each of 1 microsecond duration. As the scarmer turns the narrow H.2.S. beam illuminates different sets of targets or different perts of large targets on successive pulses. Honce the hoight tabe display will not be steady but will show defleotions rising ani falling at different points along the timebases as targets at different ranges pass in and out of the beam. Such a display, obviously, is not suitable for target identification purposes.

Measurement of Height

13. There will, however, be one echo that remains steady as long as the aircraft hoight rewains constant. This is the ground echo from directily below the airoraft mich comes in on each tranmitted pulse. Its distance up the trace will be proportional to the aircraft height. To prevent overloading cen strong transmitter breakthrough signals the I. F. amplifier of the Ho2.S. receiver is suppressed for 20 miaroseconds in every 1500 microseconds, the suppression period terminating at the ond of the transmitter pulse. Hence the timebse shows a 20 microsecond blank seotion. At the end of this suppression break the scan may show a derlection to the right which is the tail of the transmitter pulse. Beyond this signel there will be only vaive noise until the ground echo appears as a bulge to the right. A height marker pulse is genarated in the $\mathrm{H} \cdot 2 . \mathrm{S}$. set which appoary on the height tube display as a deflection to the left. This height marker blip can be moved up ani down the timebase by means of a height control on a second unit at the Mavigator's table, termed a switch untt. If the beight marker blip is set to the beginning of the ground echo bulge, the airoraft height above ground can be read from a calibrated soole under an index line. If the aircraft height ohanges the eoho time for the ground echo changes and the ground echo bulge on the height tube display moves acoordingly.

Requirements of Dispiny suitable for Target Idontification

14. We have seen how the height tube diaplay can be used to give the H.2.S. Operator the beight of the airorait above the earth's surface but we have concluded that the deflection type of presentation is not auitable for target identification. Obviausly, the type of display required is one which can be most readily ocmpared with target map. Suppose that we can arrange to have the height maricer trigger a timebase circuit wich ceuses the eleotron stream to travel fran the contre of the tube to the ciroumference. If the height marker is sat to the ground eaho then the height marker triggers the timebase at the instant the ground eoho reaches the aircraft. The centre of the display will then represent the point direotly below the airoraft. This means that the scan will not comence when the transmitter fires but after a time interval equal to the echo time of the ground echo. Let us suppose first that cur radial timebase awoop was linoar. Eichoes from targots would return at time intervals after the tranamitter firing which would be found by dividing their slant range by 10.7, the echo time in microseconas per mile retarno

The distance fram the whe centre at which the indications would appear would be proportional to the time of travel of the cathode ray tube spot, i.e. to the difference betwoan the target echo time and the ground echo time. Since the ground echo time is proportional to the aircraf't height and the target echo time is proportional to the alant range, the difference between these times will be proportional to slant range minus height. For ease of target identification by comparison with a target map, target indications should appear at distances from the tube centre which are proportional to their ground range. Since a linear timebase does not fulfil this condition it is necessary to develop a special type of non-linear timebase which does fulfil this condition.
15. What we want is a non-linear radial timebase that begins at the tube contre when the ground echo reaches the aircraf't and which will be non-linear in such a way as to show target indications at distances from the centre proportional to their ground range. Moreover, these indications should give the best possible substitute for actual visibility., A display which resembles a relief map auggests itself. If we can make water, with very weak returns, show up as black, general ground returns as faint luminosity, and cliffs, heavily built-up areas, etc. as bright patches, we have something akin to a relief may.
16. In order that such a diaplay can be compared with a target map the H.2.S. operator must know where North appears on his display. He aiso wants the target indications to have the same relative bearings on the display as on the target map. Hence, H.2.S. should provide a diaplay which fulfils the following conditions:-
(a) The top represents true North.
(b) Target indications appear as luminous patches for strong returns, general ground returns give faint background luminosity, and rivers, lakes and sea can be kept almost blank.
(c) These indications appear at distances from the centre proportional to their ground range and show relative bearings on a target map.
(d) The centre of the display always represents the point directly benoath the aircraft and target indicaticns appear at the correct bearing from the tube centre.

Development of Display for Target Indications

17. To produce the type of display we have described the radio frequency ocho pulses after conversion into positive-going video pulses, are applied to the cathode ray tube grid. Ey adjusting the bias on the cathode ray tube it can be arranged that the intensity of the electron stream emitted from the cathode is not sufficient to cause any glow on the screen unless a positive pulse is acting on the grid. Hence, as the non-linear timebase voltage deflects the atream from the centre to the circumference of the tube, the screen ramains blank when there is no signal on the cathode ray tube grid. the receiver gain is turned up valve noise peaks plus general ground return echces will cause a faint flashing or "scintillating" background while stronger ochoes will cause the screen to brighten up along the aweep at distances frcm the centre proportional to their ground range. If the top of the map ia to represent true North the radial timebase must be sweeping fram the centre to the top when the scanner is looking toward the North. If echoes from other directions are to appear as bright patches at their correct bearings on the display the radial timebase must move arcand the babe in aynchronism with the scanner. We have stated that there are 670 sweepa of the timebase per second. Hence if the scarmer revolves once per second and the radial timebase moves in synchronism with it, we can think of our timebase as resembling a wheel with 670 spokes, i.e. we have timebase sweeps at angular intervals on the tube of 360 or slightly more than a half degree.
18. Any target will cause a brightening up of the number of aweeps that occur while the H.2.S. beam moves across the torget. Hence the angular widh of a targe't indication will be equal to the angle aubtended at the aircraf't by the target plus the beam width. This follows since returns will come fram the target as som as the leading edge of the beam reaches the target and the returns will continme until the trailing edge of the beam leaves the target. As a consequenoe of this fact adjacent targets will only give separate indications if their angular separation exceeds the beam width. Hence, the resolution obtainable with H.2.S. depends on the beam width. H.2.S. Kark IIC gives a beam width of abcut $8 \frac{1}{2}$ degrees while the width of the beam developed by H.2.S. Nark IIA is about $3 \frac{1}{2}$ dogrees. As a consequence of this difference in beam width somewhat better resolution of targets is obtainahle with H.2.S. Mark IIIA.

Reason for Using Centimetre Wavelengths

19. The whole reason for using centimetre wavelengths in H.2.S. has been the necessity of developing narrow beams in order to get reaolution of targets. The development of narrow beams at longer wavelengths requires elaborate aerial arrays which are much too large for airborne work. As the wavelength is reduced the size of the aerial array required to prodnce a beam of a specified width diminishes. In the centimetre band narrow beams can be produced by means of mirror arrays which can be carried in aircraft Without impairing speed or seriously reducing bamb load.

How Target Indications vary with Changing Range

20. For targets at long ranges the H.2.S. bean atrikes the vertical surface of the builaings on the leading edge of the target at a comparatively low angle. Hence, these leading edge buildings will largely screen the greater part of the target. The returns will then ceuse only a brief brightening of each scan, i.e. ally a dot on each scan These dots will then join together to form a thin arc. As the airoraft approaches the target the beam strikes it at steeper angles and the screening effect decreases. The target indication therefore increases in depth. When the aircraft is close to the target the beam will illuminete the greator part of the target area and an indication will be produced which roughly resembles the outlines of the $s t r a n g l y$ reflecting regions of the target.

How the Target Display gets its Name

21. Since the main H.2.S. display is essentially a form of relief map showing a plan view of the country under the aircraft, we speak of it as a P.P.I. (plan position indication) display. The cathode ray tube used to develop this display is called the P.P.I. tube. Both the P.P.I. and height tube are incorporated in an indicator at the Navigator's table.

H.2.S. Map Scales

22. As the P.P.I. display is to be ocmpared with a target map it is necessary to know the scele of the H.2.S. map. Three different maps are available. One providea a ground range coverage of around 40 statute miles on a tube of $2 \frac{1}{2}$ " radius, or a map with a scale of about 16 miles to the inche The second map provides a graund range coverage of about 20 statute miles or a scale of about 8 miles to the inoh. The third gives a ground range coverage of 10 statute miles or a scale of 4 miles to the inch. These correspond to the $1: 1,000,000,1: 500,000$ and $1: 250,000$ scale maps.

The Heading for Course Marker

23. It has beon stated previously that it is possible to set the H. 2. S. map so that the top represents true North. The control used for making this adjustment is located on a heading control unit which is also mounted ot the Navigator's table along with the indicator and switch unit. When this adjustment has been made target indications will appear at the same bearing fram a IIne drawn fram the tube centre to the top of the tube as the actual targets appear from a North-South line drawn through the aircraft position on the target mep. What the H.2.S. Operator is frequently interested in is the

FIG. 4

SETTINA CONTROL

TO MK XIV BOMBSLIHT

TO DR COMPASS
$24 V$ DC. INPUT TO SCANNER
I. THE DR COMPASS MAINTANS NORTHAT THE
 NFORMATIGNIS FED

FIC.5a
tRACK AND COURSE MARKERS
bearing of targets with reapect to the eircraft heading. To present this information visualis a heading marker is provided. We have noted previously that men the scanner is looking in any particular directicn the timebase aweep then cocurring will travel out fram the tabe centre at a bearing equal to the bearing of the direction in which the scamer is looking provided the map has been correctly aet. It is arranged that at the instant the soanner goes through the dead-ahead positicn two ocntacts close to develop a positive pulse on the P.P.I. grid which lasts for the duration of about two sweeps of the timebase. This positive pulse serves to brighten up the two consecutive radial scans that occur as the scarmer is passing through the doad-ahead position. Hence, for every revolution of the scanner a bright radial line, formed by the fusion of these two consecutive brightened-up sweeps, flashes up at the bearing of the aircraft heading. Due to the after-glow properties of the screen this marker will be apparent all the time if the Navigator's compartment is in darimess. The position of target indications on the display relative to the heading marker will give an immediate picture of the poaition of targets relative to the airoraft course. A ewitoh on the switch unit enables the H.2.S. Operator to switch off the heading maricer when he does not wish to use it.

The Track Marker

24. In the H.2.S. Mark IIC and Mark IIIA installations facilities are available for converting the heading marker to a track marker in order to facilitate homing on a target during a bombing run. When a switch on the indicator is awitohed from the "Course" to the "Mrack" position a second aet of moveable contacts is brought into operation in the scanner. This pair is offset from the first fixed pair. by the drift angle when this angle has been set on the Mark 14 bombsight. The positive pulse applied to the P.P.I. grid will now occur earlier or later than previously depending on the sense of the drift, and the marker will flash up on a bearing that ahows the actual aircraft track as oppased to the heading or course.

The Boaring Ring and Map Setting

25. To permitt the H.2.S. Operator to make bearing measurements a bearing ring is provided on the front of the P.P.I. tube. This rotatable ring is graduated in degrees. A pointer is engraved on a perspex soreen attached to the ring. When this pointer is set to a target the bearing can be read directiy opposite an index at the bottom of the tube. This pointer is used to set up the H.2.S. map so as to have North at the top. When the pilot has set course the H.2.S. Operstor sets switches on the heading control unit and indicator to "Course" and sets the bearing ring to read the course opposite the index. He then adjusts his setting knob on the heading contral unit until the heading maricer flashes along the pointer on the perspex scale. The heading marker now shows the correct airoraft heading and the map is therefore correctily set. The heading control switch is now set to "Auto" and the D.R. compass keeps the setting of the map correct as the airoraft alters course. When a change in course cocurs the heading marker moves accordingly.

Range Measuroments

26. Although target indications appear at distances from the tube centre which are proportional to their ground range the H.2.S. Operator requires some means of measuring ranges. For this purpose he is provided with a range marker. This range marker is a positive pulse generated in the H.2.S. set on every aweep of the timebase. It is applied to the P.P.I. grid so will cause a bright dot on each of the 670 sweeps. The distance from the tube centre at which these dots appear can be varied by means of a range control on the awitch unit. For any setting of this control the distance from the centre at which these dots occur is fired. Hence the range marker dots on the 670 radial sweeps join up to form a Iuminous circle. When the H.2.S. Operator wishes to measure a range he adjusts his range contral until the marker ring coincides with the target. He can then read the target range directly opposite an index on a calibrated scale. The range marker is also mixed with the signals and applied to the height tube to appear as a blip to the right of the trace.

CD. 0896 L

LUCERO
FIG.7a

FIG.7b

27. Three different range scales are provided, all located on a range drum wich turns as the range control is cperated. One scale provides slant range measurements fran 0 to 100 statute miles. The flirst part of this acale is used when the 40 mile timebase is in uae. The $40-80$ mile portion of the scale is not used on the P.P.I. display. This 100 mile soale appears alang the outer edge of the range drum. On the inner edge of the range drum is a second acale which is calibrated to read slant ranges from $0-30$ miles. This scale is used in conjunotion with the 20 mile timebse. In each case the range is read from the graduation that appears opposite a little index. It has been atated that the range measured is actuaily slant range although target indications appear at distances from the centre which are proportionsl to their ground range. This andaly arises from the fact that we are actrally measuring echo times which are propartional to slant range.

The 10 Mile Range Scale

28. The central part of the range drum shows a set of curves and a metal pointer that tracks acrass these aurves when the hoight control is operated. These curves serve to convert slant range to ground range and permit measurements of ground ranges between $0-10$ statute miles. To use this 10 mile scale the height markor mat first be set to the begiming of the ground eaho on the height tube. As this is done the pointer mentioned above tracics across the range drum and the range marker moves an both the height tube and the P.P.I. This happens because the height marker circoit is triggering the range marker circuit when the 10 mile range scale is in use. This is not the case when the 30 or 100 mile range scales are in use as the height and range marker circuits then operate independently. When the height marker has been set to the ground echo the range control is used to set the range marker ring to the indication on the P.P.I. display. As this is done the curres on the range drum move across the tip of the pointer. The curve opposite the pointer tip when the adjustment has been made gives the ground range of the target.

The Bombing Scales

29. On the range drum two sets of bombing acales are ahown in addition to the range scales already menticned. One of these appears in dotted red lines and the other set in solid red lines. These lines are bombing acales. The dotted lines are 30 second lines, while the solid anes are direat release lines. Both sets are labelled in ground speeds. Suppose that a bombing run is in progress, and the 10 mile timebase and range marker circuits are in operation. Suppose the range ocantrol is set to 8 miles and a stop watoh atarted as the target touches the marker ring. The range control is then set to 7 miles and the marker mores in. When the target reaches the marker ring the watch is stopped. This gives the time to travel a mile ground range from which the ground speed is known. The range contral is then set to bring the 30 second line which gives the appropriate ground speed opposite the tip of the pointer. If the aircraft flies straight and level at the same height until the target reaches the new position of the marker ring the target touches the marker ring 30 seconds before an ideal bomb should be released. For different types of bombs suitable corrections have to be made to this 30 second value. In any case the number of seconds before the bombs should be released will be known. In this way H.2.S. can be used for blind bcrabing. If the direct release lines were used instead of the 30 second lines any ideal bomb should be released at the instant the target reaches the marker ring.

The Scan-Marker Stritch

30. We have spoken of the different timebases and range scales. Obviousiy the development of these different scan and marker ranges is achieved by switching components in the appropriate H. $2 . \mathrm{S}$. units. This switching is done by means of a 6-position scan-maricer switch on the switch unit. The pointer of this switch moves acrass an engraved scale with two sets of numbers an it. The ane set is labelled "Scan", and the other set "Maricer". The six positions provide the following combinations of timebases and markers:-

Position	Scamaing Rango	Markers Range
10/10	$10 \mathrm{mi}$. (granna)	10 mi. (ground)
10/20	20 ml . (ground)	10 mi. (ground)
30/20	20 mi . (ground)	30 mi . (slant)
100/20	20 mi . (ground)	100 mi. (slant)
100/40	$40 \mathrm{mi}$. . (graund)	100 mi. (slant
100/40-80	$\begin{aligned} & \text { Not useable on } \\ & \text { P.P.I. } \end{aligned}$	100 mi. (slant)

From the above table it can be seen that the second or $10 / 20$ position of the scan-marker switch permits the use of the 10 mile range scale, and hence of the bombing scales, on the 20 mile acan. This enables the H.2.S. Operator to use the bombing scales when attacking targets which are so large that they camot be handied on the 10 mile map.

The Beacon Sufitch and Lucero

31. A beacon awitch is also provided on the awitch unit. This switch can be set to "OFF", B+H, B, or BA. When set to "Off" Lucero is inoperative. This is the position that is used in Bamber Comand when Iucero is not installed. When set to "B+H" both Incero and H.2.S. are operating. Sigmels fram homing beaccons triggered by the Incero transmitter will then be fed to the R.2.S. aisplays alang with the H.2.S. signals. The height tube diaplay now becones double-sided and the height marker no longer appears on the haight tube. If set to the position "B" the H.2.S. signels are eliminated and only the haming beacan signals are received. These will appear as twomided blips on the height tube, flashing a Morse letter to identify the bekcon. Hy altering course until the two sides of the blip are of equal anplitude the aircraft can home onto the beacon. Fhen the "BA" position is used a second local oscillator is switched into the circuit in the Lucero unit. Tris enables the recoiving part of the Lucero unit to amplify signals from BABS rumway beacons. These signals take the form of a narrow blip or "dot" insjde a wide blip or "danh". If the two blipy are of equal amplitude the airoraft is making its approach in a direction coincident with a line down the centre of the rumay. If there is no drift the equal amplitade blipe will be syumetric with respect to the trace. If drift is present this symmetry will not be obtained when the amplitudes are equal. If certain oircuit modifications are introduced displays of Lucero signals will be aingle sided.
32. When Lncero Mark II is used a push-button tuning unit is included in the installation. This unit permits switching of the tuned circuit compoments in the Incero transmitter and local oscillator dircuits to operate on different chamels in the bani 214 to $234 \mathrm{Mc} / \mathrm{s}$. This multiple-frequency design permits different aircraft to trigger different Rureka beacons without causing interference.

The Gain Control

33. The H.2.S. Operator's'gain control is also mounted on the awitoh unit at his table.

The Tuning Control in He2.S. Mark IIC.

34 In airocaft fitted with an H.2.S. Jark IIC installation a tuning unit containing the local oscillator of the H.2.S. receiver appears at the Navigator's table. The frequency of the magnetron transmitter valve may vary and since it carnot be tuned it is necessary to tune the local oscillator to keep the difference between the aignal frequency and locsl oscillator frequency equal to the fixed frequency to whioh the I.P. anplifier responds. The local oscillator tuning control appears on the tuning unit where it is readily accessible to the H.2.S. Operator.

The Tuning Controls in H.2.S. Mark IIIA

35. In on H.2.S. Mark IIIA installation the local oscillator is incorporated in the same unit as the transmitter valve. . This unit is called the H.P. box in

Mark III R-2.s. installation. A local oscillator tuning contral is provided on the H.F. bor for use by the Radar Nechanics. Since the H. $2 . \mathrm{S}$. Cperator mast also be able to tune the local oscillator a tuning unit with a remote tuning control is fitted at the Navigator's table.
Origin of the Term ${ }^{n} \mathrm{~T}^{2} \mathrm{R}^{n}$
36. The transmitter unit used in Mark"II H.2.S. installations is usually called the T2R. This nomenclature arose in Mark VIII A.I. where the transmitter unit contained both the 9 cm . tranamitter and an I.F.F. interrogating transmitter as well as a crystal mixer and the I.F. stage. The term "T2R" indicated the presence of two tranamitters as well as receiver stages. The term is really not applicable in H.2.S. since only ane tranamitter is included in the transmitter unit.

The Distortion Corrector Control

37. Another control of interest to the H.2.S. Operator, the distortion correator control, appears on the indicator panel. This control must be set to the aircraf't height (found by setting the height marker to the ground return) if target indications are to appear at distances from the centre which are proportional to ground range.

Brilliance Control
38. The brilliance contrals for the height tube and P.P.I. appear as variable contrals on the indicator panel to pemit adjustment by the H.2.S. Operator.

Presets

39. Kumerous preset controls are included in the equipment but these are primarily the concern of the Radar Mechanic and are moro convenientiy discussed when dealing with the associated circuits.

Fishpond

40. The Fishpond indicator unit is used by the Wireless Operator. It prom Fides a P.P.I. display with a timebase which is aynchroaised to that of the H.2.S. displays. It differs from the H.2.S. P.P.I. display in that the soan is essentially linear and gives a range coverage of $4-5$ miles indepenient of the scan in use on the H.2.S. indicator. The effective scan begins when the transmitter fires instead of when the height marker forms. The heading marker appears on this display at the same bearing as on the H.2.S. P.P.I. The tube is provided with a bearing ring similar to that on the H.2.S. indicator. The effective Fishpond scan begins about a half inch from the tube centre when the tranamitter fires and the coverage is oniy $4-5 \mathrm{miles}$, i.e. Just over the normal airoraft height. Hence, the only indications from points on the ground that will appear at operational heights will be a ground echo ring arcund the outside of the tube. The only indications that can appear inside this ground echo ring will be due to reflections fram airaraft which may be prosent in a hemishpere below the aircraft with centre at the aircraft and radius equal to the aircraft height. The position of any such aircraft indications with respect to the heading maxker will indicate whother the reflecting aircraft is astern, ahead, on the beam, or on any quarter. There is, however, no definite indication as to its position in elevation. Some idea of elevation may be obtained by banking. If banking causes the indication to crose the heading marker the reflecting aircraft must be well below the receiving airoraft. If banking causes very little displacement relative to the heading marker the reflecting aircraft mast be et much the same height as the receiving airaraft. Indications produced by hostile aircraft can be identified by noting whether they alter course to follow the receiving aircraft whon it takes ovasive action.
41. To get a quick estimate of range a set of marker rings representing $0,1,2,3,4,5 \mathrm{miles}$ can be put on the display by means of a puah-button switch. A variable gain and brilliance control are provided on the panol.
42. The power switches for the camplete installation are located on the awitch unit. When the pushobutton switch labelled "L.T. ON" is prossed a grean pilot lamp lights. After about 40 seconds a relay in the power unit closes. If the next pushmbutton labelled "H.T. ON" is now prossed a yellow pilot light lights up. If this button is pressed bofore the relay in the power unit has closed the yellow pilot lamp will not light up, indicating that the button has been pressed too soone After a further delay of about the same interval a rod pilot lanap lights up and the transmitter starts operating provided a toggle switoh on the modulator unit is in the "Down" position. The ontire equipment is switched off if the push-button labelled "L. T. OFF" is pressed. If the button "LeT. oNs" is pressed when the equipment is running the transmitter beccues inoperative but the rest of the equipment remains operative. The transmitter can be brought on again after the usual delay by again pressing the "H.T. ON" button. A toggle switch on the switch unit labelled "MOTCR" is used to switch the scanner motor on and off. A similer switch adjacent to the soanner switch labelled "LINE OF FLICHT" is used to switch the heading marker on and off.

Introduction

43. In Chapter 1 we discussed H.2.S. from the standpoint of the nature of the system and the facilities it provides operatiomally. We mast now consider tho equipment more specifically from the radar mechanic's point of view and note the basic functional sub-divisions of the installation and the way these functicnal sub-divisions are distributed in units.

Functicnal Sub-Divisions

44. From a functional point of view we may regard the H. 2.5 . installation as comprising the following:-

Power supplies and safety oircuits.
H.2.S. timebase circuits for both the P.P.I. and height tube presentations.
(c) A tranamitter chain which will includo:-
(i) Synchronising and timing oircuits.
(ii) Circuits to develop the modulating pulse.
(iii) The transmitter proper.
(iv) The output system.

A receiter chain which will comprise
(i) A TR owitoh.
(ii) Crystal mizeor.
(ili) Klystrom local oscillator.
(iv) Head amplifier.
(v) I.F. strip.
(vi) Second detector.
(vii) Output stage.
(viii) Suppression cirouit.
(o) Marizer circuits whioh will camprise
(i) Heading or track maxiker aircuits, and their autcmatic and mamal controlling stages.
(ii) Height marker oircuits.
(iii) Range maricer circuits.
(f) Bright-up, mizing, output and display circuits.

8 The rollastabilisation circuits for the soanner.
(h) Fiahpond.
(i) Lnoero.
45. With the exception of Iucero and Fishpond these functional sequences are not arranged in units but have aub-divisions and controls scattered in different units. This arises partiy frcon the necessity of having auch contrals as will be required by the H.2.S. oporator at his table, while at the same time arranging a suitable weight distribution of units in the airoraft. The subudivision of the H.2.S. installation into units is, therefore, quite different Ircm its partition into functional sequencos. Since the radar meohanic must work with units, although he must think in terms of functional sub-divisions scattered throughout those mits, it is proposed to state at this point what units are used and then to proceed in the following chapters to study the funotional sequences and the distribution of their subsections in these unita. How these maits are linked up in the airoraft installations is show in the cabling diagrams, fig.13, Mark IIC, and fig. 14, Mark IIIA.

46．The Mark IIC installation，ARI．5590，comprises the following iteas：－

Item	Type	Ref．No．	Width	Length	Depth	Weight
Transmitter Unit（ $T^{2} \mathrm{R}$ ）	TR． 3191	1008／1003	9．5＊	15．75 ${ }^{\text {¹ }}$	7＂	42 lbs 。
	or TR3159	$10 \mathrm{DB} / 867$	9.5 ＂	15．75＊	7＂	42 lbs ．
Modulistor Power Unit	Type 64	7003／ 956	8．5＇	$21^{\prime \prime}$	12＂	47 lbs.
	Type 280 or	f0xs／ 747	$11.5^{\prime \prime}$	$18^{\prime \prime}$	12 ＂	301 bs.
Waveform Generator	Type 224	10k8／ 512	11．5 ${ }^{\text {n }}$	18＂	$12^{\prime \prime}$	30 Lbs ．
	Type 34	10v8／6056	11．5＂	$10^{\prime \prime}$	$8^{\prime \prime}$	15 lbs ．
			11.	10＂	$8{ }^{\prime \prime}$	
Switoh Unit	Type 207B	H0E3／6115	12＂	$6^{\prime \prime}$	$8^{\prime \prime}$	14 lbs ．
peceiver－timing Unit	R． 3515	$10 \mathrm{DE} / 6060$	11．5＂	48＂	$8{ }^{\prime \prime}$	30 Ibs．
	or R． 3516	HODB／6061	11．5＂	$18^{\prime \prime}$	8＇	30 17bs．
Indicator	Type 184	1008／6035	8．5＂	48＂	12＂${ }^{\prime \prime}$	44 lbs ．
	or 184A	1008／6181	8．5 $5^{\text {n }}$	$18^{\prime \prime}$	12＂	44 178．
Tuning Unit	Type 207	$10 \mathrm{DB} / 6499$	8． $5^{\prime \prime}$	$9{ }^{\text {＂}}$	$5.75{ }^{\prime \prime}$	13 lbs ．
Heading Control Unit	Type 446	10rib／6053	$6.5{ }^{\text {n }}$	$3.5{ }^{\text {m }}$	$5 \cdot 5^{\prime \prime}$	4 1bs．
Junction Hox	Type 247	10MB／6499	$45^{\prime \prime}$	5.5 ＂	$3.5{ }^{\prime \prime}$	2 lbs.
Scanner	Type 63	10AB／6343				60 lbs ．
Amplifier Unit（ruy）	Type A3562	HCOB／6041	8.5 8.5 8.5	$12.5{ }^{\prime \prime}$ 12.5	$7.5{ }^{\prime \prime}$	21.5 lbs．
Amplifier Unit（Gramco）	or A3562A	1008／6078	8．5＂	12．5＂	$7.5^{\prime \prime}$	21.5 lbs. 2 ibs．
```Track Marker Contral Unit Scamer Speed n Unit```	Type 468 Type 477	$105 B / 6091$ $10 L B / 6102$	$4 \times 75$	$43^{1 \prime}$	2.510	2 lbs
Gyro Control Unit	Type 453	HOB／6074	$6.135$	7.175		4 Ibs． 202
Motor Generator	Type 74	Hoks／954）				
Junction Box	Type 246	10AB／2497	6.51	61	2＂	118 libs．
Stabilised Platform Main Junction Box	Type 26 Type 83	（10AB／6522） $10 A B / 2212$				
Wain Junction Box	Type 83 Type 182	$10 A B / 2212$ $10 Q B / 6031$	8．5＂${ }^{\text {8／}}$	18＂	8＊	26 Ibs．
Plsuema Indicator	or 182A	10082／6037	$8.5{ }^{\prime \prime}$	$18^{\prime \prime}$	$8{ }^{\prime \prime}$	26 1bs．
Fishpond Junction Box	Type 222	$10 a 8 / 6331$	7．1＂	3.7 ＂	$2.75{ }^{\text {n }}$	3 Ibs 。
Fishpond Bright up WFG	Type 43	tovz／6155	$8.5{ }^{\prime \prime}$	$6.5^{\prime \prime}$	4－75＊	
Lncero Mark II	TR． 3160	10DB／ 868	8．5＊	18＂	$8{ }^{\prime \prime}$	36 1bs．
Lucero Contral Unit	Dype 2224	1 OLB／6010	6．13＂	$6.02{ }^{\text {n }}$	3.2 n	1交 lbs．
Lucero Aerials	type 184	10DB／2171				
Adaptor Prame for	Lancaster	$10 A B / 6524$				$14 \mathrm{ibs}$.
Stab．Platform	Halifax	10AB／6523				14 1bs．
Scamer Heater						
Connector Set	Lancaster）	No ref．no．				
	Halifax	for cam－				
Voltage Control Panel Alternator	Type 5 Type 0	plete set 50／363 50／349	$8.5{ }^{\prime \prime}$	10．75＂	7．875 ${ }^{\text {¹ }}$	$\begin{aligned} & 18 \text { lbs。 } \\ & 38 \text { 1bs. } \end{aligned}$

47. The Mark IIIA installation, ARI.5583, comprises the following items:-

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Item \& Type \& Rof.No. \& Width \& Length \& Depth \& Weight <br>
\hline \multirow[t]{3}{*}{Transmitter unit (HP box)} \& TR. 35558 \& $10 \mathrm{DB} / 6916$ \& 10" \& $11.875^{\prime \prime}$ \& 210 \& 83 Ibs. <br>
\hline \& or 35550 \& $10 \mathrm{DB} / 6917$ \& $10^{\prime \prime}$ \& 11.875 ${ }^{\prime \prime}$ \& 27" \& 83 Ibs. <br>
\hline \& or 3523A \& 4 ODE/6647 \& $10^{\prime \prime}$ \& 11.875 ${ }^{\text {n }}$ \& 27" \& 52.5 lbs* <br>
\hline Modulator \& type 64 \& 100B/ 956 \& 8.5" \& $21^{\prime \prime}$ \& $12^{\prime \prime}$ \& $47 \mathrm{Ibs}$. <br>
\hline Power Unit \& Type 280 \& $1 C^{\text {CNB/ }} 747$ \& $11.5^{\prime \prime}$ \& $18^{\prime \prime}$ \& 12" \& 30 1bs. <br>
\hline \& or 224 \& 10KB/ 512 \& 11.5" \& 18" \& 12" \& $30 \mathrm{2bs}$. <br>
\hline \multirow[t]{2}{*}{Waveform Generator} \& Type 34 \& 10VE/6056 \& $11.5^{\prime \prime}$ \& $10^{\prime \prime}$ \& $8^{\prime \prime}$ \& 15 Ibs . <br>
\hline \& or 35 \& $10 \mathrm{VB} / 6057$ \& 11.5" \& 10" \& 8' \& 15 2bs. <br>
\hline Switch Unit \& Type 207B \& $10 \mathrm{BB} / 6115$ \& 12" \& $6{ }^{\prime \prime}$ \& 8' \& 14 Ibs. <br>
\hline \multirow[t]{2}{*}{Receiver-timing Unit} \& Type R.3553 \& $10 \mathrm{mb} / 6305$ \& $11.5^{\prime \prime}$ \& $18^{\prime \prime}$ \& $8{ }^{\circ}$ \& 32 178. <br>
\hline \& Or R.3554 \& $10 \mathrm{DB} / 6306$ \& 11.5" \& $18^{\prime \prime}$ \& 8" \& 32 1bs. <br>
\hline Indicator \& Type 184 \& $1098 / 6035$ \& 8.5 ${ }^{\prime \prime}$ \& $18^{\prime \prime}$ \& $12^{\prime \prime}$ \& 14.1 bs . <br>
\hline \& Or 1841 \& 1098/6181 \& 8.5 " \& 18* \& 12* \& 44.188. <br>
\hline \multirow[t]{2}{*}{Tuning Unit} \& Trye 444 \& $10 \mathrm{~W} / 6051$ \& $6.5{ }^{\prime \prime}$ \& 3.5" \& 67 \& 3 Ibs . <br>
\hline \& or 499 \& 10LB/ 6185 \& \& \& \& <br>
\hline Heading Contral Unit \& Type 446 \& 1018/6053 \& $6.5^{\prime \prime}$ \& 3. $5^{\prime \prime}$ \& $5.5^{\prime \prime}$ \& 4 1bs. <br>
\hline Junction Box \& Type 247 \& $10 \mathrm{AB} / 6499$ \& $45^{\prime \prime}$ \& 5.5' \& 3.5 " \& $2 \mathrm{lbs}$. <br>
\hline $$
\begin{aligned}
& \text { Scanner } \\
& \text { Amplifier Unit (BPU) }
\end{aligned}
$$ \& Type
Type A
A \& $$
\begin{aligned}
& 10 A B / 6454 \\
& 100 B / 6041
\end{aligned}
$$ \& \& \& 7.5" \& $$
\left\{\begin{array}{l}
60 \text { Ibs. } \\
21.5 \text { Ibs. }
\end{array}\right.
$$ <br>
\hline $$
\text { Amplifier Unit }\left\{\begin{array}{l}
\text { EPU } \\
\text { Gramco }
\end{array}\right.
$$ \& Type A 3562
or 8.35624 \& $1001 / 6041$
$1003 / 6078$ \& 8.5 ${ }^{\text {8/ }}$ \& $12.5{ }^{\prime \prime}$
$12.5{ }^{\prime \prime}$ \& $7 \cdot 5^{\prime \prime}$
7.5 \& $$
\begin{aligned}
& 21.5 \\
& 21.5 \mathrm{lbs} .
\end{aligned}
$$ <br>
\hline Track Marker Contral Unit \& Type 468 \& 1 वub/6091 \& $6.5{ }^{\text {¹ }}$ \& 3. ${ }^{\prime \prime}$ \& $6{ }^{\prime \prime}$ \& 2 lbs. <br>
\hline Scamer Speed \& Type 477 \& 10LE/6102 \& $4.75^{\prime \prime}$
6.135 \& $$
\begin{aligned}
& 4.3^{\prime \prime} \\
& 7.175^{n}
\end{aligned}
$$ \& $2.5{ }^{\text {n }}$ \& $$
\begin{aligned}
& 1 \mathrm{lb} \\
& 4 \mathrm{lb} 208 .
\end{aligned}
$$ <br>
\hline Gyro Control Unit \& Type 453 \& folls/6074 \& 6.135
di. \& 7-175" \& \& 4 13. 208. <br>
\hline Motor Generator \& Type 74 \& 10KS/ 954 \& \& \& 2 \& <br>
\hline Junction BCx \& Type 246 \& 10AB/2497 \& $6.5^{\prime \prime}$ \& 6" \& - \& 118 Ibs. <br>
\hline Stabilised Platform \& Type 26 \& 1018/6522 \& \& \& ) \& <br>
\hline Main Junction Box \& Type 231 \& j0ab/6370 \& $9.5{ }^{\prime \prime}$ \& $5.75{ }^{\prime \prime}$ \& $3.25{ }^{\prime \prime}$ \& $$
4075 \text { 1bs }
$$ <br>
\hline Fishpond Indicator \& Type 182 \& 1008 /6031 \& 8.5
8.5
8' \& $$
18^{n}
$$ \& $$
8^{\prime \prime}
$$ \& 26 1bs. <br>
\hline \& or 182A \& 1008/6037 \& $8.5{ }^{\prime \prime}$ \& 18" ${ }^{\prime \prime}$ \& \& $$
26 \text { 1bs. }
$$ <br>
\hline Fishpond Junction Box Fishocond Bright JI WiG \& $\begin{array}{rr}\text { Type } & 222 \\ \text { Type } & 43\end{array}$ \& H0AB/6331
hovis 6155 \& 7.1
$8.5^{\prime \prime}$ \& 3.7
6.5

6.9 \& $2.75{ }^{\prime \prime}$
$4.75^{\text {² }}$ \& 3 Ibs. <br>

\hline Fishpand Bright Dp WiG Lucero Mark II \& $$
\left\lvert\, \begin{array}{ll}
\text { Type } & 43 \\
\text { TR. } 3160
\end{array}\right.
$$ \& novi/6155 HODB/ 868 \& 8.5

8.5

8. \& 6.5 $8^{\prime \prime}$ \& $$
\begin{aligned}
& 4,75^{\text {m}} \\
& 8^{n}
\end{aligned}
$$ \& 36 1bs. <br>

\hline Incero Contral Unit \& Type 222A \& H0513/6010 \& $6.13{ }^{\prime \prime}$ \& $6.02^{\prime \prime}$ \& $3.2{ }^{\text {n }}$ \& 1.5 Ibs. <br>
\hline Incero Aerials \& Type 184 \& H0BB/2171 \& \& \& \& <br>

\hline Adaptor frame for Stab. Platform \& | Iancaster |
| :--- |
| Halifex | \& \[

$$
\begin{aligned}
& 10 A B / 6524 \\
& 1 O A B / 6523
\end{aligned}
$$

\] \& \& \& \& \[

$$
\begin{aligned}
& 14 \text { Ibs. } \\
& 14 \text { Ibs. }
\end{aligned}
$$
\] <br>

\hline Scanner Heater Comnector Set \& \& No ref.no \& \& \& \& <br>
\hline \& Halifax \& for cam- \& \& \& \& <br>

\hline Voltage Contral Panel Alternator \& $$
\text { Type } 5
$$ \& \[

$$
\begin{array}{ll}
563 \\
50 / 349
\end{array}
$$

\] \& $8.5{ }^{\text {n }}$ \& $40.75^{\prime \prime}$ \& 7.875" \& \[

$$
\begin{aligned}
& 18 \text { 1bs. } \\
& 38 \text { lhs. }
\end{aligned}
$$
\] <br>

\hline
\end{tabular}

## Component Mumbering

48. To reduco oonfusion which might arise from identical numbering of components in different units, a system of blocks of mumbers was allotted to the respeotive units in the first H.2.S. installation. As a comsequence of the introduction of units or subbunits ocmmon to other equipments there is now scme auplication of ccaponont numbering. The present namenclature is as follows:-

Unit	Number Block
1 - 99	$\mathrm{RX} x_{0}$ section of $\mathrm{F} x_{0}$ - To undt.
100-149	34. IIC Tranemitter Unit.
$150-199$	Switch Unit.
$200-299$	Modulator 65 (obsolete).
$300-399$	Power Unit
400-499	Timing Soction of Px. - T. unit.
$500-599$	Waveform Generator.
$650-749$	Indicator 162 (obsoleto).
$800-899$	Indicator 184A (Grameo).
$1-99$	Indicator 184 (R.P.J.).
- 99	Indicator 182 or 182A (Fishpana).
$1-99$ $1-99$	Modulator 64 (Universol Unit).
$1-99$	T. R. 3160 (Imcero Mark II) in each sub-unit.

## Location of Units in the Airaraft

49. (a) The following units will be located at the navigator's table:-
(i) Indicator 184 or 184 A.
(ii) Turing Unit 207 (Mark IIC) or 4444 (Mark IIIA with TR. 3555 series) or 499 (Mark IIIA with TR. 3523 series).
(iii) Heading Contral Unit Type 446.
(iv) Switah Unit 2078.
(v) Lucero Contral Onit Dype 222A.
( N ) Scamer Speed Control Unit Type 477.
(b) The Fishpond indicator ( End its bright-up generator, WpG Type 43) will be at the wireless operator's position.
(c) The folloring will form part of the stabilised scanner installation at or noar the perapex cupala:-
(i) Adaptor frame for the stabilised platform.
(ii) Platform and scenner.
(iii) Transmitter unit.
(iv) Amplifier unit A. 3562.
(v) Gyro Contral Unit Type 453 .
(vi) Motor generator Type 74.
(Vit) Junction bores 246 and 247 .
(d) The track marker ocntrol unit type 468 is mounted at the Mark 14 bcmbsight position.
(e) The remaining units are mainly located in suitable racks amidships. The details will vary scmewhat from one aircraft to another and may be modified as reguired to provide for other radar instailations.

T. R. 3555 - PANEL VIEW



## POWER UNIT TYPE 280



WAVEFORM GENERATOR TYPE 34





STABILISED PLATFORM



GYRO UNIT TYPE 453
FIG. 26


CONTROL PANEL TYPE 5


## 6でol」

## gLOZ 3dKL LINN HOLIMS



## Outline

50. The H.2.S. power supplies are derived frem the aircraft 24V. D.C. supply and a Type $U 1200$ watt engine-driven alterrator. The $24 \nabla$. D.C. supply is taken to a control unit, Dype 5, which regulates the D.C. field current to the alternator so as to maintain the A.C. output voltage from the alternator at a constant value of 80V. in spite of fluctuations in engine speed. For engine speeds varying between 1500 and 2600 r.p.m., the maxdmum variation of the cutput voltage fram the alternator ahould not exceed $\pm 2 \mathrm{~V}$.
51. The 24V. D.C. supply and the 80V. A.C. supply are taken to the H. 2.S. power unit from which they are distributed to the other units via a junotion box. The Mark IIC installation uses a Junction box type 83 and the Mark IIIA installation a junction box type 231. The 24 V . aupply is used for operating varicus motors and relays. Details of the distribution channel are shown in figs. 210 and 211. The 80V. supply is distributed for the development of heater supplies, biasses and H.T. supplies.
52. The power unit proper develops the following supplies:-
(a) +300v. from a 5046 full-wave rectifier stage.
(b) + and -1800 V . from two VJ. 133, full-wave reotifier atages balanced about earth potential.
(c) -100 V . developed from a brisige metal rectifier.
(d) The -1800 V . supply is tapped down on a bleeder to provide a -1000 V . output.

The +3007 . and $-1000 \%$. supplies are distributed via the main junction boxThe -18000 . supply is transferred directly via a uniplug cable. The +1800 V . aupply is not used.
53. The modulator type 64 develops the following supplies:-
(a) - LKV. firan a single-ended voltage doubler stage. This supply is used to develop the modulating pulse for the transmitter. An cutput is also tapped off which is used to provide the bleeder supply for the indicator 184 and Fishpond P.P.I. tubes.
(b) $-100 \%$. bias supply from a metal rectifier used only inside the modulator.
54. The tuning unit 207 used in the Marix IIC installation contains a +300 V . 504G dable half-wave rectifier which is used to supply the H.T. for the indicator 184.
55. The receiver-timing unit used in the Mark IIIA installation contains an independent power pack which includes:-
(a) A +300 V . 544 G full-wave rectifier stage which supplies the H.T. for the receiver-timing unit, the H.T. and sareen valtage for the I.F. strip, and the variable screen valtage for the second head amplifier stage.
(b) A $\mathbf{- 1 0 0 V}$. neon-stabilised metal rectifier for bias voltages.
56. The indioator 184 has a $-300 \%$. metal rectifier supply used as a negative zail for the timebase valves. This aupply is also used for biasses in the TR. 3523.
57. The IR. 3555 series transmitter unit has a. -2KV. VU. 111 half-wave rectifier pack with special stabilisation arrangements. This pack provides the supply voltages for the CV. 129 kljstron $100 a l$ oscillator and the CV. 114 soft rhmbatron TR. switoh.
58. The TR. 3523 transmitter unit has a power pack which develops the following aupplies:-
(a) A $5046+300 V$. full-wave pack with a CV. 173 stabiliser stage awinging positive from a lovel of around 300V. fixed hy the 300 V . pack in the power unit.
(b) A VU. 111 - 1000V. halfowave rectifier pack with a tapped down -3007. neon-atabilised output. The -1000V. supply is used for the CV. 221 soft rhumbatron TR. switch.

Both the +300 and -3007. supplies are used an the 723A looal oscillators.
59. Fishpond has a 5Y4G 400 V . full-wave rectifier supply for the Fishpond valves.
60. The Amplifier Unit, Type A. 3562 , used in the roll stabilised scammer has its own power pack which develops the following outputs:-
(a) A $504 G$ full-wave rectifier develops a +300 V . supply for the amplifler valves.
(b) A selenium rectifier develops a 60V. supply fed to the slabwound potentiometer in the Gyro contral unit.
61. The Lucero Mark II unit contains its own power unit which develops:-
(a) -2.5KV. VJ. 120 half-wave rectifier gupply for tile Lucaro transmitter.
(b) 250V. 524s full-wave rectifier supply for the othor Incoaro stages.
62. The W.F.G. 34 has a VR. 116 voltage stabiliser which drops the 300 V . supply to provide a stabilised 200 V . supply for the master miltivibrator stages, first three aawtooth stages and the tranamitter-timing valve.
63. The receiver-timing unit has a VR. 65 voltage stabiliser stage which provides a stabilised H.T. supply of around 290V. for the height and range marker timing and flip-flop stages and for the heading or traok maricer circuits.
64. The power unit has a safety circuit stage which operates rolays to switch the equipment off if an overload develops.
65. The modulator type 64 also has a safety circuit valve atage which operates relays to switoh off the Modnlator HT if an overload is applied to the modulator $=4 K V$ pack.

## The Power Unit Supplies

## General

66. (a) The power unit oircuit is shown in fig. 28.
(b) The distribution channels are shown in the intercomection diagrams, figs. 210 and 211.

The + and $=18007$. Pack
67. The essentials of this stage are shown in fig. 30. 80v. A.C. is fed to the primary of the high voltage transformer, T. 302 . V. 300 and V. 301 togetiner form a full-wave rectifier which develops an output of +1800 V . smoothed by CK. 300 and C. 300 and applied to the yellow W uniplug. V. 302 and V. 303 form a second full-wave rectifier which develops a $-1800 \%$. output.

This cutput is smoothed by CK. 301 and C. 301 and applied to the green $W$ uniplug
68. Across the -1800 V . output is a bleeder network consisting of R.333, R. 338, R. 339 and R. 334 . About -1000V. is tapped off at the junction of Re 338 and R. 339 and taken to pin 14 of the 18-way plug.

The + 3007. Pack
69. The full-wave ractifier, V. 304 is fed from the tapped secondary of T.303. The 300V. output, smoothed by CK. 302 and C. 302, is applied to pin 16 of the 18 may plug.

## The -100v. Supply

70. The metal rectifiers, $14 R .302$ and $M R .303$, are also fed from the tapped secondary of T. 303. The -100 V . output, smoothed by CK. 303 and C.303, is applied to pin 13 of the 18 -way plug.

Summary
71. Power Unit inputs are:-
(a) 24\%. D.C. at red 2C supplied from aircraft supply via the V.C.P. Type 5.
(b) 80 V . A.C. at the black 2 C from the engine-driven 1.2 KW . alternator, regulated by the V.C.P. Type 5.
72. Power Unit outputs are:-
(a) -1800v. at grean 1 uniplug.
(b) $+1800 \%$ at yollow $W$ uniplug (not used).
(c) -10007 at pin 14 of the 18 -way plug.
(d) +300 V . at pin 16 of the 18 way plug.
(e) -100 V . at pin 13 of the 18 -way plug.
(f) -24V. D.C. (switched) to pin 2 of 18 -way. +24 V. D.C. (unswitched) to pin 3 of 18 -way. -24V. D.C. (unswitched) to pin 2 of 6A. -24 V. D.C. (avitched) to pins $1,3,4,5,6$ of 6A.
(g) 80V. A.C. to pins 6 and 7 (strapped) and to pins 8 and 9 (strapped) on the 18 -way when E relay is energised.

The Power Unit Jack Points
73. On the front panel of the power unit are 4 Jack points for ahecking the $+1800 \mathrm{~V} .,-1800 \mathrm{~V} .,+300 \mathrm{~V}$. and -100 V . supplies. A fifth jack marked "300V. Feed" gives an indication of the total ourrent arain from the $300 V$. rectifier. $\Delta n y$ meter having suitable current ranges may be usied for checking. The meter poaitive should go to the jack tip and the negative to the ring for all the jack points. Normal readings of the valtage jack points are as follow: -

Jack	Normal Reading		Tolerance
	FU 280	FU 224.	
+1800 V.	1 ma	$1.8 \mathrm{ma}$.	$\pm 10 \%$
-1800 V.	$1 \mathrm{ma}$.	$1.8 \mathrm{ma}$.	$\pm 10 \%$
-100 V.	1 ma	$1.0 \mathrm{ma}$.	$\pm 10 \%$
+300 V.	1 ma.	$0.3 \mathrm{ma}$.	$\pm 10 \%$

74. The 300V. fead jack point reading with the H.2.S. Mark II installation used to be 1.2 - 1.6 ma. In the Mark IIC and Mark IIIA installations the value is of the order of 0.8 - 1.0 ma. as the Mark IITA installation has an addod 300V. pack for the receiver while the Mark IIC installation uses an added -300V. pack for the indicator 184.

The Power Unit Relays and the Switching ON Sequence
75. The alternator switch at the navigator's table is in series with the
C.D. 0896 L

equivalent circuit of high voltage rectifier in power unit


FIG.3I


FIG. 32


## C.D.O896 L


V.C.P. switch which will normally be left on. When the alternator switch is closed the field supply to the alternator is completed and the 80V. aupply will be developed and fed to the power unit. Closing the alternator switch aiso completes the 24 V . D.C. supply to the power unit. The 80 V . input is rectified by MR. 300 and energised rolay A. Contacts 5 and 6 close and complete the $+24 V$. D.C. line to the switch unit via $18 / 3$ and $6 \mathrm{c} / 6$.
76. Pressing the "L.T. ON" button on the switch unit completes the D.G. circuit through the green lamp (SL.150) and 6A/2 to energise B relay whase contacts make the following connecticns:-
(a) B7/8 complete the $24 V$. circuit via $6 A / 3$ and the green switch lamp so that $B$ relay remains energised when the pressure is released on the "IL. T. ON" button.
(b) B5/6 connect 80v. A.C. to the Junction box via pins 6 and 7 of the 18 -way. Piris 8 and 9 of the 18 -way were connected to the other side of the 8OV. A.C. when the alternator was switched on.
(c) B9/10 connect the -24 V . D.C. to the function box via $18 / 2$ to complete the circuit for the blower motor in the tranamitter unit. -24 V . D.C. is also cormected to relay C, rolays in the RX, WFG, Fishpond and Lucero, and to the scanner motor and repeater motors.
(d) B11/12 camplete the 80V. A.C. supply to the primary of T. 303. V. 304 comes into ogeration to develop the +300 V . output. The metal reotifiers MR. 302, MR. 303 now develop the -100 V . bias supply. The delay valve, $\nabla .305$, sterts to pass current since its filament is aupplied from a winding on T. 303.
77. With relay $C$ unenergised, the contacts $C 5 / 6$ in the grid circuit are closed. Eefore V. 305 commences to pass current its electrodes are at the following potentials:-


Within a few seconds of pressing the "L.T. ON" button V. 305 starts to pass current and there is a fall in the anode potential. Inis fall is fed back to the grid via C. 304 and contacts $1 / 2$ of relay E . This tendency of the fall in anode potential to carry the grid down retards the build-up of anode current sufficiently to make a delay of 30-40 seconds before sufficient anode current flows to energise relay D (RY. 303).
78. When relay $D$ is energised the following circuit changes occur:-
(a) Contact 6 breaks from contact 5 and closes to contact 7 to remove the shunting resistor R. 323 and short out R. 322. 7his inoreases the current through the relay and so bolas the relay woll energised.
(b) Contacts D1/2 connect relay $C$ to the "H.T. ON" button on the awitch unit via pin 4 of the 6A W-plug.
(c) Contacts $D 3 / 4$, which were closed when the relay was unenergised, now open and break the -24V. supply to rolay E. This has no effect at this stage since relay $E$ was not energised.
79. If the "H.T. ON" button is now pressed on the switch unit, the 24 V . D.C. circuit to relay $C$ is completed via the amber pilot lamp (SL. 151) and 6A/4. The following circuit changes occur with the energising of relay C:-
(a) Contacts C3/4 close to complete the 24V. supply through the solenoid via the amber pilot lamp and $6 \mathrm{~A} / 5$ when pressure is released from the "H.T. ON" button.

## C.D.0896 L



FIG. 35


FIG. 36

(b) $C 1 / 2$ close and complete the -24 V . line to relay F and contact 3 of reloy $D$.
(c) $07 / 8$ close and camplete the $80 V$. A.C. supply to the primaries of T. 301 and T. 302. This makes the सTT circuits operative and the +1800 V . -1800 V . and -1000 V . supplies are developed.
(d) $c 5 / 6$ open and remove the positive bias from the grid of the delay valve, V. 305, which is now left with a negative bias of about -20V. on its grid. The anode aurrent commences to fall but because of the anode-grid feedback this fall is gracual. About 30 seconds elapses before the fall in anode current is sufficient to de-onergise relay $D$.
80. When relay $D$ becones de-energised the following actions take place:-
(a) D1/2 open and the D.C. circuit between rolay $C$ and $6 A / 4$ is broken. This has no effoct since relay $C$ is energised through $6 \mathrm{~A} / 5$.
(b) Contact 6 of relpy $D$ breake fram 7 and closes to 5 to put Ro 322 back in V. 305 anode load and shunt R. 323 across D relay. V. 305 is now back in the condition which existed when its filament was first beated with the exception that the grid now has a negative instead of a positive bias.
(c) D3/4 closes now and completes the 24 V supply through the salonotid of relay $\boldsymbol{B}$ which now becomes energised.
81. The energising of E relay brings about the following changes:-
(a) E9/10 close to connect +300 V . to the modulator via 18/17. This is the +300 V . swi tched supply to the modulator.
(b) E1/2 break and $\mathrm{E5} / 6$ close to discomect the feedback condenser, C. 304 fram V. 305 grid. This leaves V. 305 out off on the gria.
(c) $57 / 8$ close and complete the 24 V supply through the red pilot lamp (SL.152) and pin 6A/6.

Since the enorgising of rolay E puts the 300V. switched aupply into the modulator which enables the trigger gap, spark gap and modulating line to go into operation, the coming up of the red light means that the whole set should be operational. In order to have the tranemitter come on with the red light the switch on the panel of the modulator 64 mast be down. This switah completes the 800. A.C. supply to the primary of the transformer which supplies the - 4 KV. pack in the modulator. This pack, in turn, charges the artificial line which is used to develop tho modulating pulse that operatos the magnetron transmitting valve.
82. When relay $C$ is energised contacts $C 1 / 2$ connect -24 V . to ane side of relay F. The other side of the winding is conneoted via 6A/1 to the scannor motor switch on the switch unit. The other side of this switch is comected to +24 V . When the switch is closed any time after the amber light canes on relay $F$ is energised. Contacts $1 / 2$ and $5 / 6$ then close to supply 24 V . to the scarmer motor via the 6 B plug.

## Sumary of the Relay Sequence

83. (a) A is energised when the 80V. supply is switched on.
(b) B is energised when the "L.T. ON" button is pressed and the green light cames an.
(c) D is energised apter a dolay of soms 30 seconds while the current in the delay valve, V. 305 , is building up.
(d) C is energised when the "H.T. ON" button is pressed and the amber light cames on.
(e) $D$ is de-energised scme 30 seconds after $C$ is energised, the dolay being due to the slow docas of the current in V. 305.
(f) $E$ is energised immediately after $D$ is de-energised. This coupletes the 300V. supply to the trigger valve in the modulator and brings on the red light.
(g) When C is onergised -24V. is connected to one side of the solenoid of P. When the scanner motor switoh on the switah unit is closed +24V. is comected to the other side of the solenoid and the relay is energised to complete the supply to the scamer motor.

Ry 300


Ry 301


Ry 302



Ry 3.4


LAYOUT OF POWER UNIT RELAY CONTACTS

Ry305


FIG. 38


ANY OVERLOAO ON T3O3 ( $300 V$
INOUCEO N T3OO LOVERLOAO OLTA
TRANSFORMERI WH'CH WHEN RECTIFIED
IS APPLIED TO THE'A''RELAY IN OPPOSITE
KLARITY TO THAT FROM MR 300. THIS
WILL DE- ENERGISE IA RELAY CUTTING
FIG. 39

THE OVERLOAD TRANSFORMER (T300)
84. Pressing the "L.T. OFF" buttan on the switch unit breaks the D.C. supply to relays $B$ and $C$ to cut off the entire power unit and hence all other units. All relays roturn to their initial condition except relay A which remains energised as long as the $80 V$. A.C. supply is switched on.
85. If the "L.T. ON" button is pressed when the equipment is rurming the H.T. and K.H.T. supplies are switched off but the L.T. is left on to keep the filaments warm. The actual sequence of events is as follows:-
(a) The +24 V . D.C. connection to $6 \mathrm{~A} / 5$ is broken thus breaking the supply through the solenoid of $C$ relay to de-energise the relay.
(b) $67 / 8$ quen to out off the 80 V . A.C. supply to the primaries of T. 302 and T. 303. There is then no E.H.T. supply.
(c) C1/2 open to break the 24V. D.C. supply to relays $E$ and $F$.
(d) Relay F is de-energised and breaks the supply to the soanner motor.
(e) When relay F is do-energised E9/10 open to cut off the +300 V . supply to $18 / 17$ and the modulator. This means there is no HoT. to the trigger valve and no further operation of the transmitter.
(f) E5/6 open to disconnect R. 335 fram C. 304 E1/2 close to cormect C. 304 between anode and grid of the delay valve, V.305. C5/6 close bocause $C$ relay is do-energised. V. 305 conducts at once since C. 304 is completely discharged when it is re-connected between anode and grid by E1/2. The grid is therefore pulled very positive and $E$ relay is energised at once. The relays aro now in the same condition as they were after the initial deley while the current in V. 305 built up sufficiently to energise relay D. The "H.T. ON" button can now be pressed to initiate the sequence outilined in paras. 79-81.

The Power Unit Safety Circuits
86. If the 807. A.C. supply fails relay $A$ is de-energised sinoe this relay is energised by rectified A.C. Contacts A5/6 then open to break the $24 V$. D.C. supply for the other relegs. The whole equipment is then switohed off. A short circuit on the 80V. line will reduce the valtage across MR. 300 and so will cause the same result.
87. If the $24 V$. D.C. supply fails relays $B, C, D, E$ and $F$ are de-energised and the equipnent is switched off. A short circuit on the 24 V . supply will burn the contacts $5 / 6$ on $A$ reley or reduce the energising current through relays $B, C, D, E$ and $F$ to awitch the equipment off.
88. T. 300, the overload transformer, provides protection against overloads on the rectifiers. If sone fault develops which reaults an an excessive load on any of the rectifiers, and hence, on the 80V. A.C. supply, the current through the primary of T. 300 is increased. This increases the output from the metal rectifier, MR. 301, which is applied to the winding of reley A in opposite polarity to the output from MR.300. During an overload the increased output from MR. 301 cancels out the output fram MR. 300 to a sufficient extent to demenergise relay A. The 24V. supply is therefore cut-off and the equipment is switahed off.

## The Modrlator Power Pack

## 89. Circuit details appear in figs. 55, 212 and 213.

90. 80 V . A.C. is fod through an interference suppressor to the primary of T. 2 which supplies the heater voltage for the VU. 133 voltage doubler rectiflers, V.1, V.2. T. 1 primary is also fed with 80V. A.C. The secandary provides heater supplies for the other valves in the modulator. A separate winding
C.D.0896L
provides the imput to a halp-wave metal rectifier whiah dovelops a -100 V . bias supply for the CV. 73 trigger valve. This $-100 \%$ aupply is aleo tapped dome on a bleeder to secure the bias for the modulator safety valve, V.4.
91. T. 3 is the S.H.T. transformer. The 8OV. A.C. supply to the primary is switched $m$ by the modulator $C$ relay in the anode of the trigger valve. when the power unit $s$ relay is energised +300 V . is supplied via $18 / 17$ to the CV. 73 trigger vilve anode. The flow of current results in the energising of the modulator $C$ relay and $C / 1$ closes. If the awitch, S.1, on the modniator panol is down the $80 \%$. A.C. input to T. 3 primary is ocmpleted when the red light comes up on the switch unit. The voltege doubler circuit develops a -4 KV . output which is fed to the blue w-maplug on the modulator panol. From this piug a cable is taken to the indicator 184 to supply the P.P.I. bleeder. A parallel plug is available on the indicator to tap off an output for the Fishpond P.P.I. bleeder. Within the modulator the $-4 K V$. supply is comeoted through the 641. ahoke, Lo1, to the artificial line. It is thlis aikv. pack whioh supplies the energy to the moculating palse which is used to operate the magnotrom transmitter valve.
92. Since $C$ relay mast be onorgised in the modulator befors the $80 V$. expliy to the $-4 K V$. pack can be completed, and C relay current is the current passed by the trigger valve, $V .7$, it follows that $V .7$ mast be operating if the $-4 \pi V$. pack is to operate. It bas been pointed out that V. 7 grid is biassed bacic $\mathrm{h}_{\mathrm{J}}$ the -100 V . supply. It is necessary, therefore, that V. 7 grid be pulsed if C. rolay is to be energised. This pulsing is provided by a positive-going 20 microsecond pulse. The pulse is obtained by phase reversing the negativegoing 20 mierosecond motulator priming pulse developed by the VI.60A V.6. V. 5 and V. 6 actuaily form a miltivibrator that develops the pulsing vaveform for V. 7 grid. This multivibrator must then be operating in order that the -4KV. pack may operate.

## The Modulator Safety Girouitit

93. Circuit details are shom in fig. 62.

94- Vo4 provides a safety circuit aimilar in principle to the-delay valve, V. 305 , in the power unit. $V .4$ is brought into operation whenever the mochiator overload relay, A relay, is energieed as the result of an overload on the -4KV. pack. The full sequonce is discussed in Chaptor 5, paras. $256-257$.
95. The safety valve will also come into operation if a fault in the TRe 3555 oasses the thermil relay to ciose. The sequence of ovents is discussed in Chapter 5, paras. 285-286.

The Tming Unit 207 and Indicator 184 Power Supplies
96. These supplies are aisalssed in Chapter 4, paras. 203-207.

## The Mark IIIA Roceiver Power Pack

97. This porer peck is disassed in Chapter 6, paras. $417-418$.

## The TR 3555 Sories Pover Pack

98. The Iocal oncillator poner pack is dealt with in Chape6, parase 389-398.

The TR. 3523 Pomer Pack
99. Full aetails of this pack are not yot available.

The Tianpond Power Pack
100. Datails of the Fishpand power pack are given in Chape10, paras.711-712.

Amplifior Unit, A. 3562 , Porer Pade
101. This pack is discussed in Chspter 9, peras. 583-585.

Luooro Powtr Pade
102. Detaile of the power pack are given in Chapter 14, peras. 1298-1301.
103. This stage is discussed in Chapter 4, para. 188.

Receivar-timing Unit Voltage Stabiliser
104. Details of this stage are discussed in Chapter 7, para. 487.

> Voltage Control Panels

Types in Use in Bamber Command
105. (a) V.C.P. Type $3(50 / 1269)$ Pitted with $\mathrm{R}_{1}$ regulator (50/1304)
(b) V.C.P. Type $3(50 / 1269)$ fitted with $E_{1}$ regulator (50/i304T).

The 50/1304T regulator is a Iater model than the 50/1304 and differs caly in being fitted with a 50 chm trinming resistance.

The $50 / 3649$ differs from the earlier $50 / 364$ in having a 50 obm trimuing resistance fitted. The type $\mathrm{F}_{3}$ reguiator is the one originally fitted to the V.C.P. Type 5.
107. V.C.P. Type 5 (50/363) fitted with EJ regulator (50/2544).

The ED regulator should be fitted to all V.C.P.'s Type 5 used in H.2.S. installations. It is a modified type $\mathrm{F}_{3}$ and is being used peniing full proauction of the Type $\mathrm{E}_{5}$.
108. V.C.P. Type 5 ( $50 / 363$ ) fitted with $\mathrm{E}_{5}$ regulator (50/2274).

The $\mathrm{E}_{5}$ regulator is to eupersede the EU when avuilable.
The Type EXI and 55 Regulators
109. The circuit is ahown in fig. 40.
110. The type EX and E5 regulators are improved versions of the type E3. embodying a stabilising circuit. The E5 employs a visual presetting device not incorporated in the EV. The stabilising effect is obtained by comnecting a. high resistance winding across the alternator field. This winding is enclosed with the main operating winding and a series winding. tho interaction of the high resiatance shant winding with the main operating winding prevents hunting of the regulator over reasonably wide limita of compressicn. The low resistance serias winding is in serios with the pile element. Its function is to compensate for the ampere turns of the ahunt winding.
111. Six terminals are provided instead of the normal four. In the wo this is achieved by adding a texminal blook on the end of the regulator. In the R5 a new 6-way terminal strip is used.
142. A 100 chm trimming resistance is fitted to facilitate final adjustment of the regulator. This permits variations in the output valtage of about + or $=10 \mathrm{~V}$.
113. These regulatora can work as anti-hunting devices only if the feedback between the main coil and the shunt stabilising coil is always negative. The current flowing through the main coil is rixed in diraotion by the sense of the rectified output fram the A.C. applied to the metal rectifier. The direction of the current through the ahunt winding is fixed by the palarity of the D.C. input to the V.C.P. If this is changed over the sense of the feodback is reversed frcm negative to positive. The result will be persistent

$$
\text { C.D. } 0896 \mathrm{~L}
$$

oscillation of the carbon pile. The manafacturer's wiring of the V.C.P. and regulators is such that Pin 1 should always be comected to the negative side and Pin 2 to the positive side of the D.C. supply. Pin 1 should be connocted to the GREKN terminal of the regulator.
114. To eliminate difficulty due to positive feedback and resultant carbon pile oscillation it is essential that all aircraft, bench and P.E. aet installations be kept with Pin 1 negative.

## Voltage Measurements

115. Measurement of the A.C. voltage output in a way that will give an indication of the D.C. output that $w i l l$ be obtained from the various power packs in radar equipments has always been a difficult problem. Thermal meters give the R.MoS. voltage value regardiess of the waveshape, but the same R.M.S. value for different waveshapes will not necessamily result in the same D.C. output from the same power pack. A further difficulty of thermal meters is their tendency to become inaccurate. They beccme a reasonably safe measuring instrument only if regularly checked against a thermal meter which is well taken care of and kept as a substandard meter.
116. The rectifier type meter will show a reading that depends on the waveshape of the altermator cutput and the reotifier in the meter. The waveshape of the alternator cutput will depend on the alternator and the nature of the load. A load containing a reactive component will result in a different waveshape than a purely resistive load. furthermore, the waveshape may be modified by the V.C.P. condenser. The D.C. valtage output fram power packs will only be the same for a given rectifler meter reading an different waveshape alternator outputs if the power pack rectifiers are affected in the same way as the meter rectifier by the change in waveshape.
117. The following table has been compiled from average readings as a guide and must not be assumed to hold invariably for a given combination of units and meter.

V.C.P.	Alternator	Thermal Meter	AVO
Type 3	R	80	83.5
Type 5	U	80	77

This refors to the AVO Model $D, 75 V$. range $\times 2$.

## Minor Voltage Ad, fustments

118. Before making any valtage adjustments, allow time for any moisture on the pile to be dried out by leaving the regulator in operation.
119. After approximately 120 hours use the voltage may rise slightly due to pile wear or shrinkage.
120. For minor voltage adjustments use trimmers whenever these are fitted. Where no trinmer is fitted the core adjustment mast be used.
121. If after making trimmer adjustments the regulation is poor, the compression and core adjustment will have to be set up as aitined below.

Setting Up a Regulator (All Types Eroept E5)
122. (a) Comoct the V.C.P. to its dumy load to avoid damage to
(b) Set the oore adjustment flush with the face plate. A fine adjustment is obtained by lining up the punch marks of the core and the face plate.

(c) Set the trimmer in a midway position.
(d) Slack off the compression adjustment.
(e) Comect a voltmeter across the A.C. output. With the campression screw completely slackened off the alternator field cirouit is broken. A small A.C. valtage of about 10V. will be observed due to the residual magnetism of the field.
(f) If the compression adjustant is now advanced, the voltage should vary as shown in fig.40a. The valtage riaes rapidy to a peak in the region of 110 V . Further rotation will result in a fall to a level where oscillation occurs, then a slow fall to scrne minimus. The oscillation will not appear when the EI regulator is used due to the negative feedback arrangements. The minimum will vary with different sottings of the core and should be in the region of 75V. Further rotation from the minimum point will result in a fairly rapia rise. The compression adjustment should be set on the slowiy falling side about 5V. from the minimum. If oscillation occurs during adjustment it should not be allowed to contimse if damage to the carbon discs is to be avoided.


## Fise40(a) - Clookvise Moversent of Compression Adfustment

(g) Check the A.C. voltage and make any required fine adjustment on the trinmer or an the core adjustment if no trimmer is fitted. If large core adfustments are necessary the position of the compression adjustment must be recheoked as cutlined above.

## Regulation Cheok

123. Switch off the V.C.P. and alternator. Restart and oheck regulation under varying speeds between 3000 and 6000 r.p.m. Vaxy the load by means of drmuy or equipment loads. Voltage variations should not exceed + or - $3 V$.

## Setting-Up the Type $B 5$ Regulator

124. The voltage output of these regulators is adjusted by the trimmer. If a correct voltage camnot be thus obtained it mast be assumed that the regulator is out of adjustment. The following adjustanents should be made using a visual presetting devico.
125. A Epring-loaded movable arm, situated on the flange but insulated frcm it, makes contact with a flat disc fixed to the armature spring assembly.

It is arranged that the movable arm breaks contact with the disc at the point of correct compression. To obtain a visual indication a low voltage lamp and leads are used. One lead is connected to the terminal of the movable arm on the flange and the other to a convenient point on the frame. If the lamp lights the carbon pile is under-compressed. The locking screw should be slackened off and the compression screw turned till the light is just extinguished. The campression is then back to the mamufacturer's setting. The locking screw is then tightened.
126. Should the regulator still prove unstable it mast be returned to the M.U. for repair. The core must not be touched.
127. These regulators are carefully adjusted by the mamufacturer and sealed. It should be possible to compensate for all normal wear due to "pile shrinkage" by use of the trimmer.
128. The current through the main operating coil should be about 140 ma.

## V.C.P. Changeover Panel in Lancaster Airoraft

129. Several cases of V.C.P. damage have occurred through the use of incorrect changeover procedure in the air. The navigator's alternator field switah must be in the "OFTp" position before moving any of the plugs on the panel. If this is not done, it may result in having the field of ane alternator connected to ore V.C.P. and the armature of the same alternator connected to the other V.C.P. There is then no regulation of the altemator output. The resulting voltage increase may destroy the rectifiar and coils in the second V.C.P.

## The Alternator Type $R$

130. (a) At speeds between 3000 and 6000 rop.m, this alternator, when used in conjunction with a V.C.P. Type 3, should give a full output of 6.25 amperes at 80 V . R.M.S. to a non-inductive load.
(b) The frequency range over these speeds is $1300-2000 \mathrm{c} / \mathrm{s}$.
(c) The normal field current should not exceed 2 auperes at 28 V .

## Maintenance

131. (a) At intervals of 120 flying hours the cuter bearing caps should be remored and the felt lubrication pads soaked in oil ( $34 \mathrm{~A} / 60$ ). A little oil should be applied to the bearing itself.
(b) The bearing caps are secured by 6 small hexagonal nuts at the driving ena and 3 similar mats at the outer end.

## Alternator Type U

132. As for the type $R$, except that a current of 12 amps. can be supplied.

Modification to V.C.P. Type 5
133. When the radar load is removed from the V.C.P., there is a tendency for the A.C. voltage to rise. To counteract this the carbon pile goes out to its extrene limita. This may result in damage to the carbon pile. To reduce the risk of such damage a 31 ohm rosistor is fitted in parallel with the alternator field.


1340 In Chapter 1 it was pointed out that two displays were used in H.2.S. proper. The first one discussed was the height tube display which employs a vertical scan ruming from the botton to the top with a dofleotion type of presentation. This aisplay is used for measurement of height by setting the height marker to the beginning of the ground echo, for homing on beacons, and for setting-up purposes. It is also very useful as a monitor tube for fault finaing.
135. It was also pointed out in Chapter 1 that the main display uses a P.P.I. presentation to show target indications in the form of a relief map where strong returns from rugged coastilines and heavily buill-up areas show as bright patches, while water shows up nearly black against the background Iuminosity prodnced by the general ground returns. The following features of this displey were pointed cuts-
(a) In order that the centre of the display may represent the point on the earth's surface directiy below the airorart for all airoraft heights, the timobase circuit mast be triggered by the height maricer which must have been set to the beginning of the ground echo. The scan will thon atart at the tube centre when the ground echo reaches the aircraft. The timebase must be aynchronised wi th the transmitter and therefore gives one swoep for every transmission, i.e. 670 sweeps per second or sweeps at 1500 miorosecand intervals.
(c) The timebase must be non-linear in order to obtain a distortion-free diaplay, i.e. a display in which target indications appear at distances from the centre which are proportional to thoir ground range.
(d) In order that this freedam from diatortion may be obtained at all airaraft heights it is necescary to make a correotion for height. This is done by means of a diatortion corrector control on the indicator panel.
(e) The radial timebase sweops move around the face of the tube in aynchronism with the rotation of the soanner. If the scanner rotates at 1 r.p.s. the timebase makes 670 radial sweeps per revolution. These sweeps must then occur at intervals of 360 or slightis more than $\frac{1}{2}$ degree. Fror 670
faster scamer apeeds the interval will be greater which may tend to give the display a pleated offeot.
(1) A scan-marker switoh on the switch unit can be set to give three different velocity scans and, honoe, different ground range coverages. The available ground range coverages are approximately 10,20 and 40 statute miles.
(g) 貌setting switches on the indioator and heading control unit to "Course" and using a setting knob, the brightened-up timebase sweaps occurring at the instant the scamer goes through the dead-ahead position can be made to appear at any bearing on the diaplay. Hy aetting the bearing ining to the aircraft oaurse and adjusting the setting knob until the brightened-up timebase sweops (or heading marker) coincide with the bearing pointer, it is arranged that the bearing along which any aweop takes place is the bearing of the direotion in wich the scamer is then looking, rafezred to the top of the display as North. Targot indications will then appear at the correct bearing an the display and the H.2.S. map is correctly set.
(h) If the heading control unit awitoh is set to "Auto" the DoR. compass is linked into the instaliation to keep the map correctly set as the aircraft alters course.

## C.D.O896 L


136. (a) Fig. 42 gives the major sub-sections in the development of the timebases in block schematic form.
(b) Figs. 41 and 46 give the major circuit details.
(c) Figs. 43, 49, 50 and 54 display the primary waveforms.
(d) Fig. 44 shows the principle of the magsilip.
(e) Fig. 45 shows the type of non-linear timebase velocities used for the P.P.I. timebase.

## The Master Miultivibrator

137. $V 500$ and $\nabla 501$ in the waveform generator form a cathode-coupled master multivibrator free-ruming at approximately $670 \mathrm{o} / \mathrm{s}$. When the scan-maricor switch on the switch unit is operated one of the results is a switching of circuit components in this stage. When this switch is set for scans of 10 , 20 and 40 miles, respectively, the miltivibrator delivers a square wave at the anode of V5O1 with proportions as follows:-

Soan	Negative	Positive	Period
10 mile	$240 \mu \mathrm{~s}$	$1250 \mu \mathrm{~s}$	$1500 \mu \mathrm{us}$
20 mile	$720 \mu \mathrm{~s}$	$780 \mu \mathrm{~s}$	$1500 \mu \mathrm{~s}$
40 mile	$1200 / 2 \mathrm{~s}$	$300 \mu \mathrm{~s}$	$1500 \mu \mathrm{~s}$

An antiphase square wave appears at the anode of V500.

## The switohing Valve, V502

138. The master square wave from V501 anode is applied to V502 diode anodes and serves to cat the triode seotion of $V 502$ an and off. During the negative part of the master square wave input the triode conducts and the anode of V502 tends to fall expomentially. During the positive part of the master square wave the triode part of $V 502$ is cut-off and the anode tends to rise exponentially.

## The Lineariser, V503

139. If V503 is removed a large amplitude exponential rise and fall can be observed at V502 anode but when V503 is inserted only a mall waveform is observed.
140. Cutputs from V502 anode are applied to both grid and cathode of V503. The cathode input serves as a form of negative feedback. Additional negativo foedback is applied to the grid of $V 503$ from its anode. These negative feedback arrangements are employed to produce a linear sawtooth at V503 anode.

The Bass Boost Valve, $\mathrm{V5O}_{4}$
141. The output inpedance of V503 is so high that the sawtooth camot be applied to a low inpedence cable frcm V 503 anode. $\sqrt{5} \mathrm{O}_{4}$ is used as a negative feedback amplifier to provide a low inpedance output that can be matched to a low impedance cable. To allow for the fact that low frequency losses are experienced in subsequent stages a discriminating negative feedback is employed. This is achieved by feeding back from anode to grid through two . 0015 condensers in parallel. The sawtooth with a recurrence frequency of $670 \mathrm{c} / \mathrm{s}$. can be regarded as being aynthesised from a $670 \mathrm{c} / \mathrm{s}$. sinewave with harmonics of suitable amplitudes and phases. A capacity of . 003 microfarads will offer low impedance to the high frequency composents but high impedance to the low frequency components. The impedance at $1000 \mathrm{c} / \mathrm{s}$. is greater than 50K. Hence, the negative feedback in the low frequency range of the sartooth components is less than at the higher frequencies. $\sqrt{5 O 4} w i l l$ therefore tend

## C.D.0896 L

```
DEVELOPMENT OF HEICHT TUGE TIME BASE
```


to give greater amplification to the low-frequency components than to the high frequency components. The subsequent low frequency losses are thus provided for before they oocur. The stage comprising $\mathrm{V} 5 \mathrm{O}_{4}$ and the transformer T501 therefore performs two functions:-
(a) Anticipates low frequency losses by providing excess low frequency amplification or "bass boast".
(b) Serves as an impedance transformer by means of which a push-prull sawtcoth of about 50 valts amplitude from a centre-tapped secomdery can be applied to a low impedance ( 20 okn ) cable for transfer to the magslip in the scanner.

## Synahronisation

142. The transformer T501 also provides another sawtooth output, which swings between about $\mathbf{- 1 5 0} 7$. and earth, fram another secondary winding earthed at the high end. This output is used to develop a bright-up square wave and the transmitter-timing pulae. The locking of the bright-up waveform and aignals to the timebase is accomplishod by using the master multivibrator to develop both the sawtooth which produces the timebase, and also the sawtooth which is used in the development of the bright-up and transmitter-timing waveforms. The transmitter-timing pulse is also used to develop the waveform which is used to trigger the height and range markers so these also are locked to the timebase.

## The Height Tube Timebase

143. The timebase sawtooth cutput fram T501 divides at the waveform generator panel. One output is taken fram a twomin plug to the Indicator 184 where it is applied to the primary of a sawtooth transformer. This transformer amplifies the sawtooth about six times to give approximately 300 volts push-pull across the $Y$-plates of the height tube for the linear height tube time-base.
144. As the transaitter fires at approcimately the centre of the sawtooth the firet half of the height tube scan is of no particular interest. A vertical shift control is provided by means of which the useful part of the scan can be made to commence near the bottcm of the height tube. As was pointed out earlier, the I.F. amplifier is suppressed for a 20 microsecond period, terminating approximately at the end of the main transmitter pulse. This 20 microsecond quiescent period shows as a noise-free break on the height tube display. The position on the scan of this suppression break oan be varied over a limited range by means of a screv-driver preset on the front of the receiver-timing unit. If this suppression contral is correctly adjusted the height tube display will show just the "tail" of the transmitter pulse as a mall blip to the right at the end of the suppression break. This "tail" indicatea the approximate position of the time rero on the sawitooth, i.e. when the transmitter fires. When the height tube vertical shift control is adjusted to bring the suppression hreak as noarly as possible to the bottom of the tube the maxdmun useful $I E$; orerage will be provided. The approximate coverages available for the different settings of the scan-marker awitoh are as follows:-

Position	Duration of Saurtooth	Range Coverage Statute Miles
10/10	240 microseconds	8 milem (ground)
10/20	720	30 miles (slant)
30/20	$720$	30 miles slant
100/20	$720 \text { n }$	30 miles slant
100/40	1200	50 miles (slant
100/40-80	1200 "	40-90 miles (slant)



## CoDo089G

145. When the scan-marker switch is in the $100 / 40-80$ position the transmitter fires approximately 500 microseconds ahead of the centre of the samtooth. The suppression break will then be off the tube ard the first signals that can be displayed will be from about 40 miles away. This position of the scon-marker switch is used when Lucero is being used with haming beacons.

## The Kagslip

146. A second sawtooth output in parallel with that taken to the indicator for the height tube is taken to the scamer via Pins 2 and 6 on the $6 A$ plug. This sawtooth is applied to the rotor of magslip or rotary transformer. The magslip has two stators in which the rotor induces savitooth valtages which are $90^{\circ}$ out of phase and whose amplitudes are always auch that the reaultant of these two components, when they are added vectorially, will be a sawtooth of the same amplitude as that applied to the rotor. When the rotor is making full coupling with Stator 1 it makes zero coupling with the Stator 2 . The output from Stator 1 is then equal to the input valtage and the output from Stator 2 is zero. If the magslip rotor now turns through $90^{\circ}$ the autput fron Stator 1 drops to zero while that from Stator 2 rises to a maximam equal to the input voltage. During the nort quarter turn the output from Stator 2 drops to zero while that fram Stator 1 rises fram zero to a maximul in the sense opposite to that at the commencement of the turn. During the third quarter turn the outpat from Stator 1 falls to zero while that of Stator 2 builas up from zero to a maximum in the reverse sense to that which it had at the ond of the first quarter turn. During the final quarter turn the output from Stator 2 falls to zero again while that of Stator 1 builds up from zero to a maximan in the same sense as when the turn comenced. The magsilp rotor is geared to tho scanner shaft and rotates in synchromism with the scamer at all times. Hence, as the scanner turns, the magslip stators are developing sawtooth outputs which fulfil the following canditians:-
(a) Each goes through the following cycle for one turn of the rotor:
(i) Zero to maximm in one direction.
(ii) Maximum to zero.
(iii) zero to maximm in reverse direction.
(iv) Madimum to zero.
(b) The two outputs are always $90^{\circ}$ out of phase.
(c) The maximum amplitudes are equal to the rotor input valtage.
(d) The vector sum of the cutputs is almays equal to the rotor input voltage.
147. The sawtooth outputs fram the magslip stators are taken from the scamer direct to the Indicator 184 if Fishpond is not used, and to the Junction Box Type 222 if pishpond is included in the installation. In the latter case parallel outpats are taken fram the Junction Box Type 222 to the Fishpond Indicator and the H.2.S. indicator. It is the use of this sawtooth output to develop the timebases for both the H.2.S. P.P.I. display and the Pishpond P.P.I. display that serves to synchronise these displays.

## Timebase Working Strokes

148. In para. 137 the durations of the positive and negative-going phases of the master square wave were listed. In para. 138 it was noted that the master square wave was used to cut $V 502$ triode on and off to produce a falling axponential at V502 anode during the negative phase of the master square wave and a rising expanential during the poaitive phase. In para. 140 it was pointed out that $V 503$ served to linearise these exponentials and develop the actual sawtooth. The working stroke of the sawtooth, i.e. the part used for the developenent of timebases, is the part corresponaing to the negetive part of the master square wave. The stroke occurring during the positive part of the master square wave produces the flyback in all the timebases. From the data in para. 138 it follows then that the available working strobe durations are 240, 720 and 1200 microseconds. The reason for these time values arises out of the design of the indicators used in earlier Larks of H.2.S. In these earlier
indicators 10,30 and 50 mile linear scans were used which oarried the cathode ray tube eleotron beam across a tube diameter on the working stroke of the sawtooth. The first half of this stroke was blacked out to leave only the second holf of the sweep effective, i.e. an effective radial timebase was employed. The echo times for 10, 30 and 50 miles would be 107, 321 and 535 mioroseconds respectively. It is apparent then that working strokes of 240, 720 and 1200 microseconds duration would be, when halved, of ample curaticm to carry the spot from centre to circumference in these echo times without employing the peaks of the sawtooth voltages which tend to be rounded off.

## Shaping of the P.P.I. Thmobase

14.9. The varying amplitude linear sawtooth valtages from the magsilip stators are used to develop the non-linear radial scans used on the H.2.S. P.P.I. The 10, 20 and 40 mile scans are developed from the 240,720 and 1200 microseconds working strokes, recpectively. Before proceeding to study how these linear sawtooth voltages are used to develop nom-linear timebase voltages it may be profitable to consider what type of waveform is required. We know that the scans are to meet the following conditions:-
(a) Commence when the height marker forms which invoives same fom of triggering by the height maricer.
(b) Have such velocities that target indications will appear at distances from the centre proportional to their ground range for all aircraft heights.
(c) Provide ground range coverage of approximately 10, 20 and 40 statute miles.

Suppose we consider an aircraft at a height of 4 miles using an indicator that provides the desired type of scans on a tube of $2 \frac{1}{2} "$ radius. Curves 1, 2 and 3 in Fig. 45 show the type of velooity curves that would be required. The data used for constructing these ourves is shown in the accompanying table. Column 1 lists target ground ranges from $0-40 \mathrm{miles} ; ~ c o l u m n s$ 2, 3, and 4 list the distance from the centre at whioh indications from targets at these ranges should appear to make distance from centre proportional to ground range. Colum 5 gives the slant range corresponding to a height of 4 miles ond the ground range in column 1. Since the speed of radio waves is 10.7 microseconds per mile return we can determine the corresponaing echo times by maltiplying the slant range by 10.7. These echo times, representing the time interval between the instant the transmitter fires and the instant the echo returns to the aircraft, are ahown in colum 6. Since the electron beam must not leave the tube centre until the height marker foms, 1.0. when the ground echo returns, the time of travel of the cathode ray tube spot is found by deducting from the echo time the echo time for the ground echo. For a height of 4 miles the echo time for the ground echo is $4 \times 10.7=$ 42.8 microseconds. Deducting this value from each figure in calumn 6 wo obtain the figures in column 7. If we now plot the values in colnmns 2, 3 and 4 as ordinates, against those in column 7 as abscisaae, we obtain curves 1, 2 and 3. These curves show how the cathode ray tube spot must move on each of the three scans, to be at such a distance from the centre when any echo arrives to brighten up the sweep, that the indication is at the desired distance from the centre. The steepness of the curves at the beginning of the sweop indicate that the spot must move very rapidly at first. The spot then gradually slows down to a nearly constant speed aince the curves become nearly straight lines, indicating an almost constant velocity. The development of waveforms of this ahape is achieved by amplifying the linear sawtooth cutputs from the magslip atators by means of transformers, then differentiating these amplified sawtooth waveforms to produce square waves which are applied to two charging C.R. combinations. The timebase developments are indicated in the block schematic, Fig. 42. The actual components can be seen in the circuit diagrem Fig.46. The differentiation of the sawtooth fram the secondary is done by C4, R4, and C3, R3 performs the aame function for the sawtooth on the secondary of T3. The square wave appearing at the top of R4 serves as a charging roltage for the network formed by C10, C12, C13, VRH, VR5, R4. Similariy, the square wave appearing at the top of $R 3$ serves as a charging voltage for the network formed by Ci7, C18, C19, VR6, VR7, R3.

Mistuct



FIG. 46

## Differentiation of a Saxtooth

150. The development of a square wave by differentiation of a sawtooth may seem puzzling to the Radar hechanic who is accustoned to the differentiation of rectangular waveforms to produce pips. The subject may perhaps be most simply approached by recalling the nature of both square and sawtooth weveforms. Lny such waveform may be synthesised from a fundemental sinewave of frequency equal to the p.r.f. of the waveform, plus harmonics of this fundamental sinewave of correct amplitudes and relative phases. The steeper the edges of a waveform, the greater the proportion of high frequency components. A square wave, therefore, has a higher proportion of high frequency components than a sawtooth of the same p.r.f. When any waveform is applied to a differentiating circuit consisting of a gmall condenser and large resistor, the resistor offers equal impedance to ell frequencies but the condenser offers an impedance which decreases as frequency rises. The voltage developed across the resistor will then be a higher proportion of the applied voltage for the high frequencies than for the low frequencies. The voltage appearing across the resistor (and anything else in series with it) will thus tend to be squered (fig.48). The amplitude will be reduced, due to the loss of the greater amplitude low frequency camponents across the small condenser. We thus obtain from the sawtooth input to C3 a squared wave whose voltage appears across R3 and the C. R. network in series with it. The same result is produced across $R_{4}$ and its series C.R. network by the sawtooth applied to $\mathrm{C}_{4}$.

## Action of the Distortion Corrector Contral

151. Curve 4 has been included to show how a change in aircraft height influences the shape of the timebase waveform that is required to maintain a display with constant grourd range coverage, i.e. which keeps the target indications of a given ground range at the same distance from the tube centre as slant range changes. Column 8 tabulates slant ranges for an airoraft height of 3 miles and column 9 tabulates the corresponding echo times. For a height of 3 miles the ground echo time is $3 \times 10.7$ or 32.1 microsecands. The times of travel for the cathode ray tube spot are found by deducting 32.1 microseconds fran the echo times. These values are shown in column to. Plotting the values in column 2 against those in column 10, gives curve 4 . It can be seen from the curve and fran the figures in column 40, that the spot has langer time intervals in which to travel the same distance than when the height is 4 miles. Henoe, as the aircraf't height decreases the velocity must be decreased. These changes are achieved by varying the setting of the potenticmeters in the two charging C.R's by means of the distortion corrector control. The pointer of this contral tracks across a scale which is calibrated in intervals of 5,000 feet of height. ihen set to the aircraft height the potentiometers in the charging C. R's are set to the value which will give a charging waveform of the required shape. The potentiameters VR4, VR5, VR6, VR7 are ganged and move together when the distortion corrector contral is operated.

## Developing the P.P.I. Timebase

152. The method or employing the charging curves developed when the square waves obtained by differentiating the linear sawtooth waveforms are used as charging voltages on our two charging C.R. networks, is implied in the block schematic. The details are shown in the circuit diagram Fig. 46 and waveforms in Figs. 50 and 54 The charging waveforms, correctly shaped by the design of the charging C.R. network, are applied to the grids of V6 and V8. V6 and V7 form a cathode-ccupled paraphase amplifier which develops amplified antiphase versions of the charging waveform applied to V6 grid, it the anodes of V6 and V7. These antiphase outputs provide the pusti-pull timebuse waveform applied to the X-plates of the P.P.I. VR8 controls the gain of this stage so serves as an X-amplitude control. $V 8$ and $V 9$ form a similar paraphase amplifier which feeds antiphase waveforms of the requisite shape to the Y-plates and VR14 serves as a Y-amplitude control.
153. Since the outputs of the magslip stators are always $90^{\circ}$ out of phase the charging square weves obtrined by differentiating the sawtooth wave forms are likewise $90^{\circ}$ ait of phase. Hence the charging waveforms on the grids of V6 and v8 are $90^{\circ}$ out of phase. This means that the push-pull voltage applied across the $X-p l a t e s$ is always $90^{\circ}$ out of phase with the voltage simultaneousiy appearing across the $Y$-plates. Suppose that at sane instant the magelip rotor

makes full coupling with the stator that feeds T4. It will then be making zero coupling with the stator that feeds T3. Hence we have the maximum anplitude sawtooth on T4 primary, and hence the maximum charging square wave applied to the charging $C . R$. at V6 grid. We will then have maximm amplitude antiphase waveforms at the anodes of V6 and V7. Since the rotor is now making zero coupling with the stator that feeds $T 3$ the sawtooth applied to $T 3$ primary has zero amplitude. Hence there is no charging square wave to operate on the charging C.R. at V8 grid and no output from the anodes of V8 and V9. The cathode ray spot is then subject only to a timebase voltage across the $X$-plates. Let us assume that the sense of this deflection is such as to cause a horizontal sweep from the centre to the right. During the next quarter turn of the magslip rotor the sawtooth input to T4 drops to zero while the input to T3 rises to a maximum. We will now only have a charging square wave on V8 grid and a deflecting voltage only across the Y-plates. This will be of such a sense as to carry the spot from the tube centre downord. A quarter turn later there will be zero amplitude charging square wave for v8 and a maximum amplitude square wave for $V 6$ but in the reverse sense. The spot will therefore travel horizontally from the centre to the left. At the end of another quarter turn it will be travelling vertically upward from the centre. When the magslip stator is making a partial coupling with both stators there will be charging square waves for both charging C. $\mathrm{R}^{\prime} \mathrm{s}$. These will be $90^{\circ}$ out of phase since the sawtooth voltages from which they are produced are $90^{\circ}$ out of phase. The amplitudes of these square waves are such as to produce charging waveforms on the grids of V6 and V8 whose vector sun is equal to the maximum amplitude appearing at either grid. The vector sum of the outputs from both paraphase amplifiers will therefore always be equal to the maximum amplitude applied across either set of plates. Hence, the amplitude of the radial scan should remain constant as the scanner and magslip turn and cause constantly varying amplitudea across the $X$ and $Y$ plates whose vector sum gives a resultant scan that rotates in synchronism with the scanner. This is not quite true because the $X$ and $Y$ plates have different sensitivities.

## Development of the Different Scans

154. The next point to consider is how altering the setting of the scen-mariker switch, and hence the proportions of the master square wave and sawtcoth output from the magslip stators, serves to develop different velocity timebases on the P.P.I. To deal with this question we must first consider what determines the rate at which the grids of V6 and V8 rise or fall when a charging square wave acts on the charying C.R's. As in a simple C. $\mathrm{R}_{0}$, the charging rate depends on the charging voltage. Hence the greater the charging voltage provided by the charging square wave at the instant the height marker forms, the greater will be the rate at which the grid potential changes due to the charging of the C.R. If the square waves resulting from sawtooth differentiation are examined at the Junction of C3, R3 or C4, R4 for any position of the scamer it will be observed that the square wave amplitude developed by the 240 microsecond sawtooth is greatest, that developed by the 1200 microsecond sawtooth comes next and that from the 720 microsecond sawtooth is smallest. On the face of things this seems rather contradictory to what we might intuitively have expected. We must remember that as the scan-marker awitch setting is varied to produce different scans, relays in the waveform generator switch circuit campanents in the master moltivibrator and switching valve stages. The effect of these changes gives us sawtooth waveforms with different working strokes but constant p.r.f's and nearly constant amplitudes. We may, therefore, regard our sawtooth waveforns as being made up by the synthesis of the same fundamental 670 c/s. sinewave and its harmonics. The differences consist in different amplitude and phase relations between these harmonics. It was pointed out earlier that the steeper the edges of a waveform the greater the proportion of high frequency companents present. The 240 microseoond sawtooth has a working strake of 240 microseconds and the 1200 microsecond sawtooth has a flyback of 300 microseconds . Inese waveforms have, therefore, a higher proportion of high frequency caupanents than the 720 microsecond sawtooth which has a 720 microsecond working stroke and 780 microsecand flyback. Since the condensers $C 3$ and $C_{4}$ cause low frequency losses, the 720 microsecond waveform is affected more than the other two as it has the greatest proportion of low frequency components. Hence, we get the maximum amplitude square wave from

## C. D. 0896L

the 240 microsecond sawtooth which has the lowest proportion of low frequency components and the next greatest amplitude fram the 1200 microsecond sawtooth with the 300 midcrosecond flyback, since it has the next lowest proportion of low frequehcy components.
155. We have accounted for the unexpected relationship between the amplitudes of the charging square waves, but we must still account for the fact that the smaller square wave from the 720 microsecond sawtooth provides a greater charging voltage and develops a higher velocity scan than the greater amplitude square wave from the 1200 microsecond sawtooth. The Radar Mechanic knows that when a waveform is passed through a condenser it centres itself about the D.C. level to which the condenser leak is returned. For 03 and $\mathrm{C}_{4}$ the leaks, R3 and R4, are effectively returned through the clamping diodes to about -100 V . The square waves will then be centred about this level, i.e. the part of the waveform area above this level must be equal to the portion below it. For the naxrow charging square wave developed fram the 240 microsecond sawtooth the major part of the square wave amplitude will be above the -100 v. level so we have a high offective charging voltage, since the charging voltage is fixed by the potential difference between the mean and peak levels. The mean level of the square wave from the 1200 microsecond sawtooth will be well up on the waveform because the charging square wave bas a width of about $4 / 5$ of the waveform. Hence, the actual charging voltage is relatively low, although the square wave amplitude is great. The square wave developed from the $720 \mathrm{micro-}$ second sawtooth is roughly symetric hence its mean level is near the centre and the oharging voltage is raughly equal to half the amplitude. This provides a considerably greater charging voltage than that furnished by the 1200 microsecond sawtcoth.
156. When the scan-marker switch is set to the different scon positions wo then apply such charging voltages to the charging networks that our 240 miorosecond sawtooth develops a nan-linear scan whose velocity is such as to givo approximately 10 miles ground range coverage, the 720 microsecond sawtooth develops a 20 mile coverage, and 1200 microsecond sawtooth develops a 40 mile coverage.

## The Diode Clamping cirouit

157. The next problem we must consider is how it is arranged that the height marker should start the radial sweep of the timebase fram the tube centre. This is acconplished by means of the phantastron stage, V2, and the diode clamping circuits of $\mathrm{V}, \mathrm{V4}$ and V 5 . The common point of the secondaries of T3 and T4 and the common point of the diodes V3a and V3b are tied to a point which is hela at about -100 volts by means of a bleeder network between - 300 volts and earth and decoupled by C11 + C14 . The components in this bleeder are R28 and VR9, VR10 and R25. The anodes of the diodes V3a, V4a and V5a are atrapped, as are the oathodes of V3b, V4b and V5b. The controls, VR2 and VR3, can be used to adjust these strapped lines to approximately -100 volts. Since the grid of VB is tied to the common point of V4a and V4b, and the grid of V6 is tied to the campon point of V5a am V5b, these grids cannot shift from the -100 rolt level as diode conduction will occur in one diode section if the grids try to rise, and in the other section if the grids try to fall. Hence the charging square waves applied to the C.R's on the grids of V6 and V8 will not cause any movement of these grids while the diodes are able to conduct. We say, therefore, that the diodes are clamping the grids.

## The Phantastron

158. $V 2$ is a phantastron stage. A phantestron is essentially a one-valve flip-flop which develops antiphase square waves at the screen and cathode. In its stable state the cathode current raises the cathode potential sufficientis high to cut off the anode current by means of suppressor bias since the suppressor is returned to earth through the transformer, T2. All the cathode current is then passing to the screen which is at its minimam potentiol to the cathode is at its maximum potential. The diode Vi limits the potential to which the anode can rise to the value at the Junction of R64 and R65. When V2 is in this atable state, the strapped diodes anodes and cathodes ahould both be at about -100 volts. If the height marker (amplified by $T 2$ to about 20 volts) is now applied to the suppressor, it over-rides the suppressor bias sufficiently to cause a sharp flow of current to the anodo. The screen


potential then rises sharply and carries up the strapped diode cathodes. At the same time the fall at the anode is transmitted via C. 5 to the grid and the cathode curcent diminishes. The cathode potential now falls sufficientiy to remove the suppressor bias after the height marker ends. This sharp fall at the cathode, which is coincident with the rise at the screen, pulls down the strapped diode cathodes. The six diode sections are thus cut off simultaneously when the height marker forms. Since the grids of $V 6$ and V8 are now unclampea, the charging square waves are now able to act on the charging C. R's and develop waveforms on the grids of $\overline{V 6}$ and $V 8$ of the required non-linear type. These, as discusaed previously, are amplidied by the paraphase amplifiers to develop the push-pull valtages applied to the deflecting plates which produce the radial timebase swoeps. The radial timebase therefore coumences its sweep when the height marker forms. If the height marker has previcusly been set to the beginning of the ground echo the sweep begins when the ground echo reaches the aircraft. The contre of the diaplay now represents the point on the earth's surface directly beneath the airoraft.
159. The height marker which is used totrigger the phantagtron is developed in the receiver-timing unit. It is brought out from the receivermtiming unit at the white Fyo plug. If Lncero is not included in the H.2.S. installation a. Pye cable takes the height marker directiy from the white Pye plug on the receiver-timing unit to the yellow Pye plug at the indicator. If Iacero is used ane cable goes from the white Pye plug an the recoiver-timing unit to the white Fye plug on Luoero. A seacnd cable from the yellow Fye plug on Lucero to the yellow Pye plug on the indicator then completes the channel.
160. The grid of V2 is returned through R5 + R6 to the functicn of R64 + R65. When $V 2$ is in its stable state the grid will rise until its potential is Just above that of the anthode. Grid current will then flow until the voltage drop developed across R5 + R6 holds the grid just slightiy above the cathode. When the arrival of the height marker on V2 suppressar awitches part of the screen current to the anode, the fall at the anode carries the grid down until an oqutlibrivm point is reached vhore a further fall at the grid reaults in a reduction of anode ourrent which tends to make the anode rise. The reasom why the grid can fall considerably and the anode current increase siruilanecusly, is the fact that the reduction of the cathode current hy a falling gria potential drops the cathode potential and so removes the suppressor bias. This causes the anode current to increase at the expense of the soreen current. Hence, elthough the oathode current has dropped the anode ourrent has increased. When the equilibrium point is reached, electrons leak away from the lower plate of C5 through $\mathrm{F} 5+\mathrm{R} 6$ thus coussing the grid potential to rise. The oathode current therefore rises and the cathode follows up with the grid. The anode current then tends to rise and cause a further flow of eleotrans to the top plate of C5. Since this flow is slower than the leak-awray from the lower plate of $C 5$ the grid and cathode potentials rise slowly in accordance with the not rate of discharge of $C 5$ through $\mathrm{R} 5+\mathrm{R} 6$. The anodo meaminile contimaes to fall because of the slow rise in anode current as the grid potential rises.
161. This stage continues until the cathode potential has risen aufficientiy to again bring suppressor bias into operaticn and cause a reduction of anode current. This reduction causes the anode to rise and carry the grid and cathode up together to increase the auppreasor bias still furthere the cyole is cumalative so the anode current is quickily out off by suppressor bias; the cathode and grid rise to their stable atate levels, and the screen falls to its stable state level. The diodos are now again conducting so the grids of V6 and V8 are quickly returned to their clamped level. The paraphase amplifiers are now passing a steady current since the grida are stationary, and the anode potentials are therefore stationary. Since the anodes of the paraphase amplifiers are directly coupled to the P.P.I. deflecting plates the oathode ray tube spot will return to a position determined by the static potenthals at the amplifier anodas. By suitably adjusting the grid potentials of $\nabla 7$ and 79 by means of the controls VR9 and VR10, these anode potentials can be adjusted to centre the syot, i.e. to have the radial scans start at the tube centre. VRQ is therefore the $X$-shift and VRIO the $I$-shift.

## C. D. 0896L

162. The grids of V6 and V8 are unclamped for the period that V2 passes anode arrent, i.e. until the leak-away at V2 grid has increased the cathode current sufficiently to bring suppressor bias into operation again. This period is determined by the C. R. of C5 R5 and lasts about 1000 microsecands, allowing ample time for the campletion of even the slowest scan since the height marker por.f. is the same as that of the master multivibrator it occurs at 1500 miorosecond intervals. As the grids of v6 and V8 are unalamped for 1000 microseconds they must be clamped for a 500 microsecond period before the height marker rorms.

## Effocts of VR2 and VR3

163. So far the only mention made of the controls VR2 and VR3 has been to state that they can be used to set the D.C. Levels at which the strapped diode anode and cathode lines sit to about -100 volts. From Fig. 46 it can be seen that we have a bleeder network between +300 volts and -300 volts formed by VR15, R8, R9, R16, R17, VR3. Altering VR3 will then vary the total resistance in the bleeder and hence the bleeder carrent. This change in bleeder current will cause a variation in the D.C. potential at the junction of $R 9$ and R16, i.e. the potential to which the strapped diode cathodes are tied. At the same time there will be a variation in the D.C. potential applied to V2 screen. VR2 appears in a bleeder network between 0300 v . and earth, made up of R12, R27, R14, R15, VR2, R10, R13. Altering VR2 alters the equivalent resistance and hence the bleeder current. Hence, by varying VR2 the D.C. potentiel to which the strapped diode anodes are returned can be varied. Simultaneously the $D_{0}$ C. potential to which V2 cathode is returned will be altered. Hence VR2 and VR3 appear to do two things simultaneassly:-

Vary the operating conditions of the phontastron, V2.
(b) Vary the potentials to which the strapped diode anode and cathode lines are returned.

Action of V3
164e Let us suppose that the comon point of V3a and V3b is returned to approximately -100 . and the D.C. potential of the strapped cathodes is more negative than this value. V3b will then pass current until the diode current flowing through the bleeder networic raises the potential at the junction of R9 and R17 to Just below -100\%. Similarly, if the potential to which the strapped diode anodes are returned is positive to -100 v . V3a will pass current through the other bleeder until the potential at the junction of R1t and R14 is Just above -100 V . Hence 73 b will pull the diode cathode line to approximately $-100 \%$ provided the D.C. potential to which this line is tied is not too far negative to this'value. Similarly, V3a will pull the diode anode inse to approximately -100 v . provided the D.C. potential to which this line is retumed is not too positive to this value. It follows then that VR3 can have a limited range of settings that return the diode aathode line to a value negative to the decoupled potential at the common point of V3a and VBb without appreciably altering the D.C. Level at the junction of P9 and R16. Similariy, VR2 can have a limited range of settings that return the diode anode line to a value positive to the decoupled potential at the comion point of V3a and V3b without materially altering the D.C. level at the junction of R11 and R14Hence, as long as VR2 and VR3 are within these limits the atrapped diode anode and diode cathode lines will be very nearly at the same potential as the docoupled potential at the junction of V3e and V3b. Since the sections of V4 and V5 are in parallel with those of V3 and have essentially the same impedance, they will pass the same currents. The D.C. potential at the common point of V4a and V4h and the common point of V5a and V5b, will then be esaentially the same as the decoupled potential at the junction of V3a and V3b while the settings of VR2 and VR3 are within this range. Since the grids of V6 and V8 are respectively tied to the common polnts of $V 5 a, \nabla 5 b$ and $V 4 a, V / b$, these grids will then also be at the decoupled potential of the junction of V3a, V3b. V3 thus serves to flx the clamped levels of $V 6$ and $V 8$ grids to a steady value for a limited range of settings of VR2 and VR3. Obviously V3 oannot perform these funotions if VR3 is so set as to return the Btrapped diode aathodes to a potential positive to that at the junction of V3a, V3b or VR2 is so set as to return the strapped diode anodes to a potentlal negative to that at the function of V3A, V3b.

165. It would appear, then, that as long as the settings of VR2 and VR3 remained within the limits discussed, these controls would influence neither the potentials of the strapped diode lines nor the operating conditions of the phantastron. This is not, howover, quite the case. Although V3 tends to roturn the Junctions of R9, R16 and R11, R14 to a constant velue by superimposing a suitable diode current on top of the bleeder currents, the bleeder currents are still different. Hence, altering VR3 alters the bleedor carrent through R9 and hence the potential of V2 soreen. Similarly, altering VR2 alters the bleeder current through P27 and hence $V 2$ cathode potential. These contrals can, therefore, influence V2 operating conditions without altering the potentials to whioh V6 and V8 grids are clamped. VR15 provides an additional means of altering the operating point of V2 screen. For V2 to operate reliably the following comaitions should be fulfilled:-
(a) In the stable state the cathode, anode and screen potentials should be such that the suppressor bias
is able to cut off anode current completely. this condition is not fulfilled changes in suppiy voltages and piak-up valtages may cause increased anode current which will cause the grid to fall and inftiate gpurious triggering-
(b) When triggered, the reduotion in cathode current due to grid fall must drop the cathode potential sufficiently to remove the suppressor bias by the time the trigger waveform is terminated.

Since both these conditions are contingent on suitable operating potentials for the screen and cathode, the permissible settinge of VR2, VR3, and VR15 for phantastron stability mast be such as to fulfil these conditions in addition to those which enable $V 3$ to fuleil its functions.
166. V2 will be giving stable phantastron operation if the screen waveform showe a steady constant amplitude square wave with a p.r.f. of $670 \mathrm{c} / \mathrm{s}$. and positive and negative portioms of approximately 1000 and 500 mioroseocnds duration respectively. This square wave must move along the height tube trace as the height control is cperated and mast disappear if the height maricer triggering is removed from V Euppressor by disconnecting the fellow pye load at the indicator.

## Phantastron Square Wave Amplitude and "Squaring" Effoots

167. VR2 and VR3 have a further offect which we have not so far considered. We have pointed out that V2 develcps at its screen a square wave with a poaitive portion of 1000 microseconds and negative portion of 500 mioroseconds, and an antiphase waveform at the cathode. We have pointed out that these waveforms are used to unclamp the grids of $V 6$ and $V 8$ for 1000 microseconda after the height marker forma, and to clamp them for the 500 microsecond period before the next height marker forms. Obviously, the amplitudes of these waveforms must be in excess of the madimum swings occurring at the grids of $V 6$ and $V 8$ in the scaming perioas. If the amplitades fall below this value either section of $\sqrt{ } 4$ or $V 5$ may be opened before the completion of the scan. This will happen if, say, V5a cathode swings negative with V6 grid until the cathode potential has fallen more than the drop impressed on V5a anode by the negative-going aquare wave. Similariy V5b would open if the anode were carried positive with V6 grid by more than the rise impressed on the strapped cathode line by the positive-going square wave. If the diodes open in this way before the scans are completed, the radial soan will develop a squarish pattern on the P.P.I. This squaring results from the fact that the grid swings at V6 and V8 are a meximum when the scan is nearing the horizontal and vertical positions respectively, since the ome charging square wave is then of large amplitude and the other amall. In the intermeaiate positions the charging aquare waves are more neariy equal and the grid swings are more nearly equal and well below their maximum value. It follows then that the square waves applied to the strapped diode anodes and oathodes must have an ampiltude that does not fall below some minimum value. Since the amplitade of the square wave applied to the strapped diode cathodes
C.D. 0896
is determined by the potential divider formed by R9, R16, R17 and VR3, the setting of VR3 influences this amplitude as well as the operating potential of V2 acreen. Similarly, VR2 influences the amplitude of the square wave applied to the strapped diode cathodes as well as the operating potential of V2 cathode. VR2 and VR3, therefore, have three simultaneous conditions to fulfil:-
(a) May not fix the potentials to which the strapped diodo anodes and cathodes are returned at values repectively negative and positive to the decoupied potential at the V3a, V3b junction in order to permit V3 to clamp the grids of $V 6$ and $V 8$ to this decoupled potentiel.
(b) Kust not drop the amplitudes of the square waves on the strapped diode lines below the amplitude of the maximun swing on the grids of V 6 and V 8 .
(o) kust be so adjusted as to parmit stable phantastron operation.

The inclusion of the control, VR15, makes it possible to obtain condition (c) at the same time and as conditions (a) and (b). It is therefore called the sync. control. VR2 and VR3 may be termed phantastron cathode and screen volts controls, for lack of more expropriate names.
168. "Squaring" may also occur if the timebase amplifiers "bottom" before the scan is completed. That is, while passing minimum current the anode potential drops so nearly to the cathode potential that a further grid rise or cathode fall does not cause a further anode fall.

## Unstable Timebase Centre Effects

169. We may now consider what the effecta will be if conaition (a) in para. 167 is not fulfilled. Suppose the diode cathode line is somewhat positive to the decoupled potential at tho function of V3a, V3b. V3b will then be out off during the 500 microsecond clamping period and the strapped cathode line will not be pulled in to the decoupled potential, but will sit at a higher level. The comon point of the secondsries of T3 and T4 is still returned to the lower decoupled potential. For a positivengoing flyback, 1.e. When the charging aquare weve is negative-going, the grids of 76 and V8 can rise until they reach the level of the strapped diode cathode line, i.e. to a value more positive than the decoupled potential. For a negative-going flyback, i.e. when the charging square wave is negativengoing, the grids of V6 and V8 cen fall until they reach the level of the strapped dicie anodes, which is essentially equal to the decoupled potential. Hence V6 and V8 grids raturn to different D.C. levela when the sense of the charging square wave changes. This meens that the D.C. levels of the paraphase amplifier anodes will shitt. Hence the C.R.T. spot will not cane to rest at the same point on the tube at the end of every flyback. If the scamer is rotating the radial acan will therefore commence at different points and givo the effect of an unstable centre Obvicusiy, the same type of effect will be prodnced if the strapped aiode anodes are returned to a potential below that of the decoupled potential. The amount of instability at the tube centre will dopend on whether or not both the diode lines are simultaneously maladjusted and the amount of maladjustment.

## Sumary of P.P.I. Timebese Contrals

170. From the preceding paragraphs it follows that setting up the P. P.I. timebase contrals invalves the following major pointa:-
(a) Adjustment of VR2, VR3 and VR15 to give the sinniltaneous requirements of:-
(i) phantestron stability.
(ii) atable centre.
(iii) no "squaring".
(b) Adjusting the scaming centre to coincide with the tube centre with the shift controls VR8 and VR11.
(o) Adjuat the gain of the paraphase amplifiers with VR9 and VR1O to obtain a radial scan of constant amplitade which is such as to provide the desired ground range ooverages.

Further details will be discussed when doaling with setting up procedures. It might, however, be noted at this point that there will be some interm action between the shift and amplitude contrals on each paraphase amplifier since both controls the affect overall push-pull output and the D.c. currents passed by the valves.

## Setting app the P.P.I. Map

171. We have traced the development of the timeboses and the part played by the various controls whioh enter into the development of the scarming waverorm. He have not, as jet, cansidered the part played by the setting control on the heading control unit. It was pointed out that this contral can be used to make the heading marker flash up at any desired bearing on the P.P.I. The mochanical details of what goes on when this contral is operated will be discussed in para. 420. The offeot of the contral may profitably be considered now. The bearing at which the radial scan sweeps out from the tube centre at any instant in the rotation of the scamer is determined by the relative ampli-
 P.P.I. This follows since the path along which the spot moves is the direction of the resultant obtained when the $X$ and $Y$ voltages are added vectorially. But the amplitude of the instantanecus $X$ and $Y$ voltages are determined by the amplitude of the instentaneous swings at the grids of V6 and V8. These grid swings, in turn, are determined by the charging voltage developed by the charging square waves. The amplitudes of these square waves is determined by the instantaneous amplitudes of the sawtooth outputs fram the magsilip stators. The instantaneous value of these sawtooth amplitudes is governed by the coupling between the rotor and each of the two stators. When the rotor makes full coupling with the stator that feeds T4, only V6 and V7 are operating and the scan is vertical. If we want the scan to travel vertically upward when the scanner looks due North, we must arrange that at that instant the rotor shall make full coupling in the approgriate sense with the stator that feeds $T 3$ and the Y-amplifier, V8, V9. Since the rotor is geared to the scanner shaft no adjustment can be made to the rotor. Hence the adjustment can only be made by moving the stators relative to the rotor until this condition is fulfilled. Operating the setting knob on the heading control unit when the switch is set to the "Course" position brings a repeater motor into play in the scanner. This repeater motor rotates the magslip stators. They can thass be set to make any desired coupling with the rotor at any point in the scanner rotation. If the bearing ring has been set to $090^{\circ}$, say, and the setting knob is operated until the heading marker flashes along the bearing ring pointer, the coupling between the rotors and stators mast be such as to make full coupling with the stator that feeds T4 at the instant the scanmer goes through the dead-ahead position. A quarter turn earlier in the rotation of the acamer and rotor, the rotor will have made full coupling with the atator foeding $T 3$ and the scan will have been travelling straight up. Hence, if the magelip stators have once been set to bring the heading marker up at the bearing on which the aircraft is heading, the bearing of the scan at any instant will be identical with the bearing of the direction in which the scanner is looking at that instant. This will, however, only be true as long as the aircraft contimues on the same course or heading.

## Neod for D. Re Compass Control

172. Suppose the map is set when an aircraft is heading due East. The heading maricer then flashes horizontsily to the right every time the scanner goes through the dead-ahead position. The magsilip rotor is then making full coupling with the stator that feeds $T_{4}$ and the $X$-amplifier, at the instant the scanner looks doad-ahead and due East. If the aircraft now turns $90^{\circ}$ in a clockwise direction and heads due South, the magslip rotor is still making full coupling with the stator that feeds T4 when the scamer goes through the dead-ahead position, since turning the aircraft in no way affects the scamer or magslip. The heading marker will therefore contimue to flash horizantally to the right when the scamer looks dead-ahead, 1.e. due South. Hence target indications fram the South will now appear at the right of the tube, i.e. the P.P.I. map has slipped back $90^{\circ}$. Hence when the aircraft turns the heading marker remains stationary and the map rotates through the same angle as the aircraft but in the opposite direction. Such a state of affairs may be confusing to an Operator who wants
the top of the map to be North at all times and also wants the heading marker to move as the aircraft turns. Such a result can only be achieved by suitably turning the magslip stators as the aircraft turns. The D.R. compass is utilised to effect this rotation of the magslip stators when the switch on the heading control unit is set to the "Auto" position af"ter once correctily setting the map.

## Dype of Control Requirej

173. The question now arises as to which way the magsilp atators should turn when the aircraft turns. We noted that when the airoraft turns clockwise that the picture slips counterclockwise through the same angle. What we really want to happen by the time the aircraft completes its turn fram East to South, is to have the magslip stators turn in such a way that the rotar makes full coupling with the stator that feeds $T 3$ when the scanner goes through the new doad-ahead position. The coupling must be in such a sense that the sweep of the scan is then vertically domnard. Suppose the aireraft took a minute to make the quarter turn, and assume the scanner turns at 60 rep.m. The timebase will then make $60 \times 670$ sweeps in the turning interval. If the magalip stators were stationary the scans would be travelling horizontally to that right at the end of the minute since the rotor is at the same position with respeot to the stators after 60 complete turns as it was when the first turn began. In order to have the timebase sweeping vertically downward the $60 \times 670$ sweeps should have carried the scan arcund the tube face not 60 times, but $60 \frac{1}{4}$ times. That is, the rotor should have made 604 turns with respect to the stators. This result would be achieved if the stators moved $\frac{i}{4}$ turn counterclockwise while the rotor made 60 turns clockwise, i.e. while the airoraft made a quarter tum clockwise. Hence, wo want the magslip stators to move through the same angle as the aircraft but in the opposite direotion. The map will then appear stationary and the heading marker will rotate through the aame angle as the aircraft turns.

## Mothod of Obtaining the Required Control

174. When the aircraft turns the ocmpass mounting turns with it while the compass needle tends to retain the same position, i.c. alang the lines of force of the earth's magnetic field. Hence, whenever an aircraft turns there is relative motion between the campass mounting and the needie. This motion is utilised to operate the repeater motor in the acanner instead of using the setting knob and operating it by hand. If the wiring is correct in the heading contral unit and D.R. compass box the relative movement between the compass mounting and needie will cause the repeater motor in the scanner to impress the correct rotation on the magslip stators. Should the wiring be incorrect the impressed rotation mey be in the reverse sonse and the heading marker will then go around the wrong way. A turn from East to South would then cause the heading marker to go from Past to North on the H.2.S. display.

## Blackout of Flyback

175. The blacking out of the flyback on the beight tube is discussed in paras. 562 - 564 Blackcut of the flyback on the P.P.I. is wrapped up with bright-up waveforns so cannot be dealt with until the development of these bright-up waveforms has been studied.

## VALVE FUNDAMENTATS

## Introduction

176. The Radar Mechanic who is interested in a detailed analysis of circuit aotion may feel that the master multivibrator, switching valve, lineariser, bass boost valve and the indicator paraphase amplifiers, have received acant attention. This temporary neglect has been deemed desirable because these circuits cannot be discussed in detail without elaborating on ideals of cathode coupling and negative feedback. To introduce these digressions while pursuing our study of the way the timebases are developed would tend to distraot attention from our primary theme to side issues. Hence we have traced the development of the timebases by focussing our attention on the stages where major
adjustments are invalved. We shall now go back to gather up the side issue.

## Action of the Control Grid

177. Before going into the aubject of cathode coupling it may be well to form a clear mental picture of scme valve fundamentals. The Radar Mechanic is so accustomed to the standard practice of applying signals to grids and obtaining antiphase signels at anodes that be tends to assume that a valve will always phase invert, regardiess of how the aignal is applied. Since many stages in the H.2.S. installation do not invert, such habits of thinking can only result in hopeless confusion. Let us begin by reoalling that when the cathode of a valve is hoated, electrons are emitted. If a positive potential is appiled to the anode these electrons, since they are negatively charged particles, are attracted to the anode. If the grid is held at the same potential as the cathode it exerts no appreciable effect on the flow of electrons from cathode to anode. If the grid is held at a potential that is more negative that that of the cathode it will repel the electrons back towards the cathode and thus reance the flow to the anode. There will then be an accumulation of electrons between the grid and cathode which will repel eleotrans trying to leave the oathode. The total amission fran the oathode will therefore diminish because of the 'space charge' that accumulates in the gridcathode space. If the grid is held sufficiently negative to the cathode the force of repulaion will be so great as to stop the flow through the grid mesh completely. We say the grid is then "cut off on the grid". The number of volts by which the grid mest be negative to the cathode to cause this cut-off is called the gria base of the valve. If the grid is held at a potential above that of the cathode it will attract electrons to itself. Hence part of the cathode emission will filow to the grid and part to the anode. If the grid is made so highly positive that a heary flow of electrons passes to the grid the actual flow to the anode may diminish due to this "robbing" although the cathode emission is higher than it was when the anode current had a higher value. Hence far a fixed anode potential we may trace the following changes in anode aurrent as the grid potential is varied:-
(i) For a grid potential negative to that of the cathode by an amount greater than sane value called the grid base, no electrons reach the anode.
(ii) For grid potentials that are negative to cathode but inside the grid base, anode current inoreases as the grid potential rises. This increase is non-uniform at first, i.e. we have a lower bend on the grid voltsmanode current characteristic then increase proportionately with the rise in grid voltage alang the linear part of the characteristic.
When the grid awings positive to the oathode grid current starts to flow, and for a highly positive grid valtage this flow may be so great as to cause an actual reduction in the flow to the anode.

## Valve Amplification

178. If we have an anode load in oircuit but no cathode load the oathode remains at the potential to which it is returned but the anode potential falis below the H.T. voltage by the nmber of volts in the I.R. drop across the anode load. Hence, if a signal swings the grid above cut-off, current flows through the anode load and the anode potential falls to produce a negative-going signal at the anode for a positivergoing signal at the grid. The voltage change at the anode for a given swing on the grid is given by the product of the anode load and the change in anode current. Since this produat may be many times as great as the signal applied to the grid, we say the valve amplifies. If the grid is above cut-off and swings negative, the electron flow to the anode is reduced. Hence, the valtage drop across the anode load diminishes and the anode potential rises by the product of the anode load and the decrease of anode current. We thus obtain the familiar amplification and phase inversion when signals are applied to the gria.
179. Suppose that we now consider a valve with only a cathode load and no anode load. Assume the grid is tied to earth through a grid leak. The hot cathode will emit electrons which will be attracted to the anode when H. T. is applied. Electrons will flow from earth through the cathode load to replace the emitted electrons. This flow will cause an I.R. drop across the cathode load and the cathode potential will rise. The grid, meamwile, is returned to earth potential. As the cathode rises above earth potential while the grid is held, we progressively make the cathode more positive with respect to the grid as the cathode warms up and the emission inoreases. But saying the cathode is becoming increasingly poaitive to the grid is equivalent to aaying that the grid is becoming increasingly negative to the cathode, even though the grid potential is stationsry. Hence, an equilibrium point is reached when the oathode current reaches auch a value that any further increase will result in such a repulsion from the grid that no more electrons will pass through the grid mesh to the anode.
180. Suppose that we now apply a positive-going signal to the grid. The repulsion af the grid will be reduced, and the cathode can now emit more strongly. Hence the oathode current tnareases and the cathode potential follows up as the grid rises. If the grid is swong negative by a signol the force of repulsion on the electrons inareases and the accumulaticn of space charge causes reduced emission. The cathode current then falls and the cathode potential falls. This is the familiar cathode follower action wich does not result in amplification, but delivers nearly the sane output as irput without phase inversion and at a low out-put impedance. This low output impedance is frequentily utilised to match to low impedance cables.
181. Suppose that we consider noxt a stage utilising both anode and cathode loads. Let us assume the control grid is roturned to earth through a grid leak. When H.T. is applied the hot oathode will emit electrons which will flow to the anode. The I.R drap across the anode load will result in a fall at the anode. The flow through the cathode load will rasult in a rise of the cathode potential. Equilibriver.will again be reached when the cathode current reaches such a value that the grid is so negative to the cathode that its repulsion prevents a further increase in the flow to the anode. If we now apply a positive signal to the grid the force of repulsion is recunced and the emission inoreases. Hence the anode potential falls and the cathode potential rises. We thus obtain fran a positive sigmal on the grid a positive signal at the cathodo and a negative signal at the anode. This gives us a phasesplitter circuit with antipkese cutputs fram a single stage. The relative amplitudes of the two outputs will depend on the relative magnitudes of the anode and cathode loads.

## Degenerative or Negative Feedback

182. We stated previcusly that the output at the anode in a aimple amplifier with the cathode returned to earth, wes equal to the product of the anode load and the change in anode current produced by the change in grid valtage. to get a large output we must get a large change in anode current. But the change in anode curcent is dotermined by the swing of the grid relative to the cathode. If there is no cathode load the cathode remains atationary as the grid moves. If, horever, there is a cathode load we have seen that the oathoas follows the voltage changes at the grid. If a 6 volt change at a grid causes a current change of 3 ma. in a value. using an anode load of 40 K . and no cathode load, the ontput is 120 volts and we have an amplification of 20. If we have a aathoda load of 1 K . and again apply a 6 Folt signal to the grid, the cathode voltage will rise with the gria as the emission tends to inorease. Butthis fallowingup by the cathode means that the swing of the grid relative to the cathode is much reduced. Hence, the actual inorease in anode current, which depends on how much the grid swings up relative to the cathode, and not on the grid awing relative to earth, wil be much loss than before. The outprat at the anode Will therefore be materially reducede We say, therefore, that an undecoupled cathode load introduces degenerative or negative feedback since its action is to reduce amplification.
183. Negative feedback can also occur in other ways. Any circuit arrangement which serves to reduce the swing of the grid relative to the cathode achieves the same result of reduced amplification. Three methods are used in the lineariser stage. In-phase signals are applied to V503 grid and cathode fron V502 anode which serve to carry the cathode and grid up and down together and thus reduce the swing of the grid relative to the cathode. The cathode load is undecoupled to begin with, so the cathode would follow up even if no in-phase signal were applied to the cathode. Finally, the anode is coupled back to the grid so that as the grid tries to move in ary direction the anode feeds back an antiphase voltage that opposes the grid movement.

## Cathode Drive

184. So far we have discussed only grid drive, i.e. the application of signals to the control grid. We have, however, emphasised the fact that the change in anode current due to a signal on the grid, is deternined by the swing of the grid relative to the cathode. Suppose that now we consiadr an amplifier whose grid is tied to scme decoupled positive potential and whose cathode is returned to earth through a resistor. If H.T. is applied the hot cathode emits electrons which flow to the ande. The anode potential falls and the cathode potential rises. The cathode rise will contime until the cathode potential is sufficiently above that of the grid that the repulsion exercised by the grid prevents any further increase in emission. Note that both cathode and grid are positive to earth but the cathode is more positive than the grid. Hence the grid is negative to the cathode and we have a negative bias. Suppose we nom apply a positive going signal to the cathode. This makes the cathode still more positive so that the grid, though stationary, is becoming more negative with respect to the cathode. The repulsion exerted on the electrons emitted by the cathode increases. Hence, the flow through the grid mesh to the anode is decreased and the anode potential rises. A positive signal on the cathode thus produces a positive signal at the anode. Had the cathode been driven negative the result would be to make the grid less negative with respect to the anodo. It would therefore exert less repulsion on the electrons and the flow through the grid mesh to the anode would increase. Hence, the anode potential would fall. It follows then that cathode drive can be used when we desire amplification without phase inversion. It should be borne in mind that with cathode drive it may be necessary to centre tap heaters to a potential in the neighbourhood of the mean cathode potential. If this is not done trouble may arise due to leakage or insulation breakdown between heater and cathode. It may be noted that cathode drive will provide a low input impedance so will match a low jrupedance source.

## The Timebase Faraphase Amplifiers

185. We are now ready to study the operation of the timebase paraphase ampliflers in more detail. Let us assume that V6 grid is being carried positive by the action of a positive-going charging square wave. As the grid rises $V 6$ passes more current. V6 anode falls and V6 cathode rises so we have negative feedback which reduces the gain of V6. Suppose the grid rise is 22 volts and the cathode follows up 12 volts to leave an effective swing of grid with respect to cathode of 10 volts. The cathode rise also appears across VR8 + R24, in parallel with R23. If the ratio $\frac{R 24}{V R 8+R 24}$ is 5 , the rise impressed on $V 7$ cathode
is $\frac{5}{6} \times 12$ or 10 valts. But V7 gria is retarned to the potential of VR9 slider which is decoupled by C15. Hence we have V7 cathode swinging 10 volts positive with respect to $V 7$ grid. This is equivalent to awinging 77 grid 10 volts negative with respect to its cathode. Hence the signal applied to v6 grid serves effectively to drive $V 6$ and $V 7$ in antiphase to develop a push-puil output from the pair. V8 and V9 operate in the same fashion. Cathodemcoupled amplifier circuits of this type are commonly known as long-tailed pairs.

## The Amplitude Controls

186. VR8 determines what part of the change at $V 6$ cathode is transferred to V7 cathode. Hence varying the setting of VR8 varies the output at the anode of V7. Since the effective cathode load of V6 is R23 in parallel with VR8 + R24, this cathode load is increased as VR8 is increased. Hence the negative feedback in $V 8$ is increased at the same time as the input to $V 7$ is reduced. Increaseing VR8 then simultaneously reduces the outputs of both
C.D.0896

V7 and V8 but affects V7 cutput most. Decreasing VR8 will reduce the negative feodback operating on V6 and increase V6 output. At the some time, although the total vol.tage impressed across VR8 + R24 has decreased, the actual valtage impressed on $V 7$ cathode may be increased, as a greater proportion of the change at $V 6$ cathode is applied to $\overline{7}$ cathode. Hence, as VR8 is decreased the amplitudes of both $V 7$ and $v 8$ outputs will increase until a point is reached where they will fall sharply if the maxdmum negative input is applied to V6 grid. This unexpected development cocurs when V7 cathode is driven so far negative that $V 7$ runs into grid current. This grid current biasses back V7 grid and so reduces the gain of V7. Since part of this current is drawn through R23 the D.C. potential of V6 asthode is raised, thua increasing the bias on V6 and also reducing V6 gain.

## The Shift Controls

187. As was pointed out earlier, VR9 and VR10 are used to adjust the D.C. potentials at $V 7$ and $V 9$ anodes during the 500 microsecond clamped period, to such a value that the cathode ray tube apot is returned to the tube centre by the flyback. If the electrode eligrment of the P.P.I. is not distorted in any way the anode potentials of the valves in oach amplifier pair must thon be identical. Since there is a fairly wide tolerance in the values of the anode loads this equality of potential may call for rather different currents through the two valves in a pair. Henoe, the operating point set for V7 with VR9 may not be the same as that fixed by $V 3$ for $V 6$. Hence, when the scan is centred with the shif't controla the gain of V7 and V9 may be altered slightiy, resulting in scme change in scan amplitude. Also, since altering the amplitude controls alters the effective cathode loads of the amplifiers, an appreciable alteration in the settings of VR8 and VR11 may necessitate a slight adjustment to the shift contrals.

## The Wavoform Generator Voltage Stabiliser

188. Before embarking on a further study of the master multivibrator and waveform generator sawtooth stages, we should consider the valtage stabiliser that provides 200 volts stabilised H.T. for V500, V501, V502, V503 and the transmittermtiming valve V505. This is V51i, a VR116 connected as a triode cathode follower. The cathode load is that provided by the valve atages which it supplies. R586 (1M) and R587 (2M) form a voltage divider across the umstalilised 300 v. line. V511 grid is tied to the junction of R586 and R587, i.e. the 200 volt point, through the 2.2M leak, R585. C538, ( 6 mf .) provides decoupling. With the grid thus returned to 200 v. the valve will pass current until the cathode potential rises to the equilibrium point where the grid bias is such that no further increase in cathode emission is possible without increasing the grid or anode potential. The cathode will then sit close to the 200 volt level since the grid base of a VR116 is short. Should a transient change in the 300 volt supply cause the potential at the function of R586 anid R587 to change, the change would oniy appear at V511 grid after a time governed by the C.R. of R586 and C538. As the C.R. is 13.2 seconds, brief transients will not affect the potential at V511 cathode. Similarly, any amall amount of $1000 \mathrm{c} / \mathrm{s}$. ripple will not have any effect. Hence, provided the V.C\&P. is set up correctily and functioming normally, and the 300 v. power pack in the power unit is not faulty, V511 will furnish a very stable H.T. supply at approximately 200 volts to V500, V501, V502, V503 and V505.

## The Master Miltivibrator

189. This atage, which controls the timebases, transmitter and height and range markers, is another application of cathode coupling. The following details should be noted:-
(a) The grid of $V 500$ is returned to a decoupled potential of abcut 50 volts.
(b) V500 anode is tied to V501 grid through C504.
(c) $\mathrm{C504}$ leak is R 514 returned to the decoupled 50 valt point.
(d) The anode laed of V500 and cathode loads of V500 and V501 are switched by relays $M$ and $N$ when the sam-anarker switch is operated at the switch unit.
(e) The cathodes of V500 and V501 are coupled capacitively by .03 mf . (C505, 506 and 507 in parallel).
(f) The anode Joad of $V 501$ is 35 K . while $V 500$ will always have more resistance than this between the anode and H.T. line.
190. When we switch on, both valves will pass current and both cathoies will rise. But as V500 anode falls it carries $V 501$ grid down and so reduces the current passed by V501. The cathode potential of V501 then tends to fall and pull down $\nabla 500$ cathode through the coupling capacity. Itis is equivalent to a positive signal on $V 500 \mathrm{grid} s 0 \mathrm{~V} 000$ passes more current and its anode drops still further. We may, therefore, expect that $V 500$ comes into full conduction and carries V501 grid domn so far that cut-off occurs. With V500 in full conduction the current passed will be such that the cathode sits above the grid by several volts. Since $\mathbb{V} 01$ is cut off the other side of the cathode coupling capacity will be leaking away toward earth potential through the cathode load of V501. At the same time the grid of V501 will be climbing slowny as $C 504$ leaks away through the 14 leak, R514. Since this C. Re is 10,000 microseconds the rise of V501 grid will be much slower than the fall at the cathode. When the cathoie has fallen to a point where it is pasitive to the gria by less than the grid base V501 will again pass current. This will cause the cathode potential to rise and carry up the cathode of V500 via the coupling capacity. This positive drive on $V 500$ cathode is equivalent to a negative signal on the grid. Hence, $V 500$ passes less current and its anode rises. This serves to pull up V501 grid and increase the current passed by V501. The cycle is cmmatative, and quiokly cuts off $V 500$ and brings $V 501$ an hard. The cathode of V500 will have been carried up by an amount equal to the rise at V501 cathode so the cathode is at a potential well above that of the grid. We shall then have the cathode coupling capacity leaking away through the cathode load of $V 500$ until the cathode potential has fallen to a level above the grid potential by less than the grid base. When this occurs V500 again starts to pass current. The anode then falls and carries down V501 grid. This reduces the current through V 5 O and its cathode potential so it conducts more heavily. The cycle is cumulative and quickly cuts V501 off and brings V500 on hard to complete one full oycle.
191. The time that V501 is cut off depends on how long it takes the cathode coupling capacity to leak away through the cathode load of V501 to a level where V501 cen ggain conduct. This will depend partly on how far V501 grid was carried down when $\nabla 500$ came into conduction. Inis, in turn, will depend on the ratio of 7500 anode load to its cethode load. How long it takes the coupling capacity to leak away through any specific number of valts depends on the value of $V 50$ cathode load. Hence $V 501$ cut-off time, which fixes the sawtooth flyback period, depends on:
(a) V501 cathode laad.
(b) Ratio of V 00 anode and cathode loads.
192. The time that V500 is cut off depends on how long it takes V501 cathode to fall fram the level to which it is carried by the rise at V 501 cathode to within its grid base of the deccupled grid potential. This depends mainly on the cathode loed of V500. Hence, the V501 conducting period, wich fixes the working stroke of the sawtooth, depends mainly on $V 500$ cathode load.
193. To obtain the required working strokes we therefore switch V500 cathoae load. This alters the current passed by V500 in its conducting period and hence the drop applied to V501 grid. In order to keep this drop constant, we then switch $V 500$ anode load. To keep the p.r.f. constant at $670 \mathrm{c} / \mathrm{s}$. we must then vary the cut-off time of $V 501$ so thet the sum of this cut-aff time and the $\sqrt{500}$ cut-off time remains at 1500 microseconds. Hence, we switch $V 501$ cathode load to achieve this result.

## M and N Relay Contacts

194. When the scan-marker switch is set for the different scans the positions of the $M$ and $N$ relay contacts are as follows:-


10 mile SCAN


FIG.51


Setting	Mr ( $5 / 6$ )	122(7/8)	M3(3/4)	$1{ }_{4}(1 / 2)$	$1 \mathrm{M5}(9 / 10)$	N1 (5/6)	N2(7/8)	N3(3/4)	$\mathrm{N} 4(9 / 10)$	N5( $\frac{1}{2}$ )
10/10	Closed	Open	Closed	Closed	Glosed	Open	Closed	Open	Open	Open
10/20	Open	closed	Open	Open	Open	Open	Closed	Open	Open	Open
30/20	Open	Closed	Open	Open	Open	Open	Closed	Open	Open	Open
100/20	Open	Closed	Open	Open	Open	Open	Closed	Open	Open	Open
100/40	Open	Closed	Open	Open	Open	Closed	Open	Closed	Closed	Closed
100/40-80	Open	Closed	Open	Open	Open	Closed	Open	Closed	Closed	Close

## The Switching Vaive, V502

195. It was pointed out earlier that the negative part of the master square wave switched on the triode part of V5O2 while the positive part switched it off. These results are obtained through an indirect fom of cathode drive. The following points should be noted:-
(a) The grid of $V 502$ is returned to different decoupled potentials by switching components in a bleeder network as the scan-marker switch is operated.
(b) The cathode load of V5C2 is switched at the ame time.
(c) The master square wave is applied to the strapped diode anodes of V502.
(d) The anode of V502 is tied to earth through C514 (.1) in series with R538 (2.2M.).
(e) The anode of V502 is coupled to V503 grid at the junction of C514 and R538.
(f) The cutput developed across R531 is applied to V503 cathode via C512, R539.
196. When the positive part of the master square appears on the strapped diode anodes the diode current rises and carries V502 cathode potential above the decoupled grid potential and cuts off the triode section. The anode then tends to rise exponentially as C514 charges exponentially through R531, R532 and R538 and C512 charges through R531 and R539. If V509 is removed, a large pasitivegoing exponential appears at V502 anode. When the negative part of the master square wave is applied to the diode anodes the diode current falls and V502 cathode potential falls sufficiently to permit the triode to conduct. C514 can then discharge through the series impedance of the valve and R538. 0512 can discharge through R532, the valve impedance and R539. With V503 removed we then obtain a large amplitude falling exponential at V502 anode.
197. If V503 is inserted we drive V503 grid and cathode with the outputs from V502. If we merely applied a signal to $\sqrt{503} \mathrm{grid}$ we should have an amplified antiphase signal at the anode. Degenerative feadback due to the undercoupled cathode would reduce stage gain. Hy feeding in-phase signals to grid and cathode this gain is still further reduced. A further reduction is obtained by feeding back from K 503 anode to grid through C513 and C514. It is this antiphase signal that results in only a mall signal at $V 502$ anode when $V 503$ is inserted. Driving both grid and cathode with exponential waveforms of the same phase but different amplitudes tends to linearise the output of V503. The antiphase feedback from anode to grid furthers this linearisation by tending to counteract the curvature of the grid waveform by applying a curvature in the opposite sense. We thus obtain at V503 anode a reasonabiy linear sawtooth which is positive-going when V502 anode is negative-going, i.e. during the period that the negative part of the master square wave holds down $V 502$ diode anodes. It is this positive-going sweep that is the working stroke of the sawtooth.
198. The different sawtooth slopes are obtained by altering the current passed by V503 during the triode condseting period. This is achieved by suitably switching the bleeder components to vary the decoupled potentials to which the grid is returned, and by simultaneously switching V503 cathode load. The relay pasitions are shom in para. 194

The Bass Boost Valve, $\mathrm{V5O}_{4}$
199. It has previously been pointed out that this stage fulfils two functions:-

## C.D. 0896 L


(a) Provides discriminating negative feedback to deliberately introduce distortion by giving excess low frequency amplification. This is done in antioipation of subsequent low frequency losses which will belance out this deliberate distortion.
(b) Provides a sawtooth output at a sufficientiy low output impedance to match into the low impedance cable.

R542 and R543 form a voltage divider which applies about $4 / 5$ of the output fram $\nabla 503$ anode to $V 504$ grid. A feodback winding on the transformer 1501 has ane end tied to $V 504$ cathode and the other end feeds back to the grid a signal in antiphase to the input. All frequency components are equally attemated in the resistors $\mathrm{R} 545+\mathrm{R} 5440 \quad \mathrm{C} 539+\mathrm{C} 518$ (.003) provides the disoriminating feedback. The low frequency components are considerably attemated but the high frequency components are offered only a low impedance. Hence the net imput on $\mathrm{V}_{5} \mathrm{O}_{4}$ grid has a greater proportion of low frequency conponents than is required for a linear sawtooth. The output sawtooth therefore has an axcess of low frequency camponents which allows for later losses.
200. The amplitude at $V 504$ anode is around 300 V . and the amplitude at V 503 anode is around 75 volts. The gain of $\sqrt{5} \mathrm{O}_{4}$ is thus obviously low because of the negative feedback. The centre-tapped output winding provides a atep-down of about 1 : 6 to apply about a 50 volits push-pull outpat which is taken to the magsilip rotor and the height tube sawtooth transformer.
201. C519 and R547 are included to counteract a tendency for the phase of the feedback to became positive at the high frequency end. Such an effect would tend to cause instability and must therefore be prevented.
202. C537 serves to bypass to earth any R.F. voltages that may be picked up at $\mathrm{VFO}_{4}$ grid.

Porer Supplies for the Indicator 184
203. As the +300 V . powor pack in the power unit is not capable of supplying the added stages in the indicator 184 which were not included in older indicators, It has been necessery to introduce another +300 V supply. In the oase of Mark IIC, this power pack is in the tuning unit 207 which also houses the kIystron local osciliator. Circuit details are shown in Pig. 228. A 5Z4G doable half-wave reatifier is emplcged. $80 \mathrm{~V} A . C$. is brought to the transformer primary on pins 6, 7 (strapped) and 6, 9 (strapped) of the 18-way yellow. The smoothed output is taken to pin 16 of the yellow-green 18 -way whence it is carried by cable to the 18 -way yellow on the indicator 184.
204. In the Mark IITA installation, the +300 V supply for the indicator 184 is drewn from the +300 V . pack in the power unit via 18/16. To relieve the added drain imposed on this pack by the indicator 184 , an independent +300 V supply is provided in the Mark IIIA receiver-timing unit.
205. The -300 V negative rail sugply used in the indicator 184 is developed from a bridge metal rectifier in the indicator itself. Circuit details are shom in fig. 228. 80V A.C. is brought to the indicator on 18/6,7 and 18/8,9 and applied to T. 1 primary. Cone secondary feeds the bridge metal rectifier whose -300 V output is smoothed by the choce L .1 and oondenser C. 25 .
206. Cther secondary windings on T. 1 supply the various heater voltages. Ro 85 ( 680 K. ) and R. 84 (330K.) provide a bridge between -300 V and earth whose Junction is at about-400V. The heaters for the valves V. 3 to V. 9 are hela at this D.C. Level since their cathodes are operating at a voltage in the vicinity of -100 V .
207. In the earlier 184 indicators, which are not fitted with a centre-tapped heater system, trouble arises due to $1000 \mathrm{c} / \mathrm{s}$ pick-up fram the heater line. To minimise the effect of this pick-up 300 chm balancing potentioneter across the heater line was fitted retrospectively.

## C.D. 0896 L

(


TRANSMITTER CHAIN.
MARK II C
FIG.55

CHAPTEFR 5-THE H.2.S. TRANSMITTER CHATN

## Surmary

208. It has previausly been pointed out that the H.2.S. transmitter has a pulse width of 1 microsecond and a p.r.f. of $670 \mathrm{c} / \mathrm{s}$. In the H. $2 . \mathrm{S}$. Mark IIC installation a wave length of about 9.1 cms. is employed, while in H. $2 . \mathrm{S}$. Mark IIIA, a wavelength of about 3 cms. is utilised. Magnetron transmitter valves are employed in both installations. The Mark IIC transoitter has a peak power of roughly $30-55 \mathrm{~K} . \mathrm{W}$. and an efficiency of $20-40 \%$ In the Mark IIIA transmitter the paak power is about $18-40 \mathrm{~K} . \mathrm{W}$., and the efficiency about $13-30$; when the T.R. 3555 series transmitter units are used. In the transmitter chain the following functions are involved:-
(a) Synchronisation of the transmitter pulse to the timebase and control of timing of the transmitter pulse, i.e., of the point on the sawtooth where the transmitter fires.
(b) Development and shaping of the modilation waveform.
(c) Development of the actual R.F. transmitted pulse.
(d) Transferring the transmitter pulse from the magnetrantransmitter valve to a suitable radiating axray where it is launched into space. This involves suitable feeder arrangements and matching adjustments, a waveguide mirror feed and the scanning mirror.
(e) Isolation of the transmitter pulse from the receiver chain by a suitable T.R. switch.

Stages (a) and (b) are essentially identical in the two installations. Stages ( 0 ), ( $d$ ) and ( $e$ ) differ in mechanical dotails but not in principle.
209. (a) A block schematic of the H.2.S. transmitter is given in fig. 56.
(b) Circuit details for Mark IIC are given in fig. 55.
c Circuit details for Mark IIIA are given in fig. 64 .
(d) Mark IIC transmitter unit details are shown in fige 217-218.
(e) Mark IIIA transmitter unit details (T. Ro 3555 series) are shown in fig. 219 - 222.
(f) Relevant waveform generator 34 details are given in figs.223-225.
g Modulator type 64 details are given in fig.212-214.
(h) Relevent switch unit type 207B details are given in figs.226-227.

Outline of the Transmitter Synchronisation and Timing
210. The stages in the development and radiation of the transmitter output can be traced most readily on fig. 55 for H. $2 . S$. Mark IIC and in fig. 64 for H.2.S. Mark IIIA. The chain commences with the synchronising ami timing stages. These include V505 in the W.F.G., its contrals in the switch unit, and V.5, V. 6 and V. 7 in the modulator type 64 V505 is the transmitter timing valve. It is switched on and off by the sawtooth output from the single-ended secondary in T504. This sawtooth owings between approximately -150 V and earth. It will centre itself on the grid aide of C520 at the D.C. level to which $V 505$ grid is returned. It can be seen that $V 505$ grid is tiled to the moving arm of a switoh in the switch unit by means of which it can be returned to different positive potentials. Suppose that V5O5 were tied to a potential of +40 V . The sawtooth would then have its mid-point at +40 V . and would try to swing V505 grid up 75V ond down 75V from this level. That is, V505 grid would try to swing between -35 V and +115 V . The cathode of V505 is returned to earth. Assuming the grid base to be 2 volts, $V 505$ will remain cut off until the working stroke of the sawtooth carries the grid up from -35 V . to -2 V ., i.e., through 27V. This means that $V 505 \mathrm{grid}$ comes into conduction $33 / 150$ ths. or about . 22 of the way up the sawtooth. Obvicusly, if V505 grid is returned to a different potential the valve will be brought into conduation at a different point on the sawtooth. We see then that the switch unit portion of our circuit is devised to permit a variation in the point on the sawtooth at which V505 comes into conduation.
211. It is arranged that when $V 505$ comes into conduction it develops a negative-going pip at its anode. This pip will then have a p.r.f. equal to that of the sawtooth and hence of the master multivibrator. The point on the sawtooth at which it occurs is governed by the switch unit components of our circuit. This pip is taken fram V505 anode to the blue Pye plug on the W.F.G. panel and by cable to the blue pye plug on the modulator type 64. V.5, V. 6 in the modilator type 64 form a freemuming multivibrator whose p.r.f. can be varied by meens of the potentiometer, R24. This is a ratchet type preset at the back of the modulator chassis. It varies the positive potential to which V. 6 grid is returned and therefore varies the length of time it teles V. 6 to come back into conduction. We shall call this preset the modulator multivibrator P.R.F. control. This is set so that a free-running p.r.f. of about $600 \mathrm{c} / \mathrm{s}$. is obtained. The circuit is so designed that V. 6 only conducts for 20 microseconds, i.e., V. 5 is conducting most of the period and V. 6 grid has a long exponential rise. The negative-going pip from V505 anode is applied to V. 5 grid while V. 5 is conducting and V. 6 grid is rising exponentially toward cut off. The pip carries V. 5 grid down thus causing V. 5 anode to rise sharply. This sharp rise carries V. 6 grid above cut-off and initiates V. $6^{\prime}$ 's 20 microsecond conducting period. That is, the negative-going pip from V505 anode is synchronising the modulator milivibrator to run at the sane p.r.f. as the master multivibrator and causes a negative-going 20 miorosecond pulse to appear at $V .6$ anode every time the sawtooth oarries V505 grid above cut-off.
212. The transformex, T.4, in V. 6 anode phase reverses the 20 microsecond pulse and amplifies it to around 140V. The circuit shows V. 7 grid returned to $-100 V$. and $V .7$ cathode returmed to earth. Hence, V. 7 will be cat off at all times, except for the 20 microsecond period that the positive pulse is applied to its grid. That is, the 20 microsecond pulse cats V. 7 on and off. In the anode of V. 7 we have the choke L. 4 . Its stray capacity tunes this choke to resonate at about $400 \mathrm{kc} / \mathrm{s}$. When the back edge of the 20 microsecond pulse cuts V. 7 off, a positive ring of about 10 KV . amplitude is developed at the resonant frequency. This ring is applied to the trigger electrode of the spark gap switch, V.3. The first swing of the ring will be positive-going as V. 7 is cutting off and the anode potential is rising. As the potential of the trigger electrode swings up towards a 1 OKV. peak amplitude, the potential difference between the trigger and the earthed ring electrode ifses to about 3 KV . when flash-over occurs. This flash-over initiates the formation of the 1 microsecond modulating pulse which fires the transmitter. The ringing at V. 7 anode is, of course, quickly damped out when flash-over ocours so the undomped amplitude of the 1 OKV will not be obtained if V. 3 is operating.

## 213. Sumarising, we have the following chain of events:-

(a) The sawtooth on V505 grid carries V505 above cut-off at a point on the sawtooth which depends on the potential to which $V 505$ grid is returned in the switch unit.
(b) When V505 crosses cut-off a negative-going pip appears at V505 anode.
(c) This negative-going pip synahronises the $600 \mathrm{o} / \mathrm{s}$ freerunning modulator multivibrator to run at the master multivibrator p.r.f.
(d) The appearance of the negative-going pip on V. 5 grid brings V. 6 into conduction for its 20 microsecond conducting period to develop a negative-going 20 microsecond pulise at V. 6 anode which is phase reversed by a transformer and applied to V. 7 grid.
(e) This 20 microsecond pulse brings V. 7 on for 20 microseconds. On the back edge of the pulre V. 7 cuts off and the choke in its anode rings at $400 \mathrm{kc} / \mathrm{s}$, the first ring being positive-going and of about 1 OKV amplitude if not damped by conduction in V. 3.

(f) This 10 KV ring is applied to the trigger electrode of the spark gap switch, V. 3 and causes flash-over between the trigger and the ring electrode through which the trigger passes.
(g) This flash-over initiates the fornation of the 1 microsecond modulating pulse which fires the transmitter to produce a 1 microsecond burst of R.F.
214. Since the pip at V505 anode this determines the point on the sawtooth at which the transmitter fires we call this pip the transmitter-timing pulse and $V 505$ the transmitter-timing valve.
215. The 20 microsecond pulse applied to V .7 grid is termed the modulator priming puise.
216. The 10KV ring developed at $V .7$ anode is called the trigger pulse, and V. 7 is called the trigger valve.
217. We may now restate our summary as follows:-
(a) The transaitter-timing pulse determines the start of the 20 microsecond modulator priming pulse.
(b) The trigger pulse is formed on the back edge of the priming pulse.
(c) The 1 microsecond modulating puise forms just after the trigger pulse. There is actually a slight delay between the back edge of the 20 microsecond priming pulse and the begiming of the modulating pulse. This is the combined effect of the time of rise of the trigger pulse and a delay in the action of the spark-gaf switch, V.8.
(d) The modulating pulse fires the tramsmitter to develop a 1 microsecond burst of R.F. The wavelength will be 9.1 cans. for H.2.S. Mark IIC and about 3.2 ans. for H.2.S. 3ke. IIIA.

## Synchranisation of Signals and Markers to the Timebase

218. Focussing our attention on the subject of synchronisation of the transuitter pulse (and hence of signals) to the timebase, we note the following points:-
(a) The timebase is developed from the sawtooth taken from the centre-tapped secondary on T 501 in $\mathrm{V} 5 \mathrm{O}_{4}$ anode.
(b) The transmitter-timing pulse, and hence also the actual transmitter pulse, are controlled by the single-ended secondary output from T501.
(c) There is therefore ane transmitter pulse for each timebase sweep.
(d) As long as the potential to which V505 grid is returned in the switch unit is kept constant the transaitter-timing pulse will occur at a fixed point in the timebase sweep.
(e) The actual transmitter pulse will occur after this timing pulse by a fixed interval of about 22 microseconds determined by:-
(i) The duration of the modulator pruming pulse.
(ii) The amplitude to which the trigger pulse has to rise before the trigger gap flashes over.
(iii) The further delay before the spark gap switch becones fully conducting.
Since this interval will remain fixed in a serviceable set, the transmitter pulse must occur at a fixed point in the timebase oweep if the amplitude of the sawtooth from $\mathrm{VSO}_{4}$ remains constant, and the amplitude of the timebase paraphase amplifier output remains constant. Signals must then appear at a fixed point in the timobase sweep, and therefore at a fixed distance from the P.P.I. centre or a fixed distance up the height tube trace. This is equivalent to saying that the transmitter pulse and the signals are locked to the timebase.
219. The height and range marker circuits commence the ir measurement of time at the back edge of the 20 microsecond priming pulse. These markers are therefore also locked to the timebase.
220. It was pointed out earlier that the modulator multivibrator will freerun at about $600 \mathrm{c} / \mathrm{s}$. Should the transmitting-timing pulse not be applied to V. 5 anode, or be ineffective for any reason, the modulator priming pulse will still be developed but at a p.r.f. of about $600 \mathrm{c} / \mathrm{s}$. The transmitter pulse, signals, and the height and range markers will then be developed at a p.r.f. of $600 \mathrm{c} / \mathrm{s}$. The timebase will, however, have a p.r.f. of $670 \mathrm{c} / \mathrm{s}$. There will, therefore, be no synchronisation of the signals and markers to the timebase and the signals and markers will drif't. It is apparent then that the transmitter timing pulse is the actual synchronising or locking agent.

## Control of Transmitter Timing

221. We shall next consider how the transmitter timing can be varied and what effect such variation will have on the display. We have seen that the point at which $\sqrt{505}$ goes into conduction to form the transmitter-timing pulse is governed by the D.C. potential to which $V 505$ grid is tied. We can, therefore, vary the point on the sawtooth at which the transmitter pulse is formed by varying this D.C. potential. Examination of our circuit diagram, fig. 55 , shows V505 grid returned to the moving cantact of a switch. This moving contact is ane of the three moving contacts on the scan-marker switch. We have already dealt with one contact which serves to operate the relays that switch the circuit components in the master multivibrator and timebase switching valve stages. The third contact is used for operating relays to switch components in the height and range marker circuits in the receivertiming unit. Returning to the moving contact in which we are interested at present, we note that when we set the scan-marker switch to its respeotive settings, we have $\sqrt{505}$ grid returned to the following points if the various links are in the $B$ (Bomber Comand) positions:-

Position	Scan	V505 grid returned to	Name of Contral	Range of Variation
10/10	10 mi .	VR. 153 slider	10 Mi . Zero	$0 \text { to }+60 \mathrm{v} .$
10/20	20 mi .	VR. 152 slider	30 Mi . Zero	0 to $+5 . \mathrm{V}$.
$10 / 20$ $100 / 20$	20 mi.	VR. 152 slider VR. 152 slider	30 Mi. Zero 30 Mi. Zero	
100/40	40 mi .	Eaxth	None	None
100/40-80	40-80 mi.	+62V.	None	None

From our table it appears that V505 grid can be returned to a potential variable between 0 and +60 V . by means of the switch unit contral labelled the 10 -gile zero. In the next three positions it can be varied between 0 to +5 . V. by a oontrol called the 30 -mile zero. These presets on the switch unit can be used to alter the point on the sawtooth at which the tranamitter-timing pulse forms. The result will be a variation in the point on the sawtooth where the back edge of the 20 microsecond priming pulse forns and the point where the transmitter pulse forms just alightily later. As the height and range marker circuits conmence their measurement of time from the back edge of the 20 microsecond priming pulse the markers will forn at different points on the sawtooth and hence will move on the displays as the setting of the 10 or 30 mile zero is altered. Since the point at which the transmitted pulse occurs is being varied the point at which the signals appear is also varied. The distance from the centre of the P.P.I. at which signals appear and their distance up the height tube trace will therefore change as the settings of these controls are altered. As V505 grid is made more positive (clockwise rotation of controls), the valve goes into conduction earlier and signals and markers form earlier on the sawtooth so more towards the P.P.I. centre and down the height tube trace, If the controls are turned counterclockwise to make V505 grid less positive the signals and markers form later on the sawtooth and therefore move away from the P.P.I. centre and up the height tube trace.

222. The table above shows that $V 505 \mathrm{grid}$ is retumed to earth potential in the switch unit when the scan-marker switch is in the $100 / 40$ position. The points on the sawtooth at which the 20 microsecond priming pulse and the transmitter pulse are formed are then fixed. Assuming a grid base of $2 V$ in V505 and a 150V. sawtooth centred at earth potential, we shall have the sawtooth trying to carry V505 grid between +75 V and -75 V . V505 will cane into conduction when the grid reaches $-2 V_{0}$, i.e. after the sawtooth has swung up 73V. Hence, the Rx-timing pulse begins about $73 / 150$ ths. of the way up the sawtooth which has a 1200 microsecond working stroke. The transmitter-timing pulse will then form about $73 / 150$ ths $\times 1200=584$ microseconds from the beginning of the sawtooth. The 20 odd microsecond priming pulse will then bring the transmitter pulse shortly beyond the mid-point of the sawtooth. This rerult is of interest in Fishpond. The Fishpand zero marker is formed on the back edge of the 20 microsecond priming pulse. When the scan-marker switch is set to the $100 / 40$ position the Fishpond scan is developed from the 1200 microsecond sawtooth. Since the back edge of the 20 microsecond priming pulse and the zero marker are occurring beyond the centre of the sawtooth, the zero marker will appear about $\frac{1}{2}{ }^{\prime}$ from the tube centre.
223. Since the 10 -mile zero and 30 -mile zero vary the point on the sawtooth at which the 20 microsecond prining pulse forms, they will also shift the markers on the Fishpond display. These controls can therefore be used to shif't the point at which the 20 microsecond priming pulse forms on the sawtooth to keep the diameter of the Fishpand zero marker essentially constant as the settings of the scan-marker switch are varied.
224. When the scan-marker switch is in the $100 / 40-80$ pasition, the prid of V505 is returned to +60 V . The 150 V sawtooth then tries to swing V505 grid between -15 V and +135 V . Since V 505 will go into conduction at -2 V the sawtooth will only swing through 13 volts of its 150 V swing before V. 505 conducts. Hence, the transmitter-timing pulse occurs $13 / 150$ ths $\times 1200=100$ microseconds after the sawtooth begins, i. e., almost 500 microseconds before the mid-point of the sawtooth. Ve have seen that on the $100 / 40$ position the transmitter fires just after the centre of the sawtooth. For the first 4 positions of the scan-marker switch, the transmitter pulse will normally also be forming very nearly at the centre of the sawtooth. Now we noted in Chapter 3 that the height tabe shift is set to bring the suppression break at the bottan of the height tube. But this 20 microsecond suppression break is caused by a second output from the modulator multivibrator. Hence, it represents approximately the middle of the aawtooth. If this break appears at the bottan of the height tube on the first 5 positions of the scan-marker switch most of the first half of the timebase sweep is off the tube. Eence, when the scan-marker switch is set to the $100 / 40-80$ position and this suppression break occurs 500 microseconds earlier, it disappears off the bottom of the tube. The first signals that can then appear on the height tube will be those arriving Just short of the midale of the sawtooth. These will be from 40 to 50 miles away. We thus obtain a range coverage on the height tube of around 40 to 90 miles. The $100 / 40-80$ position of the scan-marker switch is therefore used when it is desired to pick up haning beacons triggered by the lucero transmitter. Since the method of developing the P.P.I. scen is not designed for use with tiois position of the scan-marker switch, there is no point in discussing the P.P.I. display obtained with the $100 / 40-80$ position of the scan-marker switch.
225. It may seem strange that the control which alters the transaittermining on the 20 mile scen is called a 30 mile zero. This anomaly arises out of the fact that older indicators provided 10,30 and 50 mile scans, and that Coastal Gomand still uses such indicators with the present switch unit. As the control originally operated on a 30 mile scan and still does so in Coastal Comand installations the name has not been altered on the switch unit.


THE RED
ON AND


IF THE SWITCH ON THE MOOULATOR IS "ON"
THIS HAPPENS.


FIG. 59
226. It has been pointed out that the 1 microsecond modulating pulse occurs Just after the trigger pulse from V7 grid causes the trigger gap of the spark-gap switch, V. 3 to flash-over. We shall now consider the development of this modulating pulse: From the cirouit diagram, fig. 55 we note the following points:-
(a) We have a -4KV supply (developed by a power pack in the modulator) connected in series with a 64 henry choke, a six stage L.C. network and a 1.1 ohmmitor resistor, R. 13.
(b) We have the sparik-gap switch V.3, and the resistors R10, R11, R12 in parallel with the L.C. network and R13.
(c) In parallel with R10, R11, R12 we have a uniplug pulse-cable to the transmitter unit and the primary of a pulse transformer of the auto-transformer type.
(d) The secondary end of this pulse transformer is comnected to the leg of the magnetron transmitting valve heater to which the magnetron cathode is strapped.
(e) A high current diode, V.U.111, in series with suitable resistance, is connected across the pulse transformer with the diode anode linked to the secondary end of the pulse transformer. In the Mark IIC transmitter unit a $4 K$ resistor is used in series with the diode anode. In the Mark IIIA transmitter a 325 ohm resistor is placed in series with the anode, and a 27 ohm resistor in series with a thermal-relay is placed across the diode and its cathode resistor in the 3N. IIIA transmitter unit.
227. When tho "H.T. ON" push-button is pressed on the switch-unit the amber light cames an. After a deloy the red light comes up and the main gap, i.e. the gap between the main electrodes of V.3, starts flashing provided the switch on the front panel of the modulator 64 is down. If this switch is up V. 3 will only show flashing at the trigger gap which will cause a bluish glow only in the lower part of $V .3$ and will cause a weak $670 \mathrm{c} / \mathrm{s}$. note. When the main gap is flasking a strong bluish glow fills the midale of the valve and a pronounced $670 \mathrm{c} / \mathrm{s}$. note is heard. When the red light comes up on the switch unit the H. T. supply to the trigger valve is completed and the trigger pulse developed at V. 7 anode causes the trigger gap of $V .3$ to flash over at a p.r.f. of $670 \mathrm{c} / \mathrm{s}$. Hence we obtain the glow at the bottom of the valve and the weak $670 \mathrm{c} / \mathrm{s}$. note.
228. To understand the cause of the flashing across the main gap when the modulator switch is down as the red light comes up on the switch unit, we must study the role of the L.C. network across V. 3 and the -4 KV modulator power pack.
229. The transformer for this power pack is T3. The heater transformer is T2. When the "L.T. ON" button is pressed on the switch unit the heater supply comes an. When, following the usual delay after pressing the "H.T. aN" button, H.T. is applied to $V .7$ and the trigger gap of V. 3 goes into operation, the current passed by $V .7$ energises the $C$ relay in the modulator and the contact C. 1 closes. If now the modulator switch, S.1, is flicked down, the 8OV supply to the primary of T. 3 is completed and the $-4 K V$ supply is developed. Since the L.C. network is in series with this -4KV supply, the condensers of the network charge through the 64 henry choke. The network is called an artificial line since it exhibits the same characteristics with regard to storing energy and to charging and discharging time as a $500^{\prime \prime}$ length of ideal coaxial line of suitable dimensions. As the condensers charge up the p.d. developed across them is applied across the electrodes forming the main gap of V. 3 . The voltage developed is not, hovever, surficiently great to break down the main gap uless a spark is first produced at the trigger gap. If we have the trigger gap flashing over and then close S.1, the voltage across the main gap will cause flash-over each tine the trigger gap flashes over. We then obtain the glow in the middle part of $V .3$ and the load $670 \mathrm{c} / \mathrm{s}$. note when S .1 is closed.
230. When the main gap breaks down, its resistance drops to a few oims and we have the charged artificial line in series with the conducting resistance of the spark-gap, the pulse cable to the transmitter unit, and the primary

## DEVELOPMENT OF MODULATING $\varepsilon$ RF PULSE


3.7KV NEGATIVE -
PRIMARY OF PULSE PRIMARY OF PUL
TRAMSFORMER
of the pulse transformer. The line, which has stored up energy in the cicndenser, now discharges its energy in a 1 microsecond burst. There is then a current flow of 40-50 amps. through the pulse transformer primary far 1 microsecond. The magnetron transnitter valve applies a resistive load of around 1,500 ohms across the secondary, i.e., the whole winding. The turn ratio is such that this resistance looks like about 74 ohms on the primary side. Hence the artificial line discharges a 1 microsecond burst of about 40-50 amps. through a useful load of about 74 ohms. The voltage appearing across the pulse transformer pri. uary is then of the order of $74 \times 50=3.7 \mathrm{KV}$. The sense of the current flow is such as to make the earthy end of the transformer the high potential side. The tapping point is then taken up to a potential of up to -3.7 KV . The turn ratio is such as to step this up to about 14 KV across the secondary. The magnetron cathode is therefore taken suddenly from earth potential to about -14 KV when the trigger pulse from V. 7 anode breaks down the trigger gap. At the end of 1 microsecond the artificial line has completed its discharge and the magnetron cathode returns to earth potential. We thus hold the magnetron cathode about 14 KV negative to earth for 1 microsecond every time the trigger pulse fram $\mathrm{V}_{.} 7$ anode appears on $\mathrm{V}_{0} 3$ trigger electrode. This gives us our 1 microsecond modulating pulse just after the back edge of the 20 microsecond modulator primary pulse developed by the modulator imultivibrator. If the modulator multivibrator is synchronised by the transmitter-timing pulse, the modulator pulse will have a p.r.f. of $670 \mathrm{c} / \mathrm{s}$. i.e., the same p.r.f. as the timebase. If the modulator is free-running the modulating pulse will have the same p.r.f. as the modulator mallivibrator and will not be locked to the timebase.
231. If the blue Pye lead carrying the transmitter-timing pulse is disconnected the spark-gap will continue to operate but the p.r.f. note of the gap will droy indicating that it is nov operating at the lower, free-running p.r.f. If the p.r.f. control settin; is nov varied the changing p.r.f. can be detected by listening to the change in the p.r.f. note of V.3. Whether or not a normal transmitter-timing pulse will synchronise the modulator multivibrator depends on the setting of the p.r.f. control. If this is set for a p.r.f. above that of the master multivibrator synchronisation is obviously impossible.
232. The control shows red, yellow and blue dots. Synchronisation should be obtainable in a normal set when the ratchet is set within + or -3 notches of the red dot but this will not always be the case. If the ocntral is set for a high p.r.f. and high note from V. 3 and then adfus ted to lower the pitch, the point at which stable locking is obtained can readily be observed as the pitch of the note then changes noticeably. The control shouid be set back 3 notches beyond the locking point.

## Develgoment of the Transmitter Pulse and Behaviaur of Mapnetrons

233. Transferring our attention nov to the actual transmitter valve stage, we note the follaving points:-
(a) The magnetron transmitter valve is actually a diode with its anode earthed and its cathode strapped directly to one side of a heater. This heater has its orn heater transformer.
(b) No tuned circuit is apparent.
(c) Examination of an actual transmitter unit will show that the magnetrom is placed between the poles of a powerful permanent magnet.
(d) The magnetic field appears to be along the axis of the cylindrical anode of the magnetran.
(e) The magnetran is provided with cooling flanges and a blower motor.
(f) The output from the magnetron in a Mark IIC installation is taken fram the internal cavity by means of a probe projecting into a coaxdel line.
(g) The output from the magnetron in a Mark IIIA (TR. 3555) transmitter unit is taken from the internal cavity by means of a probe extending into a waveguide.
(h) The foed to the scamer is by coarial feeder in the H.2.S. Mark IIC installation and by waveguide in the Mark IIIA installation.
(i) The feed through the scanner is by a coaxial feeder with a capacity joint in Mark IIC and by waveguide with a rotating joint in Mark IIIA.
(j) The actual radiator is a waveguide terminating in a horn in both instollations.
234. The magnetron as used in these installations is essentially a forn of cavity resanator. When the 1 microsecond -14 KV pulse is applied to the cathode we have 14 KV . between the cathode and earthed ancde. There is then intense emissian from the cathode but the presence of the magnetic field forces the emitted electrons to traverse complicated paths in the homeycomb structure that forms the interior of the cavity. We may regard these oscillating eleotrons as exciting the cavity and causing the development of an intense electro-magnetic field inside it. A loop projecting into this field, but insulated from the earthed cylindrical anode along its output lead, will have induced on it a voltage at the frequency of the oscillations in the cavity. If this loop is linked to the inner of a coadial line whose outer is earthed. the R.F. autput will be transmitted along the coaxial line. If the loop terminates in a probe projecting into a waveguide the probe will act as an aerial and launch a wave into the guide.
235. Since we have an oscillating electromagnetic field developed inside the magnetron, the magnetron combines the functions of a transmitter valve and oscillatory circuit. Obviously, the first consideration will be the power output obtainable from the magnetron. We could apecify officiency instead of power output since we supply only a fixed amount of power in the 1 microsecond modulating pulse. How mach R.F. power is developed by the magnetron depends on its efficiency. The actual power supplied to the magnetron in the modulating pulse is 125 - 14 V K.W., i.e., about 9-10 amps. at around 14 KV . Hom much power appears at the aerial will depend on the conversion efficiency of the magnetron and the matching of the magnetron to its output oircuits.
236. The maximun R.F. power output is not, however, the sole consideration. Depending on its internal structure and operating conditions a magnetron may show:-
(a) Moding.
b) Frequency splitting.
( $)$ Frequency pulling.

By "moding" we mean operating at randam on two different frequencies. That is, some bursts may be at one frequency, and others at an appreciably different frequency. If the local oscillator is tuned to beat with one of these so as to develop the frequency to which the I.F. ampliflier responds, the other frequency may develop a beat which will be outside the pass-band of the I.F. amplifier. "Frequency splitting" involves the simultanecus development of two different frequencies. The I.F. amplifier may only be able to amplify the beat note developed by one of these. "Frequency pulling" means that the frequency developed by the magnetron when the installation is lined up may vary with any variation in the impedance presented to the magnetron by its output system. What the radar mechanic must aim to achieve is the maximum output that can be obtained under operating conditions that will produce a single stable frequency.
237. We shall now consider that factors influence the frequency developed by magnetrons, their frequency stability, and the power radiated fram the scanner into space. The chief factors which have a bearing on these points are:-
(a) The physical dimensions and structure of the cavity.

The strength of the magnetic field.
The amplitude and shape of the modulating pulse applied to the cathode.
(d) The load presented to the magnetron by its output circuits, i.e., the feeder, waveguide and scanner.
(e) The emission of the magnetron.
(f) The leakage resistance of the magnetron.
g The inner surface of the waveguide feed.
$(\mathrm{h})$ The cleanliness of the perspex cupola.
238. The physical dimensions of the cavity determine what range of grequencies any particular magnetron will be able to develop under all possible operating conditions and fixes the frequency band for which any particular magnetron is suitable. The dimensions of the CV. 64 used in H.2.S. Mark IIC are such as to give a wavelength in the vicinity of 9.1 cos. The dimensions of the CV. 108 , CV. 208 and 725A used in H-2.S. Mark IIIA are designed to develop a wavelength in the 3.2 cm . region. The design of the internal cavity has a significant bearing on the frequency stability and efficiency of the magnetron. The CV. 64 will provide outputs of $35-55 \mathrm{KW}$ at around 9.1 cans. The CV. 108 will develop about 18 kW . and the CV. 208 about 25 kl . at around 3.2 cms . The CV. 208 may show frequency pulling and sometimes frequency-splitting. The CV. 64 and CV. 108 may show both moding and frequency pulling.
239. Magnet field strength th appears to affect the particular frequency range over which any particular magnetron will operate with reasonable efficiency and also the frequency stability, ie., the tendency for the frequency to remain fixed under a range of loading conditions. When magnets fall below a certain minimum value the efficiency and hence the output will fall sharply and the frequency may be unstable. For H.2.S. Mark IIC the strength of the magnet should not be less than about 1250 gauss, measured with the magnet in position on the chassis and the cover on the transmitted unit. For H.2.S. Mark IIIA the strength of the magnet should be at least 2500 gauss with the magnet on the chassis and the cover on in the TR. 3555 series transmitter units. In the IR. 3523 transmitter units the strength should be at least gauss.
240. When we come to the modulating pulse we must consider the effects of both amplitude and pulse shape. The amplitude will effect the efficiency considerably and may also influence the frequency developed. Changing the modulator used with a given transmitter unit calls, therefore, for a check of the R.F. alignment of the transmitter unit. The shape of the modulating pulse will have an appreciable bearing on frequency stability and hence on the conversion efficiency at any particular frequency. For frequency stability it is essential that the modulating pulse have a very steep edge and a flat top. The rise to maximum should occur in 0.1 microseconds. The maximum amplitude should be maintained constant within $\pm 5 \%$ for the pulse duration. Decay to zero should occur in not more than 0.4 microseconds.
241. The load presented to a magnetron by its output circuits effects irequincy, frequency stability, and conversion efficiency. We know that any oscillatory system will oscillate at a frequency which makes its reactance zero. This reactance will be the resultant value obtained by combining the reactance of the oscillatory circuit proper and the reactance coupled into it when the output circuit is attached. The frequency at which the magnetron oscillates will then vary if for any reason the output circuits present a changing reactance to the magnetron. In this way frequency pulling becomes possible. If the dimensions of the cavity and the elements in the output coaxial or waveguide feeder system are sufficiently modified by temperature changes there may be a progressive frequency shift. If the perspex cupola is assymetric, there may be changes in the reactance coupled back into the magnetron at different points in the rotation of the scanner. This reactance change may result in frequency pulling during part of each revolution of the scanner. Since the beat frequency resulting from the mixing of the $L .0$. signal and R.F. signal is then not equal to the I.F., radial gaps will appear on the P.P.I. display. These will coincide with those points on the scanner rotation where frequency pulling occurs.
242. When an oscillator tank circuit is coupled to on aerial circuit the resonant frequency of the entire system may show zero reactance for two tuning positions of the aerial circuit. The transmitter may then show the phencmenon of frequency Jump, i.e., the aerial may radiate on either of two frequencies. The difficulty can be evoided by using a light coupling which will, of course, reduce the energy transferred fran the transmitter to the aerial. To achieve a frequency response curve that has only a single peak, i.e., frequency stability, it is necessary to reduce coupling and sacrifice output, i.e., effliciency. This same conflict may appear in the H.2.S. transmitter. We have already spoken of the double frequency problems of moding and frequency splitting. These problems are most likely to appear when a magnetron has been matched to its output circuit, i.e., when the power output is at maximun. In lining up an H.2.S. transmitter it may, therefore, be necessary to depart from the setting of the matcining adjustments which gives maximun porrer output in order to obtain a greater neasure of frequency stability.
243. The gain in frequency stability at the expense of output power applies to the problen of frequency pulling as well as those of moding and frequency splitting.
244. The magnetron emission, i.e., the magmetron current for a given modulating voltage, also plays a part in the efficiency and frequency stability of the H.2.S. transmitter. As the emission falls the frequency stability diminishes and the efficiency falls.
245. When a magnetron starts to go "soff", i.e., the insulation from either side of the heater to the anode (earth) starts to go down, the resistance it presents to the pulse transformer secondary alters. The turn ratio is then no longer correct for the transformation of the magnetron hot impedance to a value that matches the characteristic impedance of the pulse cable. Part of the energy fram the artificial line will then be reflected and only part applied to the magnetron. The power output therefore falls. A succession of reflected pulses will then travel along the pulse cable causing a series of weak magnetron pulses. These pulses may be seen as a block of constant amplitude pulses in the height tube immadiately after the suppression break when a magnetron is going soft. If the pulse transformer or filement transformer insulation is going dorn a similar indication may be observed since these defects also cause a mismatch and result in similar reflections on the pulse cable. The pulses will continue until the voltage developed across the spark-gap by the artificial line is not sufficiently great to keep the gap in an ionised or conducting state.
246. If the magnetron enission goes down its effective resistance increases and mismatch. Conditions arise which will cause the reduced efficiency mentioned above.
247. If dirt or moisture appears on the surface of the waveguide and horn radiator in the Mark IIC scanner, or the inner surface of the waveguide feed a radiating systern in the Mark IIIA scanner, considerable attenuation will take place. The power cutput will therefore fall orf. These effects became more serious as the wavelength becames shorter.
248. Oil, dirt, etc. on the perspex cupola can likewise cause heavy attenuation of the R.F. beam during its passage from the mirror out into space. Due to the reduction in power actually going out in the beam the returns will then be weak.

## Shaping of the Modulating Pulse

249. So far we have not discussed the function of the diode and resistance connected in series across the pulse transformer. The function of these canponents is to prevent spurious triggering of the magnetron after the modulating pulse has been completed. To appreciate how such triggering could occur we must consider the pulse transformer at the instant the current pulse delivered by the artificial line is starting to decay. A certain amount of energy will be stored in the magnetic field surrounding the primary. is the current from the artificial line decays the collapse of the maznetic field will cause ringing at a frequency determined by the inductance and self-capacity of the transformer. The first positive overswing camot cause magnetron triggering as the cathode of


FIG. 56


NORMAL WAVEFORMS AS SEEN ON MONITOR 28


OVER SWING DIODE NOT FUNCTIONING


FIG. 61
the magnetron is being carried positive to the earthed anode. The following negative overswing will, however, tend to couse the magnetron to radiate a socond burst shortiy after the first. Further negative overawings may cause additional radiation These spurious pulses will terd to result in a main acho with feeble echoes tagging along behind it. The effect on tho P.P.I. diaplay will be to swamp the receiver by itoons of transmitter break through after the suppression ends and thus greatiy reduce minimm range. These apurious pulses will appear on the height tube as a series of pulses of diminishing amplitude directly after the suppression break if the diode or the series resistance is faulty. This indication should not be confused with that produced by a "soft" magnetron or a foulty pulse or filament transformer which appears as a series of constant amplitude pulses.
250. If the diode and series resistance are functioning, the positive orerswing carries the diode into heavy current and puts the low conducting resistance of the dicde in series with the relatively low associated resistance across the transformer. This serves to damp the ringing so heavily that it dies out without developing an amplitude capable of causing any material pulsing of the magnetran. The first negative overswing cannot, however, be fully damped out, and receiver suppression must be adjusted to contimue through this period if breakthrough is to be prevented entirely.
251. If the emissicn of a magnetron is falling and the.resistance it impresses across the pulse transformer is high, the voltage across the secondary may be so high as to cause arcing in the diode. This arcing may also appear before the magnetron emission has reached its full value when a cold set is first switched on Such arcing in a set which has had time to warm up should put the magnetron immediately under suspicion. The diode itself may, of course, be faulty. Inis can be checked by first changing diodes.
252. If the aluminium spray on the ends of the 4 K . resistor (used in Mark IIC) flakes wf and a high resistance contact develops between the reaistor and the metal grip, the offective reaistance goes up to such a high value that darging of the pulse transformer ringing becomes negligible and the series of spurious pulses with diminishing amplitude shows up on the height tube.

## The Modulating Fulse Ourrent Mouitor Point

253. On the front of the modulator 64 panel are two brown and whito Pye pluge. Rramination of the circuit diagram, fig.55, shows that these plugs are strapped and tapped in between the artificial line and the 1.1 abm monitor resistor. Sooping at either of these plugs will show the waveform developed across the resistor by the current discharged from the artificial line during the modulating pulse. The amplitude of this waveform can be measured in volts by means of the calibrated $\bar{I}$-shift on the Konitor 28. Since $E=I R, I=\frac{E}{R}=\frac{\mathrm{E}}{1.1}$ would give the current winch flows out of the line. Treating the 1.1 obm resistor as 1 chm we can say that the current in amperes is given approximately by the amplitude measured on the Monitor 28 in volts.

## The Nodulating Pulse Voltage Monitor Point

254- The modulator 64 panel also shows a blue and white manitor point. from a circuit diagram it is apparent that this plug is tapped between Roli and Ro 12 in the resistance chain between the spark gap and earth. But R.10, R. 11 and R.12 are in parallel with the pulse cable and the pulse transformer primary. Hence the voltage across $R_{0} 10, R_{0} 11, R_{0} 12$ must be equal to that acroses the pulse transformer primary while the artificial line is discharging. The voltage developed across R. 12 will be 150/9550ths. or about $1 / 64$ th of the total. Hence, by measuring the voltage developed across $\mathrm{R}_{0} 12$ at the blue and white monitor plug on the Monitor 28 and multiplying by 64 we bave the approximate amplitude of the valtage output from the modulating line. This will be of the order of 3.5 Ky . The normal pulse will show as a negative-going pulse with a slight heavily damped positive overawing and a smaller negative overawing.
255. Since the pulse transformer is an auto-transformer and does not, therofore, ceuse a phase inversion, the wavercm at the voltage monitor point will be in the same phase as that at the magnetron cathode. Any ringing due to a faulty diode or 4 K . resistor will then appear at this point as a series of rings following the initial negative-going pulse. If a faulty magnetron, pulse


'C' RELAY BECOMES ENERGISED WHEN POWER UNIT 'E' RELAY
ENERGISES ANO SWITCHES + 3OOV TO ANODE OF TRIGGER
Valve ( $V 7$ ) le. When reo LGHT COMES ON $C$ RELAY
COMPLETES BOV A.C. TO PRIMARY OF E.H.T. TRANSFORMER
transformer of filament transforwer is resulting in a mismatch to the pulse cable and consequent reflections, the reflected pulses cen also be seen in their appropriate phase at this point. Scoping at this point on daily inspection will therefore give a convenient check as to whether or not all is well in the overswing diode, pulse transformer, filament transformer and magnetron. Scoping at the current monitor point will serve the seme purpose but will show phase-reversed waveforms.

## The Modulator Overload Trip Safety Circuit

256. To prevent damage to the modulator power pack due to any form of overload resulting from a fault in the modulator or transmitter unit, an overioad relay is included in the moculator. This is relay A in the modulator 64. The associated safety circuit is shom in fig. 62. R.8, across the relay solenoid, is in series with the oarth iine, and the poner pack. The voltage developed across the solenoid by the normal mean current is not sufficient to energise the relay. The appearance of any fault which results in any appreciable increase in this mean current will reise the valtage across R. 8 sufficiently to energise the relay. The safety valve, V.4, in the modulator, is then brought into qperation and reley $B$ is energised. This results in cutting off the $H_{0}$ T. supply to the trigger vaive. Relay $C$ is then de-energised and the 80 V A.C. input to $\mathrm{T}_{0} 3$ is broken and the rectifier taken out of operation. When the safety vaive has completed its cycle the trigger valve canes back on and the supply to T .2 is again completed. If the fault has disappeared the equipment will now operate normaily. If the fault persists the overload relay will again be energised and the cycle will be repeated.
257. The dotails of the sequence of events are tabulated belar:-
(a) When an overioad energises $A$ relay, contact $A / 1$ in the grid circuit of V. 4 opens. This removes the negative bias from the grid and the valve passes current. Relay B in its anode circuit is then energised.
(b) When relay $B$ is energised the contacts $B / 1$ and $B / 2$ are operated
(i) $B / 1$ breake the +300 V supply to the trigger valve V .7 . This results in a cessation of sparic-gap operation and hence of transmitter operation. Also, since V. 7 is not passing current, $C$ rolay is de-anergised.
(ii) $\mathrm{B} / 2$ conneots the feedback condenser, C.5, between the anodo and grid of V.4.
(c) When $C$ relay is de-energised $C / 1$ opens and the $80 V$ input to T. 3 primary is broken 80 the -4 KV power pack oeases to operate. This, of course, removes the ourrent through A relay soienoid which caused the original tripping and a relay is de-energised.
(d) When A relay is de-energised $A / 1$ closes and recomeots the negative bias to $V .4$ grid which tends to out the ralve off. Due to the presence of C. 5 between anode and grid the attempt of the anode potential to rise tends to oarry the grid with it and thus dolays cut-off and makes the decay of anode current gradual. In about 10 seconds the decay will have proceeded far enough to make $B$ relay do-energise.
(e) When B relay is de-energised B/2 switches C. 5 out to restore the safety valve oirouit to its norwal state and $B / 1$ reconnects the 300 V supply to V.7.
(f) The renewed flow of current in $V .7$ again enorgises $C$ relay and $\mathrm{c} / 1$ closes.
(g) The closing of $\mathrm{C} / 1$ restores the 80 V A.C. imput to T .3 primary and the -4 KV pack goes back into operation.
(h) The circuit is now fully operational again. If the fault has been cleared normal operation is resumed. If it atill persists a relay will trip again and the same cycle will repat.

258. Examination of a Mark IIC installation will reveal the following points:-
(a) Projecting from a glass seal passing into the cylindrical cavity of the CV. 64 magnetron is a metal probe. The other end of this probe terminates in a loop whose end is tied to the earthed anode. The oscillating R.F. field that appears in the cavity during the 1 microsecond nodulation period indsces a voltage on the loop. The potential of the output end of the loop, 1.e., the probe coming through the glass seal, then rises and falls simuoidalif with respect to earth at the radio frequency of the cavity oscillations. This probe fits into a flexible section of the inner of a coaxial ine whose outer is earthed. The Ro F. voltage then appears between the inmer and outer of the coarial line which terminates at an output plug on the panel of the transmitter unit.
(b) In this seation of coadial line is an adjustable quarternave matching slug which is mereiy a section of metal cylinder sliding on the inside of the outer of the coaxial inne.
(c) Passing from the output plugg to the scanner Type 63 is a dielectricfilled high power feeder which terainates in a plug at the scamaer.
(d) If the soanner is stripped down it will show a further section of coaxial feeder clamped rigidly where it enters the scamer by means of a suitable clemping band. This feeder section terminates in the firred part of a capacity joint shown in fig. 63.
(e) Pitting into this fixed section of the capodity joint is another suitably designod section of the coasial feeder. At the high frequancies invalved the narrow air gaps ars as effective as an actual metalic contact but provide relative movement between the two sections which are coupled capacitively across the air geps. We thus obtain electrical contimity at the radio frequency in a rotating capacity joint.
(f) The rotating member of the joint passes up through a tube which is attached to the rotating member of the scanner main bearing. The free end of the tube is segmented into six tapered seotions. A tapered locking rut sarews up over this end. As this mut is tightened up the feador section pasaing up through the tube is gripped firmily and held properly control with respect to the fixed section of the capacity joint. The feeder seotion thas gripped rotates with the motor-driven mirror.
(g) The rotating section of the feeder passes through the back of the mirror and terminates at a plug on the side of a reotion of rectangular waveguide. The inner of the line, embedied in polystrene, projects part way across the narrow dimension of the guide. This projeotion sorves to launch the R.F. energy into the waveguide in much the same way as an aerial launahes R.F. energy Into free apace. An electromagnatic wave guided by the walls of the guide, travels towards the mouth of the guide. To avoid heavy reflection at the guide mouth where the wave must pass from its guided form into the froe eppece form, it is necessary to have the guide mouth suitably flared.
(h) The flaring at the end of the waveguide is called a sectoral hom. The shape and dimensions of this horn and its position with respect to the focus of the paraboloid mirror play a large part in the polar diagram of the transmitted beam. Any damage to the horn or to its supports may therefore be expected to upset the shape of the H.2.S. bearn.
(i) The wave radiated from the horn mouth will have the E vector acrosa the narrow dimension of the horn, i.e., in the horizontal plans. The H.2.S. beam is therefore horizontaily paiarised. The azimith beam width of the main lobe for the type 63 scannar is about $8 \frac{1}{2} 0$. Returning to the transmitter unit we note that between the slug and the output plug a branch line comes off at right angles to the coarial cutput line. This line passes to a CV. 43 T . R. suritoh wich flashes over when the magnotron pulses. When the CVO 43 flashes over the result is to practioaily short the branch line an odd rumber of quarter wavelengths from the Junction. The branch
line then presents a high impedance at the function when the transmitter pulses and there is no appreciable flow of energy down the branch line. This branch line is actually the receiver chamel through which received signals pass to the orystal mixer chamber through the CV. 43 T.R. switch.
259. Having noted the channel along which the R.F. pulses developed by the CV. 64 must travel, we must now consider the functions of the matching slug. For the maximm transfer of energy from the magnetron cavity out into space we must arrange that:-
(a) Resistive losses in the feeder system are kept to a minimum.
(b) The magnetron is matched to the feeder and the feeder to the array.
(c) The flow of R.F. energy down the branch line is kept down to a minimum.
260. To minimise losses the following simple precautions are necessary:-
(a) Ensuring that the output probe of the CV. 64 is properiy fitted into the flexible inner section of the coasial output line and has not pushed the flexible line to one side.
(b) Ensuring that the plug connections are tight at both the scanner and the transmitter unit.
(c) That there is no accumilation of dirt or moisture in the waveguide radiator to couse attemation.
(d) That the perspex cupola is free from dirt and oil films.
(e) That standing waves be kept down to the minimum throughout the feeder system.

Should sparking be occurring in the plugs due to poor contacts, or at a faulty contact between the CV. 64 cutput probe and the Plexible inner iink, the effect will be, not only to reduce output due to losses, but to greatly increase noise. On the P.P.I. display this will appear as flashing or spoking, that is when the gain is high enough to bring up signals the high noise level will brighten up the full timebase sweeps.
261. The problem of minimising atanding waves in the feeder system involves some rom of matching wherever a discontimity occurs. Most of these points are taken care of in the actual design and do not call for any adjustment by the radar mechanic.

## The Mark IIC Ro F. Output Matching

262. Camplete presetting of the magnetron matching arrangements is not, however, possible as magnetrons differ in the impedance they present to the feeder system. We may then regard the problem as a matter of transforming the impedance of the high power feeder at the transmitter unit output plug to a value at the magnetron that matches the output impedance of the magnetron. If we assume that the feeder offers a purely resistive impedance, the length of coaxial between the plug and the quarter-wave slug transforms the characteristic resistance to a now value depending on the length of line. The quarter-wave slug has itself some characteristic impedance determined by its diameter and the diameter of the comion inner. Let us assume the value is $Z_{0}$ and the impedance presented to the plug side of the plug is $\mathrm{Z}_{1}$. This impedance will be transformed to scme velue given by $Z_{2}=Z_{0}^{2} / Z_{1}$ if the frequency of the signal is such as to make the slug a quarter wavelength. This impedance value is again transformed by the line section beyond the slug to a value determined by the leneth of this section. The position and range of movement of the slug have beer, so chosen that by moving it through its travel a point can be found where the resistive component of the impedance presented to the normal magnetron matches the hot impedance of the magnetron. If the impedance presented to the magnetron also includes reactence the effective reactance of the oscillatory system is not the same as it would be if the impedance presented were purely resistive. The frequency of the oscillations is therefore modified to a velue where the net reactance of the system is zero. As the position of the matching slug is varied the power output from the horn radiator will inorease as the resistive match is improved. At the same time frequency changes may appear due to changes in the reactance coupled
back into the magnetron oscillatory circuit. For certain slug positions a small change in position may result in appreciable frecuency changes. This position may, in some cases, coincides with the position for maximm power output and maximum aignal amplitude.
263. If, with such a setting of the slug, the standing wave in the cupala due to reflections fram the perspex and parts of the fuselage differs at different points in the scamer rotation the raactance coupled back into the magnetron may vary appreciably during the scanner rotation. The result will be frequency puling which will result in signals returning on different frequencies during different parts of the scanner rotation. This, in turn, will result in radial fades or gaps as the I.F. developed in the mixer will not be constant and may swing in and out of the pass-band of the I.P. amplifier. Altering the Lo. tuning may then alter the portions of the scamer rotation where the I. F. output fram the mixer is within the I.F. amplifier pass-band. The radial gaps will then shift. If the pulled frequency is outside the pass-band of the CV. 43 this gap shif'ting by the L. 0 . tuning will not occur.
264. The tendency for small changes in the reactance at the scanner end to be trensformed into appreciable reactance changes (and hence frequency changes) at the magnetron, depends very largely on the position of the matching slug. During portions of its trevel the result will be mainly to alter the resistive matah without coupling back much reactance. In this range the power output will change without any appreoiable frequency chsige occurring. The best position of the matching slug is therefore a position where the slug can be moved $\frac{1}{4}$ inch either way without altering frequency much while at the same time not sacrificing power output by more than is necessary to ensure reascmable frequency stability. With a good magnetron, good magnet, and satisfactory modulatine pulse, it should be possible to find a matching slug position that permits displacement of the slug by + or $-\frac{1}{4}$ inch without causing freguency changes of more than + or $=4 \mathrm{Mc} / \mathrm{s}$. and without reducing power output by more than $10-20 \%$ of the maximum value. If the $L_{0} \mathrm{C}$. is not returned and the anplitude of signals does not drop by more than $50 \%$ as the slug is moved + and - $\frac{1}{4}$ inch, the megnetron frequency change is less than $4 \mathrm{ic} / \mathrm{s}$. With such a setting gapping should not occur. If the magnetron emission falls, magnet strength goes below about 1250 gauss, or modulating pulse has inedequate amplitude or poor shape, the occurrence of radial gaps or fades will be much more likely.
265. Although more clearly allied with the receiver chain it may be instructive to consider at this point the relation of the matching alug to returned signals. These signals pass down the waveguide, through the capacity joint, and along the high power coexial feeder to the transmitter unit. From the R. F. plug they pass to the coaxial line in the unit. At the junction of the branch line the incouing signal has the choice of two paths. The first of these is straight ahead toward the magnetron and the second is down the branch line. As the impedance of the cold magnetron is almost wholly reactive, the flow to the magnetron is refleoted and this reflected wave may interfere with the wave flowing directly into the receiver branch line. Such interference will be minimised if the position of the matching slug so modifies the phase of the reflected wave as to bring it into phase with the direct wave. Ne say the slug has then transformed the cald magnetron impedence to a high value at the branch line function since the effect is the same as if there hed been no plow to the magnetron due to a high opposing impedance. As the setting of the slug is varied to match the hot impedance of the magnetron to the output system, the cold impedence presented at the branch line junction will also vary. It may be found that maximu output will occur at a slug setting that will permit an appreciable interference betwepn the wave flowing directly into the branch line and the wuve reflected from the magnetron. Practice in the past in Bomber Command has therefore been to adjust the slug on the ground for maximum permanent echo signal output from the receiver as observed on the Monitor 28. This method is open to the objection that such a method of setting may leave the slug in a position where small changes in the reactance coupled back into the magnetron may cause an appreciable change in the magnetron frequency. Altermatively, small changes in supply voltage causing changes in the magnetron emission or in the modulating pulse amplitude, may also cause unstable frequency canditions. What constitutes the most reliable way of obtaining the best compramise between frequency stability and strength of returmed signals remains one of the uncertainties in the use of the transmitter unit employed in the various H.2.S. installations.
266. To onsure that the flow of R.F. energy down the receiver branch line is kept to a minimum during transmittion it is only neceasary to ensure that the CV. 43 T.R. switch is functioning properly. Fuller details of this valve will be given when dealing with its functions in the receiver chain. Its functions in the transmitter chain is to flash-over when the transmitter pulse comences and thas make the branch line appear effectively a shorted quarter-wave stub at the function with the main line, thas reducing to a trickle the energy flow down the branch line while the transmitter pulsea. This flash-over will occur earlier in the transmitter pulse rise and will develop a more effective short when the CV. 43 resonant cavity is tuned to the same frequency as the magnetron. Hence, CV. 43 twining has a bearing on the transmitter output radiated from the scamer. The losses down the branch line are, however, more significant fram the standpoint of damage to the crystal than from the standpoint of reduced range cue to rednaced power output.

267. The Mark IITA feeder system is mach more elaborate than that used in Mark IIC for the following reasons:-
(a) In the 3 cm . band dielectric losses in coaxial feeders become so greet that it becanes necebsary to devise some form of tramaisaion chamel to the scanner that introduces a much lower atteruation. The only form of transmission channel capable of meeting this requirement is a waveguide system.
pagation in waveguides can take place by means of different modes, i.e., different electromagnetic field patterns, which will behave differently at discontiruities, bends, etc. with regard to the introduction of standing waves. Standing waves may result in valtage maxima of such amplitudes that corona aischarges may develop across the guide. Such discharges will cause large energy losses and will develop noise. It beacmes necessary, therefore, to use mode filters at various points to cut out unvanted modes which will introduce unwanted standing waves and unwanted losses.
(c) To prevent the appearance of urwanted modes as much as possible and at the same time carry the energy around bends, across a vibrating joint, and across a rotating joint, it is necessary to use both circular and rectangular guide sections. The transitions from one to the other call for suitable matching adjustments.
(a) To operate with a common $T$ and $R$ array we require:-
(i) Matching adjustments to match the magnotron to its output system.
(ii) Adjustments to match the common array to the receiver charmel.
(iii) To transform the cald impedance of the magnetron to a high value at the receiver branch line junction.

It is these matching adjustments with which the radar mechanic will be primarily concerned. The various mode filters and fixed matohing adjustments are of interest to the scientifically-minded mechanic but are not a major concern.
268. Eramination of an H.2.S. Mark IIIA installation fitted with a transmitter unit of the T. R. 3555 series will reveal the following points:-
(a) The oscillatory voltage developed in the magnetron cavity is induced on a loop inside the carity. One ond of the loop is tied to the earthed anode and the other cones out as a probe inside a glass seal.
The probe of the CV. 108 terminates in a rounded knob which projects into a circular guide section. The rounded knob is used to prevent sparking across to the guide wall. The CV. 208 probe differs from that of the CV. 108 in that it is not rounded at the end. As an alternative method of preventing sparking or corcna discharge the glass seal is extended to enclose the entire probe. For both valvo types the guide is held stationary with respect to the magnetran by means of a suitable locking ring arrangement. The R. F. energy is laumched into the circular guide section from the ond of the probe in somewhat the same way as energy is launched from an aerial into speace.
(c) In the earlier units in the T. R. 3555 series the two output matching adjustments provided consisted of an adjustable shorting piston in the end of the circular guide, and an adjustable iris between the probe and the junction of the circular guide and the rectangular guide section into which it feeds. In acme units of the IR. 3555 series, instead of the piston and the adjustable iris two silion tuning probes on an adjustable carriage are fitted to a square section inserted in the circular guide. The distance that those probes project into the guide can be varied. The two adjustments then consist in moving the oarriage and the position of the matohing probes and in varying the distance the probes project into the guide.

## C.D. 0896 L

MARK III FEEDER SYSTEM

(d) The circular guide, instead of being mechanically cormeoted to the rectangular guide, is terminated in a circular flange. A short circular section is fitted to the reotangular guide. This short section likewise terminates in a circular flange separated from that on the main circular guide by a narrow air gap. The primary purpose of this gap is to allow for tolerances in the dimensions of the magnetrons. To provent escape of R.F. energy through this gap it mast appear to the wave in the guide as if no gap were present. To assiat in achieving this result, ditches, a quarterwave deep and a quarter-wave out from the inner guide surface, are cut in the lower flange. These serve offectively as RoP. chobes.
(e) The end of the rectangular guide is fitted with a $45^{\circ}$ inclined plate. The purpose of this plate is to take the R.F. energy around the right angle bend without introcuoing appreciable reflections beck up the ofrcular guide.
(f) Proceeding along the rectangular guide we note a short rectangular branoh at the botton of the guide. The base of this branch is shorted. Into the side is fitted a circular section with an adJustable tuning piston. A little gas-filled valve, CV.115, with a copper diaphragm sealed into the envelope, is fitted at the jumction of these circular and reotangular sections.
(g) A little farther alang the guide is the recoiver branoh line. This line inoludes the T.R. switch, CV.114, the orystal mimer, and another section of circular guide fitted with a shorted tuming piston. This piston and the one mentioned in ( $f$ ) are the RoF. irput matching adjus troents.
(h) The rectangular guide, with its narrow dimension vertical, terminates at the panel of the H.F. box. Comection to the scanner type 71 waveguide systen is made by means of a ciroular section of flexible rubber guide.
(1) The rubber guide section foeds into a further rectangular seotion that feeds into a oircular seotion at right angles to it. $A$ perspex seal is inserted at the ontrance to this rectangular section. This seal, together with another near the waveguide horn, forms an airtight system which breathes through a drying agont bottle. It also prevents any dirt, eto. in the cupala from worifing back into the H.F. box raveguide seotions. The perapex is assentially transparent to the ReF. puises and signals.
(j) The circular section into which the reotangular section in (i) foeds forms the fixed member of a rotating waveguide joint.
(k) A further section of cincular guide, separated by 1 mm. from that in ( $J$ ), focms the rotating member of the joint. This section moves with the mirror as it turns.
(1) Circular mode filter rings, maunted on tralitul supports, appear in each of the circular sections that form the rotating joint.
(m) The rotating oircular section feeds at right angles into a rectangular seotion with the lang dimension of its cross-section in the horizontal plane. This section is taken around a gradual bend and terminates in a waveguide union which couples to a further section of rectangular guido. This section oantimes the bend but is also tristed through $90^{\circ}$ to finish up with the guide mouth facing the parabaloid mirror with the lang dimension of its cross-section in the vertical plane and the narrow one in the hoxizontal plane.
(n) The guide is terminated in a sectoral horn, i.e., the narrow oross-section dfmension is kept comstant but the long one is inoreased. The wave energing from the guide has the g vector in the horizontal plane, i.e., the radiation is horizontaliy palarised. The main lobe of the radiated beam has an azimath width of about $31_{2}^{\circ}$ in the scanner type 71.
(o) Another matching iris is fitted at the back of the horn
269. Transmission line and waveguide principles are discussed in Chap.13.

The Output Controls of the 2R. 3555 Series H. F. System
270. We have discussed the mechanical details of the waveguide feeder system. We shall now consider the functions to be fulfilled by controls and the controls provided to fuleil these funotions. In order to obtain the maximum flow of enorgy from the magnetran output probe along the feeder system and out into space, we mast arrange:-
(a) That the maximm energy flow leaves the probe and passes into the guide. This requires that the output sys tem present to the probe a resistive impedance camponent equal to that of the probe.
(b) That the maximum fraction of the energy launahed into the guide be radiated into space. This means that we must:-
(i) Minimise stending waves in the guide since these represent energy reflecting back and forth in the guide system thas introducing losses by heating the inner guide surfiace and by causing corona discharges at points where the standing waves show voltage maxima.
(ii) Erfectively prevent the flow of energy through gaps and down parallel branches instoad of along the main feeder.

To minimise standing waves it is necessary to arrange that the reactance presented to the probe by the output system be equal in magnitude and opposite in sense to the reactive component of the probe output impedance. To effectively prevent the flow of energy into the branch lines and gaps during the duration of the transmitter pulse it is necessary to arrange that these appear to present electrical contimulty, i.e., as if there were no gap in the surfece.
271. In considering the contrals which are adjusted to obtain a good RoF. output it may be helpful to considar the transmisaion line analogy. Suppose we have an ordinary transmitter which is coupled to an aerial by means of a foeder. To get the maximm energy transfer fram the tank circuit to the feeder the feoder and tank circuit must be matched. This is normally done by same form of transformer coupling. The feeder may be tapped in directly on the coil which then serves as an auto-transformer. Alternatively, depending on the type of feed used at the aerial, it may be preferable to use a second coil coupled to the tank coil to give a mutual transformer arnangement. In either case the tum ratio of the primary and secondary windings must be given by
$\frac{\text { Secondary Turns }}{\text { Primary Turns }}-\frac{Z \text { Tank Circuit }}{2 \text { Peodor }}$
where $Z$ Tank Circuit is the dymanic resistance of the tank circuit and $Z$ feeder is the characteristic resistance of the line.
272. Matching the tank circuit to the feeder serves to get the maximum output on the feeder but does not guarantee that this output is radiated fram the aerial. To get the maximum energy radiated the foeder must be matched to the aerial. The aerial will present a certain impedance to the feeder at ayy speoific frequency. This impedance depends on the aerial dimensions and design If the aerial is resonant this impedance will be pure resistance. For a nonresomant aerial the impedance will contain both resistive and reactive components. To have the R.F. energy travel dom the feeder to the aerial without reflection, i.e., without causing a standing wave on the feeder, the resistive component of the aerial impedance must be matched to the oharacteriatic resistance of the line and the net reactance of the system must be brought to zero. These two resulta are of ten achieved by sone form of stub-matahinge A tapping point is located at which the resistive component of the aerial inpedance has been transformed to a value equal to the characteristic resistance of the feeder The impedance transformer is, of course, the length of feeder between the tapping point and the aerial. The reactive component appearing at the tapping point is then cancelled out by putting a short-circuited or ponecircuited stub of suitable length across the line at the tapping point. When the two condition of resistive match and zero net reactance have beon fulfilled the energy will flow from tranamitter to aerial in the form of a travelling wave. The standing wave which is produced when reflections occur as the result of a miamatch will then be absent and there will be no valtage maxima and minima along the main feeder.
273. Peturning to our H. F. box Peeder system we are faced with a similar type of problem. There is a difference, however, aince the introduction of the output probe of the magnetron into the waveguide results in the appearance of both reactive and resistive components in the output impedance of the magnetron. To get the maximm flow of energy into the guide we must meet the same conditions that are necessary to get the maximum energy radiated from an aerial. In the first place we must match the resistive compoment of the probe's output impedance to the wave impedance of the guide. The second condition to be met is to match out the reactive component of the probe's output inpedance. The first condition calls for some form of impedance transformation and the second for the introduction of a reactance which is equal in magnitude and opposite in sense to thet of the probe.
274. To pursue these points further without going into a detailed study of waveguides at this point it will be necessary to accept the following points:-
(a) The term wave impedance is the waveguide term that corresponds to characteristic impedance of a feeder. The value of the weve impedance depends on dimensions, shape, frequency and the type of wave.
(b) Reactances introduced in feeders cause reflections and standing waves but comot absorb power since current and voltage are $90^{\circ}$ out of phase. In the same way reactances in a gride cause roflections and standing waves but do not absorb power. Eence when a standing wave appears due to an unbalanced reactive component we can effectively eliminate it by introbicing some form of reflector that causes a standing wave of the same amplitude but exactly in antiphase. The two will then cancel out and we may asy that the net reactance is zero.
(c) In transmission line matohing the quarter-wave transformer is often employed. This matching device is ossentially a section of transmission line of a different characteristic impedance fram the main feedor. In guides, quarter-wave irises, i.e., sections with different dimensions or a different dielectric are ofton employed. Instead of a different guice section two projections into the guide separated by a quarter wavelength may be used. If the distance that such a pair of projections extend into a guide is made variable, they can serve simultaneously as a quarter wave transformer to obtain resistive matohing and a variable reactance to match out an unranted reactive component.
(d) Guide dimensions must be of a certain minimum size before a wave can be propagated inside them for any appreciable distanco. These minimum dimensions are called the cut-off dimensions.
(o) The wavelentth in a guide depends on the wave type or mode. For a wave that has a freo-apace wavelength of 3.2 cms., the wavelength in the rectangular guide is 4.14 ans. and the wavelength in the circular guide is 5.95 cms .
275. Let us conaider now the actual matohing adjustanents used in the earlier H.F. boxes in the TR. 3555 series. Prinoiples aro discussed in paras. 12271229. Details are shown in figs.65, 180 and 220. The piston can be adjusted to a position whare the resistive componont presented by the probe is tronsformed to a value that matches the wave impedance of the guide. There will, however, be a standing wave in the guide sootion botween the probe aide of the iris and the pistan. By moving the irlis the phase of the reflection from the iris can be adjusted to be opposite to that fram the probe. It is not likely that complete cancellation wlll occur due to amplitude difforenoes. A readjuatment of the piston will now give an improved cancellation of the iris reflection. Thus, by alternately varying the two adjustments, a conbination of settings can be found which results in the maximum flow of energy down the guide system.

## 276. What happens to this energy depends on:-

(a) Whether the guide is correctly matched at its output ond.
(b) Whether there are losses in gaps and branch lines.
(o) Whether the successive sections are matched to each other.

The radar mechanic is not in a position to do anything about these points in so far as adjustments are concerned, but should be aware of the provisions made and how their failure may result in low output frcm a good magnetron.
277. Matching the waveguide proper to its output stage is dane by properly locating the guide with respect to the mirror and by suitably flaring the guide mouth. Any damage to the guide that alters its position or distorts the horn termination will result in a reduced output and probably in polar diagram diatortion.
278. Matching of the guide sections to one another is done by suitably choosing the dimensions used and by introducing fixed adjustments. Suitable filter ring are inserted to prevent the passage of unmanted wave types or modes which may appear at discontinuities. These rings serve the seme purpose as wavetraps an filters in the more familiar types of R.F. circuits. Care must be exercised in scamer and H. F. box mainterance to avoid anf distortion or derangement of the waveguide feeder system if the fixed matching and filtering devices are to function properiy. Care must also be exeroised to prevent oil, dust, or moist from getting into the guide system and causing heavy attemation of the output.
279. To prevent R.F. energy from flowing into the receiver branch line when the transmitter flres we have a T.R. cell, CV.114, an electricel wavelength up the receiver branch line. This cell has a low pressure water-vapour filling which fleshes over when the cavity is shocked into violent oscillation by the energy flowing down the branch line during the first cyales of the transmitter pulse. There is then an effoctive short oircuit a wavelength from the junction of the branch line, and the output line. When the wave reaches the shorted end it is refleoted and travels back towards the main line. Since it has travelled two full wavelengths it is in phase with the wave travelling down the main line so the effect is the same as if there were electrical contimaity straight acros the mouth of the branah line. There is then no appreciable loss down the receiver branch line and no interference at the Junction. Should the CV. 114 be faulty and fail to flash over the transmitter output will obviously be reduced, but what is more significant, the crystal will be ruined.
280. The purpose of the second branch line may not be immediately apparent. Its function is wrapped up with reception of signals rather than transmission. Suffice it to say at this point that tuning piston 2 is included so that incoming signals arriving at the branch line will see a high impedance in the direction the magnetron so will travel down the receiver branch line. Since this branch Iine has been included same provision is necessary to effectively prevent the flow of transmitter outprit into it. The rectangular section of the branch is a. wavelength long and is shorted at the ond. Fitted in the side is an antiT. R. cell, CV.115. This valve is argon-filied. A copper diaphragm with a rescnant slot appears half-way down the wall of the wavelength of rectangular guide. The CV. 115 must be inserted to have the slot horizontal. Then the tranemitter fires the resoment slot arcs over to effectively give the wavelength of rectangular guide two contimuous sidewalls. The weve then travels to the ahorted bottom, reflects, and travels back. As the path traversed down the branch line and back is two wevelengths the reflected wave will be in phase with the wave contiming dorn the main guide. The result is then again the same as if the main guide wall were continucus and there were no branch line presant. Should the CV. 115 be left out, faulty, or fitted with the slot vertical, energy will flow through the slot and reflect back to arrive in the main ine with a phase that will depend on the setting of the piston. If there is a large phase displacement, the reflected and direct waves and the output vill interfere with fall. Tuning pistons 2 and 3 are receiver adjustments so will be desit with in the receiver chain.
281. The lass of energy at the vibrating joint is prevented by means of the quarter-wave ditches at right angles to the F-vector. As the Ro F. currents flow in the guide wails the wave travalling through the gaps will produce a certain current diatribution in the upper flange. On the lover flange the curcents must travel down the one side of the quarter-wave slot and up the other so are out of phase by half a wavelength or $180^{\circ}$ when they reach the flange surface. The fields set up in the upper and lower flanges beyond the ditch are then in antiphase so cancel out. Hence there is no flow of energy out through the joint. The ditches thus serve ns R. F. chokes.
282. To prevent sparking between the pistons and guide walls across the gap that must obviously be left to permit pistan movement, the piston faces are arranged as shown in fig.180. The energy travelling down that side, into the ditch and back again, will have travelled a full wavelength so will be in phese with the wave reflecting fran the pistan face. The effect is then the same as if the piston face were actually making metallic contact with the guide wall and there were no gap at all.
283. In the latter H.F. boxes of the T.R. 3555 series the iris and tuming piston 1 are replaced by a moveable carriage carrying two adjustable silica tuning probes separated by a quarter wavelength. As the two probes are discontimities a quarter-wavelength apart, we may regard them as forming a quarterwave matching transformer with a characteristic inpedance dependent on the distance they project into the guide. If we start with the probes projecting in about $\frac{1}{4}$ inah and slide the carriage we can find the point that gives the best output down the guide. There will probably still be same unbalanced reactance, i.e., a standing wave between the control and the top of the guide. By increasing the distance the probes project into the guide by $\frac{1}{4}$ inch and again adjusting the carriage, a better setting may be found with a smaller standing wave. By increasing the distance tive probe projects into the guide in $\frac{1}{4}$ inch steps and finding the best carriage position it is possible to find the position for maximum power output.
284. So far we have assumed that the guide is correctly terminated so that there will be no standing wave along its length. When setting up with a Test Set 205 this will be the case. Actual scanners may not, hovever, provide this correct match. The guide may then show a fairly pronounced standing wave. This is equivalent to coupling additional reactance into the magnetron which may cause frequency puiling, frequency splitting or moding. In the case of the CV. 108 moding is the more cammon result and in the CV. 208 frequency pulling is the more usual effect. These effects will be most pronounced when the heaviest loading is applied to the magnetron, i.e., when the matching adjustments are set for maximm autput. The effect will be unstable returned signals in the case of moding, and falling off signals with frequency puliing. The unstable signal strength results from the fact that the one mode of oscillation may give a signal which comes within the I.F. pass-band after beating with the L.O. signal while the other mode results in an I.F. signal near the edge or cutside the I.F. pass-band. To prevent frequency pulling or moding it is necessary to reduce the loading on the magnetron by introducing a deliberate mismatch at the magnetron. This process is analagous to loose coupling in short wave transmitters in order to secure a higher frequency stability. A suitable mismatch unit wich introduces a standing wave with an anmlitude of the same order as that caused by the worst scanner is used to ascertain what settings of the two H. F. output controis will sustain a stable frequency as the phase of $s t a n d i n g$ wave is varied throughout its full range. Whan this setting of the control is found it is reasonable to assume that the magnetron can be relied on to give a sufficiently stable frequency for operational purposes when the H.F. box is installed in an aircraft.

How the Magnetron is proteoted in the TeR. 3555 Series
285. Details of the protective circuit are show in fig.66. Provision is made to ensure that:-
(a) Magnetron heater voltage is always applied when there is no modulating pulse on the magnetron cathode.
(b) As soon as the modulating pulse is applied the heater voltage is cut off.

These precautions are taken to protect the magnetron. Once the cathode has been heated until its steady emission is takiug place the application of a modulating pulse will result in sufficiont bombardment of the cathode by oscillating eleotrons to sustain the correct emitting temperature. Should the heater valtage be contimed the emission would contime to rise until the cathode was destroyed. If the mofulating valtage is applied without previcusiy applying heater voltage to warm the cathode the magnetron current will be 1 om . The magnetron will then prosent an abnormally high impedance to the pulse transformer and the resultant mismatch will apply such a heavy voltage aaross the thermal relay shown in fige 64 that the neon, CV.189, ionises and energises the


FIG. 66
thermal relay. The safety valve in the modulator then goes into queration to produce the following resuits:-
(a) 300 V supply to the trigger valve, $V .7$, is broken and the spark-gap switah, V.3, no longer operates to discharge the artificial line and produce a modulating pulse.
(b) The 80 V A.C. input to the primary of the transformer, T.4, whose secondary feeds the $-4 K V$ rectifier stage is braken. This means there is no longer any E.H.T. to charge the modulating line.
(c) The heater supply to the magnetron is again completed.

The CV. 189 will arc over when the voltage across the secondary of the pulse transfomer reaches about 16 KV .
286. The cycle of events is as follows:-
(a) When the CV. 189 arcs over the themal rolay (bi-metallic strip type) closes ard earths the function of R.15; R. 18 in the grid circuit of the modulator safety valve, V. 4 .
(b) Due to the removal of the negative bias the valve conducts and B relay is enargised.
(0) Contact $B / 1$ is then opened and the 300 V supply to the trigger valve is broken and the spark-gap ceasos to operate, and there is no further application of the modulation puise to the magnetron cathode.
(d) Due to the cessation of ourrent in $\nabla .7, \mathrm{C}$ relay is de-energised.
(e) $C / 1$ then opens and breaks the 80 V A.C. input to T. 3 primary so the $-4 K V$ pacic ceases to operate.
(t) $\mathrm{C} / 2$ closes and recormects the heater valtage input to the primary of the magnetron filament transformer.
287. If any other fault develops which causes the rectifiers in the -4XV pack to pass excessive current the overicad relay trips and puts the safety valve into operation to produce the seme results as outlined in para.256-257. When $C$ relay is energised contact $C / 2$ reconnects the 80 V irput to the primary of the magnetron filament trans former.
288. The cycle of events when the equipment is awitahed on is as follows:-
(a) When the "L.T. ON" button is pressed relay $C$ in the modulator is still in an unenorgised state. The oontact $C / 2$ is closed, so the 80 V A.C. aupply to the filament transformer of the magnetron is comploted. $C / 1$ is open so there is no 80 V imput to T. 3.
(b) Arter the "H. T. ON" button is pressed there is a delay of about 30 seconds after which the red light ocmes on. The appearance of the red light coincides with the energising of E relay in the powror unit to awitoh on the +300 v supply to the trigger velve in the modulator.
(c) The anode current taken by the trigger valve energises $C$ relay in modulator. Contact $C / 1$ now closes to complete the 80 V supply to the primary of T. 3 and bring the - 4 SV power pack and the artificial line into operation. As the trigger valve and the apark-gap are operating the modulating pulse is now applied to the magnetron cathode. Contact $C / 2$ mearwhile has operad and braken the 80V input to the magnetron flament transformer. Hence, as the red light comes up the modulating pulse is applied to the magnetron and the filament supply is simultaneasly broken by C relay.
289. If the mounlating pulse is removed fram the magnetron cathode by operating the switch on the modulator panel, the contact, S.1, breaks the 80 V imput to T. 3 and the contact, S.2, completes the 80 V supply to the primary of the Pilament transformer.
290. The TR. 3523 is the transmitter unit which is intended to supersede the TR. 3555 series. It offers the following advantages:-
(a) Much greater power than is obtainable from the CV. 108 and CV. 208. This power is obtained by using an American 725A type magnetrom feeding into a pressurised waveguide section which is intended to sustain atmospheric pressure at all operational heights and so pravent flashover at the higher power.
(b) An eutamatic firequency cantral system by means of which the difference between the frequancy of the klystron $L_{1} O_{0}$ and the magnetron is automatically held at $45 \mathrm{Mc} / \mathrm{s}$.
(c) The power available fram the magnetron is sufficiently great to permit pre-plumbing. That is, it is not mecessary for the radar mechanic to make any R. P. output matching adjustments.
(d) In the main proanction models, two klystron local oscillators with independent mixers will be inoorporated. The second of these local oscillators will be suitably detuned from the first far operation on 3 om. ground beacons. This facility carmot be used without the incorporation of a new mochilator which can provide a 2 microsecond modulating pulse for beacon triggering in addition to the normal 1 miarogecond pulse as used at present.
(e) Both head amplifier stages will have their screen valtage regulated by the gain contral.
(f) An improved pulse and filament transformer arrangement is incorporated in which there is no direct connection between the primary of the pulae transformer and its om secondary and the secondary of the filament transf comer. This eliminates the application of the single-ended modulating pulse to the filament transformer. The pulae tranaformer is of the mutual type with a split seccadary wiose two helves are in the two heater legs to give a symmetric system which is effectivaly centre-tapped to earth in so far as the heater and filament transformer secondary are concerned. The pulse transformer windings are in an oilfilled container. In so far as the modulating pulse is concerned, the two halves of the split secondary are effectively in parallel and the sense is such as to drive the magnetron cathode down on the usual motulator 64 pulse.
291. Dotails of the circuit operation and maintenance of the new unit will be issued when it beccmes available.


10 Mile SCAN
20 Mile SCAN


SLREEN SIMILAR TO SUPPRESSOR BUT VOLTAGE RANGE +65 TO $+20 V$


ON $\triangle O$ MILE SCAN, POSITION OF TX TIMING PJLSE 15 FIXED AT ALMOST HALF WAY UP WORKING STROKE OF SAWTOOTH
ON 4OIBO MILE SCAN, POSITION IS FKEO NEAR BOTTOM OF SANTOOTH

## Further Details on Individual Steges

292. So far we have concontrated our attention on the development and contral of the transmitter pulse and have given rather scant attention to the operation. of the contralling stages. We shall now examine more carefully the operation of same of the stages whose function we have merely stated without going into a study of how the function is performed.

The Transmitter Timing Valve, Vo 505
293. We have stressed that V. 505 develops a negative pip at the anode when the sawtooth input on the grid carries the valve into conduction. To see why this pip is developed it is necessary to note the design of the atage which may be regarded as a delayed-action transitron. We note the following points about the circuit:-
(a) The enode is returned to a D.C. potential determined by the bleeder, R. 553 (1M) and R. 555 (. 1M.) across the stabilised 200V lino. The static D.C. potential is therefore about +18 V .
(b) The screen is returned to the potential detemined by the bleeder R. 551 (.2M.) and R. 552 (.1M.), again across the atabilised 200 V. line. The static D.C. potentisl will then be about 67 V .
(c) The screen is lightly decoupled to earth by 0.521 (.002).
(d) The screan is tied to the suppressor through C.522 (.05). R.554 (2.2M.) serves as suppreasor leak and half of V. 509 serves to provent $V .505$ suppressor from swinging positivo.
(e) As discussed previously, V. 505 grid is returned via Re 556 (68k.) and pin 8 on the orange 12-way to a variable potential in the owitah unit.
(f) R. 500 (.22M) and Ro 501 (.1M.) form a bleeder across the unstabilised 300V. line with a potential of about 90V. at the Juncticn. Ro 558 (3.3M.) and R. 556 ( 68 K. ) form a bleader botween this point and the potential to which R. 556 is roturned in the switch unit. This bleoder will tend to raise the effective D.C. level to which $V .505 \mathrm{grid}$ is tied above the potential to which R. 556 is tied in the awitoh unit by 68/3368ths or about $1 / 50$ th of the difference between 90 V . and the potential to which Ro 556 is returned. When R. 556 is returned to OV. the affoct will be to return V. 505 grid to about +2V. When R. 556 is retarned to +60 V . the effoot will be to return $V .505 \mathrm{grid}$ to about 60.2 V .
(g) V. 505 cathode is returned to earth.
(h) The input to V. 505 grid is a rising sawtooth of about 150 V . amplitude which will be centred at the offective DeC. level of $V .505 \mathrm{grid}$.

294n Let us assume for the monent that R. 556 is retumea to earth potential in the awitoh unit and V. 505 grid is at about +2 V . The sawtooth then swings between -73 V and +77 V . With the anode at +18 V . and the screen at $+67 \mathrm{~V}, \mathrm{~V} .505$ has a gria base of coily a few valts. Hence the valve will conduct when the grid reaches -2 to $-4 V$. The anode potential will then drop to nearly OV. The screen potential will not drop instantly because af C. 521 which must charge negatively through the cathode-screen impedance of the valve. The drop at the soreen is therrofoe exponential. This drop is impressed on the suppressor thragh $\mathbf{C .} 522$ (.05). As the suppressor falls axponentially with the screen the anode current is quickly cut off and the anode potential rises at a rate determined by the capacity of the cable from the anode output point (Pye bluo) to the modulator and the 1M. anode load. The anode waveform will then be a negative pip with an exponential tail.
395. When the sawtooth carries the grid up to about the -2V point grid current flows through the 1M. stopper, R.550, into C.520. The leak-away of this grid current through R. 556 will devolop a negative auto-bias that will reduce the mean D.C. level of V. 505 grid. This is essentially counteracted by the arrangement discussed in para.293(t). The flow of grid current will, of course, cat off the balance of the sawtooth.
296. When the scan-marker switch is in the $100 / 40-80$ pasition, and when it is in the $10 / 10$ position and the 10 -mile zero is fully clockise, V. 505
C.D. 0896 L mODULATOR MULTIVIBRATOR

C. D. 0896L
grid is returned to abcat +60 V . (assuming that autobias aue to grid ourrent is cancelled out). The sawtooth will then swing up from a level below +60V. by half the sawtooth amplitude. We have assumed this anmpitude is 150 V . In this case the sawtooth would carry V. 505 grid down to -15 V . If the sawtooth amplitude is low, $\nabla .505$ grid may not reach cut-off and consequentiy will never cutoff under these operating conditions. In this case there will be no timing pip at V. 505 anode, and henoe no locking of modulator meltivibrator. A check should therefore be made when a new set is being lined up and on main inspections that the sawtooth amplitude is sufficiently greet to prevent this fault occurring, The check can be made by scoping the waveform can V. 505 grid with the scan-marker switch in the $100 / 40$ position then switching to the $100 / 40-80$ pasition. If the sawtooth is of normal amplitude a mall-sawtooth will remain on $V .505$ gria in the latter position. If the sawtooth amplitarde is low the waveform at V. 505 grid may show merely an unstable kink or no displacement at all. Under these conditions the modulator will probably milock or only lock erraticaliy. an inorease in sawtooth amplitude can be obtained by increasing R. 544 in 25 K steps until the trouble is cleared. This assumes, of course, that the fault is due to a sawtooth amplitude well below the 150v. value with a nomual valve in V. 504 position. Since increasing R. 544 reduces the negative feodback frcm V. 504 anode to $\mathrm{V} \cdot 5 \mathrm{C}_{4}$ grid the gain of $\mathrm{V}, 504$ is increased and an increased sawtooth amplitude therefore obtained.

## The Modulator Multivibrator, V. 5, V. 6

297. We have pointed out previously that:-
(a) This stage is a freomruming multivibrator which is set for a free-rurning p.r.f. of about $600 \mathrm{~d} / \mathrm{s}$.
(b) The output at $V \cdot 6$ anode is a rectangular wave with a negative phase of 20 microseconds.
(c) When the transmitter-timing pip is applied to $V .5 \mathrm{grid}$ the multivibrator is synchronised to run at the master multivibrator por.f. of about $670 \mathrm{c} / \mathrm{s}$.
(d) The height and range marker circuits are triggered on the back edge of the 20 microseconds priming pulse developed by this stage.
We shall now examine this stage in more detail to discover the principles employed.
298. The following aircuit details are worth noting:-
(a) V. 5 anode coupled to V. 6 grid via C. 8.
(b) Grid leak of $\nabla .6$ is R. $23+\mathrm{R} .22$ ( 3.9 Megs. each) returned to a variable poaitive potential (For use in Bomber Commana R. 33 is shorted out by means of the link shown).
(c) Cathode load of V. 6 is R.26 ( 110 obms) + R. 27 ( 160 ohms).
(d) Cathode load of V. 5 is R. 27 (160 ohms).
e) Grid leak of V. 5 is R. 20 ( 1 COK ) returned to $\nabla .6$ cathode.
(f) V. 5 grid can only rise as fast as C. 6 can charge positively by having electrons leak away through R. 20.
299. The valves used in this stage are a VR. 91 (V.5) and VT.60A (V.6). The VR. 91 is a high slope R.F. pentode. The WT. 60 A is a power tetrode. It is capable of pessing $50-60 \mathrm{ma}$. steady current and has a long grid base of 60 v . When switched on the heavy current passed by V. 6 will carry V. 5 cathode up to about +30 V . and V. 5 cathode up to about +50 V . V. 5 grid tries to follon V. 6 cathode up but would take a time determined by the C.R. of C.6, R. 20, to reach V. 6 cathode potential while V. 5 cathode rises instantily. Since this C. R. is $300 \mathrm{x} \cdot 1$ or 30 mic coseconds V. 5 is therefore cut off until the grid can cone within the grid base of +30 V . This time is about 20 microseconds hence We have $\nabla_{0} 6$ coming on and V. 5 cutting off for 20 microseconds. V. 5 anode rises towards H.T. but the 20 microsecands interval is not long enough to let sufficient electrons from C. 8 leak away through R. 21 to bring V. 5 anode up more than part of the way. At the end of the 20 microseconds interval V. 5 gria arosses cut-off and anode current flows. V. 6 then passes lass current so the flow through Re $26+\mathrm{R}_{\bullet} 27$ diminishes. This decrease drops V. 5 cathode potential instantly. There is also a tendency for V. 5 grid potential to fall but C.6, R. 20 prevent any instantaneous response. The drop at V. 5 cathode

## C.0.0896 L

TRIGGER VALVE


FIG. 69
is actually sufficient to cause V. 5 to pass grid currert which flows into 0.6 and the leak away develops a voltage across $\mathrm{R}_{\mathrm{o}} 20$ that helps carry V. 5 gria down. This flow of grid current couses V. 5 anode to drop to a low level from which it rises to a steady level in accordance with the current passed by V. 5 after grid current has ceased to flow. As the fall at 7.5 anode carries V. 6 grid below cut-off, V. 6 anode swings up. The effective anode load of V. 6 is partly resistive and partly inductive. The reaistive component is the resistance reflected into the primary circuit by R. 29 ( 3.9 K ) on the secondary side of Tol. The inductive component is due to the faot that sane of the primary flux does not thread the secondary of T.4. As a result of this inductive campanent, the potential at V. 6 anode overshoots the H.T. voltage and then decays to the H.T. level because of the heavy damping introduced by R. 29 .
300. How lang V. 6 rempins cut off depends on the time taken for the grid potential to rise to cut-off. This, in turn, is determined by the setting of the p.r.f. control, R.24. This control, as was mentioned earlier, is a ratchet control located at the back of the modulator chassis; For a normal modulator with R. 33 shorted out and the p.r.f. contral within $\pm 3$ notches of the red dot, the time of rise of $\nabla .6$ grid will be so slow as to give a p.r.f. of about $600 \mathrm{c} / \mathrm{s}$. When V. 6 grid crosses cut-off the rush of current through R. 27 again carries V. 5 cathode up and cats V. 5 off on the grid for 20 microseconds while V. 5 grid climbs exponentially to cut off. The cut-off perica of V. 5 and conducting period of V. 6 is always 20 microseconds regardless of the setting of the p.r.f. control which determines only how far apart these 20 microsecond periods occur.
301. The negativengoing 20 microsecond pulse from $V .6$ anode is the modulator priming pulse which is used to develop the trigger pulse for firing the transmitter. A positive-going 20 microsecond pulse is taken from V. 6 cathode through the 100 ohm matching resistor to 4 parallel Pye plugs coded violet on the modulator panel. An output from ane of these Pye plugs triggers the height and range marker circuits in the receiver-timing unit. An output from another provides triggering for the Lucero transmitter when Lucero is included in the installation. A third output provides suppression for I.F.F. The fourth cutput is used in aircraft fitted with Fishpond to trigger the Fishpoid marker circuit. An output from one of these Pye plugs is used on the work bench or in the aircraft to trigger the monitor 28 when a triggered timebase is required.
302. Synchronisation of the molulator has been dealt with previously. For the sake of completeness we recall that the transmitter timing pip from V. 505 anode is applied to V. 5 grid via the blue Pye cable. The arrival of this pip in the V. 5 conducting period will drive V. 5 grid down and the anode up. The rise at V. 5 anode carries V. 6 grid above cut-off and brings $V .6$ into conduction earlier to obtain a synchronised p.r.f. equal to that of the master maltivibrator.

## The Trigger Valve, V.7

303. In tracing the development of the modulating waveform it was atated that V. 7 was switched on and off by the modulator priming pulse and that the positive ring appearing at the anode on the back edge of the priming pulse was used to trigger the spark-gap, V.3. To study this stage in more detail it is necessary to note the following points:-
(a) The grid is returned through R. 29 to a decoupled negative potential of $\mathbf{- 1 0 0 V}$. from a metal rectifier in the modulator.
(b) The cathode is returned to earth.
(c) The anode load is a 4 mh. choke tuned by its self-capacity to about $400 \mathrm{Kc} / \mathrm{s}$.
(d) The soreen is fed through a tuned circuit L3,C11 damped by R. 31 ( 2.2 K .). The resonant frequency of $\mathrm{L3}, \mathrm{C11}$ is about $25 \mathrm{Kc} / \mathrm{s}$. giving a half-period of about 20 microseconds.
(e) V. 7 is a CV. 73 beam tetrode, capable of passing a heavy current.


304م The $-100 \%$. bias on V. 7 grid will hold the valve cut off during the interval between the 20 microsecond positive pulses on the grid. on the leading edge of the priming pulse, V. 7 grid is carried up to arcund +40 V . so a very heavy current is passed. If only R. 31 were in the screen supply the screen would fall to a steady level. Due to the presence of the ringing circuit in the screen the screen voltage will show a $25 \mathrm{Kc} / \mathrm{s}$ damped ring. The initial swing will be negative due to the flow of screen current. As the period is about 40 microsecands the first half cycle will be completed by the time the priming pulse terminates. As the screen is back to the H.T. level the valve will then be passing a very heavy anode current of about 500 ma . There will then be considerable energy atored in the magnetic field of the inductance $L_{4}$ at the instant that anode current is cat off when the grid is carried down on the back edge of the 20 microsecond priming pulse. Hence, as the anode current is cut off the collapaing field develops a terrific overswing at $V_{0} i$ anode. If undamped, this ring would have an amplitude of about 10 KV . on its first upward swing. As the rescmant frequency of the choke is about $400 \mathrm{Kc} / \mathrm{s}$ the first half cycle would take 1.25 micraseconds . In practice this positive swing causes the trigger gap of V.3 to break down when the amplitude reaches a value of arcund 3KV. The current flow to the trigger electrode then damps the ring so that there is no further increase in amplitude. The heavy current passed by the valve when it runs into grid current on the leading edge of the priming pulse serves to provide sufficient damping to eliminate ary consequent anode ringing.

## The Spark Gap Switch, V. 3

305. V. 3 is filled with argon $+3 \%$ oxygen at a pressure of 3 atmospheres or about 45 pounds per square inch. To minimise danger from filying glass in case of explosion of the envelope the glass envelope is enclosed in a shellacked net arrangement. The main gap consists of two saucer shaped malybdemm electrodes. The lower one has a hole drilled through it to permit the insertion of the tungsten trigger electrode with only a small clearance. This amall clearance provides the trigger gap which ionises when the trigger is carried positive by the ring at V. 7 anode on the back edge of the moculator priming pulse. The ring electrode is held at D.C. earth potential through the monitor chain R. 10 , R.11, R. 12 and the parallel path through the uniplug pulse cable to the transmitter unit and the pulse transformer primary. When the potential difference across the trigger gap reaches about 3KV. the trigger gap breaks dowm to give free electrons that will flow to the pasitive trigger-electrode and positive ions that will flow to the nogative electrode of the main gap. If a suffiodently high voltage exists across the wide main gap these positive ions will travel with a sufficientiy great velocity to knock electrons off the neutral molecules in the main gap. These molecules will be under considerable eleotrical atrain dre to the voltage impressed across the main gap by the charged modulating line. This strain is not sufficiently great to cause breakdown by itself but calision of high speed positive ions with the strained molecules will cause breakdown and produce more positive ions to callide with more strained neutral molecules. There is thus a progressive ionisation once the trigger gap flashes over. It is the lag due to this progressive iomisation together with the finite time of rise of the trigger pulse that causes the transmitter pulse to occur silightly after the back edge of the modulator priming pulse.
306. After the artificial lime has completed its discharge through the apark gap the voltage across the main gap is zero and the positive ions tend to gravitate to the trigger which will oxdibit a negative charge due to the electrons that flowed into C. 13 when the trigger gap flashed over. The positive ions are then neutralised at the trigger to again become noutral molecules and the gap returns to its non-conducting stato.
307. A small percentage of oxygen is included in the filling to start the flash-over as oxygen is much more readily ionised than argon. When the oxygen is largely used up in the formation of oxides of tungsten and molybdemum during the flash-over intervals the gap will becone erratic and unserviceable.

## The Modulating Line and Charging Choke

308. We moy regard the inductance of the charging choke and the elements of the artificial line as combining to form a resonant circuit that tends to ring
when the -4 KV. supply is connected in series with it. The mean level of the ring will be the $-4 K \mathrm{KV}$. level. The crests will be OV. and the troughs -8 KV . We may imagine scme such sequence as fallows. Suppose the line has just completed its discharge through the spark gap and the condensers are completely discharged. The spark gap de-ionises and the -4KV. supply is connected in series with the 64 henry choke, the discharged line, and the resistor Ro 8 (in parallel with the solenoid of the overload relay). The charging current will be approximately simusoidal. When the condensers are charged to $-4 K V$. we might expect the flow of electrons into the condensers to cease. Rut as the xising back e.m.f. developed by the charging condensers tends to roduce the current flowing through the choke, the collapsing magnetic field keeps the electron flow going in the same direction in accordance with Lenz's Law. Putting it differently, the energy stored in the magnetic field of the choke is used up to complete the storage of energy in the condensers of the line. When the choke has lost all its energy, i.e., the magnetic field has collapsed completely and the chorging current is zero, the condensers are charged to -8kv. There is then 8 KV . across the main gap of V.3, but no current flowing. When the trigger gap is now fired and the main gap breaks down as a result of the collision between ions formed in the trigger gap and strained neutral molecules in the man gap, the resistance of the gap drops to a few ohms. We now have the line with its stored energy comected in series with the low gap resistance, the pulse cable, the resistance reflected into the pulse transformer primary by the magnetron, and the 1.1 monitor resistor. We shall assume the artificial line has a characteristic impedance of about 80 ohms, the gap has a resistance of about 5 ahms, and that the resistance reflected into the pulse transformer primary is about 74 ohms. We may then regard the 80 okm line as matched to a total load of about 80 ohms if we count in the monitor resistor. We may regard this arrangement as a battery charged to -8KV. with an internal resistance of 80 ohms connected to an 80 ohm load. The current will then be $\frac{8000}{160}=50 \mathrm{amps}$
The drop across the line will be $80 \times 50=4 \mathrm{KV}$. and the drop across the pulse transformer primery will be $50 \times 74=3.7 \mathrm{KV}$. Since the secondary of the transformer is the full winding and the fixed end is at earth potential, the tapping point goes to -3.7 KV . and the output end gives the stepped up voltage of about -14 KV for the magnetron cathode. The components in the line are so chosen that the energy stored is discharged in a 1 microsecond burst if the line is metched to its load. The current discharged should build up to its 50 amp. value in about 0.1 microseconds. The inductances in the line serve to maintain the current reasonably constant during the discharge period. The decay of the current involves a collapse of the magnetic field around the pulse transformer winding which will be in the form of the first quarter cycle of a ring whose frequency is fixed by the inductance and self-capacitance of the pulse transformer. This decay will take a little longer than the build-up. As the pulse duration is determined by the amount of energy stored in the line, it depends on the value of the line components and the number of sections.
309. Suppose that the load were 720 ohms instead of 80 abms. The current would then be 8000 or 10 mps . instead of 50 amps. The drop across the line would be ooly $80 \times 10$ or 800 volts and the drop across the load would be $10 \times 720$ or 7,200 volts. The voltage across the pulse transformer secondary would then be so high that aroing would probably occur in the transmitter mit, to put an effective short across the pulse transformer secondary. In the Mark IIIA H.F. box the CV. 189 arcs over and the thermal relay operates as discussed in paras. 285-286. The rosultant reflections on the pulse cable will tend to keep the spark gap ionised so long that the current flowing through the gap, the choke and R. 8 and the orerload relay solenoid will build up to a mean value that causes the overload relay to trip. This then operates the safety valve V. 4 to break the irput to the -4KV. pack and the K. To to V. 7. Details are given in paras. 256-257. The same offect will be produced by any other fault that puts a short across the pulse transformer output. In general any fault that permits the current flowing through the gap from the $-4 K V$. supply to build up due to prolonged ionisation will oause the overload relay to trip. It will also trip if the por.f. is raised to such a high value that the mean ourrent through the solenoid of the overload relay becomes sufficiently great to energise it.

## Dumary Loads

310. Since overload relay tripping or failure to switah on can be caused by a rumber of faults in either the modulator or transmitter units same form of systematic elimination procedure is called for. For this purpose a dumpy load is provided to replace the transmitter unit and provide an approximate match to the artificial line in the modulator when it is camected across the pulse output plug. This is the 80 ohm dumy load resistance unit type 228. If the trouble persists the fault may logically be oxpected to be in the modulator. If the fault disappears either the pulse cable or the transmitter unit must be at fault. The pulse cable can be checked by placing the dumay load across the outpat end of the cable. If the fault is localised to the transmitter unit, the pulse transforner, magnotron filament transformer, magnetron and overswing diode circuits fall under suspicion, so sane form of elimination procecture is called for. A 1.5 K . danny load, resistance unit type 230, is provided for this purpose. This dunny load is intended as an approximate equivalent for the magnetron so is placed across the secondary of the pulse transformer. If the fault disappears the magnetron was faulty. If the fault contimues, the pulse and filament transformers are the main suspects. Disconneoting the filement transformer makes it possible to tell whether the pulse transformer is faulty. If not, the filament transfonner is the logical suspect. If the pulse transformer is faulty it must be replaced. If the fault is still cleared when the filament transformer is reconnected the filament transformer is all right. If not, replacement must be made. In the Mark IIIA H.F. box the two transformers are in one unit so replacement is neoessary as scon as the fault contimues after the dumay load is used to replace the magnetron. A fuller outline of troubleshooting on insulation breakdown faults is given in Chapter 12, paras.1085-1088.


RECEIVER CHAIN - MARK II C.
FIG. 72

General Considerations
311. Before comencing a study of the H.2.S. receiver chain it may be prow fitable to recall some relevant facts that must have a bearing on its design and on the way the stages are distributed in the installation.
(a) It is a cm. receiver. In the Mark IIIA installation signals are received on a wavelength of about 3.2 cms . and in the Mark IIC installation the wavelength is about 9.1 cms . R. F. amplification is impossible at these frequencies so the first stage mast be a frequency changing stage.
(b) As received signals will be weak signal to noise ratio becones a major consideration and the frequency changing stage mast be designed with a view to obtaining the best possible signal to noise ratio. This consideration has required the use of a crystal mixer.
(c) Since dielectric losses in feeders reach very high values at 3.2 ons. the Mark IIIA R.F. system mast use waveguides. The crystal mirer is therefore mounted in a waveguide. In the Mark IIC installation the crystal mixer is mounted in a section of coaxial line. In both cases the shielding thus provided prevents the superimposition of large quantities of external noise on the noise generated by the crystal itself.
Since the first stage is a frequency changer the local oscillator mast be capable of generating a C.W. output in the same wavelength band as the magnetron transmitting valve wavelength. This calls for a local oscillator of the resonant cavity type.
(e) To achieve the maximum simplicity in I.F. amplifier design it is necessary to use preaet I. F. tuning. As the magnetron frequency is certain to vary and cannot readily be controlled the local oscillator must be tunable. The requirement of a local oscillator which is capable of generating a C.W. output in the appropriate cm. band and which can also be easily tuned makes it preferable to use a rescuant cavity oscillator of the reflector klystron type.
(f) Since the H.2.S. operator must be able to tane the local oscillator fran his position on the aircraft the tuning control mast be at his table. This means that either the oscillator itself must be there or same form of remote tuning is necessary. In the Mark IIC installation the local oscillator is in a tuning unit at the H.2.S. operator's table. In the Mark IIIA installation using the TR. 3555 series transmitter unit the local oscillator is incorporated in the transmitter unit and a remote tuning control is provided at the H.2.S. operator's table.
(g) To minmise R.F. losses in both transmitter output and in returned signals it is necessary to keep the R.F. paths as short as possible. The transmitter unit is therefore manted as near to the scamer as possible and the crystal mixer is located in the transmitter unit. This means that the I. O. signal must either be generated in the transmitter unit or brought to the transmitter unit. In the 3 cm . band feeder losses make it imperative to put the local ascillator in the transmitter unit. Hence we have the remote contral tuning unit at the H. $2 . \mathrm{S}$. operator's table. In the Mark IIC installation the power obtainable from the local oscillator is ample to allov for feeder losses and the klystron is therefors located in a tuning unit at the H.2.S. operator's table.
(h) Since the receiver is a pulse recelver it must have a bandwidth sufficiently wide to pass the pulses without undue distortion. The bandwidth of the I.F. amplifier is therefore about $4 \mathrm{Mc} / \mathrm{s}$. in H.2.S. Mark IIIA. In H. $2 . S$. Mark IIC, the bandwidth is about $6 \mathrm{Mc} / \mathrm{s}$.
(i) The I.F. chosen is $13.5 \mathrm{Mc} / \mathrm{s}$. in H.2.S. Mark IIC and 45 $\mathrm{Mc} / \mathrm{s}$. in H.2.S. Mark IIIA.
(J) Since it is not feasible to incorporate the I.F. amplifier in the tranamitter unit it would appear to be necessary to transfer the weak I.F. mixer output via cable from the transmitter unit to another unit housing the I.F. amplifier. Any additional noise picked up en route would then receive the full amplification of the I.F. amplifier. Since the mixer output signals have had no anplification whatever any appreciable addition of noise before amplification occurred would seriously impair the signal to noise ratio. In an attempt to overcame this problem a weasure of I.F. amplification is introduced in the transmitter unit. In the Mark IIC tranamitter unit only one stege is used while the Mark IIIA transmitter unit two steges are employed. This section of the receiver is termed the head amplifier.
(k) The I.F. amplifier proper is housed in the receiver-timing unit for convenience in mixing signals and markers. Variable gain is required. The gain contral must, of course, be located at the H.2.S. operator's table.
(1) Since H.2.S. is a comon T. and R. systern a TR switch must be incorporated to seal off the receiver branch line in the transmitter unit as much as possible for the duration of the transmitter prilse. The valves used for this purpose are oalled Boft rimmbatrons. They are resonant cavities filled with water vapour at a low pressure. They flash over when the resonant cavity goes into violent oscillation during the transmitter pulse period. Al though the sof't rhumbatron TR switch flashes over on the leading edge of the transmitter pulse it does not completely isolate the receiver during the transmitter pulse perica. Sufficient R.F. energy will reach the crystal and then pass into the I. P. amplifier to cause overloading of the I.F. amplifier if it remains in a fully sensitive condition wile the transmitter is pulaing. To overccme this problem the sensitivity must be reduced during the pulse period. This is accomplished by applying a auppression pulse to some of the stages in the I.F. amplifier which reduces the sensitivity of these stages very nearly to zero.
(n) Since a common T. and R. system is employed suitable provisions must be made to prevent signals traveling down the transmitter and reflecting back in such a phase as to interfere with the signols passing directiy into the receiver brench line.
312. Suming up, we may now pisualise the $\mathrm{H} .2 . S$. receiver as consisting of the following primary sub-divisions:-
(a) Input matching devices to avoid interference from received signals travelling down the transmitter line and reflecting-
(b) TRe switah of the soft rhmbatron type to isolate the receiver as much as possible during the transmitter pulse period.
(c) A suitable crystal mixer stage.
(d) A reflector kiystron local oscillator wi th suitable tuning arrangements at the H.2.S. operator's table. Automatic adjustment of the klystron frequency to follow the changes in magnetron frequency would be desirable.
(e) A head amplifier in the transmitter unit.
(1) An I.P. strip with second detector and a suitable output stage. Variable gain facilities will be incorporated. The contral itself must be remote in order to permit its location at the H.2.S. operator's table.
(g) A suppression generator synchronised with the transmitter to prevent the transmitter break-through that gets past the soft rhumbatron TR. awitch from overloading the I.F. amplifier and preventing its response to short range signals.
343. The main details of the Mark IIC Receiver are shown in fig. 72.

## Input Matching

314. It has been pointed out in Chapter 5 that the matching slug in the Mark IIC transmitter unit is required to perform two fumctions simultaneously. The first of these functions is to arrange that the coaxial high power feeder is matched to the magnetrons. If a themo-couple is used to measure the RoF. output the matching slug can be set to a position which gives the maximm Ro F. output indication. The second candition the matching slug should fulfil at the some time is the transformation of the cold impedance of the magnetron to show a very high value in the diraction of the magnetran at the junction of the receiver branch line with the main ons. What we really mean by saying that the magnetron cald impedance is transformed to a high value is that the phase of the wave refleoted iy the reactive load presented by the cold magnetron is so modipied by the slug that it contimues down the branch line in phase with the incoming wave. The effect is then the same as if no energy were penetrating past the receiver branch line. Now the matching slug may not fulfil both conditions perfectly with the same setting. The usual procedure in Bomber Comand has been to monitor the receiver output and adjust the matching slug for the maximum signal amplitude. This adjustment assumes that if the adjustment gives the madimum signal amplitude for returns fram one particular echo it will do so for all other echoes. While this assumption may be true in the majority of cases it is not necessarily always true. The frequency of the magnetron is dependent to some extent on the matohing slug setting. The interference pettern produced by waves traveliing directir to the target and back and waves reflecting off the ground to the target and back, may result in reinforcement and abnomally strong signals at ome partioular frequency for same particular echo. If the set is taken into the air and these interference effects no longer appear poor signals may be obtained
315. The method of setting the matching slug for macimun signals is also open to the danger that the alug setting so obtained is sometimes auch as to leave the magnetron very susceptible to moding or frequency pulling with the resultant development of gapping or unstable signals. The radar mechanic is therefore warned that, while setting the matching slug for madmum signals on a particular permanent echo will give a satisfactory performance in the majority of cases, there may be exceptions. The only alternative method available at present is to find a position of the matching slug where the power outpat as noted on a thermocouple meter is not reduced by more than $10-20$;' fram the normal figure given by good sets, and where a variation of + or $-\frac{1}{4}$ inch in the slug position does not result in a frequency shif't of more than $4 \mathrm{Mc} / \mathrm{s}$. This frequency shift may be measured with an echo box wavemeter by adjusting the echo box for maximum signal on the height tube trace for the selected alug position and each of the displaced positions. The frequency change in the magnetron will be the change read on the calibrated scale of the wavemeter, if the local oscillator tuning is not varied. A simpler test is observation of the change in the amplitude of permanent echo signals. If the L. 0 . is not returned and the amplitude does not drop by mose than $50 \%$ as the slug is moved + or $=\frac{1}{4}$ inch, the frequency shift is less than $4 \mathrm{Mc} / \mathrm{s}$.

## The Soft Rhumbatron TR. switch, CV. 43

316. The construction of this valve and its electrical equivalent are shom in fig. 73(a) and (b). When the transmitter pulses, an electramagnetic wave travels along the output line, part going to the acamer and part travelling down the branch line. When this weve reaches the coupling loog that extenda into the CV. 43 resonant cavity, the cavity oscillates violently and develops a high voltage across the lips. This R.F. valtage causes the water vapour to ionise and develop a conducting patch across the lips. The position of the CV. 43 in the branch line is so chosen that the short appears an oda muber of quarter wavelengths from the branch line junction. The effect is then to proauce a ahorted quarter wave stub. In such a shorted coarial stub a phase change of $180^{\circ}$ occurs on refleotion. The reflected wave, after travelling dorn and back, i.e., an oda maber of half wavelengths, will be back in phase with the wave going down the main line when it reaches the function. This fallows since
it has made a detour of an odd number of half wavelengths plus a phase change of $180^{\circ}$ (equivalent to a half wavelength), the sum of which is equivalent to a detour of an integral mumber of wavelengths. The effect is then the same as if no detour had been made so we say the stub offers a high impedance at the function with the main line and the offect, in so far as R. F. output is concerned, is essentially the same as if there were no branch line. This statement is not quite correct as the CV. 43 does not present a perfect short and some energy does pass through it to the crystal mixers. It is this leakage or transmitter break-through that makes it necessary to have a suppression circuit to suppress the I.F. amplifier while the tranamitter pulses.
317. We may think of this leakage or break-through in the following way. When flash-over occurs a low resistence is effectively placed across the resanant cavity. This has the same effect of damping the oscillation in the cavity as a low resistance across an ordinary tuned circuit. Since it is not quite a dead short the oscillation is not, hovever, completely damped out. Hence the output loop has some voltage induced on it which is fed to the mixer cavity.
318. When the transmitter pulse ends the valtage on the input loop into the CV. 43 dies out and there is no further excitation of the cavity. The oscillations are then soon damped out. The positive and negative ions now recombine to form neutral molecules and the shart acrcas the lips is removed and aur stub becomes an open instead of a short-circuited stub. Such a stab offers a low impedance at the junction with the main line. If the matching slug has been adjusted to make the cold magnetron offer a high impedance the bulk of the inconint signal energy flows down the branch line. When a signal wave reaches the imput loop the resonant cavity is again excited but the R.F. voltage developed across the lips is not sufficiently great to cause the water vapour to ionise. Hence, there is no shorted a tub to cause reflection and no heavy damping of the resonant cavity. The cavity therefore contimes to oscillate while signals come in. The oscillating field induces a voltage on the output loop so the onergy is fed into the mixer chamber. While signals are coming in we may regand the resonant cavity as a 1.1 transformer or a half wavelength of transmission line.

## The CV. 43 Probe

319. To protect the crystal it is essential that the CV. 43 flash over on the early cycles of the transmitter pulse before it reaches its full amplitude. To speed up the flash-over a trigger probe is introduced. This probe is cannooted to a potential of arcund 700 V , obtained by tapping in at the jumotion of R. 100 (430K.) and R. 101 (1M.) placed across the -1000 V . line coming in from the power unit on pin 11 of the 12 way. The GV. 43 cavity is at earth potential. Hence, there is a steady potential difference of about 700V. between the end of the trigger probe and the earthed cavity. This voltage is sufficient to keep a small amount of ionisation in this gap, independent of whether or not the transmitter is operating. This continual ionisation can be observed by connecting an AVO botween the probe and the lead to the -700 V . tapping point. The positive terminal of the AVO must, of course, be connected to the probe and the negative one to the lead. There will be a steady ionising current depending on the design of the CV.43. Cross-section and ionising currents are shown in fig. 73(d). The different types can be recognised by removing the tuning plunger which comes out through the transmitter unit panel and looking at the design of the lips. When the cavity is thrown into violent oscillation by the arrival of the leading edge of the transmitter pulse, the positive ions in the gap surge across the lips as the far side swings to a high negative value. Their collisions with the neutral molecules between the lips will canse these to break down at a lower voltage aoross the lips than would be the case if the ions were not present. Henco, flash-over occuse carlier than it would if no probe were employed. Consequently less R.F. energy hits the crystel. The incorporation of the probe is thus a means of speeding up iorisation in order to give added protection to the crystal.
320. The presence of the probe assists rapid de-ionisation as well as rapid


FIG. 73


EQUIVALENT CIRCUIT
(b)

WITH NORMAL IONISATION, GLOW IS CONFINEO TO LIPS. EXCESSIVE IONISATION INDICATED BY DIFFUSED GLOW THROUGHOUT CAVITY IS CAUSED BY OVERCOUPLING TO REMEDY THS, SLCHTLY WITHDRAW INPUT LOOP FROM CAVITY BY INSERTING THIN WASHER BEHINO LOCKINE NUT SLACKEN GRUB SCREW WHEN DOING THS

NOTE THAT CONNECTION between two halves of heater Jacket is MAOE THROUGH



IOMISING CURRENT - 75 mA .

tonlima current .5 mA .

THESE ARE AVERAGE CURRENT READINGS. CKAZ SHOULO GE CHANGED if CURRENT FALLS BELOW $75 \%$ OF THESE FTGURES.
$\qquad$ (d)
iomisation. When the transmitter pulse ends the positive ions in the gap will be attracted to the negative probe where they can speedily become neutralised to form neutral malecules. If no probe were used ionisation could only occur by collision between positive ions and electrons detached when flash-over cocurred, or by contact between positive ions and the earthed cavity wall. The completion of the probe supply and the presence of the correct probe valtage are therefore necessary if the CV. 43 is to afford the maximu protection to the crystal and is to show speedy de-ionisation.

## CV. 43 Tming

321. In order that the oscillations developed in the CV. 43 cavity may have the maximum amplitude when signals are being reoeived the cavity must be resanant at the magnetron frequency. Should the resonant frequency be different the oscillations will be of the same nature as the oscillations developed in a ringing circuit by shock oxcitation. Their frequency will be the natural frequency of the cavity. Since the input will be at a different frequency it will not tend to build up the amplitude so the output will be low. Hence it is necessary to tune the CV. 43 cavity to the magnetron Prequency to get the maximum signal amplitude into the crystal and hence out of the receiver. This tuning is done by varying the volume of the cavity. To raise frequency, the volume must be decreased. To decrease frequency the volume must be increased. These changes in frequency are made by means of a tuning plunger which projects through the panel of the tranamitter unit. There are also two fixed plungers which must be preset to give a bandspread on the tuning plunger that suitably covers the nomal range of magnetron frequencies. These plungers should be so set that signal amplitude can be dropped to $50 \%$ of maximun by not more than two turns of the tuning plunger in either direction.

## CV. 43 Overcoupling

322. It may be found when lining up a transmitter unit that the CV. 43 tunes very flatily and that the sensitivity of the set is poor. If this is the case the toning plunger should be campletely removed and the cavity viewed through the aperture thus provided. It is very likely that a diffused purple glow will fill the whale centre of the cavity. Such on indication points to overcoupling of the transmitter pulse into the cavity by having the imput loop projecting too far into the cavity. The effect is to set up such vialent oscillation when the transmitter pulses that ionisation is not restricted to the region between the lips but extends throughout much of the cavity. This widespread ionisation results in such a long de-ionisation period that the cavity is damped considerably for a long time after the transmitter pulse ends. This prolonged damping results, of course, in feeble oscillation when signals are received and hence low imput to the mixer and therefore low signal output. The only cure is to reduce coupling until the normal ionisation across the lips only is obtained.
323. To make this adjustment it is necessary to loosen the grub-screw in the main output line which holds the inner of the branch line, the pinohmcollar, and the knurled locking ring holding the branch line at the CV.43. The branch line can then be worked awry slightly from the CV. 43 and towards the main line thas witharawing the coupling lop. Displacements of the order of $1 / 32^{\prime \prime}$ to $1 / 16^{n}$ are normally sufficient. Obviously, care must be taken not to remove the coupling loop too far or undercoupling will result and the signal amplitude will again suffer. The loop should be withdrawn until the ionisation glow appears across the lips only and the plunger then replaced and a aheck made on sharpness of tuning and signal amplitude. Checks should then be made to see whether the signal amplitude can be improved by further slight increases or decreases in coupling. When the optimum position has thus been found a washer of the appropriate thickness will have to be fitted between the bush which screws into the cavity and the cavity proper. Otherwise the knurled locking ring will pull the loop back into its original position when the reassembling is done. Care must then be taken to tighten the grub-screw, pinch-collar and krurled loaking ring to prevent any further displacenent due to vibration.

C.D. O896L


CONSTRUCTION OF CRYSTAL
CHARACTERISTIC OF CRYSTAL RECTIFIER


EQUIVALENT CIRCUIT OF CRYSTAL MIXER
(c)

CV. 43 Faults
324. Should crystals be contimally burning out, it may logically be expected that the CV. 43 is not functioning. This can be checked by looking for the ionisation across the lips. If this is absent and the normal voltage is on the probe the CV. 43 must be replaced. The vacum has probably been lost due to a cracked glass or broken copper-glass seals.
325. Should crystal life be short it is reasonable to suspect too much transmitter break-through is reaching the crystal because the flash-over is not sufficiently rapid. This may be due to a poorly shaped magnetron pulse which rises too slowly or to a faulty CV.43. The only available CV. 43 check is on the ionising current. Should this value fall below $75 \%$ of the values quoted in fig. 73(d) a check should be made that the correct voltage is in the probe. If this is present, the CV. 43 should then be replaced.
326. If recurrence of the trouble is experienced along with low sensitivity generally it is probable that the magnet is below the required value of 1250 gauss, measured with the magnet on the chassis and the cover on. This measurement should be made with a flux-meter using a cover with a suitable hole cut in the side to permit insertion of the search coil. Further details are given in Chapter 11, para. 842. A faulty magnetron might also be responsible for a poorly shaped pulse. A further rather remote possibility is that the modulator is supplying a poor modulating pulse. This can be checked by running the modulator into the 80 onm dumuy load and noting the pulse shape at the valtage monitor point. A chock on the magnetron can be made by noting the pulae shape at the same point when the magnetron is used and when it is roplaced by the 1500 orm dummy load.

## CV. 43 Heater Jacket

327. The CV. 43 is provided with a 24 V heater jacket to keep the carity temperature constant to prevent chonges in gas pressure with falling temperature and consequent delayed iomisation. Care mist be taken in asaembling this jacket to Join the + and -24 V supply leads by one of the bolts holding the two secticns together. If the circuit is not thas completed the heater jacket is inoperative.

## The Gystal Mixer Stage

328. (a) The structure of the crystal itself is shown in fig.74(a).
b) Mechanical details of the mixer line are shown in fig.74(d).
c) The major details of the circuit arrangements are shown in fig. 72.
(d) The electrical equivalent is shom in fig.74(o).
e) The theoretical waveforms are shown in fig. 75.
$(f)$ The voltage - current characteristic is show in fig. 74(b).
The Crystal
329. The rectifying crystals used conmonly as cm. mixers employ a tungsten whisker embedded in a silioon crystal. Structural details are shown in fig. 74(a). When a D.C. voltage is comected with the positive side to the silican and the nogative to the tungsten whisker electrons will flow from the whisker to the orystal and the contact will present a resistance of the order 120-200 ohms. When the supply is reversed the current flow is greatily reduced and the apparent resistance is of the order of 1000 to 10,000 ohms. Hence if an A.C. voltage is applied the current passed on the half-cycles that carry the silicon pasitive will be mach groater than the current passed on the half-cycles that carry the silicon negative. The crystal will therefore operate as a rectifier since the current passed is predominantly in one direction.

## The Mizing Circuit

330. The crystal is inserted in a section of coaxial line shorted at one end as shown in fig. 74 (d). The crystal and the smoothing oondenser formed by the trolitul washer between the two metel flanges linked to the imer and outer are offectively in series between the inner and outer of the coaxial line. The length of the coaxial line ia chosen to make it a rosonant cavity at the mean frequency to be expected from magnetrons. The R.F. signals are coupled into
" WWOMNOC
END OF RECEIVED
PULSE FROM AERIAL

- vacomacociaco =-
- Darmaplarar-
" Mrrrarararkrar "erase


OUTPUT TO HEAD
AMPLIFIEA-RF.
by PASSED
(f) $\qquad$ OC COMPONENT
BY-PASSED
through Jack
(g)

if. AT GRIO of head amplifier


CRYSTAL CURRENT CIRCUIT

FORWARD RESISTANCE OF CRYSTAL
APPROX 120 to 200 OHMS

BACKWARD RESISTANCE OF CRYSTAL
APPROX, 1000 T 0,000 OHMS.

crystal current characteristic

MINIMUM CRYSTAL CURRENT NOT TO EXCEED $0.6 \mathrm{~m} / \mathrm{A}$.
normal operating current $0.4 \mathrm{~m} /$ A. (mark II)
this cavity from the CV. 43 avity by connecting the inner of the CV. 43 output line directly into the inner of the mixer line. Hence, when an echo is being received the R.F. voltage passed to the mixer line excites the cavity. The C.W. output from the klystron local oscillator is also coupled into the miner cavity by means of a capacity attenuator. The 75 ohm terminating resistor in the probe which terminates the local oscillator feeder is connected to a thick piece of wire which fits into a little trolitul disc. When the probe is pressed in all the way this trolitul disc rests against the inner of the mixer cavity. The maximum voltage is then transferred fram the feeder to the cavity if the only attenuation is that due to the valtage drop across the capacity betwoen the two inners. If the probe is pulled out an air gap appears and the dielectric of the imput condenser consists of the trolitul and the air gap. This imput condenser will now hava a lower capacity and a higher impedance. Hence the Co W. input applied to the mixer cavity is reduced, i.e. attempated. The setting of this probe can thous be used to regulate the C.W. input applied to the mixer cavity. When the local oscillator is correctly tuned the frequency of the C.W. input to the mixer will differ fram the R. F. input by the I. F. of $13.5 \mathrm{Mc} / \mathrm{s}$. As the R.F. is of the order of $3300 \mathrm{Mc} / \mathrm{s}$, the two signals will differ in frequency by $0.4 \%$ This difference is so small that the mixer cavity will rescnate both. The two signals therefore beat whenever an echo is received and the R.P. voltage applied to the crystel and its series condenser has a frequency oqual to the mean of the beating frequencies and an amplitude varying at their difference frequency, i.e., at the I.F. In a single microsecond echo pulse there will be about 3300 oycles of R.F. as the frequency is about $3300 \mathrm{Mc} / \mathrm{s}$. or 3300 cycles per microsoocmi. Since the I.F. is $13.5 \mathrm{Mc} / \mathrm{s}$ or 13.5 cycles per miorosecond the modulation envelope of the pulse will show 13.5 cycles. The orystal only passes appreciable electrons fram the whisker to the silicon. Henoe the condenser mast charge positively. Its function is to smooth the R.F. and impress on the Pye output cable the resultant I.F. envelope.

## The Crystal Current

331. The waveform impressed on the Pye output cable will include both a D.C. component and a $13.5 \mathrm{Mc} / \mathrm{s} \mathrm{A} . \mathrm{C}$. component. The D.C. component is the mean voltage doveloped across the condenser by smoothing the reotiflied C.W. imput in the intervals between echo signals. Since the C.F. is oaning in all the time but echoes only for 1 microsecond in every 1500 microseconds, the contribution of signals to the D.C. level is negligible. Henco, the D.C. component is a means of checking the amplitude of the C.W. irmut to the mixer since the magnitude of the amoothed D.C. voltage developed is determinea by the amplitude of the C.F. signal applied and the rectification efficiency of the crystal. To see how measurements can be made we must trace out the path taken by the mixer output, show in fig.76(a). The inner goes to a Pye plug and thence to tho primary of the imput transformer of the head amplifier. The other end of this primary is kept at R.F. earth by means of the condenser C. 126 (. $0023 \mu \mathrm{NF}$ ). This condenser blocks off the D.C. component but serves to apply the full A.C. camponent to the transformer. From the top of C. $126 \mathrm{a} 13.5 \mathrm{Mc} / \mathrm{s}$. choke passes to one side of a jack-point. The other side is tied to earth. Now the mixar output voltage is between the inner and outer of the Pye cable to the head amplifier. The inner is cannected to the one side of the jack. The outer is earthed and hence offectively comnected to the other side of the jack. The I.F. choke blocks the A.C. component from the jack-point but the D.C. component is applied across it. Hence, by jacking in a meter, the current developed in the meter by this D.C. ccmponent of the mixar output voltage can be read. This reading is called the "crystal current". In the indicator 162 a meter was fitted on the panel which cormected to one side of a back contact on this jack-point. The orystal current could then be read at the indicator. This facility is not available in the indicator 184 and crystal current can only be cheoked at the transmitter unit jack-point in the H.2.S. Mark IIC installation.

## Crystal Checks and Tests

332. The "crystal arrront" reading obtained by jacking in a meter at the transmitter unit is dopendent on: -
(a) What C.W. irput is applied to the orystal.
(b) How efficientiy this input is rectified.

Hence, a comparison of the current values obtained from different crystals with
the same C.FT. imput is a means of comparing the rectifioation efficiency of different crystals. By simultaneously noting noise level on the height tube for a given gain setting a corgarison can be made of the noise developed by different crystals. The higher the current reading obtained and the lower the noise level generated the better the crystal. Conversely, the lower the current passed and the higher the noise level the poorer the crystal.
333. By plugging in the meter on the ohmeter range with the set switahed off, we can apply the cell valtage across the crystal. This follows since the tungsten whisker is connected to the one side of the jack-point and the silicon crystal is earthed at the shorted end of the mixer line. Hence by switching the jaak connections both the "back" and "forward" resistance of the crystal can be measured. By "baok" resistance we mean the D.C. resistance offered when the positive side of the supply goes to the tungsten whisker and the negative side of the supply goes to the silicon orystal. Since electrons only tend to flow readily in the owposite direction the observed resistance will be reasonably high, anywhere from 1 K . to 10 K . in a good crystal. When the jack connections are reversed we apply the cell voltage in the direction of nomal flow and the observed resistance is low, of the order of 120-200 ohms. These indications are used as crystal checks but they are not fool-proof checks as the D.C. characteristics of a crystal are not necessarily a check of its R. F. rectification properties. The following procedure for crystal checks on D.I.'s is recomended:-
(a) Measure both back and forward resistance and note that forward resistance does not exceed 180 to 200 ohras and that the back resistance is not less than 1000 ohms.
(b) Log the back resistance on a cari kept with the $T^{2} R$.
(c) Should the back resistance have dropped to less than half the value logged on the previous day, it should be rejected, although the value may still oxceed 1000 ohms.
(d) If a cryatal is rejected and replaced by a new one it should be checked as in (a) and the modulator then switched on and off 5 cr 6 times and the values again checked to test the resistance of the crystal to surges. If the values of the back and forward resistance are still satisfactory the back resistance should be logged and an indication made to shov that a new crystal has been fitted. It must be, streased that these crystel checks may be passed and a crystal still give poor R.F. rectification efficiency. Conversely, the tests may not be passed and the crystal may be giving a satisfactory performance. Such cases are, however, the exception. The final test is always receiver sensitivity. If good signal amplitude and a good signal to noise ratio are obtained when the received output is observed on the monitor 28 (or on the height tube) the crystal mast be operating satisfactorily. Fron experience the mechanic will learn what amplitude and signal to noise ratio may normally be expected at each dispersal point from any particular permanent echo. If sensitivity seems to be Low the first cheok is to substitute a known good crystal and note whether any improvement is obtained. The checking of back and forward resistance serves mainly to check whether crystals have deteriorated since the previous check and gives an indication of probable reliability that can be counted on in the majority of cases but not in all cases.

## Crystals for H. 2.S. Mark IIC

334. The crystal normally used in H.2.S. Mark IIC is the CV.101, a yellow spot crystal which should not be called on to pass a steady current that will give a reading in excess of 0.6 ma. If a subsidiary orange spot appears in addition to the yellow spot it is a CV. 102 which will stand a rather higher voltage. If a subsidiary red spot is used the orystal is a CV. 103 which will stand still higher voltages.

The Local Oscillator
335. (a) The structure of the CV. 67 type of reflector klystron is shown in fig. 78.
(b) The major circuit details are shown in fig.77.

## Requirements of Con. Local Oscillator Circutt

336. Since R.F. amplification is impracticable in the om. band we use a frequency changer as the first stage. Hence, the local ascillator mast be capable of providing sufficient C.W. output in the am. band to secure adequate heterodyming. To fulfil these requirements a resonant cavity type of ascillator is used. Before studying this cm. oscillator in detail we shall recall the roquirements it must meet:-
(a) Adsquate C.W. output to give officient heterodyning.
(b) Iunable fron the H. 2.S. operator's position to allow for variations in the frequency of both the magnetrom and the klystron.
(c) As high a frequency stability as is reasonably obtainable.
(d) Adjustable feedback to permit control of amplitude for oscillation.
(e) As high an output stability as is reasonably obtainable.
(f) Adjustable loading to set the amplitude of oscillation to a point where the current drain is not sufficiently high to endanger the valve when frequency and output are stable.
(g) Control of input to mixer to get optimun heterodyning without modifying the loading.

These requirements call for a stabilised power supply, and Tuning, feedback, loading, and output controls.

## Details of the Circuit

337. Before attempting to study the action of the local oscillator, we note the following items in the locol oscillator circuit in fig. 77 .
(a) A resonant cavity of the toroidal or rhumbatran type which corresponds to the LC. tank circuit of the normal os sillator.
(b) An eleotron gun which is used to excite the cavity and which plays the part of the valve in a normal oscillator.
(c) A three section glass envelope sealed to the rhambatran by means of copper glass seals.
(d) A reflector electrode whose voltage can be varied with respeot to the cathode by means of a potentiameter. This serves as the feedback control.
(e) Three preset and one variable plunger. These are the tuning contrals.
(f) A rotatable coupling loop. This is the loading or coupling control.
(g) An adjustable capacity probe into the mixer oavity on the end of the L.O. feeder. This probe has already been mentioned as providing a mixer irput control.
(h) A neon stabilised power supply to obtain a stable frequency and amplitude.

## Principles

338. We shall commence our study of the operation of this microwave C.W. oscillator by recalling the essentials of axy fonn of regenerative oscillator. The first requirement is a ringing circuit which, if excited, will develop simusoidal oscillations whose amplitude decays exponentially. The lower the circuit losses, i.e., the higher its $Q$, the more slorly these oscillations would decay. The second essential is a suitable agency for exciting the ringing circuit. The third requirement is some method of supplying positive feedback to make up the losses in the ringing circuit and thus keep the amplitude of the oscillations constant. We may then rogerd the regenerative oscillator as consisting essentially of a ringing circuit which develops the R.F. energy, and a maintaining cirmit which excites it and provides the
requisite amount of energy in the correct phase to overcane losses. D. C. energy must be supplied to the maintaining circuit while R.F. energy can be obtained by loading the ringing circuit. In the familiar L.C. valve oscillator the L.C. circuit provides the ringing circuit. The moving magnetic field associated with the initial current flow provides the excitation that starts oscillation. Same of the R.F. energy of the oscillatory circuit is impressed on the grid in such a phase that the emplified output is returned to the oscillatory circuit to make up the energy supplied to the grid, the ohmic losses in the oscillatory circuit, and the output supplied to the aerial. The oscillations are kept at that constant amplitude where the input returned to the grid just makes up all these losses after amplificetion in the valve. The valve is purely a convenient maintaining circuit which takes the energy from the H.T. supply and passes it to the oscillatory circuit for conversion into ReF. onergy.


#### Abstract

339. When the current is building up in the inductance of an L.C. dircuit energy is stored in the magnetic field. When the current reaches a ateady value the magnetic field callapses and the current overshoots to charge up the condenser to a value above the mean anode potential and the energy of the magnetic field is stored in the electric field of the condenser. When the magnetic field has completely collapsed there is no further charging e.m.f. across the condenser which then discharges through the coil in the reverge direction to again store the energy in the field of the coil. It is only beceuse the coil and condenser are not completely resistanceless that this cscillation will not go on indefinitely without any positive feedback arrangements.


340. Just as any length of wire exhibits inductance, so does the metal of the resomant cavity or rhumbatron of the kiystran. What is less apparent is how the two sections of the rhumbatron can oxhibit capacitance although they are comected through the outer oasing. This phencmenon arises out of the fact that at very high frequencies the distribution of R.F. currents in conductors makes it possible for different parts of the same conductor to have a different R.F. potential. If these parts are separated by a dielectric we have an electric field in which R.F. energy can be stored which is Just another way of saying that we have capacitance. The rhambatrcn is then Just a miorowave equivalent of the familiar L.C. circuit.

## Excitation

341. The CV. 67 operates with the rhumbatron at D.C. earth, the cathode at about -1200 valts and the reflector at around -1500 volts. There is therefore a potential difference of about 1200 volts between the cathode and rhmbatron. Hence, when the cathode starts to emit, the electrons travel at high apeed toward the rhumbatron. The grid and screen, although tied to the cathode, by virtue of the fields induced in them by the electrons serve to shape the emitted electrons into a fairiy sharp beam which is directed through the orifice in the lip atructure.
342. When the electron beam passes through the rhumbatron orifice it has a magnetic field around it since it is just as mach an electric current as the electron flow in a wire. This field cuts the metal of the rhumbatron cavity and starts electron displacements in the metal. These electron displacements cause the cavity to start ringing Just as the initial current flow in the coil started the ringing of the L.C. circuit. The offect of this ringing is to make the two halves of the rhumbatron swing alternately positive and negative at a frequency deternined by the cavity volume. This results in the appearance of an electromagnetic field in the cavity which has its electric vector perpendicular to the two copper plates forming the toroidal cavity. This field is most intense across the lips where the plates are close together. The matual ropulsion of the lines of force cause them to bulge out into the orifice. This field rises and falls sinusoidally at a frequency of around $3300 \mathrm{kc} / \mathrm{s}$.

## Velooity Modulation

343. As the constant velocity electron atream from the gun enters the orifice the velocity of the electrons is modified in accordance with the instantaneous

## C.0.0896


sense and magnitude of the electric field bulging into the orifice. Let us assume that the field is at a maximm with the upper plate positive and the lower plate negative. An electron entering the field is then accelerated and travels at an increased rate after getting through the orifice. A quarter cycle later the field will be zero as both plates will be back to R.F. earth as well as D.C. earth potential. An electron passing through at that instant will then travel at the same speed after emerging as it did before entering the space between the lips. After another quarter cycle has occurred the field will be a maximum in the opposite sense, i.e. the top plate will be negative and the lower plate will be positive. An electron now entering the field will be slowed down or decelerated. He see then that the ringing of the cavity is modifying the velocity of the electrons passing through the orifice. That is, the ringing cavity is causing a velocity modulation of the electron stream.
344. To appreciate the significance of this velocity modulation we must now transfer our attention to the space between the earthed rhumbatron and the reflector which is at about -1500 wolts. In this space there is a steady D.C. field that will urge electrons away fron the highly negative reflector towards the relatively positive rhumbatron. Shooting through the orifice into this field we have the velocity-moulated electron stream. The opposing fiela will bring them all to a halt and turn them around to shoot back into the orifice since the D.C. field between the reflector and rhunbatron is 1500 volts, while the D.C. field between the cathode and rhumbatron is conly 1200 wolts. But since the electron stream has been velocity modulated while passing through the orifice the first time there will be differences in how close the electrons cane to the reflector before they turn around. The accelerated electrons will penetrate farthest. Electrons caning later which met the zero field will be travelling less rapidly. These will turn around earlier and will tend to fall in step with the accelerated ones that had travelled farther but spent the quarter period in travelling and returning the extra distance. The decelerated electrons coming along a further quarter cycle later will turn around still earlier so will tend to fall in step with both the preceding lots. The combined effect of the reflector and the velocity modulator is therefore a tendency of the electron stream to show bunching, i.e., heavy concentrations of electrons separated by more trickles. We say the stream has been density modulated. If the reflector voltage is correctly adjusted with respect to the cathode voltage and the distance between the reflector and the orifice, wo can arrange that the bunches in the reversed stream meet an opposing field when entering the space between the lips on their return journey. The trickles between the bunches meet the accelerating field a half-cycle later.

## Density Modulation and Fositive Feedback

345. If the dense parts of the reversed stream met an opposing field while the sparse parts meet the accelerating field we will have the majority of the electrans slowed down on their second passage through the field and only a small proportion will be speeded up. In their first passage as many will be speeded up on the average as will be slowed dawn. The result of suitably adjusting the reflector voltage is then to slow down far more electrons than are accelerated. Now if electrons are speeded up they have taken energy fron the oscillating electronagnetic field, i.e., they have damped the ringing. But when they are slaved down they have given up energy to the field and have provided positive feadback. Hence, by correctiy adjusting the reflector voltage we obtain positive feedback and sustained oscillations in the resonant cavity. As long as the energy returmed to the cavity exceeds the energy taken fram it by chmic losses, in heating the inner surface, by accelerated electrons, and by output circuits, the klystron will oscillate. The amplitude of oscillation will set itself at the level where the total losses balance the energy taken from the electron stream. How much energy is taken from the electron stream depends on the number of electrons meeting an opposing field. It is the opposing field strength which detemines the amount of deceleration and hence the amount of kinetic energy taken fram the slowed-up electrons. Both the number decelerated and amount of deceleration are altered by varying the reflector voltage since this quantity determines the spacing between the bunches. If the bunches are spaced so that their centre meets the opposing field when it has its maximum value the maximum energy is taken from the electron stream and the amplitude of the oscillations reaches its maximum value. If the bunches meet the opposing field when it has a low intensity the amplitude of oscillation falls since less energy is taken from the electron stream. Altering the
reflector voltage then serves primarily to alter the spacing and phasing of the bunches with respect to the oscillating R.F. fileld between the rhumbatron lips and thus performs as a feedback or amplitude control. The oscillating field may have different modes, i.e., different electric and magnetic field patterns which correspond to different frequencies. These modes may change as the reflector voltage is varied. Hence although the reflector volts control serves as a feedback contral in the CV. 67, it may have secondary effects on frequency.

## Operating Conditions

346. The actual spacing between bunches can only remain constant if the cathode and reflector potentials remain constant. Hence, for atability of output proviaion must be made to keep these potentials as steady as possible. To fulfil this requirement, the neon stabiliser circuit is provided across the -1800 V . supply brought into the tuning unit 207 fram the power unit.
347. The reflector volts potentianeter permits a variation in the reflector potential of around -1400 to -1600 V . when the klyatron is oscillating. The normal cathode potential is about -1200 V . Should this potential fall to the vicinity of -1000 V ., the klystron operation will become critical. An electro static voltmeter must be used to measure the klystron voltages.
348. The normal operating current of the klystron is about 8 ma. This can be measured by connecting a meter between the -1800 V . input plug and the 39 K . resistor, R.2. The electron flow path is through R.2, the stabilising network, emission from the klystron cathode, and an ultimate flow to the earthed rhumbatran and thraugh the earth line to power unit. Since this is a series cirait, all the current passed flows through the klystron. As the reflector is more negative than the cathode, there is no electron flow to the reflector.

## Frequency Control

349. The frequency of the oscillations in the CV. 67 is primarily controlled by means of a knob on the front of the tuning unit 207. This knob alters the distance a variable tuning plunger projects into the rinubatron cavity. The range available on this control should be such as to permit tuning the klystron through $13.5 \mathrm{Mc} / \mathrm{s}$. either above or below the magnetron frequency with scme leeway at each end. If these conditions cannot be fulfilled, the two proset plungers require adjustment until this condition is fulfilled. It must be remembered that screwing these plungers in shifts the band covered toward a higher Prequency, while screwing them out, shifts the band covered to a lower frequency. The desirability of being able to tune the CV. 67 above or below the magnetron by the I.F. of $13.5 \mathrm{Mc} / \mathrm{s}$. erises out of the fact that the mixer line is cut to a fixed length. If the magnetron frequency happens to be near the end of the band to which the mixer cavity responds, say near the low end, then the response to a L.O. signal tuned $13.5 \mathrm{Mc} / \mathrm{s}$. lower will be much poorer than the response to a L.O. signal tuned $13.5 \mathrm{Mc} / \mathrm{s}$. above the magnetron frequency. Hence two-point tuning on the klystran permits selection of the klystron frequency that gives the best response in the mixer cavity and hence the best signal to noise ratio.
350. As pointed out above, the reflector voltage may have a secondary effect on frequency.

## Output Control

351. It was pointed out earlier that the electric vector of the osojllating field in the klystron cavity is always direoted so as to be perpendicular to the two rhumbatron plates. The magnetic vector will take the form of closed loops in a plane at right angles to the E lines which they circie. If a section of coaxial line with the inner terminated in a loop (whose end is soldered to the cuter) is threaded into the cavity, any of the magnetic lines of force threading the lo0p will induce on R.F. voltage between the imer and outer of the coacial line. The outer of the line will be in contact with the rhumbatron casing and therefore at earth potential. How large an R.F. Voltage is developed between the inner and outer of the ccaxial line will depend on how
many magnetic lines of force thread the terminating loop. This will be a maximum when the plane of the loop is perpendicular to the magnetic vector in the cavity. Hence, by altering the angle of the coupling loop the R.F. voltage applied to the line may be varied. This coupling line is brought to the L. 0. output plug on the tuning unit 207 panel. A uniradio 21 feeder is connected at the plug and picks up the output voltage for transfer to the mixer cavity. Since the angle of the coupling loop determines how much energy is taken from the cavity by the feeder, i.e., the klystron loading, a variable coupling loop angle provides an output or loading control. A sorew-driver preset labelled "coupling" appears on the tuning unit panel. This control varies the coupling loop by means of a suitable lever arrangement. If the coupling is very light and the reflector voltage is set to give a hoavy positive feedback the klystron will oscillate very violently and will take a current which may be sufficiently heavy to damage the valve. If the coupling is at maximmn to provide a heavy loading, far more energy is transferred to the cable than can possibly be used at the mixer cavity for efficient heterodyning. It is therefore usual to set the coupling loop at about $30^{\circ}-45^{\circ}$ to the $H$ vector (or maximum coupling) to get an intermediate coupling. Radar mechanics familiar with the indicator 162 must bear in mind that in the tuning unit 207 the klystron is mounted horizontaliy instead of vertically as was the case in the indicator 162. The coupling indication is given by the position of the slot in the coupling preset. A full range of coupling from minimum to maximum is obtainable by varying the slot between the horizontal and vertical positions.

## Setting of Coupling Loop and Capacity Probe

352. As was mentioned in discussing the mixer the $L_{0} O$. input to the mixer is introduced by means of a capacity probe. This capacity probe with its 75 ohm matching resistor is the termination of the uniradio 21 feeder from the tuning unit 207 to the mixer in the transmitter unit. This capacity probe provides a means of attemating the local oscillator signal to a suitable value for efficient heterodyning of the R.F. signal. From experience it has been found that a crystal current reading of about 0.4 ma , gives the optimum operating conditions. It is custanary to set the coupling to an intermediate value with the loop at $30^{\circ}-45^{\circ}$ to the maximum coupling position and the capacity probe to a sotting such that the maximin crystal current reading obtainable by varying the reflector voltage does not exceed 0.6 ma . This precaution is taken to prevent damage to the orystal. The reflector voltage is finaliy adjusted to give a current reading of 0.4 ma .

## Setting-Up the Reflector Voltage and Crystal Ourrent

353. A point to be watched for is the possibility of getting 0.4 ma. crystal current for two different settings of the refleotor valtage. A full orystal current characteristic will show two sides, a "steep" side, and a "slow" side. By the term "steep" side, we mean that over part of the movernent range available on the reflector voltage preset the crystal ourrent will rise sharply to a peak (which may in sane cases be unstable) for a small rotation of the preset. This means that if the reflector voltage is set to a point within this range a small variation in supply voltages due to changing engine speed, etc., will cause apprectable changes in crystal current. This means that the klystron operation is likely to be erratic and probably noisy as well. Should the reflector voltage be set up in this "steep" or unreliable side of the crystal characteristic on the ground airborne operation will in all probability be unsatisfactory. By the term "slow" side, we mean that over on appreciable part of the movement range available on the refleotor valts preset the crystal current will vary very grachally. The more usual performance will be a sharp rise to a peak as the contral is turned closkwise and then a slow fall away. Occasionally a slow fall may come first and then the sharp rise. The important considerations are:-
(a) That the current should never exceed 0.6 ma . as the reflector voltage is varied through its full range.
(b) That the final operating point be set for about 0.4 ma . on the slow or reliable part of the crystal characteristic.
A ciystal current characteristic is shown in fig. 76(b).

## Interaction between Tuning and Crystal Control

354. Since altering kiystron tuning varies the frequency of the oscillating field, it is varying the period in which the electric field across the lips
is canpleting a cycle. Now the reflector voltage setting fixes the spacing between bunches. When these bunches meet an opposing field, we have klystron oscillation and crystel current from the rectified C.W. How much orystal current is produced depends on the amplitude of the C.W. imput to the mixer, which depends on the amount of positive feedback. But the amount of positive feedback depends on the strength of the opposing field met by the bunches. If the tuning is altered, the bunches will meet the opposing field at a different point in its cycle. Hence the positive feedback may vary and the result may be to vary the amplitude of oscillation and therefore the crystal ourrent. It follows then that when a set is being lined up on the bench or in an aircraft, the crystal current value should be checked if the klystron tuning is altered after the crystal current was set up.

## The Crystal Adaptor Check of Klystrom

355. When the common fault of low crystal current is encountered the fault is usually in the crystal. It is, horever, desirable to have some ready method of checking that the klystron is actually producing a C.W. output at the output plug on the tuning unit 207. This can be done by means of a crystal adaptor which can be comected directly to the output plug. This adaptor is just a crystal rectifier in a suitable mounting. When an AVO is cornected to the adaptor the rectifier cutput current can be measured. Values of about 8-12 ma. are normal. Since this value is well above the value that the orystal can safely carry for any appreciable time interval the adaptor should just be touchec to the output plug long enough to see whether or not a satisfactory output is being developed. The actual crystal current value obtained will depend a great deal on the condition of the crystal used. The presence of a reasomable current is sufficient to indicate that the klystron is oscillating.

## Klystron Feults

356. The only common klystron faults are as follows:-
(a) Coupling loop so long that it pushes against the glass envelope and either breaks the loop or bends it back on itself so that it is offectively shorted out.
(b) Loss of vacum due to cracks or breakage of copper-glass seals.
(c) Wear in the output plug and socket resulting in poor contact and poor output and noise when airborne.
(d) Loss of emission due to life factor.
(o) Damage due to passage of excessive current due to undercoupling and heavy positive feedback.
$(f)$ Change in component values resulting in incorrect cathode and reflector voltages.

## The Head Amplifier

357. It was pointed out in para. 311 (J) that the hoad amplifier is inciuded in the transmitter unit to give sone emplification (gain of about 4) of the mixer output before applying it to the cable passing to the I.F. amplifier in the receiver-timing unit. Whether or not the inclusion of the head amplifier results in a better signal to noise ratio in the receiver output dopends entirely on whether the signal to noise ratio of the input to the I.F. strip is better when the head amplifier is included than when it is amitted. This, in turn, will depend on whether the signal amplification in the head amplifier stage exoeeds the cambined effects of noise picked up and noise developed in the stage. It follows then that the head amplifier atage may beacme a liability rather than an asset if the stage becames very noisy. The chief causes of noise are bad earthing connections anywhere in the stage. A low emissiom VR. 136 will also be noisy. A check on the stage can be made by bypassing the head amplifier and feeding directily from the mixer into the I. F. strip. If the signal to noise ratio shows considerable improvement the head amplifier stage is obviously a hindrance rather than a help.

Miscellaneous Transmitter Unit Faults
358. To avoid confusing noise from noisy blower motors which is getting into the head amplifier with noise due to a feulty head amplifier stage or R. F. noise
pick up, the noise level in the receiver output under normal operating conditions should be compared with the value observed phen the blower motor is made inoperative.
359. A check can be made on the noise contribution of a particular transmitter unit by comparing the noise level in the receiver output when the transmitter is operating with the level when the modulator is switched off. By substitating a transmitter unit known to be satisfactory for the suspected one and fitting the crystal from the suspected unit in the good one, a check oan be mede for abnormally high transmitter unit noise from causes other than the orystal.
360. Other causes of noise, intermittent signals, weak signals, no signals, etc., may be:-
(a) Burning of, or bad contacts by, the pin on the CV. 64 output line which connects to the aerial feeder imer.
(b) Binjing of the nut comecting the outer of the aerial feeder and resulting in a poor contact.
(c) Loose inner contact at pulse input plug socket.
(a) Absence of earth on screening of pulse lead from the imput plug to the pulse transfomer.
(o) Insufficient clearance between the leads to the magnetron legs and the 4 K . morganite rod. Short circuits and sparking may then occur under conditions of vibration, high altitudes and low pressures.
(f) Straps for clamping the capacity probe may be broken or missing.
(g) Faulty Joints between 75 ohm resistor in capacity probe and the imer of the feeder.
(h) Rotation of trolitul sleeve in the capacity probe permitting contact between these joints and the outer to short out the C.W. input intermittently or continuously.
(i) The imer of local oscillator input plug may push into the polystyrene and fail to make proper contact or break connection inside the probe to the mixer.
(j) The thread on the outer of the local oscillator imput plug may bind so that tho lead from the indicator does not make rigid cormection to the plug.
(k) Inner of the mixer line failing to make good contact with the pin on the end of the crystal. The split end of this inner may require pinching by careful manipulation of two long-shafted screwdrivers.
(1) The black cap of the crystal holder failing to screw in far onough to clamp the crystal firmly in the holder.
(m) Absence of spring clamp to hold damed cap of mixer line.
(n) Dry joints or broken wires at the I.F. connection to the outer of the crystal at the top of the metal sleeve.
(o) Loose or missing grub-screws in the Pye plug on the I.F. imput to the head amplifier.
(p) Loose nuts on the Pye sookets on the imput and output of the head amplifier permitting the sockets to rotate when the plugs are handed with resultant breakage of the leads inside.
(q) Bad contacts in the VR. 136 holder in the head amplifier stage.
(r) Bad contacts in the crystal current jack.
(s) Insulation breakdown in the crabtree supply plug to the head amplifier unit between the 300V. irput pin (1) and the earth pin (2).
( $t$ ) Dust cores in head amplifier input or output transformers displaced or dropped out due to faulty sealing.
(u) Faulty suppressor unit on blower motor or scamer motor.
(v) Blower motor running rough aue to faulty lubrication and causing excessive vibration.
(w) Faulty brushes on blower motor.
(x) Faulty sealing between chassis and rubber mounting of blower motor.
(y) Beacon awitch in the B or BA positions so that HT supply to the head amplifier is cut off.

## The I. F. Amplifier

361. The six-stage (VR.65) I.F. amplifier, the diode detector (VR.92) and the receiver output valve (VR.53) are mounted on a sub-chassis in the receiver timing unit. The tuned anode transformer in the head amplifier is suitably damped on the secondary side to match the Pye cable carrying the head amplifier output from the green Pye plug on the transmitter unit to the corresponding plug on the receiver-timing unit. The input from the green Pye plug on the receiver is applied to the grid of the first I.F. stage via a tuned dust-core transfomer, suitably damped on the secondary side to match the Pye cable. A second lead taps into this input transformer from a brown Pye plug on the receiver panel. This plug is used to feed the output of the Lucero unit into the I.F. amplifier. The beacan returns from the receiver section of the Incero unit are passed into the I.F. amplifier when the beacon switch on the switch unit is in the $B+H, B$ or $B A$ position. In the $B+H$ position, the $H \cdot T$. supply to the head amplifier is completed and inputs are fed into the I.F. strip at both the green and brown Pye plugs. When the awitch is on the B position only Lucero signals fran the long range beacons reach the I.F. amplifier. In the BA position a different local oscillator is switched in at the Lucero unit and the imput to the I.F. amplifier consists of signals from the Lucero blind approach beacon. In both the $B$ and $B A$ positions the H. T. supply to the head amplifier is broken so that there is no H. 2.S. signal imput at the green Pye plug. In the OFF position, the Lucero unit is inoperative and only H.2.S. signals are applied to the I.F. amplifier. The taps on the input transfomer are chosen to give suitable matcinine and signal to noise ratio for both input channels.

## Gain Control

362. The ooupling between the six stages is by dust-core transformers suitably damped on both sides. The overall band width is $13.5 \pm 3 \mathrm{Mc} / \mathrm{s}$. The gain is controlled by varying the cathode bias applied to stages 2 and 40 The $2 \mathbb{K}$ gain control potentiometer on the switch unit is in parallel with R. 61 ( 22 K ) in the receiver. This parallel cambination is connected in series with R. 60 ( 75 K .) between the 300 V H. T. line and earth. When the gain control is fully counterclockwise the whole 2 K is in circuit and a bias voltage of obout -8 V . is tapped of $f$ which is sufficient to cut the valves off. When the control is fully clockwise the bias line is returned to earth and stages 2 and 4 operate with the same normal auto-bias as is used in the remaining stages. The amplifier then has its maximum gain.

## Suppression

363. It has been pointed out that the CV. 43 cannot ionise instantly and always permits the passage of scme transmitter puise energy to the crystel. The mixer output firam this breakthrough is of such amplitude that it can overload the I.F. amplifier and cause temporary paralyais of the receiver after each transmitter pulse. To overcome this difficulty the I.F. amplifier must be suppressed until the main transmitter prilse is ccrppleted. It has also been pointed out that the back edge of the 20 microsecond modulator priming pulse fires the trigger valve and spark gap to initiate the 1 microsecond transmitter pulse. The positive-going 20 microsecond pulse taken fram the oathode of the VI.6OA in the modulator multivibrator is therefore a convenient waveform to generate the required suppression pulse since it is always locked to the transmitter pulse.
364. Details of the suppression generator are shown in fig. 80. The poaitivegoing 20 microsecond pulse from the VT. 60 A cathode is applied to the four parallel vialet Pye plugs on the modulator panel through the 110 ohm terainating resistor, Re35. Fran one of these violet plugs, the pulse is taken to the violet plug on the receiver-timing umit. As the transmitter fires 1 to 2 microseccuds after the back edge of the modulator priming pulse it is necessary to delay the irput to the suppression genarator in order to get a suppression waveform that contirmes until the transmitter pulse is completed. For this reason a delay network with a switoh that can be set to provide a delay that is variable between 0 and 8 microseconds is inserted in the input to the suppression generator, V.412. The positive-going 20 microsecond pulse will normaliy have an amplitude of $40-50$ volts at the vialet imput plug. This

## C.D. 0896 L

amplitude is dropped by the bleeder R.455 (1.5K.) and R. 456 ( $3 \mathrm{~K}_{0}$ ). The effective irput impedance is that of Ro 456 shumted by the characteristic impedance of the network. This results in an input amplitude of $12-15$ volts. The 1 K terminating resistance prevents reflections fram the output end of the network. The network therefore applies to Vo 412 grid a 20 mi crosecond poaitive-going pulse delayed~relative to the irput by $0-8$ microseconds according to the setting of the switch which is operated by an unlabelled screwdriver preset on the receiver-timing unit panel. The amplitude on V. 412 grid is about 13 volts. The effect of this positive pulse is to carry V. 412 into grid current for the pulse duration. This grid current flows into 0.452 (0.1) and charges it negatively. When the positive pulse collapses the leak-awayof the electrons through $\mathrm{R}_{0} 458$ (1M.) develops sufficient selfabies to keep V. 412 cut-off on the grid until the next positive pulse appears. V. 4.12 anode therefore falls for 20 microseconds in every 1500 microseconds. The anode load of V. 412 is R. 5 (4OK.) in the sareen supply line to the ist and 3rd I.F. stages. The normal screen current to these valves through R. 5 makes the out-off potential of V. 412 about +150 V . When V. 412 goes into grid current the current passed by V. 412 results in a drop at the junction of R. 5 and R. 6 of about 140V. This fall carries the screens of the 1 st and 3 rd I.F. stages so low that the valves are effectively cut off. When V. 412 outs off again the screens of V. 1 and V. 3 will retarn to a sensitive state at a rate determined by their associated time constants. The position of the suppression period can be varied by means of the suppression preset until only a wisp of the breakthrough tail shows on the height tube trace. Due to the first negative overswing on the pulse transformer resulting in a measure of oscillation in the magnetron, it may be necessary to set the suppression control to cover both the primary magnetron puise and this spurious overswing pulse if breakthrough is to be campletely eliminated. This problem has been the faotor which limits the miniman range of Fishpond.

## The Second Detector

365. The output of the last I.F. stage is applied to the aathode of the VR. 92 second detector. The rectified voltage is developed across R. 54 ( 6.2 K ) as negative-going $13.5 \mathrm{Mc} / \mathrm{s}$. pulses. C. 34 ( 5 pf .) smooths these to give the envelope of the echo signal. L. 5 is an I.F. choke. C. 49 (.1) and R. 64 (100K.) provide A.C. caupling to the receiver output valve. A.C. coupling is used in preference to D.C. coupling to minimise the possibility of C.W. Jamming on the I.F. frequency. With D.C. coupling the back-biassing of the detector anode by a C.W. signal could carry the grid of the output valve to cut-off.

## The Monitor Notwork

366. R. 55, R. 56 , C. 36 , C. 37 provide a monitor network. By connecting a $0-500$ microameter between tag 5 and earth the rectified current praduced by C.W. input to the I.F. amplifier can be measured. 1OV. D.C. output on V. 7 anode gives a current of 185 microamps. between tag 5 and earth. Ey applying a C.W. input from the aignal generator type 52A or its equivalent type 106, the overall handwidth can be checked. As the frequency of the imput is varied the meter reading will rise sharply as the pass-band is entered. On going out of the pass-band the reading will fall sharply. Normal band width is $13.5 \pm 3 \mathrm{Mc} / \mathrm{s}$. If the imput frequency is set to mid-band an ingut setting can be found that will be well short of saturation on a normal set and the meter reading noted. If the same input is applied to a suspected I. F. amplifier the output reading can be compared with that obtained from the good set. In this way a comparative check can be made on suspected insensitive I.F. strips. Conversely, the imput required to produce a given output short of seturation may be compared instead.

## The Receiver Outout Stage

367. The receiver output valve is a variablemu pentode (VR.53) with the cathode returned to earth and a 10 K grid stopper. Since the pulse input on the grid is negative-going the valve passes the maximsm current for zero sigmal input and its anode potential will then be at its lowest level. As signals are applied to drive the grid negative the anode potential will rise to give a positive-going output. A -8V. signal on the grid will cat the valve off. Hence grid cut-off introduces limiting on any signal input in excess of this value. The effective anode load is R .451 ( 1 K. ) in the timing unit section.
R. 452 is effectively decoupled by C.440 (1 $\mu \mathrm{ff}$.). The anode of the receiver output valve is taken to tag 7 on the numbered receiver tapboard through the I.F. choke, L.6. From the tagboard a lead completes the connection to R. 451 on the timing unit chassis.
368. The suppressor of the receiver output valve is normally returned to earth through one half of the double diode, V. 410 . Provided the heading merker switch on the switch unit is closed, circuits in the timing unit section apply a negative pulse to the suppressor and cut anode current off on the suppressor for around 2000-3000 microseconds once for every revolution of the scanner. The output of the valve will then consist of signals and nolse for all timebase sweeps except those occurring whilst the valve is cut-off on the suppressor. If a timebase making 1 sweep per second were available to observe the anode waveform it would show the following details:-
(a) A suppression break of around 20 microseconds duration at 1500 microsecond intervals.
(b) A positive-going transmitter pulse tail after each suppression break.
(c) Noise during the nan-suppressed portions of each 1500 microsecond interval.
(d) Positivengoing echo pulses reaurring in each 1500 microsecond interval at intervals after the transmitter pulse tail governed by the range of the targets.
(e) The amplitude of the echo pulses will vary with the strength of the reflected signals for a given setting of the gain control.
(f) The amplitude of the signals and noise will be a maximum when the gain control is fully clockwise and minimum when the gain cantrol is fully counterclockwise.
(g) Any signals developing a swing of more than -8V. at the grid will be limited by grid cut-off so will show the same output amplitude.
(h) Once for every revolution of the scanner, i.ee, once per second for a speed of 60 r.p.m., a maximum amplitude positive-going pulse of about $2000-3000$ microseconds duration will appear when anode current is cut-off on the suppressor by the negative pulse from the heading marizer circuit in the timing unit.
369. If the switch on the indicator 184 panel is set to "Course" the heading marker pulse is formed when the scamer goes through the dead-ahead position. If this switch is set to the "Track" position the pulse forms earlier or later depending on the drift angle. Since the receiver output is ultimately applied to the P.P.I. grid as a positive-going signal, this pulse brightens up one full scan and ali or part of another onee in every scamer revolution. If the P.P.I. map is correctly set up by means of the setting knob on the heading control unit, this brightened up scan appears at the bearing of the aircraft heading when the indicator 184 switch is set to "Course". If the switch is set to "Track", and the Admiralty transmitter in the control unit 468 has been correctily set up by means of the setting knob on the heading control unit, the positive pulse at the anode of $V .8$ is so displaced as to make the brightened-up scans on the P.P.I. appear at the bearing of the actual aircraft track. The heading (course) marker or the alternative track marker are then a part of the receiver output that appear only once in every scanner revalution while all other signals appear once for every transmitter pulse.

## RECEIVER SUPPRESSION GENERATOR

 CIRCUIT AND WAVEFORMS


The Mark IIIA Receiver Using T. R. 3555 Series

## Outline

370. The differences between the Mark IIC and Mark IIIA receivers are primaxily consequences of the fact that a wavelength of about 3.2 cms . is used instead of 9.1 ans. The chief differences are as follows:-
(a) More elaborate input matching arrangements to prevent interference due to passage of received signals dom the transmitter line which reflect and partly cancel direct incomint signal.s.
(b) The T.R. switch, CV.114, has a much smaller cavity; uses pressure tuning, and is mounted in a waveguide.
(c) A different crystal, CV.111, instead of CV. 10 is used. This crystal has a higher current capacity and smaller struy capacity. Adjustable matching is provided for the mixer cavity which is a section of waveguide.
(d) The local oscillator stage employs a CV. 129 refleotor klystron, also with a much smaller cavity and pressure tuming. The local oscillator with its independent power pack is housed in the transmitter unit. A remote tuning control unit is provided at the H. $2 . S$. operator's table.
(e) A two-stage $45 \mathrm{Mc} / \mathrm{s}$. head amplifier unit is used. This is a universal unit employing VR.91's ins tead of the VR.136.
(f) The I.F. strip is another universal unit. It comprises a 5 atage (VR.91) I.R. amplifier instead of six VR. 65 stages. A cathode follower (VR.91) is interposed between the detector and the output valve (VR-53). A gain control valve is used to vary the screen voltage of the second head amplifier valve and the first four I.F. stages. Fixed negative grid biasses are also used. These are derived from a -100 V . negative rail.
(g) Suppression is applied to the suppressors of the first three I.F. stages as opposed to the soreens of the 2nd and 4 th in the Mark II I.F. strip. The same supression generator oirouit is employed.

## Diagrams

374. (a) The major essentials of the Maric IIIA (TR-3555) receiver circuit are shown in fig. 82.
(b) Mechanical details of the waveguide adjustanents are shown in fig. 83.
(c) The gain control and Lucero switch circuit details are shown in fig. 89.

## Input Matching

372. As a result of the short wavelength employed input matching is much more oritical than in the Mark IIC receiver. When the reflected echo pulaes come into the transmitter unit they have optimal paths:-
(a) Along the main output lino back toward the magnetron.
(b) Down the branch line housing the anti-TR. cell (OV.115) and tuning pistan 2.
(c) Down the receiver branch line, through the CV. 114 TR switah, and into the mixer chamber.

Obviously, what we want to happen is that all the energy of the reflected pulses flows into the mixer cavity for conversion into I.F. pulses. We must set our output contrals with only output considerations in mind. Hence, we have no control over the phase of the reflected wave that comes back to the receiver branch line junction from the magnetron waveguide chamber. In acme cases the phase may be such that it is carrect to reinforce the inconing wave going directily into the receiver branch line. In this case the two waves do not interfere and the offect is the same as if all the energy had gone directly into the receiver branch line. This case is the exception rather than the rule. Same form of correoting adjustrent is therefore required.

373. This adjustment is tuning piston 2. The chamber is sealed off during the transmitter pulse period by the flash-over in the CV. 115 which effectively makes the end wall continuous. When echo signals come in, the excitation of the resonant slot in the CV. 115 is not sufficiently intense to cause flash-over. Finergy then flows through the slot, reflects at the piston and comes back again. If the reflections fran the magnetron are so phased as to interfere with the wave going directly down the branch line, we can adjust tuning piston 2 to cause a second reflected wave whose phase is such as to cancel out the wave reflection fram the cold magnetron. Once the optimum position of the piston is found, there is least interference between the reflected waves and the direct wave into the receiver branch line. In transmission line terninology, we say that the piston is adjusted to introduce an trmedance, which, when added vectorially to the magnetron impedance causes the incoming wave to see a high impedance .long the main output line when it reaches the receiver branch line Junotion. Ihe wave is then pictured as flowing mainly into the receiver line. To adjust the piston same form of observation of receiver autput is necessary. The piston is then adjusted for maximum output.
374. Cases may occur where altering the piston setting appears to have negligible effect on the receiver output. When this happens, the reflections fran the magnetron chamber are already caming back in the approximately correct phase and no appreciable correction is called for.

## The soft Rhumbatron, CV. 114 , TR. Switch

375. The function of the CV. 114 is the same as that of the CV. 43 in the Mark IIC installation, i.O., to isolate the receiver fram the transmitter when the trensmitter rires. This isolation is necessary to get the maximm energy into the radiated beam and to protect the crystal. Details of the construction. of the CV. 114 are shom in fig. 84 . The cavity is designed to be resonant in the 3 cm . band. Pressure tuning is used to vary the resonant frequency by varying the cavity volume by means of a slight distortion of the cavity.
376. The cavity is filled with water vapour at a few mos. pressure. When the carity is excited by the flow of energy into the branch line as the transmitter pulse begins, the voltage across the lips causes flash-over and introduces an effective short across the guide. The wave then reflects back into the main guide. The CV. 114 is situated a wavelength from the Junction. The reflected wave has then travelled an additional two wavelengths when it gets back to the main channel. Hence it is in phase with the outgoing wave and does not cause interference and an effective loss of output. As in the CV.43, a probe is provided to speed up both ionisation and de-ionisation. Details of the probe action in soft rhambatron TR. switches are discussed in paras. 319320. The negative voltage for the CV. 114 probe is obtained by comeoting the probe to the output line of the L.O. power pack through a resistance metwork, R. 21 , R. 22 , R. 23 (each 1 M. ) and R. 33 (250K.). The CV. 114 ionising current is about 0.5 ma . This current can be measured by comecting an AVO in sories With the probe cap on the CV.114 and R.33. The probe must be connected to the positive and the lead to the negative terminal of the meter. Unless this ionising current is present the valve is faulty and the crystol will suffer. The most probable cause of recurring crystal failure is a faulty CV.114. The voltage at the CV. 114 probe will be of the order of -400 V . This voltage can be measured with an electrostatic voltmeter. The thickness of the two glass windows is different to permit matching of the cavity to the guide sections on the sides adjacent to the windows. The side towards the mixing chamber has two holes $90^{\circ}$ apart drilled in the threaded section. The side towards the main guide has only one hole. These holes are about $1 / 32$ ins in diameter.
377. When the transmitter pulse ends a normal CV. 114 will deionise quickly and incoming signal waves will not excite the cavity sufficiently to cause flash-over. The wave will therefore contime into the mixer chamber.

## The Crystal Mixer

378. Mechanical details of the mixer assembly are shown in flg.85(a) and the equivalent cirouit in fig. 85 (b). The $E$ vector in the wave-front advancing along the guide will be diametrical. The crystal is inserted into the guide along a diameter so as to be parallel to the E vector and thus have the
(a.)

(b)

(c)


Mark IIIt crystal current circuit.
FIG. 85
maximum R.F. voltage applied to it. The end of the guide mast be closed to prevent the wave travelling on past the crystal and out into space again. But when the guide is closed with a metallic short the part of the wave which is not dissipated in developing a voltage across the crystal travels on to the short and reflects. If the component of the reflected wave appearing across the crystal is not in phase with the direct wave there will be interference and partial cancellation. By closing the end of the guide with an adjustable piston the phase of the reflected wave can be adjusted to be in phase with the direct wave at the crystal. We then abstract the maxdmum energy from the wave in the crystal. In the transmission line terms, this is described as matching the crystal to the guide.
379. The probe from the silicon crystal in the crystal capsule makes contact with a connector pin coming in fran a Pye socket mounted on the guide, diametrically opposite the crystal mounting. This commector pin contacts the imer of the Pye socket imer. The connector pin is insulated from the guide wall by a mica washer through which it enters the gudie. The tungsten whisker of the crystal makes metalic connection with a metallic crystal holder which threads into the guide wall. As the outer of the Pye socket and the guide wall are at earth potential, the mica washer is effectively in parallel with the crystal and across the elements of the Pye socket. The mica washer therefore serves as a smoothing condenser for the rectified half-cycles of R.F. passed by the crystal. As the electron flow is fram the tungsten whisker to the silicon crystal, the condenser charges negatively and the output from the Pye socket will always be negative-going.
380. The C.W. output from the CV.129 L.O. is brought to the mixing chambers by a short section of coaxial line. The inner of this coaxial projects radially into the guide at right angles to the diameter linking the crystal and the Pye mixer output socket. This projecting inner serves to capacitatively couple the L. O. output to the crystal. That is, there is a steady C.W. wave in the guide with a diametrical $E$ vector, and also an R.F. voltage which only appears intermittently when signals come in. The voltage applied to the crystal at any instant is the result of the two voltages across it. As the two voltages have different frequencies, and hence different wavelengths, they will keep going in and out of step. When they are in phase at the crystal their amplitudes add. When in antiphase, the amplitudes subtract. The voltage across the crystal therefore fluctuates between these two limits. That is, whenever an echo signal appears in the guide, the two signals beat to apply a voltage across the crystal that varies in amplitude at the difference frequency. If the klystron is correctily tuned this difference frequency is $45 \mathrm{Mc} / \mathrm{s}$., the I. F. frequency.
381. While echo waves are in the guide the voltage at the Pye mixer output socket will be the smoothed nodulation envelope of the rectifiea crystal output. That is, bursts of $45 \mathrm{Mc} / \mathrm{s}$. sinewave will appear with a p.r.f. of $670 \mathrm{c} / \mathrm{s}$. Assuming an echo to be of 1 microsecond duration, one such echo burst will contain 45 cycles of $45 \mathrm{Mc} / \mathrm{s}$. sinewaves.
382. In the intervals between echo waves only the steady C.W. wave from the L. O. will be in the guide. The crystal output will then be passing a steady sequence of half-cycles of the L.O. sinewave. These will be smoothed by the mica washer moothing condenser to provide a standing D.C. voltage at the Pye socket. The amplitude of this D.C. voltage will depend on the C.W. input applied to the guide and the rectification efficiency of the crystal. For a good crystal the voltage will be a measure of the C.W. imput and hence of the klystron output.
383. We see then that there are two camponents in the signal appearing at the Pye mixer output socket. The one is a D.C. component obtained by smoothing the rectified L.O. signal. The other is an A.C. component consisting of 1 microsecond bursts of $45 \mathrm{Mc} / \mathrm{s}$. sinewaves at a p.r.f. of $670 \mathrm{c} / \mathrm{s}$. These components are taken by a short length of Pye cable to the grid of the first head amplifier stage.

## The Crystal Current Jack

384. Between the input to the head amplifier and earth we have an I.F. choke and a.001 condenser, C.1. This condenser offers negligible impedance at
$45 \mathrm{Mc} / \mathrm{s}$. so the whole A.C. component of the mixer output appears across the I.F. choke and is applied via C. 2 ( 100 pf. ) to the input coil. The D.C. component is blocked from earth by C. 1 so this voltage appears across $C .1$ and charges it negatively. By jacking in a meter this D.C. component of the mixor output can be read as a current indication. The tip of the jack will have to go to the negative side of the meter and the sleeve to the positive side. The normal value of crystal current is about 1.5 ma. The value should not exceed 6 ma. or the crystal will be damaged. The unconventional jack polarity arises because the head amplifier was designed for use with a crystol mixer having the silison crystal earthed instead of the tungsten wire as in the present case.

## Crystal for H.2.S. Mark IIIA

385. The crystals used in the H.2.S. Mark III equipments are CV.111's indicated by a green spot instead of the yellow spot used on the CV.101's for H-2.S. Mark II. The CV. 111 has a higher current rating than the CV. 101 and smaller strays. Sub sidiary spot markings are used to indicate the order of the voltage to which the crystal should stand up. These markings are orange and red spots. A crystal with only a green spot is capable of passing the required current for Mark III H.2.S. gear but will not stand a very high voltage. If a subsidiary orange spot is added to the green spot a medium voltage can be handled and if a subsidiary red spot is added the crystal has a high voltage breakdown. The green spot crystal with a subsidiary orange spot is called a CV.112. If a green spot crystal bears the subsidiary red spot it is called a CV.113.

## The CV. 129 Local Oscillator

386. The H.2.S. Mark IIIA local oscillator is a CV. 129 type of refleotor kiystron. To overcane the problem of feeder losses, the CV. 129 and its associated power pack and stabilising circuits are located in the transmitter unit. Tuning is done by varying the cavity volıme by means of a pressure ring. The pressure exerted on the flexible cavity by this pressure ring is varied by means of a differential thread tuning control. A crank and gear drive arrangement for mardal tuning is provided as a gear box attachment mounted external to the transmitter unit case. In the TR. 3555 series transmitter unita designed for use with the roll-stabilised scanner Type 71 this gear box is on the side of the unit. In the older TR. 3555 series units the gear box was mounted on the front. A remote control unit, tuning unit type $444^{\text {, }}$, is provided at the H.2.S. operator's table. This unit has a crank and gear arrangement which operates an Admiralty transmitter that switches the D.C. supply comections to a repeater motor mounted in the trensmitter unit gear box. The repeater motor armature rotation is used to operate the klystron tuning shaf't through a suitable gear train to give sufficiently slow frequency variation.
(a) Mechanical details of the CV. 129 are shown in fig. 86.
(b) Circuit details are show in fig. 87.

## Operating Conditions

387. The principles underlying the operation of the reflector kiystron are discussed in detail in paras. 338-354. These principles also apply in the case of the CV.129. The essential differences between the CV. 129 and CV. 67 are in size, method of tuing, voltages required and power pack design. The CV. 67 is operated with the cathode at about -1200 V and the reflector at about -1500 V . The CV. 129 is operated wi th the cathode not more than 1600 V negative to earth. The reflector voltage is 350 - 550V. negative to the cathode. The normal operating current of the CV. 129 is around 6 ma . and the coupling into the mixer is adjusted for a crystal current reading at the crystal jack of about 1.5 ma .

## The Local Oscillator Power Pack

388. In view of the small dimensions involved in the CV. 129 and the short wavelength employed, it is obvious that any appreciable fluctuation in the voltages applied to the reflector and cathode will result in sufficient change in the spacing of the bunches to radically upset the feedback phasing. Shifts
```
C.D.0896L]
```

HEAD AMPLIFIER
AMPLIFVING UNIT
TYPE 208 A
\(\left.\begin{array}{l}A OUPUT STACE <br>

RESPONSE\end{array}\right\}\)| WTERSTACE |
| :--- |
| OUTPUT RESPONSE |

```
RECEIVING UNT
```

    TYPE I53
    A RESPONSE of ONE OF
    FIRST THAEE STACIES
    B RESPONSE OF FIRST
THREE STAGES TOGETHER
founth stace
D - RESPONSE OF
HFTM STAGE

E OVEAACL RESPONSE

FIG. 88

in these potentials must therefore incorporate elaborate stabilising arrangements.
389. Circuit details of the L. 0. power pack are shom in fig.87. Examination of the circuit shows the following points.
(a) T. 1 provides the stepped up $1000 \mathrm{c} / \mathrm{s}$ output which is brought in through a suitable noise filter.
(b) V.4, a W.111, is the actual half-wave rectifier.
(c) The effective cathode load of V. 4 is the beam tetrode stabiliser V.5, a VT. 127.
(d) The screen voltage for the stabiliser, V.5, is obtained by bridging the screen in on a bleeder between +300 V . and earth, formed by R. 30 (22K.) and the VS. 70 neon stabiliser, V.5. The +300 V . line is supplied from the +300 V . pack in the poner unit. The VS. 70 serves to stabilise the screen voltage of V .5 to +100 V .
(e) V. 5 grid is tapped in at a variable point on the bleeder between the atabilised screen and the power pack output line.
(f) V. 5 is shunted by the 1.5 M . resistor, $\mathrm{R}_{0} 19$.
(g) The current passed by V. 4 can be measured at the jackpoint, J.2.
390. To appreciate how the outprut voltage is being stabilised we must consider $\nabla .5$ as a cathode load whose impedance is varied in such a way that when the input to T .1 fluctuates the variations in the impedance of V .5 will serve to keep the output D.C. voltage constant within very small limits. This variation in the jmpedance of V. 5 is achieved by feeding back a fraction of auy change in the cutput voltage to $V .5 \mathrm{grid}$. The tapping point to which V .5 grid is returned mast provide a suitable operating potential for V. 5 grid. This potential should be about -2OV. as the cathode is returned to earth. Let us assume the output voltage is of the order of -2 KV . If the grid were to be tapped in on a bleeder between -2KV. and earth at a -2OV. point, the tapping point would be only $1 / 100$ th of the way up the bleeder. The output voltage waild then have to change by 100 volts. to cause a 1 volt change at $V .5$ gria. The control obtainable would not be satisfactory with such an arrangement. By comecting the bleeder from the -2 KV . output line to the stabilised +100 V . point, we have 2100V. across the bleeder. Tapping at -20 V will be 120 V up the bleeder, i.e., about $1 / 18$ th of the way up. Hence, a change of less than 20V (i.e. of $1 \%$ ) in the output voltage will cause a change of 1 volt at $V .5$ gria. The control exercised by V. 5 therefore becomes mach more effective.
391. Let us assume that the 80 V imput to T. 1 primary from the V.C.P. shows a transient increase due to increased engine speed. The -2 KV output line will then tend to swing more negative. Approcimately $5 \%$ of the increase is applied to $\nabla .5 \mathrm{grid}$ to carry it more negative. Hence V. 5 passes less current, i.e., in impedance rises. There is then a reduced flow of electrons into the reservoir condensers, C.21 and C.22. By correctly adjusting VR.1, the variation in V. 5 impedance can be made to counterbalance the normal variations that may be expected in the 80 V supply to $T .1$ primary. The -2 KV output is then effectively stabilised.
392. Not only must the klystron supply valtage be stable, but it must be correct or the CV. 129 will not operate reliably and efficiently. the circuit design must therefore be such that the selected setting of VR. 1 for stability also gives $\nabla .5$ such an impedance that the output voltage is correct. Since the operating conditions necessary for satisfactory klystron operation are extremely aritioal the major requirement is actually a correct output voltage. We may, therefore, say that the design must be such as to give adequate stabilisation when the correct output is obtained by suitable adjustment of VR1.
393. The leak, R.19, serves to prevent flash-over in V. 5 when the equipment is switched on. The 80 V imput to T. 1 and T. 2 will be applied when the TL. T. ON" button is pressed on the switch unit. When V. 5 is cold its impedance will be high and the proportion of the T. 1 secondary voltage appearing between V. 5 anode and earth might well cause flash-over. Hy providing R. 19 in parallel with V. 5 this danger is avoided. R. 19 also serves as a discharge path for C. 22 when the gear is switched off.
394. C. 20 prevents R.F. pick-up fran influencing the potential of $V .5$ grid.
395. Examination of figg. 87 gives us the following information about the klystron circuit:-
(a) The reflector potential is that of the output line of the L.O. power pack.
(b) The cathode potential of the CV. 129 is determined by the output line voltage and the potential drop across VR.2, R. 29 and VR. 3 . But this potential drop is determined by the klystron current. The klystron current will depend on the klystron impedance which will be modified by the setting of VR. 3 since this varies the grid voltage. We may actually regard VR.2, R. 29, VR. 3 and the klystron impedance as forming a bleeder between the output line and earth. As variation of VR. 2 and VR. 3 vary the effective resistance of this bleeder, both controls vary the cathode potential of the klystron and the klystron current.
(c) The current taken from the L. O. power pack flows in three channels:-
(i) Through the klystron networic and the klystron to the ear thed rimubacron.
(ii) Through the bleeder formed by R.25, VR.1, R. 26, R.27, R. 28.
(iii) Through the CV. 114 network to the probe and thence to the earthed rhumbatron via the ionisation leakage fram the prove to the rhambatron.
396. The voltage of the power pack output line will obviously depend on the current drain imposed an it. It follows then that we cannot set up VR. 1 to sone arbitrary voltage level and then adjust the klystron controls to get a suitable operating point for the klystron, since adjustment of the klystron controls alters the current drain and hence the reflector voltage. Setting up the klystron controls, VR. 2 and VR.3, and the power pack control, VR. 1 are therefore not independent operations. Setting up actually calls for consecutive adjustment of the controls in a series of successive approximations which must terminate with stable klystron operation at a suitable amplitude level. Fran operational experience it has been found that the fingl conditions called for are:-
(a) Klystron cathode not negative to earth by more than 1600 V .
(b) Totel E.H.T. current drain not greater than 7.5 ma. (about 6 ma . to klystron).
(c) Crystal current at the crystal jack of 1.5 ma .

The crystal current value is dependent on adequate oscillation in the klystron so is essentially a consequence of the first two conditions rather than an additional condition.
397. The 7.5 ma. current drain is a figure found from experience. It represents about 6 ma . klystron current, 0.5 ma . soft rhmbatron current (CV.114), and 1 ma . bleeder current. To have a constant visual indication of this current drain a meter is jacked in at the jackpoint, J.2. The tip of the jaok must go to the meter positive and the sleeve of the jack to the meter negative terminal. The jack tip will be at a potential of about -1000V. with respect to earth. The resistor, R.18 (10K.), serves to avoid the danger of a faulty jack point disconnecting V. 5 and leaving V. 4 without its stabilising cathode load.
398. To permit observation of the klystron cathode potentisl while setting up VR.1, VR. 2 and VR. 3, an electrostatic voltmeter must be comnected between the kiystron cathode and earth.

## KIystran Output Controls

399. The principle of picking up an R.F. voltage from the resonant cavity of a klystron is discussed in para.351. In the case of the CV.129, a very tiny coupling loop is used to pick up the klystron output and impress it on a short length of coaxial Peeder. The voltage impressed on this feeder can, of course, be varied by varying the plane of the coupling loop. The other end
of this coaxial line has its inner projecting radially into the mixing chamber to serve as a capacity probe. The intensity of the current set up in the crystal chamber br the L.O. Irmut depends on the distance between the end of the probe and the crystal. This distance is adjustable so serves as an input control. In practice, the klystron coupling loop is set for marimm coupling to put the maximum R.F. voltage on the cosxial line. The distance that the launching probe projects into the mixing chamber is then adjusted to give a arystal current reading of 1.5 ma . on a meter jacked in at the crystal jackpoint. The reas on for this arrangement is to prevent the loss of signal power via the coaxial line to the L. O. Obviously, such losses are minimised by reducing the distance that the coaxial probe extends into the mixing chamber as much as possible. This arrangement calls for maximum coupling at the klystron to get sufficient C.W. into the mixing chamber with the minimum input coupling and hence the minimun reverse coupling.

## The Head Amplifier

400. Circuit details of the two stage VR. 91 head amplifier are shown in fig. 82. The overall gain of the two stages is about 17 for a screen potential of about 170 volts. The voltage applied to the screen of the second stage is varied by means of the gain control on the switch unit. The H.T. supply and screen supply to both vaives should be broken when the Iucero switch is set for either $B$ or $B A$. Details of the chamels are shown in fig. 89.
401. A grid bias of -1.5 V . is applied to the second stage. R.6(1.5K.) and R. 7 ( 100 K. ) form a bleeder between -100 V . and earth and the grid is tapped in at the junction. The -100 V . supply is obtained from the -100 V . neon stabilised negative rail in the receiver-timing unit.
402. When a valve has been replaced it is desirable that circuits immediately before and after the particular valve should be realigned. The tume frequencies for the various circuits are as follows:-
```
Input circuit 45 Mc/s.
Coupling between stages 47.5 Mc/s (two tuning adjustments)
Output Circuit 45 Mc/s.
```

For the purpose of tuning up a C.W. output from a signal generator should be fed into the unit through a suitable resistance to bring the effective generator output impedance up to 250 ohms. To represent the mixer and cable capacities a 3 pf. condenser should be connected across the Pye elbow socket used for connecting to the imput plug. The output should be connected by the normel cable to the I.F. amplifier in the receiver. A suitable meter across the diode detector cathode load should be used to observe the response. With this arrangement the circuits are tuned to give a manimun with an input signal of frequency corresponding to the particular circuit as tabulated above. The trimmers should be sealed after tuning. For the first circuit Durofix should be used. Paraffin wax is used for the interstage coupling and the output.
403. When putting in new valves care must be exercised to ensure that the valve pins and splgot are correctly aligned with respect to the valve holder before attempting to force the valve into position. Pailure to observe these precautions will invariably result in breakage of the pin seals in the valve base or damage to the holder.
404. The output is at an impedance of 95 ohms suitable for feeding a terminated cable of this impedance. For this purpose a uniradio 31 cable is used to link the green Fye output plug on the transmitter unit and the green pye input plug on the receiver-tining unit. The performance of the head amplifier is independent of the cable length when operating into this type of cable and the univeraal type 153 I.F. strip.

## The I.F. Amplifier

405. Full circuit details are shown in fig. 82.
406. Official response curves are shown in fig. 88.
407. The 5-stage, VR. 91 I. F. amplifier is part of a universal I.F. strip known as receiving unit type 153. This universal unit is made as a subassembly suitable for building into standard airborne boxes. The overall bandwidth is about $45 \pm 2 \mathrm{Mc} / \mathrm{s}$. The overall gain at $45 \mathrm{Mc} / \mathrm{s}$. is of the order of 30,000. Gain by atages is as follows:-
(a) First 3 stages - Each about 8 at $45 \mathrm{Mc} / \mathrm{s}$. The mutual coupling is adjusted to give a slightly overcoupled response with slight double peaking at $43 \mathrm{Mc} / \mathrm{s}$. and $47 \mathrm{Mc} / \mathrm{s}$.
(b) Fourth stage - About 7 at $45 \mathrm{Mc} / \mathrm{s}$. Coupling is such as to give a single-peaked response at this frequency.
(c) Fifth stage - About 9 at $45 \mathrm{Mc} / \mathrm{s}$. Arranged to give a doublepeaked response.

The overall response should be reesonably flat over the range $43-47 \mathrm{Mc} / \mathrm{s}$. The gains quoted above assume a screen voltage of 170 for the first four variable gain stages which is above that actually used.
408. The first 4 stages are zun with a fixed negative bias of about 1.5 volts on the grids. This voltage is obtained by tapping in at the function of R. 34 ( 470 olms) and R. 42 ( 33 K. ) placed between the stabilised -100 V . rail and earth. The fifth stage operates with auto-bias.

## The Gain Control Valve, V. 9

409. V. 9 serves as a gain control valve. Datails of the gain control circuit are shown in fig. 89. R. 61 and R. 62 in parallel are comected in series with R. 57 across the 300 V . line. The series combination of R. 63 in the receiver and the gain control potentiometer in the switch unit, is in parallel with R.57. Varying the gain setting then varies the D.C. potential to which V. 9 grid is tied and hence the current passed by $\nabla .9$ which is strapped as a tetrode. The cathode is bridged in on the bleeder formed by paralleling R. 61 and R. 62 in series with R. 66 to enable V. 9 to be cut off. The range of variation on the gain control is as follows:-


These readings were obtained on a D.C. scope with H.T. at 290V. and the negative rail at -95 V . For a higher H. T. level the readings would vary accordingly.

## Effect of the Iucero Switch

410. Relay $C$ is used to switch the controlled screen voltage to the second head amplifier stage. If the Lucero switah is set to "OFF" or "B +H ", the supply (coming originally from the $+300 V$. pack in the power unit) is completed to the salenoid. The head amplifier screen supply is then completed via 18/12. If the Lucero switch is set to either B or BA the supply to the relay solenoid is broken at the same time as the $\mathrm{H}_{0} \mathrm{~T}$. to both valves and the screen supply of the first valve are broken. There is then no screen supply to the second head amplifier valve when its $H$.T. supply is cut off. This is done to help push up the maximm gain of the I.F. amplitude proper for the Lucero signals. If the screen supply were left completed when the H.T. is cut off, the second head amplifier valve would draw on increased current from the gain control valve and would thas lower the contralled voltage to the I.F. amplifier screens. Breaking the screen supply reduces the loading on V. 9 and thus raises the I.F. screen valtages, and hence the I.F. anplifier gain. This is desirable since the Lucero imput is applied through the attenuating pad formed by R. 1 and Ro2. The gain measured fran the brown Lucero input is out by half as campared with the gain measured fran the green H.2.S. imput.


SWITCH TO 'OFF' OA'BEH'
soov NT To HEAO AMPLIFEA
e relay $C$ enerciseo
CONTACTS CI2 COMPLETE
GAMN CONTROLLEO SCREEN
SUPPLY TO IND HEAD AMPUFIER

SWITCH TO ' $B$ ' OR ' $B A$ ' H.T CUT. OFF HROM

HEAO AMPLIFER 1 RELAY UN EnERGISEO

No SUPPLY To SCREEN of zno head ampliter

FIG. 89
411. When a valve has been replaced it is desirable that the circuits imediately before and after the pariicular valve should be realigned. tune frequencies for the various circuits are as follows:-

(a)	Imput circuit	Preset
(b)	Coupling between V. 1 and V. 2	$47.0 \mathrm{Mc} / \mathrm{s}$. (two adjustments)
c)	Coupling between V. 2 and V. 3	$47.0 \mathrm{Mc} / \mathrm{s}$. $" \mathrm{M}$ "
d)	Coupling between V. 3 and V. 4	$47.0 \mathrm{Mc} / \mathrm{s}$.
(e)	Coupling between V. 4 and V. 5	$45.0 \mathrm{Mc} / \mathrm{s}$.
(f)	Coupling between V. 5 and Y. 6	$47.3 \mathrm{Mc} / \mathrm{s} .(\mathrm{l}$

A C. W. output from a signal generator with an output impedance of 95 ohms should be fed into one of the input plugs and the output observed on a high resistance voltmeter connected across R. 48 ( 5.6 K .), the load of the diode detector. Altermatively, a millianmeter may be conmected in series with this load. In either case, to prevent feedback a filter should be used in the meter lead. A. 001 condenser comected to ground followed by 220 ohms in series and another . 001 to ground will provide a suitable filter. The circuits are then tuned to give a peak with an imput signal of frequency corresponding to the particular circuit as tabulated above. The Durofix used to seal the threads of the tuners will peal off easily if the screws is turned gently at first. When tuming is completed the screws should be resealed with a somall quantity of Durofix.
412. The cautions autlined in para. 403 with regard to changing valves obviously apply equally well to the I.F. amplifier:

## Suppression

413. As the CV.114 TR switch will not flash-over instantaneously when the transmitter fires and does not provide perfect receiver isolation after flashover has occurred, there is always some transmitter break through into the mixing chamber. This breakthrough is amplified by the head amplifier stages and applied to the first I.F. stage. The strength of this signal will be sufficiently great to cause paralysis of the receiver if no provision is made for rendering the receiver insensitive while the transmitter is pulsing. To overcame this problem a suppression pulse is applied to the suppressors of the first three I.F. stages. V. 412 serves as the suppression generator. Details of the operation of V. 412 are given in para. 364. The suppression pulse is developed across the anode load (R.470, 5K.). The diode, V.10, cormected between the suppression line and earth, serves to keep the suppressors fram swinging positive at the termination of the suppression pulse. The position of the suppression wavefora with respect to the transmitter pulse is adjusted by means of the suppression preset on the panel on the receiver-timing unit until only the tail of the transmitter breakthrough shows on the height tube (or momitor 28) when the receiver output is scoped). For operation with Fishpond this setting may require modification.

## The Diode Detector

414. The output of the final I.F. stage is applied to the cathode of V. 6 (VR.92) which develops a negative-going output. C.38, L.17, C. 39, L. 18 form an I. F. filter which smooths the detector output to develop the video pulse envelope across the detector load, R. 48 ( 5.6 K .). C. 40 , R. 49 form a 0.1 sec. A.C. coupling to the cathode follower, V.7. This A.C. coupling prevents the possibility of Jamming by means of C.W. signal in the I.F. band-pass which might bias back the detector, and hence the cathode follower grid, if D.C. coupling were used:

## The Cathode Follower

415. V. 7 has its cathode bridged in at the junction of R. 50 (10K.) and
R. 51 (15K.). These resistors serve as a bleeder between -100 V . and earth. If $\mathrm{V}_{0} 7 \mathrm{had}$ no heater voltage its cathode potential would be -60 V . As the walve warns up and cathode current flows the electron flow from the -100 F . line is mainly through the valve. Under nomal operating conditions, V. 7 cathode potential is then about +3.5 V . This bridging arrangement permits operating conditions for $V .7$ which prevent limiting on $V .7$ grid on strong signals without recourse to special arrangements for a positive grid bias. As the grid swings down the cathode potential can swing negative to earth instead of stopping at earth potential which would occur if the cathode load of V. 7 were returned to earth. R. 50 (10K.) is the effective cathode load. The cathode follaver output waveform can be scoped at the spare Pye plug on the receiver panel which is not used.

## The Receiver Output Valve

416. V. 8 (VR.53) serves as the receiver output valve with R. 451 (1K.) serving as the effective anode load as R. 452 is effectively decoupled by C. 440 .
Paras. 368 and 369 outline briefly the way the course and track marker are introduced at V. 8 suppressor and the details of V. 8 output.

## The Receiver Power Pack

417. As the 300 V . power pack on the power unit is incapable of supplying the necessary current for all the valves running off a 300V. supply, a second 300 V . pack is included in the receiver-timing unit. Circuit details are shown in fig. 82 . V. 13 is a $504 G$ full-wave (double half-wave) rectifier which develops a naminal 300V. output for the receiver-timing unit and the head amplifier stages on the transmitter unit. $L_{0} 22$ and C. 43 provide the necessary smoothing.
418. The metal rectifiers, V. 11 and $V .12$ provide a second full-wave (double half-wave) rectifier stage which develops a -100 V . output. L. 23 and C .44 provide the necessary smoothing and the neon, V.14, provides stabilisations. This stabilisation is necessary in order to obtain a steady grid bias for the first four I.F. stages and the second head amplifier stage. any ripple on this supply will tend to cause spoking.

CHAPTER 7 - THR MARKER CIRCUITS

## General

419. Three different markers are used in the H.2.S. Mark IIC and Mark IIIA displays. The range marker appears as a ring on the P.P.I. display and a blip to the right on the height tube display. The height marker appears as a blip to the left on the height tube. The heading (course) marker appears as a radial line on the P.P.I. display. When a switch on the indicator 184 is set to the "Track" position the radial marker serves to indicate the aircraft track. The next phase of our study of H.2.S. will deal with the way these markers are developed.

## The Heading Marker

420. The heading marker circuit is the same in the H.2.S. Mark IIC and Mark IIIA installations. Details of the circuit used to develop the heading and track markers are shown in fig.93. The circuit used in setting up the marker is sham in fig.111. Before making a study of these circuits it may be helpful to tabulate the following outline:-
(a) The actual marker pulse is a positive-going signal applied to the P.P.I. grid once in every revolution of the scanner.
(b) The effect of this marker pulse is to increase the P.P.I. emission aufficiently to enable the electron beam to cause the screen to fluoresce as the beam moves from the tube centre to the circumference.
(c) The pulse duration is long enough to brighten up one full scan and all or part of the next.
(d) The marker pulse proper is taken off at the anode of the receiver output valve. It is developed by driving the suppressor down by means of a negative-going pulse of suitable amplitude and duration.
(e) The pulse applied to the suppressor of the receiver output valve is initiated by a contact arrangement in the scanner which must operate automatically to earth the pulse-forming circuits in the receiver-timing unit.
(f) To enable the H.2.S. operator to take the marker of $f$ the P.P.I. display wi thout stopping the scanner a switch must be provided at the operator's position. This switch is on the switch unit and is labelled "Line of Flight". The incorvoration of such a switch considerably complicates the circuit design as the switch mast be introduced in voltage supply channels that originate in other units.
(g) When a bombing run is being made it is desirable to have a track marker instead of a heeding marker. Hence it is necessary to incorporate another contact in the scanner which an be suitably offset from the heading marker contact.
(h) In order that the H.2.S. operator may choose the heading or track marker at will it is necessary to provide a switch at his position that will enable him to introduce the appropriate scanner contact into the circuit. This switch is fitted on the indicator panel and is labelled with the two positions "Course" and "Track". Cbviously, the incorporation of this control again complicates the wiring channels required.
(i) To set up the scanner "Course" and "Track" contacts the H.2.S. operator must have a remote control at his position. This control is located in the heading control unit type 446. It is essentially a setting knob which operates a set of cams or "transmitter" that switches the D.C. connections to "Course" or "Track" repeater motors in the scanner. A switch is provided on



The heading control unit which aust be set to "Course" when the setting control is used to operate the "course" repeater motor and to "Traak" when the control is being used to operate the "track" repeater motor. This switch must be set to "Auto" once the setting up has been done.

Since the heading marker must move as the airoraft alters course, provision must be made to use the airoraft rotation to move the heading marker through the same angle as the aircraft turns. This is achieved by having the D.R. compass operate a transmitter similar to the one on the heading control unit. This transmitter switches the D.C. connections to a "course" repeater motor in the soanner. The motor armature then drives the magslip stators through a suitable gear train. The gearing used in the D. R. compass drive and in the soanner is such that the magslip stators are displaced through an angle equal and opposite to the airoraft rotation. The P. P.I. map thon remains stationary and the marker turns through the same angle as the aircraft as discussed in Chap. 4 , paras. 171, 172, 173, 174.
(k) Since the D.R compass transmitter must be disconnected from the "caurse" repeater motor and the hand-operated transmitter in the heading contral unit cornected in its place when the heading marker is being set up, the control chamel from the D. R. compass to the scanner must be routed through the heading control unit.
Once the track marker contact has been set up an autcmatic adjustment must be made when the drift setting is altered. This drift setting is mede on the Mark 14 bombsight. In order that the bombsight adjustment may result in the correct displacement of the "track" contact in the scamer a flexible drive cable fram the bambight head operates another transmitter in a control unit type 468. The transmitter contacts then switch the D.C. connections to a "track" repeater motor in the scamner. The motor armature then displaces the "track" contact through the appropriate angle by means of a suitable mechanical link. Since the bambsight transmitter mist be discomnected fran the "track" repeater motor armature and the hand-operated transmitter in the heading oontrol mit cormected in its place when the track marker contact is being adjusted, the control channel fran the cantrol unit type 468 to the scanner must also be rated through the heading control unit.
$(n)$ When the heading control unit switch is set to "Course" the control chamel from the $D \cdot R$. campass to the scamer is broken in the heading control unit. A 24 V . supply, brought into the heading control unit on a 2-pin cable from the power unit, is then connected to the "course" repeater motor via the handoperated transmitter in the control unit. Operating the setting knob then operates the "ccurse" repeater motor armature and the magslip stators can be adjusted to bring the heading marker up on the bearing of the airoraft heading. The indicetor 184 switch must be set to "Course".
(o) If the heading control unit switch is set to "Track" the control channel frain the control unit 468 to the "traok" repeater motor in the soanner is broken. The tranemitter in the hoading control unit is then connected to the "track" repeater motor. If the switch on the indicator 184 is now set to "Track" the marker on the indicator is a track marker. If the bombsight head is set for zero drift the track marker should coincide with the heading marker and the aircraft heading. Hance, to set up the track marker contact zero drift is set on the bombsight head. The heading control unit and indicator 184 switches are set to "Track". The setting knob is then used to bring the track marker up on the aircraft heading. The "track" contact is now correctiy adjusted.
he heading control unit switch is now set to "Auto". The D. R. compass transmitter control channel to the "Course" repeater motor is then completed through the heading control unit. Similarly, the bombsight control channel from the transmitter in the control unit tjpe 468 to the "Track" repeater motor is completed through the heading control unit. Any alterations in aircraft heading now automatically cause the magslip stators to turn through the appropriate angle. Any change in the drift setting will now displace the "Track" contact through the eppropriate angle.
(q) Which marker appears on the P.P.I. display is determined by the setting of the switch on the indicator 184 . The switch unit "Line of Flight" switch must, of course, be closed to get either marker. The inaicator switch merely connects the appropriate scanner contact to the circuits in the receiver-timing unit which generate the pulse that is applied to the suppressor of the receiver output valve.
(r) The switch on the switch unit decides whether or not the 300V supply to the circuits in the receiver-timing unit are completed.
421. Sumarising, we may gather up the functions of the various controls as follows:-
(a) The "Line of Fiight" switch on the switch unit completes the 300V supply to the circuits which form the pulse appiled to receive output volve suppressor.
(b) The indicator 184 switch decides whether the "course" or "track" contact in the scanner is comnected to the pulse-forming circuits.
(c) The pulse formation is determined autanatically by the scanner rotation by earthing the pulse-forming circuits via the contact selected by the indicator 184 switch.
(d) The pulse formation will only produce a marker at the correct position on the P.P.I. display if the magslip stators have beer correctly set up and the "track" contact has been correctly set up.
(e) The magslip stators are set up by setting the indicator awitch and heading control unit switch to "Course" and operating the setting controf on the heading control unit.
(f) The "track" contact is set up by setting the indicator switch and heading control unit switch to "Track" and operating the setting control on the heading control unit.
(g) Automatic correction of the magslip stator setting by the D. R. compass, and of the track contact setting by the drift setting placed on the bombsight head, is only introduced when the heading control unit switah is set to the "Auto" position.

## Mechanical Details

422. The essentials of the mechanical arrangements in the scanner are show in fig.93. The contact ring is in a flat metal annular ring mounted on top of the fibre gear wheel which drives the magslip rotor from the scanner shaf't The shorting contact is a projection towards the centre, about $\frac{1}{2}{ }^{n}$ Iong and $\frac{1}{4}{ }^{n}$ wide. Mounted above the contact ring by means of a bracket are two metal spring contacts. The outer of this pair is in contimous metallic contact with the contact ring. This spring contact we shall call the earthing conta
as it is earthed in the receiver-timing unit. The inner of the pair is returned to the "Course" side of the indicator 184 switch. Every time the scanner rotation brings the shortang contact against the spring tip of the "course" contact the "course" contact will be earthed. R. 465 in the receiver timing unit is then earthed until the two cantacts separate. The two contact should meet as the scanner goes through the dead-ahead position. The "track" contact, returned to the "Track" side of the indicator 184 switch is mounted above the fibre gear wheel to which the contact ring is attached. It is swivelled on a bearing which coincides with the centre of the gear wheel and ring. This "track" contact has an arno extending back fram its bearing whioh engages in a slotted bush. The bush tracks up and down a worm driving rod. The rod is geared to the "track" repeater motor which is operated by the
transmitter in the contral unit type 468 when a drif't setting is made on the bambsight head. If the "track" contact is correctly set up the shorting contact earths it when the scanner looks into the direction of the aircraft track.

## How the Heading Karker Pulse is Developed

423. The generation of the marker can most readily be understood by studying the basic circuit and waveforms in figs. 91 and 92. When the "Line of Fight" switch is closed on the switch unit the following circuit actions occur:-
(a) 300V. is connected in series with R. 418 ( 1 M ) and 0.423 (.1). C. 423 then charges up through R. 418 towards 3007. The time constant is 100,000 microseconds so the condenser will charge to about 200 V . in $1 / 10$ second.
(b) The 300V. supply is also connected in series with R. 418 and 0.422 (.0035). The other side of $C .422$ and the suppressor of the receiver output valve will be effectively at earth. R. 416 (1 M.) and half oi the double diode V. 410 form a bleeder across the 300 V . line in the receiver-timing unit. As the conducting irmpedance of the diode is small in comparison with 1 M . the suppressor of the output valve will be only a fraction of a volt above earth potential. C. 422 will then also charge up to 300 V . tirough R. 418 . The time constont is 3500 microseconds. We shall thus have C. 422 and C. 423 charged up to 300 V . in under a half-second.
424. Suppose the indicator 184 switch is set to "Course". When the soamer goes through the dead-ahead position, the shorting contact earths R. 465 ( 1 K.) through the contact ring and earthing contact. 0.423 , charged to 300 V , is now earthed through R. 465 ( 1 K. ). The condenser will discharge rapidly as the time constant is only 100 microseconds. The potential at the junction of 0.422 and $C .423$ falls very rapidly from +300 V . towards earth potential. At the instant R. 465 was earthed the right plate of C. 422 was at +300 V . and the left plate at nearly OV. That is, the potential difference between the plates was 300V. While C. 422 was charging electrons flowed away fran the right plate to H.T. leaving the plate positive. Electrons in the dielectric then moved towards this plate and left the opposite side of the dielectric with a deficit of electrons which attracted the electrons fron the left plate and left it positive. Eleotrons from the H.T. supply then flowed to the left plate until it was back at earth potential. When R. 465 is earthed electrons flav fran earth to the right plate of $C .422$ until it falls to earth potential. There is then no longer any attraction on the electrons in the dielectric which surge back to their neutral positions. The dielectric then is no longer positive at the left plate and the electrons previously held now swing back into the metal. This leaves the outer surface with an excess of electrons which drives it negative. The result of earthing R. 465 is then to drop the right plate of C. 422 from +300 V towards $O V$ and the left plate from OV towards -300 V . The detail above has been given to help the radar mechanic who feels that $C .422$ should discharge through R. 465 wi thout exerting any effect on the suppressor of the receiver output valve.
425. As the left plate of C. 422 falls from OV towards -300V., the suppressor of the receiver output valve goes down with it and anode current is cut off on the suppressor. The anode potential then rises sharply to give the leading edge of the heading marker pulse which is uitimately applied to the P.P.I. grid. Since the time constant of C .423 and R .465 is only 100 microseconds the suppressor of the output valve will be carried down quite rapidly. When the fall ceases electrons will flow fras the left-hand plate of C. 422 through R. 416 to H.T. The time constant is 3500 microseconds so we may expect the suppressor of the output valve to have risen to cut-off in scraething like 2000-2500 microseconds. In the meantine anode current is cut off. Hence, the positive pulse at the anode contimues for the $2000-2500 \mathrm{mic}$ cosecond period that elapses between the instant thet R. 465 is earthed via the "course" contact in the scanner and the instant when the suppressor gets up to out-off again. The P.P.I. grid is then raised by the heading marker pulse for a sufficiently long period to ensure the brightening up of at least one full scan since one scan must occur every 1500 microseconds .
426. As soon as the shorting contact is carried clear of the "course" contact by the scanner rotation, R. 465 is again floating. The 300 V . supply is then again comected across C. 423 and R .419 so C .423 again charges up to +300 V . At the same time the right plate of C .422 will be charging towards +300 V . through R.419. Both condencers have ample time to camplete their charging before the scanner has completed another turn to repeat the earthing of R. 435. C. 423 provides an effective earth for pick-up which might otherwise be applied to the suppressor of V. 8 and thus be mixed with the signals and marikers.

## Development of the Track Marker Pulse

427. If the indicator switch is set to "Track", the only difference is that R. 465 is now earthed when the shorting contact meets the "track" contact. If there is zero drift this should occur when the scanner goes through to deadahead position, just as before. If there is drift, R. 465 may be earthed either before or after the instant the scamer passes through the dead-ahead position, depending on the wind direction. If the "track" contact has been correctly aligned, the track marker will appear at the bearing on the P.P.I. which gives the aircraft track.

## The Action of the Repeater Motors

428. The repeater motor operates on the principle that if a piece of soft iron is free to move in a magnetic field it will experience a torque which tries to bring the cross-section of the iron at right angles to the field. The magnetic lines of force emerge from the north pole of the magnet or electromagnet and pass across the intervening gap to the south pole. If it is an air gap the lines of force will pass straight across in the centre and will bulge outside on both sides due to matual repulsion between themselves. That is, the lines will be as short as mutual repulsion between themselves will permit. If a piece of magnetic metal like soft iron is now introduced into the field the lines of force will all try to crowd into theiron as it offers a higher permeability than air. Unless the iron is perpendialler to the field the lines will be distorted. In the attempt to shorten as much as possible they exert a turning force or torque on the iron. If the iron is suitably suspended it will turn until the total path in the iron is as long as possible but the total line length is as short as possible.
429. In the repeater motor we have a cylindrical armatare with a rectangular soft-iron central section. This armature is mounted in suitable end bearings. The field is developed by means of current from a 24V. supply passed through a suitable field winding arrangement. This field winding actually comprises three windings with one point comon. If +24 V . is connected to one free end and $-2 i 4$. to another free end electrons will flow through the two windings thus connected in series. If +24 V . is comected simultaneously to two free ends and -24 V . to the other free end, electrons will flow through the one winding to the camon point and then divide equally the two windings leading to the +24 V . ends. If -24 V . is comected simulteneausly to two free ends and +24 V . to the third cne electrons will flow from both -24 V . ends through the associated windings to the comon point. There the two streams will converge and flow through the third winding to the +24 V . end. Each winding may be regarded as an electromagnet developing a field across its pole faces. The poles thus developed produce fields across the gap in which the armature is pivoted. The separate fields will add vectorially to produce a resultant field. This resultant field will then decide the position in which the armature comes to rest so as to provide the maximm path length through the soft iron and the shortest total path. As the D.C. comections to the free ends of the windings are switahed the polarity of the separate fields is varied. The direction of the resultant field is then varied and the armature is pulled into a new position. If a suitable mechanical link is provided the torque developed by the resultant field will not only pull the armature through the rotation angle of the resultant field but will also provide the motive power for displacing same other mechanism.

## Control Action of the D.R. Compass

430. A 24V. aupply from the aircraf't D.C. supply is taken to the D. R. compass box where it is applied to the transmitters used to operate the various repeater compasses and the "course" repeater motor. The connections from the transmitter cams are brought ultimately to the free ends of the respective repeater

MAONETIC FIELD BETWEEN POLES OF A MACNET


## PIECE OF SOFT

IRON IN A
MAGNETIC FIELD


SOFT IRON, IF
FREE TO ROTATE,
takes up position
AS SHOWN


## REPEATER MOTOR PRINCIPLE



DIRECTION OF SEPARATE FIELDS


RESULTANT DIRECTION OF FIELR


POSITION OF ARMATURE


FIG. 94
motor armature windings. In the case of the "course" repeater motor the connections are brought to the heading control unit (see fig.111) on a 4-pin plain from the D. R. compass terminal block. Inside the heading control unit comnections are made via the switch to pins 1,2 and 3 of the 6 A violet to the scanner. If the switch is in the "Auto" position the connections to these pins are completed. At the scanner end of the cable these pins are connected to the three free ends of the "course" repeater motor field winding.
431. If the aircraft turns the relative movement between the campass bowl and the needle is used to operate the various transmitters. The connections to the red, green and blue terminals of the windings ther go through the following sequence:

Terminal	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5
Red   Black or Blue   Green	+	+	+	+	+		-	-	-	-	-		+	+	+	+	+

+ indicates connection to +24 V .
- indicates connection to - $24 V$.

Blank indicates that terminal is floating.
It will be noted from the above table that the sequence consists of 12 different combinations which then repeat themselves. A turn of $\frac{10}{2}$ by the aircraft causes the transmitter to change from its position wher the turn commenced to the next one on the table. The whole sequence will then occur for a turn of $6^{\circ}$.
432. As the transmitter cens switch from any one of the above positions to the next in the series the resultant field operating on the repeater motor armature turns through $30^{\circ}$. The armature is then pulled through $30^{\circ}$ by the resultant torque. This movement is applied to the magslip stators through a 60:1 all metal gear train. A $\frac{10}{2}$ aircraft turn results in shift of one position on the transmitter. This turns the repeater motor armature through 300. The 60:1 reduction gear then displaces the magslip stators and the timebase through $\frac{1}{2}$. The timebase is then displaced through the same angle as the aircraft turn and the map therefore remains stationary. As the rotation of the magslip stators has displaced the scan occurring as the scamer goes through the dead-ahead position by an angle equel to the aircraft turn, the heading marker is rotated through the aircraft turn. The new position of the marker will then indicate the new aircraft heading provided it had been correctly set up initially.

## Setting Up the Heading Marker

433. When the heading control unit switch is set to "Course" the D.R. compass transmitter connections to the switch are left floating. The + and -24 V . comections coming fran the power unit to the heading control unit via the 2B plain and thence to the switch are connected to the transmitter in the unit and its cams are comected to pins 1, 2 and 3 on the 6 A violet to the scamer. The field windings of the "course" repeater motor are now comected to these cams. Tuming the setting knob switches the supply connections through the same sequence of 12 cambinations as we obtain fram the D. R. campass transmitter. The setting control thus enables a mamul rotation of the magslip stators through 3600. By means of this control the timebase sweep appearing when the scanner goes through the deed-ahead position may be made to appear anywhere on the P.P.I. Setting up the heading marker and H.2.S. mep then merely involves the following routine:-
(a) Set bearing ring on F.P.I. to aircraft heading as given by master compass.
(b) Set scanner turning with scanner motor switch on switch unit.
(c) Set "Line of Flight" switch on switch unit to "ON".
(d) Set indicator 184 switch to "Course".
(e) Set heading control switoh to "Course".
(f) Operate setting knob on heading control unit till the heading marker flashes up along the bearing ring pointer.

The track marker con then be set up as outlined in para. 436.

Bombsight Control of the "Irack" Contact
434. It was pointed out in para. 422 that the track contact is swivelled on a bearing coinciding with the centre of rotation of the coatact ring and that an arm extending back from this bearing engages a slotted bush. This bush tracks up and down a worm driving rod which is geared to the "track" repeater motor. Rotation of the motor armature then resulta in a rotation of the "track" contact about its bearing. In order that the track marker may give the correot airoraft track this contact must be so placed that the shorting contact meets it when the scamer is looking in the direotion of the airoraft track. This means that contact mast be made when the scamer is of 1 the dead-ahead position by the drift angle. If there is no cross wind the duft is zero and heading and track are coincident. Under these conditions the shorting contact must meet the "track" and "course" contacts simultanecualy. If there is a cross wind it mist be allowed for in both bambing and navigation.
435. The drift is found by means of the bombsight ocmputor and is set on the sighting head by means of a flexible drive from the computor. This flexible drive is intercepted and used to operate a transmitter in the control unit type 468. This cantrol unit is mounted at the bottom Fight hand of the bombsight. The + and -24 V. D.C. cormeotions to the tranamitter in the control umit type 468 are taken through the heading control umit via the switch. When the switch is set to "Auto" comections are made from the 28 plain to pins 5 and 6 of the 68 green from the heading control unit to control unit type 468. The cams on the transmitter are comeoted to pins 1, 3 and 4 on the 6B green. In the heading control unit cross-comeotions are made to pins 4; 5 and 6 of the 6A violet to the scanner. At the scanner end these pins are comnected to the three free ends of the "track" repeater motor field windings. If the awitch is sat to "Auto" and any drift adjustment is made at the bombsight, the transmitter in the control unit 468 is-operated and the D.O. connections to the "traok" repeater motar are switahed in accondance with the soquence outlined in para.431. The armature rotation drives the linicage to the "trade" contact and oauses it to rotate about its bearing through the drift angle setting made at the computor.

## Setting Up the Traok Contaot

436. When the hoading control switch is set to "rrack" the + and $-24 \nabla$. comections to the transmitter in the oantrol unit type 468 are broken. The "track" repeater motor fleld winding terminals are now comected to the cams of the transmitter in the heading comtrol unit. Operation of the setting control will now operate the track repeater motor through the range of movernent permitted by the worm drive arrangement in the scanner. The following routine will serve to set up the track contact in the air after the heading marker has been aligned. These steps conld logically follow after step (f) in parani33.
(h) Set heading control unit awitch to "Auto".
(i) Set zero drift at bombsight computor. If track markex coincides with bearing ring pointer no further adjuatment is required. Fbading control unit switch can then be lept at "Auto" and the P.P.I. radial marker should indioate carreot treck or heading depending on selection made with switah on indicatcre 184
(J) In practice the track marker will not colnoide with the bearing ring pointer in (i). Set the heading contral unit awitoh to "Track". Operate the setting knob until the track marker does coincide with the bearing ring pointer.
(k) Switch back to "Auto".
(1) When the correct drift is set at the bombsight computor the track marker should be displaced from the bearing ring pointer (i.e., the heading) by the correct drift angle.
(m) The H.2.S. operator can now use elther the track or heading marker by setting the indiaator 184 switch to the desired marker.

It should be possible to move the track marker + or $-60^{\circ}$ with respect to the hoading maricer in step ( $J$ ).

Marker Difficulties
437. If any two of the three field connections of a repeater motor are interchanged, the direction of marker displacement will be the reverse of what it should be. If only two of three connections are made it may operate when the + and - 24 V . is connected to the two teminals. If one of the three is connected in error to the blank pin 2 on the 4 -way plain or the blank pin 2 repeated on the $6 B$ green, this difficulty will arise. Dry joints have also been a source of trouble.
438. Inadequate lubrication, wear, etc., may cause sticking of the repeater motor armature at some point or points in its rotation. Checks mast always be on installation, inspections, and after scanner changes tinat the heading marker follows without slipping or binding throughout $360^{\circ}$. A similar check should be made that the track marker can be displaced + or - $60^{\circ}$ from the heading marker with the setting control. Details of scanner checks for direction of rotation and following are given in Chapter 12, paras. $962-965$.
439. Another difficulty which may be experienced is a heading marker flashing up when the scanner is passing through a position other than the dead-ahead position. This difficulty can be cleared by loosening the three bolts that hold the washer which clarms the paxolin disc on which the contact ring is mounted. When these bolts are loosened the paxolin disc and the contact ring which is rivetted to it can be moved relative to the gear wheel below. By setting the stationary-scanner in the dead-ahead position and rotating the diso and ring until the shorting contact meets the earthing contact on the leading edge, the correct clamping position is located. The bolts can then be tightened to $f i x$ the position of the contact ring relative to the driving gear beneath it. With the heading marker coming up as the scanner goes through the dead-ahead position the normal setting up procedure can be carried out in the air.
440. Failure of markers to form or very faint markers may often be caused by leakage in cables due to moisture. Reference to fig. 93 will show that continuity and insulation tests can be made very readily by disconnecting the 12 -way plain at the receiver-timing unit. A check across pins 7 and 11 with the mine of Flight" switch on the switah unit closed will establish continuity of the +300 V . channel. Meggering with the switch open will provide a leakage test. A check across pins 10 and 12 will serve to establish continuity in the earthing chamel. One mecnanic should rotate the scanner by hand while the other uses the meter on the cable. Contimity should be established one per revalution regardless of whether the indicator switch is on "Track" or on "Course". By using the megger with the scanner set to break continuity a leakage test can be made.
441. No mariker will be formed if pin 12 is not earthea in the receiver-timing unit as R. 465 will then always be floating. A check should be made that pin 12 is earthed if trouble is experienced.

The Course-Track Link in the W.F.G. 34
442. This link must be in the "Course and Track" position when the N.F.G. 34 is used in either a Mark IIC or Mark IIIA installation. Tracing out the circuit in fig. 93 will show that the appropriate scanner contact will then be used to earth R. 465 when the indicator 184 is on either position.
443. Should the link be left on the "Course" position, R. 465 is connected through to the "Track" contact in the scanner at all times regardless of the indicator switch position. When the switch is set to "Irack", the usual track marker will appear. If set to "Course", R. 465 is also connected to the "Course" contact in the scanner via the switch. Hence, for large drift angles, the P.P.I. display may show both a track marker and a heading marker.
444. If the W.F.G. 34 and Indicator 184 are used with scanner type 65 or type 3 , the link should be in the "Course" position and the indicator switch in the "Track" position to obtain a normal course marker. Should the link be in the "Course and Track" position, the marker will still appear provided the indicator switch is on "Track". If the indicator switch is on "Course", no marker will appear in "Course" or "Course and Track" positions of the link. This is because
C.D.O896 L

FUNDAMENTALS OF $\mathrm{H}_{2} \mathrm{~S}$ HEICHT AND RANGE MARKERS
FIG 95


- transmitter pulse


1. infut at violet
$\therefore$ infut to timina valve


V2GRID
4. V2 GRR1O
c. V2 ANODE
f. UB ANODE
(IF RSSISTVE LOAO USED)

Y3 ANOOE (If LINE
UUSEE FOAMING LNE
USEO FOR ANODE LOAO)
h. V4 CATHODE
the indicator switch short circuits the scanner contact with the link to "Course", and leaves it floating with the link to "Course and Track". Hence to obtain a course marker with a Scarmer Type 65 and R.F.G. Type 34 and Indicator 184, place the indicator switch to "Track".

## The Basic Height and Range Marker Circuit

445. To understand the method used to measure range and height with H.2.S. it id essential that the radar mechanic understand the principle of the timing circuits employed. A basic circuit with descriptive waveforms is shown in fig. 95. As a prelude to a study of this basic circuit it may be helpful to gather up what is involved in measuring height or range with a calibrated marker control. We know that echo time is always given by range in milea speed of e.m. waves. If we express range in miles and echo time in microseconds we mast express speed in miles return per microsecond. If we express speed in miaroseconds per mile return, i.e., 10.7 microseconds per mile return, we may write echo time from the formula

$$
t(\text { microseconds })=\text { range }(\text { miles }) \times 10.7
$$

We may rewrite this formula to solve for range

$$
\text { Range (miles) }=\frac{t \text { (microseconds) }}{10.7}
$$

Range will obviously be target distance, i.e., slant range. In the case of height measurement we can simply substitute height for range. From this formula it follows that if we can measure echo time we can readily determine range or height from the above formula. The H.2.S. method of measuring range and height actually measures echo time but calibrates the scales to read range by dividing the corresponding time values by 10.7 .
446. Since we are measuring time we must have a time zero. This zero mast be the instant when the transmitter fires. Any time measuring circuit must then start to measure from that time. This suggests the need for some form of electronic switch which closes the time measuring circuit when the transmitter fires. In our basic diagram we have shown this switch, V.1, as an actual switch since its function is only to determine the start of our time measurement by opening the discharge path across the timing condenser, C.1. R. 3 represents the conducting resistance of V. 1 when in grid current. As C. 1 is connected between the anode and cathode of V. 1 the valve acts as a discharge path when conducting and as an open circuit when cut off. Obviously, we must have some electrical impulse that will open our switch at zero time by cutting $V_{0} 1$ off. For this purpose we use the positive-going 20 microsecond pulse taken fran the cathode of the VT. 60 A in the modulator multivibrator. The back edge of this pulse coincides with the back edge of the modulator priming pulse which fires the trigger valve, and hence, indirectly the transmitter. We actually cut V. 1 off on the cathode to open our switch so require a pulse with the back edge positive-going. We therefore invert the positive input at the violet Pye plug on the receiver-timing unit with T.1. The amplitude is stepped down from about 40V. to about 16 V . On the leading edge of the pulse the cathode is taken down which is equivalent to driving the grid up. The 16 volt swing is sufficient to take the valve into grid current. C. 1 can then discharge ocmpletely through the valve. At the end of the 20 microsecand pulse the oathode comes back up and cuts the valve off, i.e. the switch opens.
447. When the switch opens C. 1 is completely discharged with both plates at the decoupled potential of the slider of P.1. We now have applied to the time canstant formed by C. 1 R. 1 a charging voltage of 300V. - slider potential. C. 1 will charge exponentially through $\mathrm{R} \cdot 1$ towards a terminal voltage of +300 V . As the charging proceeds the upper plate of C. 1 becomes increasingly positive and the grid of V. 2 rises exponentially with it. We may note at this point that the terminal voltage of 300 V . can never be reached. V. 5 and R. 1 form a network between +140 V . and +300 V . The conducting impedance of V. 5 will be so low in proportion with R. 1 as soon as the top plate of C. 1 reaches +140 V . that V. 5 and R. 1 will form a bleeder which fixes the maximum potential reached by the top plate of C. 1 at about 14OV. Hence, C. 1 charges towards +300 V . but is prevented from going above about +140 V . ky the limiter, V.5.
448. We must now examine the cathode coupled flip-flop circuits of V. 2 and V.3. We note that V. 3 grid is returned to a variable positive potential. This potential will decide how much current V. 3 passes through the camon cathode load, R.5. Transferring our attention now to V. 2 grid we note that it must rise and fall with the top plate of C.1. Hence, when the leading edge of the 20 microm second pulse brings V. 1 into conduction to short circuit C.1, V. 2 grid fells. This fall will carry V. 2 grid down. The anode potential then rises and carries up V. 3 grid with it to bring V. 3 into conduction. The current passed by V. 3 through R. 5 raises the conmon cathode potential to about $130-140 \mathrm{~V}$. which is well positive to $V .2$ grid potential. V. 2 is then cut off on the grid every time V.I is opened on the leading edge of the 20 miorosecond prlse applied to V. 1 cathode. V.3, on the other hand, is always brought into comduction at the same time.
449. When the back edge of the 20 microsecond pulse cuts $V_{0} 1$ off to open the short circuit across C.1, V. 2 grid starts to rise from the level at which the upper plate of C .1 begins its exponential climb. This starting level is the decoupled slider potential of P.1. Suppose this value is +40V. Now if the common cathode potential of V. 2 and V. 3 is 142V., V. 2 grid will have to climb to about 134V. before the valve can start to conduct. When this level is reached V. 2 will atart to pass current and the anode will fall. This fall will be impressed on V. 3 grid so V. 3 will pass less current through R. 5 . This reduces the bias on V. 2 so it conducts more heavily and drives V. 3 grid down still more. The cycle is amulative and quickly cuts V. 3 off and brings V. 2 on. Note that this change-over occurs when V. 2 grid crosaes cut-off and that this cut-off potential is flzed by P. 2 since $V \cdot 3$ grid potential fixes the current passed through Ro 5 by $V_{0}$. Before noting the effect of this change-over at $V \cdot 3$ anode we may recall that v. 2 grid can contime to rise to the limiting level set by V.5. The actual circuit design is such that $V .2$ aut-off is a few volts below the limiting level.
450. When V. 2 grid crosses out-off and the fall at V. 2 anode cuts V. 3 off on the grid V. 3 anode rises. If V. 3 had a resistor for its anode load the anode waveform wculd obviously be a square wave. The positive-going phase would begin when V. 2 grid crossed cut-off. It would terminate on the leading edge of the 20 microsecond pulse when $V .2$ grid was carried down with the discharge of C.1. Instead of only a resistor we have a pulse-forming network. This network achieves a result very similar to the effect of a short CR. When V. 3 anode falls on the leading edge of the 20 microsecond pulse the negative-going edge of When V. 2 crosses cut-off and outs off V. 3 the rising edge of the square wave at V. 3 anode is converted into a positive pip. We note then that we get a positive pip at V. 3 anode every time the rising exponential carries V. 2 grid above cut-aff.
451. If we had put our pulse-forming line in V. 2 anode instead of $V .3$ anode we should have a negative pip every time $V .2$ grid is carried above cut-off. phase inverting with a transformer we could convert the negative pip into a positive one. In the actual range marker circuit we use the arrangement shown in our basic circuit. In the height marker circuit the pulsemorming line is in $V .2$ anode and a transformer is used to invert the negative marker pip.
452. Looking next at V.4 we note that it is a cathode follower with the grid returned to a negative bias of about -7.5 V which is sufficient to hold the valve cut off unless a positive-going signal is applied. Hence, when the negative pip is applied there is no output at the cathode. When the positive pip appears the velve passes current and the cathode potential rises to provide a positivegoing marker at the cathode. In the case of the actual height marker circuit with the pulse-foming line in V. 2 anode the result is the same since the pips at the anode are in opposite phase but these are inverted with a transformer before applving them to V. 4 gria. In each circuit we then obtain a positive pip at V. 4 cathode every time V. 2 gria crosses out-off. This positive pip is oux marker pulse.
453. In the case of the range marker it is mixed with the signals and applied to the P. P.I. grid as a positive-going pulse. As we have one marker pip for every 20 microsecond pulse we have one on every timebase sweep. These positive
pipa will appear at the same point in the tinebase sweep as long as we do not vary the settings of P. 1 and P.2. As each pip forms a bright dot on the scan at same constant distance from the centre the 670 dots so fonned will merge to form a range marker ring. This is the P.P.I. range marker ring.
454. The range marker is also applied with the signals to the height tube deflecting plates where it appears as a blip to the right.
455. The height marker is applied to the opposite deflecting plate in the height tube so appears as a blip to the left.

## Calibration of the Marker Scales

456. We have seen that we can start C. 1 charging at zero time, i.e., on the back edge of the modulator priming pulse, and can produce a positive-going marker pip after a time delay equal to the time tuken by the upper plate of c. 1 to rise exponentially from P. 1 slider potential to V. 2 cut-off potential. We might restate the delay time as the interval in which C. 1 charges to a potential difference given by V. 2 cut-off -P. P. slider potential. How long this time delay will be depends on the folloring factors:-
(a) The number of volts potential difference that mist be developed across C.1.
(b) The time-canstant of C.1 and R.1.
(c) The charging voltage applied.

Factor (a) is governed by both the starting level, i.e., P. 1 slider potential, and the value of V. 2 cut-aff potential which depends on the setting of P. 2. Hence the settings of P. 1 and P. 2 determine factor (a). Factor (b) can be predetermined by the components selected. Factor (c) is given by H.T. voltage Po1 slider potential. If we use a stabilised H.T. supply to give a fixed H.T. voltage we may say that factor (c) depends entirely on the setting of P.1. It follows then that if we use a stabilised H. T. supply, a fixed time constant and a preset value of P.2., the delay between the back edge of the modulator priming pulse and the appearance of a marker pip on $V .4$ athode will depend entirely on the setting of P.1.
457. Since this time delay depends entirely on P. 1 when P. 2 is preset it is possible to alibrate the movement of P. 1 in terms of time. By dividing the correspanding time intervals by 10.7 we can substitute height or slant range in miles. Let us assume that we have a signal generator triggered on the back adge of the modulator priming pulse which provides a pip after a know variable dolay which is calibrated in either thousands of feet or miles. Suppose we had a range of $0-30$ miles on the control calibrated in mile intervals. This would really mean time delays calibrated in 10.7 microsecond intervals. If we fed the output into the H.2.S. set we could then put rings on the P.P. I. which represented slant ranges of $1,2,3 \ldots \ldots 30$ miles. Since we are discussing the range marker P. 1 really represents the range potentiometer on the awitch unit. This control is a large wire wound potentiometer. Its wiper and a drum carrying a scale move as the range comtrol is operated. The scale moves past a fixed index. Suppose we started with a blank scale on this range drum. If we set the signal generator control for a 1 mile delay a ring would appear on the H.2.S. P.P.I. If we now adjusted the range control until our range marker ring coincided with it we colld put a line on the blank scale opposite the fixed index and label it 1 mile. We could then contime until the whole scale was calibrated from 1 - 30 miles.
458. If we arranged to have R. 1 switched we could put in a larger value so that the same settings of P.1 gave longer delays. This is done in the H.2.S. range marker circuit to obtain a range of delays up to 1070 microseconds or 100 miles. This scale could be calibrated in the same way.
459. If we think in terms of the height market P.1 becanes the height control. Actually, we use the same wire-wound potentiometer again but the height control knob rotates another wiper and another scale. The scale moves behind a window with an index line across it. If we set the signal generator control for a 1000 ft . delay and fed the output to the height tube, we would get a blip on the scale. We could then adjust the height control until the height mariver
coincided with the signal generator blip. A line could then be drawn on the blank drum under the index line and labelled 1000 ft . In the same way the scale could be calibrated in 1000 ft . intervals from $1000-40,000 \mathrm{ft}$.
460. We have seen how we could calibrate range scales of $0-30$ miles and $0-100$ miles, and a height scale of $\sigma-40,000 \mathrm{ft}$. It must be remembered that these calibrations will only hold so long as all the other factors affecting the time taken by C. 1 to charge through the potential difference between P. 1 slider volts and V. 2 grid cut-off volts remain constant. Scales prepared for one switch unit would only be applicable to other switch units if the following conditions were fulfilled:-
(a) H.T. Voltage was always the same.
(b) Timing CR. for any range had the same value in all gots.
(c) V. 2 grid cut-off was the same in all sets.

Condition (a) can be fulfilled by using a voltage stabiliser stage. Condition (b) can be fulfilled by providing a amall trinmer for C. 1 in both height and range timing CR's. Condition (c) carmot be preset readily as valves show appreciable tolerance. Hence, we have the need $f$ or the second adjustment, P.2. In the renge marker circuit this control is oalled the range zero. It appears as a screw-driver preset on the switch unit labelled "Beacon Zero". In the height marber cirouit we have a similar preset which also appears as a screwdriver preset on the switch unit, this time labelled "Altitude Zero". These controls must not in any sense be regarded as fine adjustments. They have only one possible correct setting. That setting is the one which makes V. 2 grid cut-off equal to the value used in the standard set on which the prototypes of the mass-produced scales were prepared. Calibrating a scale assumes a specific value for V. 2 grid cut-off. Scales will only read perfectly true if $V .2$ grid cut-off has that value. The height and range zero are provided to permit a limited range of adjustment on $V .2$ cut-off potential. There can, however, anly be one setting for each of these controls for which the scales will be perfeotly true. These settings are the ones whioh cause V. 3 to pass such a current that the voltags drop across the ocmon cathode load brings V. 2 cut-off to the value used in calibrating the original soales. Obviously, it will be necessary to cheok these adjustments froa time to time. How these cheoks may be carried out will be discussed in para. 481 - 486.
461. It may occur to the radar mechanic that the scales will only remain correct as long as the value of the timing CR's remain fixed. This calls for accurate values, i.e., very narrow tolerances, and freedom from change due to ageing and due to variations in temperature. The resistors used have tolerances of $\pm 1 \%$ and $\pm \%$. The condensers have tolerances of $\pm 2 \%$ As has been previously pointed out a trimer is provided for each fiming capacity. These trinmers are of the variable air tuning condenser type and are preset by the manufacturer. Three condensers are actually employed in each CR , two fimed and the one adjustable. Ey suitably balancing positive and negative temperature comefficients it is possible to get a reasonable independence of temperature.
462. Before examining in more detail the actual height and range marker ciraits shown in fig.90, we shall gather up the following major points with regard to the operation of the range marker circuit on the 30 and 100 mile marker ranges:-
(a) The fundamental principle is a calibrated time delay control.
(b) The variable time factor is the time taken by a timing capaci ty to charge from a variable starting-point to a preset terminal voltage.
(c) The preset terminal voltage is the grid cut-off voltage of the first valve in a flip-flop.
(d) This terminal voltage is adjustable over a range of $7-8$ volts by means of a zero control.
(e) The effect of the zero control is to vary the potential to which the grid of the second flip-flop valve is tied, thereby varying the cathode current passed by the valve. This current through the camon cathode load fixes the cathode potential of the first flip-flop valve during its cut-off state. The terminal voltage which the grid must reach is the cathode potential - the grid base.
(f) The need for the zero control is to permit adfustment of the terminal voltage to the value used in celibrating the prototype scales. Unless the terminal voltage is set to this value the scale will not track perfectly.
(g) For a preset terminal voltage the delay time is determined by
(i) Charging voltage $=$ H.T. - starting level.
(ii) Time constant of timing CR.
(h) In order that the same scale may appiy to different sets the timing CR's used on any particular range must have the same value in all sets. This is covered by providing a trimmer condenser which is preset by the manufacturer.
(i) The same H.T. level must also be used if identical scales are going to apply to different sets. This recuires a stabilised H. T. supply.
(j) With H. T. level, timing CR. value and terminel voltage, all at the values used in the standord set used for initial scale calibration, the delays for a given value of the starting level must be the same in all sets and mast be equal to the value in the standard set. This value is show where the scale crosses a suitable index.
(k) The aotwal time delay thus measured can be expressed as slant range or height aince echo time is proportional to distance between aircraft and reflecting sumface.
(1) Actual measurements are made by varying the starting level with the calibrated deley control until the marker forming at the end of the delay coincides with the echo whose distance is to be measured. If the marker and the echo coincide the variable delay must have the same value as the echo time since the condenser charge began when the transmitter fired. Since the delay is expressed in distance the height or range can be read directly from the calibrated delay control.
(m) The marker itself is a positive-going pulse taken off from a cathode follower output valve. The input to the cathode follower has a negative-going pip coincident with the leading edge of the 20 microsecond triggering pulse, and a positivegoing pip coincident with the instant the first flip-flop grid is carried above cut-off by the timing exponential. The negative pip is eliminated by applying 7.5 V . negative bias to the grid of the cathode follower.
(n) The pips are formed by using a pulse-forming line in the anode of the secard flip-flop for the range marker and in the anode of the first flipmflop for the height marker. The pulse line serves to convert a square wave to pips. It gives a shape to the pips which can be passed through mumerous succeeding circuits without appreciable rounding off and widening. Had a short CR been used instead, the sharp leading edge end exponential trailing edge would cause gradually rounding off and widening as the pip went through the later stages. In the height marker circuit a pulse transformer is used to invert the pips formed at the first flip-flop anode to get the correct phase on the cathode follower grid. This change is made in the height marker circuit as a square wave output has to be taken from the anode of the second flip-flop. This square wave is required in the development of a 10 mile range marker which measures groumd range instead of slant range.
(0) Since we want to have three different delay scales for range measurement while using the same delay control (range control), we must arrange that the same position of the control, i.e., the same starting-level, gives three different delays. This is accomplished by altering the CR of the timing circuit by switching the value of the resistor used. Since the delays for any setting of the control must be in the proportion of 10:30:100 the value of the resistor is least on the 10 , greater an the 30, and greatest on the 100 mile range. The changes are made by a relay which is operated by the scan-marker switch on the switch unit. It switches the anode load of the range marker timing valve, V.406.


TIMINC VALVE WAVEFORMS
a. pyeve plud. Violet
b. INPUT TO TIMINC


WAVEFORM AT
TMMING VALVE TATHODE.


SLIDER POTENTIAL OF CONTROL?
d. WAVEFORM ON TMONG VALVE DODE OF TIMINE CAPACITY.

. WAVEFORN AT TOP OF TMING EAPACCTY KTIO


To avoid ruming the first flip-flop valves into excessive current by a continued rise of the timing exponential towards +300V. after the marker has been found when the valve went into conduction, a limiter valve is introduced. This limiter valve prevents the grids from rising above about +140 V .
(q) The first valve in each merker circuit is essentially an electronic switch or timing valve. The positive-going 20 microsecond pulse from the modulator vialet Pye plug is applied to the cathode after phase inversion in a transformer. The negative-going leading edge takes the valve into grid current and discharges the timing capacity which is effectively between anode and cathode. The rising edge of the trigger pulse cuts the valve off and starts the timing exponential, at the same time the trigger valve fires the spark gap and the transmitter.

## The Timing Valve Circuit

463. Examination of the circuit diagram of the receiver-timing unit will show very camplex looking circuits for the two tining valves, V. 400 for the height marker circuit, and $V .406$ for the range mariker circuit. The use of doublediode triodes in these stages adds to the difficulty of understanding the action of the stage from the standard circuit. Since the diode sections are strapped we may regard them as a single diode. As the cathode of the diode and triode are comnon we may redraw the actual range marker timing valve 3 tage as it appears in fig. 96.
464. In our basic circuit we shaved the timing valve as a switch which could be comected across the timing capacity. Fig. 96 shows that the timing capacity and the diode seotion of the timing valve are actually in series between the anode and cathode of the timing valve. We also note that the grid and cathode of the timing valve are tied to the same decoupled D.C. level which is fixed by the contwol on the switch unit. When the negative pulse from T. 400 secondary is applied to the cathode the cathode is driven down. The grid woild also follow down if it were not for C. 427 which will not permit the grid to fall more rapidiy than C. 427 can charge negatively through R.431. As this time constant is long ( 24,000 microsecands) the grid potential will not fall perceptibly during the pulse duration. As the cathode is taken about 16 volts negative to the grid the valve then passes grid current into C.427. At the end of the 20 mi crosecond pulse the anthode rises again but the discharge of grid-current from C. 427 through R. 431 develops sufficient bias across R. 431 to keep the valve cut off between successive 20 microsecond pulses on the cathode
465. Let us suppose that the decoupled slider potential is 50V. and that we are considering the situation just before the 20 microsecond pulse is applied. The cathode line will then be at $+50 \%$. The diode anode and lower plate of the timing capacity must also be at this level as R. 438 returns them to the decouplec point. The top plate of the timing capacity and the triode anode will be at the limiting value of +140 V . As the diode anode and cathode are at the same potential it will be just conducting. The triode is, of course, cut off by grid current bias.
466. On the leading edge of the 20 microsecond pulse the common cathode is carried down about 16 V . +34 V . The triode passes grid current and a heavy anode current. Electrons then flow through the timing resistance to $\mathrm{H} . \mathrm{T}$. and into the timing capacity. The potential of the top plate then falls to practically cathode potential, i.e. $+34 V_{0}$, since the impedance of the triode when in grid current is negligible compared with the anode load. As the cathode is camon to the diode and triode the diode passes current so electrons flow to the lower plate of the timing capacity and through R. 438 to the decoupled slider level of +50 V until the lower plate is alnost down at +34 V . It will remain slightily higher as the drop across the diode will be a matter of about 2V. and the drop across R. 348 will be abour 14V. We thins get both plates of the timing capacity down to very nearly +34 V .
467. During the 20 microsecond pulse period the pulse will decay sonewhat as the pulse transformer, $T .400$, will not be able to sustain the flat botton for the 20 microseconds. There will therefore be a rise of $2-3$ volts at the cathode line during the pulse period to, say, +37 V .
468. At the end of the pulse period the full pulse amplitude of 16 V will be applied to the cathode line to take it up to +53 V . The triode is irmediately cut off by the grid current bias. The diode will be cut of $f$ as the cathode is now at +53 V . and the anode at say $34 \mathrm{~V} .+2 \mathrm{~V}$ drop in diode +3 V climb or +39 V . We now have the lower plate of the timing capacity at +39 V . tied through R. 438 (5.1K.) to +50V. Electrons will then flow to the +50 V . point and the lower plate will rise quickly, but not instantly, to +50 V . At the same time electrans will be flowing from the top plate through the anode load to H. T. Hence the potential of both plates is changing until the lower plate has reached its steady +50 V . level. This means that the timing waveform is not a pure exponential for about 2 microseconds after the back edge of the 20 microsecond pulse. This portion of the curve is therefore inaccurate and cannot be calibrated. Rol64 linits the maximum potential that can be applied to the slider of the contral from reaching such a high value that the flip-flop grid can be carried into conduction by this inaccurate part of the timing curve. The timing exponential can never be shorter than 2 microseconds because of the presence of R.164. This applies to both timing valves (V. 400 and V.406).
469. So far there has been no apparent reason why we want the diode section in the circuit as precisely the same results could have been obtained by connecting the timing capacity directly between the anode and cathode of the triode. The reason for the diode is the ring appearing on the cathode line on the back edge of the trigger pulse, due to the pulse transformer. This ringing will continue for several microseconds and would appear on the flip-flop grid if $C$ were tied directly to the cathode. Now we have noted that the camaon cathode line came up to about +53 V on the back edge of the pulse. The diode anode, however, can only rise to the +50 V . decoupled potential, so the diode could only be brought into ocnduction by a negative swing of 3 volits or more due to the ring. As the amplitude is not sufficiently great the diode remains cut off until the ringing has ceased. The ring is thus prevented from reaching the timing capacity and the flip-flop grid. Had the ring been permitted to reach the grid it might cause a jittery marker by triggering the filip-flop at different times. This effect could only occur, of course, for short timing exponentials.

## The Limiter Valve

470. In our basic circuit we showed the limiter valve as a diode with its cathode held at about +140V. The actual circuit is shom in fig.96. Instead of a diode we aotuaily have another double-diode triode, V.405. To illustrate the action of the stage we have again separated the triode and one diode section. The triode is connected as a cathode follower. The grid is tied to a +140 V . potential (half H.T.) obtained fram the bleeder in the switch unit which includes the wire-wound potenticmeter that is used as both height and range control. The current passed by the valve through the 51 K cathode load raises the cathode potential to about +140 V . Since the cathode is common, the diode is then cut off until its anode potential rises to about +140 V . When the diode opens we have a bleeder between the H.T. line and the camon cathode at about +14 OV . The conducting impedance of the diode is so low in proportion with the anode load of the timing valve that the diode anode potential is held at about +14 OV . One diode section serves in this way as a limiter for the range marker circuit and the other diode section performs the same function in the height marker circuit.

## The Actual Height and Range Marker Circuits

471. The major details of these circuits is shown in fig.90. Details of the constitution of pulsemforming networks used in V. 408 anode and V. 401 anode have been amitted. The same applies to the 2 microsecand delay networic introduced in the cathode of the height marker output valve, V. 403. The circuit shown is that of the Mark IIIA receiver-timing unit. This differs fran the corresponding Mark IIC oircuit mainly in the detail of the receiver output stage.
Mark IIC receivers with serial mmbers commencing with $T$ will not inalude the shorting links of S.401. This only appears in some Mark IIC receivers with a serial number camencing with R .

C.D.O896L


15 miles


30 mices


DEVELOPMENT OF RANGE MARKER - IOMILE SCALE


FIG. 99
472. Assuming the 5.401 links to be in the Bomber Camand position wo have the following conditions:-
(a) The top of T. 401 primary is tied to H.T. via one link.
(b) The centre tap on T. 401 primary is floating.
(c) The cathode of V. 403 is tied to the 2 microsecond delay line in its cathode via a second link.
(d) The comnection from the cathode of the range marker output valve, V. 409, is floating.
(e) The cathode of the range marker timing valve, V.406, is connected via the third link to a relay contact. When the scan-marker switch is set for either the 30 or 100 mile marker range the relay campletes the connection via cantact 5 of the secondary of T. 400 to give the triggering on the back edge of the 20 microsecond pulse, as we have already discussed it.

These are the conditions in the Mark IIC receivers which do not include the link.

## The 10 Mile Marker Range

473. When the scan-marker switch is set for a 10 mile marker range the anode load of V. 406 is reduced to R. 464 (.5M). Contacts in the switch unit complete the 24 V . supplies to relay A solenoid und contact 1 closes to short an R.433R.437. At the same time contact 6 changes over from its unenergised position connecting to 5 , to contact with 7. We then have V. 406 cathode connected to V. 402 anode instead of to T. 400 secondary. The significance of this changeover can be grasped most readily fran a study of the waveforms in fig.99. The height marker circuit operates as before to form a height marker at V. 403 cathode at the instant that V. 401 grid is carried above cut-off by the exponential at V. 400 anode. The reason for the 2 microsecond delay impressed on the height marker in $V .403$ cathode we shall discuss presently. The waveform at V. 402 anode is a square wave which swings negative when V. 402 comes on, i.E., when V. 401 cuts off. Hence, we have V. 402 anode and V. 406 cathode swinging negative on the leading edge of the 20 microsecond pulse applied to $V .400$ cathode, for it is on this edge that V. 400 goes into conduction and cuts V. 401 off. V. 400 and V. 406 therefore go into confuction simultaneously just as they do when the 20 microsecond pulse is applied to both cathodes. The delay that ensues before V. 401 grid is carried above cutmoff will depend on the starting level of the exponential, i.e., on the setting of the height control in the switch unit. If this control has been adjusted to put the height marker opposite the leading edge of the ground echo on the height tube, the total delay between the back edge of the 20 microsecond pulse and the appearance of the marker on the display mast be equal to the echo time of the ground echo. Since a 2 microsecond delay is impressed on the marker in V. 403 cathode the delay introduced by the timing exponential must be two microseconds less than the actual echo time. The height marker mast then actually appear at $V .403$ cathode 2 microseconds before it appears on the height tube. The height scale is, however, celibrated to read the total delay and hence the actual height.
474. Now at the instant the timing exponential carries V. 401 grid above cut-off V. 401 comes on and V. 402 cuts off. Eence, at the instant the height marker is actually formed by the line in V. 401 anode we have V. 402 anode rising. V. 406 cathode will then have been held down by V. 402 anode from the leading edge of the 20 microsecond pulse until the instant when the height marker actually forms. At that instant V. 402 anode rises and cuts $V .406$ off. V. 407 grid then commences its exponential rise from a starting level set by the range contral at the instant the height marker actually forms. How long a deley ensues before the range marker forms is determined by the setting of the range control. Suppose the range control is now adjusted to bring the range marker into coincidence with an echo blip on the height tube or a target indication on the P.P.I. The total delay between the back edge of the 20 microsecond pulse and the formation of the range marker must then be equal to the echo time which will be $10.7 \times$ slant range. The delay introduced by V. 400 exponential is $10.7 \times$ height (neglecting the 2 microsecond delay which represents about 300 yards). The delay introduced
by V. 406 exponential is therefore $10.7 x$ (slant range minas height). Hence, when the scan-marker switch is set for a marker range of 10 miles and the height marker is set to the ground encho, i.e., to the aircraft height, the range-marker exponential actually measures slant range mimus height.
475. If we are given the value of $h$ and $s-h$ for a right-angles triangle we can construct the triangle and compute the ground range. For any selected height the delay introduced by the timing exponential of V. 406 represents scme specific ground range. However, if the height changes, the same delay represents a now ground range. Hence, although the rotation of the range control wiper could be calibrated to read ground range when V. 406 is triggered by V.402, the scole would only be correct for the selected height. It would, of course, be pasaible to arrange a set of parallel scales corresponding to different heights and draw curves through points of equal ground range. This is, in effect, what we have on the switch unit range drun. Curves are provided labelled in ground range at half-mile intervals. The points on these curves may be imagined as lying on sets of parallel scales corresponding to different heights. As the height control is operated to set the height marker to the beginning of the echo, a metal pointer tracks across the range drum. As the range control is then operated to bring the range marker into coincidence with the selected target indication the drum moves relative to the pointer. When the setting is campleted the ground range can be read by noting which ground range curve intersects the top of the pointer. If the adjustment leaves the pointer tip between two curves the departure from the nearest half-miles curve can be estimated.

## Ground Speed Measurement

476. Since the curves represent ground range if the height marker is correctly set up, these scales can be used to measure ground speed. If the track marker is used, and the aircraft flies straight and level at a constant speed, the movement of a target indication along the track marker will be proportional to the ground speed. The range control can be set to say, 8 miles. When the target intersects the point where the track and range marker meet a stop-watch is started. The range control can then be set to 7 miles, bringing the range marker towards the P.P.I. centre. When the target has moved in along the track marker to the now intersection the stop-watch is stopped. The elapsed time represents the time to cover a mile ground range from which the groumd speed is determined.

## Direct Release Iines

477. Por any given height and ground speed an ideal bamb should be released at a certain ground range ahead of its target. That is, for any given height and ground speed, when the target has moved in to the intersection of the track marker and same correct range marker setting, an ideal bomb should be released to fall on the target. Obviously, it would be advantageous to have an indication of these range marker settings. These are provided on the 10 mile range drum in the form of solid red direct release lines. They are labelled in ground speeds. Hence, when the H.2.S. operator has observed his ground speed, he can adjust the range control to bring the appropriate ground speed direct release line opposite the tip of the pointer. When the target has moved down the track marker to the new intersection with the range marker ring the ideal banb should be released. An actual bamb will not carry as far as the jdeal bomb so must be released slightly later. Correction tables tabulating the seconds delay required for different types of bamb load are provided for the H. 2.S. operator who can then use a stopwatch to determine the appropriate release point.

## Thirty Second Lines

478. A second set of release lines appears on the 10 mile range drum. These are in broken lines and again labelied in ground speeds. These appear higher $u p$ on the drum so set the range marker ring farther from the tube centre for the same aircraft height. These are lines which so set the range marker that the instant the target meets the intersection of the range marker and track marker represents 30 seconds before an ideal bamb should be released. By adding
the delay appropriate to the particular banb laad carried to the 30 seconds, the release time is again determined with a stop watch. The purpose of these 30 second lines is to deal with the difficulty experienced of keeping the target identified in the heavy general ground returns in the tube centre.
479. It must be emphasised that all measurements made with the 10 -mile range drum, whether range, ground speed, or release points, can only be correct if the height marker has been correctly set to the beginning of the ground echo on the height tube. A further requirement is that the height and range zeros are correctly adjusted. If these adjustments are incorrect the scale calibration will be in error.

## The Blackout Range Markex

480. So far, we have spoken of the range marker as a bright ring. When a target is of reasonable size the use of the direct release lines may set the range marker inside the brightened-up target area on the P.P.I. It is then impossible to tell where the intersection of the track marker and range marker occurs. To overcome this difficulty a switch may be fitted on the switch unit to operate a relay which changes the range marker output frcm the oathode to tho anode as shown in fig.90. The range marker then appears on the P.P.I. grid as a negative-going signal, so forms a blackout ring which can be seen against of the track marker and the black-out ring and the direct release lines can then be used even if the range marker moves into the target indication.

## Adfustment of the Height and Range Zeros

481. It has previously been emphasised that these preset controla are provided to permit setting of the grid cut-off levels of the first flip-flop valves to the values used in producing the prototype scales. It has also been pointed out that these contrals function by varying the potential to which the second flipflop grids are tied, thereby varying the current passed by the valves through the common flipmflop load. This, in turn, varies the comon cathode potential which fixes the grid cut-off value of the first flip-flop valve. The question now arises as to how it can be checked that these zeros are set correctily. Obviausly, we require same indication at a known delay after the begiming of the transmitter pulse. If a suitable permanent echo is available at, say, $1-5$ miles from the workshop, and the range of the target is acourately known from an ordnance survey map; the height scale should read the correct range when the height marker is set to coincide with the echo. If the scale does not read the correct range it can be set to the correct range and the marker brought into coincidence with the echo by means of the height zero preset. If the H.T. voltage end timing CR. have the standard values the height marker should now read correctily throughout its scale. If a second permanent echo at a dif'ferent accurately knom range is available the tracking can be checked by means of this second echo. If the correct range appears on the height scele when the marker and echo coincide it is safe to assume that the zero is correctly adjusted and the scale is tracking correctly. Should the scele read an incorrect range for the second echo after adjustment of the zero on the first, either the timing CR or the H. T. voltage must be incorrect. The H.T. valtage should be satisfactory if the 300 V . pack in the power umit is operating properly on a correct input and the stabiliser stage is not at fault. If the timing CR. is suspected the unit should be returned to the maintenance unit for realigmment.
482. The measurement of range with the height scale may seem odd to the radar mechanic. It must be remembered that what is really being measured is a time delay, i.e., an echo time. Whether the patch of the e.m. waves is horizontal or verticel in no way enters into the operation of the circuit. The height scale can therefore be used to measure ground range when the set is on the graund or slant range when it is in the air.
483. Theoretically, we could set up the range zero in exactly the aame way as the height zero if we set the scan-marker switch for a 30 mile marker range and used the 30 mile range scale along the inner edge of the range drum. The

## C.D.0896L

difficulty arises in setting a short range accurately on the 30 mile scale. Koreover, there is only one range zero and we want accurate range indications on the 10 mile scale which is used for bombing. Hence, we should like to set up the range zero for accurate range indications on the 10 mile scale. This introduces the reason for the presence of the 2 microsecond delay network in the cathode of the height marker output valve, V. 403.
484. It must be remembered first of all that when the scan-marker switch is set for a 10 mile marker range the range marker exponential begins when the height marker forms, i.e., two microseconds before it appears on the height tube. It was pointed out in para. 468 that both the height and range marker exponentials are inaccurate over the first 2 microseconds, and that R. 164 has been introduced in the circuit to prevent a reduction of these exponentials to less than 2 microseconds. This means that when the height control is set to zero there is still a 2 microsecond exponential at V. 400 anode. Likowise, if the range control is set to zero there is still a 2 microsecond exponential at V. 406 anode. The range marker is then forming 2 microsecands after the height marker when the range control is set to zero and the scan-marker switch is set for the 10 mile range marker. This applies regardless of the setting of the height control. Suppose now that the height control is set to bring the height marker into coincidence with a permanent echo and the height zero has been adjusted to give the correct range indication on the height scale. The height marker is actually forming 2 mioroseconds earlier. If the range control is set to zero the range marker must then form two microseconds after the height marker and will appear on the display at the same time as the height marker provided the range zero is correctly adjusted. If incorrectiy adjusted, this is not necessarily the case. If the range zero is then offset to delay the range marker so it appears above the height marker and echo and is then adjusted for coincidence, it should be correctly aligned. Had the 2 microsecond delay not been included in V. 403 cathode the range marker would appear 2 microseconds above the height marker when the range control is set to zero and this adjustment would then be impossible. Its inclusion in the circuit is to make possible this method of range zero adjustment. As the height control is operated to carry the height marker over the full scale, the range marker must, of course, remain in coincidence with the height marker as no changes are being introduced in the range merker circuit. This, therefore, constitutes no form of check on the range marker circuits. It only serves to check that the height and range control wipers are making contact with the potentiameter throughout their travel.
485. The permanent echo method of checking height and range zeros is open to the objection that it is not possible to check the accuracy of both the height and 10 mile range scales at operational heights and that rarely are there two or more permanent echoes which are suitable for tracking checks. What would be dosirable is some form of calibrator which operates off the back edge of the 20 miarosecond pulse and promuces a set of calibration pips that can be used to check both zeros and tracking. Since it is difficult to obtain reliable calibration pips without the use of a crystal-controlled oscillator, a calibration test set, Test Set Type 202, has been designed around a crystal oscillator. The use of a crystal-contralled oscillator precludes the possibility of synchronising the calibration with the 20 microsecond pulse. The Test Set is therefore designed to supply a positive-going 20 microsecond pulse which canl be used to trigger the marker circuits and the monitor 28. It can also be used to synchronise the modulator multivibrator or the master multivibrator. Details of the T.S. 202 circuit operation and how the set is used for checking the H.2.S. markers are outlined in Chapter 11, paras. 779 - 811.
486. So far, we have discussed the height and range marker timing circuits as if the back edge of the 20 microsecond pulse were coincident with the start of the transmitter pulse. It was pointed out in Chapter 5 that there is a delay wile the trigger pulse swings up and a further delay while the main gap breaks down in the spark gap switch. The spark gap delay will depend samewhat on how long the gap has been used. In addition to these delays, before the transmitter fires the returned signal experiences a slight delay in passing through the I.F. amplifier. The actual interval that elapses between the back edge of the 20 microsecond pulse and the appearance of a signal on the diaplays is then
the actual echo time plus the sum of these delays. In the case of the 10 mile marker range the sum of the height and range exponentials must exceed the true echo time by this delay. A nominal value of 1.4 microseconds has been assumed as the correction. This correction is applied in the calibration of the height scale. No correction is applied to the 30 and 100 mile marker range scales since these are mainly used for navigation and only give slant ranges which will be compared with maps giving ground ranges.

## The Voltage Stabiliser, $\mathrm{V} .4 \mathrm{O}_{4}$

487. We have spoken of the 300 V . stabilised supply as a necessity for accurate tracking of the marker scales. It is not actually necessary that this voltage be precisely 300 V . but it is necessary that the voltage have a steady D.C. level, and be free from low frequency ripple. If we disregand R. 419 and the tap into the -100 V . line, the circuit is essentially the standard anti-jitter circuit with the difference that there would be no grid bias. The Gee anti-jitter circuit uses a cathode auto-bias. If we now add R. 419 and the -100 V . tap we have a biassing arrangement which not only provides a suitable operating point but also permits D.C. feedback from anode to grid. We can thus obtain reasonable stabilisation against a shift in the D.C. supply due to abnormally high or low engine speeds within reasonable limits. $\quad 0.424$ feeds low frequency ripple in the output to $V .404 \mathrm{gria}$ to develop an antiphase voltage change across R. 421 as in the standard anti-jitter circuit. $\quad \mathrm{V} .404$ is therefore intended to provide stabilisation against both A.C. and D.C. changes in the input voltages. Nominal voltage values are:-


If any ripple reaches the grid of V. 404 via the -100 V . line, this will be amplified to a higher value at the anode.

## The Switch Unit Marker Control Network

488. This network is also shown in fig. 90. The stabilised output from V. 404 anode at about 280V. is applied across the network via 12/11. The manufacturer adjusts the resistances, R.159, R.164 and R. 169 so that the resistance between $12 / 11$ and $6 \mathrm{~B} / 2$ is equal to the resistance between $6 \mathrm{~B} / 2$ and earth. Half the stabilised valtage is therefore taken off at $6 \mathrm{~B} / 2$ for application to the grid of the limiter valve, V.5. The range control and height control can never carry the starting levels of the timing exponentials up to the voltage applied to the limiting grid because of R.164. On the other hand, these controls cannot carry the starting levels of the exponentials down to zero because of R.169. The normal range of variation available at either $6 B / 3$ or $6 \mathrm{~B} / 4$ is about +2 V to +138 V .
489. The range available at $6 B / 6$ on the height zero is about 123 to 130 V .
490. The range available on the range zero depends on the setting of the scan-marker switch. When set for a 10 mile marker range contacts on the switch short out R. 165 ( 7.5 K .) and put into circuit R. 167 ( 7.5 K .). On settings of the switch giving either a 30 or a 100 mile marker range the reverse is the case. The voltage range available at $6 B / 5$ depends then on the marker range in use. Nominal values are:-

10 mile marker range ........ 127 to 135 V.
30 or 100 mile marker range ........ 125 to 133 V.
491. From the network it is apparent that a change in the stabilised input at $12 / 11$ will shift all the output valtages in the same direction This helps to minimise the effects of any such change. For example, if the imput falls slightly the starting levels fall. This tends to make the exponentials take longer to reach grid cut-off at the first flip-flop valve. But the zero controls are also applying a reduced voltage to the grids of the second flipflop valves. These are then passing less current and the bias developed across


FIG.100

THE HEIGHT MARKER PULSE FORMINC LINE


FIG.IO2
the camon cathode resistor has dropped. Hence, the grid cut-off values have also dropped. This effect tends to cancel, in part at least, the efect of a lower starting level.
492. We have said that absoiutely accurate tracking of the marker scales is possible only if a set has the same timing CR, same stabilised H.T. value, and same grid cut-off levels in the first flip-flop stages as the standard set. This is actually the case. However, by virtue of this partially compensating supply arrangement, it is possible to obtain reascnably accurate tracking with minor variations in the stabilised H. T. voltage and consequent slight displacement of the grid cut-off or triggering valtages. In any case, if it is necessary to change either a switch unit or receiver-timing unit, it is desirable to remove both fram the aircraft and set up the zeros on the bench before reinstalling the units in the aircraft. Changing one unit and not the other may mean that slight realigning of the zeros is called for in order to obtain satisfactory accuracy and tracking.

## The H.2.S. Pulse Lines and Networks

## The Range Marker Pulse-Forming Line

493. Details of the circuit used to shape the range marker are shown in fig.100. We know that V. 408 cames on when the leading edge of the 20 microsecond pulse brings V. 406 on and cuts V. 407 off. When V. 408 opens an electron flow commences through L. 416 and R. 446 and the anode of V. 408 falls. This fall will not be instantaneous for as soon as the anode potential is below that of the stabilised H.T. line electrons will start to flow through tie other chokes and into the condensers. The result is a fall that takes about $\frac{1}{2}$ a microm second. At the end of this period all the condensers will have charged to the potential difference doveloped across R. 446 and L.416. Electrons will now discharge from the condensers through L. 422 - L. 417 to H. T. for approximately another $\frac{1}{2}$ microsecond and the anode current through L. 416 and R. 446 will drop to practically zero as the resiatance of R. 446 (4K.) is high compared with the resistance of the ohoke path. The anode potential then rises to practically H.T. as the condensers discharge in the second half-miorosecond. We thus obtain a negative-going triangular pip in $\nabla .409$ grid which has no effect since V. 409 is already biassed to pass cut-off. V. 408 contimes to pass its current but it nearly all flows through the chokes L.417-L.422.
494. When the timing exponential carries V. 407 grid above cut-off the enode fall drives V. 408 grid below cut-off. The electson flow through L. 416 - L. 422 is thus abruptly stopped. The magnetic field about the chokes then collapses and sets up an indnced voltage which tends to keep the electron flow going in the same direction. As the current art-off is first apparent at the function of the anode and L. 417 the collapse of the field comnences at $L .417$ and develops an induced e.m.f. across L. 417 tending to drive an induced electron flow in the same direction as before, i.e., toward L.418. This electron flow will came out of the lower plate of $\mathrm{C}$.433 thus charging the condenser poaitively to H.T. As the field collapses around the successive chokes the same effect is produced on the other condensers. The missing capacity at the junction of L. 417 and L. 448 is supplied by the stray capecity associated with the output lead. The effect then is that C. 433 is the first to start charging positively at the instant of out-off. The effect then travels along the line all capacities charging simultaneously. The anode of V. 408 will swing increasingly positive as the charging continues until the collapse of the field is complete. We thus obtain a positive pulse with a sloping leading edge. As soon as the collapse is camplete C .433 will camence to discharge through L. 416 and R. 446 , i.e., electrons flow into the lower plate of C. 433 from the H.T. line which is actually $12-15$ valts negative to the lower plate of C.433. As soon as the potential of tho lower plate of C. 433 has fallen slightly there is a potential difference across I. 417 and the electrons in the stray capacity begin to discharge through In 417, L. 416 and R.446. The discharge thus travels along the line through the ter minating resistor until it is completed. The anode of V. 408 meanwhile falls back to the H.T. level. Since R. 446 provides a termination that matches the line this discharge takes place wi thout anything more than the minor reflections.

We thus obtain a positive-going marker pip with sloping sides instead of the straight leading edge end exponential trailing edge that would be obtained if we used a short time constant to differentiate the square wave that could be developed by using a resistive anode load instead of the line. The triangular pip can be passed through the numerous subsequent stages without appreciably altering its characteristic shape. A pip produced by differentiation would tend to become progressively wider and more rounded off. The marker pip has a width of about 2 microseconds and an amplitude of $12-15$ volts when applied to V. 409 grid.
495. In transmission line terms, the action of the pulse forming line is described as follows:-
(a) On the leading edge of the 20 microsecond pulse when $V .408$ goes into conduction, a negative voltage wave travels down the line to the short-circuited end where it reflects with a phase reversal to give the rising edge of the pip.
(b) At the instant when the timing exponential carries V. 407 into conduction and cuts $V .408$ off, a positive voltage wave travels down the line to the short-circuited end where it reflects with a phase reversal to give the falling edge of the pip.
(c) In each case there is. no second reflection as the line is teminated at the other end in a resistor that matches the characteristic impedance of the line.

## The Height Marker Pulse-Forming Circuit

496. The circuit details are shown in fig. 104.
(a) When the exponential rise at V. 400 enode carries V. 401 grid above cut-off, the valve starts to pass anode current. When this flow comences both sides of the condensers in the line are at about 280V., the level of the stabilised H.T. line. There will be an initial flow of electrons to the anode plates of the condensers end a very small flow through R. 409 and T. 401 primary. The inductance of T. 401 primary will be sufficiently high to make this path look almost like an open circuit as campared with the characteristio impedance of the line which is 2 K . The actual current flow through R. 409 and T. 401 primary is then so small that it produces a negligibl voltage drop across R. 409 but it is sufficient to cause a drop of about 7-8V. across the inductive reactance of T. 401 primary. We then have, in effect, dropped the whole line through 7-8V. to put the Junction of T. 401 primary and R. 409 at +273 V . The anode side of the line condensers will be at very nearly the same value. We have now both sides of $C .405$ at about +273 V . so have 7 V . across L.400. Electrans then leak away from the top plate of $C .405$ to raise the potential of the top plate. As soon as the junction of L. 400 and L. 401 rises above 273 V ., electrons will start to flow out of C. 406 through L.401. We thus have the line condensers charging consecutively over a period of about 1 microsecond. As the potentis across $C .409$ rises, the current which had been previously floming to the anode plates of the condensers, i.e., into the line, now starts to flow through R.409. When all the condensers are fully charged the current flows through R. 409 and the line chokes, instead of into the condensers. Also, as the flow across R. 409 builds up, the potential at the junction of T. 401 and R. 409 rises from $+273 V$. to +280 V . and the voltage across T. 401 primary drops to zero. Hence, we have a current flow through T. 401 primary only for the 1 microsece period in which the line is charging up. We then obtain a negative pip across T. 404 primary and the phase-reversed positive pip on T. 401 secondery and $V .403$ grid. This positive pip causes the positive height marker pip at V. 403 cathode. It appears every time that the exponential rise at V. 400 anode carries V. 401 grid above cut-off.
(b) When the leading edge of the next 20 microsecond pulse carries V. 400 into conduction, the anode potential falls and V. 401 is cut off on the grid. The wole line is then pushed up 7-8 volts above F.T. so
we have this positive voltage across T. 401 primary. The condensers will now discharge in sequence in a 1 microsecond period. At the end of this time the junction of T. 401 primary and R. 409 is back to H.T. and there is no voltage across the trarsformer and hence no current. We thus obtain a 1 microsecond positive pip across T. 401 primary and a 1 microsecond pip across the secondary on the leading edge of each 20 microsecond pulse. Since $V .403$ is already biassed to cut-off this negative pip has no effect.

## The Height Marker Delay Line

497. When V. 403 goes into conduction due to the application of the height marker on its grid, all the condensers in the network will be completely discharged with both plates at earth potential. The initial valve current will consist of an electron flow from the top plate of C .411 . As this flow results in a rise of the cathode potential due to the charging of C.411, a potential difference appears across L. 405 and electrons start to flow out of C. 412 through L.405. This effect then travels progressively along the network charging one condenser after another. At the end of 2 microseconds it reaches the white Pye plug and develops the rising edge of the marker on the output cable. A little later the voltage appears across the terminating resistor, R.414.
498. As the grid of $V .403$ falls on the back edge of the marker pip, the valve current decreases and the current through the chokes tends to diminish. The collapsing field keeps the electron flow going in the same direction, but as the valve takes less and less, more and more goes back into the condensers. Thus, the top plate of C. 411 returns to earth potential when the field ecross L. 405 has collapsed completely. A little later $C .412$ will be completely discharged. In 2 microseconds the collapse of the field L. 415 campletes the decay of the delay marker at the white Pye plug.
499. In transmission line terms we describe this process as follows:-
(a) When the rising edge of the marker appears on the grid a positive voltage wave travels down the network. Since the line is terminated in a resistive load equal to its characteristic impedance no reflection occurs.
(b) When the falling edge of the marker appears on the grid a negative voltage wave travels down the network. Again, there is no reflection because the line is correctly terminated.

## The Suppression Network

500. The action of this network is the same as that of the height marker delay line. The leading edge of the imput is positive-going so a positive voltage wave travels down the line. The terminating resistor, R.457 (1K.), matches the characteristic impedance of the line so there is no reflection. Twenty microseconds later the negative-going edge of the waveform is applied. A negative voltage wave then travels dom the line, and, due to the correct termination, there is no reflection. The actual delay tapped off depends on how far down the line the grid of the suppressor valve is tapped in.

General Artificial Line Principles and Applications
501. When any voltage clange is applied to an artificial line the effect is the same as if we imagined a voltage wave of the same sense as the applied imput travelling down the line.
502. If the line is terminated in a resistive load equal to the characteristic impedance of the line there will be no reflection. This is the principle of the delay line. The output is taken off at a point on the line that provides the desired delay. The transit time of the line must then be equal to the maximan delsy desired.
503. If the line is short-circuited there will be a reflection in antiphase which will reappear at the input after a delay equal to double the transit time of the line. The positive-going edge of a square wave can thus be used to


MIS - MATCH
$Z>Z_{0}$


FIG.IO3
produce a positive-going pip of any desired duration. The negative-going edge of a square wave will produce a negative-going pip of the same duration. This is the principle of the pulse-forming line as used in the range and height maricer circuit.
504. To prevent reflection fron the input end either the input must provide a correct match itself or a section is added which terainates in a correct match.
505. If the line is open circuited when the wave reaches the open end it will be reflected without phase reversal and will return to the input end in the same phase and will monentarily double the voltage applied at the input end and thus tend to discharge back through the input unless a suitable load is switohed across the line instead. This is the principle of line modulation if no charging choke is used. The charging choke is added to make the charging time long and non-critical while the discharge time is short. The discharge time is equal to double the transit time of the line. In the artificial line used to modulate the magnetron we applied a $-4 K V$. input through the clarging choke. The reflection at the open end without phase reversal result in the dovelopment of a voltage of -8 KV . at the input. Instead of letting the Iine discharge back through the irqut, the spark gap is triggered to comnect a matched load across the line and the line discharges through the correct termination. At the instant the 80 ohm laad is comected across the 80 obm line charged to -8KV the line voltage drops to $-4 K V$. and the other $4 K V$. appears across the matched load. This drop is equivalent to the application of a negative wave of 4 KV . amplitude at the line irput. The wave travels down the line to the opencircuited end where it reflects without phase reversal and canes back to the imput end. Saying that the wave reflects without phase reversal merely means that the flow of energy out of the line continues in the same direction through the load. Since the reflected wave is of the same amplitude as the direct wave the current supplied remains at the same anplitude. When the reflected wave returns to the input end the line is completely discharged and the voltage across both line and load is zerv. The voltage applied to the load consists then of a pulse of amplitude equal to half the voltage to which the line was charged and duration equal to twice the transit time of the line.
506. The characteristic impedance of a loss-free L.C. network line is purely resistive. Its value in olms for a symuetrical line is given by $\frac{L}{C}$ where $L$ is the inductance per section in microhenries and $C$ the capacity per gection in microfarads.
507. The transit time per section for a symuetric line is given in microseconds by $\sqrt{L C}$ where $L$ is in microhenries and $C$ in microfarads.
508. If a modulating line is terminated in a resistive load, $R$, which is less than the characteristic impedance of the line, $Z_{o}$, the voltage appearing across the load will be $\frac{R}{R+Z_{0}} \times V$ where $V$ is the voltage to which the line has $\overline{R+Z_{0}}$
charged. This voltage will continue for double the transit time. There will then be another pulse through the load given by $\frac{R}{R+Z_{0}} \times V_{1}$ where $V_{1}$ is the voltage to which the line was still charged after the first pulse ended. The line then discharges in a succession of bursts of diminishing amplitude but each of the same duration until it is carpletely discharged. It is this type of thing that goes on when the standing pulse appears on the heizht tube when a magnetron is going soft or an insulation breakdown is developing.
509. If a modulating line is terminated in a resistive load, $\mathrm{R}_{*}$, which is greater than the characteristic impedance of the line, $Z_{0}$, the voltage appearing across the load is again $\frac{R}{2_{0}+R} \times V$ where $V$ is the voltage to which the line is charged. As $\frac{R}{Z_{0}+R} \times V$ is greater than $\frac{V}{2}$ where $R$ is greater than $Z_{0}$, the effect of the wave reflected without phase change at the open end is to charge the line in the reverse sense to an amplitude equal to $R-Z_{0} \times V$. We then get a discharge through the load in the opposite sense of amplitude $\frac{R}{Z_{0}+R} \times$ the new charging voltage. Tnis process contlmes in the form of a series of current bursts alternating in sense and diminishing in amplitude until the whole energy initially stored in the line is dissipated. The duration of each burst will again be of duration equal to double the transit time of the line

510. We have traced the development of the timebase, transmitter pulse, recelved signals and markers. We must now consider:-
(a) How the signals and markers are mixed.
(b) How the bright-up waveform is developed and mixed with the signals for applacation to the P.P.I. grid.
(c) How the signals and bright-up are applied to the P.P.I. grid.
(d) Why a second bright-up veveform is required for the P.P.I. and how it is applzed.
(e) How the signals and markers are applied to the height tube.
(f) How the height tube flyback-blackout is developed.
(g) How the height tube vertical shift voltage is developed.
511. The circuits involved in the functions tabulated above are distributed as tabulated below. The najor carcuit details are show in fig. 104.

Stage	Function Unit	Valves
1. Rx Output Valve	Develops output consisting of: noise, suppression break, pos-itive-going signala at p.r.f. of 670 , and heading or track marker at p.r.f. equal to r.p.s. of scanner, across anode load, R. 451 (1K.)   Rx chassis of $\mathrm{Rx}-\mathrm{T}$ unit	$\text { V. } 8 \text { (VR.53) }$
2. Rx-Timing unit Mixer and Diode D.C. Restorer	Delivers positive-going output at cathode ancluajing nolse, suppression break, positivegoing signals, heading or track marker and range marker. Appears at slate Pye plug on Rx-Timing unit.   Rx-Timing   Unit	$\begin{aligned} & \text { V. } 411 \text { (VR. } 65 \text { ) } \\ & \text { Half of V. } 410 \\ & \text { (VR.54) } \end{aligned}$
3. (a) Bright-up   M. V.   (b) Square-Wave   D.C. Restorer,   (c) Sewtooth cutter,   (d) Bright-up ampituace liniiter.	To develop bright-up square W.F.G. wave of duration equal to part of of scan occurring after the Tx pulse.	$\begin{aligned} & \text { V. } 506, \mathrm{~V} .507 \\ & \text { (V. } 65 \text { ) } \\ & \text { Pt. of V. } 509 \\ & \text { (VR. } 54 \text { ) Pt. of } \\ & \text { V. } 510 \text { (VR. } 54 \text { ) } \\ & \text { Pt. of V. } 5 \text { (VR. } 54 \end{aligned}$
4. Buffex Cathode Follower	Isolates P.P.I. output W.F.G. carcuits from Helght Tube output curcuits. Synthesis listed in (2) crosses from slate Pye on W.F.G. to red Pye via C. 540 for application at orange Pye on indrator 184 . Same synthesis passes through V. 512 to V. 508 grid.	V. 512 (VR.65)
5. W.F.G. Mixer	Mixes bright-up M. V. output W.F.G. with input to grid from V512 cathode and delivers complete muxed signals, markers, etc. plus bright-up, from its cathode to the black fye on W.F.G. for transfer to black Pye on indicator 184.	V. 508 (VR.65)
6. Video Amplifıer	Amplifies maxed signals,   Indicator warkers and bright-up and delivers output at anode as or 184 A positive-going signal for	$\begin{aligned} & \text { V. } 16 \text { (RPU) } \\ & \text { V. } 815 \text { (Gramco) } \\ & \text { VR. } 91 \text { in both } \\ & \text { models } \end{aligned}$


Stage	Function	Unit	Valve
6. Video Ampflr. (contd.)	as a "gate" which can be used to cut either "tops" or "bottoms" according to setting of contrast control.		
7. Phantastron	In addation to its functions in the timebase carcuit, it provides a second bright-up waveform applied to P.P.I. cathod*	Indicator   184 or 184 A	$\begin{aligned} & \text { V. } 2 \text { (RPU) } \\ & \text { V. } 801 \text { (Granco) } \\ & \text { VR. } 91 \text { in } \\ & \text { both models } \end{aligned}$
8. Phantastron Bright-up Diode	Limits amplituae of phantastron bright-up.	Indicator 184 or 184 A	$\begin{aligned} & \text { V. } 15 \text { (RFU) } \\ & \text { VR. } 92 \\ & \text { V. } 814 \text { (Gramco) } \end{aligned}$
9. P.P.I. D.C.Restorer	D.C. restores input on P.P.I. gria,	Indicator   184 or 184A	$\begin{aligned} & \text { V. } 17 \text { (RPU) } \\ & \text { VR. } 78 \\ & \text { V. } 816 \text { (Gramco) } \end{aligned}$
10. Height Tube Paraphase Amplifier	Provides push-pull input to height tube Y-plates. Height marker is applied to grid of valve feeding right Y-plate via yellow Pye, and signal - range and heading marker are applied to grid of valve feeding left $Y$-plate.	Indicator 184 or 184A	$\begin{aligned} & \text { V. } 10 \text { \& V13(RF } \\ & \text { V809 \& V811 } \\ & \text { (Gramco) } \\ & \text { VR. } 65^{\prime} \text { s in } \\ & \text { both models. } \end{aligned}$
11. Height Tube Amplifier D.C.Restorers	Restore inputs to grids positively with respect to a constant D.C. level to keep D. L. level at anodes constant as range changes.	$\begin{aligned} & \text { Indicator } \\ & 184 \text { or } \\ & 104 \mathrm{~A} \end{aligned}$	V11 \&V12 (RPU)   V810 \& V812   (Gramoo)   VR. 92 's in   both models.
12. Height Tube Blackout Circuit	Differentiates sawtooth to produce square wave which carries height tube grid below threshold level during flyback period.	$\begin{aligned} & \text { Indicator } \\ & 184 \text { or } \\ & 184 \mathrm{~A} \end{aligned}$	C26 (.0001   R. 50 (100K)   in RPU sets.   c. $838 \& 839$   ( 50 pf .) in      R. 868 (100K)   in Gramco. sets.
13. Height Tube D.C. Restorer	Negatavely D.C. restores blackout waveform with respect to D.C. level set by brilliance control to blackout the flyback.	$\begin{aligned} & \text { Indicator } \\ & 184 \text { or } \\ & 184 \mathrm{~A} \end{aligned}$	V. 14 (RPU)   V. 813 (Gramco VR. 78 in both sets
14. The F.P.I.	Provides main display	$\begin{aligned} & \text { Indicator } \\ & 184 \text { or } \\ & 184 \mathrm{~A} \end{aligned}$	VCR series
15. The Height Tube	Provices display for height finding, beacon work and monitoring	1	VCR 139 series
16. Herght Tube Shift Cirauit	Permits depression of electron bean to bring only wanted second half of scan on the tube.	$\begin{array}{ll} \text { Indicator } & \mathrm{V} \\ 184 \text { or } & \mathrm{R} \\ 184 \mathrm{~A} & \mathrm{~V} \\ \hline \end{array}$	$\begin{aligned} & \text { VR12, R55, } \\ & \text { R56 (RPU) } \\ & \text { VR814, R874 } \\ & \text { R875 (Gramco) } \end{aligned}$

## Receiver Output Valve.

512. This stage bas been discussed in dealing with the Mark IIC and Mark IIIA receivers. In both cases the signals on the grid are negative-going and the heading marker input is a negative-going waveform applied to the suppressor. The output developed across R.451, the 1 K . anode load, consists of positive-going signals at a p.r.f. of 670, and a positive-going heading or track marker with a p.r.f. equal to the r.p.s. of the scanner. The Narik IIIA circuit omits the I.F. choke on the anode and uses less elaborate sareen ieroupling as a cathode follower stage is introduced between the detector and the
513. When the positive-going range marker appears on V. 409 grid the valve goes into conduction and the cathode potential rises about 8 volts. Both ends of R. 451 are then carried up together and recelver output and range marker are mixed on R.450 (30K). The mixed output is applied via C.442 (.023) to the cathode of the D.C. restorer diode which is half of the VR.54, V.410. The other half of V. 410 keeps the suppressor of the receiver output valve from swinging positive.

## The D.C. Restorer.

514. R. 461 ( $1 \mathrm{M}_{\mathrm{o}}$ ) and R. 462 ( 4.7 K .) bridge 2 n the anode of V .410 restoring section at about 2 V , positive to earth. The cathode is returned through R .453 (1.M) to the negative bias line of around - 7.5V. The diode is, therefore, in steady conduction and the cathode will sit at around $+2 V$ when no signala are passing through C.442 during the suppression pericd. Any incoming signals will cause positive swings from the +2 V . base level. If the negative-going black-out range marker is applied its amplitude is sufficient to give a brief depression of the cathode. The normal range marker will give positive swing of about 7-8 volts. Peak signals and the heading or track marker will give a positive swing of about $15-16$ volts.

The Receiver-Timing Unit Mixer, V.411.
515. The grid of this stage is tied to the cathode of the D.C. restorer through a 1 K . grid stopper so sits at the steady D.C. level of about +2V. fixed by the diode. This serves to keep a steady current through the 680 ohm oathode load, R.467, which fixes the D.C. level of the cathode at 5 to 6 volts. Positive-going signals and markers on the grid swing the cathode positive from this level through about $85-90 \%$ of the input voltage. The black-out range marker will, of course, swing the cathode negative to its D.C. level. The output from V. 411 cathode containing arppression break, noise, signals, heading or track marker, and the range marker, is taken to the slate Pye plug on the panel of the receiver-timing unit. Thence it is taken to the slate Pye plug on the waveform generator panel.

## The Bright-Up Requirements.

516. Before we can follow up the mixed signals we have delivered at the slate Pye plug on the W.F.G. panel we must stuay the development of the brightup waveform which is to be mixed with them in the next mixing stage.
517. The bright-up waveform as developed by the bright-up multivibrator was designed for use in the indicator 162 and its predecessors. These indicators used a diametrical scan. The transmitter fired at approximately the centre of the sawtooth as discussed in Chapter 5. Echoes were only to appear on the second half of the scan as the C.R.'I. spot moved from the tube centre to the circumference. A waveform was therefore required for mixing with the signals which would carry the P.P.I. grid up as the scan moved from the centre to the circumference and drop it back durang the flyback and the first half of the subsequent swing. The amplitude of this positive-going bright-up square wave had to be guch that it lef't the C.R.T. grid just below the threshold for all but the peaks of the superimposed valve noise. Signals or markers stronger than noise would then carry the grid above the threshold level and cause brightening of the display. When the square wave terminated at the end of the scan the P.P.I. grid would fall back to a level so low that no noise or long range signals could possibly appear in the flyback or on the first half of the subsequent sweep. These ideas are portrayed in fig.106. (a) and (b). With the introduction of the indicator 184, and a scan that comences from the tube centre the bright-up portion of the waveforn can still serve to brighten up the radial scan and to black-out the flyback and waiting period, Difficulties arise, however, because we do not want the scan to stert when the transmitter fires but when the height marker forns somewhat later. At the same time, we need the saine bright-up wavaform to brighten up the Fishponil scan which is a diametrical scan. On the Fishpond display we want the bright-up to coumence when the transmitter fires. He are thus faced with two required starting points. A comproinise has, been


FIG. 106
effected by developing the bright-up waveform to meet the Fishpond requirements and corabining a subsidiary bright-up waveform with it for the P.P.I. The ideas involved in this compromise can be appreciated from fig.106. (d), (f), (g), (h), and (i). Our study of bright-up circuits for Fishpond and the Indicator 184 P.P.I. then include the development of the in.F.G. bright-up waveform shown in fig. 106 (e) or (g) and the phantastron bright-up waveform shown in fig. 106(h).

Considerations in the Design of the W.F.G. Bright-up Circuit.
518. Before studying the circuit used to produce the W.F.G. bright-up waveform it is desirable to $s$ tudy the implications of the conditions to be fulfilled:-
(a) The amplitude of the bright-up waveform on the C.R.T. grid should remain constant as scans are changed. This makes it desirable that its amplitude should remain constant in the developing circuit.
(b) The leading edge of the bright-up waveform should not commence later than the back edge of the modulator priming pulse on any scan since the Fishpond zero marker occurs at that time. Since the modulator priming pulse is fyxed on the $100 / 40$ scan, this means we must be able to vary the leading edge of the bright-up waveform in the development circuit on this scan to ensure brightening-up of the zero marker. On the 10 mile and 20 mile scans we can move the modulator priming pulse relative to the master sawtooth with the 10 mile and 30 mile zeros, respectively, to shift the zero marker to the beginning of the bright-up pulse.
(c) On all scans the bright-up pulse must end with the end of the working stroke of the scan to avoid appearance of the fiyback. This presupposes some cutting-off waveform that has a straight falling edge coincident with the end of the working atroke of the master sawtooth on all scans. The antiphase square wave at the anode of V.500, the first master multivibrator valve, swings up as the master sawtooth commences and falls as the working stroke ends. This waveform is therefore suitable for a cutting-off waveform.
(d) On all scans it would be desirable to have the bright-up square wave cormence at a tine that coincides with approximately the midale of the sawtooth since this will be the point where the back edge of the modulator priming pulse appears. This suggests that the sawtooth can be used to swing the grid of the first valve of a flip-flop above cut-off at the mid-pint
(a) On all scans it would be desirable to have the bright-up square wave commence at a time that coincides with approximately the midale of the sawtooth since this will be the point where the back edge of the modulator priming puise appears. This suggests that the sawtooth can be used to swing the grid of the first valve of a fli-silop above cut-off at the mid-point of the sawtooth to cut off the second valve and produce the positive going edge of the desired bright-up square wave at the anode of this second stage. This is the principle of the bright-up flip-flop whose circuit is shown in figs. 104 and 107. The sawtooth input condenser is C.524 (.1).
(o) If we are to use the antiphase master square wave as a cutting-off waveform, it must also be applied to the first valve of the bright-up flip-flop to cut the valve off on the grid as the working stroke of the sawtooth ends. The anode rise will then pull the grid of the second valve above cutoff. The fall at this second anode will then terminate the bright-up waveform. The square wave input condenser is C. 523 (. 1).
(f) To have triggering at the required point on the sawtooth the grid cut-off level must be adjustable to the required value. This suggests the use of an arrangement similar to the height and range zeros which can be seen in fig.104. The actual control is VR. 151.
(g) The sawtooth anplitudes are not quite idontical on the different scans so a setting of a control of the type mentioned in (f) will not necessarily apply for more than the input sawtooth.
on which it is adjusted. In aidition to this amplitude difference, we shall be faced with the problem that the input condenser, 0.524 (.1), will not pass the three different velocity master sawtooth waveforms without introducing some distortion. This distortion will be attenuation of the low frequency components. The distortion will result in a reduction of amplitude and in a rounding off of the top of the sawtooth. The 10 mile or 240 microsecond working stroke will be affected least. The 720 and 1200 microsecond working strokes will suffer more. These distortion factors will add to the problem of anitial differences in amplitude. To surnount this problem a deliberate distortion is introduced into the circuit with a variable control. This distortion circuit is designed to work in opposition to the unavoidable distortion in the sawtooth input circuit. Its effect is to cause high frequancy losses so it is most effective on the 10 mile sawtooth input. The components involved are V.R. 500 and C.525.
(h) In the height and range marker flip-flop a limiter valve was provided to keep the timing exponential from carrying the Pirst grid up to values which would result in prolonged flows of grid current. A similar limiter should obviously be provided to keep the sawtooth from carrying $\nabla .506$ grid into heavy grid current. This sawtooth top-cutter is V.510(a), half of the VR. 54 , V. 510.
To fulfil the condition of constant output amplitude V. 507 grid should swing through a fixed cut-off level and to a fixed peak level. The fixed peak level calls for an amplitude limiter diode. This is V. 51 O(b), the other half of the VR. 54, V.510. which is connected to $V .507$ grid. The fixed cut-off requires a fixed peak current through $V .506$ in its conducting state, through the common cathode load, R. 568 (7.5K.). This has already been arranged by means of the sawtooth top-cutter diode section.

## Operation of the Bright-Up Flip-Flop, V.506. V.507.

519. The major points in the operation of this circuit have already been implied in the preceding paragraph. The sawtooth input via C. 524 swings the grid of V. 506 up and down. The grid out-off of V. 506 can be varied by means of the preset, VR.151, which operates in the same way as the height and range zeros. By means of VR. 151, V. 506 grid cut-off can be so set that the 50 mile sawtooth input from T. 501 carries V. 506 into conduction to cut V. 507 off and produce the leading edge of the bright-up pulse at a desired point on the Fishpond scan. By means of VR. 500 the 10 mile sawtooth input can be so distorted as to cause triggering at the same point on the scan. This adjustment may upset the first one. By making a series of alternate adjustments with these controls on their respective scans it can be arranged to have the leading edge of the bright-up commence at approximately the same point on all three scans.
520. The diode section, V.510(a), goes into conduction when the sawtooth carries its anode above the common cathode potential set by VR.151. This serves to limit the rise of V. 506 grid and the current passed by V. 506.

[^0]522. The diode section V.510(b) limits the maximum grid potential of V. 507 and hence the auplitude of the bright-up signal wave applied to V. 508 grid where the signals are superimposed on the constant amplitude bright-up.

## The Bright-up Controls

523. The control VR. 151 (a screw-driven preset on the front of the switch unit) which we shall call the switch unit bright-up control, sets the D.C. level of 7.507 grid and hence the current passed by $V .507$ through the common cathode load, R.578. This current fixes the common cathode potential when V. 506 is cut-ofe and V. 507 is conducting. This, in turn, fixes the level to which $V .506$ grid must be carried by the sawtooth to bring it into condution
524. The sawtooth input is obtained from the single-ended secondary winding of the saintooth output transfonmer. The same sawtooth is applied to the grid of the transinitter-timing valve, V.505. The amplitude is about 150 V . and the working stroke is positive-going. This samtooth voltage is appliti via C. 52.4 (.1) and developed across the leak, R. 559 (120K.). The low frequency components are attentuated in $\mathrm{C} .524_{4}$ and the sawtooth output appearing across the leak is therefore sconewhat distorted and reduced in amplitude. This distortion is most pronounced on the two slower scan inputs. In parallel with the leak we have VR. 500, R592 and C.525. VR. 500 is a screw-driver preset on the front of the W. F. G. panel which we shall call the W.F.G. bright-uno control. The voltage appearing across C. 525 wo apply, via R. 563 , and R. 562 to the grid stopper, R. 564 . Now VR. 500 and C. 525 form an integrating circuit. VR. 500 offors equal impedance to all frequency components in the distorted sawtooth. C. 525 offers an impedance that varies inversely as the frequency. The output obtained from C. 525 will then be greater at the low froquency end and lower at the high frequency end of the spectrm. The distortion thus produced will represent both a reduction in amplitude (due to the attentuation in VR. 500 which will be independent of frequency), and also a change in shape due to the frequency discrimination of C.525. The main effects will be to (i) reduce the slope and (ii) to bring down the output amplitude of the 10 mile sawtooth to a value more nearly comparable with that of the other two. As the W. F.G. bright-up control is most effective on the 10 mile sawtooth input it is used to make adjustments on this scan.
525. The objective $1 s$ to find adjustments of the two presets which will enable the distorted sawtooth voltages impressed on V. 506 grid to carry the grid above cutmoff at the same point in eacin scan on the Fishpond display. This point will be the zero marker which will be about $\frac{1}{2}$ " from the centre on the $100 / 40$ scan position. By means of the 10 mile zero and 30 mile zero the zero marker on the 10 and 30 mile scans can be adjusted to about the same diameter. The switoh unit bright-up control shifts the cut-off level to which the sawtooth inputs must raise V. 506 grad to produce the leading edge of the bright-up waveform. This control is used to set up the leading edge of the bright-up waveform so as to ensure brightening up of the Fishpond zero marker on the $100 / 40$ scan. It may not be possible to actually retard the bright-up sufficiently to prevent it beginning slightly too soon. If this occurs, no harm is done. What is necessary is that the bright-up does not begin too late. Full details of the setting up procedure are given in Chapter 10.
526. The W.F.G. bright-up control is used with the 10 mile sawtooth imput to so distort the sawtooth as to carry V. 506 grid above cut-off when the Fishpond scan is again about $\frac{1}{2}$ " from the centre. The distortion introduced on the 50 mile sawtooth input by varying this control may alter the required setting of the switch unit control. However, by alternating between the two controls, a few adjustments will bring the leading edge of the bright-up to approximately the same point in the Fishpond scan for all three sawtooth inputs. The W.F.G. control will only be used with the 10 mile sawtooth input and the switch unit control with the 50 mile sawtooth input.
527. If the W.F.G. 43 is used to provide an.independent bright-up for Fishpond, both the W.F.G. and switah unit bright-up controls should be set fully anticlockwise. The same settings apply when the indicator 184 is used without Fishpona.

The Bright-up Flip-Flop Waveforms.
528. The waveform at the junction of R. 560 and R. 561 may logically be expected to be the square wave input from V. 500 anocie negatively D.C. restored by V. 509 (b) about the potential of the common diode cathode line. The
negative phase of the square wave is differentiated to some extent in the master multivibrator and it also has different amplitudes on different scans. The inclusion of the diode $V .509$ (b) ensures that the upswings of the square wave bring V. 506 grid up to approximately the same level on all scans to provide a comon starting level for the sawtootis rise.
529. The waveform across C. 525 will show the attentuation introduced by VR. 500 and a measure of shape distortion.
530. The waveform or V.510(a) anode will show the top-cutting of the gawtooth by V.510(a) when the anode is carried above the potential of the common diode cathode line
531. The waveform on V. 506 grad will be the composite effect of (i) the tapped down square wave whose armplatude is dropped across R. 561 , (ii) the chopped-off sawtooth, and (iii) the effect of the condenser, C.528. Fig. 107 (e) and (f) shown the idealised waveform and the actual waveform. 0.528 was introduced for the early indicators. The sawtooth passed via the magslip and indicator transformers to the P.P.I. experiences a slight delay relative to the sawtooth fed directly from T. 501 to the bright-up flip-flop. Without C. 528 in the bright-up carcuit the bright-up tended to temminate before the scan was completed on the P.P.I. The presence of the condenser counteracts the shunting effect of the stray capacities at V. 506 grid which introduces high frequency losses that round off the grid waveform. The result is to steepen the waveform edges which serves to bring the valve into conduction earlier and also to hold it in conduction longer.
532. To appreciate the reason for the step in the waveform it is necessary to note the effects of the square wave and the sawtooth on V. 509 (b) and V. 510(a). When the working stroke terminates and the square wave collapses the tapped down drop cuts off V. 506 grid. Capacitive effects round off the sharp drop. V.509(b) will, of course, be cut off as the anode is carried below the cathode by the input armplitude. V.510(a) will, however, remain in conduction because the sawtooth output from C. 525 applien across R. 563 and V. 510(a) will be of sufficient araplituie to override the small effect of the square wave after tapping down across, both R. 561 and R. 562 . Hence, V. 506 grid sits at a steady level determined by V. 510 (a) until the flyback of the sawtooth carries V. 510 (a) anode below the cormon cathoie potential. The diode then cuts off and V. 506 grid is carried down with the flyback of the sawtooth output from C. 525 until the flyback ends.
533. At the commencement of the next working stroke the square wave swings up the junction of R. 560 and R. 561 from the level to which it climbed by differentiation. If V.509(b) were not present, the rise would be through the upswing from the differentiated level mich varies with the scan. This would mean that the Junction of R. 560 and R. 561 would rise to different levels on different scans. With the diode in the rise will be limited at the point fixed when the junction of K .560 and R .561 reaches the level set by the diode. The sharp rise is rounded off on V. 506 grid waveform due to capacitive effects
534. After the initial sharp rise due to the square wave the rising sawtooth carries V. 506 grid up again until cut-off is passed when the next bright-up pulse begins.
535. The waveform on V. 507 anode is weirdly distorted because of the time constants used in the D.C. couplinu to V. 508 grid. These time constants are devised to permit D.C. coupling which will switch V. 508 grid between two fixed levels with the bright-up square wave without distorting the square wave applied to V. 508 grid. The fundamental idea is to antucipate unavoidable high frequency losses by introducing a capacitive path across the bridging resistor which will discriminate against the low frequency components. The input to V. 508 grid then has an excess of high frequency components which are shunted out in the gtray capecity at the grid and the parallel path to V. 512 cathode. By suitable coice of components a good bright-up square wave is obtained at V. 508 grid on all scans.


536. The next stage in the synthesis of output for ultimate application to the P.P.I. grid is the combination of the bright-up waveform with the mixed output from the receiver-timing mit mixer. This aixing of the bright up square wave with the result of the previous mixing is carried out in V. 508, the waveform generator mixer. The relation of $V .508$ to the buffer stage, V. 512, and the video anplifier in the indicator 184 is shown in fig. 104 The component numbering on the video amplifier stage applies to the RPU indicator.
537. The input at the slate fye rlug on the panel of the W.F.G. includes valve nozse, suppression break, signals, heading or track marker anì range marker. All these signals are posituve-going with the possible exception of the range marker which may be negatave-going when a blackout marker is desired. This input is coupled to the red Fye plug via C. 540 (.1) and R. 590 (1i..). From the red Fye plug this output is passed to the red Pye on Lucero where it is cross-connected again to an orange Pye. From the Lucero orange lye it is conveyed to the orange rye of the indicator 184 for application to the grid of one of the height tube paraphase amplifiers. The bright-up waveform is not wanted on the height tube as it would cause a step on the trace. V. 512 serves as a buffer between the stages feeding the bright-up waveform to the P.P.I., and the height tube paraphase amplifier. The output from V. 512 is taken of $f$ at the cathode and developed across R. 578 for application to V. 508 grid. The bright-up, waveform is D.C. coupled to V. 508 grid and swings the grid between two levels fixed by the high and the low phases, V. 512 cathode will also swing with the bright-up waveforv but this signal cannot couple back to the grid and thence to the slate and red Pye plugs. The bright-up waveform is thus isolated by V. 512 while the signal input is passed on for mixang with the brightup wavefors.a.

## The Waveform Generator Mixer and Video Amplifier.

538. These two stages must be considered together as the cathodes are D.C. coupled by the black Fye cable from the W.F.G. to the indicator 184. The effective common cathode load is the equivalent resistance of the two cathode loads in parallel. The total cathode current drawn by the two valves will depend on their grid potentials. The grid potential of V. 508 is swung between two levels fixed by the positive and negative phases of the bright-up square wave. The grid potential of the video amplifier can be varied over a considerabl range with the contrast control. When the contrast is fully counter-clockwise the video grid has its maximum posituve value and the valve then passes the maximum current through the common cathocie load. V. 508 cathode is then at its highest level and V. 508 current at its minimun level. Signals on top of the bright-up pulse will have minimum effect on the current passed by $V .508$ and so on the common cathode potential. Under these conditions only the top of the bright-up waveform and the superimposed signals will make V. 508 conduct. This conduction means an increase in the current through the common cathode load and voltage rise of the common cathodes. With the video grid stationary the rise of the cathode is equivalent to a negative signal on the grid and therefore results in a positive output at the video enode.
539. As the contrast control is taken clockwise the grid potential of the video amplifier is reduced. The valve then takes less current through the common cathode load and the common cathode potential falls. Hence a greater propartion of the bright-up pulse is passed by V. 508 and the amplitude of the bright-up waveform at the video anoie increases. Sance the video amplifier is now taking less current the same signals on V. 508 gria are causing a greater change at the common cathode and nence a greater output at the video amplifier.

## Setting of Contrast Control Required for Fishpond.

540. For the operation of Fishpond without an independent bright-up supply of its own, it is necessary that the contrast be carried far enough clockwise to permit adequate bright-up square wave to pass through V. 508 and appear at the black Pye output plug. A parallel output carries the mixed bright-up and signals to the black Pye on tie Fishpona panel. Thence it is condenser coupled to the cathode of a signal amplifier similar in design to the video amplifier
stage. The positive-going output is applied to the grid of the Fishpond P.P.I. which uses a diametrical scan. If there is an inadequate brigght-up square wave passed to Fishpond the scan and the flyback will break through and make the display unreadable. Until such time as an independent bright-up unit becomes available for Fishpond the minimum contrast setting is detemaned by the bright-up square wave amplitude required to make Fishpond usable.

## The Contrast Control as a Top-Cutter and Amplitude Limiter.

541. As the clockwise rotation of the contrast control is increased and the video current decreases while V. 508 current increases, we presentiy reach the point mhere the peak swings at the comnon cathode due to signals on top of the brignt-up at V. 508 grid, will carry the video cathode up above the grid potential by the grid base. That is, the signal input is cutting the video amplifier off on the grid although applied to the cathode. If the contrast control is taken still further clockwise, thus lowering the video grid potential still more, the tops of the signals will be cut off. If a mixture of weak and strong signals is being received it is possible to so set the contrast control that the tops of the strong signals are cut off on the grid and the output at the anode will show equal amplitudes for the strong and weak signals. Used in this way the contrast control becomes an amplitude limiter or top-cutter. There may be some advantage in using suoh an advanced contrast setting when it is desired to make a target area show up as a solid mass in order to get an idea of target outline rather than target detail. It must be borne in mind that with this setting of the contrast control all the receiver noise and general ground return is being passed through the video amplifier and impressed on the P.P.I. grid. By a suitable setting of the brilliance control it is possible to cut away sone of this noise and general grourn return and leave primarily the mass of signals reduced more or less to a common amolitude and capable of producing only a bright blotch. Such a use of the contrast control can be used to get a mass response but cannot hope to give any details of a target area.
542. A high gain setting and well advanced contrast may also be used to get sharp land-water definition. With high gain and top-cutting, the land responses will give a high intensity against which the weak water responses will show as a relatively blank area on the P.P.I. display.

Contrast Setting for Maximum Target Detail.
543. If target detail is wanted, i.e., if strong signals are to show up with greater brightness than weak ones in order to differentiate between, say, densely built-up factory areas and suburban areas, we want the signal anpliture in the video amplifier output to bear a reasonable relation to the strength of the relative responses. This condition can probably be best fulfilled if the contrast control is so set that normal good signals just carry the video stage to cut-off. If the output at the video anode is scoped as the contrast control is carried clockwise the amplituie of a good signal or of the range marker will be seen to increase until the point is reached where topoutting begins. Further clockwise rotation of the contrast control will result in further amplification of the bright-up and superimposed noise and an actual reduction of the range marker or signal acplitude. The setting of the contrast control to achieve maximun contrast between strong and weak signals is then at the point where the normal good signal is just carrying the video stage to the cut-off point. This setting can be approximated on the bench by observing the output at the video anode on the monitor 28. Alternatively, the range marker dot may be observed on the P.P.I. wi th the scanner stationary. Gain, contrast and brilliance should furst be taken fully counterclockwise. The briliance is first brought up to show the scan and then turned back about 4 notches from the point where the scan fades out. If the contrast is now taken clockwise to the point where the radial scan appears and is then taken back about 1 notch from the point where the scan fades out, the position for maximum detail is approximately located.
544. If the waveform on the P.P.I. grid or video anode is examined it will show a sharp initial rise and then a gradual climb to a peak value. This distortion results from the fact that decoupling condenser for the video anode H.T. supply does not offer negligible mpedance to the low frequency components in the square wave. This can be seen by examining the waveform on the condenser. This distortion is not actually a disadvantage as it helps to minimise the effect on the display of the strong, close-in, general ground return. The 1 mh . choke is the standard video amplifier method of counteracting the shunting effect of stray capacity at the high frequency end of the band winich the stage is required to amplify.

## The P.P.I. D.C. Restorer.

545. When a measure of bright-up square wave is included in the video output applied to the P.P.I. grid the mean D.C. level of the P.P.I. grid will vary with the range in use. Thas follows from the fact that the P.P.I. grid mean level will be such that the area of the input waveform above the mean level will be equal to area below it. As the range drminishes the length of the positivegoing bright-up square wave shortens. Hence the mean level of the P.P.I. grid will tend to fall as the shorter scans are brought into use. This means that the setting of the brilliance control should be altered as the scan is changed.
546. To ellmanate the need for resetting the brilliance control as the scan is changed a D.C. restoration stage 15 conneoted to the P.P.I. grid. Details are shown in fig. 104. The anode of the VR. 78 restorer is tied to the slider of the brilliance control. The cathode of the restorer is returned through 1M. to the foot of the brilliance control. As the anode is thus held positive to the cathode the valve will conduct. The bleeder current therefore divides at the foot of the brillzance control. Part flows through the 1M. and the diode to the brilliance slider where it rejoins the current flowing straight up the bleeder. The other part flows through the brilliance potentiometer. The impedance of the conducting diode is low an comparison wh th that of the 1 M . cathode resistor so the diode cathode and anode will be approximately at the same potential, i.e., at the potential of the brilliance slider. As the P.P.I. gril is thed to the restorer cathode it will likewise sit at approxinately the brilliance slider potential.
547. When the bright-up square wave $2 s$ applied to the P.P.I. grid it is also applied to the restorer cathode. This tends to cut the diode off so the diode current switches into the bleeder. As more current now flows through the bleeder the potential at the brilliance slider rises and raises the potential of the diode anode. The effect of the input signal is then to develop a voltage across the 1M. cathode load winch serves to ralse the potential of the diode cathode and anode together. This can be confirmed by scoping on the brilliance slider with a suitable high voltage condenser in the scope lead. At the end of the signals and bright-up pulse the P.P.I. grid and diode cathode are carried down and the diode current goes back to its peak value. The brilliance slider potential then falls back to its base level which is the on all scans so the same brilliance setting will result in the same intensity for a given signal amplitule regardless of the scan in use.

The Phantastron Bright-Up.
548. It was pointed out in para, 517 that the W.F.G. bright-up waveform could not simultaneously meet the Fishpond requirement of commencement on the back edge of the modulator primnng pulse, and the indicator 184 requirement of starting when the elght marker forms. It was indicated that a subsidiary bright-up waveform was taken from the phantastron cathode and applied to the P.P.I. cathode. This input to the P.P.I. we shall call the phantastron bright-up. The effect of the two bright-up waveforms was 2llustrated in the waveform series shown in fig. 106.
549. The relevant circuit details are shown in fig.104. The pliantastron develops a negative-going square wave at its cathode commencing when the height marker forms and contmung for about 1000 macroseconds. Details of the


WITH CONTRAST CONTROL
FULLY ANTI-CLOCKWISE

WITH CONTRAST CONTROL
in Normal settinc

WITH CONTRAST CONTROL FULLY CLOCKWISE


唯名


VIG GRID BIAS AT MAX
COMMON CATHODE POTENTIAL at hichest level - hence V508 PASSING MINIMUM CURRENT-MINIMUM AMPLITUDE OF BRIGHT-UP FED TO VIG CATHODE

NORMAL SETTING
FURTHER CLOCKWISE
ROTATION WILL CAUSE
TOP CUTTING OF SIGNALS

AS CONTROL TURNED CLOCKWISE INCREASED TOP CUTTING OCCURS UNTIL EVENTUALLY VIG IS COMPLETELY CUT-OFF
the phantastron operation are discussed in paras. 158-162. The waveform on the cathode has an amplitude of around 60 V . This is tapped down across 47 K . in series with 560K. and applied to the cathode of a diode limiter. The tapping arrangement holds the diode cathode at a D.C. level of about +5 V . then the negative-going signal appears the diode then limits the amplitude of the swing on cathode to about - 5V. which is applied to the P.F.I. cathode. Driving the P.P.I. cathode negative has the same etfeet as driving the grid positive, l.e., to increase emission. As shown in fig. 106, the setting of the brilliance control must be such that the added effect of the two bright-up waveforms holds the P.P.I. grid just short of the threshold of illumination. Superimposed signals and markers will be able to carry the grid above the threshold only while both bright-up waveforms are operative. In this way there is no possibility of valve noise causing a braghtened up spot in the centre of the tube during the waiting period between the instant the transmitter fires and the instant the helght marier forms. On the other hand, the fall of the P.P.I. gria when the W.F.G. bright-up ends will cause a surficzently large drop to prevent the flyback showing up on the tube. This assumes that the contrast is set sufficiently clockwise to permit the passage of adequate bright-up square wave through V. 508.

## The Height Tube Paraphase Amplifier Stage.

550. (a) The relationship of this stage to the mixing and output circuits generally is shown in fig. 104.
(b) Waveforms are shown in fig. 109.
551. From fig. $10 / 4$ we see that the height marker is taken from the white Pye plug on the receiver-timing untt to the corresponding plug on the Lucero unit where it cross-connects to the yellow Fye plug. Thence it is taken to the yellow Fye on the indicator 184, ana applied to the grid of the one amplifier. The mixed output of the receiver-timing mixer stage is applied to the slate Pye plug on the W.F.G. There it corss-connects to the red Pye and passes to the red Pye on Lucero where it cross-connects to the orange Pye. Thence it passes to the orange Pye on the indicator 184 and the grid of the other amplifier
552. Examination of the amplifier circuit in fig. 109 shows the following sagnificant points:-
(a) The 2K. cathode loads are strapped by a 270 ohm resistor.
(b) The 270K, grid leaks are returned to the decoupled junction of a bleeder across $\mathrm{H} . \mathrm{T}$. of 51 OK . and 47 K . in series. This serves to give the grads a D.C. potential of around 27 V .
(c) The grids are also returned to the same decoupled tapping poant through diodes.
(d) Equal anode loads are used and the circuit is completely symane trical.
(e) The anodes are D.C. coupled to the Y-plate of the height tube.
(f) The 270 ohm cathode strapping resistor is shunted by a . 0015 condenser.
(g) $1 \frac{1}{2}$ metre chokes are anserted in the grid infuts.
553. As the amplifier grads are returned to a positive potential the valves are in steady current which gives the cathodes a D.C. potential of about +29 V . There is therefore a standing negative bias of about 2 V despite the fact that the grids are tied to a positive potential.
554. Let us assume for the moment that only the yellow imput is connected. The only input to the amplifier will then be the height marker. The positivegoing marker swings the grid up so the valve passes more current. This will cause the anode potential to fall. At the same time the cathode potential will rise. Of this rise, a proportion given by $\frac{2000}{2270}$ or about $88 \%$ is applied to the other cathode. Since the secona grid is $\overline{\text { Stationary this rise }}$ represents the equivalent of a negative input on the grid. The result of the heaht marker input is then a simultaneous fall at the anode of the valve to which it is applied and a rise at the anode of the other valve. The net imput signal on the furst grid is the difference between the actual input and the cathode rise. The 270 ohm resistor is chosen to make this effective imput approximately equal to the imput on the second cathode. In this way one signal can be used to produce a push-pull output witich is reasomably well balanced. By applying the negative-going output to the
right signal plate and the posituve-going one to the left signal plate the electron beam will be reflected to the left to give the height marker blip as a deflection of the trace to the lef't.
555. The input on the other grid includes the valve noise, suppression break, range marker, signals, and heading or track marker. These signals will operate in precisely the same way as the heaght marker to give a push-pull output. The phase of this output will, of course, be orposite to that of the height marker so the deflections will be to the raght. If the blackout range marker is used, it will appear on the left.
556. The absence of noise during the 20 microsecond suppression breat will result in a clear trace for the suppression interval. As the suppression is reduced the transmitter pulse breakthrough will show at the end of the suppression period. It must not be assumed thet the end of this breakthrough represents zero time. The width of the transmitter breakthrough pulse will depend on how much signal is generated in the magnetron due to overswinging of the pulse transformer despite the diode damping and how much this magnetron output shocks the tuned circuits of the head amplifier and I.F. strip. Any atterpt to set up the height zero by referring to the back edge of the transmitter breakthrough is therefore extremely likely to result in anything but a reasonable accurate adjus tment.
557. The centring of the height tube trace is entirely dependent on the balancing of the D.C. anode fotentzals of the two valves since D.C. coupling to the signal plates is employed. Any change in the values of the resistors used as anode and cathode loads or any change in the emission of either valve will therefore result in a lateral shifting of the trace.
558. The 1.5 metre chokes inserted in the grid inputs are to block any signal from the Lucero transmitter pulses which may be picked up where the connections are made from one Pye plug to another inside the Lucero unit.
559. The . 0015 condenser across the 270 ohm cathode strapping resistor is included to compensate for shunting of the high frequency components in the pulse edges by stray capacity. The high frequency components will find a lower impedance path across the condenser than the low frequency components. This discrimination tends to balance out the greater shunting of the high frequency components by stray capacity, ani so results in a better pulse shape.

## The Height Tube D.C. Restorers.

560. Valve noise is applied to the one amplifier grid (except during the suppression period) but very little noise will appear with the height marker. This effect alone would tend to shif't the D.C. level of the one grid to a higher value than that of the other grid. The preserce of all the signals and the headirg marker on the same grid would tend to accentuate this effect. Since the period during which signals are received will vary in length with the scan in use, there would be a tendency for this displaced D.C. level to vary with scan changes. To ensure that the D.C. level of the two grids remains equal and constant the diode restorers are connected across the grid leaks to the decoupled tapping point. All signal and marker inputs will then swing the two grids from the common level which will be independent of the scan in use.

## The Height Tube Black-out Circuit.

561. The height tube scan is obtained by feeding the push-pull master sawtooth output from the centre-tapped secordary of T. 501 in the W.F.G. through an anplifying transformer whose split secondary provides a push-pull output to the time-base plates. As we do not want the flyback on the display some provision is required to carry the grid of the height tube below threshold level during the flyback period.
562. Details of the height tube circuit are shown in fig.110. The sawtooth output from one end of the split secondary of the sawtooth transformer is


VIO GRID


VI3 GRID


VI3 CATHODE


VIO CATHODE



differentiated in the time constant provided by a. .0001 (two 50 pf . in parallel in Gramco units) condenser, C. 26 , ard a 100 K . leak, R. 50 . The output voltage developed across the resistor is applied via a . 01 condenser, C. 27 , to the D.C. restoration circuit of the height tube grid. The mall condenser of the differentiating CR. offers a high irmedance to the low frequency components in the sawtooth. The output across the 100k. leak therefore possesses an appreciable excess of high frequency components since these are passed by the condenser. The result is a squaring off of the sawtooth to give a squarish wave. The positive part of this squarish wave corresponds to the working stroke of the scan and the negative part coincides with the flyback. By negatively restoring this waveform with respect to the height tube grid potential, as fixed by the brilliance control, the negative part can be used to blackout the flyback.
563. The D.C. restoration circuit uses a VR. 78. The cathode is tied to the brilliance slider and the anode is tied to the height tube grid. The brilliance slider is decoupled with respect to the height tube cathode by C .30 (.05). R. 52 ( 47 K ) serves as grid stopper for the height tube. 9.51 ( 2.2 M ) is the leak of the input time constant and $C .27$ (.01) is the condenser.
564. Assuming that we had no blackout input to $C .27$ the diode anode and cathode would be at the brilliance slider potential. The height tube grid would then be at the sane level. When the positive part of the waveform is applied. the effective imput time constant is $\mathrm{C}_{2} 27$, R. 52 , $\mathrm{i}_{6}$. . , 470 microseconds. There will then be considerable differentiation of the positive part of the square wave. The positive voltage developed will appear across R. 52 and the diode in series. As the conducting diode impedance is low in comparison with 47 K . the diode anode and height tube grid will reaain practically stationary at the brilliance slider level. When the scan ends and the falling edge of the input waveform is applied to C.27, the height tube grid and diode anode are then carried down and the flyback is blacked out. As the diode impedance is now infinite the effective imput time constant is C.27, R. 51 (22,000 microseconds). This time constant is so large in comparison with the blackout period that differentiation is negligible and the full flyback is therefore suppressed.

## The Height Tube Vertical Shift

565. As we are only blacking out the height tube flyback the height tube grid is held above the threshold level for the entire scan. For navigation and boabing the transmitter fires at epproximately the centre of the scan. The useful part of the scan is then only the second half following the suppression break. Since the height tube is suall only a portion of the scan can be displayed on it. Wie must then have a vertical shift to perrit setting the usual part of the scan to start at the bottom of the tube. The shift network consists of the shift control, VR. 12, and the resistors R. 55 (470K.) and R. 56 (1. $2 \mathrm{M}_{0}$ ) The slider of VR. 12 is returned to +300 V , while the common point of R. 51 and R. 56 is tapped down on the height tube bleeder. Electrons then flow from the tapping point through $R_{0} 55$ and the one side of VR. 12 to the slider and thence to the 300V. line. A paraliel flow occurs through R. 56 and the other side of VR.12. 'These current flows nust always be such as to develop equal voltage drops in the parallel paths. The magnitude of the current in either path will then vary as the resistance of the path is changed by altering the setting of VR.12. Hence, the voltage drops across R55 and R56 are varied as the setting of VR. 12 is varied. The one I-plate is held above the potential at the junction of R. 58 and R. 59 by the drop across R. 55 , and the other above the same potential by the drop across R.56. By suitably adjusting VR. 12 the lower tiraebase plate is hela sufficiently positive to the upper plate to depress the electron beam so as to bring the suppression break to the bottom of the tube.
566. As was pointed out previously, if the scan-marker switch is set to the $100 / 40$ position the transmitter firing is advanced about 500 microseconds. The suppression break is then carried dow into the depressed part of the scan and the visible part of the scan represents ranges of the order of $40-90$ miles.

## The Height Tube Bleeder Supply

567. The height tube bleeder current is taken from the $-1.8 \% V$. supply in the power unit. In the case of the Mark IIC installation this supply is brought
from the power unit to the tuming unit 207 for the klystron, a crossconnection is made to a parallel plug wich is connected to the indicator to supply the height tube bleeder.
568. In the Mark IIIA installation the -1800V. supply is taken straight from the power unit to the indicator 184.

## The P.P.I. bleeder supply

569. The current for the P.P.I. bleeder is obtained from the - 4 KV power pack in the modulator type 64 . The input is brought from the blue uniplug to one of the blue uniplugs on the indicator which is connected to the bleeder terminus. The other end of the bleeder is returned to earth.
570. A parallel blue output plug is available on the indicator $184+$ from which a $-4 \pi V$. supply is obtained to supply the Fishpond P.P.I. bleeder.

## Purpose of Stabilisation.

571. When an aircraft is flying straight and level the axis of rotation of the scanner is perpendioular to the earth's surface. As the scanner rotates the H.2.S. beam rotates with it. If the airoraft banks the axis of rotation of the scanner is tilted with respect to the earth's surface. The fi.2.S. beam them experiences two sinultaneous displacements - the normal rotation, and a slide in the direction towards which the axis of rotation is diaplaced. This means that the H.2.S. display also alides. This oan be appreciated if we think of the scanner as being stationary when the bank occurs. As the beam slides without rotating a different seotor of the earth's surface is illuminated and indications from other targets or other parts of the same large target, will appear on the scan then occurring. This sliding of the K. 2.S. display during evasive action on a bombing run makes it difficult to bomb accurately with H.2.S. To overcome this difficulty new scanners have been developed which are gyrostabilised against roll. As soon as the soanner platform is displaced from 1 to $1 \frac{1}{2}^{\circ}$ from the horizontal a gyro cones into action to develop a restoring force. This stabilisation remains effeotive for displaoments of up to $30^{\circ}$ to either side. The platform is not stabilisod against "pitch", i.e'., displacement of the scanner's axis of rotation as the aircraft climbs or dives.

Stabilised Scanner Types.
572. The roll-stabilised scanner for use in the H. 2. S. Mark IIIA installation is the soanner Type 71. The one to be used in the H. 2. S. Mark IIC installation is the Type 63. These scanners differ mainly in the type of R.F. feeder emploged and the dimensions of the waveguide radiator. The Type 71, since it uses a wavelength of approximately 3 cms ., uses a waveguide feed. The type 63, which is designed for use with a wavelength of about 9 oms, uses a coaxial feed. The Type 71 gives a beam width of about $3 \frac{1}{2}^{\circ}$ and the Type 63 develops a beam width of about $8 \frac{1}{2}^{\circ}$.

## Major Conponents and their Primary functions.

573. The main parts of the assembly are as follows:- (See fig. 24)
(a) The fixed part of the platform which is rigidly attached to the aircraft frame.
(b) The moving part of the platform which carries the scanner proper, T2R or H.F. box, and gyro control unit.
(c) The gyro control unit which develops the misalignment voltage to operate a motor-generator Type 74.
(d) The motor-generator Type 74 which is mounted on the fixed frame and drives the moving frame.
(e) Balance weights attached to the moving frame to maintain a constant load on the motor.
(f) Junction box 246 and two bulkhead panels mounted on the fixed part of the platform to facilitate cabling connections.

## Accessories Mounted Independent of Platform.

574. (a) An engine-driven vacuum punm which provides the suction employed to operate the gyro control unit.
(b) A D.C. amplifier unit to change the misalignment voltage produced by the gyro control unit into current changes which are applied to the fields of the motor-generator Type 74.


## Principle of Operation

575. Assume that the airoraft is flying straight and level. The moving platform, swivelled on two brass bushes in line with the fore and aft axis of the aircraft, will be horisontal. The axis of rotation of the scanner will then be perpendicular to the fore and aft axis of the aircraft and to the earth's surface. The gyro axis will be horizontal. Rigidly attached to the gyro case is a slab-wound potentiometer. Attached to the gyro is the wiper contact of this potentiometer. The potentioneter winding is centre-tapped to earth. A D.C. voltage of about 60 V . from a power pack in the D.C. amplifier unit is applied to the potentiometer so the ends will be at approximately +30 V . and -30 V . When the moving platform is level there is no relative displacement between the gyro case and the gyro. The wiper contact is then at the earth point of the slab-wound potentiometer. If the airoraft banks the fixed platform moves with the airframe. The moving platform is linked mechanically to the fixed platform so will be displaced with it and therefore will move the gyro mounting. The gyro itself will, however, maintain its axis of rotation horizontal. Hence there is a relative displacement between the gyro itself and the casing. That is, the slab-wound potentioneter moves relative to the stationary wiper contact and the contact is no longer at earth potential. The actual sign of the potential impressed on the contaot will depend on the direction of the roli, i.e., to port or starboard. The magnitude would be determined by amount of roll if no restoring force were brought into play to return the moving platform to the horizontal position.
576. The voltage picked up by the wiper arm is termed the misaligmment voltago. This voltage is taken from the gyro by a screened lead to the D.C. amplifier unit where it is used to alter the currents passed by a cathode-coupled VT60A paraphase amplifier pair. These valves provide the field currents for the split fields of the motor section of the motor-generator type 740 When properly balenced, these field currents will be equal if the misaligrnent voltage is zero. The motor armature will then be stationary. As soon as a displacement of $1-1 \frac{1}{2}^{\circ}$ occurs the misalignment voltage applied to the amplifior unit causes sufficient unbalanoing of these field currents to cause the motor arsature to turn. The motor-generator is mounted on the fired frame but tied through mechanical links to the moving platform. The rotation of the motor armature operates these mechanical links until the moving platform ia again horizontal when the misalignment poltage falls to zero. There is then no unbolancing of the currents applied to the split motor fields and hence no torque on the motor armature which then remains at rest if the bank has been completed. The motor continues to operate as long as there is a misalignment voltage, i.e., as long as there is aircraft roll in either direction. Since banks to opposite sides give misalignment voltages of opposite sign they result in opposite rotations of the motor armature.

## The uisalignment Voltage Channel.

577. Details of this channel are shown on the Stabilised Soanner Intercomection Diagram, Fig.111. A quadramet cable links the J.B. Type 246 and the gyro oontrol unit. This cable terminates in a special 6 -way socket at the gyro end and in a 4-way coded yellow at the junction box. Crossconnections are shown below:-

578. In J.B. 246 cross-connectiona are made from the 4 -way yellow to a $12-$ way green which goes to the amplifer unit. Pins 1 and 3 on the 4-way are

tied to pins 5 and 7 respectively. Pins 2 and 4 are tied to pins 6 and 4, respeceively. From the 12-way green on J. B. Type 246 a cable to the amplifier unit Type A. 3562 carries the misalignment volts to the D.C. amplifier and brings the D.C. supply for the slab-wound potentiometer from the half-wave metal rectifier in the amplifier unit. These three leads are soreened.

## The Amplifier Unit, Type A3562 or A3562A

579. Cirouit details are shown in Fig.112. V. 1 (VR.91) is a straight D.C. amplifier. The misalignment voltage applied to the grid causes variations in the current passed by the valve and hence in its anode potential. R. 1 ( 100 K .) serves as a grid stopper. R. 22 ( 56 K .) and 0.1 (.02) provide light decoupling against rapid changes.
580. V. 3 and V. 4 form a VT60A cathode-coupled paraphese D.C. amplifier. As V. 1 anode potential varies due to the appearance on its grid of a misaligmment voltage an antiphase voltage change appears at V. 3 anode. V. 4 grid is tied to a decoupled potential of about 110V. Suppose V. 3 grid is carried positive. This will result in inoreased current through the common oathode load, R.12, and and increase in the cathode will have the same effect as a negative signal at V. 4 grid so will oause V. 4 anode voltage to rise. By means of VR1, the operating point of V. 3 grid oan be so set that the voltage drops aorose K13 in V4 anode and K7 in V3 anode are equal when V. 1 grid is returned to earth, i.e. when the moving platform is horizontal. These voltages are applied to the split field windings of the motor-generator. One winding is in parallel with R. 13 and the other with R.7. If V. 1 grid is carried up the current in field 1 (in parallel with R.7) is reduced. At the some tim the ourrent through field 2 (in parallel with R.13) is incressed, This results in rotation of the armature and the moving platform is pulled back to the horizontal when V. 1 grid returns to zero and the fields are again balanced. If V. 1 grid is carried dow the unbalancing of the fields is in the onoosite sense and the armature rotates in the opposite direotion.
581. The diode, V.2, has its oathode returned to a potential of about 150 volts at the junction of R. 16 and R. 17. This diode then limits the potential to whioh V. 3 grid can rise to about 150V. R. 6 aerves as a grid stopper as does R. 15.

## Balancing the Paraphese Anplifier.

582. A Jack and push button awitoh are incorporated ror this purpose. Early models combine the switch and jack, but in later models the two are separated. Pressing the switch S. 1 earths V. 1 grid and so sets up the same conditions in the amplifier unit as will exist when the moving platform is horizontal. By jacking in a meter at the jack-point the difference in the anode voltages of V. 3 and $V .4$ can be measured. If these are not equal V.R. 1 is adjusted until the meter shows no potential difference. Assuming matched valves and no toleranco in ocmponent values V. 3 grid should then be sitting at the same level as V. 4 grid. Where valve oharacteristios or component values differ this will not be the case when V.R. 1 is adjusted for a balance.

## The Power Paok.

583. T. 1 and V. 7 form a 5U4G full-wave reotifier atage. C.3, CK.1, and C. 7 provide the necessary amoothing for an output of about 420V. Comparison of the Scanner Interconnection Diagram and the Amplifier Unit Circuit Diagram will show that the 80V. supply to $T .1$ primary is only completed if the 12-way plain cable from the motor-generator is connected to the J.B. Type 246. The 80V. supply from J.B. Type 83 (Mark IIC) or J.B. Type 231 (Mark IIIA) is brought to the amplifier unit on a 2-way cable. Pin 1 is tied to Pin 9 on the 12 -way green on the amplifier unit. Pin 2 is connected to $12 / 11$ and one side of T. 2 primary. To complete the cirouit $12 / 9$ must be connected to $12 / 10$ and the other side of T. 2 primary. This connection is made when the 12-way from the motor-generator is connected to the 12 way plain socket on J.B. Type 246 since Pins 9 and 10 are strapped in the 12-way socket at the J.B. 246 end of tais sable. Since Pins 9 and 10 on the 12-way plain are crossmconnected to Pins 9 and 10 on the 12-way green, Pins 9 and 10 on the 12 -way green at the amplifier unit are then connected. This means that the H.T. aupply will not

AMPLIFIER UNIT
REF. No. Ioul3 | 6041
CHASSIS LAYOUT


UNDERSIDE OF CHASSIS


FIG. 113
be applied to the VT60A's in the amplifier unit unless the motor-generator cable is connected to J.B. Type 246. Tais preoaution is necessary to protect the VT60A's. Should the motor-generator oable not be connected to J.B. Type 246 the split fields of the motor would not be across the VI6OA anode loads. The effective anode loads would then be so high that the anode potential would fall to a very low value and secondary omission at the grids would damage the valves.
584. A separate transformer, T2, supplied directly from the 2-pin 80V. input, provides heater voltages for all the valves in the unit. The winding which supplies the heaters of V. 3 and V. 4 is strapped to the decoupled point to which V. 4 grid is returned. Since the oathodes will nprmally be sitting sone 120 V . positive to earth, returning the heaters to earth might oause heater. oathode leakage and insulation breakdown.
585. Another secondary on T. 2 feeds a half-wave metal rectifier of the selenium type. The output is smoothed by C.5, CX. 2, C. 6 to provide a 6OV. output. R. 19 serves as a bleeder across the output. This is the D.C. supply for the slab-wound potentiometer in the gyro control unit. It is supplied to Pins 5 and 7 of the 12may green when it is passed to J.B. Type 246. In the J.B. Type 246 cross-connections are made to the 4 -way yellow as stated in para. 578 . From the 4 -way yellow the channel is completed to the gyro control unit as shown in para. 577.

$$
\text { The Motor Generator Type } 74
$$

## Motor Section.

586. The motor section of M.G. Type 74 is of the split field type. The two field windings are in parallel with the anode loada of V. 3 and V. 4 in the amplifier unit, via the 12-way green from the amplifier unit to the J.B. Type 246 and the 12-way plain from J. B. Type 246 to the motor-generator. Pin 3, tied to the amplifier unit H. T. line, goes to the common point of the split field windings. Pin 1 ties field 1 to the foot of V. 3 anode load and Pin 2 ties field 2 to the foot of V. 4 anode load. The principle of the motor's operation has been disoussed in paras. 576 and 580. The resistance of the two field windings in series is 2500 ohms. The balanced field ourrent is about 60 ma . in each winding.

## Supplies for Motor Armature and Scanner Motor.

587. The motor armature current is about 5 amps. The supply is obtained via the Junction Box 246. This armature supply cannot, however, be applied until thi H. 2.S. scanner is operating. How these results are achieved oan only be appreciated by tracing out the channels on the Scanner Interoonnection Diagram, fig. 111. Starting from the motor armature we pass to the filter unit via a Dumet cable. The other end of the filter unit is connected into a junotion box containing two Grelco strips. One of the filter unit leads is taken out via e further Dumet cable to the resistance unit Type 4221. The return from this resistance unit is strapped via the Greloo strip to 7 and 8 of the 12-may cable to J.B. 246 . The other lead from the filter unit is strepped via the Grelco strip to 11 and 12 of the same 12-way cable. Passing to the J.B. Type 246, we find Pins 11 and 12 tied via a switched relay contact to Pin $2(+$ ) of a $2-\mathrm{pin}$ plug coded red. Pins 7 and 8 of the 12-way plain are tied directly to Pin 1 (-) of the twompin rod. Fron the 2-pin red on the Junction Box 246 we pass directly to a point on the airoraft fuse panel where the 24 V supply is pioked up. From fig. 111 it can be seon that the relay contact in the J.B. 246 must be closed before the 24 V sumply to the motor armature can be cormleted.
588. When the switch unit push-buttons have been pressed and the amber light has come on, closing the scanner motor switch will put 24 V . D.C. on the 6 B plug at the power unit. Frorn this plug a cable goes to the one plain 6 B on the J.B. Type 246. From this 6B a cross-oonnection is made to the other 6B plain to put 24 VV . across the solenoid of the relay in this Junction Box. At the same time the 24 V . Bupply is transmitted from this second 6B to a corresponding plug on the control unit Type 477 mounted above the Navigator's head. Crossconnections are made inside this control unit to a seaond 6B plug through a
variable 12 ohm rheostat by means of which the voltage actually applied to the scanner motor can be varied. The supply of the soanner motor goes from the second 6B on control unit Type 477 to the port bulkhead panel and thence via a Dumet 19 cable to the soanner motor. Pin 1 of the motor imput goes to Pin 1 and Pin 2 to Pin 6.
589. Hence, when the scanner motor switch on the switch unit is olosed, we simultaneously set the soanner in motion and energise the relay in the J.B. Type 246. This closes the contact which serves to complete the supply to the motor armature in the motor-generator Type 74 from the 24 V . imput. Since the soanner motor switch is not operative for about 40 seconds after the "L. T. ON" button is pressed, the motor-generator cannot come into operation for at least 40 seconds after switching on L.T.

## The Resistance Unit Type 4221.

590. The supply for the motor armature of the MG Type 74 is dram through a 4.5. ohm 120 watt limiting resistor. This resistor is mounted in a box on the fixed part of the platform and is inserted in the supply to the armature between the Grelco strip and the D.C. filtor unit. This resistor is included to limit the annature current to about 5 amps. when there is no field to cause rotation and henoe no back e.m.f. to limit armature ourrent. Later modela will have three $13 \frac{1}{2}$ ohm resistors in parallel.

The Link Between the Motor and Moring Platform.
591. The motor-generator, mounted on the fixed platform, is connected to a moving arm which drives the moving platform via a step-down gear train of approximately 250 : 1 . The moving arm is conneoted to the moving platform by means of a driving rod. A second rod, driven by means of balance weights, fitted to the moving platform keep the load on the motor constant regardless of the amount of displacement. The motor should come into operation for displacements of about $t^{\circ}$ and be almost instantaneous in action.

## The Ind Stops.

592. End-stops are fitted which allow a maximum movement of $30^{\circ}$ to either side of the true horizontal. When the platform oomes up against the endstops a ciutch-plate arrangement in the motor driving mechanism comes into play. This clutch arrangement then disengages the motor from the drive.

The Generator Seotion of the Motor-Generator Type 74 .
593. When a misalignment voltage from the gyro control unit is applied to the grid of V. 1 in the amplifier unit, the ourrent changes in V3 and V4 develop the unbalanced voltages which are applied to the split field windings of the motor section of the motor-generator. This unbalancing of the field aauses motor rotation in the sense appropriate to remove the misalignment voltage. Should, for any reason, a large misalignment voltage exist when the soanner motor is switohed on and the supply to the M. G. Type 74 motor armature is completed, a large net field would exist. The motor would then experience a violent torque. Since the balance weight arrangements serve to provide a constant load, the motor would run at excessive speed. As the misalignment voltage fell, the motor would slow down due to the reduced field. To obtain smooth operstion of the moving parts combined with a quick initial response, we want some form of negative feedback applied to the grid of V1 which is proportional to motor speed. If the motor is at rest and the aircraft rolls to produce a misalignment voltage the speed of the motor armature begins from zero as it starts to pull on the moving platform. While overcoming the inertia of this meohanical load the speed is low and there is little negative feedbacic and hence a strong field. As the inertia is overcome and the pull on the motor is reduced, the amature speed will not tend to reach exoessive values if a negative baok voltage is applied to V1 grid
which operates against this misalignment voltage to reduce the net motor field. By suitably arranging the maguitude of this feedback voltage for a given speed of the motor annature, it will be possible to get smooth by rapid starting, a suitable maximum speed, and operation that is non-jerky. The requisite negative feedback is developed by the generator section of the MG Type 74.

## The Negative Feedback Circuit.

594. The generator field is fed from the same 24 V line as the motor armature. This field supply is therefore completed when the scanner motor is switched on. One end of the generator armature is earthed via the blaak lead to the upper Grolco strip. The other and is tacen via the red lead to the lower Grelco strip and thence via Pin 5 on the 12-way plain to J.B. Type 246. In the Junotion Box a cross-connection is made from Pin 5 of the 12way plain to Pin 8 on the 12 -way green which is connected by a scraened lead to the grid of V1 in the amplifier unit. The feodback voltage is applied across R23 (220K)+ R24 (470K). The grid of V1 is tapped in at the junotion of R23 and R24 so receives about $2 / 3 \mathrm{ra}$ of the actual negative feedback voltage.
595. The motor-generator leads, coded as shown in the Scanner Interconnection Diagram, are taken away in two bunches to the two 4-pin Grelco strips mounted at the fixed platform. A Dumet cable brings the D.C. supply for the motor armature from the filter unit.

The Vacuum Pump Assembly.
596. This assembly will be necessary for carrying out D.I's. A separate D.C. supply will be required for the D.C. pump motor and a suitable length of flexible piping to convey the vacuum to the gyro.
597. Both pump and motor are of American manufacture. The motor is $\frac{1}{4}$ h. p., series wound, and takes 11 amps. The speed is 6600 r. p.m. The pump is required to maintain a vacuum equivalent to $4 \frac{1}{2}{ }^{\prime \prime}$ of meroury (i. e. about 4.2 lbs per square inch) at the gyro and for correct gyro operation. The pump intake is conneoted to the gyro by a regulating valve attached to the pump, then by flexible pipe to the gyro. A gaune filter is fitted at the intake. The main outlet point blows straight out.
598. The vacuum pump motor also drives a second, smaller pump used to cool the motor. Air is drawn in and conveyed through a oopper pipe to an inlet point at the motor commutator. The air escapes at the other end of the motor through a gauze filter.

## Units Associated with the Roll-Stabilised Scanner

## Control Unit Type 477.

599. This unit has been mentioned in para. 588. Its purpose is to provide the Navigator with a means of controlling scanner speed. It is mounted above the Navigator's head in the Lancaster installation. The unit houses a 12 ohr rheostat. Later models will use a 24 ohm rieostat. A knob on the front provides the control. $24 V$. D.C. from the power unit is supplied to one 6B plug via the J.B. Type 246 where it energises the relay that completes the D.C. supply to the motor armature of the MG. Type 74. Cross-connections are made inside the control unit to a second 6 B plug to insert the rineostat in the supply. From the second 6B the supply to the scanner is completed to the port bulkhead panel and thence by 2-way cable to the plug mounted on top of the scanner motor.

## Control Unit Type 468 and Track Marker Facilities.

600. In addition to heading marker contacts which serve to develop a positive pulse when the scanner goes through the dead-ahead position, a traok marker contaot arrangement is provided in the Scanners Type 71 and 63. This contaot can be brought into operation instead of the heading marker
contact when the switch on the Indicator 184 panel is set to the "Track" position. The contact itself is controlled by the Mko 14 bombsight. The flexible drive from the bombsight computor which conveys drift angle information to the bombsight head, is interceptod and used to drive a manual transmitter, similar to the cam arrangement in the H.C.U. This transmitter or cam arrangement is in the control unit type 468 which is attached to the bottom right hand of the Mk. 14 bombsight. When the drift setting on the bombsight computor is altered the flexible drive operates the cams and switahes the D.C. commections to a "track" repeater motor in the scanner. The resultant rotation of the repeater motor armature moves the track marker contact to operate the heading marker circuit on the receiver-timing unit when the scanner is displaced from the dead-ahead position by the drift angle. The radial marker flashing up on the P.P.I. then gives the bearing of the actual airaraft track instead of its heading. When the switoh on the indicator 184 is set to "Course" the usual heading marker is developed as the scanner goes through the dead-ahead position.
601. The armature of the "track" repeater motor displaces the track marker contact by means of a suitable worm gear drive. $31^{\circ}$ of drift corresponds to 18 revolutions of the flexible drive shaft which operates the transmitter in the control unit Type 468. On initial installation a check must be made that the "track" repeater rotates in the correct direction when the track marker is in use. This can be checked by comparing the way the radial marker on the P.P.I. is displaced when the Indicator 184 switah is moved from the "course" to the "track" position. The magnitude and sense of the actual drift can be read on a calibrated scale on the bombsight head.

## The Control Unit Type 446.

602. This is the heading control unit used in the H.2.S. Mark IIC and hark IIIA installations. The panel shows a setting knob and a three-position switch. The switch positions are labelled "Auto", "Course" and "Track". When set to the "Course" position, the setting knob is used to operate a transmitter in the unit which switahes the D.C. comnootions to the "Course" repeater motor in the scanner. The motor armature then drives the magslip stators through a suitable gear arrangement. To set the $\mathrm{H} .2 . \mathrm{S}$ map, the bearing ring is set to the airoraft course. The indicator 184 and H.C.U. switohes are set to "Course". The setting knob on the H.C.U. is then operated, thereby moving the magslip stators until the radial marker on the P.P.I. flashes up along the pointer on the bearing ring screen. If the H.C.J. switoh is now set to "Auto", the D.R. compass transmitter is connected through to the "Course" repeater motor in the scamer. As the aircraft turns, the D.R. compass transmitter operates the repeater motor to move the magslip stators through an angle equal in magnitude and opposite in sense to the aircraft rotation. The position of the radial marker on the P.P.I. will now give the bearing of the airaraft heading as long as the Indicator 184 switch is left in the "Course" position, regardless of aircraft heading since the marker moves when the aircraft turns.
603. When the switah on the H.C.U. is set to the "Track" position, the transmitter in the unit is connected through to the "Track" repeater motor in the scanner which drives the track marker contact. If the switch on the Indicator 184 is set to the "Track" position and the windspeed indicator on the bombsight is set to zero (zero mini means zero drift angle), the track marker contact in the scamer can be aligned correctly by operating the setting knob on the H.C.U. until the radial marker on the P.P.I. flashes along the bearing ring pointer, set to the aircraft course. The track oontact will then be aligned with the course contact.
604. When the H.C.U. switch is set to "Auto" it simultaneously connects:-
(a) The D.R. compass tranmitter to the "Course" repeater motor in the scanner.
(b) The transmitter in the control unit Type 468 to the "Track" repeater motor which operates the tracir marker contact as the drift is computed by the bombsight. If the switch on the
indicator 184 is in the "Track" position the course contact in the scanner is taken out of circuit and the track contact brought into circuit. If the track contact has been aligned with the course contact as discussed in pars.603, the track contact is offset from the course contact by the drift angle and the radial marker on the P.P.I. is now a track marker suitable for use in bombing runs. With the H.C.U. and indicator 184 switches in the "Track" position, it should be possible to shift the track marker + or $-60^{\circ}$ from the headine marker position.

## Mechanical Details of the Roll-Stabilised Scanner.

605. The main casting has been altered in shape and reduced in size to facilitate mounting on the moving platform along with the gyro control unit and H.2.S transmitter unit.
606. The scanner driving motor is of a smaller type. The actual motor assembly is the same type as that used for blower motors in H. 2. S. Mark II. The motor is attached to the main casting by means of a flange and three bolts. The flange is part of the motor's outer casing.
607. The motor speed is approximately 5000 r. p. m. The current taken is about 0.7 anps. The drive to the scanner shaft is through an all-metal gear train with a step-down gear ratio of 134 : 1. No oiling holes are provided for the step-down gear bearinga.
608. The scanner main bearing is of a new type which does not normally require any maintenance. It consists of a grease packed ball race mounted on a plate. The plate in turn is bolted to the interior of the casting. The rotating member of the capacity joint runs in on "oilite" bearing.
609. The usual 1:1 drive to the magslip rotor is used.
610. The incorporation of track marker facilities has necessitated, not only the addition of a track marker contact arrangement, but a departure from the heading or course marker arrangements employed in the earlier K. 2. S. scanners. A flat metal annular contact ring is mounted on a parolin disc wisich in turn is placed on top of the magslip rotor driving gear wheel. The ring has a width of about $\frac{1}{4}$ n. At one point in ita inner circumference it has a projection towards the oentre about $\frac{1}{2} n$ long and $\frac{1}{4}{ }^{n}$ wide. This projection we shall call the shorting contact. The ring of which this contact forms a part we shall call the contact ring.
611. Mounted above the contaot ring by means of a bracket are two metal spring contacts. The outer of these is in continuous contact with the contact ring and is returned to earth. The inner one, which we shall call the course marker contact, is returned to the "Course" side of the "Course Track" switch on the Indicator 184. When the scanner passes through the dead-ahead position the contact ring will be in such a poaition that the shorting contact touches both spring contacts simultaneously. R. 465 in the receiver-timing unit is then earthed through the shorting contact and the earthed spring contaot. The suppressor of the receiver output valve is then carried down to develop the heading or course marker. Although the shorting contact has a width of only $\frac{1}{4}, \mathrm{k}, 469$ is earthed for a sufficiently long interval to discharge 0.422 in the receiver-timing unit and so carry down the suppressor of the receiver output valve to the requisite level to ensure a marker of adequate duration. As the suppressor of the receiver output valve is thus carried down each time the scanner goes through the dead-ahead position, the marker flashes up once per scanner revolution.
612. In order that the marker may appear at the bearing of the airoraft course, it is necessary that the appropriate coupling occur between the magsifip rotor and stators at the instant the scanner goes through the dadahead position. To have the heading marker appear on the P.P.I. display as the scanner goes through the dead-ahead position it is necessary to take the
usual precautions with regard to: -
$\left\{\begin{array}{l}\text { a) Mounting of the mirror on the casting. } \\ \text { b Contact alignment. } \\ \text { c) Direction of rotation of repeater motor armature. }\end{array}\right.$

> 613. The phasing between the paxolin disc and the magslip rotor driving gear can be adjusted by loosening the 3 bolts securing these two items to the magslip rotor. The pazolin disc can then be rotated relative to the driving gear to obtain the heading marker at the correct time.
614. For the development of a track marker the same contact ring, shorting contact, and earthed apring contact are employed. An extra moveable spring contact is aded which we shall call the track marker contact. This track marker contact is returned to the "Track" side of the awitch on the Indicator 184. The contact is mounted above the fibre gear wheel to which the contact ring is mounted above the fibre gear wheel to which the contact ring is attaohed. It is swivelled on a bearing whose centre coincides with that of the gear wheel and contact ring. The contact has an arm extending back from this bearing. This arm engages a slotted bush. The bush, in turn, tracks up and down a worin driving rod. This rod is geared to the track repeater motor which is operated by the transmitter in the control unit Type 468 from the flexible drive from the Mk. 14 bombsight. As the drift is set on the bombsight, the flexible drive operates the transmitter in control unit Type 468. The track motor armature is displaced accordingly and moves the worm driving rod to rotate the track marker contact about its bearing. At some point in the scanner's rotation the shorting contact will connect the track marker contact to the contact ring and therefore to earth through the ring and the earthed spring contact. At what point in the scanner's rotation this occurs depends entirely upon the setting of the moveable track marker contact. If this contact is suitably set the shorting contact will meet it at such a point that the marker then developed will be displaced from the position of the course marker by the drift angle. We thus obtain a track marker instead of a course marker. To align this contact properly the H.C.U. and Indicator 184 switches must be set to "Track" and the bombsight must be set for zero drift. By operating the setting knob on the F. C.U. the cams in that unit displace the track repeater motor armature and hence the track motor contact. The contact then rotates around its bearing and the mariker appearing on the P.P.I. will rotate. It can thus be adjusted to coincide with the pointer on the bearing ring when the latter is set to the aircraft course. The marker will now appear at the same position on the P.P.T. regardless of the position of the indicator switoh. This means the track marker contact is met by the ahorting contact at the same instant as the course marker contact. Since we have assumed zero drift this is what is required. When the H.C. U. switoh goes into "Auto", the track marker repeater motor is connected to the transmitter in the Control Unit Type $46 \varepsilon$. Any drift setting now made on the bombsight displaces the track marker contact through the drift angle. In order that the sonse of this displacement may be correct the repeater motor must turn in the correct direction. The range of adjustment available sllows the shorting oontact to meet the track marker contact $60^{\circ}$ before or after meeting the course marker contact.
615. The two M-type repeater motors are of the same type. They differ only from the one used in the earlier scanners in having the field conneotions brought out to teminals at the top of the motor outer casing.
646. The track repeater motor is attached to the side of the main casting.
617. The magslip and course repeater motors are mounted on a sub-panel attached to the main casting by three bolts.
618. All cabling, with the exception of the course, track and commonearth return contact connections runs external to the main casting. Gonnections are


DRIVE TO COURSE TRACK CONTACT

made between the components concerned through a small junotion box attached to the side of the main casting. This junction box contains: -
(a) One 4-way carrying the sawtooth outputs from the magsin stators.
(b) One 6-way carrying the sawtooth input to the magsiip rotor from the W.F.G. and carrying the track or course marker conneotions back.
(c) One 6 -way coded violet oarrying the D.C. lines for the repeater motor fields from the H.G.U.
619. The scanner motor aupply goes directly to a $2-\mathrm{pin} W$ plug mounted on the end of the motor casing.
620. The mirror is bolted into a plate instead of the wedge used in earlier soanners. This plate is secured to the main bearing.
621. To maintain a reasonable temperature in the cupola for the scanner and platforra bearings, a heating unit is mounted on a brackot at the aft end of the platform. This unit consists of three heater elemente wired in parallel and conneated to the heater switch on the port side of the aircraft. The heater supply is taken direct from the airoraft D.C. supplies.
622. A spirit level is mounted on the scanner to facilitate the lining-up of the gyro.

## The Capaoity Joint for the Scanner Type 63.

623. The arrangement for holding the rotating member of the capacity joint has been altered from that used in the Type 3 scanner. Attached to the rotating member of the main bearing is a tube with an internal diameter equal to the external diameter of the rotating member of the capacity joint. This tube is approximately $8-9^{\prime \prime}$ long, extending right through the main casting into the lower half of the oasting which can be split as before, for dismantl: and adjustment purposes. The end of the tube which protrudes when this lowes half of the costing has been removed, is segmented into six tapered sections. A tapered looking nut screws over this ond, thus holding the rotating member of the joint central and rigid.
The joint is so set up as to leave $1 \frac{7}{6}{ }^{\prime \prime}$ betwoen the end of the segmented tube and the end of the joint. A gasket is fitted between the main casting and the removable part of the casting which holds the stationary part of the joint. This removeable section is held in position by three readily accessible bolts. An improved clanming band has been incorporated to hold the stationary member of the rotating joint securely.
624. The Type 71 soanner used a tubular feeder of the waveguide type from the H. F. box to the scanner. A rotating waveguide joint is used inside the soanner instead of the coaxial type of aapacity joint.

Summaxy of Main Iters Assooiated with Soanner Type 74.

626. Comprises in addition to the struotural assembly:-

a)	Motor-Generator Type 74	101
(b)	Resiatance Unit Type 4221	100/15512
(a)	Suppressor Unit for MG. 74	5C/1002
(d)	Suppressor Unit \& conneotor for scanner motor	10H /7540
(e)	Firing bracket for tray that holds HF box	10AB/6579

627. Units fixed to moving platform:-
(a) Soanner Type $71 \quad$ 10AB/6454
(b) Gyro Control Unit Type 453 10L3/6074
(c) HF Box, TR. 3555 or 3523
628. Units mounted on fixed platform:-
(a) Junction Box Type 246 10AB/2497
(b) Conneotor set from bulkhead panela $10 \mathrm{H} / 16060$
629. Vacuum Pump Assembly for D.I's. only comprising

(a)	Pump Motor	1375/2725
(b)	Vacuum pumps	
c)	Relief Valve	137J/501
(d)	Pipe flexible	( $320 / 214$
		( 320/214
(e)	Plug	$5 \times / 568$
(f)	Suppressor Unit	5L/870
(g)	Relay	50/723
(h)	Terminal Block	5c/483

630. Control Unit 477

10LB/6102
Provides control of scanner speed.
631. Control Unit 468 10LB/6091

Garries transmitter operated from borbsight for automatic control of track marker contact in scamer.
632. Amplifier Unit A. 3562 1OUB/6041

Anplifies misalignment voltage received from gyro control unit to operate motor generator type 74 and drive the platform.

```
633. Control Unit Type 446
 10LB/6053
 Heading control unit.
634. Soanner Heating Unit
 To keep temperature in cupola from falling so low that scanner
slows down and response of moving platform beoomes sluggish.
```

635. Junction Box Type 247

Used only in prototype installation.

## Bulkhead Panels.

636. Two bulkhead distribution panels are fitted to the fired frame to provide greater freedom of movement and to facilitate dismenting and assembling. One of these, mounted at the aft end of the platform, is referred to as the aft bulkhead panel on the Soanner Interconnection Diagram. The other bulkhead panel is mounted on the port side at the front of the fixed platform. This one is termed the port bulkhead panel on the Intercomection Diagram.
637. The aft bulkhead panel splits the following cables to the H. 2. S. transmitter unit:-
(a) 12-way from the JB. 231 to the H. 2.S transmitter.
(b) The 4-way from the tuning unit Type 444.
(c) The uniplug pulse lead from the modulator Type 64 to the H. 2.S. transmitter.
(d) The Pye green signal lead from the H.2.S. transmitter to the receiver.
(o) The vaoum line for the gyro control unit.
638. The port bulkhead panel carries the JB. 246 ; it also splits the following leads going to the scanner:-
(a) 6-way violet from Y.C.U. to scanner.
(b) 6-way plain from W.F.G. to scanner.
(o) 4-way sawtooth output from magslip stators to JB. 222.
(d) 6-way from control unit Type 477; Pin 1 goes to Pin 1 and Pin 4 to Pin 2 of a small 2-way which takes 24 V . to the scanner motor.
639. The 12-way from the aft bulkhead panel to the in. 2. S transmitter is of a speoial type. All leads are crossed in the cable. This is necessary as both leads are detachable from the bulkhead panel.

Provision for Fitting Scanners Type 63 or 71 Without Stabilised Platforn.
640. If scanners Type 63 or 71 are installed without the stabilised platform mounting frames will be required:-

In Isancaster	$10 \mathrm{AB} / 6577$
In Halifax	$10 \mathrm{AB} / 6578$

641. The only significant differences in the tabulation of items if the scanner type 63 is considered instead of the Type 71 are as follows:-
(a) For scanner Type 71 we have Type 63 10AB/6343
(b) The scanner uses:-
(i) Internal H.P. feeder, Type $1859 \quad 10 \mathrm{~V} / 6598$
(ii) External H.P. feeder, Type $4770 \quad 10 \mathrm{HA} / 128$
(c) Fixing bracket for T2R tray

10AB/6578
(d) Connector set from bulkhead panels

General Installation Points.
Gyro Control Unit.
642. (a) This is a very delicate instrument. When handled or transported, care must be taken to ensure that the looking sorew is in position.
(b) On installation oheck that the oardboard cover over the air intake gauze filter is removed.
(c) Ensure that the blanking-off screws for altermative outlets are in position and secure.
(d) Cheok that the small sorew which replaces the locking screw is in position and secure.
(e) Cheok that the clamping screws are holaing the unit firmly.
(f) Check that the rubber mounting is all right.
(g) Check that the intake filter on the Gyro is of the fabric type and not the papier mache type.
643. The gyro takes at least 2 minutes to build up and settle down to a steady speed.
644. The vacuum at the Gyro must be between $3^{\prime \prime}$ to $5^{\prime \prime}$ as indioated on a suction meter, Stores Ref. GA/757. To check this the suoticn meter will have to be connected into the Gyro by means of a flexible pipe and a special
union to fit into one of the blanking off screw points at the rear of the gyro.
645. As the gyro in the aircraft installation is supplied by one of the engine-driven punps, this cannot be oheoked on D.I. The vacuum line in the aircraft will have a permanent suction meter installed. Should there be a leak in a pipe block or the line to the gyro, this will be indicated on the permanent meter. The instrument people will be responsible for maintaining the vacuum to the gyro.
646. To facilitate D. I., a change over valve and an intaice point for an external pump will be fitted to the aircraft skin at a point of easy access. The vacuum line from the portable vacuum pump will have to be conneoted to this point and the stop tap turned to the external position. It is suggested that a suction meter be fitted permanently in the portable vacuum line supply at some point so that it can readily be checked that the gyro supply is within the required limits. With the regulating valve in the vacuum circuit using a Plexible 20 ft . hose no difficulty should be experienced in maintaindng the suction of $4^{\prime \prime}$. The following figures are quoted for general guidanoe for the vacu:m pump assenbly:-
(a) Suction obtained on a closed circuit without the regulating valve in, $20^{n}$
(b) Suction obtained with 1 gyro in oircuit without the regulating valve in, $9^{\prime \prime}$.
(c) Suction obtained with 1 gyro at the end of 20 ' line with regulating valve in and measured at the gyro end, $4^{n}$.
(d) Amount of variation by adjusting the regulating valve Adjustment was approximately $\frac{1}{2}{ }^{n}$ of suotion.
647. Gyro servicing will be the responsibility of the instrument section Course and Track Repeater Motors.
648. On initial installation in aircraft these repeater motors will have to be ohecked for correct direction. The heading marker can be cheokod against a D. R. compass repeater card with the aid of the V.S.C. Should the heading marker move the wrong way a cure oan be effected by changing over two of the course repeater motor field leads on the terminal strip on top of the repeater motor on the scanner. Access to this terninal strip can be obtainod by loosening the "Jubilee" clip and removing the top cover on the repeater motor. On initial fitting all units involved should be checked for correct wiring and suitably modified if the wiring is incorrect. It is only in this way the operational difficalties can be avoided. Changing over the repeater motor leads to clear another fault should only be a temporary expedient. 6
649. Ghecking the track repeater motor can only be done in the air. The angle of port or starboard drift indicated by the track marker, i. $\theta_{0}$ difference between track and heading markers, can be cheoked against the calibrated scale on the bombsight. Should the direction of rotation be wrong, change over in the same manner as outlined for the course repeater inotor, as a temporany measure if no time is available to correct the wiring. The wiring should be standardised on fitting, and at the carliest opportunity after difficulty is encountered due to the subsequent inolusion of units with non-standard wiring.

## Motor-Generator Type 74

650. On installation the motor may drive in the wrong direction or the feedback voltage from the generator may be positive instead of negative. All leads of the M. Go are colourmooded as shown in the insert on the Scanner Interconnection Diagram, fig. 111
651. The following information was obtained by carrying out tests and should hold good provided that mamifacturars maintain the same internal wiringe

Motor Fild	Motor Arno	Generator Field	Generator $\mathrm{Arm}_{5}$	Motion viewed
Brown ibite	Red Black	Green Yellow	Black Red	looling at genarator end of MG. 74 Equiv. to standing aft of platform
$\mathrm{V} 4 \text { ON }$	$\pm+$	$+$	$\pm+$	Clockwise Anticlockwise.

652. The platiorm moves the opposite way to the MG. 74 rotation If the aircraft banks to port the misaligment voltage is positive and when it banks to starboard, the voltage is negative.

The Platform Assembly:
653. (a) The platform assenbly is attached to an adaptor freme with 6 bolts. The adaptor frame is bolted to the airfreme.
(b) Care must be exercised in transporting as rough usage will result in broken rivets. A stop is provided to keep the moving platform rigid during transportation

## gubber Mountings-

654. All the rubber mountings require checking on installation and inspections.

## Assembling and Dismantiling-

655. The easiest method of assembly is to mount the scanner on the platform in the aircraft and then bolt the platiorm to the adaptor frame. The scanner must be mounted on the platrom before bolting the platform to the adaptor frame If the scanner requires changing, the plation must firgt be released from the adaptor frame.

## Do Io Procedures

## Gemaral Pointso

656. A vacuum pump assembly will be required to carry out D.I'se to supply the gyro control umito A D.C. supply of 24 V. at approximately 12 ampse will be required to drive the motor. Owing to the heavy starting current this supply will have to be fuzed with a 40 amp. rating fuse. a suitable length of flecible piping will be required to convey the vacumm line to the intake point on the airaraft alino A suction meter should be tapped in at some point, preforably at the and of the fleaible pipe, to chock that the suction is between 3 and $5^{\circ}$.
657. This $D_{0} I_{0}$ should be carried out after the normal $\mathrm{H}_{0} 2, \mathrm{~S}_{0} \mathrm{D}_{0} \mathrm{I}_{0}$ This gives the amplifier unit time to settle down

## DeIo Boutine

 gyro two mimites to settle down Then renove the 2 -pin red from the JB, 246. This removes the armature supply from the MG. 740
659. Insert a jack connected to a volmeter, set to at least 250V, range. Preas the earthing switch. The reading obtained may be either + or m. Adjust the "balance" preset from recco voltse A Pine adjustment can be obtained by decreasing the voltmeter range. Renove the jack lead.
660. set the moving platform level by observing the spirit level. Switoh on the scamer at the switch unito
661. Heplace the 2 -pin red at the JB, 246 and mote if the platform moves. Movement may be caused by misaligrment of gyro. If movenant occurs the gyro will have to be re-alignod. This can be achieved by looseming the 4 bolts securing the gyra. Small variations in either direction can then be achieved on the elongated fixing holes.
662. Remove the 2-pin red again and push the platform over to the $30^{\circ}$ end stop lindt in one direction Replace the $2-\mathrm{pin}$ red and check that the platform inmeaiately returns to the level position Repeat the procedure with the platform pushed to the opposite ond stop.
663. Ranove the 2-pin red to the JB. 246 and offset the platform $1^{0}$ as near
as can be estimated. Replace the 2-pin red and check that the platform levels immediately, Repeat this check in the opposite direction
664. With everything working force the platforn over first in one direction and then in the other against the motor driving force and cheak that the clutch slips fmediately.
665. Remove the extermal vacum supply and turn the valve to the intarnal position
666. Check all cables are secure and do not foul at any point during platform movenent.

## Function of Fishoond

667. The function of Fiskpond is to provide aircrew with a visual indication on a P.P.I. display of aircraft within a range of $4-5$ miles. The equipment involved is an indicator 182 or 182A, a junction box, type 222, and the necessary cables to link these two items into the H 2 S . installation. The Fishomi indications are derived from reflections by adjacent aircraft of the aircraft's $H_{6} 2 S_{0}$ transmission The normal $H_{0} 2_{0} S_{\text {e equipment converts these aircraft }}$ reflections into signals which are used to intensitymodulate the Fismpond P.P.I.
668. If we imagine a henisphere with the Fishpond aircraft at its centre and radius equal to the aircraft height, we have the region within which another aircraft should be detected down to a minimum range of $400=600$ yards.
669. A detected aircraft will give an indication on the Fishpond display in the form of an arc. When a push button on the front panel is pressed marker rings appear on the display to indicate ranges of $0,1,2,3,4$ and perhaps 5 miles. The position of an aircraft relative to the maricer rings will give the range. The position relative to the heading marker, which appears on the Fishpond display as well as on the $H_{0} 2_{0} S_{0} P_{0} P_{0} I_{0}$ display will give an approximate idea of bearing. Elevation cannot be displayed but some idea of the elevation may be obtained by putting the Fishoond aircraft into a steep bank and noting the movement of the indication relative to the heading marker, By observing whether or mot the indication alters its course so as to follow the fishond aircraft when evasive action is taken, a detected aircraft can be identified as hostile or friemaly.

## Outline of Fistmond

670. The sawtooth outputs fram the magslip are applied to two cathodemoupled amplifier stages somewhat similar to the stages used to develop the indicator 184 timebase. The gain of these emplifiers is automatically adjusted as the setting of the scam-marker switch is varied to develop a display on which the distance from centre to circumference always represents about 5 miles regariless of the velocity of the imput sawtooth from the masslip. The reflections of the $H_{0} 2_{0}$ So pulses from aircraft appear as positive-going pulses in the mixed output at the black Pye plug on the W.F.G. A double output at this plug makes it possible to feed this mixed output, incluaing the bright-up square wave, to both the video amplifier in the indicator 184 and a similar signal amplifier stage in the Fishooni indicator. As the Fishpond scan only covers a range of up to about 5 miles, the only indications for aircraft at operational heights of $3 \frac{1}{2}=4 \frac{1}{2}$ miles will be echoes from other aircraft and a ground return ring around the edge of the display. The radius of this ground return ring will be equal to the aircraft height. Indications from aircraft at ranges greater than the aircraft height will tend to be lost in the ground return ring. The usefll maximum range of Fishpona will then be governed by the hoight at which the aircraft flies.
671. Since the signal input to Pishpond is the same as that applied to the H. 2. S. indicator, it includes the heading marker which moves around the Fishond display as the aircraft alters course just as on the $H_{0} 2_{0} A_{0}$ display. The Fisipond operator must be able to visualise immediately the approximate bearing of a detected aircraft relative to his own aircraft from the position of the Indication are relative to the heading marker, regardless of the position of the herding marker on the display.
672. Included in the Fishpond unit is a calibrator circuit which the operator can bring into operation by pressing the push-button switch on the front of the Fistupond panel. Then this button is pressed the 20 microsecond pulse from one of the violet Pye plugs on the modulator is used to trigger on its baok edge a circuit which rings at a frequency of $93 \mathrm{Kc} / \mathrm{s}$. The positive peaks then occur at
fintervals of 10.75 microseconds which regresent the echo time for a target at 1 mile range. The positive peaks are converted into rather wide negative pips which are applied to the Fishmond P.P.I. cathode to produce marker ring on the display at intervals of $0,2,2,3,4$ and 5 miles. From the positio of an aircraft indication relative to these rings the operator oan instantly see the approximate range.

## Diagrams.

673. (a) Cincuit details of the Fishpond indicator, type 2824, are shom in fig. 116. (Differenoes between the indicator 182 and 182A are tabulated in para, 699).
(b) Component layouts are given in FIg. 117
c) Waveforms are dieplayed in fige 119
(d) The relation of Fishpond and its Junetion bas to the complete installation is sbown in figso 13 and 14 .
(e) The junction box and the supply channels are shown on the interconnection diagrams, figs, 210 and 211.
Fishpond Circalit
674. The Fishpond timebase is developed from the magslip output by the two cathode-coupled paraphase amplifiers, V.I, V. 2 and $V_{.} 3, V_{0} 4$ in fig. 216. Reference to the circuit diagram will show the following points which we shall use in our discussjons-
(a) The auplifier cincuits are symmetrical but provision is made for Ferying the $D_{0} C$. level of $V .2$ grid relative to that of V. 1 ith Riso, and for varying the potential of V. 4 grid with regaed to that of V. 3 with Ro79.
(b) The cathodes of each amplifier pair are strepped through preset. potentianeters. Three are available in each stage. As the soanmarker switich is set for the different scans, these presets are switched by relays operating in synchromism with the relays in the W. F.G which switch the master multivibrator and sawtooth switchinq valve components.
(c) The imputs to the two pairs are the outputs of the two magsinp stators. The output of one stator is applied to the grids of V. 1 and V. 2 from pins 4 and 1 of the 4 way from the junction box 222. The output of the other stator is applied to the grids of V. 3 and V. 4 from pins 1 and 3 of the same 4may. As the input pins are tied to earth through the leaks $R_{0} 8, R_{0} 13, R_{0} 18$ and $R_{0} 28$, the stators are effectively centro-tapped so the grids of each pair will always swing in antiphase to develop a push-pull output. One such push-pull output is AnC. coupled to the $X$-plates and the other to the Y-plates. Since the magalip stator outputs are always $90^{\circ}$ out of phase, these push-pull outputs are also $90^{\circ}$ out of phase. Since we have push-pull outputs across the $X$ and $Y$ plates which rise and fall $90^{\circ}$ out of phase as the scanner turns, we will obtain a rotating timebase as in $\mathrm{H}_{0} \mathrm{~L}_{\mathrm{S}} \mathrm{S}_{0}$
(d) One $X$ and one $Y$ plate are returned to a fired positive potential at the junction of $\mathrm{R}_{\mathrm{n}} 46$ and $\mathrm{R}_{0} 47$ between +300 V . and carth The other plates in each pair are returned to a potentrial variable by the presets $R_{0} 38$ and $R_{0} 40$. These presets can then serve as shift controls.
675. The Fistmond Markers are developed by V. 6 and V. 7. When the pushbutton switch, $S_{0} 1$, on the Fishmond panol is depressed the 20 microsecond pulse from the modilator makes the $93 \mathrm{Kc} / \mathrm{s}$ tuned cirouit in V. 6 anode ring on its back edge. These rings back-bias $\mathrm{V}_{6} 7$ with grid current so only carry V. 7 into conduction on the peaks. Nogative pips at 10.7 mi croseconds intervals, with the first occurring on the back edge of the 20 microsecond pulse, are applied to the P.P.I. cathode via C. 21 . These pips will appear on oach timebase sweep to produce circular marker rings. How many will eppear on the display depends on how long it takes the G. $\mathrm{R}_{\mathrm{n}} \mathrm{T}$. spot to travel across
the screen, If the velooity is correct, there will be $4,5-6 \mathrm{pips}$ to provide $0,1,2,3,4$ and 5 mile range marikers on each scan.
676. V. 5 is the Fishpond signal anplifier. The imput of the black Pyo plug is applied to V. 5 cathode through $C_{.} 8$ grid and reappears at V. 5 anode and the PoP. Io grid as a positive-going signal. $\mathrm{R}_{0} 32$ provides a measure of gain control. The input is the same as that applied to the video amplifier in the indicator 184 so includes an amount of bright-up waveform which depends on the setting of the contrast control.

The Fishoond Timobase Control Requirementso
677. The sawtooth imputs to the amplifier pairs will be of approximately constant amplitudes of the order $20-25 \mathrm{~V}$. The working strokes will be 240 , 720 and 1200 microseconds respectively when the scan-marker switoh is set for 10, 20 and 40 mile P.P.I. H. 2 S. scans. We want the Fishpond scan to sweep from centre to circumference in about $5 \times 10.7$ or 53.5 microseconds regardless of the setting of the scan-mariker switoh Since the transmitter fires at about the centre of the master sawtooth, this 53.5 microseoonds must correspond to the firgt part of the second half of the master sawtooth. As we have no phantastron triggering arrangement to start the scan from the tube centre we must use a diametral scan on Fishpond which will carry the spot across the screen in around 107 microseconds on each scan. When the input sawtooth is at the midpoint Fishpond scan must be at the tube centre. The Fishrond sawtooth mast, however have a sufficiently great velocity to carry the soan complotely across the tube face in about 107 microseconds. It mast therefore start some time after the imput starts and terminate before it ends. This is equivalent to saying that we are merrely taking the central section of the input sawtooth on the grid and amplifying it up to the required amplitudo. In the case of the 10 mile scan the irmut has a worling stroke of 240 mioroseconds and, say, a 25V. amplitude. If wo take out the central 107 microseconds this represents a useful grid swing of $\frac{107}{2 H 0} \times 25$ or about 11 volts. If we comsider the next scan with a woricing strolce of 720 mic moseconds, the central 107 microsecomis represents a useful grid swing of $\frac{107}{720} \times 25$ or about 3.5 volts. For the slowest scan, with a woriding strolve of 1200 miaroseconis, the useful grid awing must be $\frac{107}{1200} x 25$ or about 2.25 volts. In each case these useful swings must give the same amplitude at the anodo. Since we are developing a push-pull output this will have to be half the voltage required for a doflection across the tube face With useful swings at the grids of about $11,3.5$ and 2.25 volts and equal amplitude outputs, we must have gains in the ratio of $1: 3: 5$ for the different sawtooth inputse Furthermore, these changes in gain must be brought about automaticaily as the scan-marker switch is changed. To meet this requirement we have the three negative feedback control preset potentiometers strapping the cathodes of each amplifier pair. These presets are sivitched as the setting of the scan-marker is varied. They can be preset individually to provide the correct gains.
678. since the timebase amplitude is the vector sum of the instantaneous amplitudes across the $X$ and $Y$ plates, the amplitude can renain constant around the tube face only if the maximm $X$ and $Y$ amplitudes are effectively equal, is $e_{p}$, cause the seme displacement of the electron beam. The actual amplitudes will not be quite equal as the deflection sensitivities of the two pairs of plates are slightly different. This means that a constant amplitude scan around the tube face calls for suitable balancing of the push-pull outputs of the two amplifier pairs. This requirement can be fulfilled by aud tably adjusting the cathode presets in each ampliffer pair on each acen If the display shows the $0,1,2,3,4$ and 5 mile marker rings, the gains of the amplifier pairs must be approximately correct. If the markers are not circular, the push-pull amplitudes are not correctly balanced. It is then nocessary to make adjustments to the appropriate pair of presets until the individual amplitudes are both correct and balanced as indicated by the presence of the correct nmber of markers with a circular shape.


## INDICATOR TYPE I82A. LAY-OUT


679. So far we have assumed that we have perfect push-pull outputs from each amplifier pair. If this condition is fulfilled the voltage across each pair of deflecting plates will be balanced about the tube centre and the timebase will then revolve about the tube centre. If, however, the two valves in either pair develop unequal amplitudes, the deflecting voltage across the pair of plates will not be balanced about the tube centre but about some other point. The scan will, then, not rotate about the tube centre and may result in odd marker shapes depending on the degree of unbalance, whether present in both pairs, and whether combined with ubbalanced overall amplitudes from the two paires. We thus have the further requirement of a means of balancing the output amplitudes from the two valves in each amplifier pair. This requirement is met in the indicator 182A by the incorporation of the presets R79 and R 80 . These controls vary the grid potential, and hence the gain, of one valve in the pair relative to the gain of its mate. In the indicator 182 valve matching is the only answer to this problem.
680. We have assumed that if we have balanced the outputs from the two valves in each pair the scan will revolve about the tube centre. This assumption presupposes that the $C_{0} R_{0} T_{0}$ spot is centred when there is no sawtooth input. This may not be the case if any deformation is present in the electrode structure. We have then a further requirenent for shift controls to centre the $G_{0} R_{0} \mathbb{T}_{0}$ spot when there is no irput. This requirement is met by the inclusion of the shift controls $\mathrm{R}_{0} 38$ and $\mathrm{R}_{0} 40$. In practice it is perhaps more satisfactory to apply the sawtooth imput and turn the scanner until, say, a vertical scan appears. If it does not pass through the tube centre, the H shift can be adjusted to bring it through the centre. By turning the scarmer until a horizontal scan is obtained the shift can be set up in the seme way.
681. The focus and brilliance controls, Ro 49 and Ro52 perform their normal functions.

## Fishpond Brightw Up Ruirements.

682. While we want a scan that maintains a constant range coverage of about 5 miles regardless of the scan in use on the H. 2. S. displays, we do not want the actual scan to show. Fe want only the target indications which are appliea as positive pulses to the P.P.I. grid to cause brightening up of the Fishpond display. These indications can only appear after the transmitter fires which wdil be when the Fishpond scan is about a $\frac{1}{2}{ }^{n}$ beyond the tube centre on the 50 mile scan The 10 mile and 30 mile zeros can be used to adjust the transmitter timing to make the transmitter fire at about the same point on the other scans, This means that we have a useful radial scan whioh begins about $\frac{1}{2}$ from the tube centre and caxtends to the tube circumference. Our scanning sawtooth carries the C. R.T. spot through the centre along a tube diameter on the working stroke and the flyback carries it back again. It becomes necessary then to have a bright-up waveform which will permit signals to brighten up only the portion of the scan between about $\frac{1}{2}$ " from the tube centre and the tube circumference. The flyback and the first half of the sweep must be prevented from brealing through by feeding to Fishpond the outm put from the black Pye plug on the receiver-timing unit which has the target indications and maricers superimposed on the W. FoGo brightmp wavaform If the switch unit and Wo FoGo bright-up controls are adjusted to start the Fishpond brightwup about $\frac{1}{2}$ from the tube centre on all scans, and the contrast control is set to pass an adequate bright-up waveform to Fiskpond, the timebase bright-up requirements can be fulfilled.
683. The control, $\mathrm{R}_{0} 32$, enables the Pishond operator to have a measure of control over the gain of his signal amplifier as arranged at present.
684. The Fishpond brilliance and gain controls are variable controls on the Fishpond panel. The focus control is a preset on the panel. The balance. potentioneters, shifta, and cathode presets are mounted inside the units, The marker pusb-bution switch also appears on the penel. The position of all these controls is shown on the layout diagrams in fige 117.

EOcus
685. With Ho 2. So contrast well anti-clockwise to prevent any bright-up being passed by V. 508, turn up Fishpond brilliance until a diametral scan just appears and adjust the pishpond focus to give the sharpest possible scan

I-Shift ( $\mathrm{R}, 40$ ) and Y-Shift ( $\mathrm{R}_{0}$ 38) .
686. Note bearing of heading marker on the $H_{0} 2_{0} S_{0}$ and Fishpond PoP. I. iso If they do not correspond, rotate the Fislopond tube in its base to obtain correspondence. Set the scanner for a vertical scan on Fismpond. If it does not pass through the centre, adjust the E-shifto Set scanner for a horizontal scan. If it does not pass through the centre use the V-shift to make the necessary adjustments.

## The Belance Presets, $\mathrm{R}_{0} 79$ and $\mathrm{R}_{0} 80$.

687. These controls must be adjusted to get the scan rotating about the tube centre. This is done by setting the scan-mariker switch to the $100 / 40$ position and setting the scannar in motion. If unbalance is present the Fishpond scan rotates about a sloppy bearing. If the swing of the imes end of the scan is elliptical, the major adis of the ellipse is across the most badiy unbalanced pair. If the swing is circular, the unbalance is approximately equal in the two pairs. The balance presets must be adjusted to get a scan rotating about the centre. The shift adjustments must have been made firisto If the range of adjustment on the balance presets is inadequate, a fault should be suspected in the velues of the anode or cathode loads, or in the valve emissions. In the case of the indicator 182, vaive matching is necessary as the balance presets are not incorporated in the sot. Perfect balancing may not be obtainable on the 50 mile scan because of the high gain, but the balance should be good enough to keep the scan centre reasonably stationary on the 30 mile imput and quite stable on the 10 mile input.
688. The cathode presets control the gain and thus effectively beoome range controls and so determine how many markers can appear on the display. The relative gain of the two amplifiers determines whether or not the marikers are circular.
689. The Ho 2.Se contrast control deternines how much bright-up square wave reaches Fishpond
690. The W. P.G. and switch unit bright-up controls determine at which point on the sawtooth, and hence at what point on the Fiskpond scan, the bright-up waveform commences.
691. The Fishpond zero marker always forms on the back edge of the 20 microm seoond pulse. Where this occurs on the sawtooth is fixed on the 50 mile imput. It will be about $\frac{1}{2} m$ fram the centre on a nomal Fishpond scan As the 20 microsecond pulse moves on the sawtooth with the 30 mile zero on the 30 mfle input to Fishpond, and with the 10 mile zero on the 10 mile imput, these controls oan be used to make the zero marker come up at about the same distance from the tube contre when the three scans have the same range coverage. What we then wish to achieve with these controis is the following:-
(a) Contrast - Set to pass enough bright-up so that only iddications and Fistmond markers brighten up the display and the full scan is actualiy blacked out.
(b) Bright-up Contro2s - Set to start the bright-up about a halfinoh from the tube centre on all scans when they have the correct range coverage. The requirenent is actually that the bright-up commences early enough on the 50 mile scan to brighten up the zeromaricer and that the starting point remains sensibly constant on the three scans.
(c)(1) 30 yile zero - Set to bring the zero marker up alout $\frac{1}{2}$ from the centre for the 30 mile input, i. e., at about the same point
(ii) 10 Mile zero - To bring the zero marker up about $\frac{1}{2}{ }^{\prime \prime}$ from the centre for the 10 mile input. These adjustments ensure that the display ranains sensibly constant as scans are changed on $\mathrm{H}_{0}$ 2. S.
(d) The Range Presets Set to fulfil the two conditions:-
(i) The correct range coverage of about $4-5$ miles on each scan This is indicated by the naber of marker rings sppearing.
(1i) Circular markers. This involves correct adjustment of the relative output amplitudes of the two amplifier pairse
692. The setting up sequence for these controls can be best carried out in the following steps:-

## Ee2oSo Contrasto

(a) Set Ho 2. So gain, brilliance and contrast fully anticlockwise. Bring brilliance olockwise to show $\mathrm{F}_{\mathrm{m}}$ 2. So plyback scan and then turn back about 4 notches firm the point where the saan and flyback fade out.
(0) Bring contrast cloclorise until radial H62.S. scan appears, then turn back one notoh beyond point where the scan fades out. Sotting the brilliance back 4 notches from the fadomout point in (b) is to ensure that adequate bxight-up is passed to Fishpond when the contrast is set as in (c).

## Berightoup Controls and Range Controls.

693. (a) Set Fishpond gain at maximum.
(b) Set scam-marker switch to $100 / 40$ position to get 50 mile sawtooth imput.
(c) Tura Fishpond brilliance up until radial scan just appearse
(d) Set scamer to make radial scan borizontal.
(e) Press maxicer push-button and note where imermost marker dot appears on the radial scan
(1) Check whether or not this imemost marker is the zero maricer by advancing Fishpond brilliance and noting whether any additional marker dots appear. If the bright-up adjustment is correct, the first dot will appear at the beginning of the radial scan since this represents the beginning of the brightup pulse.
(g) If this is not the case, adjust the switoh unit bright-up control until the zero marker dot coincides with the inner edge of the radial scan. In some cases it may not be possible to regard the bright-up sufficiently to prevent it commencing early. If this is the case, no harm is done so long as the bright-up does not conmence early enough to allow the spurious pulse at the beginning of the 20 microsecond pulse to break through and produce a spurious marker inside the zero marker dot. This can be checked on all scans by removing all suppression on $H_{r} 2$. S. and letting the transmitter pulse break through on Fishpond where it will cause a "splash" widening out the true zero marker.
694. Select the range preset marked 50 which operates on the amplifier patr produaing the horizontal sweep and adjust for 4 , 5 and 6 marker dots on the scan The zero dot shoula be $\frac{1}{2}^{n}$ to $\frac{3}{4}^{\prime \prime}$ out from the tube centre. If the timebase sweep appears to rotate slightly as the control is adjusted it means that the C. Ro T. is not set with the deflecting plates in the horizontal and vertical planes. With 4,5 and 6 dots on the scan set the scanner rotating. Adjust the second range preset marked 50 (working on the other anplifier pair) until the marker rings trace a circle.
(a) Set scan-marker switch to $30 / 20$ position to get a 30 mile sawtooth imput.
(b) Check that first marker dot obtained is the zero marker by noting where $\mathrm{H}_{0} 2 . \mathrm{S}_{0}$ range marker dot appears as the $\mathrm{H}_{0} \mathrm{~L}_{\mathrm{S}} \mathrm{S}$
range control is set to zero or by using the suppressor breakthroughe If necessary, adjust 30 mile zero to ahif't the 20 microsecond pulse on the sawtooth to bring the zeno mariker dot up on the bright-up.
(c) Use one range preset labelled 30 to get 4,5 or 6 marker dots on the horizontal scan Adjust the other to get 5-6 circular markers when the scanner is rotating. The zero marker should now be about the same distance from the centre as on the $100 / 40$ scan, i.e., about $\frac{1}{2}{ }^{\prime \prime}$ from centre. If necessary, set the 30 mile zero to get this result.
(c) Set scan-marker switch to the $10 / 10$ position to get a 10 mile sawtooth input.
(d) Cheak as before the first marker dot appearing is the zero marker. If not, adjust the 10 mile zero to move the 20 micnosecond pulse on the sawtooth so as to bring the zero marker on the bright-up.
(e) Use the range presets labelled 10 to get 4,5 or 6 circular markers with the scanner rotating. The zero mariser should again be the same distance from the tube centre as on the other scans. should the bright-up not start early enough, adjust the bright-up control on the W. FoG to start the bright-up about $\frac{1}{2}$ from the centre.
> 695. Check through the scans now that the markers are present for all settings of the scan-marker switch and that the zero marker appears approximately the same distance from the centre on each scan. The brightwup should comence on each scan at the position of the zero marker. If this condition is not fulfilied, altarnate adjustments should be made on the bright-up controls using the WoF.Ge control on the 10 mile input and the switch undt control on the 50 mile input until the condition is met. With the scamor rotating the zero marker should now cut the comencement of the heading marker on the $10 / 10,10 / 20,30 / 20,50 / 20$ and $100 / 40$ positions of the scan-marker switch.

## Checking Fishoond Range Calibration

696. It has been assumed that the ringing circuit in the anode of $\mathrm{V}_{0} 6$ is actuaily producing marker pips at 1 mile ( 10.75 microsecond) intervals. If the swi ich unit range soales aro in statute miles a check can readily be made as follows:-
(a) Set scan-marker switch to the 10/10 position and the height control to zeno.
(b) Set the height control to zero.
(c) Adjust range control to bring $\mathrm{H}_{0} \mathrm{~L}_{\mathrm{S}} \mathrm{S}_{\mathrm{o}}$ range marker dot auccessively on each Fishpond marker dot and read the range scale. The readings should be approximately $0,1,2,3,4$ and 5 miles. If axy arror is apparent, the inductance, In 2, can be unsealed and the core adjusted to give the current ringing frequency. Perfoct Correspondonce camnot be expected due to the inaccuracy at the begiming of the height scale and the setting of the height zero for accuracy at operational height.
697. A check can be made as follows with the monitor 28. This check does not depend on the switch unit scaless-
(a) Use a Pye interceptor socket to feed the $\mathrm{H}_{0} \mathrm{Z}_{0} \mathrm{~S}_{0}$ range maricer from the red Pye plug on the WiFoGe to the monitor 28.
(b) Set the timebase switch for a 100 miarosecond timebase.
(c) Note the calibrated X-shift reading when the $\mathrm{H}_{\mathrm{o}} \mathrm{2} . \mathrm{So}$ marker dot is on the centre of one of the Fishoond marker dots. Set the range control to bring the $\mathrm{H}_{0} \mathrm{Z}_{0} \mathrm{~S}_{0}$ range marker up on the next Fishpond marker dot and again read the X-shift. The difference should be 10.75 microseconds.

698 Daily mainterance procedure for Fishpond is incorporated in the full DoI. procedure in Chepter 12.


699. The first 200 Fi . mpond indicators are designated as type 182 and the balance as 182A.
(a) In type 182 umits the 150K grid leaks of V.1, V. 2, V. 3, V. 4 are taken to the junction of a 390 K and $8.2 \pi$ forming a bleeder between $\mathrm{H} T$. and earth. The junction is decoupled to earth by a 0.1 mf . condenser.
(b) In type 182 A units, the two-resistor bleeder is replaced by a series-parallel network, Details appear in the circuit diagram, figo 116. The grid leaks of V. 1 and V. 3 are taken to the junction of $\mathrm{R}_{0} 26$ and Ro $24_{4}$ The grid leaks of $\mathrm{V}_{6} 2$ and V. 4 are taken to the sliders of $\mathrm{R}_{0} 80$ and $\mathrm{R}_{0} 79$, respectively.

## Detailed Study of the Pishond Timebase Amplifiers.

700. So far, we have noted the following facts about the timebase amplifiers:-
(a) The circuits are symetrical.
(b) The imputs are push-pull sawtooths with working strokes of 240 , 720 and 1200 miaroseconds and amplitudes of the order of 50 V .
(c) The presets strapping the cathodes are switched to so vary the gain as to get constant range coverage regardless of the imputs This means gains in the ratio of 1:3:5 for the 240,720 and 1200 microsecond working strokes.
(d) In each pair the grid potential of one valve can be varied relative to that of tho other to get a balanced output.
701. No attempt has been made to explain fully how the cathode presets achieve the required changes in gain.
702. To appreciate the operation of either amplifier pair, more fully, let us refer to fige 118. Let us assume that $V_{0} 1$ grid is swinging positive and V. 2 grid swinging negative with the sawtooth inputs applied through $C_{0} 1$ and $C_{0} 2$ The $V_{0} 1$ imput will be balanced about the $D_{0} C_{0}$ level to which $\mathrm{F}_{\mathrm{o}} 1 \mathrm{grid}$ is tied, i. $\theta_{0}$, about + 7V. V. 2 input will be balanoed about the level to which V. 2 grid is raturned by $\mathrm{R}_{0} 80$. Let us assume for the monent that these levels are equal. The Doce level of the cathodes is then about 49 V . There is then a standing bias of about 2V. on the valves. If the cathode potentiais remained stationary at this level the valves would condnet during the part of the grid swing that carried the grids between the cut-off and saturation levelso These would be the seme on all scans, and the gain would be constant on all scans, so the output amplitude would be constant. The output velocity would, however, be in the same ratio as the input velocities, $i_{*} e_{0}, j: 3: 50$ Hence, the range coverages would be in this proportion. What we want to achieve is to so adjust the gain that while the grid swings through the central 107 microsecond portion of each swing the output voltage change is such as to carry the $\mathrm{C}_{\mathrm{o}} \mathrm{In}_{\mathrm{m}} \mathrm{T}$. spot across the tube.
703. As shown in para. 677, this means that the grids must move through about 17 volts while the spot crosses the tube diameter for a 10 mile input. When the 30 mile irput is applied the slope of the sawtooth is only $1 / 3 \mathrm{rd}$ as great so in 107 ms croseconds the grid can only swing through a third of the 11V. or around 3.5V. Similariy, on the 50 mile imput the grid has time to swing through only one-fifth of 11 or about 2,25 volts in the 107 microsecond sween periode If we assume the required voltage change in the 107 microsecond period is 125V we want to have a grid swing of about 11 V producing an anode swing of 125V. when the 10 mile imput is appliede When the 30 mile irput is applied we want a 3.5 volt swing to prodnce the same 125 V . change at the anode For the 50 mile irput we want a 22.5 V . swing to give an anode swing of 125 V .
704. When the sawtooth carries V.I gria above cutmoff anode current flows and the cathode potential tends to rise and follow the grid up. If there were $n 0$ cathode coupling we would then have a steady cathode rise while the
grid swings between cutmoff and the saturation current level. The net input signal would be the difference between this cathode rise and the grid swing while the valve went from cutmoff to saturation. There would thus be a measure of negative feedback which determined the actual anode potential swing while the grid went through the central 107 microsecomis of its swing. But while one grid is swinging up and tending to carry its cathode up with it, the other grid is falling with the antiphase output from the other end of the magslip stator. The second cathode is then falling while the first is rising. If we now strapped the two cathodes directily and had perfectly symetric circuits the fall at V. 2 cathode would cancel the rise at V.l cathode and the cathodes would remain stationary. There would then be no negative feedback and the amplifier would operate at maximu gain
705. If instead we switch a resistance of valiue $R$ between the two cathodes only a fraotion of the voltage ohange at either cathode will be applied to the other cathode. This fraction will be given by $\frac{R k}{R+R k}$ where $R k$ is the cathode
load. There is then a net cathode voltage change which provides negative feedback. The greater the value of $R$ the greater will be the negative feedback and the lower will be the gain By suitably adjusting $R$ we can then make the push-pull voltage change at the two anodes of each amplifier pair have the value required to carry the spot across the tube in about 107 microseconds to give the desired range coverage of 5 miles. By having different presets for each irput we can give $R$ the required value for each scan Since we need the highest gain on the 50 mile imput $R$ has then its minimun value. For the 30 milo input it will be higher and on the 10 mile imput it will be higher still. The difference in the amount the cathodes follow the grids on the different scans can be seen on the waveforms in fig.
706. If P. 80 is set to give V. 2 a grid potential different from that of V. 1 the gain of V. 2 will be modified. In this way the output amplitude of V. 2 can be varied so as to be equal to that of V.l, should slight difference in emission or component tolerances cause an unbalanced output and a display whose centre moved in a curred figura.
707. From fige 118 it is also apparent that the D. C . level of X 1 l can be varied relative to that of $X_{0} 2$ if it is necessary to apply a correcting voltage for any deformation in the electrode structure.

## The 피애ond Marker Cirouito

708. The following points have been made about the marker circuit:-
(a) If the push-button switch is pressed, the tunod circuit in the anode of V. 6 mings at $93 \mathrm{Ko} / \mathrm{s}_{0}$ to produce peaks at 10.75 microsecond intervals.
(b) The positive swings blas back v. 7 grid on grid current so that it only conducts on the peaks.
(o) These peak conducting periods produce negative pips at the anode which are applied to the P.P.I. cathode.
709. The marker circuit apears in fige 116. The following points should be noteds-
(a) When the pusb-button switch is not depressed V. 6 grid is returned to a potential of -100V. on pin 6 of the 12-way fram JB. 222. V. 6 is therefore cutmoff on the grid when the button is free since the 40 V . amplitude of the positivegoing 20 midarosecond pulse is not sufficient to cause conduction
(b) If the pusb-button is depressed V. 6 grid is returned to the Junction of $\mathrm{R}_{0} 64$ and $\mathrm{R}_{0} 57$ which form a bleeder between $\mathrm{H}_{\mathrm{c}} \mathrm{T}_{0}$ and earth This bleeder then returns $V .6$ grid to a potential of around +40V. The valve is then in saturation current and the tuned circuit in the anode will not ring on the leading edge of the 20 inicrosecond pulse. The pulse is differentiated sufficientily during the 20 miarosecond period to pernit the collapsing back edge of the pulse to make the anode tuned circuit
ring heavily. The initial swing of the ring will be of the order of 130V. peak to peak.
(c) The cathode of $V_{0} 7$ is bridged in at the decoupled junotion of Ro 76 and $\mathrm{R}_{0} 62$ which form a bleeder between $\mathrm{H}_{\mathrm{m}} \mathrm{T}_{0}$ and earth V. 7 cathode is thus given a decoupled cathode potential of about +15V. This will bold V. 7 cut off unless $V .6$ anode circuit is ringing.
(d) On the high amplitude positive swings V. 7 grid passes grid current into $C_{0} 20$ which must leak away through $\mathrm{R}_{0} 61$. This leak awry through Ro6l holds V. 7 biassed back so that only the positive peaks cause conductione These are ampified to form negative pips of about 15V. maximum amplitude at $V_{0} 7$ anode.
(e) An output is tepped uff across $\mathrm{R}_{0} 63$ and applied to the P.P.I. cathode via C. 7 and $C_{0} 21$. As these pips swing the cathode negative they have the same effect as a positive signal on the grid and result in brightening up of the display.

## The B-C Switch

710. This switch must be set to the $C$ position. Any new units should be cheaked that this adjustment has been made. The B position modifies the action of the 10 mile zero control in a way that is unsatisfactory for Bomber Command work

## Ho To and Heater Supplies

711. The 80V. AcCe supply is obtained by taining crossmonnections inside JBe 222 from pins 6 and 8 of the 18-way to pins 1 and 2 of the 12 way coded black. These pins feed the primary of the power transformer, T. $l_{\text {. }} V_{0} 8$ is a VU. 71 double halfwave rectifier stage whose output is snoothed by $I_{0} 3$ and C. 22, C. 23 . The output shoula be $400 \pm 20$ v. which provides the main $E T$. dine. This is dropped by $\mathrm{R}_{0} 77$ and $\mathrm{R}_{0} 78$ and decoupled for $V 6_{0}$
712. Heater windings are provided on T. 1 with outputs as shown on Pig. 116.

## E. Ho Supply

713. The E. HoT. supply for the Fiskpond PoP.I. bleeder is taken from the $-4 K V$ power pack in the modulator 64. A cable from the blue modulator output plug goes to the indicator 184 A parallel plug on the indicator 184 provides the output for Fishopond.

## Bias Supply:

714 . The -100 V . is obtained from the metal rectifiers and applied to $18 / 13$. A oross-comection from pin 6 of the 12-way black to $18 / 13$ in $J 8222$ picles up this supply for Fishponde

## DoCe Suply for Fishoond Relays.

715. The relays 1 and 2 in Fishpond are parallel respectively with $\mathbf{M}(500)$ and $N(501)$ in the $H . F_{0} G \quad$ The $+24 \%$ supply for $M$ and $N$ relays is carried on pins 2 and 3 of the 12way orange on the switch umit which passes to the 12-way orange on JB. 222. The 12-way orange/green on the JB. 22 is comected to the 12 way oranfe on the W. F.G. to complete the supply to $M$ and N relays For relay 1 in Fislmond a cross-connection is taken from pin 2 on the 12-way orange to pin 4 on the 12-way black in JB. 222. For relay 2 a cross-connection is made from pin 3 on the 12-way orange to pin 5 on the 12way black. The return or $24 V$. negative line to relays 1 and 2 is corpleted by taking a crossmconnection inside JB. 222 from the common $D_{0} C$. negative line on 18/2 to pin 3 on the 12-way black

## Punction

716. It has been emphasised that unless an adequate bright-up square wave is supplied to Fishpond, the flyback and diametral scan will tend to break through and make the display unreadable. It has also been pointed out that the amplitude of brightwip square wave that is passed by the W. Fo Go mixer, V. 508, deponds on the setting of the contrast control. If the He 2.S. operator sots the contrast control too far anti-clockwise, the bright-up reaching Fishpond will be insufficient to prevent breakthrough of the scan and flybaak and the unit becomes useless. The waveform generator 43 is a small added unit whioh is designed to provide an independent brightmup for Fishpond and thus oliminate the possibility of rendering Pishpond useless by an unfavourable setting of the contrast control.

## Erinctple.

717. When not using the W. F.G. 43, the mixed bright-up, signals, heading or track marker and range marker are taken from the black Pye on the Wo F. Go to provido the Fishpond signal imput. When the Wo $\mathrm{F}_{0} \mathrm{Go} 43$ is included in the installation the output from the slate Fye on the receiver-timing unit is split, part going to the W.F.G. 34 as before and part to the W.F. Go 43. The 20 microsecond pulse from one of the violet Pye plugs on the modulator 64 is used to trigger a multivibrator of the same type as the modulator multivibrator. The output of this multivibrator is a 1500 microsecond square wave with the positive phase comencing on the back edge of the 20 microsecond input, $i_{0} e_{0}$, when the zero marker forms. The duration of the positive phase is fixed at about 260 microseconds to provide brightening for the Pishpond scan. The signal input is mixed with the square wave in a stage similar to that used in the W.F.Go mixer, V508, and taken off from the cathode to a black Fye plug and thence to Fishpond The auplitude of the bright-up square wave can be adjusted to a suitable level by means of a bias control on the mixer stage. The negative phase of the square wave serves to black out the flyback and first half of the diametral scan. The condenser in the irput to the cathode of the Fiskpond signal amplifier is removed to enable the Pishpond gain control to be used as a limiter in exactly the same way as the $\mathrm{H}_{\mathrm{H}} \mathrm{L}_{\mathrm{s}} \mathrm{So}_{0}$ contreast control.

Installation and Cabling.

## Mounting。

718. The $8 \frac{1}{R^{n}} \times 6^{1 n} \times 4^{n}$ unit is suitable for mounting directly into the aircraft freme without the use of a mounting tray. The valves, etc, are mounted on an anti-vibration sub-chassis.

## Power Supplyo

719. The 18-way from the main junction box to the W. F.G. 34 is broken and the W.F.G. 43 inserted by using two 18-way plugs in parallel on the new unit. All eighteen pins of the added connector must be comected when the unit is inserted in Mark IID, Mark IIC, Mark IIIB or Mark IIIA installations, The H.T. supply is tapped off from pin 16. The 80V. supply for the heater transformer is tapped from pins 7 and 8 and pin 1 provides the earth lineo

## Triggecring.

720. The violet Pye plug on the W. F. G. 43 is comeoted to one of the violet pye plugs on the modulator 64

## Signal Input.

723. The slate Pye socket on the receiver-timing unit is fitted with a T-Pye plug to provide one output for the W.F.G. 34 and one for the new W. F. Go 43.

724. The black Fye plug on the W. F.G. 43 is connected to the black Pye on Pishonone Co 8, between the Fishoond signal amplifier catbode and the black Pye plug, is removed to provide Do C. coupling between the $\mathrm{F}_{0} \mathrm{~F} \cdot \mathrm{G} .43$ mixer and the Pishmond signal amplifier.

Circuit Detail.
723. $\left\{\begin{array}{l}\text { a) The actual circuit is shown in fig. } 120(b) \\ b \\ \text { ( }) \text { The effective circuit is shown in fige } 120 \text { (a) }\end{array}\right.$

The Bright-Up Multivibrator (V. $2 a, V_{0}$ 2b),
724. The dorble triode (CV. 181) V.2, is wired up in a cirouit very similar to that used for the modulator multivibraton V2a is normally conducting and V. Zb is cut off by the bias developed across B 4 by V. 2 a cathode current.
725. The 20 microsecond pulse is differentiated by C.1, Rol to fom positive
and negative-going pipse V.l cuts off the positive-going pip so we have a
negativo-going pip applied to V. $2 a$ grid on the back edge of the 20 microsecond
prise. As V. $2 a$ grid is carried down, the cathode current fallse This serve.
to carry V. $\%$ grid up with the rise at V. $2 a$ anode. $V, 2 b$ then starts to
conduct. The effect will be to carry V. $2 a$ cathode up ingtantly with the
increased voltage drop across R/ due to the cathode current taken by V. 2b.
V. $2 a$ grid also tenis to rise by the amount of the voltage change across $\mathrm{R}_{0} 4+$
Bo 7 when V. Zb goes into conduction. But V. $2 a$ grid can only rise as rapidly
as electrons can leak away from $c_{0} 2$ through $\mathrm{Ro}_{2} 2$ Since this time constant is
long, the instantaneous rise of $V .2 a$ cathode cuts $V .2 a$ off until the
exponontial rise of the grid towards $V_{0} 2 b$ anode a negative-going square wave
which comences on the back edge of the 20 microsecond pulse and ends after a
time determined by the time constant of C. $2, \mathrm{~B} .2$. The arplitude is about
100 V and the duration is about 160 microseconds. This is inverted and cleane
up in V. 3 a to provide the brightmup square wave.
726. Although the Fishpond radial scan is completed in about $40=50$ microseconds the flyback does not commence for some time, and the spot merely aits off the edge of the screen. There is therefore no objection to having the bright-up square wave scmewhat longer than the scanning period.
727. When V. $2 a$ grid has climbed exponentially to within its grid base of the cathode potential, V, $2 a$ goes back into conduction and the anode potential falls. This carries down V. 26 grid and so reduces V. 2 b cathode current to carry V. $2 a$ cathode down and further reduce the bias on $\nabla_{0} 2 a \quad V_{0} 2 a$ then condncts harder. The effect is cumulative and quickly cuts V. 2 b off and bxings $V$. 2s on hard until the next negative pip axivers.

## The Squarer (V. 3a).

728. As a consequence of the component values used in the coupling between $V_{0} 2 a$ and $V_{0} 2 b$, the bright-up waveform at $V_{0} 2 b$ anode is rot flat-bottomed, The waveform is therefore unsuitable for immediate application to the mixer stage. To overcome this difficulty the output from $V_{0} 2 b$ anode is applied to
a squarer stage which is half of a second CV. 181 double triode. The large amplitude waveform carries $V$. 3 a into grid current and below cut-off to square off the waveform and produce at V. 3 a anode a flat-topped positivergoing bright up square wave which is suitable for mixing with signels. The waveform observed will be distorted as a consequence of the D. $C_{0}$ coupling arrangements.

The Buffer Cathode Follower (V.3b).
729. To prevent the bright-up square wave from coupling back into the receiver-timing unit the imput from the slate Pye plug is brought into the mixer stage tbrough a buffer cathode follower stage. This stage is V. 3 b , the
second half of the double triode, V. 3. The positivengoing signal input is applied to the grid. $\mathrm{R}_{0} 17(202 \mathrm{~K})$, in the grid ixput of V. 4 e serves as the cathode load. Part of the bright-up voltage appears across Roll but camot couple back to the grid and the slate Pye plug. V. 3b thus provides a onoway channel for the signal input but isolates the bright-up waveform from the receiver-timing unit and Wo FoGo 340

The Mixer Stage (V.5).
730. Mixing of the bright-up waveform and the signals is done in a cathode follower stage very similar to V. 508 in the $W_{0} F_{0} G_{0} 340 \quad$ V. 4 is a VR. 91 strapped as a triode. 0.6 provides compensation for high frequency shunting by stray capacity at V. 3 a anode, and $\mathrm{C}_{\mathrm{l}} 7$ for high frequency losses due to shunting by stray ompacity at $V .3 b$ cathode and $V .4$ grid The brightmu square wave swings the grid of V4 through about 10 volts. By means of the preset, $R_{0} 19$, the $D_{0} C_{0}$ level of V. 4 gria can be varied V. 4 grid swings between 15V. and 25V. if $\mathrm{R}_{0} 19$ is fully anticlockwise and between OV. and 10V. if $\mathrm{R}_{\mathrm{o}} 19$ is fully ciockwise. How much of the bright-up square wave appears on V. 4 cathode will vary with the $D_{0}$ C. level to which $V .4$ grid is tied by $\mathrm{R}_{0}$ 19. Hance, by varying the setting of $R 19$, the amplitude of bright-up wavaform on the common cathodes of V. 4 and the Fishoond signal amplifier can be variede A further variation can be introduced with the Fishmond gain control. Whem this control is Pully clockrise, the signal amplifler grid is at its highest value and the valve takes the maximum current through the common cathode load. The mixer cathode is then at its highest level and therefore passes the miniman of bright-up, As the control is taken counter-clockwise less current is taken and the common cathode falls so more bright-up is passed. The control can thus be used to increase the bright-up until superimposed signals have their tops cut off as discussed in paras. 541 - 542

## Setting-Up Procedure.

## 731. (a) Scan-marker switch to 100/40 position

(b) Ho 2. Se gain to midway position.
(c) Brightmup preset on W.F.G. 43 (R.19)fully anticlockwise to hold mixer grid at lowest level and so cut bright-up output to minimm.
(d) Set Fishpond gain control (now used as a limiter) fully clocknise to make current passed by signal amplifier a madimum and thus take mixer cathode to its maximum level in so far as it is controlled by the Fhishoond gain control.
(e) Scope the waveform at the anode of the Fisbpond signal amplifier on the monitor 28.
(f) Advance the $\mathbb{F P} \cdot \mathrm{P}_{0} \mathrm{G} 43$ preset and observe the effect on the waveform on the momitor. Noise will appear first, then the bright-up puise increasing in amplitude. Presently top-cutting will start to take off the noise peaks and ultimately only the bright-up pulse will remain. Leave the control set at the point where the entire noise is just cut off by limiting and the full bright-up pulse remains.
(g) Turn the Fishpond gain anticlockwise and note that the noise reappears and that when fully clockowise the bright-up and noise disappear completely due to cut-off on the amplifier grid.
(h) With brilliance at minimum, leave gain control at point where the radial scan Just fades out.
(i) W. F. G and switch unit bright-up controls are no longer required for Fishpond and should now be set fully anti-clockwise.
(1) The range presets must be set to give 5-6 oircular markers on each scan and the 10 mile and 30 mile zeros set up to give a zero mariker of about an inch diemeter on the 10 mile and 30 mile sawtooth inputse


## Function

732. This undt was designed to reduce the "splash" coming through on the Fishpond display after the conclusion of the main transmitter pulse, This "splash" varies in duration from set to set. If the suppression control on the receiver-timing unit is set to cut out this "splash" the I. Fo amplifier is insensitive for the corresponding period and no signals can possibly get through to Fishpond. The Fishpond minimun range then is very poor depending on how long the receiver is suppressed after the primary pulse ends. an improved $v$ version known as the filter unit 189 may supersede the type 173 umits.

## Principle.

733. If the suppression control is set to just cover the primary pulse, the Fisimond signals and the "splash" will get through to Fishpond The mimimum range will then be determined by the range at which the intensity of signals will axceed the intensity of the "splash". Obviously, apything that will reduce the "splash" intensity without reducing the signal intensity will then improve the minimum range. The filter unit which is inserted in the pulse lead from the modulator to the transmitter unit contains a low-pass filter which is designed to pass all frequencies up to around $5 \frac{1}{2} \mathrm{Mc} / \mathrm{s}$ but sharply attermate higher frequencies. This is intencied to pass sufficient of the pulse components to obtain a satisfactory modulating pulse but to reject the higher frequency components which tend to cause ringing and atanding waves on the puise cable. Difficulties may arise fram pulse cablo radiation and picloup on the head amplifier and I. Po strip By attemating the frequencies above $5 \frac{1}{2} \mathrm{Mc} / \mathrm{s}$. it is possible to reduce the anount of pick-up of this nature which gets through the receiver and hence to minimise the "splash" intensity. In addition to pick-up of this nature, there is also the problem of secondary pulsing of the magnetron with the resultant develogment of mixed frequencies in the ane band which pass through the mixer to the head amplifier and thence to the receiver and the display. Reduction of the ringing of the modulating line and the pulae cable by virtue of the attemation of the high frequency components should also reduce this factor.

## Installation.

734 The filter umit is inserted in the pulse cable between the modulator and the transmitter unit, at the Modulator ende

## Sotting- Dp

735. The filter cannot pesaibly have any effect unless the suppression adjusted to just cover the primery transmitter pulse, $i_{0} e_{*}$, one notoh beyond the point where the whole breakthrough appears.
736. In ordar to get the maximm contrast between "splash" and signals just stronger than "splash" the minimum of brilliance must be used.

Gincuito
737. The filter circuit is shown in fige 121.

## Momitor Type 28.

738. (a) The panel and chassis layouts are shown in figs. 123 - 325.
(b) The oircuit is shown in fige 126.
(c) Waveforms are show in figs, 127 and 128.

Uses
739. The monitor 28 finds widespread use in the servicing of $\mathrm{E}_{\mathrm{o}} \mathrm{Z}_{\mathrm{s}} \mathrm{S}_{0}$ equipment. It can be used for the following punposes:-
(a) Eramination of waveforms.
(b) Measurement of voltage amplitudes of waveforms by means of a calibrated $Y$-shift and buflt-in voltmeter.
(c) Measurements of duration of waveforms with the calibrated X-shift or with the aid of the crystal-controlled calibrator, T.S. 202.
(d) Cheoking height and range maricer oalibration with the aid of T.S. 202
(e) Doternining approximate porof.'s.
(f) Detemining $D_{0} C$. Ievals of wavefoms with the aid of a auitable switching and meter arrangement.
(g) Measurement of Iscero transmitter power.

Panel Layout.
740. Details of the Monitor 28 panal are shown in fig. 123.
(a) power Supply - The monitor contains its own power pack which Operates from an BOV., $1000 \mathrm{c} / \mathrm{s}$ input via the $2-\mathrm{pin}$ W-plug. The single-way $W$-plug provides a -2KV. output from the momitor power pack This output has no present application in H. $2 . S_{0}$ maintenance
(b) Focus Control - Appears as a knob labelled "Focus".
(c) $\frac{\text { Brilliance Control - Appears ac a knob labelled "Bias". }}{\text { Sing }}$
(d) Signal Irput - (i) Signals may be applied at the black screm terminal or at the Pye plug labelled "Input". The latter was not provided on earlier models.
(ii) A separate Pye imput labelled "Int." is also provided. This is used to measure the power output of the Lucero transmitter.
(e) Input Switch - Signal ixputs may be applied
(i) direct to the Y-plates
(ii) through an amplifier of calibrated gain.
(iii) to a diode detector whose rectified output is applied to the Y-plates.
Which of these options is employed is detemined by the setting of a five position input switch The positions indicated are:-
(1) Direot - Signal applied direct to I. 10
(ii) $X 5, X 10, X 20$ - Sigmal applied through amplifier of gain as selected.
(iii) Inte - This position is used when the Iucero output is applied to the "Int." Pye pluge The ReP. pulses are thon applied to a peak rectifying diode whose output is applied direct to the Y. 1 plate.
(f) Time Base Selector Sritch - The monitor provides a oboice of one freemruming and four triggered timebases. The selection is made by means of a timebase selector switch. The positions are marked as follows:-
(a) $10-10$ miarosecond timebase.
(b) $100-100$ microsecond timebase
(d) Freq. - 2000 microsecond timebase which is inocmplete and shows only approximately 1500 miaro seconds on the display.
(e) V.A. Re- Freo-ruming timebase of adjustable speed
(g) Timebase Speed Control - When the timebase awitch is set to the V.A R position, the length of the free-running timebase can be varied by-means of the control labelled "Speed" from about 5 to 10 milliseconds.
(h) Timebase Symce Control - A knob labelled "Syno" is provided which is used to loak the scan when the freemmung timebase is used.
(i) Trigger Imput - When the monitor is to be used with He 2. S. on one of the triggered timebases, the 20 miarosecond positivegoing pulse from one of the violet Pye plugs on the modulator 64 is applied at the Pye plug labelled "Trig." When this input is used to trigger the momitor the timebase $p_{0} r_{0} f_{0}$ is that of the modulator multivibrator. If the modulator 64 is being synchronised by the transmitter-timing pulse, the timebase p.r.f. will be that of the master multivibrator and the complete Ho $2 . \mathrm{So}_{0}$ installation Any He 2.S. waveforms will then be autoratically locked to the monitor timebase.
(j) THmebase Start Control - A variable resistor in a resistance capacity network incorporated in the monitor permits the base start to be varied between 2 and 3 microseconds before the trailing edge of the 20 microsecond pulse, and 2 to 3 microseconds after this trailing edge. This variable control appears on the panol as "To Bo Start". The range of variation available may vary slightly from one monitor to another. It will also be affected by the steepness of the back edge of the 20 microsecond pulse.
Earth Comnection - A brass terminal is provided for a monitor earthing comnection to the unit under exemination.
Calibrated X-Shift - The angular displacement available on the X-shift is dividod into 10 equal parts. Each division then represents a time interval equal to 1/10th of the timebase length, $i_{0} e_{0}, 1 / 10$ th of $10,100,1000$ or 2000 microsecondse This calibration of the X-shift is provided to pernit measure ment of pulse widthse Since the calibrations on the 1000 are equally spaced they can only give accurate pulse width measurements if the timebase is perfectly linear, io $\alpha_{0}$, if the timebase velocity is constant throughout its full sweepo This is rarely the case so pulse width measurenents with the calibrated X-shift are subject to an arror which depends on the dagree of non-linearity present
(m) Calibrated Y-Shift - A voltmeter (100-0-100 volts) is conneoted into the $\bar{Y}-$ shift oircuit for the measurement of waveform anplitudes. When the signal imput is being amplified the amplitude indicated on the meter must be divided by 5,10 or 20 according to the amplification in use.

Uaing the Momitor 28 with $\mathrm{H}_{\mathrm{L}} \mathrm{Z}_{0} \mathrm{~S}_{0}$

## Come ctions.

741. (a) The power supply can be taken from the 2-pin 60V. An C. plug on the $\mathrm{H}_{0} 2 \mathrm{Se}$ junction box and applied to the 2-pin imput on the moritor panel.
(b) The triggering waveform is taken from one of the violet Pye plugs on the modulator 64 and applied to the Pye plug labelled "Trige"
(c) The waveform to be examined is applied to either the imut tenminal or input Pye plug.

## Eramination of Waveformse

742. The imput switch should be set to "Direct" unless the amplifiers are needed. The timebase switoh is set to $10,100,1000$ or freq. to suit the width of the particular waveform being excmined.


FRONT PANEL VIEW


## MONITOR TYPE 28 (DETAILS)



## Moasurement of Pulse Fidth.

743. The leading edge of the waveform is lined up with the vertical angraved line on the perspex screen over the tube face by means of the X-shift and the reading of the calibrated $X$-shift noted. The trailing edge is then brought into coincidence with the engraved line and the reading of the X-shift again noted. The mmber of divisions in the displacement is then multiplied by the time value of one division on the scan in use to obtain the pulse widthe for ecampler a waveform requiring $3 \frac{1}{2}$ divisions displacenent on the 100 microsecond timebase would have a width of $3 \frac{1}{2} \times 10$ or 35 microseconds, since 1 division represents $1 / 10$ th $\times 100$ or 10 microsecondse

## Amplitude Measurements.

744. Use the Y-shift to bring the bottan of the waveform into coinoidonce with the horizontal engraved line on the perspex screen and note the meter reading. Now bring the top of the waverorm to the horizontal inne and again note the meter reading. The difference between the two meter readings will give the amplitude of waveform applied to the Y-plates. If the input switch is on "Direct" the amplitude thus measured will be that of the imput sigmale If the switch is in one of the amplifier positions the aignal amplituade is found by dividing the meter difference by the amplification in use. For Erample: If readings of -20 and +35 are obtained with the input switch on $\times 5$, the imput amplitude is $\frac{55}{5}$ or 11 V.

## Checking H2 2\% Po RoF.

745. For this chock the timebase switch must be set to "Freq。" With this setting the timebase sweep cumences on the back edge of the 20 microsecond pulse with a velocity designed to cover the tube face in 2000 microseconds As the period is of the order of 1500 microseconds the leading edge of the neat 20 microsecond pulse will occur before the scan is ocmpleted and cuts off the sweep. The next scan then commences on the back edge of the following 20 miarosecond pulse. This means that the length of scan shown is what appears between the back adge of one 20 microsecond pulse and the begiming of the noxt. By using the X-shift the length of scan in divisions can be measured. Rach division now represents 200 miaroseconds, so the approximate period is foum by taking the mmber of divisions $\times 200$ microseconds, For cuample: If the scan leggth is 7.7 divisions, the scan length is $7.4 \times 200=2480$ microsecondis. To get the full period the 20 microsecond pulse width should be added. The p.r.f. is found by dividing the period in microseconds into $1,000,000$ miorosoconis (1 second). A period of 1490 mieroseconds means a p. F.f. of $1,000,000=$ $671 \mathrm{c} / \mathrm{s}$. How accurate any such calculation will be is again determined by what dogree of non-linearity is present in the timebase.
746. The use of the monitor 28 in conjunction with the TS. 202 in aetting up -the height and range markers is discussed under the T. So 202.
747. The use of the monitor 28 in conjunction with a Do co scope attachment is discussed under measurenent of $D \mathrm{C}$. . leveles.

Moasurement of Incero Transmittor Powere
748. Connect the ReP. output plug on the To $R_{0} 3160$ to the "Int. "Pye plug on the monitor with a length of uniradio 40 This connecting cable should be supplied with the monitor 28 and no other type of cable should be used as it alone has the correct 47 okm impedance.
749. The monitor incorporates a diode peak voltmeter comnected to a resistance network This network teminates the 47 olm feeder correctly and attemates the imput voltage by a ratio of 6:1. The reotified peak voltage may be read with the calibrated Y-shift. The power output may then be derived. from the fommlas-

Peak Power $=\frac{\left(6 y_{0}\right) 2}{94}$


From this formula, the following table is obtained:-

Pulse Anplitude   in Volts	Peak Fower   in Watts
10	40
15	85
20	150
25	235
30	340
35	460
40	600
45	760
50	940

750. The picture on the tube may be examined on eithar the 100 or 10 microsecond timebase. In either case, the pulse shape is not a true repreer ontation of the $R_{0} F_{0}$ transmitter puise because a long time constant catbode drouit to the diode is necessary to ensure that true peak voltages are recorded.
751. The power output measured in this way at the Pye plug on the transmitter sub-unit output socket should be nearly 600 watts. If measured at the aeriel sockets 500 watts is a reasonable figure. If it is substantially less than these figures the fault is most likely to be in one of the following circuits:-
(a) E. H.T. supply.
(b) Transmitter filament supply.
(c) Drive from the modulation valve in the waveform generator to the modulator valve. The difference between the power readings at the two points gives an indication of the afficiency of the common T. $R$. system.

The Monitor 28 circuit.
752.
(a) The complete circuit is show in figs 126
(b) Significant waveforms are shown in figs: 127 and 128.

The Tmebase
753. The 20 miarosecond imput is applied to the grid of V. 1 via the long time constant $C_{6} 1_{, ~ R} \mathrm{R}_{3}$. The waveform is amplified and inverted at V.l anode. C. 3, Ro 4 , R 5 provide a time constant variable between 45 and 105 microseconds wioh introduces a measure of differentiation dependent on the setting of Rolo This differentiated negative-going square wave is applied to the auppressor of V. 2

754 V. 2 is the timebase stage arranged as a Miller oircuit. The following circuit details are worth noting:
(a) Anode connected to grid through:-
(i) $\mathrm{C}_{6} 8+$ trimener $^{(1)} 36$ with $\mathrm{R}_{0} 12(150 \mathrm{~K})$

for gria leak to give	10	fus. $T$			
"	$n$	$n$	$n$	$n$	100
$n$	$n$				
$n$	$n$	$n$	$n$	$n$	1000
$n$	$n$	$n$	$n$	$n$	2000

$\begin{array}{ll}\text { (iii. } & \mathrm{C}_{6} 8+\text { trimmer } \mathrm{Co}_{0} 38 \text { with } \mathrm{R}_{0} \mathrm{l}_{4} \\ \text { (iv) } & \mathrm{C}_{6} 8+\text { trimmer } \mathrm{C}_{0} 39 \text { with } \mathrm{R}_{0} \\ 15\end{array}$ (10M)
" $\quad$ - 2000 n
(b) For the 1000 ~us. To Be grid leak is tapped down to junotion of Bo6: and $\mathrm{R} / 18$
(c) For the 2000 us. T. Be grid leak is tepped down to junction of Roll and Re 18.
(d) For the freemrunging timebase, the screen and $H_{0} T$ o supply is discomected from V. 1 and V. 2 anode is coupled to its grid through
 as grid leak. $\mathrm{Re}_{\mathrm{l}} 19$ provides the timebase speed control.
755. When the negativergoing pulse from V. 1 anode is applied to V. 2 suppressor the anode current cuts off on the leading edge of the 20 microm second pulse to produce the flyback. V. 2 will then be cut off on the suppressor until the suppressor is again brought above cut-off. 'If Rn 4 is


## THE DEVELOPMENT OF THE TRIGGERING WAVEFORM OF THE TIME BASE


set to a sufficiently low value the differentiation of the pulse will bring V. 2 suppressor above cut-off before the back edge of the 20 microsecond pulse occurs. Ro4e is then the timebase start control on the panel. With Ro 4 full in the timebase may start after the back edge of the 20 mi crosecond input pulse, due presumably to distortion of the pulse applied to $V_{0} 2$ suppressor. That is, the 20 microsecond pulse on $\mathrm{V}_{0} 2$ suppressor must be slightly wider than the input pulse. When V. 2 suppressor crosses cut-off the usual Miller timobase action occurs to give a falling sawtooth at V. 2 anode. V. 7 keeps V. 2 suppressor fram swinging positive with the back edge of the differentiated waveforibe
756. The sawtooth from V. 2 anode is applied to the one X-plate, but this is not sufficient to give a full deflection so the paraphase amplifier, $V .3$, is used to develop an antiphase sawtooth of approximately the same ampilitude The coupling betwoen Vo 2 and V. 3 is similar in principle to that used between the timebase valve and paraphase amplifier in the Gee indicator. Bad cramping or non-linearity of the timebase at the begiming of its sweep has been cleared in a mumber of cases by replacing Cl5 in V3 cathode circuit.
757. $R_{n} 21$ is the calibrated $X$-shift control.

## The Amplifier circuit.

758. V. 5 and V. 6 constitute the calibrated signal amplifier, and so 2 is the aignal imput switch V. 5 and V. 6 are arranged as a catbodo-coupled amplifier similar to that used to dovelop the indicator 184 timebase. The cathodes are strapped by the preset, $\mathrm{R}_{0} 55$, in the $x 20$ position, $\mathbb{R}_{0} 55+\mathrm{R}_{0} 56$ in the $x 10$ and Ro, 55 + Re 56 + Re57 in the $x_{0}$. The insertion of increasing resistance results in increased negative foedback and reduced gain. Ro 55 is used to initially set the gain to 20 for the first position of the input switch. The amplifier has a flat response over all frequencies up to $500 \mathrm{KO} / \mathrm{so}$
759. The outputs fram the anodes of $\mathbf{V . 5} 5$ and $V .6$ are applied via S. 2 to the $Y$-plates for the $x 20, x 70$ and $\times 5$ positions of the ixput switoh In the fourth or "Direct" position, the signal ixput is connected straight through to Y. $\mathrm{I}_{0} \mathrm{Y} .2$ is earthed through C .23.
760. Re 40 provides the X -shift and the meter reads the ohange in shift voltage requirod to move the waveform through its own amplitude, $i_{0} e_{0}$, the amplitude of the waveform.

## The Syno. Control.

761. When the timebase selector switch is set to the V. Ao Bo position, the problem of locting is simplified by having a aynohromising signal applied to the timebase valve This signal is applied vian C. $34, R_{0} 64, R_{0} 63$ and $C_{0} 4$ to V. 2 screen Ro 64 permits variation of the emplitude applied so serves as the Syno, control.

## The flyback Blackout Gircuit.

762. During the period that V. 2 anode current is cut off on the suppressor the screen current rises so the screen potential falls and a nogative-going square wave appears on the screen Due to the differentiation of the pulse applied to the suppressor the soreen waveform will not have a flat top The waveform is therefore applied to the biassed diode, V. 8, which cuts off the bottom part to give a square wave output which is applied to the C. R. To gride V. 10 acts as a DoC. restorer which negatively restores the waveform about the level of the brililance control slider. This negative-going wavaform thon carries the Co. RoT. grid down while Vo 2 anode current is cut off on the suppressor, i.e., during the flyback period.

## H6T. Supp 2 z .

763. $V_{0} 12$ is a $524 G$ full wave rectified which provides approximately 400 V . ( 120 mas ) as the $\mathrm{Ho} \mathrm{T}_{0}$ supply.
764. Vo 4 is an anti-jitter valve to eliminate 100 frequency ripply from the $\mathrm{H}_{0} \mathrm{~T}_{0}$ supply. $\mathrm{R}_{0} 30$ is a preset used for adjusting the gain of $\mathrm{V}_{0} 4$ to give


SIMPLE DC. LEVEL ATTACHMENT FOR MONITOR 28.


MORE ELABORATE DC. LEVEL ATTACHMENT FOR MONITOR 28.

FIG.I29.
gero ripple at the anode.
E H T. Supply.
765. V. 11 is a VU. 120 halpwave rectifier supplying about 2.3 KV . (3 ma.)
for the C.R.T. bleeder.
The Diode Peak Voltmeter.
766. V. 9 is the diode detector to which the imput from the Iucero transmitter is applied via the Pye plug labelled "Int." if the input switch is set in the fifth or "Inte" position The rectified pulse ervelope is applied via the choke $\mathrm{I}_{0} 1$ and $\mathrm{C}_{0} 2 \mathrm{~L}_{4}$ to Y.1. Its amplitude can be measured with the $Y$ shift and the power found from the formula or table in para. 749.

$$
\text { DeC. Level Attachment for Monitor } 28
$$

## Introduction

767. The monitor 28 has a calibrated $Y$-shift which can be used for measuring the amplitudes of waveforms. Very frequently it would be convenfent to know the $D_{0} C_{0}$ level of a waveform as well as its actual amplitude. This information cannot be obtained from the moritor as it stands, since the wavefors is applied through a condenser which blocks the D. C. component. If this $D_{0} C$. component is applied in the form of a square wave whose amplitude is equal to the magmitude of the Dr C. level, it will effectively become an anc. waveform which can be displayed on the momtor.
768. A $D_{0} C_{\text {. }}$ level can be broken into a square wave be connecting to earth one of the imput terminals of a switch motor (of the type used in An S. Vo, A. I. or Visual Monica), while the other is connected to the point whose $D_{0} C_{0}$ lovel is required, As the switoh revolves its potential will be at earth for half of each revolution, and at the DoC. level wanted for the other half of each revolution. The output waveform will then be a symmetric square wave of frequency equal to the revolutions per second of the switch motor if it is of the two input type. If of the 4 imput type the p. $r_{0} f$. can be doubled by connecting opposite pairs of imputse This is desirable in order to get the duration of each phase of the square wave short with respect to the input time-constant of the monitor. When this condition can be fulfilled the monitor timebase will appear at two levels on the soreen The one level represents earth potential and the othor the required $D_{0} C_{0}$ level whose value can be measured with the Y-shift in the normal way.
769. If the awitching speed is not repid enough to produce a square wave whose positive and negative phases have durations short in comparison with the imput fime constant of the moritor, the display will show a series of lines at different lovels due to the partial differentiation of the square wave and the decay of the deflecting voltage applied on successive sweeps of the timebase. In this case the $Y$-shift must be used to measure the mavinum potential difference between the lines present on the display.
770. The $D_{0} C_{0}$ level observed on the display will appear above or below the earth level depending on whether the potential at the point under examination is positive or negative with respect to earth.
771. So far, we have assumed that one aide of the switch motor is earthed in which case we are using earth as the reference potential. It is not at all essential that the reference potential be earth. Any other potential may be used provided its value is accurately known. The observed amplitude must then be added to or subtracted from the reference potential to get the $D_{0} C$. level with respect to earths
772. It is inportant that the imput switch contacts should not overlap electrically. Should this occur the reference potential will be fed back at the point under observation. A cheok can be made by connecting an Avo set to the 10,000 scale across the input sockets when the motor is runming. If no overlap is present an infinity reading will be obtained.

## Measurement of Voltages.

773. Frequentiy the introduction of a meter into a circuit will either upset the circuit operation or cause changes in the wanted voltage value. The attachment provides a ready means of checking such voltages as lie within its range of measurement.

## Study of Waveforms:

774. Provided the switching speed is not too slow the waveform at a point in a circuit can be shown on the monitor 28. The $D_{0} C_{\text {. }}$ lovel of the different parts of the waveform can be measured with the calibrated Y-shift. If distortion by the attachment is suspected the waveform can be applied in the normal way and its amplitude measured.

Double Beam Hork.
775. If two waveforms are applied to the two imput terminals of the switch they will appear on the screen separated by the difference in their $D_{0} C_{\text {. levels. }}$ Phase shifts, etc., can then be obsexrved.

Simple Unit.
776. The aimplest axrangement is to use only a switch motor. The changeover contact will be connected to the monitor imput. The other two contacts will be connected:-
(a) To the unknown Do C. level which may have a waveform superimposed on it.
(b) To the reference potential which may be earth or any other accurately known value with respect to earth

## More Elaborate Und

777. A more elaborate arrangement is shown in fig. 129. The following items are requireds-
(a) A 500v. power pack (not shown in diagram) which has no connection to earth, to make it possible to obtain both positive and negative voltages. The required camponents can be obtained from a Gee power pack.
(b) A switch motor, preferably one which can be run at a higher speed than normal to eliminate differentiation in the imput $C_{0} R_{0} \quad$ If an $A_{0}$ I. switch motor is used the effective speed of switching can be doubled by connecting opposite contacts as shown
(c) A wirewound 50k potenticmeter with a rating of at least 3 watts.
(d) A meter with a full scale deflection of 500 microamperes is preferable but not essential. I'he resistance values shown are approximately correct for a 0 - 500 micrommeter. The series meter resistances will require adjustment by comparing meter readings with a standard meter to get direct reading on rangea of $0-5 V_{0}, 0-50 V_{0}$, and $0-500 \mathrm{~V}$. Due to difficulty in obtaining a potentioneter capable of operating on a 500V. imput, it was necessary in the actual model to limit the maximum voltage applied to 350v.
(e) A three-position Yaxley switch for changing the potential applied to the potentianeter and simultaneously changing the range of the meter. The type of switch used in the control panel of Mark II or Mark III I.F.F. is suitable.
(f) A triple-pole changeover switch or a relay energised from the 247 . supply and controlled by a single pole $0 \mathrm{~N} / \mathrm{OFF}$ switch. The relay or switch changes the earth connections to the potenticmeter ( 80 as to obtain a voltage either positive or negative with respect to earth) and at the same time changes the polarity of the meter conneotions.
778. It is recommended that the circuit be built up in accordance with the components available as the same results can obviously be obtained in different


FRONT PANEL

TEST SET TYPE 202


## Introduction

779. Test Set Type 202 is designed to give:-
(a) Calibration pips at intervals corresponding to 500 feet, 1,000 yards or 10,000 yards range
(b) A positive 20 microsecond triggering pulse at a repetition frequency of either 600 cycles or 1200 cycles per second The caltibration pips are locked to the back edge of this 20 microsecond pulse.

Power Supply.
780. The test set may be operated from 230 volt 50 cycles or 80 volt 1000 cycles.

For 80 volt supply use pins 1 and 2 of the 4 pin $W$ plug. For 230 volt supply use pins 1 and 40

## General Principleso

781. (a) A arystal oscillator whose frequency is $983.2 \mathrm{Kc} / \mathrm{s}$ gives calibration pips at 1.017 microsecond ( 500 feet) intervals.
(b) Division by 6 gives pips at 6.1 microseconds, corresponding to 1000 yards range. Further division by 10 gives pips at 61 microsecond intervals ( 10,000 yards).
(c) A third divisiom process gives us a 20 inicrosecond pulse at a repetition frequency of 1170 cycles by dividing by 14 or 606 cycles by dividing by 27.
(d) Presets are provided by means of which the repetition frequencies can be varied above or below these values.

The Divider Gircuits.
782. Division is obtained by the use of phantastron Prequency divider stages. Fig. 131 gives the circuit for the first divider stage together with wayeforms. This may be taken as a standard example of frequency division by the use of a phantastron circuit.

Note the following points of the circuit:-
(a) Anode coupled to grid by c.6.
(b) Anode held at a potential determined by $R_{0} 7, R_{0} 8$ and the diode V. 12A.
(c) The grid held at a potential determined by $R 14,15$ and 16. Ro 11 determines the potential to which the grid tries to rise but is unable to do so because of the diode V.12B
(d) The suppressor is held at a potential lower than that of the grid (and hence of the cathode) by the bleoder network $R_{0} 14$, 25 and 16.
783. The positive grid potential causes the cathode to enit fairiy beavily and raises the cathode to arouni 24 voltse. The suppressor potential is fixed at about 10 volts. Therefore with cathode at 24 V . and suppressor at 10V., the flow of current to the anode is completely cut off and the screen is taking the entire cathode current. This drops the screen to about 60V. below the supply voltage.
784. A negative-going $983.2 \mathrm{Kc} / \mathrm{s}$. pip is applied to the grid fram V. 1 via the diode V.12A and C. 6. This drives down the grid sufficiently to reduce cathode current and bring down the cathode potential to about 9 volts. The suppressor bias has now been renoved and current is switched to the anode whose potential will begin to fall. The anode would fall sharply if C. 6


TOP OF CHASSIS

TEST SET TYPE 202
were not there As it is the anode can only fall as fast as 0.6 can discharge through $R_{0} 12$ and $R_{0} 11$ (Fig.131b). Actually, during this stage the grid rises slightly (Fig. 131c). This means that electrons are leaking away from the grid plate of 06 slightly faster than they are flowing to the anode plate fram V. 2 anodn. This rise in grid voltage serves to compensate for the falling anode voltage and the anode current remains fairly constant. This results in the anode falling almost linearly, Ultimately the anode voltage gets down to a point of equilibrium at which any further fall of anode volts would reduce anode current with a consequent rise of anode volts. Hence we say the anode "bottons".
785. There is now no further flow of electrons to the anode plate of C. 6. The same rate of leak away now represents a rise of grid voltage and the grid climbs rapidly. This grid rise increases cathode emission and cathode voltage rises with the grid voltage. The increased emission passes to the screen not to the anode.
786. When the cathode potential passes that to, which the suppressor is tied suppressor bias again comes into action Cathode current is then switched to the sareen whose voltage falls and the anode current is quickly cut off by the suppressor.
787. The anode tries to return to its ctu-off level but must carry the grid with it through the coupling of C. 6. The anode and grid therefore rise together until a further rise at the grid is stopped by V. 12 B coming into conduction. The cathode follows up with the grid and the screen falls accordingly, due to increased cathode enission.
788. The grid voltage is now steady. The cathode potential is fired by the steady cathode current to the screen The screen is now at its mimimun level. The anode is rising exponentially as C. 6 charges through $\mathrm{R}_{\mathrm{o}} 10$. Eventually it will reach a point at which the diode V. 12 A will conduct again and prevent any further rise.
789. Having reached this stable condition the next negative triggeming pulse to come along will start the action over again.
790. By varying the potential to which the grid tries to rise, that is by varying R.11, we vary the rate at which electrons leak away from the grid aide of C.6. This will vary the overall time for one cycle of the phantastion action. Hence by suitably adjusting $R_{0} 11$, we can arrange that the phantastion antion is triggered off by every sixth $983.2 \mathrm{Kc} / \mathrm{s}_{6}$ pip. Since these pips occur at intervals of 1.017 microseconds, the V. 2 will complete its phantastron cycle in $6 \times 1,017$ or 6.1 microseconds.
791. The square wave from the screen thus has an overall time of 6.1 microseconds ( $6 \times 1.017$ microseconds). This waveform is passed to V. 3 via C. 8 and $\operatorname{Rn} 17$ where it is differentiated, As indicated in Fig. 131, the cathode waveform in a phantastron circuit is always in antiphase with the screen waveform.
792. In taking waveforms from the phantastron circuit it is better to use the cathode than any of the other electrodes, since the anode-grid capacity will be altered if test leads are put on anode or grid and the resulting waveform will not be a correct indication of the circuit action.

## Outline of Circuit.

793. The test set 202 circuit is shown in fig. 135. V. 1 is a crystal controlled oscillator. The crystal frequency of $983.2 \mathrm{Kc} / \mathrm{s}$. gives callbration pips at 1.017 microseconds ( 500 feet) intervals. The grid resistor $\mathcal{R}_{0} l$ is a high value so that the mean grid potential is well


TEST SET TYPE 2O2- CIRCUIT
beyond cut-aff and only negative pips of voltage appear at the anoda
These are used to trigger V. 2

7940 V. 2 action has already been described in paras. 782 to 7910 The screen waveform of V. 2 is differentiated by C. 8 and R. 17 (see Fig. 135) and passed to V. 3 gride. This valve is an amplifier biassed almost to cut-off so that only the positive pips of the differentiated waveform appear at the anode where they are negative going at 6.1 microsecond intervalse
795. These negative pips are used to trigger the second phantastron frequency divider, V. 40 This stage divides by 10 and the overall time of each phantastron cycle is 61 microseconds. The preset for adjusting this stage is R. 27. The output waveform from the screen consists of a positive portion 41 microseconds in length and a negative portion 20 microseconds in length.
796. V. 5 amplifies, inverts and genoraliy cleans up this square waveform from V. 4 screen The result is differentiated by $C .18$ and Ro 38 so that at V. 14 A cathode we have negative pips 61 microseconds apart with a positive pip 20 microseconds before each negative pip.
797. V. 6 is the third phantastrom frequency divider. V. 11 (VR92) has its anode 200 volts below its cathode so that it is non-conductinge The phantastron action is started by a negative pip and $\nabla_{0} 6$ anode begins to fall. When it has fallen almost 200 volts, a positive-going pip will be passed by $V .11$ to V. 6 anode. This stops the fall of anode voltage and starts the flyback portion of the phantastron cycle. The flyback is rapid (C. 22 charging through Re 44) and the circuit has reached its stable state before the next nogative pip arrives 20 microseconis later. This gives a 20 microsecond negative pulse at V. 6 screen.
798. The repetition frequency of the 20 microsecond pulse depends upon the potential to which the grid leak of V. 6 is returned. Fhen the switch marked "Rep. Freq". is set to $600 \mathrm{c} / \mathrm{Bo}_{0}$, the grid of V. 6 is returned via R 45 and Ro 46 to the potential of the slider of Re 47. If we examine the waverorm at $V_{0} 6$ cathode or the output waveform as described in paragraph 801 (0)(1), we can observe the division ratio of this valve If $\mathrm{B}_{\mathrm{c}} 47$ is so adjusted that division is by 27, then a 20 microsecond pulse occurs at the screen every $27 x$ 61 microseconds which is equivalent to a frequency of $606 \mathrm{c} / \mathrm{s}$. If we vary the slider of R. 47 the repetition frequency of the 20 microsecond pulse can be varied above or below $606 \mathrm{c} / \mathrm{s}$. When the switch marked "Rep. Freq," is set to $1200 \mathrm{c} / \mathrm{s}$. V. 6 grid is returned via $\mathrm{R}_{0} 45$ to the slider potential of Ro48. If $\mathrm{B}_{0} 48$ is adjusted so that $\mathrm{V}_{0} 6$ is dividing by 14 the screen waveform will be a 20 microsecond negative pulse at a frequency of $1170 \mathrm{c} / \mathrm{s}$. Moving the slider of $\mathrm{R}_{0} 48$ will vary the repetition frequency above or below $1170 \mathrm{c} / \mathrm{s}$.
799. The screen waveform from V. 6 is squared up and inverted by $V_{0} 10$ and passed via the cathode follower (V.9) to the 20 microsecond output plug at an output impedance of about 200 ohms.
800. V. 7 is an anplifier for the calibration pips which are passed to the cathode follower, V. $B_{0} V .8$ has a variable bias control, Ro 62 (marked "Anplitude" on the potentianeter rack) giving variations in amplitude of the calibration pipse The negative output is taken from the anode which has a low value resistance load ( $\mathrm{R}_{0} 63$ ). The positive output is taken from the cathode.

## To Check Dividers

801. Trigger momitor type 28 with the 20 microsecond pulse from test set 202. Connect the 50V. positive output from test set 202 to the imput plug of the mont tor.

## (a) Division by 6.

Set calibration interval switch to 500 feet. Set monitor T/B to 100 and Amplification to X 20 . The level of every sixth calibration pip should be lower than the otherse If not, adjust ReII (marked "X6") on the potentiometer rack of RoS. 202 .


## TEST SET TYPE 202



LEFT SIDE OF CHASSIS

## TEST SET TYPE 202

Diviaion by $10_{0}$
Switch to 10,000 yard calibrations. Set monitor $\mathrm{T} / \mathrm{B}$ to 100 and amplification to X 5 . The output should show large pips at 10,000 fard intervals with smaller internediate pips at 1,000 yard intervals, and still snaller pips at 500 feet intervals $17 i n e$ 1,000 yard pips should appear between each pair of 10,000 yard pips. If not, adjust Ro 27 (marked "X10") on potenticmeter racis.

Motes = This breakthrough of intermediate calibrations is due to the fact that $C_{0} 34$ and $C_{0} 33$ feed a small fraction of the 500 feet and 1,000 yards calibration pip voltages on to the positive output dirouit.
(c) 20 microsecond pulse repetition frequency.
(i) $600 \mathrm{c} / \mathrm{E}$

Calitrration Interval Switch to 10,000 yards.
Rep. Freq Switch to $600 \mathrm{c} / \mathrm{s}$.
Momitor $28 \mathrm{~m} / \mathrm{B}$ set to Freq.
Amplification set to Direot.
Monitor Time Base Start turned fully clockeiso. 27 calibration pips should appear on the time base. Adjustment is by $\mathrm{R}_{0} 47$ (mariked $6600 \mathrm{c} / \mathrm{s}_{0} \mathrm{~N}$ ). The actual repetition frequency when dividing by 27 is $606 \mathrm{c} / \mathrm{se}$
(ii) $1200 \mathrm{o} / \mathrm{s}$

As above with Rep. Freq. switch set to $1200 \mathrm{c} / \mathrm{s}_{6} \quad 14$
calibration pips should appear on the time base. Adjustment is by Ro 48 (marked " $1200 \mathrm{c} / \mathrm{s}^{\text {n }}$ ). The actual repetition frequenoy when dividing by 14 is $1170 \mathrm{c} / \mathrm{s}$

Qalibration of Momitor 28
802. The monitor 28 time base is not perfectly linoar and the $X$-shift calibrations are therefore only approximate. The monitor time base may be calibrated from the test set 202 If the monitor is directly calibrated by this means care must be taken to see that the position of the time base start remains ficode Further, it is nocessary to have one fixed position for the X-ahift since any movement of the time base will result in incorrect calibration owing to the non-linear time base.

## The $\mathrm{Hh}_{2} \mathrm{~S}_{0}$ Height and Range Karkerso

803. The $\mathrm{H}_{0}$ 2ss markers are pulses prodnced in the $\mathrm{H} \mathrm{C}_{\mathrm{s}} \mathrm{S}$. equipment at variable periods of time after the back edge of the 20 microsecond pulse. The H, 2 So trammitter firing is also controlled by this 20 microsecond pulse, but owing to a delay in the spark gap, the commencement of the transmitter pulae does not ooour matil neariy 2 microseconds after the ond of the 20 miorosecond pulse. How the comencement of the transmitter pulse represents zero time and heme zemo range and is the instant at which we start to measure the time interval for the prodnction of our height marker for any height. For a height of 20,000 feet, the hoight mariker must be produced at a time after the transmitter pulse equivalent to the echo time frcm a reflector at 20,000 feet distance. With the monitor 28 mo are able to vary the start of the time base by a variable time up to about 5 microseconds depending upon the setting of the Time Base Start control. . Therefore, if we put the transmitter breakthrough pulse on the monitor we can on most momitors, adjust the start of the momitor time base to correspond with the beginming of the transmitter pulse. The start of the momitor time base then represents zero time If we mow put the test set 202 calibrations on to the momitor we shall have a means of measuxing time from zero time and we can ensure that the height and range marizers are produced at the correct instant of time for any particular setting of the hefight and range controls.

## Use of $T_{0} S_{0} 202$ for setting up $H_{0} Z_{0} S_{0}$ Markergo

[^1](b) Trigger the monitor 28 fram the modulator 64 violet Pye Pluge
(c) Synchromise the modulator 64 with the T.S. 202 to run at as nearly as possible the same p.r.f. as when triggered by the 1 x-timing pulso. This can be done as follows - With the modulator 64 triggered by the Tr-timing pulse and the monitor 28 triggered from the violet Pye on the modulator 64 , mark the beginning and end of the T. $\mathrm{B}_{0}$ sweep on the monitor screen when the T. $\mathrm{B}_{0}$ switch is in the "Freq, " position Now trigger the modulator 64 from the T. $\mathrm{S}_{\mathrm{o}} 202$ and adjust the 600 $\mathrm{c} / \mathrm{s}$ preset to give as nearly as possible the same length sweep on the monitor as before.
(d) ToBe switch to 10 and input switch to "pirect".
(e) Conneot H 2 S , rea Pye plug to monitor input through a 2 K resistor. Adjust suppression control to set between 2 notches to remove all suppression The monitor display will then show the Tx pulse brealthrough and the range marker. Turn the gain control to minimus On some receivers it may be difficult to set the suppression control to allow the transmitter to break through although this can usually be arranged.
(f) Now adjust the To $\mathrm{B}_{\bullet}$ start control to bring the leading edge of the Ix pulse to the begimning of the T. B. The start of the T.B. now represents zero time and the T. B. start control must be left set in this position If the T.B. sweep shows a tendency to cramp badily at the begiming it may be possible to clear the fault by replacing $C_{0} 15$ in $V_{0} 3$ cathode circuit.
805. How comect the T.Se 202 and the monitor as follows:-
(a) 5 volt negative output from 202 to moritor imput through a Ix resistor.
(b) Set calibration interval switch to 1,000 yards. Set Rep. Freq. switch to $600 \mathrm{c} / \mathrm{s}$.
(c) Using the 10 microsecond time base identify the first 1,000 yard pip.
(d) Switch to the 500 feet ( 1 microsecond) calibrations and count the time in microseconds from the comencement of the time base to the first 1,000 yard marken The first 1,000 yard maricer occurs 6.1 microseconds after the end of the 20 m microsecond pulse. But the start of the time base has been delayed, This delay is the amount that we delayed the time base start to correspond with the delay in the spark gap and the I.F. strip. There is also a small delay in starting the momitor time base. owing to the fact that the back edge of the 20 microsecond pulse is not straighte This latter delay may vary from one monitor to another. The time from the start of the time base to the first 1,000 yard marker will probably be about 2 microseconds.
(e) Having found the time from the start of the time base to the first 1,000 yard pip, switoh to the 100 microsecond time base and set the calibration interval switch to 1,000 yards. We now know the time from the start of the time base to the first 1,000 yard pip represents 6.1 miaroseconds, so that now our monitor is set to measure from zero time.

## Checiting of Height Yapleer Setting.

806. With the To S. 202 and monitor 28 still connected as in parae 805 put the height marker on the monitor. To do this connect the white Pye plug on recoivermtiming unit to the Monitor input through a 1 K resistor. Press $H_{0} 2_{0} S_{\text {. }} \mathrm{In}_{0} \mathrm{~T}$. ON". The monitor should now show the height marker together with $1_{8} 000$ yard pips.
807. If the first 1,000 yard pip represents 2 microseconds frum zero time when the first 1,000 yard pip represents 1,000 feet ( 500 feet per microsecona). If it were 1.5 microseconds, it would be 750 feet. Each subsequent 1,000 yard marker will represent an increase of $3000 \mathrm{ft}_{\text {. and our second } 1,000 \text { yard }}$ marker will be somenhere about 4,000 feet. Set the height durm to whatever figure corresponds with this second 1,000 yard marker. It is not advisable to use the first 1,000 yard marker owing to inaccuracy of the height marker
below 2,000 feet. If necessary, adjust the height gero so that the height marker coincides with the second 1,000 yard pip. Move the height marker along by 1,000 yard steps, checking that the height drum reading increases by 3,000 feet steps. If the tracking is incorrect it may be advisable to adjust the height zero at samewhere around 20,000 feet since we are concerned more with accuracy at operational heights than at the bottom of the scale.

## Checking of Range Marker.

808. (a) Leave the connections as in the previous paragraph
(b) Set height to 20,000 feet. Adjust range zero so that the range marker coincides with height marker when the range drum is at zero. The H. 2.S. range switch should, of course, be on 10/10 range.
(c) To check tracking of range marker set the height controls to the 100 yard marker nearest the 20,000 foot point and advance range marker by turning the range drum so that the range mariker occurs 1,000 yards after the height marker. The range indicated on the range drum should be 1.9 nautical or 2.2 statute miles, according to which scale is in use.
(d) Contrinue advancing the range marker by 1,000 yard steps, checking the range with the figures given in the table below.

Height	Range Marker from Height Marker	Range in Miles	
		Nautical	Statute
20,000 feet	( -	-	-
	, 1,000 yds.	1.9	2.2
	2,000	2.7	3.2
	3,000	3.5	400
	4,000	4.1	4075
	5,000	407	5.5
	6,000	5.3	6.1
	7,000	5.9	6.8
	8,000	6.5	7.4
	19,000	7.0	8.0
	(10,000	7.6	8.7

(e) It is not necessary to check all these points; a few of the more convemient ones may be selected.

Note:- The figures given in the table above are correct to 1 of a mile. Since it is not possible, under working conditions, to read the range scale to this degree of accuracy, it is not to be expected that these exact figures will be obtainede Greater accuracy of range is needed at ranges between 4 and 7 miles, and it may be necessary to adjust the range zero at same point within these two ranges by setting the range drum to one of the values given in the calibration table, and adjusting the range zero to obtain coinaidence with the corresponding calibration pip. This difficulty will only arise if tracking cannot be obtained over the whole scale. The differences introduced. by setting the height control to the 1,000 yd mariker nearest the 20,000 foot point instead of 20,000 foot will be less thon the possible accuracy of reading on the range drum
809. An altermative method of calibrating the markers may be used if the radar workshop is fortunate enough to receive an ecbo of definitely lmown range, providing this is not less than two miles. The height drun is set to the range of the echo and the height zeco is adjusted to give coincidence between the height marker and the known echo on the height tube The range control is then set to zero and the range zero is adjusted for coincidence between range ${ }^{\text {th }}$
and height markers. The $10 / 10$ position of the range switch is, of course, used for this setting up. Tracking can then be checked on the test set 202. The Time Base Start setting in this case is not fmportant since the zeros have been set up from the known aignal. The height and range tracking can be checked by 1,000 yard steps as already described. Since the calibration pips from the test set 202 are known intervals of time and hence represent known intervals of range, it can be seen that the test set 202 really provides us with aignals of known range by means of which we can accurately check our height and range markerso
810. With same monitors type 28 it may be found that using the timebase start control to bring the leading edge of the pulse from the voltage monitor point on the modulator 64 to the beginning of the scan, results in cramping of the pulse due to a non-linear scano. In a momber of cases it has been possible to clear this trouble by replacing c15. If difficulty is experienced in determining when the leading edge of the pulse coincides with the beganning of the scan, or if the range of adjustment on the To Bo start control is not sufficient to bring the Transmitter pulse to the beginning of the scan, it may be preferable to proceed as follows:-
(a) Get the Transmitter pulse well to the left of the timebase with the X -shift and put a mark on the perspex screen to coincide with the leading edge of the pulse.
(b) proceed as in para.805(a), (b) and (c) and put a mark on the perspex screen to coincide with the leading edge of the first 1,000 yard marker.
(c) Switch to the 500 feet ( 1 microsecond) calibrations and determine the mumber of microseconds between the two marks on the perspex. This gives the time between zero time and the first 1,000 yard marker.
(d) proceed as before when the time from zero time to the first 1,000 yard marker has been found.
811. A method of calibrating the monitor 28 for aircraft adjustment of the height zero for accurate height indications at 20,000', and range zero adjustment for accurate range indication at 4 miles , is outlined in chap. 12 , para.950.

```
TEST SEP TTYPE 83 (10SB/120)
```


## Use.

812. This test set is a thermocouple unit which is used in conjunction with a unipivot thermal millivoltmeter to measure the field strength of the magnetron output.

## Operation

813. (a) Set the themocouple on its stand about 12 feet away from the Ho 2ose aerial. Ensure that the dipole elements of the thermon couple are in the same horizontal plane as the mouth of the scanner waveguide and that there is no obstruction between the H. 2. So aerial and the teat set.
(b) place the unipivat meter on the bench near the H. 2.S. transmitter unit. Connect the lead from the thernocouple to the meter.
(c) Switch on $\mathrm{H}_{3} \mathrm{~L}_{\mathrm{s}} \mathrm{S}$. and adjust the scanner mirror for maximum meter reading.
(d) Adjust the Ro Fo output adjustments on the transmitter unit for maximum meter reading.

## Limitations

814. It must be renembered that the reading obtained is only an indication of how much $\mathrm{Re}_{0} \mathrm{~F}_{0}$ energy is being radiated. There is nothing to indicate whether the power is on a single frequency, mixture of frequencies, or jumping between different frequencies. A bigh indication on the meter is not necessarily an indication of a good magnetron Within this limitation the meter reading provides a means of comparing the output of the same transmitter unit at different times or with different components, and of coraparing the outputs of different transmitter units.

## TEST SET 85.

815. This test set has largely replaced test set 83. The principle of its operation and the method of use are similar. The meter used is of a plug-in type. It may be plugged in at the rear of the themocouple or used on a lead in the same way as the unipivot.

## Uses.

816. The signal generator type 47 is designed to provide an R. F. output at wavelengths between 9.0 and $9.2 \mathrm{~ms}_{\text {. . This output is available either as }}$ $C_{0}$ W. or M. $C_{0}$ W. consisting of bursts of $R_{0} F_{\text {. }}$ of about 500 microseconds duration separated by equal quiescent periods. A calibrated output circuit is provided which can be used to compare the overall sensitivity of the H 2 Se receiver.
(a) The panel is shown in fig. 136
(b) Layouts are shown in figso 136 and 137
(c) The circuit is show in Pig. 138.

## Power Supply.

817. 80V. Anc. is applied at the 2-pin plug on the panel and fed through an Ro F. filter to the power transformer, $T_{0}$ 2, and the heater transformer, T. 1. A threeposition power switch appears on the panel. The positions are labolled "OFP", "InT." and "He T." This is the switoh, SeI, in the circuit diagrem.
(a) In the "OFF" position, the irmut to both T. 1 and T. 2 is broken.
(b) In the "Is $T_{*}$ "position the imput to TI is completed and the heater supply is developed for the rectifier, V.1, the modulator, V. 2 and the kiystron oscillator, V. 3.
 V. 1 develops a -1.8 KV . output for the kiystrone
 across the bleeder formed by Ro $4, \mathrm{R}_{0} 5, \mathrm{R}_{0} 6, \mathrm{R}_{0} 7, \mathrm{R}_{0} 8$. The klystron eleotrodes are tapped in on this bleeder. Stabilisation is provided by the neons, V. 3 , V.4, V. 5, V. 6.
818. If no other test equipment requiring 80V. A.C. is being used the 80V. input can be taken from the 2-pin on the $\mathrm{H}_{0} 2$. S. junction box. If it is desired to use additional test gear requiring an 80V. imput some form of junotion box like the type 80 ( $10 \mathrm{AB} / 1850$ ) must be used.

## The Klystron Osqillator Controls.

820. (a) V. 7 is a CV. 67 reflector klystron The panel control labelled "Reflector" is the potenticmeter, $B_{0} 8$, which serves to vary the potential of the ceflector rejative to the earthed rhumbatron to obtain the required feedback to get oscillation
(b) The panel control labelled "Grid" is the potentiometer, Ro 4 ? which is used to vary the bias on the klystron This provides additional control over the klystron feedback as it serves to vary the intensity of the election stream. By suitably adjusting both the "Grid" and "Refiector" controls stable osaillation can be obtained over the entire range from 9.0. 9.2 cms
821. The fine tuning plunger is driven by means of the panel knob labelled "Iuning". The wavelength of the oscillations is given approximately by the calibrated tuning dial.
822. The $\mathrm{R}_{\mathrm{m}} \mathrm{F}$ output is taken from the resonant cavity by means of the usual coupling loop. This loop forms part of the circult of a bolometer lamp whose filament glows with a brightness that depends on the strength of the $\mathrm{R}_{\mathrm{P}} \mathrm{P}_{\mathrm{e}}$ outputs The coupling of the output loop is variable by means of the output knob which appears at the centre of the wavelength dial.

## The Calibrated Output Circuit.

823. The output taken from the cavity via the bolometer bulb is radiated. into a piston attemator which feeds the output plug. The output at the plug will depend on the length of the attemator. The knob on the panel which


FRONT PANEL


SIGNAL GENERATOR TYPE 47 (detalls)

traoks over a scale graduated in decibels varies the length of this atteranator.
824. Obviously, what absolute output is represented by any specific attemator setting depends on the imput to the attemuator. This imput, in turin, depends on the setting of the coupling loop. How much power is being taken from the cavity by the coupling loop is indicated by the glow of the bolometer Pilament. This filament is visible through a small aperture in the front panel. The coupling is nomalily set so that the filament just glows and the output is then regarded as standard. If the signal generator is connected to a 75 obm duray load and the bolameter glow set to the point of just fading out the 0 db . position of the attemator dial will give an output of approximately 60 millivolts. The atteruator reads in "decibels down". That is 0 db . means zero attemation

## The Modulation Circuit.

825. The cathode of the modulator valve is taken by means of switch to the -1800V. Iine and the grid is taken via the stopper, $R_{n} 2$, and the blocking condenser, C. 3, to a tap 200V. up on the secondary of T. 2. If the cathode switch is closed V. 2 operates as a squarer stage. The 200 v . $1000 \mathrm{o} / \mathrm{s}_{0}$, input swings the gaid between saturation and out-off to provide a $1000 \mathrm{c} / \mathrm{s}$. square wave at the anode.
826. The cathode switch appears as a lonob with two positions labelled "MOD" "and "CoW." In the C.W. position V. 2 cathode is floating and the valve is inoperative The anode potential is then the same as the potential of Ro 4 slider. V. 3 gx gh is thon at this same slider potential. The klystron controls will be set up with So 2 in the C.F. position The setting of Ro 4 will then fix V. 3 grid at a suitable potential relative to the cathode for stable oscillations. Then S.2. is set to MOD" V. 2 anode will be up at Ro 4 slider potential for the 500 microsecond cut-off periods and about 250V. bellow this value during the 500 microsecond conducting periods. These 250V. drops will out the klystron off. The output will then consist of 500 microsecond bursts of R. F. separated by 500 microsecond quilescent periods.
827. It follows then that when $S .1$ is set to "MOD." the bolometer current is only flowing haif the time Hence, for equal glow, the imput to the piston attemuator must be twice as large. To have the same peak output on the aerial the attemation should therefore be doubled when switching fram $\mathrm{C}_{\mathrm{s}} \mathrm{W}$. to MOD. with the coupling set for the same glow. But doubling the atteruation means the attemation figure in decibels should be increased by 3 . For example if the dial reads an atternation of 20 db . in the $\mathrm{C}_{0} \mathrm{~F}_{0}$ position, the same peak voltage is applied to the aerial for an attemation setting of 23 db . when the output switch is set for "MOD" "and the coupling is adjusted for the same glow.

## Setting-up the Signal Generator Controls.

828. (a) Connect the 80V. $1000 \mathrm{c} / \mathrm{s}$ imput from the junotion box to the $S_{0} G 47$ and switch on $I_{0} T_{0}$
(b) Set the turing control to 9.1 ambe
(c) Adjust the coupling to a midway position
(d) Set the reflector voltage control to a midway position
(e) Set the grid voltage control fully anticlockwise.
(f) Set the attemator control at gero.
(g) Sritch on $\mathrm{H}_{\mathrm{T}}$ T.
(h) Advance the grid voltage control clockwise until the bolameter bulb g30ws.
(i) Cheak the setting of the reflector voltage control by noting that anticlockwise rotation results in disappearance of the glow (indicating cessation of oscillation) and that further clockwise rotation results in reappearance of the glow.


(j) Continue the clockwise rotation of the reflector voltage control. The glow will normally rise slowly at first, then peak sharply, and with further rotation will fall slowly. If the control is set just past the peak on the slowly falling side stable oscillation will be obtained.
(k) Attach the mirror and aerial assembly to the output plug of the SoG. 47 and line up the H 2.S. scanner to pick up the radiation
(1) The Soc. 47 output may be piped into the transmitter unit by using the uniradio 21 feeder, comnector Type 1179 ( $10 \mathrm{H} / 2807$ ) and the Adaptor Unit Type 76 (10AB/6005).

Comparison of overall Sensitivity of Sets.

## Principle.

829 The sensitivity of sets can be compared by determining the comparative strength of signal iuput required to give the same signal-to-noise ratio for a given noise amplitude For example, if we adjust the gain of the receiver to show $\frac{1}{4}$ n of moise on the monitor 28, and then apply sa SoG. 47 signal of such a strongth as to give a signal + noise amplitude of $\frac{1}{2}$ ", the signal output must actually have an anplitude of $\frac{1}{4}$ ". The signal-to-noise ratio is then $1: 1$. From the attemuator dial a reading can be obtained corresponding to the output necessary to give a $1: 1$ signal-to-noise ratio in the receiver output from a good set, or several good sets. In this way a standard signal input figure can be obtained. Sets suspected of low sensitivity can be checked by comparing the attemuator reading required to give the same signal-to-noise ratio. As the required attemuator reading falls, the sensitivity of the set under test is falling since a lower attenuator setting means a higher input. Obviously, any comparative tests require operation with the same glow value on the signal generator and the gain setting of the receiver sufficiently low to prevent saturation

## Method

830. (a) Apply the $H_{0} 2 . S_{0}$ receiver output with the transmitter rumning to the -monitor 28.
(b) Turn the gain up to about $\frac{1}{4}$ maximm for a noise level of about $\frac{1}{4}{ }^{\prime \prime}$
(c) Switch on the S.G.47, set up as in parao 828 and adjust the tuming until signals appeat which lift the whole trace to saturation Two tuning points should be found of which the shorter wavelength should be used. Use the C.We setting of the output switcho
(d) Reduce coupling until the glow of the bolameter bulb is just disappearing.
(e) Turn the attemator dial until the signal is not saturating the $\mathrm{H}_{\mathrm{h}} \mathrm{L}_{\mathrm{o}} \mathrm{So}_{0}$ receiver and then check the $\mathrm{So}_{0} \mathrm{Go} 47$ tuming for maximum signal amplitude.
(f) Set output switch to "MOD,"
(g) Readjust coupling until bolometer glow is just fading out. The receiver noise and the pulsed ko F. signal will now be seen
(h) Adjust the attemuator until the top line of aignal from the So Go 47 sits on top of and is Just distinct from the receiver noise. The signal + noise amplitude must now be double the receiver noise amplitude. The SoGo 47 is now providing an output signal whose amplitude is such as to give a $1: 1$ signal to noise ratio. The attemator dial reading gives the comparative sensitivity of the set.
(i) Other cambinations of transmitter and receiver can be tested in the same ray. By comparing the attemation reading with the value obtained with a known good set or mean value from a grown of known good sets the sensitivity can be assessed as good or poor.
831. The noise contributions of different transmitter units can be assessed by using them with the same known good receiver.
832. Different receivers can be compared by using them with the same known good transmitter units.
833. The head amplifier may be checked by taking measurements with the head amplifier in circuit and with the head amplifier by-passed by feeding straight from the mixar to the green Pye input on the receiver.

8340 Crystals can be tested for sensitivity by using them in the same set and ccmparing the attemuator readings.
835. Testa on CV.43's indicate that if the attemator reading goes up by more than 2 db . when the test is made with the transmitter switched off, or with the CV. 43 probe lead discornected, the CV. 43 is faulty. Faulty CV. 43 's may, however, pass this test.
836. Tests on the scanner and high power feeder can be made by making a comparison when the scanner and/or the feeder is changed.

Limitations of the Signal Generator Type 47.
837. Since the S.Go 47 provides an output in the $9.0-9.2$ cme band, it is not suitable for use with the Ho 2 S. Mark IIIA. It may, bowever, be used in the same general way with other cmo equipment operating in the 9 cm band.

> The Cambridge Flumeter.

Use.
838. The Cambridge Flumeter is a test instrument available in limited quantities for measuring the field strength of transmitter unit magnets. It consists of a centre-zero meter and a suitable search coil. Differcent coils are required for use with the Ho 2 s . Marik IIIA magnets than with the Ho 2 S. Mark IIC magnete.

## Details.

839. Levelling screws on the legs and a spirit level on the dial are provided to permit accurate levelling of the meter. Mechanical control in the meter is nogligible so the pointer does not tend to return to any defirite zero but is inclined to stop at the point on the scale to wich it is deflected when the search coil is passed through a magnetic field. If the pointer tends to drift the instrument is not accurately levolled.
840. A push-button is available on the meter to return the pointer to zero. It is not nocessary to make this adjustment when using the meter. Readings can be conputed by determining the total maber of divisions through which the pointer deflects when the search cotl is useds
84d. The search coil is connected to the two meter terminals. polarity is immaterial.

## Measurements.

842. (a) Level the meter by adjusting the levelifing screws until the spirit level bubble is centred.
(b) Tests should be made with the cover on the transmitter umito It is, therefore, desirable to retain a cover with a hole cut in the side of sufficient aize to permit insertion of
the search coil between the jaws of the magnet.
(c) Insert the search coil between the jaws of the magnet and note the meter reading when the pointer comes to rest. Pull the coil out sharply and note the new reading when the pointer comes to rest. Determine the nuber of divisions through which the pointer is displaced.
(d) Repeat (c) with the coil turned upside downo
e) Hean the two deflections.
(f) Convert mean deflection to gauss by means of data or formula supplied with the coil.

## Values

843. (a) It has been laid down that magnets for Mark IIC H2 2 S. should not have a field strength of less than 1250 gauss if reliable operation is to be obtained. A magnet tested without the cover on should show a field strength of 80-100 gauss above this value.
(b) Magnets used in the TR. 3555 series transmitter units should have a field strength of at least 3000 gauss when tested as above.

The Cable Tester Test Set 209.
Uso.
844. This test set is provided to test:-
(a) Contimuity of cable cores.
(b) Insulation of individual cores to earth.

Powar Supply.
845. The set rums off either an 80v. 2000 oycle or 230 volt, 50 cycle supply. The 4 -pin power input plug appears on the front panol. Pins 1 and 2 mast be used when the 80V. supply is used and pins 2 and 4 when the 230 wolt mains are used.

## Details.

846. For insulation tests an assembly is provided which will take plugs of all the types employed. This assembly is comeoted to the test set by means of an 18-way cable.
847. A second similar assembly is provided which has no external cormection This is used in conjunction with the first for insulation tests.

Indications.
848. (a) Visual indications are given by means of a magic eye indicator on the test aet panel.
(b) The eye opens if a contimity test is made on a cable which is open-circuited or shows a high D.C. resistance.
(c) The closes on insulation tests when the insulation falls below a value to which the test set is calibrated.

## Controls

(a) Details of the panel and circuit are show in figs. 140 and 142
(b) The use of these controls in making tests is given below.

## Measurement of Insulation to Earth

850. To calibrate for insulation tests press in the push-button marked "GAIIBRATION" and put the two-position switch to "MEGOMSS". Set the calibrated "MEGOHM CONIROL" to 154 . and adjust the preset labelled "CAL 15M". until the magic eye just closes.
851. (a) Connect the cable to be tested to the appropriate point on the insulation test assembly. Leave the other end of the cable free.
(b) See that the two-position switch is set to "Xecomms" and that the "CALTBRATION" push-button is pulled out.
(o) For a mulliple core cable see that the "SELIECT PIN" switch is turned to the rumber of the core under test. For pins 1 - 9 the snap switch above the "SELESCT PIN" switch must be to the left and for pins $10-18$ it must be to the right.
(d) If the insulation on any core is low the magic eye indicator closes wholly or partially depending on how far the insulation is down By adjusting the "MECOFM CONTROL" until the magic eye is fully open the insulation value can be read off the calibrated dial.

Continuity Testing-
852. To calibrate for continuity tests, push the "CAITBRATION" button in and set the two-position switch to "OFMS". Set the calibrated "OMMS" control to 1 obm and adjust the preset marked "Cal. 1 OMM" until the magio eye just oloses.
853. (a) Connect one end of the cable to be tested to the insulation test assexbly and the other end to the contimity test assembly which serves as a shorting bar.
(b) See that the "GALTBRATION" push-button is pulled out and the two-position switch set to "OFRLS".
(c) Use the "SELECI PIN" switch and the snap switch above it as before. If, as the "SEJIECI PIN" switch is moved from one position to another, a core is encountered which has a high D.C. resistance or open-circuit the magic eye will open
(d) The resistance can be measured by adjuiting the calibrated "OIMS COINPROL" until the eye again closes then reading the value off the calibrated dial.

## Iimitationso

854. Without adaptation, the test set cannot be used for measuring intercore insulation. If such a breakdown is suspected a megger must be used for testing.



TEST SET TYPE 205
FIG.I43
FIG.I43

The Test Set 205 or 205A.

## Function

855. This test set is used to line up the TR. 3555 series of transmitting wits. Those transmitter units require the following adjustments:-
(a) Katohing the magnetron to the waveguide for maximan power output consistent with frequenoy atability.
(b) Adjustment of the mixer piston to match the crystal to the mixing chamber in order to obtain the maximum I.F. power for a given signal imput to the mixing chamber at the magnotron frequency.
(c) Tuning the TR. cell for maximum response to signsls on the transmitter frequency and hence for maximum imput to the mixing chomber.
(d) Adjustment of the anti-TR. chamber piston to affectively make the transmitter channel offor a high inqedance to the incoming signals so as to direct the maximum $f 10$ into the receiver branch line.
(o) Adjustment of the kiyatron operating conditions for satisfactory frequency stability and power output to the mixer.
(f) Tuning the klystron $45 \mathrm{M} / \mathrm{s}$. off the magnetron frequency for maximum I. F. input to the head amplifier when the transmitter worlcs as a complete unit.
(g) Adjustment of the C.W.In $D_{0}$ inpat to the mixing chamber for optimum hoterodyning as indicated by a mixer current value determinod from experience.
(c) (d) test set 205 or 205 A is used to make the adjustments (a), (b), (c), (d) and ( f ).

## The Test Sot Chamels.

> 856. (a) The oircuit dotails are show in flge. 142 .
> The controls discuased in the following paragraphs appear on the panel layout shown in figo 143 .
857. How the test set performs its various functions can most readily be appreciated by following the various ohamels employed on the oircuit diagrem.
858. The four-position waveguide switoh, S.I, has its imput chamel conneoted to the transmitter unit. Position I feeds the RoF. imput into the dumay power load. The power flow canses the neons V. 12 and V. 13 to talse a curront proportional to the power impat. This ourrent is indioated on the $0-100$ miaroammeter when the seleotor awitoh is in position 1 . By adjusting the Rof. output matohing adjustments for meximum meter indication the magnetron is matchod to its output ohsmel for maximm power output.

[^2]860. The V. 9 stage with its associated power pack (V.7, V.6, V.5) is basioalily similar to the local oscillator and power pack in the TR. 3555 . If V. 9 is tumed to the magnotron frequenoy it can aot as a source of C. W. at the magnetrion frequency. The signal oan then be used to tuno the TR. 3555 M. R.
cell and mixing chamber to the magnetron frequency. It can also be used to beat with the TR. 3555 local oscillator output to tune the kiystron $45 \mathrm{Mc} / \mathrm{s}$. off the magnetron frequenoy. When the waveguide switch is set to position 2 the output from V. 9 is launched into the wavemeter channel (via a probe as shown). Same of the power is reotified by the klystron crystal, V.11, and the current can be measured on the microammeter when the selector switoh is in position 2. If the P./I.F. switch is set to "P", the seleotor switah (S.5a) provides a variable shunt across the meter. The kiystron controls can then be set up to get a meter indication when the klystron is oscillating.
861. When kiystron tuning is adjusted to the frequency at which the wavemeter oavity is resonant, i.e., the magnetron frequenoy, the C. W. is rectipied by the crystal, V.10. A built-in mica masher acts as a smoothing condenser and the negative D. C. voltage developed is applied to terminal 3 of the selector switoh Hence, by setting the selector switoh to position 3, the klystron can be tuned to the magnetron frequency by tuning for maximum meter indication the sensitivity switch setting can be varied as tuning proceeds.
862. If the waveguide switoh is set to position 3 the test set klystron outpat is fed into the waveguide channel labelled MWaveguide output for tuning mixer and T.R. cell". With the klystron previously tuned to the magnetion frequency we now have a C. W. impat in this ohannel ati the magnetron frequency. A short piece of circular waveguide termed a "dummy T. R. cell" is provided with the test set. This section contains a "lossy iris" i.e., an iris that absorbs power. The power loss is that which should ocour in a good T. R. cell of the C.V. 114 type when correctly tuned. The mixer ohamber from the transmitter unit is removed and fitted on top of the durmy T. Ro cell. The crystal rectifies the C.W. imput to produce a negative D.C. voltage whose amplitude depends on the tuning of the mixing chamber. This D.C. component is taken via a Pye lead from the mixer to the Pyo plag on the front panel of the test set. This plug is connected to contact 4 of the selector switoh and the negative meter terminal. Honoe, by setting the seleoto -witoh to positior 4 the mixer chamber piston can be adjusted for marimum response at the magnetror frequency as indicated by madimum moter reading.
863. Once the mixer has been toned the dumpy To $R_{0}$ coll can be replaced by the actual T.R. cell which can be tuned for maximam response on the meter.
864. If the mixer chamber and T. $\mathrm{Re}_{\mathrm{c}}$ cell are now replaced in the tranmitter unit, both should give the best response to the magnetron frequenoy, i. o., to the frequency of the kiystron in the test set. If the waveguide switoh is now set to position 4 the kiystron output is fed into the transmitter unit where it is passed through the T. Re cell to the mixer. If the mixer output is comected by Pye lead to the Pye plag on the test set panel, the smoothed negative D.C. voltage obtained from the reotified C. W. is applied to terminal 4 of the solector awitch. With the selector switch in this position the anti-T. $\mathrm{R}_{0}$ piston can be tunod for maximum meter indication. Whon this indication is obtained the effective flom into the receiver branch line will be a maximum for R.P. energy at the magnetron frequency.
865. The problem still remaining is setting up and tuning the transuditter unit klystron to a difference of $45 \mathrm{kc} / \mathrm{s}$. Prom the magnetron in order to get maximum anplification of signals from the I.F. atrip. Sotting up the kigstron does not involve the test aet so will not be discussed her. Tuning the riystron is done by varying its frequency until a beat frequency of $45 \mathrm{Mc} / \mathrm{s}$. is obtained by feeding both the test set klystron signal and tho transmitter unit klystron sigmal into the mixer. In order to determine when the tuning is correct we require an amplifier capable of anplifying C.W. of $45 \mathrm{Mc} / \mathrm{s}$. and some form of output meter. This amplifier is provided by the hesd amplifier in the transmitter unit and $\nabla_{.} 1$ and $\nabla_{0} 2$ in the test set. $\nabla_{.} 1$ and $V_{0} 2$ were used as a pulse amplifier, i. $0_{0}$, a video amplifier, when the magnetron frequency was determined by tuning the wavemeter for maximam response on the magio eye. To use the same stages as an I.F. amplifier instead of a video amplifier we require R.F. decoupling and a frequency sensitive anode loade This is provided when the P/I.F. switch is set to I.F. S. 60 ties the parallel dropping
resistors, $\mathrm{R}_{0} 19$ and $\mathrm{R}_{0} 20$, to earth through $\mathrm{C}_{.} 8$. The $45 \mathrm{Md} / \mathrm{s}$. tuned circuit in V.I anode serves as the anode load. S.6d introduces C. 13 into the circuit to perform the same function for V.2. The beat signal from the mixer is applied to the head amplifier stages in the transmitter unit. The outpat is taken from the green Pye plug on the transmitter unit and applied to the Pye plug on the test set panel. When the Po/I. F. switch ia set to I.F. the beat signal is applied vis C. 3 and S. 6 b to V.l grid. The choias, $L_{0} 2$, blooks the aignal from the meter. The amplified output from V. 2 is rectifiod by V. 3 and the smoothed negative D.C. voltage applied to the grid of the magio eye, V. 4. The sensitivity switch, S.5d, varies the cathode load of V.1. When the $L_{6} 0$. in the transmitter unit is correctly tuned the switoh mast be set to minimum to prevent ovierlapping of the magic oye.

## The H.T. Power Pack.

866. The power supplies for the test set 205 are brought in on a 6-way, preferably via a function box 238 arranged to intercept the 12-Way violet from the J.B. 231 to the modulator. Reasons for this arrangenent are disoussed in paras. 874-875. The 80V. A.C. supply comes in on pins 1 and 2. If the panel switoh labelled "Power" is olosed the supply is conmleted to the primary of the H.T. power pack. V. 8 (524,G) then provides the K. T. aupply for V.1, V.2, V. 3 and V.4- Heater windings are provided on the transformer as ahom.
867. The single-ended 6. 3 V. 2A winding also feeds to the metal rectifler (shown near the meter) a voltage which can be adjusted by means of the 500 ohm potentiometer, R.48. The reotified outpat is takcon to the positive side of the meter when the seleotor awitoh is in position 1 via S. 4 b . The reotified output Is also taken via the meter to the neons, V. 12 and V.13, via contacts on the press-button ionising switch and the external power moasurement jack on the panel. The D.C. voltage applied to the neons dopends on the setting of Roli8. Sinoe this voltage determines how heavily the neons conjuct, R. 48 can be adjusted for a suitable range of meter readings on RoF. power measurements. In protom type models of the test set a 1.5v. coll was usod instead of the motal reotifier.
868. It will be noted that + 300V. is also applied via Ro5l and Ro 53 to the normally open contacts on the iomising pressmbutton switoh. If the RoF. power input is insufficient to make the neons strike the button can be pressed to apply +300 V . The resistors, $\mathrm{R}_{0} 51$ and $\mathrm{R}_{0} 53$, prevent the ourrent from beconing exoessive when +300 V . is applied to the neons.

## The E. FeT: Power Pack

869. The power pack for the test set klystron is fundsmentaily similar to that used in the transmitter unit whioh is disoussed in Chapter 6, paras. 388 - 394. The 80V. input to the transformer is completed if both the panel awitches labelled "Power" and "Osoillator" are alased. V. 6 (VT. 60A) is the variable impedance cathode load of the half-wave roctifier, VO. 111. The soreen voltage of V. 6 is obtained from the +300 V . Iine and dropped across Bo46 to 130V. It is stabilised at this value by the neon, V.5. The 250א. potenticmeter, R 41 , permits an adjustable portion of any variation in the output voltage to be fod back on V. 6 grid as well as vaxying the aotual grid potential and effective inpedance of V.6. Adjustment of Rolil then varies the effeotive cathode load of the rectifier and so varies the E.H.T. voltage doveloped. Any tendency of the output roltage to swing more negative due to a transient rise in the 80V. supply will drive V. 6 grid more negative due to the inoreased flow in the bleedor. Honce $V .6$ inpedance rises and the output is held at ossentially the same level as before. The converse aotion occurs if the 8OV. supply falls slightly. $\quad .6$ is thus a valve stabiliser for the E.H.T. supply to the kifstron, V.9.

The Kiystron Oseillator, V.2.
870. V. 2 is a reflector klyatron of the CV. 129 type which is also used in the transmitter units of the TR. 3555 series. The cathode potential of the EIystron is dotermined by:-
(a) The E.H.T. voltage across the kiystron bleeder.
((b) Enfatron current drawn through Re36, R. 35 and Ro 34, This current will depond on the setting of the gmid volts control, Re34.
871. As the $\mathrm{E}_{5} \mathrm{H}_{\mathrm{H}}$ T. voltage which the power paok can austain will dopend on the kiystron current which consitutes the major drain, there will be interaction betweon Ro 41 and $\mathrm{R}_{0} 34$. As $\mathrm{R}_{3} 36$ will rary the feodback and homoe the esglitude of oscillation, it will have a secondary offoot on tho required setting of the other controls for a givon aathode potential and kiystron ourrent. Should couplete realignnent be required the same type of settinge up prooednre as is outlined for the transmitter-anit kirstron in Onapter 12, paras. 1022 - 1027, should serve to bring the ielyatron into operatiom an F.H.T. current indication is obtainable by setting the selootor switoh to position 5. The negative side of the meter is thon earthed and the positive side is conneoted to the 2.5 ohm oathode resistor of V.6. R. 49 puts a fired 330 -omm shumt across the mater. In the 205A model an external jackpoint is provided instead.
872. The kiystron is cooled by a blower motor operating on 24V. The apply is brought in on pins 3 and 4 of the 6 way powor input plag. Whem the "Oscillator" switoh on the panol is closed, the 24 V . supply to the blower motor is automatically corupleted.

## Tho Safetry Indicatora.

873. The test set panel shows a red and a groen pilot lamp. The oirouit shows that a cam and roaker arn arrangement operated by the waveguide awitoh serves to operate those lapss by conneoting to them a 6. 3 H . supply from the 6.3V. winding on the H.T. transformer. The green lamp lights when the wavoguide switch is in position 1 . Thas indioates that it is asfe to switoh on the modulator and foed the magnetron output into the test set. In positions 2, 3 and 4 of the waveguide switoh the rod lamp lights. This is a danger warninge Do not suitoh on the modulator. Failure to heod this warning Wilh result in serious damage to the test set.

## The qest Sot 205 Safety Cirouits.

874. To proteot the test set from tho danger of an accidental awitching on of the modulator 64 when the weveguide switoh is not in position 1 , it is desirable that the modulator should be automatioally switohed off when the switoh is set to positions 2, 3 or 4 . This proteotion oen be provided if the +300 V . supply to the CV. 73 trigger valve is comploted via contacts operated by the waveguide switoh. To pernit this remote control of the $+300 \%$. supply to the trigger valve the junction box type 238 is incorporated in the benoh-testing installation.
875. (a) The letter coding of the plugs on the JB. 238 is shown in Fig. 1540 A 4-way oable is taken from the 4mpin test plug on the JB. 231 to the plug B on JB.238. This bringe the 8OV. A.C. and 24V. D.C. supplies to the JB. 238.
(b) The 12-way from the JB. 231 to the modulator (carrying the switched $+300 \%$. suppiy) is taken to plug C on JB. 238 instead of to the modulator.
(c) A 6-way is taken from ping D on JB. 238 to the test aet 205. This brings the awitohed +300 v. sapply fron the power unit in on pin 5 to one of the contacts controlicd by the waveguide switoh. An output connection is taken from a aecond
contact to pin 6. If the waveguide switch is in position 1 the supply to pin 6 is automatically completed. In any other position the supply is broken. Hence, the +300V. supply is only fed back into $J_{0} \mathrm{~B}_{.} 238$ when the waveguide switch is in the position when it is safe to operate the modulator and magnetron.
(d) A new 12-way cable is taken from plug A on the J.B. 238 to the modulator to complete the +300 V . supply to the trigger valve when t'e waveguide switch is in position 1.
876. If the test set 205 is taken out of the bench installation the 6-way cable from plag $D$ to the test set is comneoted into plug $\mathrm{F}_{6}$ The +300 V . switched line is then completed from pin 9 on the $12-\mathrm{pin} 0$ via pin 6 on the 6 -mays $D$ and $F$ to pin 9 on the 12-way $A$ and thence to the modulator.

The Dual Purpose fuplifier, V. 1, V. 2.
877. We have already noted the two functions performed by this dual purpose anplifier. The anode of each valve is comected to H. T. through a $45 \mathrm{Mc} / \mathrm{s}$. tuned oirouit in series with two 47 K . resistors in parallel. When the panel switch labelled "Pulse/I.F." is in the "Pulse" position the resistors fom the effective anode load and we have a two stage video amplifier. - When the switch is in the "I.F." position the resistors are decoupled to earth through .001 condensers and the tunod circuits become the effective anode loads to give us $45 \mathrm{xc} / \mathrm{s}$. I.F. amplifier.

The Solector Suiton.
878. This awitch is used to make the appropriate connections to the meter during the various stages in the setting-up procedure.

> Position 1 - The smoothed metal rectifier voltage, the meter and the power measuring neons are conneoted in series. The 330 obm fired shunt, R.49, is across the meter.
> Position 2 - The rectified output of the test set klystron is taken from the crystal, V.11, to the negative side of the meter while the positive side is earthed, The sonsitivity switch seotion, S.5a, is introduced to provide a variable shumt across the moter.
> Position 3-As the test set kiystron is tuned, the signal passing through the wavemeter cavity to the orystal, V.10, is rectified and applied to the negative side of the moter. The positive side is again earthed, The S.5b section of the sensitivity awitoh is introduced to provide a variable shunt across the meter.
> Position 4 - The external arystal current from the mixer applied to the panel Pye plug is conneoted to the negative side of the meter while the positive side is earthed. The S.6a section of the sensitivity switch is introduced to provide a variable shunt across the meter.
> Position 5 - The positive side of the meter is comneoted to the cathode resistor of the VT. 60A stabiliser, $\nabla .6$, and the negative side of the meter is earthed. Ro 49 provides a fixed 330 obm shunt. An K.H.T. current indication can then be obtained in the metor.

The Sensitivity Switoh.
879. (a) S.5a provides a variable shunt across the meter when setting up the test set kiystron.
(b) S. 5 b provides a variable shunt across the meter when measuring the magnetron frequency and when tuning the test set kiystron to the same frequency.
(o) S. 50 provides a variable shunt across the meter while:-
(i) Tuning the mixer with the dumay T.R. cell
(ii) Tuning the T.R. cell.
(iii) Tuning the anti-T. R. chamber.
(d) S.5d provides a variable cathode load for V. 1 when tuning the transmitter unit kigstron to a frequency $45 \mathrm{Mo} / \mathrm{s}$. off the

The Magio Eyy, 'V. 4 -
880. (a) When the P./I.F. switch is set to "P", the magnetron output leaking around the waveguide awitch passes through the wave meter cavity to the crystal, V.10. The rectified pulse envelope is applied to the puise anplifier, the smoothed negative voltage being applied to $V .4 \mathrm{grid}$. The closing of the magic eye indicates that the wavemeter is tuned to resonate the magnetron frequency.
(b) When the P./I.F. switoh is set to "I.F." the output obtained from the head anplifier by beating the aignals from the test set and transmitter unit klystron, is applied to V.I and V. 2 operating as I.F. amplifiers. V. 3 operates as a dotector and the smoothed negative voltage is applied to $\nabla .4$ grid. Closing of the magic eye indioates that the transmitter unit kystron tuning is approaching the correct frequency. S. 5d provides variable sensitivity of the amplifier, as the tuning progresses.

The Power-Measuring Noons, V.12, V. 13 (105/223)
881. Only neons in which the outer oylindrical electrode is connected to the outer of the bayonet cap are suitable. To oheck for the correat type of noon press the ionising button to apply +300 V . In the correct type the glow will be visible outaide the cylindxical electrode. If incorrect, most of the glow will be inside the oylindrical electrode.
882. The neons are placed three-quarters of a wavelength apart. In this way any reflection introduced by the second will be $2 \times \frac{3}{4}$ or $1 \frac{1}{2}$ wavelengths out of phase with that from the first. The phases will then be opposite and the two refleations will automatically oanoel out.

## The Haveguide syater

883. The switch operates on the principle discussed in Chapter 13, paras. 1243-1245.

The power dumany load consists of a fishtail of graphite and asbestos loaded bekelite. This dummy load breaks up the wavefront in such a way as to result in couplete absorption and no refleotion of RoF. power. Cooling is provided by the kiystron blower motor via a flexible pipe from the motor.

884* A 10 db . attenuating iris is introduced in the wavemeter channel to attenuate the RoF. power from the magnetron which leaks around the waveguide switch in position 1. This precantion is necessary to protect the orystals, V. 10 and V. 11.
885. A socond attenuator iris is introduced between the test set kiystron input probe and the orystal, V.11. This is to cut down the power applied to the crystal.
886. The matching iris behind the probe is to suitably divide the klystron power between the channel to V. 11 and the alternative path to the wavemeter and other guide channels.

## The Crystal Rectifiers.

887. V. 10 and V. 11 are CV. 102 crystals. These are yellow gyot cryatals with an orange dot to indicate that they can take a higher voltage than the ordinary yellow spot, of.101.

The Test Set 205A.
888. This model differs slightly from the test set 205 in panel layout, wiring arrangement, etc. It has already been pointed out that an external jack-point is provided on the panel for measuring E. H. T. current instead of using the test set meter as in the 205.

889. Some difficulty has been experienced with multiple toning points while tuning the transmitter unit klystron in the final stages of the settingup procedure. It has been found that the test set klystron is pulling the frequency of the transmitter unit klystron. The difficulty can be eliminated by pulling the coupling probe well out on the mixer while tuning the CV. 129 in the transmitter unit. This probe must of course, be reset to the position giving 1.5 ma. of orystal ourrent before attempting to receive signals.

The Junction Box Type 238(10AB/ 6455 ).
890. The applioation of this junotion box to protect the test set 205 has already been discussed in paras. $874-876$. The spare plugs on the box provide a convenient means of supplying 80V. A.C. and 24V. D.C. to other items of test gear which may be required in the bench-testing installation.

## The Mismatch Unit Type 257.

891. This unit is used in lining up transmitter units of the TR. 3555 series with the test set 205. The power dumny load of the test set simulates the scanner load but does not provide for the variations in load presented by different scamners. A unit lined up in the test set 205 might operate normally on a bench scanner but show moding, or frequenoy pulling and gapping, when used with an aircraft scanner. To provide for this variation in scamers the mismatch unit can be used in conjunction with the test set dumy load to introduce a deliberate mismatch comparable to that produced by the worst soanner likoly to be oncountered.
892. The unit is a length of rectangular waveguide which has a quartz rod projecting into the guide. The marimum distance that this rod may project into the guide is fixed to leave a clearance of $7 / 32^{\prime \prime}$ between the rod and the far guide wall. This quartz projection introduces a standing wave whose amplitude is comparable with that which may appear in the transmitter unit guide system due to the worst soamer likely to be encountered. The phase of this deliberately introduced atanding wave can be varied by means of a moveable carriage which supports the quarty rod. The transmitter output controls are detuned so that frequency stability is obtained regardless of the position of the mismatch carriage, i.e., regardless of the phase of the worst standing wave likely to be introduced by any scanner. This will involve a sacrifice of power output. The degree of power loss is an indication of the frequency stability of the magnetron. This stability may be influenced by the strength of the magnet, shape of the modulating pulse and amplitude of the modulating pulse, as well as the magnetron itself.


## C.D. O896 L



FIG. 145
PANEL


FIG.I46
TOP VIEW
WAVEMETER W.I31O
FIGS. 145 \& 146

The Wavemeter W. 1310.
Use.
893. The waveneter $W .1310$ is an absorption type wavemeter covering the band $155-220 \mathrm{Mo} / \mathrm{s}$. Its applioation in so far as H.2.S. installation is concerned will be mainly for tuning the Lucero transmitter and receiver, and for tuning Lucero blind approach beacons.

## Outline.

894. (a) For cheoking transmitter tuning the transmitter signal is applied to a cirouit tuned to the required frequency by means of a calibration chart. The output is applied to a diode rectifier which develops a positive output voltage which is used to bias the grid of an audio oscillator, thereby controlling the amplitude of oscillation. The audio oscillator output is rectified by another diode and applied to a magio eye indicator.
(b) For tuning receivers to a specified frequency and RoF. oscillator is provided which covers the $150-220 \mathrm{Mc} / \mathrm{s}$. band The oscillator frequency can be set to any value in the band since its output is loosely coupled to the resonant circuit of the wavemeter.
(o) A 6X5 or 6X5G power rectifier provides H.T.

Power Supply.
895. The unit is designed for mains operation. Before connecting to the mains it is essential to check that the connections on the mains transformer are suited to the supply voltage. By loosening the coin-slotted screws in the panel the instrument can be lifted out of its case. The mains tappings are on a tagboard under the chassis. The correct tappings are those whose sum equals the supply voltage. For 210V. mains, conneotions should be made to the tags marked 10 and 200. For a 240 V . supply, the 0 and 240 tags would be used. Special supplies can also be used as listed in para.

## The Circuit.

896. (a) Panel details are ahown in fig. 145
(b) Layouts are given in figs. 144 \& 146
(c) The oirouit is given in fig. 147 .

Power Pack.
897. The mains supply is applied via a suitable R.F. Pilter and OV/ONe awitch to the appropriate transformer tags on T.2. Smoothing is prowided by the choke, L. 5 (4OH.) and the eleotrolytio condensers C. 19 and C. 20.
898. The tappings on the power transformer permit use with mains voltages of: -
899. The output between Lu5 and earth is epproximately 250 V .

The Absorption Cirouit and Rof. Rectifier.
900. L.4, C.11 is the absoxption oirouit. C. 11 is the oalibrated RESONATOR control on the panel.
901. V. 2 is the diode deteotor. R. 8 is the oathode load. The values of R. 8 and C. 14 and those of the resistors and condensers used in the magio eye input are chosen to provide deflections free from flicker when the wavemeter is used with low porof. transmitters.

902. In $8, I_{n} 11,0.12, C .13$ are included to keep R.F. off the grid af the audio oscillator, V. 3.

## The Audio Oscillator.

903. V. 3 (VR.65) is arranged as a series-fod Hartley cirouit, using the anode, cathode and suppressor as a triode. The oscillation amplitude is varied by the bias applied to the control grid from the diode load. As the transmitter frequenoy and resonator frequenoy approach coincidence the diode output aarries $V .2$ grid more positive. The amplitude of osciliation rises to its peak value when the exact resonance point is reachod.
904. The effective D.C. voltage on the control grid of V. 3 is equal to the aifference between the bias on V. 3 cathode from the voltage drop aoross R. 11 in the bleedor formed by $\mathrm{R}_{0} 25, \mathrm{R}_{0} 10$, $\mathrm{R}_{0} 11$ and the adustable preset, $\mathrm{R}_{0} 23$, an the reotified positive voltage across R. 8 . Sinco R. 23 negatively biesses the diods V. 2 and thus modifies the outpat voltage, this preset can be used to correot the falling sensitivity with agoing of V. 2 and V. 3. When new val are fitted it may be deairable to apply inoreased bias. The bias can also be reduced when high sensitivity is oolled for in tests on pulse transmitters

## The Audio rectifior.

905. The audio output of V. 3 is applied to the VR. 54 rectifier, V. 4 b by the secondary of the audio transformer, T. I. R. 13 aots as an anode load across which a negative voltage appears. The amplitude of this voltage will increa as the anplitude of the oscillation in V. 3 inoreases. But this depends on the amplitude of osoillation applied to V.2. Hence, V. 4 output is proportio to the resonator circuit imput. Thus, as resonance is approached, the outpu from V. 4 inareases. V. 3 and V. 4 together serve effeotively as a D.C. anplifier for $\nabla .2$ output.
906. The output rrom $\nabla .4$ for a given input will depend on the bias applied to V. 4 by R. 14 which serves as a sensivity control. This is the control labelled "BIAS" on the panel.

The Tuning Indicator-
907. V. 5 is VI. 103 visual indioator valve. The acreen is at H. T. and the anode and target are below H. T. by an amount dependent on the anode ourrent, i. $e_{.}$, on the grid potential. The more current passed by the valve, the ride will be the shadow since the target is well negative to the soreen, As the ourrent decreases the potential difference between screen and target diminish and the shadow gets narrower. Hence, as resonance is approsched, and $V .5$ grid is carried down by the rectified output from V. 4 , the magio eye continae to close. When the shadow angle is at the minimum point the resonanoe point is reached. Since the setting of the BIAS control determines V. 4 output it can be used to set a suitable shadow angle on $V .5$.

## The R. F. Oscillator.

908. V. 1 is a VR. 137 using a split-stator Hartley cirouit. The panel control labelled "R.F. OSCILJATOR TUNING" is the oondenser C. 40 the twned oircuit is loosely coupled to the resonator circuit. The oscillator can bo set up to a desired frequency by setting the RBSONATOR control to the appropr ate setting as given by the calibration chart and then tuning 0.4 for resonar with the magic eye. The frequenoy markings on the OSCIILATOR TUNING control are only rough indications for the purpose of preliminagy setting to an appr mate value.

## Setting-Op the Waremotor.

909. (a) Conneot to the mains, using the appropriate transformer tappinge,
(b) Switoh on, noting that the pilot lanp lights un.
(c) After a short warming-up period the magic eye screen will glow. By operating the BIAS control the shadow angle oan be set to maximum corresponding to maximum output from V. 4 and maximum sensitivity.

## Measurement of Transmitter Frequency.

910.	(b) (c)	Feed a small voltage from the transmitter into the irput sooket, using the screened plug and length of concentric cable aupplied. If a direct connection to the transmitter is not possible, the probe, which is supplied with the instrument can be plugged into the open end of the concentric oable and placed in the field of the transmitter under test.   As the R.F. oscillator is not required the oscillator switch should be in the OFF position.   Rotate the RESONATOR dial until the shadow angle is a minimum. If zero angle is obtained before exact resonance is reachod the BLAS control should be turned counterclockwise to again inorease the shadow angle. The RESONATOR dial can then be adjusted for further closing. When the BIAS control is correctiy adjusted, tuning to exact resonanoe should not fully close the magic eye as the effective discrimination of the resonator circuit is then reduced. From the dial reading and the calibration chart the frequency can be determined.

## Transmitter Tuning.

911. (a) Set the BIAS control for maximum shadow angle.
(b) Apply transmitter input.
c) Set RESONATOR dial to the required frequency.
(d) Tune transmitter for minimum shadow angle, readjusting the BIAS as necessary as resonance is approached.

Receiver Tuning
912. (a) Set oscillator switch to ON
(b) Set RESONATOR dial to required value as deduced from oalibration chart.
(c) Set BIAS for maximum shadow angle.
(d) Adjust OSCILLATOR TUNING to close the shadow angle to minimun readjusting bias as tuning proceeds.
(e) Feed signal of required frequency to the recoiver and tune for maximum output
(f) Tuning sequence should be:-
(i) Iocal oscillator.
(ii) R.F. to I. O. coupling.
(iti) R.F. input cirouit.
Faults and Checks.
913. Should operation of the BIAS control not close the magic eye, listen for the note of the audio oscillator. If missing, replace V.3, and if present, replace V. 4 .
914. If there is no response when a signal is applied, measure the voltage on $V .2$ cathode with a high resistance voltmeter, having a resistance of 2,000 ohms per volt or more. This voltage should be 0.5 V . or more and should inorease as the resonator circuit is brought in tune with the signal. If this does not occur the valve should be replaced.
915. If no magic eye response is obtained from the R.F. oscillator, remove the oscillator cover and measure the $H . T$. voltage between the tuning coil and earth A reading of approximately 150才. should be obtained with satisfactory valve and power supply.
916. Ho T. Voltage should be about 250 V.




FOR MARK II C , THE CONTROL UNIT TYPE444 IS NOT USED, THE JUNCTION EOX TYFE 231 IS
REPLACED BY JUNCT
ONE LESS 2B PLUK, AND THE 12 WAY RED IS CODED VIOLET, AND THE HIF BOX TYPE TR 3555 IS REPLACED BY T2R THPE BISI WHICN HAS A BLOWLER MOTÓR EUT NO TUNINC RAPEATER MOTOR

## CHAPIER 12 - SERRVICING AND MAINIEENANCE

## Sumary of the Signal Chamels

917. (a) Tx-Timing Fulse - Prom anode of V. 505 in W. F. G. to grid of VR. 91 in modulator $\mathrm{m}_{\mathrm{m}} \mathrm{V}$. via blue Pye plugs on the W. F. Gs and modulator 64
(b) Ro Po Qutput - From magnetron via R. F. output plug to scanner by waveguide or high power cooxtal feeder.
(c) Ro Fe Input - From scanner back to transmitter unit and mixer stage.
(d) In $\mathrm{O}_{\mathrm{c}}$ Signal - From klystron oscillator to mixer. In Mark IIC by uniradio 21 feeder from tuning unit 207 to transmitter unito In Mark IIIA (TR 3555) via coaxial lead from kiystron in transmitter to mixer cavity in same unito
(a) Mixer Output - By Pye cable from mixer to head anplifier gride
(f) Head Amplifier Output - From head amplifier anode to green Pye on the transmitter unit, thence to green Pye on the RX-T. unit and grid of first I. F.
(g) Lacero Output - Fran I. F. amplifier anode in Incero Bx to brown Pye on Iucero, and thence to brown Pye on BX-T unit and grid of first I. $F$.
(h) Mixed Signals, Heading or Track Marker and Range Karker From cathode of RX-T. mixer (V.411) to slate Pye on RX-T unit and thence to slate Pye on W.F.G., and grid of buffer C. Fo, V. 512.
(i) Mixer Signals, heading or Track Marker and Range Marker for Height Tube - Taken by condenser inside W. T. G. from slate to red Pye plug. Froat red Pye on IT. F. G. to red Pye on Imcero. Across to orange pye by conienser (Incero not operating). From orange Pye on Iacero to orange Pye on indicator 1840 Applied to grid of one height tube amplifier valve.
(J) Height Mariker - From delay network in cathode of height mariker output valve (V. 403) to white Pye on the Iax-Timing unit and thence to white Pye plug on Lucero. Across to yellow Pye plug on Imcero (Lucero not operating). From yellow Pye on Iacero to yeliow Pye on indicator 184 and grid of other height tube amplifier valve.
(k) Mixed Signals, Heading and Track Marker, Range Marker and Bright-Up For Po Po. - From cathode of V. 508 to black Pye in Wo F. Go and thence to. black Pye on indicator 184 and cathode of video amplifier; D.C. coupling.
(1) Time Base for Height Tube - Fran centro-tapped secondary in V. 504 anode to 2 -pin on W. F. Ge and thence to 2-pin on indicator 184 and through scan transformer to deflecting plates.
(m) Time Base for $P_{0} P_{0} I_{0}$ - From centre-tapped secondary in V. 504 anode to pins 2 and 6 of 6 pin on W. P. G and thence to scanner and magslip rotor. Fron magslip stators in scanner to indicator 184 on 4 pin (via a Junction box 222 if Fishpond used). Non-linear timebase developed from magslip output in indicator 184 and applied from anodes of sawtooth amplifiers directly to the $X$ and $Y$ plates.
(n) Trigger pulse for Markers and Suppression - From cathode of VT. 60A in modulator M. $\mathrm{V}_{\mathrm{A}}$ to violet Pye plug and thence
to violet Pye plug on RX-T unit. Direct-feed into suppression delay network and delayed pulse fed to grid of suppression generator, V. 412. Also fed to primary of transformer T.400. Phase inverted output from secondary goes to cathode of height marker timing valve (V. 400). On 30 and 100 mile marker ranges it also goes to cathode of range marker timing valve (V.406).
(0) Signals, Markers and Bright-Up for Fishpond - From V. 508 cathode to black Pye on W. F. G and thence to black Pye on Fishpond. Applied to cathode of Fishpond signol amplifier through a condenser, i.e., A. C. coupling.
(p) Timebase for Fishpond - Master sawtooth frorn centre-tapped secondary in $\bar{V} .504$ anode to pins 2 and 6 of 6 way on W. F. Go Thence to scanner and magsilp rotor. Stator outputs on 4 pin to J. B. 222. Picked up at J. Bo on 4-pin and taken to Fishpond. Developed into required timebase in Fishmond unit.
(q) Trigger Pulse for Pishpond Markers - From cathode of VT. 60A in modulator M. V. to violet Pye plug and thence to violet plug on Fishmond. Operates on grid of marker vaive if push-button switch pressed.
(r) Trigger Pulse for Lucero - From cathode of VT. 60A in modulator M. V. to violet pye plug and thence to violet Pye plug on Iucero panel. Applied to grid of counting down valve.
(s) Iucero Output - From transmitter tank lecher tops to internal Pye plug and thence to T.R Junction box, swritch motor, and aerial feed Pye plugs on panel. Green/white feeds port aerial and red/white feeds starboard aerial.
(t) Iucero Signal Irput - From aerial Pye plugs to switch motor and thence to Ro Fomplifier in Lucero receiver.
(u) Trigger Pulse for \#. F. G. 43 (Fishpond Independent Bright-Up From violet Pye on modulator to violet on W.F.G. 43 and thence through short $C_{0} R_{0}$. and diode to synce grid of $\mathrm{M}_{0} \mathrm{~V}$.
(v) Mixed Signals and Markers for W. F.G. 43 - Fron cathode of RX-T mixar to slate Pye on $B x$-timing unit, am thence to slate pye on W.F.G.43. Applied to grid of buffer C. F. stage
(w) Mixed Signals, Markers and Indegendent Bright-Up for Fishpond From cathode of W. F. Go 43 mixer (where independent bright-up added) to black Pye on W.F.G. 43. Thence to black Pye on Fishpona and direct to Fishoond signal amplifier cathode; D. Co coupling now employea

Summary of Controls and Test points
Power Supplies
918. (a) V.C.P. Switch - Determines whether the aircraft Do supply gets from ixput plug to output plug for alternator field.
(b) Alternator Switch - Determines whether regulated 24V. supply reaches alternator field and excites alternator.
(c) V.C.P. Trimer - Adjusts D. Ce supply to alternator field to get 80V. output at normal engine speeds.
(a) V.Co po Compression Adjustinent - Takes up slack in carbon pile to enable satisfactory regulation.
(e) Fower Uait Jack Foints - Provide checks on the separate power supplies in the unit.
(f) "In T. ON Button - Brings heater, 300V. H. T. and -100V. bias supplies into operation and puts +24 V . on blower motor.
(g) "H. T . ON" Button - Puts +300 V . switched supply into operation when the red light comes up. Trigger valve operates trigger gap on spark gar.
(h) Modulator 64 Switoh - Puts 80V. An C. on primary of -4 KV . power pack transformer. If dow, transmitter goes into operation when red light comes on
(i) Scanner Motor Switch - Puts 24V. D. C. on scanner motor.
(j) Iucero Wranse $0 n^{\prime \prime}$ Switch - Puts +24 V . on C relay which puts H. T. on W. F. Go Type 30 and brings modulating pulse valve into operation to bring transmitter on

## R. F. Output

919. (a) Modulator P.R.F. Control - Varies D. C. potential to which grid of VT. 60A in modulator $M, ~ V$. is returned and so adjusts p. $r_{0} f_{0}$ of modulator $\mathrm{M}_{0} \mathrm{~V}$. to permit synchronisation by Tx-timing pulse and locking of $T x$ to time base.
(b) 30 Mile zero - On 10/20, 30/20 and 100/20 positions of scanmarker switch it varies point at which sawtooth carries Txtiming valve into conduation and hence point on sawtooth where Tx pulse eppears. By varying point where $T x$ pulse appears point where signals appear is also variod. By varying point on sawtooth where 20 miorosecond pulse forms, it varies point where Fistpond zero marker forms and where suppression, height and range marker appear on the displays.
(c) 10 Mile Zero - Achieves same results on the 10/10 position of scan-marker switch as in (b) but provides wider range of variation.
(d) Scan-marker Switch - Connects Tx-timing valve grid to 10 mile zero silder on $10 / 10$ position, to 30 mile zero on $10 / 20,30 / 20$ and 100/20 positions, to OV. on $100 / 40$ position and to $+60 V$. on 100/40-80 position
(e) Blue/White Voltage Monitor Point on Modulator 64 - Permits measurement of emplitude of modulating pulse on T. S. 28. Shape of pulse will indicate whether overswing diode circuit is operating and whether breakdown is developing in magnetron pulse transformer or heater transformer. Amplitude of pulse is approx. $64 \times$ value measured on T.S. 28.
(f) Brown/Thite Monitor Point on Modulator 64 - Permits measurement of current in modulating pulse. Shows antiphase waveform to that in (e). Current value in amps is approx. equal to amplitude in volts on T. S. 28.
(8) Matching Slug (Mark IIC) - Used to match magnetron to output line and usually set for best signal-to-noise ratio.
(h) R $\mathrm{F}_{0}$ Output Tuning Piston and Matching Iris (TR. 3555 Mark IIIA) Adjusted to get maximim power output from magnetron lay require detuning to avoid moding or frequency pulling.
(i) Tuning Rods and Carriage (TR. 3555 Mark IIIA) - Alternative to (b).

## R.F. Imput

920. ( (a) $\frac{\text { Capacity Joint in Scanner Type } 63 \text { - Must be correctly aligned }}{\text { in Mark IIC to get best signal input. }}$
(b) Matching Slug - Affects both magnetron output and strength of signal reacking CV. 43 in Mark IIC. Set for best signal-tonoise ratio as stated above.
(c) CV. 43 Tuning Plungers - Plunger on panel tunes CV. 43 to resonance at magnetron frequency. Signal imput to mixer reduced if not
MK. correctly tuned. Preset plungers Pix band covered by panel control.
IIC
(d) CV. 43 Imput Coupling - Adjusted if overcoupling of Tx pulse into cavity causes too much ionisation as indicated by diffused glow
(a) cavity and flat tuning.
(e) CV. 43 Probe - yeter connected between input lead and probe to measure ionising current if crystal burning out. Value of current varies with type, see fig. 73. Voltage measured with electrostatic voltmeter should be about -700 V .


## Local Oscillator


time and time the height marker forms, i. e. When grid of first flip-flop is taken above cut-off.
(c) Height fiming Trimen - Used by manufacturer to set timing C. Re to value for which the scale was designed.
(d) Range Zero - Performs same function in range mariker Plip-fiop as height zero in height marker flip-flop. Adjusted so that with range control set to zero and scan-marker switch in 10/10 position the range marker and height marker coincide when height control set to $20,000 \mathrm{ft}$. (after previously setting up height zero).
(e) Range Control - Varies potential from which range marker timing condenser starts its exponential rise, thereby varying delay between zero time and time that range marker forms when grid. of first flip-flop taken above cut-off.
(f) Range Timing Trinuner - Used by manufecturer to adjust range maricer timing $C_{0} R_{e}$ to value for which scale is designede
(g) Iine of Flight Switch - Futs +300 V . on heading maxker circuit.
(h) Course-Track Switch on Indicator 184 - Determines which contact in scanner earths the pulse-forming circuits in the receiver-timing-unit. (Set to "Track" when using scanner type 65 or 3 to obtain course marker).
(i) Course-Track-Auto Switch on H.C. U. - Set to "Course" to set up heading marker and to "Track" to set up track marker, and to "Auto" after both set up. Connects D. R. campars to course, and transmitter in control unit to track repeater motors when in "Auto" position Connects mamally operated transmitter in H. C. U. to respective repeater motors when in "Course" and "rerack" positions.
(j) Setting Control on H.C.U. $_{0}$ - Used to manmally operate the courge and track repeater motors in the scanner when switch set to "Course" and "Irack" respectively. Switches the D.C. connections to the repeater motor windings.
(k) W. F.G Course-Treck Iink = Set to "Course" for use with scamner type 65 or type 3 . Set to "Course and Track" for use with scanner type 71 and type 63.
(1) The Scan-Marker Switch - Switches D.C. to relays which awitch the anode load of the range marker timing valve to give the different marker ranges. Comects the range marker timing valve cathode ( $V .406$ ) to the arode of the second valve in the height marker flip-fiop on the $10 / 10$ and $10 / 20$ positions.

## Timebase

923. (a) Scan-Marker Switch - Switches D. C. to relays which switch cathode
 valve, grid potential of switching valve, and cathode load of switching valve, to get different sawtooth woriding strokes.
(b) Sync. Control - Varies phantastron screen voltage Set to give stable phantastron screen operation at the seme time that the settings of the other two phantastron controls give freedcm from unstable centre and scalloped edges on scan
(c) Phantastron Screen Volts - Varies potential to which clamping edg oathode line is tied. Set to hold cathode line silightiy below -l00V. Iine while giving adequate clamping square wave.
(a) Phantastron Cathode Volts - Varies potential to which clamping diode anode line is tiedo Set to hold anode line slightly above -100V. line while giving adequate claming square wave. Two controls adjusted together.
(e) X-Amplitude Control - Varies negative feedback in X-amplifier pair to give required push-pull overall amplitude and range coverage.
(f) Y-Amplitude Control - Varies negative feedback in Y-amplifier pair to give required push-pull overall axplitude and range coverage. The two amplitude controls must be adjusted for circularity of range marker, $i_{\bullet} e_{*}$, correct relative anmilitudes across $X$ and $Y$ plates, and for correct range coverage, $\mathrm{i}_{\mathrm{i}} \mathrm{e}_{\mathrm{e}}$, correct vector sum of anplitudes.
(g) Aum-Rliminator Control - A 300 ohm potentiometer conneoted across the heater line to balance out as much as possible the 1000 cycle hum picked up on the heater line which causes spparent timebase bunching or "spoking". Fitted as a retrospective modification in earlier 184 indicatorse
(h) Distortion Corrector - Varies the resistance in the complex charging C. R's to give the correct shape imput on the grids of the scan amplifiers in order to obtain a distortion-free display and constant ground range coverage on all scans. Must be set to correct height.

## Outputs and Displays

924. (a) Switch Unit BrightoUp Control - Varies potential to which grid of second valve in bright-up filip-flop is returned, thus varying current through the common cathode load and hence the grid cutmoff potential of the first flip-flop valve. This permits variation of the point on the sawtooth where the sawtooth carries the first grid above cut-off to start the bright-up pulse. Used to adjust commencement of the bright-up in the 50 mile sawtooth.
(b) W. F. G. Bright-Up Control - Varies the resistance in an integrating circuit in the sawtooth input channel to introduce a deliberate distortion by shunting out bigh frequency components. This distortion is most effective on the 10 mile sawtooth input, because of its higher proportion of high frequency components. The distortion in the input $C_{0}$. results in low frequency loss which effects the 30 and 50 mile imputs most. By using the W. F. Go control only on the 10 mile sawtooth imput, and the switch unit control only on the 50 mile sawtooth imput, it is possible by means of a few alternate adjustments to start the bright-up at the same point in the saan in all threesawtooth imputs. As long as Fishpond has no independent bright-up these controls will be adjusted to get brightening up of the Fishpond zero marker on all three scans. The 10 and 30 mile zeros will previously have been adjusted to give a zero marker whose diemeter is approximately the same on all three scans, i. E., about in. $^{\prime \prime}$ When the V.F.G 43 is fitted to give Fishpond an independent brightup both controls are set fully anticlockwise to start the brightup as early as possible. This is to prevent the appearance of a bole in the centre of P.P.I. display at low altitudes due to the height marker forming and starting the scan before the K. F.G. bright-up commences.
(c) Contrast Control - Varies the potential to which the gria of the video araplifier is returned, thereby varying the current through the common cathode loads of the W.F.G. mixer and the video amplifier. This serves to vary the effective bias on the TV. F. Go mixer and so determines how much brightmup square wave is passed by the W. F. G. mixer and applied to the video cathode. The contrast control thus serves as a bright-up amplitude control. As it is carried clockwise, the bright-up amplitude increases. For maximum target detail it shoula be adjusted to the position where the superimposed range marker just begins to show top-cutting. This setting will pass enough bright-up for Fishpond when no independent bright-up is available. Further olockwise rotation will result in top-cutting or limiting of signols. In the fully clockwise position the video amplifier may be cut-off on the grid.
(d) Gain Control (Mark IIC) - Varies cathode potential of second and fourth I. F. amplifiers to vary amplitude of H. $2 . \mathrm{S}$. and Iucero signals.
(e) Gain Control (Mark IIIA using TR. 3555) - Varies screen volt age of first four Io $\mathrm{F}_{0}$ amplifiers and second head amplifier to vary amplitude of H. $2 . S$. and Lucero signalse
(f) Gain Control (Mark IIIA using TR. 3523 series) - Varies screen
voltage of first four I. $F_{0}$ amplifiers and of both head amplifiers.
In both Mark IIIA installations the control actually varies the grid potential of the gain control valve to vary the anode voltage which serves as the screen supply for the gain-controlled stages.

Suppression - Varies the delay imposed on the 20 microsecond pulse eqplied to the grid of the suppression valve. The negative output at the anode is epplied to the screens of the lst and 3rd I. F. stages in Mark IIC and to the suppressors of the first three I. F. stages in Mark IIIA. This suppression pulse has an exponential tail and will keep the receiver insensitive for a time dependent on the suppression setting. Where Fishpond is employed the minimum range of pishpond cannot be less than the time after the transmitter pulse for which the receiver is held insensitive by the suppression pulse. The suppression control should, therefore, be set for full transmitter breaktbrough, then given one click in the opposite direction to apply suppression only for the duration of the primary magnetron pulse. The noise, etc. frum the secondary pulses will then cone through the receiver but close range Fishpond signals can also cone through. As long as their amplitude exceeds the noise amplitude the signals can be seen if the low gain $H_{0} 2_{0}$. . is used and low brilliance is used on fishpond.
(h) P. Ps I Brilliance - Varies D. C. level of P. P. I. grid relative to its cathode and thus controls emission of P.P.I. and intensity of display. Since high enission aeans greater spreading of beam due to mutual repulsion between electrons in the beam, the best focus is obtainable with low brilliance.
(i) P.P.I. Focus - Varies potential of focussing anode relative to cathode to converge beam to the sharpest possible point at the screen.
(j) P. P. I. Horizontal and Vertical Shifts - Vary potential to which grid of second stage in each of the sawtooth amplifiers is returned, thereby varying $D . C$. level at anode of second stage relative to that of first. Since anodes are D. C. coupled to the deflecting plates the anode potential can be balanced to have the flyback take the spot back to the tube centre.
(k) Height Tube Brilliance - Varies D.C. level of height tube grid relative to cathode. Set so that blackout waveform carries grid down far enough to cut out the Plyback.
(1) Height Tube Focus - Same operation as P. P. I. focus.
(m) Height Tube Shift - Serves to shift height tube scan vertically so as to put suppression break at the bottom of the tube to provide maximun useful range coverage on the scan Actually varies the D. C. potential of one $X$-plate relative to that of the other. As tube is turned through $90^{\circ}$ the $X$-plates are in the position somally occupied by the Y-plates. The control thus serves as a vertical shift although operating on the plates connected to the X-terminals on the base. The horizontal centrang of the trace is determined by the relative $D C$. levels at the anodes of the height tubs paraphase amplifier since these anodes are D.C. coupled to the signal plates.
The Scan-Marker Switch - When set to $100 / 40-80$ position it ties grid of Tx-timing valve to +60 V . and so causes the valve to go into conduction about 500 microseconds before the midale of sawtooth Txa then fires 500 microseconds earlier and the suppression is also advanced 500 microseconds so disappears off bottom of height tube. Range coverage on height tube then of the order of $40-90$ miles for homing on long range beacons.
(0) Incero Switch - When set to "OFF" cuts off 24V. and 80V. supply to Lucero so only nornal H. 2.S. displays obtained. If set to $\mathrm{B}+\mathrm{H}$, $B$ or $B A$, the 24V. and 80V. supplies are taken to Lucero and the $B$ relay in Iucero is energised to brang the switch motor and mechanical automatic frequency selectors into operation B relaj now disoonnects height marker input fron yellow Pye on Iucero, so it goes off the height tube. Switch motor now switcines the mixture of signal and range markers taken in on the red Pye plug at Incero between the oranze and yellow pye plugs to give a double sided display on the height tube. If the $B+H$ position used, both Lucero and Ho 2.S. signals appear. If in the $B$ position, the H. T. supply .s cut-off from the head amplifier in Mark IIC. In Mark IIIA, the $H$ T. and screen supply to the second head amplifier are broken in the TR. 3555 semies transmitter units. The H. $2 . S$.
signals are thus eliminated and only Lucero signals appear on the double-sided display. In the $B A$ position, the $24 V$. supply to $B$ relay in Lucero is completed via pin 10 on the 18 -way instead of pin 9, which_provides the chamel on the B $+H$ and $B$ positions, If a jumper socket is used on the 18-way on the Lucero panel, the change fran $B$ to $B A$ will result in an automatic change of the Lucero tuned circuits to permit reception of signals from Lucero blind approach (BABS) beacons. The height tube display may be either single or double-sided depending on the aerial system enployed for the reception of BA. signals.
(p) Receiver Monitor Point (Mark IIC) - Pernits measurement of detector output for a given C. Wo-input to check receiver sensitivity and bandwidth.
(a) Receiver Output Monitor Plug (Mark IIIA) - Spare Pye plug on panel of Rx-T. unit where output of cathode follower between detector and receiver output valve can be scoped or measured to check receiver sensitivity and bandwidth.

## Fishpond

925. (a) Range Presets - Adjustable resistors strapping the cathodes of the sawtooth amplifiers. Vary the negative feedback and 80 adjust the gain to develop an output amplitude that will carry the spot across the screen in about $90-100$ microseconds, regardless of the sawtooth imput. Three presets for each amplifier, one for each sawtooth imput. Must be adjusted to have the correct overall amplitudes from each pair which will combine vectorially to give circular markers and range coveraze of $4-5$ miles
(b) Scan-Marker Switch - Switches D.C. to relays in W. F. Go which results in change of saytooth working strokes and simultaneously switches D.C. to Fishpond relays to connect appropriate range preset between the sawtooth amplifier cathodes.
(c) Balance Presets - Vary D.C. level to which grid of second stage in sach sawtooth amplifier pair is tied, thus varying gain of one valve relative to that of the other. Used to get push-pull output from each pair in order to get scan rotating about centre when shifts have been previously adjusted to compensate for any deformation of the electrode structure.
(d) Shifts - Vary D. C. potential of one deflecting plate in each pair relative to that of the other. Horizontal shift used to bring vertical scan through centre and vertical shift used to bring horizontal scan through centre.
(e) Brilliance Control - Varies D.C. Level of C. R.T. grid relative to cathode. Shoula be kept as low as possible by operator to detect signals just above noise level.
(f) Gain Control - Varies potential to which grid of signal amplifier is returned and so permits same variation in gain of signal anplifier. When W. F. G 43 fitted signal amplifier and mixer in V. F. G. 43 will be D. C. -coupled in same way as video amplifier and W.F.G. mixer, V.508. Gain control then operates as a contrast or limiter control. Should then be set for top-cutting of signals to intensify signal response relative to noise response. Brilliance must be low to get best comparative effect.
(g) Contrast Control on Indicator 184-Determines anplitude of brightwpulse reaching Fishpond vhen W. F. G. 43 not fitted. kust be set to provide at least enough bright-up pulse to permit blacking out of scan and flyback.
(h) W. F. Go 43 Bright-Up Amplitude Control- Determines amplitude of bright-up pulse passed to Fishpond for a given setting of Fishpond gein control. Must be preset to value which permits adjustment of Fishpond control to cause top-cutting of signals when brilliance control is at minimum Cormencenent of bright-up is fixed automatically to back elge of 20 microsecond pulse and Fishpond zero mariker.
(i) 10 Mile Zero and 30 Mile zero - Vary potential to which grid of Tx-timing valve is returned on 10 and 30 mile scan, respectively. Thus vary point on sawtooth at which the Tx-timing pulse and 20 microsecond pulse appear. This, in turn, fixes point in Fishpond scan where zero marker appears on these scans, Set to give zero marker of about $1^{\prime \prime}$ diameter on their scans so as to get a display which remains sensibly constant as scans are swi tched.
(j) W. F. Go and Switch Unit Bright-Up Controls - Action outlined in parase 924 (a) and (b) Adjusted alternately using W. F. Go control on 10 mile sawtooth and switch unit control on 50 mile sawtooth to get zero marker brightened up on all three scans when no W. F. G. 43 fittea.
(k) Marker Switch - Pusb-button switch which alters D. C. level to which grid of marker valve ie returned from about -100V. to about +40 V . so that valve is in aaturation current on leading edge of positivegoing 20 microsecond pulse but cuts off on back edge. Tuned circuit in anode then rings to give damped $93 \mathrm{Kc} / \mathrm{s}$. oscillation whose + pips are used to produce the Fishpond markers. Gives zero marker on lst positive swing on back edge of 20 microsecond pulse and successive markers at 10.7 microsecond or 1 mile intervals.
(1) Frequency Control - Dust core of coil in ringer circuit can be adjusted if necessary to vary effective inductance in ringing circuit and so get markers giving correct range indications.

## Stabilised Scanner

926. (a) Amplifier Unit Switch - Earths grid of V.I in amplifier undt to reproduce the same conditions in the emplifier unit as would exist when moving platform is horizontal and no misaligrment voltage is applied to the amplifier unit.
(b) Amplifier Unit Jack Point - By jacking in a meter, the differences in the anode voltages of the VT. 60A's in the $D_{0} C_{0}$ aplifier cen be measured.
(c) Amplifier Balance Preset - Varies opereting point of grid of first VT. 60h Adjusted until meter reads zero when jack connected to meter inserted at jack point. Anode potentials of the VT.60A's should then be balanced and no net field current applied to motor generator whose armature should ther be stationary.

## Bench Setting-Up of H. 2.S. Mark IIC Installation

## Test Equipment Required

927. (a) Monitor 28
(b) Test Set 85
(c) Test Set 202
(d) Electrostatic volmeter
e) D.C. milliammeter 0-2 ma.
(f) AVO Model D.

## Power Supply Checks

928. Before switching on the equipment check that the supply voltages are approximately 80V. Ac C. and 28V. D.C.
929. (a) Check that modulator 64 switch is off (up)
(b) Press "LT. ON" button on switch, unito Green pilot lamp should light.
(c) Check the blower notor is running in the transmitter unit.
(d) Check that indicator 184 panel lamp is Punctioning
(e) Check that the switch unit panel lamps are operating on the height and range drums. The scan marker switch will have to be switched through the different scans to check the range drum lamps.
930. (a) Check the +300 V . and -100 V . power supplies with the aid of a 0-2 ma, meter and jack at the power unit jack pointse Normal readings are :-

	PU Type 280		Type 224	
Jack Point	Normal	Limits	Normal	Limits
+300V.	1 ma	$0.95-1.05 \mathrm{ma}$	0.3 ma	$0.28-0.33 \mathrm{ma}$
300V. feed	0.85 ma	Approx	195 ma	$180-210 \mathrm{ma}$
$-100 \mathrm{~V}_{0}$	1 ma	$0.95-1.05 \mathrm{ma}$	1.0 ma	$0.95-1.05 \mathrm{ma}$

(b) If these readings are proportionately high or low the V.C.P. 80V. supply is incorrect and requires adjustment.
(c) Should the two voltage readings be in disagreement, suspect the rectifiers.
931. (a) Turn the reflector voltage control on the tuning unit 207 fully anti-clockwlse.
(b) Press ${ }^{" H} \mathrm{H}$. ON" button Amber light should cone on.
(c) Red lamp should come on in less than a mimute.
(d) Check that height tube timebase appears.
932. Cheok the -1800v. supply at the power unit jackpoint. Reading should be $1 \mathrm{mae} \pm 0.05 \mathrm{ma}$ on the P.U. 280 or $1.8 \pm 0.05 \mathrm{ma}$ on the P.U. 2240
933. Check that an overload on the power packs in the power unit will cause the equipment to switch off by putting a 200 olm resistance between one of the tag points marked " $A$ " on the 300 V . transformer and earth.

## Crystal Checks

934. (a) Measure the forward resistance of the crystel. This should not exceed 200 obms as a general rule if measured on an AVO Model $D$, using the 10 K range or on a Model H using the 20 K range.
(b) Measure the back resistance. This should not be less than 1000 ohms.
(c) Switch the modulator on and off about 6 times and again check the crystal to see whether the values found still hold good. This is to check the surge resistance of the crystal. Log the back resistance on card kept with the unit.
(d) Leave modulator switched off.

Measurement of forward and back resistance of crystals does not establish with absolute certainty that the crystal is either good or bad. The tests apply to the majority of crystals but crystals failing to pass the tests may occasionally give reasonably good sensitivity while crystals passing the tests may prove unsatisfactory. The only positive check on a crystal is the comparative sensitivity when the cyystol is put in a known good set instead of a known good crystal.

## Initial Setting-Up of Crystal Current

935. (a) Set coupling loop of CV. 67 to midway position using the preset on the tuning unit 207.
(b) Plug in a $0=2 \mathrm{ma}$, D. C. meter at the transmitter und crystal current jackpoint.
(c) Turn the reflector volts preset clockwise while observing meter reading. Determine which is the stable or slow side of the crystal current peak. If reading tends to exceed 0.6 ma reduce coupling at tuning unit 207 or adjust capacity probe at mixer until peak reading obtainable with the reflector volts preset does not exceed 0.6 ma . Set reflector volts to give 0.4 ma . on stable side of characteristic.

## CV. 43 Checks

936. (a) Switch off the -1800v. supply by pressing "L, T. ON" button
(b) Check that amber light goes out.
(c) Disconnect lead to CV. 43 top cap and connect to negative side of D.C. milliameter. Connect positive side of meter to the CV. 43 top cap.
(d) Press "HoT. ON" button to reapply -700 V . to CV. 43 . The meter will read the ionising current between the probe and the earthed rhumbatron Older type CV. 43 had a normal current of about 1 man. Later types take only about 0.5 ma (see fig. 73d). If satisfactory iomising current is present assume CV. 43 is operating.
(e) Check CV. 43 heater Jacket after the equipment has been on for a few mimates when the bakelite jacket should show signs of becoming warme

## Obtaining Signals

937. Necessary conditions to obtain signals :-
(a) Scanner looking at a target.
(b) Transmitter supplying enough power to make possible the return of an echo of sufficient strength to produce a visible indication
(c) CV. 43 tuned so that magnetron frequency lies in the range which will resomate the CV. 43 cavity.
(d) I. 0 . frequency differing from magnetron frequency by a value within the I. F. passband.

If follows then that if the matching slug, CV. 43 tuning plunger and klystron tuning are badly misaligned, some difficulty may be experienced before a
signal can be obtained on the display.
938. (a) Magnetron output depends on setting of matching slug which gives best match to output line.
(b) Alteration of matching slug position may cause variations in magnetron frequency.
(c) Change in magnetic field strength may affect both magnetron frequency and power output. This is particularly applicable when working with cover on and cover off the transmitter unit when the magnetic field strength is near or below the critical value. The effects will be more significant on a poor magnetron than on a good one.
(d) Changes of the klystron reflector voltage will cause frequency changes as well. Changes in feedback and amplitude of oscillation will cause crystal current to fall. Frequency changes may occur without crystal current falling, but signal strength may still fall due to wrong I. F. coming out of mixer.
(e) Crystal sensitivity is normally at a maximum when the crystal current is 0.3 ma or above. If the current falls below this value, due to retuning of klystron which upsets the feedback phasing, the sensitivity may fell. Hence as klystron tuning varied it is necessary to keep an eye on the crystal current and readjust reflector voltage if crystal current falls.

## Matching the Magnetron

939. (a) Check that the high power feeder connections at the transmitter unit and scanner are clean and firn, and that any dielectric gap in the plugs is taken up by use of the washers provided.
(b) Check that amber and red lights are on at the switch unit. Switch modulator on.
(c) Check that to overload relay trip is functioning by removing the pulse lead from the modulator 64 to the transmitter unit. The relay should trip immediately.
(d) Rotate the scanner to shoot at the pre-positioned test set 85 .
(e) Check that the R.F. output is up to the value known to be standard for good sets. Readjust matching sluy if necessary to obtain this power output.
(f) Watch for any sign of arcing in the transmitter unito

Searching for Signals with Is $Q_{0}$
940. (a) If satisfactory R. F. power output is forthcoming point the scanner in the direction of the strongeat permanent echo available.
(b) Connect the monitor 28 inqut leal to the slate Pye plug on the receiver-timing unit. Use 100 microsecond timebase and amplifier in X5 or X10 position.
(c) Rotate tuning control on tuning unit 207 watching the monitor 28 for the appearance of a signal. Keep an eye on the crystal current while tuning and readjust reflector volts, if necessary, to keep current above 0.3 mas and stable.

## CV. 43 Tuming

941. (a) As soon as a signal is obtained adjust CV. 43 tuning plunger. Note sharpness of tuning. It should be possible to drop the signal eamplitude with three-quarters of a turn of the tuning plunger from either side of the peak point.
(b) Should the tunirg appear flat, particulariy on short range signals, remove the tuning plunger and observe the ionisation at the lips. For correct operation a violet haze should be visible only across the lips and not spreading out into the cavity.
(c) If there is evidence of a diffused glow spreading out into the cavity the coupling from the CV. 64 output line into the CV. 43 cavity is too tight. To remedy this fault, it is necessary to remove the CV. 43 from the transmitter unit and place a thin washer between the CV. 43 bush (which carries the loop coupling into the cavity) and the cavity itself. Norminal washer thicknesses are of the order of $1 / 32^{\prime \prime}$ to $1 / 16^{\prime \prime}$. Before replacing the 100 p and bush ensure that the plane of the loon embedded in.the polystyrene is left in the vertical plane in order to get the strongest imput coupling for signals. The actual thickness of the packing washer must be limited to a value which serves to limit the diffused glow to the cavity lips but does not cause a decrease in the S/N ratio.

## Final Setting of R. P. Controls

942. (a) Put cover on tranmaitter as far as possible while still permitting access to the matching slug. This yrecaution is to have the effective field strength of the magnet as nearly as possible at the value it will have when the cover is on the unit.
(b) Adjust matching slug for maximum signal to mise ratio. Alternate adjustments of matching slug and klystron tuning on the weakest stable signal will be necessary to obtain the best matohing slug setting since the magnetron frequency is likely to shift as the slug setting is varied.
(c) When optimu point found tighten the matohing slug.
(d) Adjust CV. 43 tuning for best $\mathrm{S} / \mathrm{N}$ ratio and lock the clamp.
(e) Check for two tuning points on the CV. 67. If not obtainable adjust the fixed plungers until two tuning points are obtainable on the tuning control with a bit of leeway at each end of travel of control.
(f) Check the two tuning points for best $\mathrm{S} / \mathrm{N}$ ratio, readjusting crystal current to 0.4 ma . at each point with the reflector wolts control. Leave tuning control at point which gives the best $\mathrm{S} / \mathrm{N}$ radio with reflector volts set for 0.4 ma .
(g) Adjust coupling preset so that reflector volts preset will give a variation of 0.2 to 0.6 ma on the slow or stable side of the crystal characteristic. This may require readjustonent of the capacity probe.

## Field Strength of Magnet

943. (a) For optimum power output and maximum frequency stability the first strength of the magnet shoula not be less than about 1250 gauss, measured with the magnet on the chassis and the cover on Use of the Cambridge fluxmeter for field strength measurement is outlined in chapter 11, paras. 838-843.
(b) A rough check can be made by comparing the readings obtained on a T. S. 85 with the transmitter unit cover off and the matching slug adjusted for maximun output, with the reading obtained when the cover is put on as far as possible and the matching slug again adjusted for the maximun power output. Due to the reduction of the field strength when the cover is put on a normal reduction of about 10\% may be expected with the average magnet and CV.64. A greater reduction irplies a weak magnet.

## Setting Suppression

Fishpond not used.


```
TEST SET 202
```

Cal interval swith to 500 Ft REP FREQ SWITCH TO GOON +50V OUTPUT TO MONITOR INPUT

## MONITOR 28

TB SWITCH To lo m SECS AMPLIFICATION TO $\times 5$
as above
(2)

TB SWITCH TO lOO. $\mu$ SECS
AMPLIFICATION TOKS OR $\times 10$


NOTE THAT LEVEL OF EVERY GTH PIP IS EXTENDEO, IF NECESSARY ADJUST POT MARKEO " $\times 6$ "

CAL INTERVAL SWITCH TO 10,000 YDS
(3)

MONITOR - AS PREVIOUS STAGE

CHECK DIVIGON BY lo


To obtain correct Division by lo adjust pot marked " $\times 10$ "

NoTE TEST SET SHOULD BE ALLOWED TO RUN FOR A FEW MINUTES BEFORE CHECKINC DIVIDERS WHCH SHOULD BE CHECKED WHENEVER THE TEST SET IS USED.

FIG.I5I

## TEST SET 202. BENCH CONNECTIONS.

C.D. O896L

SHOWING TRIGGERING RND MONITOR INPUT CONNECTIONS
H25 CABLING IS NORMAL EXCEPT MOJULATOR SYHC. (PYE BLUE), WHICH IS FROM TEST SET 20220 NSEGS PULSE INSTEAD OF FROM WF. G.


FIG. 152

## REPEATER MOTOR TEST INSTALLATION. <br> INTERCONNECTION DIAGRAM



VARIATION SETING CORRECTOR (VSC.) TIRREPEATER COMPASS (PILOT'S) RHEOSTAT. (LO OHMS)

REF. 6A/1056.
$6 A / 742$ 5C/728

Fishpond used :-
945. (a) Set gain to low level.
(b) Take suppression control fully anticlockwise and observe breakthrough after suppression break on monitor 28 trace.
(c) Take suppression one notch clockwise from point where all or nearly all of breakthrough comes through the receiver. This will permit scme noise to come through on Fishpond but signals can also come through Further suppression will mean that minimum range is definitely fixed by the time for which the suppression pulse holds it in the insensitive state. The objective is to apply suppression only for the one microsecond primary pulse and let the secondary pulses and close range signals come through together.

## Setting up the Height Zero

946. (a) Check the T.S. 202 dividers as outlined in chap. 11, para. 801. (b) Set p.r.f. switch on T. S. 202 to 600 position.
(c) Apply 20 microsecond output from T. S. 202 to the blue Pye plug on the modulator 64 through a . 001 condenser. The pulse is differentiated and the negative-going pip on the back edge serves to sync the modulator $M_{.}$. V. instead of the Tx-timing pip.
(d) Trigger the monitor 28 from the violet Pye plug on the modulator 64.
(e) Check that the T.S. 202 is synchronising the modulator 64 to run at a p.r.f. which is as close as possible to the p.r.f. obtained when the Tx-timing pulse is used. This can be done by adjusting the $600 \mathrm{c} / \mathrm{s}$. preset on the T. $\mathrm{S}, 202$ to bring the length of the T. $\mathrm{Bo}_{0}$ sweep on the monitor 28 in the "Freq." position as nearly as possible to the length obtained when the modulator is being synchronised by the Tx-timing pulse.
(f) Set monitor 28 for 10 microsecond T.B. and imput switch to "inirect".
(g) Intercept the red and white Pye leads and connect these, together with the 5 volt negative calpips, to the monitor input. A lK resistor should be incorporated in each of these imputs to the monitor. Adjust the suppression control on the receiver so that it is between two notches (i. $\mathrm{e}_{\mathrm{o}}$, no suppression applied to the $R(x)$. The $T x$ pulse breakthrough will then appear on the screw. Turn gain control to miniman.
(h) Adjust monitor 28 T. B. start so that the leading edge of the Ix pulse.is at the commencement of the scan The start of the scan now represents zero time and the T. B. start control must
now be lert in its present setting.
(i) Set calpip switch to $500^{\prime}$ position Observe the 1 microsecond pips on the trace Now set switch to the 1000 yard position and note position of first 1000 yard marker. Calculate the time in microseconds fran the beginning of the scan, $i_{0} e_{0}$, zero time, to the first 1000 yard maricer, by putting the $500^{\circ}$ and 1000 yd. markers alternately on the timebase and noting which of the 500' markers coincides with the first 1000 yard maricer. This time witl nomally be in the region of 2 microseconds. Suppose that the first 1000 yard marker appeared 1.4 microseconds after zero time. The position of the marker then represents a range of $1.4 \times 500=700^{\prime}$. Each subsequent 1000 yard marker represents 6.1 microseconds or 3000'.
(j) Set T. Be switch for 100 microsecond T. B. and input switch for sufficient anplification to show both cal. pips and height marker on the trace.
(k) Deternine what range the second 1000 yard marker represents by adding 3000 feet to range found for the first 1000 yard marker and set height drum to this range. If height marker does not now coincide with the second 1000 yard marker adjust the height zero till it doeso

## Checking Height Mariser Tracking

947. (a) Vary the height control setting to shift the height marker from one 1000 yard marker to the next along the timebase, checking that the reading on the height scale increases by 3000 per step.
(b) If the tracking is incorrect it may be advisable to readjust the height zero for accuracy at the nearest calibration marker to the 20,000 point to obtain accuracy at operational heights.
(c) If tracking is badly out and the 300V. stabilised output is not out by more than $\pm 5 \%$, the unit should be returned to the M.U. for realigrment.

## Setting Range Zero

948. Set height control to 20,000' (height marker not in coincialence with any of the calibration pips). Set scan-marker switch to the $10 / 10$ position and range control to zero. Adjust range zero for coincidence between height marker and range marker. Since the range marker and height marker are of different widths the leading edges cannot be accurately aligned if the two markers are superimposed on any of the calibration markers.

## Checking Range Marker Tracking

949. (a) Set the height control to the 1000 yard marker nearest the 20,000' setting of the height control. If the first 1000 yard marker represented $700 \mathrm{ft} \mathrm{f}_{\mathrm{c}}$, this mould be $18,700 \mathrm{ft}$
(b) Check whether range scales are in statute or nautical miles.
(c) Set the range drum to put the range marker successively into coincidence with the 1000 yard markers along the trace wile leaving the height control set to keep the height marker on the 1000 yard marker nearest the 20,000 point. Check the range drum reading against the figures in the appropriate column in the table below:

Height Con trol Setting	$\begin{aligned} & \text { Range Marker } \\ & \text { from } \\ & \text { Height Marker } \end{aligned}$	Range Drum Reading	
		Nautical	Statute
20,000 *	-	-	-
	1000 yards	2.9 miles	2. 2 miles
	2000	2.7	3.2
	3000	3.5	400
	4000	4.2	4075
	5000	407	5.5
	6000	5.3	6.1
	7000	5.9	6.8
	8000	6.5	7.4
	9000	7.0	8.0
	10000	7.6	8.7

The figures tabulated are based on a height setting of $20,000 \mathrm{ft}$. and are accurate to 0.1 mile. The accuracy of reading will hardly be sufficiently great to show differences from these values for any setting of the height control to the 1000 yard marker nearest the 20000 ' point.
(d) If the tracking does not follow the above table closely, readjust the range zero to obtain the greatest accuracy in the range $3-7$ miles.
(e) If tracking is badly out and the stabilised 300V. supply is not out by more than $\pm 5 \%$, the unit should be returned to the M. U. for realignment.

## Calibration of Monitor 28 for use in Aircraft

950. (a) Having correctly set up the height and range markers with the Test Set 202, the monitor 28 may now be calibrated for use in aircraft. Using the $H_{0} 2$. S. set that has been correctly set up and the X-shift on the monitor set to "lo", adjust the T.B. start so that the leading edge of the Tx pulse is in line with the cursor line on the celluloid window. It may be necessary to mark a new line to the left of the original or to turn the knob of the X-shif't relative to its spindle.
(b) Set the height drum to exactly 20,000 feet and the range drum to 4 miles , and apply the height and range markers to the monitor. Turn the X-shif't until the height marker comes in line with the cursor and mark the $X$-shift scale " $20,000 \mathrm{ft}$." (This will be about 40 microseconds after the leading edge of the Tx pulse, but as the timebase is not linear it is unlikely to agree with the original calibration markings).
(c) Move the $X$-shift further anticlockwise until the range marker is behind the cursor line and mark the shift scale " 4 Miles 10/10".
(d) The monitor 28 is now calibrated for the adjustment of height and range zeros in aircraft. The range of 4 miles and height of 20,000 feet have been selected to ensure the greatest possible accuracy at the release point at operational haight. When calibrating the monitor and when using it in an aircraft, it is essential that the A.C. input should be 80 volts $\pm$ I volt. The marking of the $x-s h i f t$ should be done in ink and the calibration must be checked on the bench on the day that the monitor is used in the aircraft. Further details regarding the use of the monitor in the aircraft after it has been calibrated in this manner, are given under D.I. procedure in para 1041.

Setting up the Indicator 184 P.P. I. Display
Points to be borne in mind on the timebase controls :-
951. (a) The timebase must be triggered by the height marker. This involves clamping the grids of the lst stage in the $X$ and $Y$ timebase amplifiers until the height marker forms.
(b) The timebase must always start its sweep from the tube centre when triggered by the height marker. This means that the flyback must return the spot to the tube centre since the sawtooth paraphase amplifier anodes are D. C.-coupled to the $X$ and $Y$ plates, the $D_{i}$ C. levels at the anodes of each pair must be balanced if no electrode deformation is present. If any deformation is present the D.C. levels at the anodes must be suitably umbalanced to compensate for this deformation This balancing can be done with the shift controls which vary the D.C. level of the grids of the second stage in each amplifier pair relative to that of the first grid and thus vary the standing currents passed by the two valves during the 500 microsecond clamped period.
(c) To obtain a constant amplitude radial scan, i.e., freedom from "squaring", it is essential that the clamping waveform amplitudes exceed the maximum swings at the grids of the first stage in each sawtooth amplifier during the scanning period. If this condition is not fulfilled the diodes may open before the scan is completed and cut the scan short. The same result may be produced if the amplifiers show signs of "bottoming", $i_{0} e_{0}$, the anode potentials fall so nearly to the cathode potential that a further rise at
the grid (or fall at the cathode) does not result in a further anode fall.
(d) Instable centre effects may appear if either the strapped dode cathode line has a D.C. level positive to the clamping level or the strapped diode anode line has a D. C. level negative to the clamping level.
(e) The simultaneous fulfilment of the conditions of adequate clamping waveform amplitudes and correct D. C. levels for the strapped diode lines results in a very narrow range of settings for the phantastron cathode and screen volts controls.
(f) The phantastron operation must be stable at the time time as providing the correct D. C. levels for the diode lines and adequate clamping anplitudes. To provide a narrow range of adjustment of phantastron operating conditions we have the sync. control which varies the screen potential of the phantastron.
(g) The phantastron must not be capable of spurious triggering during the 500 mi crosecond clamping period. This requires that anode current be cut off in this period.
(h) The range coverage obtained on any setting of the scanmarker switch is governed by the rate at which the anode potentials change in the sawtooth amplifiers for a fixed given rate of change on the grids. The rate of change at the anode for a given rate of change at the grid is fixed by the gain of the valve. Since the controls strapping the cathodes of the sawtooth paraphase amplifiers vary the negative feedback of the stage they vary the gain, and therefore, serve to obtain a certain swing at the anode in the time corresponding to a given range; $i$. $e_{\text {. }}$, they serve as velocity or range controls as well as amplitude controls.

We may then summarise the timebase problem as follows:-
952. (a) If we are getting some form of soan we know the phantastron is triggering.
(b) By observing the phantastron screen waveform we can see whether the phantastrong operation is stable, and if not, we can adjust the syac. control for stability.
(c) With the scanner rotating it is possible to see whether "squaring" or unstable centre effects appear and adjust the cathode volts and screen volts controls for freedom from both these effects, thus indicating that the D.C. levels of the diode anode and cathode lines are satisfactory and that adequate clamping waveform anplitudes are available. If necessary, the sync. control can be readjusted.
(d) If a Cossor soope or D.C. scope attachment is available a oheck can readily be made that the phantastron anode current is being cut off during the 500 microseoond clamping period. If not available, a check can be made by conneoting a meter in the phantastron anode with the height maricer triggering removed.
(e) The scan can be centred by adjusting the shift controls.
(f) The range coverage can be adjusted by means of the amplitude controls.

Setting up the Phantastron Controls.
953. (a) Set scan-marker switoh to the 100/40 position.
(b) Switch on and note whether some form of scan is present. Contrast and brilliance may require some adjustment to make it appear.
(c) Disconnect the signsl input at the red Pye plug on the indicator 184 and apply instead the signal picked up at the slider of the phantastron soreen volts control. This is the positive-going clamping square wave from the phantastron soreen which will now appear as a deflection to the right on the height tube. This may appear as follows:-
(i) Steady square wave.
(ii) Unstable square wave with flickering top.
(iii) Square wave with trace through base indjoating that phantastron is not triggering on each height marker. (iv) No square wave at all (if no scan on P.P.I.)

Adjust the syna. control to the mid-point of the range of adjustment which gives a stable square wave. If necessary to get a reasonable range of stability, slightly readjust the screen and cathode volts controls.
(e) Renove the hoight marker triggering by disconneoting the yellow Pye plug and note whether the square wave disappears. This check is important to ensure that the phantastron is not triggering on stray pickup. If such spurious triggering occurs, readjust the sync. and cathode and screen volts to eliminate it, and reset the aync. control to the mid-point of the stable range. With the height marker reconnected, cheok that square wave commences coincident with the height marker and moves with the height marker as the height control setting is varied. If difficulty from spurious triggering not curable by adjustment of phantastron controls, check that anode current in phantastron is cut off when height marker disconnected.
(f) Adjust brilliance and contrast to bring up the W. F.G. bright-up on the P.P.I. and set the amplitude controls for minimum scan amplitude.
(g) If the scan starts badly off-centre adjust the $H$ and $V$ shifts for approximste centring.
(h) With scanner rotating check for presence of unstable centre andor scalloped edges. The check for scalloped edges is most readily made by setting the range marker to the end of the scan and noting its shape. Adjust the screen and cathode volts controls to get rid of unstable centre and scalloped edges or squaring.
(i) Switch to $10 / 10$ position and note whether same freedom from both effects obtained. If necessary, slightly readjust cathode and screen volts controls.
(J) Switch back to $100 / 40$ position and recheck sync. control for setting in centre of stable range by putting square wave on height tube again.
(k) Readjust $H$ and $V$ shifts for better centring if necessary.

Setting of hum-Eliminator Control.
954. (a) Turn scanner for horizontal scan.
(b) Turn I-amplitude control to maximum but leave X-amplitude control at minimum.
(c) The timebase will now appear as a series of traces due to effect of $1000 \mathrm{c} / \mathrm{s}$ pick-up on the heater line appearing at the anodes of the $Y$-amplifiers and hence across the $Y$-plates.
(d) Adjust the hum-eliminator control until the width of the band of treces is reduced to a minimum.
(e) Turn Y-amplitude control back to minimum.

This adjustment is only required in earlier 184 indicators which are not provided with a centre-tapped heater system.

Setting up Anplitude and Shift Controls.

$\text { 955. }\left\{\begin{array}{l} a \\ b \\ c \end{array}\right)$	Set scan-marker switch to $30 / 20$ position.   Set range control for 20 statute or 17 nautical miles. Adjust amplitude controls for reasonably ciroular range marker at outer edge of tube. Due to differences in the deflection sensitivities of the $X$ and $Y$ plates the marker may remain slightly eliiptical with the $Y$-diameter rather greater than the X-diameter.

(d) Set range control to bring range marker about halp-way out and cheok that it is circular. If necessary, slightly readjust the amplitude controls.
(e) Readjust $H$ and $V$ shifts for centring, if necessary. As varying the setting of the amplitude controls may alter the relative currents through the two valves in each amplifier pair a slight readjustment may be needed.
(f) Switch to 10/10 position and set distortion corrector to 25,000.
g Set range control to 10 statute or 8.5 nautioal miles.
(h) Adjust 10 mile zero so that range marker appears at edge of scan. Remove 10 mile zero knob.
(i) If no Fishpond fitted or W.F.G. 43 fitted to supply independent bright-up for Fishpond, set the W.F.G. and switch unit bright-up controls fully anticlockwise. This ensures that the W.F.G. bright-up starts as eariy as possible.
(j) Check that no hole appears in the centre of the P.P.I. when the height is reduced and the distortion corrector setting is varied accordingly. The appearance of a hole indicates that the W.F.G. bright-up is commencing after the formation of the height marker and phantastron bright-up.

## Cheoking Distortion Corrector.

956. Check that range coverage obtainable with the range marker remains sensibly constant as distortion corrector and height control are varied in step fram 25,000 to $5,000^{\prime}$.

Setting-Up Contrast, Brilliance and Focus.
957. (a) Set contrast, brilliance and gain fully counter-clockwise.
(b) Turn brilliance clockwise until trace and flyback just appear then turn brilliance baok four notches.
(0) Turn contrast clockwise until radial scan just appears, then tum back one notoh from fadeout point. This is a convenient way of setting the contrast control to the point where topcutting of the range marker and strong signals just oommences. Put index line on contrast knob and dot on panel behind it.
(d) With scanner stationary, adjust focus for sharpest range mariser dot.
(e) Turn brilliance back counter-clookwise until range marker luminosity just starts to fall. This fall of luminosity must not be confused with any alteration in the shape of the range marker dot. The normal movement will be 3-5 notches. Put index line on brilliance knob and dot behind it on panel.
(f) Turn gain to a normal setting.

The inexperienced navigator would be well advised to leave the brilliance and contrast controls set at these index marks and work on gain only. Further clookwise rotation of the contrast control will result in topcutting of signals and loss of target detail. To bring up coast-lines, lakes and rivers, this will be desirable. The same may apply whon it is desired to get a target outline rather than target detail. The experienced navigator may be able to obtain slight improvements on these settings but can always use these settings to get a normal display.

Setting up Height Tube Controls.
958. (a) Adjust brilliance to suitable level and check that flyback is blacked out.
(b) Adjust shift to bring suppression break to bottom of tube.
(c) Adjust focus for sharpest picture.

Adjusting Synchronisation of $T x$.
959. Vary setting of modulator p.r.f. control and note from height tube display the point or points at which the signals and markers become unlocked. If two points observed set the control at the mid-point. If only one point observed set the control three notches back from the point. The looking point should normally be within $\pm 3$ notches of the red index dot.

Chocking Modulating Pulse.
960. (a) Cheok amplitude of modulating pulse by scoping at the blue/ white voltage monitor Pye plug on the modulator 64 panel. Take amplitude at mid-point of the second "ring" rather than at first sharp spike. This will normally be of the order of 50V. Multiplication by 64 gives the approximate Foltage.
(b) Check current value of modulating pulse by scoping at one of the brown/white current monitor points on the modulator 64 panel. Measure anplitude to the mid-point of the "rings" on the top of the pulse. This amplitude gives the approximate current value which will be of the order of 50 amps.
(c) If the observed values are radically different from normal values cheok the $-4 K V$. voltage with an eleotrostatic voltmeter and a suitable voltage divider.
(d) Cheok width of pulse at half amplitude. It should be approximately 1 microsecond.
(e) Check that the first positive overswing on the voltage waveform is not of abnormal amplitude and that subsequent overswings are negligible. If this is not the case suspect overswing diode or its load.
(f) If other abnormalities appear when $-4 K V$. supply is normal, suspeot magnetron, pulse transformer, filament transformer pulse cable and pulse leads.

## Scanner and Control Unit Checks.

Cheoking Scanner Speed
961. (a) Check that scanner revolves freely when the scanner switch is closed on the switch unit.
(b) By varying the control unit 477 speed control, check that the scanner speed can be varied smoothly between 20 and 60 r.p.m.

Checking Course and Track Marker Circuits and Controls.
962. (a) Set indicator 184 switch and K.C.U. switch to "Course". Check that heading marker is present and that it can be moved with the manual setting control on the H.C.U.
(b) Set indicaton 184 switch and $\mathrm{H}_{0} \mathrm{C} . \mathrm{U}$. switch to "Track" and note that a marker appears. Check that it can be displaced $\pm 60^{\circ}$ from the heading marker on the P.P.I. by varying the setting control on the H.C.U.

Checking Repeater Motor Operation.
963. (a) Connect up the testing equipment as indicated in fig. 153.
(b) Adjust rheostat to give 18-20V. reading on meter.
(c) Set H.C.U. switch to "Course".
(d) Cheok that heading maricer can be moved without sticking through $360^{\circ}$ in both clookwise and anticlockwise directions with the setting control on the H.C.U.
(e) If the course repeater motor passes this test, set the heading marker to read the same bearing as the repeater compass and put H. C. U. switch to the "Auto" position
(f) Switch on the V.S.C. and turn the control knob on the V.S.C. slowly till rotation of the repeater card and heading marker comnences. After a few revolutions stop the V.S.C. and cheak the bearings of the repeater conpass and heading marker. If no slipping of the repeater motor has occurred the resdings will coincide. It may then be assumed that the repeater motor will follow the D.R. compass.
(g) Should slipping appear, the scamer must be taken down and the repeater gear train cleaned and greased as outlined in scanner maintenance, paras. 1064 and 1066.
964. (a) Set 184 and H.C.U. switches to the "Track" position.
(b) Check that by using the manual setting control the track marker can be moved $60^{\circ}$ either side of the heading mariker with the D.C. supply set at 18-20V.
(c) If this is impossible, the repeater uotor and the driving link must be cleaned and greased as outlined in scanner maintenance, paras. 1064 - 1067.

## Alignment.

965. (a) Cheok that scanner is looking dead ahead when the white lines on scanner base casting are lined up.
(b) Check that the "course" contact just comes into oontact with the shorting contact as the scanner comes into the dead-ahead position, by taking a continuity test between pins 10 and 12 at the 12-way on the receiver-timing imput. The scanner must be rotated in its normal direction of rotation and continuity should be established as the white lines come into coinoidence.
(o) If misalignment appears the "Course" contact must be aligned as outlined in para. 1071.
966. (a) The wiring of Control Unit 446 and the Course and Track $M$ motors on the Scanner (Scanner Type 63 in H. 2.S. Mark IIC and Scanner Type 71 in H. 2.S. Mark IIIA) hes been arranged so that in both the Course and Track 'manual' positions on the Control Unit clockwise rotation of the control knob gives clockwise rotation of the markers on the Indicator 184.
(b) In the 'Auto' Course position, the Course marker bearing will follow the aircraft heading, assuming the aircraf"t D. R. compass wiring is correct; in the 'Auto' Track position the Track marker is correctly synchronised to the Bombsight Computer. In the latter case, clockwise rotation of the flexible shaft on Control Unit 468 should give anti-clockwise rotation of the track marker on the Indicator.
967. The M Motors on the Soanners 63 and 71 are connected to a 6 -way W plus (violet) and the connections on the $M$ motors are labelled 1, 2 and 3. In order that the above conditions of rotation be satisfied, the w plug connections to the $M$ motor must be as follows:-

Pin 1	connected to	1	on Course	M Motor.			
$n$	2	$n$	$n$	32	$n$	$n$	$n$
$n$	3	$n$	$n$	$n$	$n$	$n$	$n$
$n$	4	$n$	$n$	1	$n$	Track	$n$
$n$	$n$	$n$	2	$n$	$n$	$n$	$n$
$n$	5	$n$	$n$	$n$	3	$n$	$n$
$n$	$n$	$n$	$n$				

968. The first fow Type 71 Scanners from the manufacturers have been wired differently. On Scanners Type 71 with serial number less than 26, this wiring should be checked before installation, and if wrong, corrected. Scanners with serial numbers above 25 will be correotly wired.
969. The earlier IFU versions of Control Unit 446 are known to cause the Course marker to rotate in the opposite sense to the aircraft in the 'Auto' Course position. This unit should be ground tested in the aircraft in the 'Anto' Course position by means of the V.S.C. If the course marker rotates in the wrong direction, then interohange the connections to two pins on the 4 way W plug on the Control Unit front panel. Later $\pi P C_{0}$ Control Units 446 are wired to give the correct rotation of marker but the above cheok should be made on every unit.
970. The ATE versions of Control Unit 446 are correctly wired. The RPU units can be distinguished from the ATE ones by the wiring. RPU use 22 SFG with grade $\overline{3}$ sleeving, while ATE use a thinner wire with a cotton sleeving material. The ATE units are usually a darker shade of grey then the RPU ones but this test is not reliable.

## Fishpond Bench Alignment.

Preliminary.
971. (a) Conneot up units in accordance with cabling diagram.
(b) Carry out normal aligrment of H. 2.S. installation.

## Internal B-C Switoh.

972. Cheok that the B-C switch is in the fully clockwise or Cosition.

## Focus.

973. (a) Fishpond gain at minimum (fully anticlockwise).
(b) Fishpond brilliance up till diametral scan just appears.
(c) Adjust foous for sharpest scan.

Shifts and Tube Orientation.
974. (a) Adjust scanner for vertical trace on H. 2.S. P.P.I.
(b) Cheok that Fishpond trace is also vertical. If not,
(c) Adjust Hishpond C.R.T. until a vertical trace is obtained.
(d) centre by using the graticule.
(e) Using the graticule, scan through the tube
trace through the tube centre.

Any deformation of the electrode structure should now be corrected by the shift voltages.

Balance Check for the Valves in each Amplifier Pair.
975. (a) Soan-marker switch to $100 / 40$ position.
(b) Scamer rotatinge

(o) | Note whether the diametral scan rotates about the centre of the |
| :--- |
| tube on a sloppy bearing. If so, the amplitudes of the output |
| at the two anodes of either one or both amplifier pairs are |

unbalanced.
(a) Adjust the balanoe presets (VR. 79 and VR. 80 ) until rotating trace
is as stable as possible about the tube cantre. on the $100 / 40$
soan it will rarely be possible to get absolute stability of the
centre of rotation due to the high gain of the amplifiers.
Reasonable stability should be obtained on the 100/20, $30 / 20$ and

lo/20 positions. High stability should be obtained in the $10 / 10$
position.
976. The bright-up amplitude will be sufficient if H.2.S. contrast has been sot up as outlined in para. 957.

Bright-lp Cormencement and Range Controls.
977. (a) Fishpond gain to maximum.
(b) Scan-mariker switch to $100 / 40$ position for $50-m i l e$ sawtooth input.
c Fishpond brilliance so that radial scan just appears.
(d) Scanner turned to give horizontal soan.
(e) Press maricer push-button and note where innermost marker dot appears on the radial scan. Cheok whether this is the zero marker by advancing Fishpond brillianoe and noting whether any additional marker dots appear. If the bright-up adjustment is correct the first dot will appear at the beginning of the radial scan, since this represents the beginning of the bright-up pulse. If this is not the case, adjust the switoh unit bright-up control until the zero marker dot coincides as nearly as possible with the imer edge of the radial scan. In some cases it may not be possible to retard the bright-up sufficiently to prevent it comenoing early. Should this ocour no harm is done so long as the bright-up does not commence sufficiently early to allow breakthrough of the spurious pulse at the beginning of the 20 microsecond pulse. Such a breakthrough will produce a false marker inside the zero marker dot. The present of such a false maricer can be checked by removing the H. 2 . S. suppression completely and letting the transmitter pulse break through on Pishpond to produce a "splash", that widens out the true zero marker.
(g) Select the range preset marked 50 which operates on the amplifier pair producing the horizontal swoep. Adjust for 4, 5 or 6 (depends on individual sets whether 6 obtainsble) marker dots on the scan. The zero dot should be $\frac{1}{2}$ " $-\frac{3}{4}$ from the tube centre. With 4, 5-6 dots on the scan set the soanner rotating. Adjust the second range preset marked 50 (working on the other anplifier pair) until the markers trace a cirale.
978. (s) Set scan-marker switch to $30 / 20$ position to get a 30 mile sawtooth imput.
(b) Check the first maricer dot obtained is the zero marker by noting where the H.2.S. range marker dot appears when the range control is set to zero or use suppression cheok.
(c) If necessary, adjust the 30 mile zero to shift the 20 miorosecond pulse on the sawtooth so as to bring the zero marizer dot (occurring on its back edge) up on the bright-up.
(d) Use one range preset labelled 30 to get $5-6$ marker dots on the horizontal scan. Adjust the other for circular markers when the scanner is rotating.
979. (a) Scan-marker switch to $10 / 10$ position for a 10 mile sawtooth input.
(b) Check as before that the first marker dot is the zero marker. If not, adjust the 10 mile zero to move the 20 microsecond pulse along the sawtooth until the zero marker on its back edge appears on the bright-up.
(c) Use the range presets labelled 10 to get 4, 5-6 oircular markers with the scanner rotating.
980. (a) Check through the scans now for the correct number of markers on each scan.
(b) Cheok that the zero marker appears approximately the same distance from the centre on all scans. This should be about $\frac{1}{2}$.".
(c) Check that bright-up oommences about $\frac{1}{2}{ }^{\prime \prime}$ from the centre on all scans, i.e., that the zero markers are on the inmer edge of the bright-up on all scans.
(d) If this is not the case, alternately adjust the switoh unit bright-up control on the 100/40 position and the W.F.G. bright-up control on the 10/10 position until the bright-up does commence about $\frac{1}{2} n$ from the centre on all scans as shown by the position of the inner edge of the heading mariker.
(e) If the zero markers on the $30 / 20$ and $10 / 10$ positions are not at the comencement of the bright-up now adjust the 30 and 10 mile zeros to bring them, respectively, to this point.
(f) With the soanner rotating the zero marker should now cut the conmencement of the heading marker on the first five positions of the saan-marker switch.

Checking Range Calibration.
981. (a) Soan-marker switch to 10/10 position.
(b) Height control to zero.
(c) Adjust range control to bring h. 2.S. range marker dot sucoessively on each Fishpond marker dot and read the range scale. If calibrated in statute miles the readings should be $0,2,2,3,4$ and 5 miles (approximately - see para. 696).
(d) If any error is apparent the induotance, $L_{0} 2$, can be unsealed and the core adjusted to give the correct ringing frequency.
(e) An alternative method which is not dependent on the switoh unit range scales is as follows:-
(i) Feod H. 2. S. range marker fran red Pye plug on the W. F.G. to the monitor 28 (Use interoeptor socket).
(ii) Set timebase switoh for a 100 microsecond timebase.
(iii) Note the calibrated X-shift setting when the H. 2.S. range mariker dot appears on the centre of one of the marker dots on Fishpond. Set the range control to bring the H. 2.S. range mariker up on the next Fishpond marker dot and again read the $X$-shift. The differ ence should be 10.75 microseconds.

## Preliminary.

982. (a) Connect as outlined in chap. 10, paras. 719-722 and cheok that condenser between black Pye plug and Fishpond signal anplifier cathode is removed.
(b) H.2.S. alignment as normal except that W.F.G. and switch unit bright-up controls can be set fully anticlockwise.
(c) B-C switch, focus, shifts and balance presets as usual..

Bright-Dp Amplitude.
983. (a) Soan-marker switch to 100/40 position.
(b) H. 2. S. gain to mid-way position.
(c) Bright-up preset on W.F.G. 43 (R.19) fully anticlockonise to hold mixer grid at lowest level and so out bright-up output to minimum.
(d) Set Fishpond gain control (now used as a limiter) fully clockwise to make current passed by signal amplifier a maximum and thus take the mixer cathode to its maximum level in so far as it is controlled by the Fishpond gain control.
(e) Scope the waveform at the anode of the Fishpond signal or Fideo anplifier on the monitor 28.
(f) Advance the W.F.G. 43 bright-up preset, watching the waveform of the monitor. Noise will appear first, then the bright-up pulse increasing in amplitude. Presently top-cutting will start to take off the noise peaks and ultimately only the bright-up pulse will remain. Leave the control set at the point where the entire noise is just cut-off by limiting and the full bright-up pulse remains.
(g) Turn the Fishond gain anticlockwise and note the noise reappears and that when fully clockwise the bright-up and noise disappear completely due to cut-off on the amplifier grid.

Range Presets.
984. (a) Set Fishpond gain and brilliance for a faint radial scan.
(b) Scan-marker switch to 100/40 position.
(d) Scanner for horizontal scan.
(d) Adjust appropriate range preset labelled 50 for $5-6$ marker dots. Set scanner rotating and adjust other 50 preset for circular markers.
985. (a) Scan-marker switch to $30 / 20$ position.
(b) Scanner for horizontal scan.
c) Adjust appropriate range preset labelled 30 for $5-6$ marker dots.
(d) Adjust 30 mile zero to start radial scan and first dot $\frac{1}{2}{ }^{\prime \prime}$ from the tube centre.
(e) Adjust other 30 preset for circular markers with scanner rotating.
986. (a) Scanmarker switch to $10 / 10$ position.
b) Scanner for horizontal soan.
c) Adjust appropriate range preset labeljad 10 for $5-6$ marker dots.
(d) Adjust 10 mile zero to start radial scan and first dot $\frac{1}{2}{ }^{n}$ from the tube centre.
(e) Adjust other 10 preset for circular markers with scanner rotating.

Cheoking Range Calibration.
987. (a) As in para. 981.
(b) As alternative method if range scale is in nautical miles is to trigger the W.F.G. 43 and Fishpond from the test set 202 and inject the test set 1000 yard calpips at the black Pye plug on Fishpond. The calpips represent $\frac{1}{2}$ nautical mile intervals so can be checked with the H. 2.S. range marker.

PANEL LAYOUT


SWITCHED 300 V LINE TO TRIGGER VALVE
in MODULATOR


FIG. 154

## Suppression.

988. As outlined in para. 945.

Brilliance and Gain.
989. (a) Set brilliance to minimum.
(b) Set Fishpond gain to give a radial scan then back to fadeout point.

Aircraft Checks.
990. (a) Fishpond indicators and bright-up units should preferably be kept in pairs as the setting of the bright-up amplitude preset on the W.F.G. 43 will vary with different Fishpond indicators.
(b) The balance and range presets have been set up with a certain amplitude of sawtooth input obtained from the bench W.F.G. and magslip. If the sawtooth amplitude supplied to Fishpond from the aircraft magslip is different, the following difficulties may arise:-
(i) Incorrect number of markers.
(ii) Markers not oircular.

When a unit is installed in an aircraf't after bench alignment, the Fishpond display must be checked on each of the first five scan positions.

## Bench Setting Up of H. 2.S. Mark IIIA (Using T.R. 3555 Series Transmitter Units and T.S.205).

## Test Equipment Required: -



Power Supply Checks.
992. As outlined for setting up of H.2.S. Mark IIC

Transmitter Unit Test Installation.
993. To prevent danage to the test set 205 by switching on of the modulator when the waveguide switch is not in position 1, the J.B. 238 should be used to intercept the 12-way violet from the J.B. 231 to the modulator. Connections are made as follows:-
(a) Disconnect the 12-way cable from the modulator and connect to plug C of J. B. 238 .
(b) Connect plug $A$ to the l2-way plug on the modulator.
(c) Conneot the 4 -way plug on J.B. 231 to plug B. This supplies 24 V. DoC. and 8OV. A.C.
(d) Conneot plug D (6-way) to test set 205.
994. The flexible rubber guide section nonnally used to feed the R. F. output to the scanner is connected to the input channel for the test set 205.
995. (a) The electrostatic voltmeter is connected between the cathode of the transmitter unit klystron and earth. A suitable tapping point is on the reamnost tag on VR. 3 which is connected directily to the cathode.
(b) Jacks conneoted to the millianmeters are plugged in at jackpoints for crystal current and pover pack current.
996. Remove the graphite and asbestos fishtail dumay load from the waveguide power channel. Fasten the mismatch unit on top of the waveguide and insert the fishtail in the mismatch unit. Withdraw the quartz probe on the mismatch unit so that it does not extend into the guide to introduce a standing wave.

Preliminary Check of the Looal Osoillator and its Power Pack.
997. (a) Switoh on L. T. and check the meter readings. There will be an initial surge after which the readings will settle down to a steady level. These should not exceed:-
(i) -1600V. for the klystron cathode
(ii) 7.5 ma . for the E.K.T. current.
(iii) 1.5 ma . crystal current.
(b) If any of these figures is exceeded:-
(i) Turning VR.I (E.H.T. volts control) clockwise will reduce the klystron cathode volts
(ii) Anticlockwise rotation of VR. 3 (klystron grid volts control) will reduce the E.H.T. current since this serves to increase the kiystron bias thereby reducing the klystron current which is the major portion of the E.H.T. current. Withdrawal of the mixer probe will reduce the crystal current since the C.W. input to the mixer is thus attenuated.

Ro F. setting up Sequence and Objeotive.
998. (a) Adjusting the R. F. output matohing controls for maximum power output consistent with Irequenoy stability.
(b) Tuning test set wavemeter to magnetron frequenoy to permit tuning of test set klystron to same frequency. The test sot kiystron can then act as an R.F. oscillator at the magnetron frequenoy for lining up the R.F. receiver controls.
(c) Setting up the test set klystron for oscillation at the magnetron frequenoy.
(d) Feeding the test set ixlystron imput into the mixer chamber through a dumay T.R. coll and tuning the mixer for moximum response to the magnetron frequenog.
(e) Inserting the aotual T.R. cell instead of the dumay and tuning the T. $\mathrm{R}_{\mathrm{e}}$ cell for resonance at the magnetron frequenoy.
(f) Replacing mixer and T.R. cell in the transmitter unit and tuning the anti-T. R. chanbor for maximan flow into the receiver branch line at the magnetron frequency by feeding the G.W. from the test set into the tronsmitter unit.
(g) Setting up the local oscillator power pack for correct operating conditions.
(b) Tuning the local oscillator $45 \mathrm{Mc} / \mathrm{s}$. off the magnetron frequency by beating the test set klystron signal with the local oscillator signal and feeding the rectified beat signsl through the head amplifier to the $45 \mathrm{mc} / \mathrm{s}$. I.F. amplifier in the test set. Correct tuning is indicatod by maximm output from the test set amplifiex.
(i) Adjust InO. imput to mixer for optimum input as indiaated by correct crystal ourrent value.

## Lining Up the ReF. Output Controls.

999. Throughout all lining up operations the transmitter unit cover should be kept on as far as possible to avoid a fall in the field strength of the magnet when the cover is replaced at the close of the setting up.
(a) W.G. switch to position 1 to feed magnetron output into test set dumy load and power measuring neons.
(b) Selector switch in position 1 to conneot neons in series with test set meter.
(c) Sensitivity switch is out of circuit so position is immaterial. May as well be set to Max. for next test.
(d) P./I.F. switoh - inmaterial, but may as well be set to "p" for next test.
(e) Power switoh closed.
1000. (a) Wait at least three minutes after time "L. T. ON" pressed before pressing "H. T. ON". This is to ensure that magnetron oathodo is properly heated before modulator pulse is applied.
(b) When red light comes up oheok that the CV. 115 fires within 10 seconds. The gap is visible through the hole in the side of the waveguide. If this cell fails to ionise, magnetron power is flowing into the anti-T. $\mathrm{R}_{0}$ chamber and a reflected wave, i.e., unwanted reactanoe, is causing a mismatch which should not be present while adjusting the magnetron matohing controls. Readjust magnetron matohing controls till C.V. 115 fires.
(c) If no reading is obtained on the test set meter when the red light comes on and the transmitter fires, the mismatch is so bad that the R.F. power flowing into the dummy load is insufficient to cause the neons to strike. Press the "Ionise" button to apply $+300 V$. to the neons and strike them. Once struck, the power flow into the duman load is sufficient to keep them ionised and thus sustain a meter indication.

1001 (a) In the Bush boxes with the threaded plunger, set the plunger full in. Move the iris through its full range of travel and set at the point of maximum meter indication.
(b) Move plunger out slightly and readjust iris for maximum meter indication.
(c) Repeat until point found where maximum output is obtained.
1002. (a) If other boxes used with sliding plunger, set iris at one end of travel and move plunger through its full range of travel and set to point of maximum meter indioation.
(b) Move iris by rotating the adjusting ring about $I$ turn and again slide plunger through full travel and set it to position for maximum meter indication.
(c) Continue until iris has been taken through its full range of travel. Finally set iris and piston to the positions which gave maximum meter reading.
1003. (a) With boxes using the silica tuning rods on a moveable carriage there is much less interaction between the two adjustments. With the rods projecting in about $\frac{1}{4}$ ", slide the carriage through its full travel and set at the position for maximum meter reading. Now adjust distance the rods projeot into the guide for maximun meter reading.
(b) Check whether displacement of carriage gives any improvement, and if so, whether further slight readjustment of the distance of probe projection gives further improvement. Set at optimum position of carriage and distance of projection.

## Moding Cheak.

1004. (a) C.V.108's are inclined to show "moding", i.e., transmitting at random on two different frequencies. C.V.208's may show the allied problem of "frequency splitting", i.e., transmitting on two frequencies in the same pulse. These faults are most likely to appear at maximum loading, i.e., when matched for maximum power output.
(b) To check for this form of frequency instability, the rectified transmitter breakthrough getting through the T.R. cell is taken from the mixer output plug by Pye lead to the monitor 28. Set the monitor for a 10 microsecond timebase and maximam anolification. Adjust the mixer piston for maximum response. The negative-going rectified pulse envelope should then be observable on the monitor.
(c) Push in the probe on the mismatoh unit and move the mismatch unit oarriage through its travel. If the pulse remains clean and steady no moding is occurring. If it becomes jittery and ragged and varying in shape, or if a smaller pulse appears inside the larger, moding is taking place. This can usually be cured by cloakwise rotation of the matohing iris control to bring the iris nearer the magnetron.
(d) A careful check must be kept on the power output and the meter reading should not fall more than $10, \%$ from its peak value when a clean stable pulse has been obtained. One or two revolutions of the iris control are normally sufficient.

Wavemeter Tuning.
1005. (a) Waveguide switch to position 1
(b) Selector switoh to position 1
(o) Po/I. F. switch to "P".
(d) Sensitivity switch to "Max."
1006. R.F. from the magnetron leaks around the waveguide switch in sufficient quantity to excite the wavemeter cavity when the latter is tuned to the resonant frequency. The leakage through the cavity to the oavity orystal is rectified and smoothed by the crystal assembly. With the P./I.F. switch set to "pn, the negative-going video pulse is applied to the two-stage anplifier, which operates now as a video amplifier. The negative-going output pulse passes through the diode and is converted to a negative-voltage at the magic eye grid by an integrating or long time constant smoothing C.R. This negative voltage increases in magnitude as the cavity is tuned to resonance at the magnetron frequenoy. The sensitivity switch varies the gain of the amplifier.
1007. (a) Tune wavemeter to make magic eye close.
(b) If overlapping occurs, reduce sensitivity with the sensitivity switch and continue tuning for maximum closing without complete closing or overlap.

## Frequenoy Pulling Cheak.

1008. (a) C.V.208's in particular aro suscoptible to frequency pulling and "gapping" due to varying reactance coupled back by varying reflection from a slightly assymmetrical perspex cupola.
(b) To make a frequenoy pulling check, with the mismatch unit probe into its stop slide the carriage of the mismatch unit up and down and note whether any opening of the magic eye occurs. Such opening indicates that the magnetron frequency has shifted. Some indication of the amount of frequency change can be obtained by retuning the wavemeter. The dial calibrations, 0.05 to 0.35 , indicate wavelengths from 3.05 to 3.35 ams. The frequency change can be reduced to a minimum by a olockwise rotation of the matching iris control.
(c) Care mast be taken not to drop the power output by more than $10 \%$ by the readjustment of the iris. The $10 \%$ reduction of output is recommended as a safeguard against probable frequency pulling.
(d) Check that the wavemeter is tuned to resonance. Lock the wavemeter tuning controls, the matching iris and the tuning plunger.

## Lining Up the ReF. Input Controls.

## Preliminary:-

1009. (a) Press "Ic T. CN" as switch unit to switch off the $-4 K \mathrm{KV}$. and $\pm$ 1. 8 KV. supplies.
(b) Discomect the pulse cable and the 12-way red from the transmitter unit.
(c) Close the "Oscillator" or E.H.T. switch on the test set 205 and allow a few minutes for warming up.

## Setting-up the Test Set Klystron-

1010. (a) Waveguide switch to position 2, the "blind" position, which blocks the escape of any klystron output.
(b) Selector awitch to position 2, to connect reatified output from test set klystron crystal to the test set meter.
(c) Sensitivity switch to maximum.
1011. (a) If the klystron is oscillating the meter will show an indication
(b) If not oscillating, the setting up drill will follow that for the local oscillator outlined in paras. 1022 to 1027.
(c) When oscillating, vary the tuning to cheok that it is oscillating throughout its range.

Tuning the Klystron to the Magnetron Froquenoy.
1012. (a) Waveguide switch to position 2.
(b) Selector switch to position 3 to connect the rectifized output from the wavemeter crystal to the meter.
(c) Sensitivity switch to maximum.
1013. (a) Tune kiystron until meter needle shows sharp rise to indicate that klystron is oscillating on the frequency to which the wavemeter is tuned, i.e., the magnetron frequency.
(b) This operation requires considerable care as the tuning is very sharp. If the tuning control on the klystron is rotated too rapidly it is possible to pass through the resonant point before the meter needle has time to indicate it.
(c) During this stage it is advisable to ocoasionally set the selector switch back to position 2 to oheok that the klystron is still oscillating.
1014. When the klystron is thus tuned to the magnetron Prequency it provides a relatively low power source of C.W. at the magnetron frequency which we can use to adjust the R. F. input controls for maximun response at the magnetron frequenoy.

Mixer Tuning.
1015. (a) Attach the dumay T.R. cell to the waveguide section protruding from the top of the test set with the end with two small holes uppermost.
(b) Remove the mixer chamber from the transmitter unit and mount it on top of the dumay $T . R$. cell. The chamber should be in the same plane as in the transmitter unit.
(c) Take a Pye lead frcm the mixer output plug to the Pye plug on the test set panel.
1016. (a) Waveguide switch to position 3 to feed test set kiystron signal into mixer chamber.
(b) Selector switch to position 4 to feed rectified and smoothed D.C. voltage from crystal in mixer via the Pye lead to the meter.
(c) Sensitivity switoh to maximm unless meter reading is too great.
1017. (a) Adjust mixer piston for maximum meter reading reducing sensitivity switoh setting as required.
(b) Rotate orystal holder in the mixer chamber for maximum meter reading. This is to get the tungsten whisker in the position which gives the maximum response.
(c) Note meter reading. If below that normally obtained on the test set the orystal should be checked by substituting a new one.

## T. Re Ge 21 Tuning.

1018. (a) Remove the dumay T.R. cell and insert the CV. $1 \mathrm{I}_{4}$ in its place. Finsure that it is mounted in the seme plane as in the H. F. box.
(b) Tune the T.R. cell for maximum meter indication The control should be moyed only one notch at a time as tuning is very sharp.
(c) Retune mixer chamber.
(d) Note meter reading. It should normally be at least $90 \%$ of that obtained when the durny T.R. cell was used.

Tuning the Anti-T. Ro Chamber.
1019. (a) Replace the mixer chamber and T.R. cell in the transmitter unit but do not insert the $L_{0}$ O. probe. If this probe is inserted appreciable signal power will couple back into the L. 0 . and this loss will cause a big drop in meter reading from the value above in (d).
(b) Couple the mixer output plug to the Pye plug on the test set by a Pye lead.
1020. (a) Waveguide switch to position 4 to feed the output from the test set klystron into the transmitter unit.
(b) Selector switch to position 4, as before, to feed smoothed rectified output from mixer crystal via the Pye lead to the test set meter.
(c) Sensitivity awitòh to maximum.
1021. Adjust anti-M.R. piston for maximum meter indication. Tuning may be very flat, depending on the phase of the wave that goes up to the magnetron and reflects. When maximum meter indication is obtained the maximum power flow is going up the receiver branch line. The R.F. receiving side of the transmitter unit should now give the optimum response to signals at the magnetron frequency.

## Setting up the Local Oscillator Power Pack.

1022. (a) Replace the red 12-way cable to the transmitter unit.
(b) Cheok that the eleotrostatio voltmeter is properly connected to the kiystron cathode and that the milliammeters are jacked in at the crystal current and E. H. T. current points.
1023. (a) Turn V.R.l (E.H.T. voltage control) fully clockwise. This takes the VT. 127 grid as far negative as possible and thus reduces the E.H.T. Voltage to a minimum.
(b) Turn VR. 2 (reflector volts control) fully clookwise to reduce the potential difference between reflector and cathode to a minimum.
(c) Turn VR. 3 (grid volts control) fully anticlockonse to put the maximum bias on the klystron and so reduce the kiystron (and therefore E.H.T.) current to a minimum.

The conditions required for stable oscillation are:-
1024. (a) Cathode potential approximately -1600 V . but not more negative than this value.
(b) Total E. $\mathrm{H}_{0}$ T. current 7-7.5 ma.
(c) Crystal current 2.5 ma .

The controls will interact, particularly VR. 1 and VR. 3.
1025. (a) Set the L, O. coupling loop to maximum.
(b) Set the probe in just far enough to get a crystal current indication when the klystron starts oscillating, in order to prevent pulling of the L.O. Prequency by the signal from the test set klystron coupling back into the L. O. cavity via the mixer and the ooaxial from the mixer to the L.O. This precaution applies in the next test when the $I_{0} 0$. is being tuned.
(o) Set the waveguide switoh to position 3. This precaution is to prevent the signal from the test set klystron reaching the mixer and giving a orystal current indioation before the L. $\mathrm{O}_{0}$. is aotually oscillating.
1026. (a) Rotate VR. 1 antiolookwise until klystron cathode voltage is -1600V. Note E. H. T. current reading.
(b) The reading will normally be low. Turn VR. 1 back (clockwise) and advance VR. 3 (clookwise) a few notches. Now take VR. 1 anticlockwise again until the cathode voltage again reaches. -1600V. Note Z.H.T. current again.
(o) If the value is still low, repeat the procedure in (b) until E. H. T. current of about 7.5 ma . is obtained with a cathode voltage of -1600 V . VR. 1 must be turned baok each time before advanoing VR. 3 or the cathode voltage will be above -16007 . when the required klystron current is obtained. This will shorten the life of the CV.129.
1027. (a) When the correct operating conditions are obtained, rotate VR. 2 anticlockwise until osoillations are obtained as indicated by a crystal current reading and a sharp kick of the E.H.T. current meter needle.
(b) If on rotating VR. 2 the crystal current shows a sharp and slow side, set VR. 2 just past the peak on the slow side.
(c) The cryatal current value may renain low in actual value due to the klystron frequency being a long way off that of the T. Ro cell and mixer cavity, and because of the attenuation at the probe. The probe setting should be such as to make satisfactory indications obtainable but no more.

In O. Tuning to $45 \mathrm{Mc} / \mathrm{s}$. off Magnetron Frequency.
1028. (a) Waveguide switch to position 4 to feed output of test set klystron at the magnetron frequency into the mixer where it will beat with the L.O. signal. The rectified I.F. envelope from the mixer to the head anplifier will then be at a frequency equal to the difference in the frequencies of the two klystrons.
(b) Connect the mixer output plug to the Pye plug on the head amplifier with the normal lead.
(c) Connect the head amplifier output pye plug to the Pye plug on the test set 205.
(d) Set the Po/I.F. switch to I.F. The two stage amplifier in the test set now has the necessary $R_{0}$.F. decoupling appliod to operate as an I.F. armplifier. The anode loads are resonant at $45 \mathrm{Mo} / \mathrm{s}$. The output to the diode detector will then be a maximum when the beat frequency fed from the mixer into the head
amplifier and from the head anplifier to the test set amplifiex is $45 \mathrm{Mc} / \mathrm{s}$. The detector output is smoothed by the long C. R. and the negative D.C. voltage applied to the grid of the magic oye. The magic eye will therefore close as tuning progresses towarls the $45 \mathrm{Mc} / \mathrm{s}$. difference frequency.
1029. (a) Tune the $I_{0}$ O. until the magic eye oloses to show that the correct frequency difference of $45 \mathrm{Mc} / \mathrm{s}$. has been obtained. The $\mathrm{I}_{0} \mathrm{O}$. will now operate $45 \mathrm{mc} / \mathrm{s}$. of f the magnetron frequency.
(b) Adjust the setting of the mixer probe for a crystal current of 1.5 ma.
1030. (a) Disconnect the test set from the transmitter unit and connect the latter to the scamer.
(b) Replace the pulse cable from the modulator 64 to the transmitter unit.
(c) Rotate the scanner to pick up a permanent echo and check the tuning of the L. O., mixer and T.R. cell on signals.
(d) Do not touoh the magnetron output controls.
(e) Seaurely lock all controls.
(f) Set the Gonera wheel so that the LuO. can be tuned on either side of the resonant point.
1031. Although the test set has been disconnected from the transmitter unit, the waveguide switch must be left in position 1 while tuning on signals if the J.B. 238 is used. This requirement arises out of the fact that the waveguide switch is controlling the +300 V . supply to the trigger valve in the modulator and only completes this supply in position l. If it is required to use the junction box 238 with the test set 205 temporarily removed, the trigger valve supply may be completed by returning the Test set 6-way to plug $F$ on the junotion box 238. Then plugs D and F will be joined by the 2056 -way and the 300 Folt supply will be completed to the trigger valve.
2032.

1033. Rest of setting-up procedure as for H. 2.S. Mark IIC comencing at para. $94 \%$

Suggested D.I. Procedure for H. 2.S. Mark IIC and Mark IIIA

## Pover Supply

1034. (a) Couple P.E. set to V.C.P. and start P.E. set.
(b) Check that V.C.P. is switched on.

## Cxystal Checks

1035. (a) Neasure back and forward resistance of crystal at the transmitter unit jackpoint. Forward resistance should not exceed 200 ohras, and back resistance should not be less than 1000 ohns, or less than half the value measured on preceding D.I. although still over 1000 ohns. The back resistance should be logged and kept on a card at the unit. A sharp fall in the back resistance indicates a dying crystal.
(b) If crystal does not eqpear satisfactory replace with a known good crystal. A few spare good crystals should be carried on D.I.'s. These should be kept wrapped in cottom waste to protect them from shock and in a metal box to protect them from Ro.

## Porrer Supply Checks

1036. (a) Press "L.T. ON" and check that green lanm lights.
(b) Check panel lamps on switch unit and indicator. After at least three minutes warm-up period, press "H.T. ON". Check that the amber and red lights come on. (Vith the now resistors fitted in the switch mit it will be possible to switch on even if the green and amber bulbs are faulty).
(c) Connect the Aro idodel $H$ to the test point on the junction box. Check that the reading lies within $78 \pm 2 \mathrm{~V}$.
(d) Check the power pack voltages at all the test points. The voltage jackpoints should read I ma. $\pm .05$ man The 300 V . feed point should read about . 85 ma (PU 280 - for PU 224 see para. 930).
(e) If the readings are all proportionately high or low, the V.C.P. voltage should be modified as required by means of the trimmer adjustment.
(f) If the voltage readings are at variance, the voltage divider or rectifier at the abnormal jack-point require checking.
(g) Check the V.C.P. regulation by switching the modulator on and off and noting the variation at one of the voltage monitor points on the power unit. Also vary the speed of the P.E. set and note the effect on the 80 V . reading and the jackpoint readings.

## Crystal Current and Tuning (Mark IIC)

1037. (a) Check the crystal current at the jackpoint on the transmitter unit for a value of about 0.4 ma .
(b) If considerably out the reflector voltage and coupling loop require readjustment at the tuming unit 207. To carry out this adjustment two mechanics mist work together using headsets and the $\mathrm{A} / \mathrm{C} \mathrm{i} / \mathrm{c}$ system. The coupling loop should be so set that the crystal curzent can be varied sanoothly (on the stable side) between about 0.2 and 0.6 ma. with the reflector volts control.
(c) Turn the scanner by hand to point toward the best permanent echo avilable. The location of such echoes and the strength of signal to be expected at various dispersal points can only be foumd by experience.
(d) Adjust tuming control for maximum signal. This should be obtainable for two positions of the tuming control. Set the control to the one giving the best $\mathrm{S} / \mathrm{N}$ ratio if there is any choice. Before deciding which is the better, it is necessary to check that the crystal current is 0.4 ma when the $\mathrm{S} / \mathrm{N}$ ratio is being assessed in both cases.
(e) Estimate the sensitivity of the set from a comparison of the response with that normally obtained at the dispersal point with a good set. If the sensitivity appears sub-standard replace the crystal with a known good crystal. Cheak the crystal current and 10 g the back resistance of the new orystal.
(f) If this fails to give any improvement in sensitivity check the CV. 43 tuming plunger and the output line matching slug. Check that both are locked after any readjustment. If insensitivity persists the transmitter unit should be bench-tested.

## Crystal Current and Tuning (Mark IIIA using TR. 3555 Series)

1038. (a) Rotate the scanner to face best permanent echo available.
(b) Tume klystron for maximm signal amplitude. The sensitivity of the set can only be estimated from a lnowledge of the signal strength normally obtained on the particular dispersal point for the direction in which the aircraft is facing.
(c) After signals are correctly tumed in, check the orystal current by means of a meter jacked in at the crystal jack point on the transmitter unit. The reading should be $1.5 \pm .2 \mathrm{ma}$.
(d) Tap the transmitter unit and watch meter indication to see that the CV. 129 is stable.
(e) ifanual adjustment of twing cannot be made at the repeater motor with the 4 way still connected.

## Suppression

1039. (a) If no Fishpond fitted adjust suppression to just out out the transmitter pulse breakthrough on the height tube.
(b) If Fishpond fitted, take the suppression off coapletely (fully anticlockwise) then turn clockwise one notch beyond the point where the suppression actually starts to catch the tranamitter breakthrough. The object of this adjustment is to apply only one notch of effective suppression, i.e., to suppress only the breakthrough due to the primary transmitter pulse. Further suppression means that the Fishpond minimum range is automatically held at about 400 yands or more depending on how many notches of actual suppression are applied. Each notch represents an increase in the minimum range of around 200 yards.

## Height and Range Marker

1040. These should not require adjustment if set up on the bench with a test set 202. If either the switch mit or receiver-timing unit have to be changed, both should be replaced by a matched pair lined up on the bench with a test set 202.

## Use of limitor 28 for checking Height and Range Zeros

1041. (a) The monitor 28 may be used in tize aircraft for checking the height and range zeros. If these have been correctly set up on the bench, they should not require adjustment, but a periodic check at intervals of a week can be made with a monitor 28 that has been calibrated as described in para. 950. The calibration of the monitor must be checked on the bench inmediately before use in the aircraft.
(b) Check with the Avo Model $H$ that the aircraft A.C. supply is 78 volts $\pm 1$ volt. Apply the blue/white pulse to the monitor. Set the X-shift at " 10 " and adjust the T.B. start so that the leading edge of the pulse is in line with the cursor line.
(c) Set the range switch to 10/10 position and height and range drums to 20,000 feet and 4 miles respectively. Apply the height and range markers to the monitor using a . 001 condenser for coupling the height marker.
(a) Set the X-shift to " $20,000 \mathrm{ft}$. " and the height marker should be in line with the cursor. If necessary, adjust the height zero to bring it in line. Then turn the X-shift to " 4 miles 10/10" and if necossary adjust the range zero to make the range marker coincide with the cursor.

## Contract, Brilliance, Focus and Gain

1042. (a) Turn contrast, brilliance and gain fully anticlockwise.
(b) Advance brilliance till scan and flyback just appear then back 4 notches. Check that index line on knob coincides with index dot on panel.
(c) Advance contrast till radial scen just appears then back one notch from the fadeout point. Cheak that index line on knob coincides with index dot on panel.
(d) Adjust range control to bring range marker dot in centre of display. Adjust focus for the sharpest range marker dot.
(e) Reduce brilliance until luminosity of range marker just strats to fall.
(f) Switch scanner on and check for a clearly defined heading marker and range marker ring.
(8) Set gain control to a normal value.

Height Tube Display
1043. Adjust focus, brilliance and shift if necessary.
p.P.I. Displey (Fispond not fitted or W. F.G. 43 fitted)

1044 (a) Set distortion corrector and height control to 25,000' and range control to 8.5 nautical or 10 statute miles. Ad, Just 10 mile zero until outer edge of bright-up just reaches the range marker near the edge of the tube.
(b) Check that the V.F.G. and switch mit bright-up controls are fully anticlockwise to start the bright-up as early as possible.
(c) Set height control and distortion corrector to 20,000'
(d) Using the range marker, check for the following range coverages:

10/10 - $8 \frac{1}{2}$ nautical or 10 statute miles.
10/20,30/20
$100 / 20$ - approximately 17 nautical or 20 statute biles
100/40 - approximately 34 nautical or 40 statute miles
(e) Set the range control to, say, 6 miles on the $10 / 10$ scan. Start the height control and distortion corrector at $25,000 \mathrm{ft}$. and bring them down in $5,000^{\prime}$ stages. Note that the range marker remains in a sensibly fixed position on the display to check the functioning of the distortion corrector. Note that no hole appears at the centre of the display for settings above 2,000'.
(f) Check that the P.P.I. trace rotates about the tube centre. Adjust $X$ and $Y$ shifts if necessary.

Course and Track Marker
1045. (a) Set HoC.U. and indicator 184. switches to "Course".
(b) Cheak that the heading marker can be taken smoothly through $360^{\circ}$ in either direction with the H.C.U. setting control. Set heading marker to the bearing shown on the navigator's repeater card.
(c) Switch on the D. R. compass. The heading mariker and repeater card will oscillate slightly till the master compass settles down. Sove the V.S.C. through a few degrees in either direction. The heading marker and repeater card should reamin in step and always indicate the sane bearing. This check should be made to ensure that the heading marker does not rotate in the wrong direction on operations.
(d) Return the V.S.C. to its original setting and switch off the D. R. compass.
1046. (a) If the roll-stabilised scanner is fitted set the H.C. U. and indicator 184 stwitches to "Track".
(b) Check that the track marker can be moved smoothly through $60^{\circ}$ on either side of the heading marker.
(c) Set indicator switch back to "Course" and H.C.U. switch to "Auto".

## Fishpond

Controls
1047. (a) Scan-marker switch to $100 / 40$ position.
(b) Scanner rotating to give circular markers.
c) Heading marker switched on.
a) Fishpond gain to maximm (W.F.G. 43 not fitted).
(e) Brilliance to point where radial scan just appears.
f) Focus for sharpest scan.
(8) Brilliance to where scan just fades out.
(h) If W.F.G. 43 fitted, set brilliance to minimum and gain for radial scan then back to where scan just fades out.

Bright-Up(H. F. G. 43 not fitted)
1048. (a) Switch through the first five scan-marker switch positions and check that the inner edge of the heading marker commences about $\frac{1}{2}$ " from the tube centre on all positions.
(b) If this condition not fulfilled, alternately adjust switch unit bright-up control on the 100/40 position and W.F.G. bright-up control on the $10 / 10$ position until the bright-up does commence about $\frac{1}{2}$ " from the tube centre in all five positions.

If W.F.G. 43 fitted no bright-up adjustaents are necessary.

## Markers

1049. (a) Press marker button and check for following points:-
(i) Jarkers circular and centred about tube centre.
(ii) Presence of $0,1,2,3,4$ and perhaps 5 mile markers.
(iii) Zero marker about $\frac{1}{2}$ " out from centre.
(iv) No spurious markers before or after the zero marker. This can be checked by noting whether any marker rings appear when the marker button is released.
(b) Scan-marker switch to the 30/20 position.
(i) Markers circular and centred about tube centre.
(ii) Correct number of markers and no spurious markers.
(iii) The zero marker is about $\frac{1}{2}$ " from tube centre and Just overlaps the inner edge of the heading marker. Adjust 30 mile zero to move the marker if its distance from the centre is incorrect.
(c) Scan-marker switch to the $10 / 10$ position. Press marker button and make same checks as in (b). If zero marker not the correct distance from the tube centre (app. $\frac{1}{2}$ "), adjust the 10 mile zero.
(d) Check that heading marker reads the same bearing on Fishpond as on the indicator 1840

## Kiscellaneous

1050. (a) Check all $W$ and Pye plugs to see they are securely fastened and that no Pye clips are missing.
(b) Check that cupola is free from oil, water, rubbish, "window" etc.
(c) If no roll-stabilised scanner fitted, disconnect P.E. set and connect up the A.C. and D.C. cables to the V.C.P. correctly.
(d) Check tiat V.C.P. and modulator 64 switches are both on.

## Stabilised Scanner

## Requirements

1051. (a) Vacuun punp assermbly to drive the gyro control unit.
(b) D.C. supply of 24 V . at about 12 amps . to arive vacuum pump motor. Owing to heavy starting current this supply will require a 40 amp. fuse.
(c) Suitable length of flexible piping will be required to connect the vacuwa line to an intake point on the aircraft skin.
(d) A suction meter should be tapped in, preferably at the end of the flexible pipe, to check that the vacuun of 3 - $5^{\prime \prime}$ is obtained since the gyro control unit requires a vacuum in this range to operate correctly.
(e) The scanner D.I. should be carried out after the normal H. 2.S. D.I. to give the gyro and amplifier unit time to settle down.

## Amplifier Balance Check

1052. (a) After doing normal H.2.S. D.I., remove the 2 -pin red from J.B. 246 to disconnect the armature supply frora the M.G. 74 .
(b) Insert Jack connected to voltueter (on range not lower than 250V.) at amplifier jack point.
(c) Press earthing switch on amplifier panel and note reading which may be either + or -.
(d) Adjust balance preset for zero volts to ensure the N. G. 74 is stationary when platform is level. A fine adjustment can be obtained by decreasing the voltmeter range. Remove the jack.

## Gyro Control Unit Alignment Check

1053.	$\left(\begin{array}{l} a \\ b \\ c \\ \left(\begin{array}{l} 2 \end{array}\right) \end{array}\right.$	Set the platform level by observing the spirit level. Switch on the scanner at the switch unit.   Replace the $2-\mathrm{pin}$ red to make the $\mathrm{M}_{0} \mathrm{Go}_{0} 74$ capable of operation. Note whether the platform moves. Movement nay be caused by Gyro control unit incorrectly aligned. Movements in excess of $\pm 1^{\circ}$ normally must be attributed to this cause. Gyro realignient can be done by loosening the 4 bolts securing the gyro which permits small variations in either direction on the elongated fixing holes.

## Stabilisation and Sensitivity Checks

1054. (a) Remove 2-pin red again and push platform over to the $30^{\circ}$ end-stop linait in one direction. Replace the 2 -pin red and check that the platform inmediately returns to the level position.
(b) Repeat the procedure with the platform pushed to the opposite end-stop.
(c) Remove the $2-$ pin red to J.B. 246 and offset the platform 10 as nearly as can be estimated. Replace the 2 -pin red and cheak that the platform levels immediately.
(d) Repeat same check in the opposite direction.

## Clutch Check

1055. (a) With everything working, force the platform in one direction against the torque of the motor. Check that the clutch slips immediately.
(b) Repeat same test in the opposite direction.

## Miscellanoous

1056. (a) Remove the external vacuum supply and twrn the valve to the internal position.
(b) Check that all cables are secure and do not foul at any point during platform movement.
(c) Disconnect P.E. set and connect up the A.C. and D.C. cables to the V.C. P. correctly.
(d) Check that V.C.P. and modulator 64 switches are left on.

Use of the Scanner Jig (10AB/8136) for A.R.I. 5564 - 5583 (Mark III H. 2.S.)
1057. (a) The Jig consists of a blued steel body winch can be clamped to the flared end of the waveguide feed to the scanner, and three distance arms by which the location of the flare can be checked. These arms are identified respectively by marks 1D, 21 , or 3D stamped on them close to the point about which they pivot.
(b) Arm $2 D$ serves to check that the waveguide is central with respect to the outer edges of the mirror.
(c) Arm $2 D$ serves to check the distance from the waveguide to the back of the mirror, and
(d) Arm 3D checks the aistance of the waveguide from the top edge of the barrel section.
1058. (a) Certain tolerances can be allowed in the position of the flare with respect to the back of the mirror and with respect to the top edge of the bamrel section.
(b) The tolerance range is provided on arn $2 D$ by an extension which is variable through 1.5 millimetres.
(c) Tulerance on arm 30 is allowed by the width of the slot provided to receive the top edge of the barrel section.
1059. (a) To check a scanner, screw back the clamping plate in flare recess and fit the jig body over the waveguide mouth. Amn 3D should be vertical and arm 3D should be below the level of the feeder mouth.
(b) With an inverted scanner on the bench the jig should slide on from the left. In an aircraf't installation it should slide on from the right.
1060. When in position the claun should be tightened to hold the jig firmiy.
(a) Bring ann $2 D$ against its stop (arn horizontal) and check whether the tip touches the back of the mirror within its range.
(b) Adjust arn 3D until it touches the barrel section and check that the eage of the mirror fits in the slot provided.
(c) Swing arin $1 D$ to one side of the mirror and adjust the screw extension until the under side of the head touches the edge of the mirror.
1061. Turn the arm to the other side of the mirror and check that the same condition holds.

## Scanner Kaintenance

## Inspection of Scanners Type 63 and 71

1062. (a) lount scamer, motor dormwards, on a scanner stand and remove the mirror.
(b) Check that the gear trains are clean and free from any foreign matter other than a coating of anti-freeze grease.
(c) Connect up the cables to the scanner and switch on.
(d) By operating the F.C.U. setting control, check that the course step-down gear train and the track worm drive operate smoothly throughout their full range of movement.
(e) Using the repeater rotor test installation check the operation of the repeater motors as outlined in paras. 963 and 964.
(f) Rotate the scanner main drive by hand to see if it turns smoothly.
(g) Mount the mirror over the locating studs on the main drive and start the scanner. Check that on $26-28 V$. D.C. supply the scanner speed can be varied smoothly between $20-60$ r.p.m. using the speed control on the control unit 477.
(h) Examine the course and track marker contact assembly for cleanliness and correct contact tension.

## Maintenance of Scanners Dype 63 and 71

## General Points

1063. (a) The scanner casting has been designed to reduce the amomt of maintenance required.
(b) The faults most likely to develop after several hours' operation are:-
(i) Faulty course or track marker contact.
(ii) Sticking repeater motor drives.
(iii) Dirty contacts on the magslip slip-rings.
(iv) Excessive sparking on the motor commatator causing noise.

Bearings
1064. (a) The ball-races in the driving motor and magslip assembly are grease-packed by the manufacturer and should not normaliy require any greasing or oiling.
(b) The main bearing ball-race is also grease-packed.
(c) The ball-races in the two repeater motors will be dealt with in para. 1066-1067.
(d) All other bearings used in the step-down gear trains, including the bearing for the ratating member of the capacity joint, are of a special type known as oilite bearings. These are made of a porous phosphor bronze and impregnated with anti-freeze oil.

Whenever these bearings are removed they should be cleaned and lef't to steep in anti-freeze oil before replacing.
(e) If ball-races require attention, they should be washed out with paraffin, thoroughly dried and repacked with anti-freeze grease.
(f) The teeth on the metal gear wheels should be lightly greased with anti-freeze grease.

## Cleaning and Adjusting Course and Track Marker Contacts

1065. (a) Remove the four 2bA nuts clamping the sub-casting which supports the magslip and course repeater motor to the main casting. Separate the sub-casting from the main casting.
(b) Thoroughly clean the annular contact ring and the fibre disc mormted on top of the magslip stator drive with carbon tet. Clean the three contacts mounted on the main casting and check for correct tension. If necessary, adjust the tension by bending the contacts.

Checking the Course Repeater Motor Drive
1066. (a) Slacken the jubilee clip around the repeater motor and remove the top cover.
(b) Disconnect the three field connections, noting the colour coding.
(c) Remove the three 6 BA bolts securing the repeater motor casting. The repeater motor can now be withdrawn from the sub-casting and gear train.
(d) Check the freedom of the armature. It should tum very easily. Lightly oil both bearings with anti-corroding oil (34A/43). Access to these bearings can be had through the end plates without removing the armature.
(e) Thoroughly cleanse all gear wheels in the step-down gear train to the magslip stators by brushing with petrol, and smear all the teeth with anti-freeze grease.
(f) Ascertain that the magslip stators move freely through 3600 without any sign of binding spots.

Checking the Track Repeater Drive
1067. (a) Remove the repeater motor.
(b) Check and lubricate as outlined for the course repeater motor.
(c) Thoroughly clean the worn drive and step-down gear and smear lightly with anti-freeze grease.

## Checking Magslip Brushes and Slip Rings

1068. (a) Remove the cover of the slip ring assembly.
(b) Note and record the arrangement of the six leads running from the slip rings to the teminals on the bakelite housing, then remove the leads.
(c) Renove the leads and bolts from the temminal points on the brush mountings and the brush contact arms. The brushes can now be withdraw. Examine them for wear and replace if length less than $\frac{1}{4}$ ".
(d) Remove the six 6 BA bolts around the base of the slip ring assembly. Withdraw the slip ring assembly. Examine and thoroughly clearise all slip rings. Note their connections, then
(e) Remove the 4 leads coming up through the bakelite end plate from the terminals on the bakelite housing.
(f) Remove the contact arms and the three rotor brushes. Examine the brushes for wear. Replace them if length is less than $\frac{1}{4}$ ".
(g) Remove the four 6BA bolts securing the bakelite end plate to the magslip stators. Withdraw the housing. Thoroughly cleanse the three slip rings on the rotor end.

## Scanner Motor Check

1069. (a) The motor can be removed from the main casting by removing the three 2 BA nuts.
(b) Access may be had to the commatator and brushes by removing the two 4 BA bolts securing the $2 B$ socket to the top of the motor. The end cap can then be pulled off. Check the brushes for perfect seating. Replace if length is less then $\frac{1}{4}$ ".
(c) Cleanse the commatator.

## Reassembly Cautions

1070. Care must be exercised with regard to the following points when reassembling:-
(a) Kagslip comnections.
(b) Repeater Motor connections.
c) Aligning the course marker contact.
(d) Aligning the rotating joint.
(e) Replacing the mirror correctly.

## Course Marker Alignnent

1071. (a) Line up the white marks on the scanner casting and the rotating plate.
(b) Comnect an Avo across the course contacts for a continuity check.
(c) Slacken off the three 4BA bolts clamping the fibre disc (which holds the contact ring) to the magslip rotor.
(a) Turn the disc relative to the gear wheel in a clockwise direction (looking into scanner base) till the meter just indicates a short. Tighten the three 4BA bolts to clanp the disc to the magslip rotor.

## Mirror Replacement

1072. When replacing the mirror check that all white marks are aligned.

Capacity Joint Alignment (Scanner Type 63).
1073. (a) Adjust the position of the rotating member of the joint so as to measure $17{ }^{\prime \prime}$ from the end of the segmented tube to the end of the rotating member.
(b) Clamp in this position by means of the tapered locking ring.
(c) Replace the casting carrying the stationary member of the joint but omit the gasket.
(d) Slacken off the clamping band which secures the stationary member to its supporting casting.
(e) Push down the stationary member until metallic contact is heard. Tighten the clamping band.
(f) Remove the casting and the clamped joint section and reassemble with the gasket in place.

Rotating Joint (Scanner Type 71)
1074. (a) The spacing between the two sections is set to 1 mm . aultomatically on assembling.
(b) Care must be taken not to deform the waveguide system in the scanner during any maintenance work.

## Repeater Motor Rotation

1075. The direction of rotation may readily be reversed by changing over any two field connections coming out from the field windings to the terminal block on the end of the motor. This should only be done if the wiring is correct in the HCU and scanner. If these units are incorrectly wired they should be corrected.

> R. F. Faults in H. 2.S. Kark IIC

## Faults Causing Low Sensitivity

Insensitive Cyystal
1076. (a) If a set is insensitive replace the crystal by a known good crystal.
(b) Crystal previously in use can be checked for forward resistance of less than 200 ohms and back resistance of more than 1000 ohms but these are not conclusive tests.
(c) Crystals are perhaps best sorted on a bench set by inserting them in a lined-up set and comparing crystal current passed and sensitivity with that of a known good crystal without making any adjustments to the controls. Good crystals are normally those that pass a good crystal current and give a good $\mathrm{S} / \mathrm{N}$ ratio.
(d) If crystals are sorted in this way, they should be wrapped in paper or dry waste to avoid damage from vibration and stored in a metal container to prevent damage from R.F. pick up.

## Faulty-Fye Cables

1077. (a) The green Pye cable ond, to a lesser extent the slate, may account for low sensitivity.
(b) A rough check can be made by turning the gain to maximum and noting the noise level on the height tube. If both cables are in order and make proper contact, the observed noise level should be of approximately the same amplitude as the range marker.
(c) Disconnect the Pye green cable. If the noise level does not drop the head amplifier is faulty). If the noise disappears entirely the gain of the IF strip is low.

Sof't Rhumbatrons

```
1078. (a) The CV.43 is a common cause of low sensitivity. This may arise
 from developinent of noise or from delayed de-ionisation.
(b) If the noise level goes down considerably when the tranamitter is switched off the CV. 43 is suspect.
(c) If the CV. 43 tuned very flatiy, especially on short range signals, delayed de-ionisation due to overcoupling of the magnetron input is the probable trouble. See paras. 322-323.
(d) If crystals are continually burning out, the CV. 43 is most probably not ionising at all due to broken copper glass seals or cracks. If no glow appears across the lips when the plunger is removed and the transmitter is operating, the CV. 43 is \(u / s\).
(e) If the life of crystals is shorter than usual it is probable that the probe voltage is incorrect or absent.
(f) The normal ionising currents for the commonly used types are shown in fig. 73(d).
(g) When changing CV.43's care should be taken to reassemble the heater jacket so as to complete the 24 V . supply through the heater winding.
```

Low R. F. Output due to Faulty Components
1079. (a) liay be due to (i)


Weak magnet
Faulty CV. 64.
Faulty modulating pulse.
Faulty H. P. feeder or waveguide.
(b) Cover on/cover off test (see para.943b) will give a rough check on the magnet.
(c) Modulating pulse can be checked at the monitor points on the modulator (see para. 960).
(d) Magnetron, feeder and guide can only be checked by substitution.

## Low Sensitivity The to Misaligmanent

1080. Displacement due to aircraft vibration or faulty securing of any of the following:-
(a) Watching slug.
(b) C.V. 43 plumger.
(c) Capacity joint.
(d) Mixer probe.
(e) Klystron coupling loop.
(f) H. F. feeder.

## H. P. Feeder Faults

1081. (a) Arcing may occur between the magnetron output probe and the inner of the output line if the contact is slack or dirty.
(b) Arcing may occur if the braiding used to form the flexible coupling to the magnetron probe becomes frayed and loose ends start breaking away.
(c) Arcing will occur if the matching slug has any play and is not in perfect electrical contact with the outer.
(d) Arcing at any of these points may be observed by looking through the slug tracking slot.
(e) Arcing may occur in the H.F. plugs if there is an air gap due to the polystyrene dielectric being below the level of the terminating outer. This trouble is cured by fitting of the "sticky" washers. The face contact area of the outer and of the plug and socket on the inner should be clean and secure. Any arcing occurring at these points can be checked by looking for siens of carbon deposit on the surface.
(f) All extemal feeders used in the aircraft and bench installations should be of the correct lengthis.
(g) The rubber washers must be removed as they prevent proper seating and perfect electrical contact. This also applies to the uniradio 21 feeder.

## Faveguide and Scanner Faults

1082. (a) Any deformation or displacement will cause polar diagram distortion and probably mismatch problems.
(b) Oil or dirt on the waveguide inner surface, mirror or cupola will cause attenuation and reflection.

## Noisk Values and Pick Up

1083. (a) Heavy noise can be introduced in the head amplifier stage due to a low emission VR. 136 or faulty earthing connections or valve base contacts. A check can be made by by-passing the head amplifier by feeding straight from the mixer Pye plug tnto the receiver.
(b) I. F. valves can cause trouble in the same way.
(c) A "noisy" blower motor may cause trouble. This can be checked by removing its supply plug.
(a) Scanner motor noise can appear if the suppression unit is faulty.
(e) A crystal may be noisy if it is not securely held and making firm contact with the mixer inner.
(f) An unstable klystron can produce considerable noise because of the arcing between the reflector and rhumbatron as it goes in and out of oscillation. The fundamental cause of this trouble will probably be the setting of the reflector volts or the supply voltages.
(g) Arcing at the liK resistor is another source of noise.

## Suggested Low Sensitivity Investigation Procedure in Aircraft

1084. (a) Check on noise level writh gain control (para. 1077b) to check whether fault is in I. F. Pye cable or in R.F. side.
(b) Check that transmitter output is up to standard by putting finger, screw-driver or neon on waveguide. The standard will have to be determined from experience.
(c) Replace crystal with a crystal known to be good.
(d) Check that matching slug and CV. 43 plunger are secure.
(e) Inspect H.P. feeder, scanner and cupola for points in paras. 1081 and 1032.
(f) Remove transmitter unit for bench test. Check alignment of matching slug and CV. 45 tuning. Test output on T. S. 85 after realigninent.
(g) If low output persists make cover on/cover off magnet check.
(h) If output satisfactory, check CV. 43 for correct ionising current and absence of overcoupling and flat tuning.
(i) Make head amplifier bypass check and CV. 43 noise check.
(j) If no fault apparent, suspect scanner, H.P. feeder and modulator in aircraft. Return to aircraft with original transmitter unit and serviceable modulator, H.P. feeder and scanner.

## Insulation Breakdom Troubles

## General

1085. Aside from low sensitivity problems the main faults come under the heading of insulation breakdoms, mostly in the modulator and transmitter unit. The chief indications of this class of faults are a standing pulse on the height tube (in earlier stages) and overload relay tripping or complete switching off is later stages.

## Harning Indications

1096. Several of the major insulation breakdown problems result in mismatch conditions between the artificial line output and the transmitter unit before the final breakdow comes. These mianatch conditions usually cause a series of reflected pulses along the pulse cable after the initial main pulse. Evidence of these can usually be obtained by scoping at the monitor points on the modulator 64 which will show some form of abnormality. A further indication is obtainable from the number of notches of suppression required to prevent any breakthrough on the height tube. If more than 3 or 4 notches of suppression is called for, insulation and misuatch trouble should be suspected. An alternative cause may be a dying spark gap which is de-ionising very slowly.

## Suspect Components

1087. Aside from a dying spark gap which is not a comon fault, the following items are the chief suspects when either the suppression setting or waveform at the modulator monitor points indicates trouble:-
(a) Filanent transformer.
(b) Pulse transformer.
(c) Lead from spark gap to pulse output socket on modulator 64.0
(d) Fulse cable from modulator 64 to transmitter unit.
e) Lead from transmitter unit input socket to pulse transformer.
(f) Magnetron.
(g) Overswing diode and $4 K$ resistor.
(h) Artificial line.

## Dramy Load Tests

1088. (a) The dumry loads and the elimination tests are discussed in general terms in Chap. 5, para. 310.


REPLACE TZR EY BOS DUMMY LOAD


IF THE FAULT PERSISTS SUSPECT MODULATOR
if the fault is cleareo suspect the tir or pulse cable CHECK CABLE BY PUTTING DUMMY LOAO ON TT END OF PULSE CABLE


If THE FAULT IS LOCALISEO IN T2R, SWITCH OFF, DISCONNECT BOTH LEADS TO MAGNETRON, THEN CONNECT F.5K OUMMY LIOAD ACROSS THE PULSE TRANSFORMER SECONOARY ANO SWITCH ON.

if the fault disappears the magnetron is faulty
if fault is cleared replace
FLIAMENT TRANSFORMER.
if fault still persists then pulse transformer or lead to pulse transformer are at fault change pulse transformer ano if fault still persists it is the leato.

IF THE FAULT PERSISTS, SWITCH OFF, OISCONNECT FILAMENT TRANSFORMER AND SWITCH ON


FIG.I55
(b) Disconnect pulse cable at transmitter unit and connect 80 ohm dumay load to end of cable. If the equipment switches on and the overload relay ceases to trip, items (a), (b), (c) and (d) are eliminated. If the overload relay continues to trip the most probable fault is a faulty lead from the CV. 85 to the output terminal.
(c) The pulse cable can be checked by rmaning the modulator into the 80 ohn load at the pulse output plug.
(d) If the fault is beyond the pulse cable, i.e., in the transmitter unit, the 1500 ohm dumuy load is connected into circuit in place of the magnetron. Disconnect both heater leads from the magnetron and make sure they are well clear of any earth point. Connect one of the dumy load crocodile clips to the loose heater lead previously connected to the uppermost magnetron leg and connect the other crocodile clip to earth. If the equipment rms normally now the magnetron was at fault.
(e) If trouble persists, remove the link between the pulse transformer and filament transformer. The filament transformer is now out of the circuit. If the equipment operatos now the filament transformer was at fault.
(f) If trouble continues, look for the series of exponentially decaying "rings" on the height tube after the suppression break. Presence of these indicates that the overswing diode circuit is faulty.
(g) If no fault is apparent in the overswing diode circuit, change pulse transformer and check pulse lead from pulse input to pulse transformer.

## Other ReFe Faults

## 4K Morganite Resistor

1089. (a) Once the resistor has been fixed to the metal end connections it should not be broken from them as this will cause the metallised coating to break away and peel off, thus causing arcing at the point of contact.
(b) Occasionally the clamp is not circular and only contacts the metallising over a limited area. The heat developed destroys the metal and develops a high resistance contact and the transformer ringing is no longer darmped.

## Low Klystron Output or Unstable Klystron

1090. (a) Incorrect voltages. Values should be:-
(i) Cathode
-1200V.
(ii) Reflector -1300 V to -1600 V . Klystron operation may become critical if the cathode voltage
falls to the vicinity of -1000 V .
(b) Broken copper glass seal or reflector pinch.
(c) Damaged cathode due to overmumning with light loading and maximum feedback.

No Crystal Cuxrent
1091. (a) Klystron not oscillating.
b) Broken klystron loop.
(c) Faulty uniradio 21 feeder and contact ends.
(d) Faulty Fye cable from head amplifier to mixer.
(e) Burnt out crystal.
(f) Faulty contacts on jack.
(g) Faulty capacity probe.

Faulty CV. 85
1092. (a) Arcing at contact pins.
(b) Not de-ionising quickly.

## Other Insulation Breakdown FauIts -

1093. (a) Repeated trouble has arisen over breakdowns of the 2 KV . condensers in the power unit and the transformer T. 302.
(b) Occasional high voltage condenser breakdowns occur in the indicator 162 and in Fishpond.
(c) Such breakdowns bring the overload transfonner in the power unit into operation and cause the equipment to switch off.

## Miscelloneous Servicing Points on H. 2.S. Maxk IIIA

## Modulators Type 64

1094. Only modulators 64 with serial numbers above 300 are suitable for use with the Mark IIIA transmitter units (TR. 3555 series and TR. 3523).

## Jackpoint Polarity

1095. (a) Early units had both the E. H.T. current and crystal jacks wired so that the tip of the jack was negative and the sleeve positive.
(b) Later B.T.H. boxes wired the E.H.T. Jack to make the tip of the jack positive and the sleeve negative in accordance with the usual procedure. The crystal jack remains as before.

## Jackpoint Danger

1096. The E. H.T. jack point is norinally around 1000V. to ground. Precautions should therefore be taken when using the jackpoint.

## Switching on at High Iltitudes

1097. When the equipment is switched on the indirectly heated VT. 127 does not operate for several seconds after the VIlll E.H.T. rectifier. During this period the E.H.T. current jack and various other points will be at over ZKV to ground. For this reason the equipment should not be switched on at high altitudes as the clearances which can be allowed are insufficient. Since the VU .111 power pack is operated by the "LoT. ON" button, there is no objection to switching the modulator off and on if "LnT. ON" was switched on before gaining height.

## VU. 111 High Voltage Lead Breakdomm

1098. The VU. 111 in the L.O.P.P. is held in position by 2 netal springs joined by a cord passing over the top of the valve. Voltage breakdowns have occurred when the VU. 111 high voltage lead was caught between one of these springs and the valve envelope. A check should be made to ensure that this lead is adequately spaced from earthed points.

## Lodge Plugs

1099. Insulation breakdowns have occurred in both the external plug inserts on the aircraft cables and in the internal plug inserts inside the TR 3555 units. The rubber insulation of the cable was found blackened and "porriered" on the underside of the short straight portion immediately before the cable enters the porcelain section of the plug insert. It was found that the yellow cambric covering separating the rubber from the braiding had been cut back, leaving the rubber open to the air inside the metal right angle tube. In repaired plugs, the cambric was left on and allowed to penetrate the procelain section for $\frac{1}{8}$ " to afford added protection to the rubber.

## I.O. Gear Box Replacement

1100. If for any reason the gear box on the transmitter unit is disengaged from the $L_{\text {. O., }}$, care should be taken in replacing it to ensure that the limt of turning in either direction is imposed by the gear box and not the 10. A Geneva gear limits the gear box to five revolutions of the extemal pinion.

## Iris Adjustment

1101. In the course of lining up the TR. 3555 units on the bench the iris tube may jam in the waveguide. To clear, it is necessary to dismantle the iris adjusting mechanism and work the iris up and down the guide by means of a piece of wood. The inside surface of the guide should then be wiped clean. Until a non-attenuating lubricant is available it is not safe to apply any Iubricant.

## Klystrons for which no tuming point can be foumd

1102. It may happen that in the last stage of the setting up procedure it is inpossible to find a tuming point on the $\mathrm{L}_{0} 0$. which will close the magic eye. This may mean that the frequency coverage of theklystron L .0 . does not come within $45 \mathrm{mc} / \mathrm{s}$. of the frequency of the magnetron in the umit. An estimate of the klystron frequency can be made as follows with the test set 205:-
(a) Connect transmitter unit to the test set 205 and set the waveguide controls as in the last test for tuning the 1.0.
(b) Set I.C. tuning control at tuning limit nearest the magnetron frequency.
(c) Tune the test set klystron until the magic eye closes.
(d) Set the waveguide switch and selector switch to position 1 and tume the wavemeter to the test set klystron frequency by tuning for maximum meter indication. The wavemeter dial will then indicate approximately the limiting wavelength of the klystron.
(e) It is pointed out that the observed wavemeter reading will differ by $45 \mathrm{Mc} / \mathrm{s}$ from the 40 wavelength as it gives the wavelength of the test set system.

One test indicated a klystron whose lower unit was 3.23 cras. when the wavelength of the associated CV. 208 vas 3.18 cams. The corre sponding frequencies are $9298 \mathrm{Mc} / \mathrm{s}$. for the klystron and $9434 \mathrm{Mc} / \mathrm{s}$. for the magnetron.

## The Test Set 205 CV. 114 Test

1103. The drop in meter reading when the dumy T.R. cell is replaced by the T. R. cell correctly tuned can do little more than indicate when the CV. 114 is completely unserviceable as indicated by on abnormally high fall. The CV. 214 should not be rejected on the strength of this test unless a power loss of 8 db . is indicated or CV. Ill's are being burnt out.

## Non-Striking of cV. 115

1104. Failure of the CV. 115 to strike may cause the transmitter output to be low, but it cannot be assumed that the CV. 115 is $u / s$ because it has failed to strike and the transmitter output is low. A wrong position of the matching plunger may be responsible for both the low output and the failure of the CV. 115 to strike. Matching adjustment should, therefore, always be tried before assuming that the CV115 is $\mathrm{u} / \mathrm{s}$.

## I.F. Strip Tests

1105. The test set 160 may be used as a $45 \mathrm{Mc} / \mathrm{s}$. signal generator for I.F. strip tests. The dial should be set to $45 \mathrm{Mc} / \mathrm{s}$. and the aerial replaced by a screened lead attached to the aerial terminal at the back of the box. This lead is then used to feed signals into the I. F. strip via the grids and anodes of the valves. The fault can thus be localised to one stage. The output is examined on the monitor 28.

## Non-Magnetic Screwdrivers

1106. Only non-magnetic screwdrivers should be used in working on Mark IIIA transmitter units. The strong magnetic fiela is likely to cause repeated breakage of magnetrons if magnetic screwdrivers are used. The use of magnetic screw drivers will also cause more rapid deterioration of the field strength of the magnets.

## Dumary Ioads

1107. The same durniy loads are used for elimination tests in llark IIIA as in Mark IIC. Since the pulse and filament transformers are enclosed in one unit the elimination process is shorter.

## CV. 208 Handing

1108. In these valves the positioning of the cathode within the valve is critical in determining the efficiency and therefore the output. Cathode position is altered by any deformation of the metal sections of the legs carrying the heater leads. Care should therefore be taken in handling these valves. The instructions printed on the CV. 208 refer to the possibility of the cathode leg being displaced if the valve is laid down incorrectly. The wall thickness of the metal section is of the order of $3 / 1000^{\prime \prime}$.

## Vibrating Joint Adjustment

1109. Power loss becomes appreciable if the gap between the flanges exceeds $\frac{1}{6} "$. The horizontal run of the waveguide is supported at the front panel and on a bracket attached to a vertical frame member. lo adjust the gap width proceed as follows:-
(a) Slacken off the mixer chamber clamp.
(b) Slacken off the screws holding the supporting bracket which is now adjustable vertically through a short distance.
(c) Set the bracket so that the gap in the joint is about 1/16". Care must be taken to ensure that the flanges do not touch at any point or flash-over will occur.
(d) Retighten all clamping screws.

The term "choke joint" is commonly used to describe joints of this type when their primary function is to allow for tolerances in the dinensions of components.
$\qquad$

B7= ERITSH STANDARO



$40^{5} 0$
$\left(\begin{array}{cc}0 \\ 3 & O_{0} \\ 0 & 7 \\ 20 & 08\end{array}\right)$


PIN ${ }^{\circ}$	W7154E	Cx67	cric9	VR53	1854	VR55	V256	VR67	$\underline{1} 103$	6Y6G	574G
1	-	$G$	$G$	M	M	M	M	M	-		-
2	H	H	H	H	H	H	H	H	H	H	H
3	X	-	-	A	A2	A	A	A	A	A	$\times$
4	Al	-	-	62	C2	D1	62	X	TA	G2	Al
5	X	-	-	63	Al	D2	63	6	$G$	G1	X
6	A2	-	二	x	$\times$	$\times$	$\times$	$\times$	$\times$	$\times$	A2
7	X	H	H	H	H	H	H	H	H	H	X
8	CH	$C$	$C$	6	Cl	$C$	$C$	$C$	$C$	C	CH
TOPCANS		PEFLTR	REFTR	G1		6	G1				



-		H	H	H	H	H
	2	$C$	6	$C$	$C$	5
	3	A	$C$	A	A	X
$40{ }^{40}$	4	62	A	62	62	62
$3^{\circ} 80^{\circ}$	5	63	X	63	63	$G 1$
(20\%7	6	M	x	M	M	$\underline{x}$
	7	$\times$	x	X	$\times$	$x$
	8	H	H	H	H	H
	LC	G1		61	61	A



AMERICAN (SMAL) AMERICAN (MEDIUM) BASES AMERICAN (LARGE)


US56 6-P1N Pn
JUSM5 5-PIK PIn VT60


GIANT 5-PIN PIM

(a)

$I=\frac{500}{250}=2 \mathrm{AMPS}$
DROP IN ARMATURE $=100 \mathrm{~V}$ DROP IA LOAD $=400 \mathrm{~V}$
POWER SUPPLIED TO LOAD $400 \times 2=800$ WATS
POWER IIISSIPATEI IN ARMATURE
$50 \times 2=100$ WATs.
(c)

$I=\frac{500}{75}=62 / 3$ AMPS
DROP IN ARMATURE $=50 \times 6^{2} 13=3331 / \mathrm{v}$.
DROP N LOAD $=25 \times 6 \frac{2}{4}=166 \frac{2}{4} \mathrm{~V}$
POWER SUPPLIED TO LOAD $=166^{2} / 3 \div 6 \frac{2}{3}=J .111$ wATS
POWER DISSIPATED IN ARMATURE $=333^{1 / 2} \times 6^{2} 3=2222$ WATS
(6.)


$$
\begin{aligned}
& I=\frac{500}{100}=5 \text { AMPS } \\
& \text { DROP IN ARMATURE }=50 \times 5=250 \mathrm{~V} \\
& \text { DROP IN LOAD }=50 \times 5=250 \mathrm{~V} \\
& \text { POWER SUPPLIED T TO LOAD }=250 \times 5=1.250 \text { WATS } \\
& \text { POWER DISSIPATED IN ARMATURE } 250 \times 5=1.250 \text { WATS }
\end{aligned}
$$

## MATCHING PRINCIPLES.

THE POWER TRANSFERRED FROM A GENERATOR WITH AN INTERNAL IMPEDANCE THAT IS PURE RESISTANCE TO A LOAD THAT IS a Pure resistance hill be a maximum WHEN THE LOAD RESISTANCE IS EQUAL TO THE INTERNAL RESISTANCE OF THE GENERATOR
aC POWER IN A RESISTIVE GRCUIT FIG. 158

— CURRENT THROUGH LORT $=i$

-     -         - Power SUPPLIED To LOAD a Pa cl


INSTANTANEOUS POWER $P=e l=i^{2} R$
RMS POWER $=\frac{\text { PEAK POWER }}{2}=\frac{\text { PEAK VOLTAGE }}{\sqrt{2}} \times \frac{\text { PEAK CURRENT }}{\sqrt{2}}=\frac{\text { RMS VOLTAGE }}{} \times$ RMS CURRENT
PONER OUTPUT WHOLCY POSITIVE AS VOLTAGE AND CURRENT ALHAYS in PhaSE.

## Introduction

1110. Once microwave power has been generated by an oscillator valve the following fundanentel output problems arise:-
(a) Matching the oscillator to some form of transsission line in order to get a reasonable output from the valve on the line.
(b) Conveying the power along the line with the ainimum of loss due to:-
(i) Resistive losses.
(ii) Radiation losses.
(c) Matching the line to the radiating array to get the maximum of radiation.
(d) Giving the radiation the desired directivity in both azinuth and elevation.
1111. Where comon T. and R. systems are employed, the following further problems arise:-
(a) Keeping the transmitter power from flowing into the receiver channel at the junction between the receiver branch line and the comion output and input line.
(b) Effectively directing the returns into the receiver channel in such a way as to get the maximon signal output for a given transmitter output.
1112. An allied problen is the design of transmission line channels in such a way as to reduce noise and interference pick-up to a minimum in order to obtain the best possible signal to noise ratio for a given transmitter power output.
1113. To approach these problems with the minimun of mathematics the radar mechanic aust accept the results of experiments and engineering experience without worrying unduly about a rigid analysis of the fundamental scientific basis of sone of these results. This chapter will therefore state many results without attempting to present the full story behind them.

## The Concept of Matching

1114, Before dealing with transnission lines themselves we must first study the concept of matching. Let us consider an A. C. generator with an internal resistance of 50 ohns which is capable of developing an e. m. f. of 500 volts. Suppose it is connected to a resistive load of 200 ohns. Then the current delivered is given by $I=\frac{E}{R}=\frac{500}{250}=2$ amps. The voltage drop across the load is then $2 \times 200=400$ volts and the voltage drop across the internal resistance of the generator is $50 \times 2=100$ volts. The power supplied to the load is given by $E \times I=400 \times 2=800$ watts. This could also have been found by $I^{2} \times R$ $=4 \times 200=800$ watts. The power dissipated in the internal resistance will be $E \times I=100 \times 2=200$ watts. This again could have been found by $I^{2} \times R$ $=4 \times 50=200$ watts.
1115. Suppose that instead of 200 ohns a 50 ohn resistive load were used. The current would be $\frac{500}{100}=5$ amps. The voltage drop acrठss both the load and the internal resistance would be $5 \times 50=250 \mathrm{~V}$. The power supplied to each would be Ex X $=250 \times 5=1250$ watts. Hence, the power supplied to the load has increased although the load has been reduced.
1116. Suppose that now we further reduced the load to 25 ohns. The current would be $\frac{500}{75}=\frac{62}{3}$ amps. The voltage drop across the load would be

## A.C. POWER IN AN INDUCTIVE LOAD



FIG. 159
C.D.O896L



NET TOWER OUTPUT ZERO AS POWER CURVE SYMETRIC ABOUT TME AXIS NEGATIVE OWER EEVAMS POSITIVE POWER WITH A RURE INOUCTIVE LOAO Mean power $=0$

FIG.I 60

## A.C. POWER IN A CAPACITIVE LOAD



NET POWER ZERO AS POWER CURVE SYMETRIC MSOUT TIME AXIS necative power equals positive fower with a pure capacitive load MEAN POWER e 0
$25 \times 6 \frac{2}{3}=166 \frac{2}{3} \mathrm{~V}$. The power supplied to the load would be $166 \frac{2}{3} \times 6 \frac{2}{3}$
$=1111$ watts. The voltage drop across the internal resistance mould be $50 \times 6 \frac{2}{3}=333 \frac{1}{3} \mathrm{~V}$. The power dissipated would be $333 \frac{1}{3} \times \frac{62}{3}=2222$ watts. 1117. It appears then that the power supplied to a resistive load is a maximum when the load resistance is equal to the internal resistance of the generator. This is the fundamental concept of matching for power output. It is inmaterial whether the generator is a battery, an alternator, or an oscillator. The same rule still applies.

## Resistive Loads

1118. If we have an alternator supplying a pure sinewave output to a resistive load, the voltage and current will always be in phase as shown in fig. 158. The instantaneous porver curve is obtained by taloing the product of the ordinates of the current and voltage curves. Since voltage and current are simultaneously negative the power curve is ontirely positive. The mean power is found by drawing the ordinate which "smoothes" out the power curve by putting as much of the area above as below. The numerical value is thus given by peak power $\div$ 2. Hence when A.C. power is supplied to a resistive load there is a steady flow of power into the resistance. This power varies with time but is always given by exi, where e is the instantaneous voltage drop across the load and $i$ the instantaneous current through the load. The mean value of the power is given by

$$
\begin{aligned}
& P_{\text {mean }}=\frac{1}{2} P_{\text {peak }} \\
& \text { But } P_{\text {peak }}=F_{\text {max }} \times I_{\text {max }} \text {. } \\
& \text { Therefore } P_{\text {mean }}=\frac{1}{2} E_{\text {max }} \times I_{\text {max }} . \\
& \text { Alternatively, since e }=i R \\
& P_{\text {mean }}=\frac{1}{2}\left(I_{\text {max. }}\right)^{2} \times R . \\
& \text { But } I_{R_{0} M_{0} S_{0}}=I_{\max _{-}}^{2} \& E_{R_{0} K_{0} S_{0}}=\frac{E_{\text {max }}}{2} \\
& \text { Therefore } I_{\text {max }}=21_{R_{0} K_{0} S .} \text { and } E_{\text {max }}=2 E_{R_{0}} M_{L} S_{*} \\
& \text { Therefore } P_{\text {mean }}=2 E_{R_{0} M_{0}} S_{0} \times 21_{R_{0}} L_{0} S_{0} \\
& \text { Therefore } P_{\text {mean }}=E_{R_{0} K_{0} S_{0}} x I_{R_{0} \mathcal{L}_{0} S_{0}}=I Z_{R_{0}} K_{0} S_{0} \times R
\end{aligned}
$$

Inductive Loads
1119. If we have the same alternator connected to a pure inductive load the current flow in the inductive load lags $90^{\circ}$ on the voltage drop across the inductance. The voltage, current and power curves will then appear as in fig.159. Since the power surve is symmetrical about the time axis the positive part means power flowing from the alternator to the load and the negative part means power flowing from the load to the alternator. What this signifies is that winile the current builds up through the inductance energy is stored in the magnetic Pield instead of being converted into heat. When the magnetic field collapses the current flow is in the opposite sense to the applied e.mof. and reduces the current that would flow if a resistive load of the same impedance value were used. The result is then the same as if power were being returned from the load to the alternator. Since the curve shows as much power returned as power received the net power taken from the alternator is zero. In practice, this cannot be achieved as an inductance will always have at least a small amomt of resistance but it is approximated. We see then that if a load consisting of pure inductive

## A.C.POWER IN LOAD CONTAINING INDUCTANCE \& RESISTANCE

FIG. 161

current lacs voltacie by phase angle given by tano $=\frac{\mathrm{L}}{\mathrm{R}}$


NET MEAN POWER OUTPUT GIVEN BY $P=I 2 R$ WHERE I = R.MS CURRENT SOME NEGATIVE or reactive power ove to presence of $l$

```
A c POWER IN LOAO CONTAINING CAPACITANCE & RESISTANCE
```

FIG. 162


CURRENT LEADS VOLTAGE BY phase ANGLE GIVEN BY TAN $\theta=\frac{1}{\operatorname{CWR}}$


NET MEAN POWER OUTPUT GIVEN BY $P_{2}$ I $I R$ WHERE $I$ a RMS CURRENT some negative or reactive fower due to presence of $C$
reactance is applied to any form of generator (whose internal impedance is pure resistance) there is no net power output.

## Capacitive Loads

1120. If the load is pure capacitive reactance the current in the capacitance always leads the voltage drop across it by $90^{\circ}$. The power curve is again symmetrical about the tame axis as show in fig. 160. Hence, when a load is pure capacitive reactance there is no net transfer of power from generator to load.
1121. We may generalise them as follows:-
(a) When a generator is connected to a resistance load power is delivered to the load.
(b) The amount of power delivered is a maximum when the value of the resistive load is equal to the value of the intermal resistance of the generator.
(c) When a load is pure reactance, either capacitive or inductive, there is no net power transfer to the load.
(d) Reasoning conversely, if there is no net power transfer to a load, the load appears to the generator as pure reactance.

## Mixed Loads

1122. Suppose we consider next a load impedance that contains both inductive and resistive components. The irapedance will be given by
$Z=\sqrt{(L w)^{2}+R^{2} .}$ The voltage drop across the load will be $I Z=I \sqrt[x]{(I w)^{2}+R^{2}}$
$=\sqrt{(L W I)^{2}+(I R)^{2}}=\sqrt{(V \cdot d r o p \text { across inductance })^{2}+(V \cdot d r o p \text { across Resistance })^{2}}$
The current will lag behind the voltage drop by an angle given by

$$
\operatorname{Tan} \phi=\frac{V L}{V R}=\frac{X I I}{R I}=\frac{X_{I}}{R}
$$

Hence, the greater the ratio of the inductance to the resistance, the greater will be the phase angle $\varnothing$. If we assume a phase angle of $45^{\circ}$, we shall obtain voltage, current and power curves as in fig.161. We see that there is a net flow of power into the load since the positive part of the power curve is larger than the negative part. We can imagine the entire power having been supplied but the negative part having been returned because of the reactance in the load. The net mean power input will be given by $\left(I_{R_{0}} M_{0} S_{0}\right)^{2} \times R_{0}$
1123. If we have a load consisting of capacitive reactance and resistance the only difference introduced is that the current will lead the voltage drop across the load by a phase angle given by

$$
\operatorname{Tan} \phi=\frac{V C}{V R}=\frac{X c I}{R I}=\frac{X c}{R}=\frac{1}{C W R}
$$

The curves for voltage, current and power will then appear as in fig. 162 which again shown the presence of negative or returned power. The power output is again given by $\left(I_{\text {R.M. S. }}\right)^{2} \times \mathrm{R}$.
2124. It follows then that the presence of a reactive component in any load results in returned or reflected power. This suggests that we can only get the maximu power transfer to a load under the following conditions:-
(a) The effective load reactance is zero.
(b) The load resistance is equal to the intermal resistance of the generator.
1125. So far we have assumed that the generator impedance is purely resistive. This is not necessarily the case. If there is reactance in addition to resistance
the total impedance in the circuit is increased. Hence the current flow is reduced. Also, since reactance in the load increases the total impedance, the current flow is again reduced. We may then say that we can only obtain maximum current flow when the total impedance is a minimum, i.e. equal to the sum of the internal resistance and the resistance of the load. Fe may then restate the requirements for maximu power transfer to a load as follows:
(a) Reactance of system is zero
(b) Ioad resistance is equal to the intermal resistance of generator.
1126. Since the voltage drop across a capacitive reactance is opposite in sense to that across an inductive reactance we can eliminete any reactance by introducing an equal and opposite reactance. Hence, when an altemator has an inductive component in its internal impedance ve can eliminate its effect at any selected frequency by inserting a suitable capacitance in the joad.

## Transinission Line Properties

1127. In so far as radar work is concerned, it is normally not feasible to couple the generator directly to the load, i.e., the oscillator to the radiating array or the local oscillator to the mixer. Some form of transmission line therefore must be introduced. Before we can see how we must modify out basic matching law as stated in para. 1125 (a) and (b) to deal with the insertion of a transraission line between generator and load, we must consider the constance of transmission lines and the common basic forms in which these lines appear.

## Types of Transmission Lines

1128. Transmission lines using the "go and return" circuits, appear in four basic forms:-
(a) Parallel wire line separated and supported by suitable insulators.
(b) Single wire line using the conducting earth as the return circuit.
(c) Shielded pair, usually embedded in a dielectric.
(d) Coaxial linc, with air or other dielectric.

These are illustrated in fig. 164.

## Transmission Line Constants

1129. Ald transmission lines are described in terms of four fundamental constants:-
(a) I - inductance per unit loop length.
(b) C - capacitance per unit loop length.
(c) $R$ - resistance per unit loop length.
(d) G - conductance or leakance per imit loop length.

By loop length we mean umit length of both the "go" and "return" conductors.
1130. (a) I represents the self-inductance of unit length
in both sides of the line.
(b) C represents the capacitance across wit length of the line in the case of the shielded pair and coarial line. In the case of the single wire line it will represent the capacitance to ground and adjacent objects. In the case of the parallel vire line it will be the net effect of capacitance across the line and capacitance from either side to ground and other conductors.
(c) $R$ represents the ohmic resistance per mit length of both the "go" and "return" paths.


L = inductance per unit loop length
C. CAPACITANCE per UNit Loop length
$R=$ RESISTANCE
o: conductance PER UNIT LOOP LENGTH.
leakage per unit Loop LENGTH

$$
\text { CHARACTERISTIC IMPEDANCE }=\sqrt{\frac{(L \omega)^{2}+R^{2}}{(C \omega)^{2}+G^{2}}}
$$

FOR HIGH frequencies, $R$ negligible in comparison with lw G NEGLIGIBLE $N$ comparison with $C \omega$ $\therefore Z_{0}=\sqrt{\frac{L}{C}}$

FIG.163

CHARACTERISTIC IMPEDANCE FORMULAE
PARALLEL WIRE ( EARTH MAY RE USED SECOND
(a)


COAXIAL LINE
(b)

$Z_{0}=138 \operatorname{LOG} \frac{D}{d}$ FOR MR DIELECTRIC
$Z_{0}=\frac{138}{\sqrt{K}} \operatorname{LoG} \frac{D}{d}$
for dielectric constant $K$
embedded shielded pair
(c)


FIG. 164
(d) G represents the leakage from one side to the other per unit length due to ionisation, dielectric leakage, insulator leakage, $\& c$.

We may then represent any type of transmission line in the form shown in fig. 163

## Characteristic Impedance of a Transmission Line

1131. We may define the characteristic impedance of a line in terms of the constants in para. 1129 by the formula:-

$$
z_{0}=\sqrt{\frac{R^{2}+\left(L_{W}\right)^{2}}{G^{2}+(C W)^{2}}} \text { ohns }
$$

At frequencies such as are used in radar with the type of lines we use, $\mathbf{R}$ becomes negligibly small compared with $I_{w}$ and $G$ becomes negligibly smail in comparison with Cw. We may therefore use the approximation

$$
z_{0}=\sqrt{\frac{\left(L_{\pi}\right)^{2}}{(C \pi)^{2}}}=\sqrt{\frac{L}{C}} \text { ohns where } L \text { is in microhenries per mile and }
$$

$C$ is in microfarads per mile. $Z_{0}$ will be regarded as pure resistance for our purposes.

## Rules for the Characteristic Impedance of Practical Innes

1132. For the parallel wire line, $Z_{0}$ is given by the formula $Z_{o}=276 \log \mathrm{a}$ where $d$ is the centre-to-centre distance of the wires and $r$ is the radius $\vec{r}$ of the wires. This assumes air as the dielectric. The value of $Z_{0}$ will only vary slowly for a wide range of variation in the ratio of d. Such lines usually have a $Z_{o}$ of about 600 ohms.
1133. For the coaxial line we have the formula $Z_{0}=138 \log \mathrm{D}$ where $\mathrm{D}=$ diameter of outer and $\bar{d}=$ diameter of inner when the $\bar{d}$ dielectric is air. If a dielectric of dielectric constant $K$ is used, the formula becomes $Z_{0}=\frac{138}{\sqrt{K}} \log \frac{D}{d}$
1134. For the embedded pair, the rule takes the form

$$
z_{0}=\frac{276}{\mathrm{~K}} \log \frac{2 \mathrm{D}}{\mathrm{~d}}\left(1-\left(\frac{(D)}{(2 r}\right)^{2)}\right)
$$

where $D=$ distance from centre to centre of conductors.
$d=$ diameter of conductors.
$r=$ radius of earthed sheath.
What Happens When a Transmission Line is Connected to a Generator.
1135. If a transmission line is connected to an A.C. generator the one side of the input end of the line will swing alternately positive and negative with respect to the other end as the generator goes through its cycle. While swinging positive, electrons flow from the conductor into the armature. We thus have a rarefaction or thinning out of electrons travelling away from the generator. This will build up to a maximum and then decay to zero while the generator goes through a half-cycle. During the next half-cycle the armature is pushing electrons into the same conductor, so the rarefaction is followed by a condensation of electrons which builds up to a maximum and decays to zero while the generator goes through the second half-cycle. In a loss-free line this disturbance travels with the speed of light, i.e., $3 \times 10^{10}$ cms. or 386,000 miles per second. For a frequency of 50 cycles per second a full period takes $1 / 50$ th second. The disturbance will then travel about 3720 miles

HOW A VOLTAGE WAVE TRAVELS ON R TRANSMISSION LOX

$T=1 / 4$ CYCLE

$T=1 / 2 c y c_{L E}$
INSTANTANEOUS DENSITY OF LINES OF ELEGTRICFORCE MOVING ALONG THE LINE DETERMINES VOLTAGE RT

$T=3 / 4 \mathrm{CYaE}$

186.000 MILES PER SEC OR $3 \times 10^{10} \mathrm{cms}$. PER SEC


Tricycle VOLTAGE RT ANY POINT VARIES SINNSOIDRLLV AND COMPLETES ONE CYCle HHRE GENERATOR COMPLETES ONE CYCLE
during one cycle. This distance we call a wavelength. If we think of a generator with a frequency of $3300 \mathrm{Mc} / \mathrm{s}$. the wavelength becomes about 9 cms. When we have an A.C. generator connected to a line with one side earthed, we send down the "hot" conductor a series of electron condensations and rarefactions. If the line is balanced the electron movements will be in antiphase in the two conductors. Since the electron density is different the potential is different along the line. Assuming the one side to be "earthy" we will then have a potential difference distribution along the line that is determined by the electron concentrations along the "hot" line. If the input is sinusoidal the voltage distribution will be sinusoidal at any instant. But the electron distribution is continually changing at any point. Hence, if we consider the changes at any point, the electron concentration will vary sinusoidally with time and the voltage at that point will vary sinusoidally with time. This is equivalent to saying that voltage wave is travelling along the line. The wavelength of this wave is foumd by finding how far an electromagnetic wave will travel while the generator completes one cycle.

## The Infinite Line

1136. If a line were of infinite length the voltage wave could travel away from the generator forever. While this case is a practical impossibility we shall be interested in what current flow would take place if it were possible. In para. 1131 it was pointed out that a transmission line has a characteristic impedance given by $Z_{0}=\sqrt{\frac{1}{C}}$ ohras which is pure resistance. If the generator e.mof. is $V$ and the internal resistance of the generator is $R$, the current flow
would be given by $I=\frac{V}{R+Z_{0}}$. The voltage drop across the line would then be
$I x Z_{0}$ or $\nabla x \frac{Z_{0}}{R+Z_{0}}$. If $Z_{0}=R$, we have a voitage drop of $\frac{V x Z_{0}}{Z_{0}}$ or $\frac{V}{2}$
across the line and an equal voltage drop in the amature. We say the line is then natched to the generator. The infinite transmission line may then be regarded as a pure resistive load of value $=Z_{o}$ ohms. Such a line will take the maximum power from a generator when $Z_{0}=R=$ internel resistance of the generator.

The Finite J,ine with Resistive Temination equal to Zo.
1137. If a finite length of line is completed by putting a pure resistance of magnitude $Z_{0}$ across the two conductors it looks the same as an infinite line to the generator. The steady A. C. current is then given by $I=\frac{V}{R+Z_{0}}$ Just as above. If $Z_{o}$ is equal to R , the internal resistance of the generator, we get the maximun power transferred to the load. The power flows to the load in the form of a steady travelling wave of the same type as would flow away from a generator if connected to an infinite line.
1138. The temoinating resistance need not be an actual resistance. A resonant circuit whose dynamic resistance is equal to the $z_{0}$ of the line would be equally satisfactory. A resonant aerial rould therefore be a suitable termination for a line whose $Z_{0}$ was equal to the radiation resistance of the aerial.

Line with a Resistive Ternination Greater Than $Z_{o}$
1239. Suppose we have a generator of internal resistance $R$ feeding into a line of $20=R$. A sinusoidal current of value $I=\frac{V}{2 R}$ (where $V$ is the generator e.mef.), would then start to flow into the line. When an electron condensation reached the end the electrons could not flow through the load to the earthy side as rapidly as they were moving down the line. They would then tend to pile up and repel the oncoming electrons back. We might think of it as a surge of electrons hitting the termination and some of them passing on through it while the others bounce back to give a reflected condensation.

REFLECTED WAVES ON TRANSMISSION LINES
(a)

(b)

(c)

(d)

(e)

(f)

(9)


No REFLECTION AT TERMINATION
FULL ABSORPTION

Partial absorption at termination partial reflection without phase reversal

$$
\frac{V_{\text {REF. }}}{V_{\text {INC. }}}=\frac{Z L-Z_{0}}{Z L+Z_{0}}
$$

Complete reflection at termination WITHOUT PHASE REVERSAL

$$
V_{\text {REF. }}=V_{\text {inc. }}
$$

PARTIAL ABSORPTION IT TERMINATION partial reflection with phase reverse:

$$
\frac{V_{\text {REF. }}}{V_{\text {INC. }}}=\frac{Z_{0}-Z_{L}}{Z_{0}+Z_{L}}
$$

COMPLETE REFLECTION RT TERMINATION WITH Phase reversal

$$
V_{\text {REF }}=\text { Vince. } .
$$

Complete reflection at termination WII A PHASE RETARD DEPENDING on value of $X L$.

COMPLETE REFLECTION AT TERMINATION With a phase finance depending on value of Xe.

We say then that when the line is teruinated in a resistive loai greater than the $Z_{0}$ of the line the voltage wave reflects in the same phase, i.e., without phase reversal, since condensation travelling to the termination results in the reflection of a condensation at the temination.

## The Open-Circuited Line

1140. The amplitude of the reflected wave will be dependent on the extent to which the termination exceeds $Z_{0}$. The more the magnitude of $Z_{L}$ (the resistive load impedance) exceeds $Z_{0}$, the greater will be amplitude of the reflected wave. If we go to the limiting case of the open-circuited line the entire wave must be reflected so the amplitude of the reflected and incident waves must be equal.

The Line Terminated in a Resistive Load Less Than $Z_{0}$
1141. If $Z_{L}$ is a resistance less than $Z_{o}$ we may inagine an effect at the temination rather like the eifect when an automobile which has been climbing a hill reaches the top. If the same acceleration is provided the speed will suddenly increase when the opposing force is reduced. When the electron condensation reaches the termination there is a tendency to shoot across the low resistance temination to the other side of the line at a greater rate than the flow can be sustained. The effect of the overshoot is to send a rarefaction back toward the generator. We say then that when the line is terminated in a resistive load, $Z_{\text {I }}$, which is less than $Z_{o}$, we have a reflected voltage wave whose phase in opposite to that of the onconing wave, i.e., we have reflection with phase reversal. By saying we have phase reversal at the termination we mean that when a condensation arrives at the termination a rarefaction is reflected back.

## The Short-Circuited Inne

1142. Obviously, the anplitude of the antiphase reflected wave will be dependent on how much the value of $\mathrm{Zl}_{1}$ is below the value of $\mathrm{Z}_{0}{ }^{\circ}$ In the limiting case of the shori-circuited line the armlitude of the antiphase reflected wave will be equal to that of the incident wave.

## Sumnary

1143. We may gather up these points as follows:-
(a) When a line is terminated in a resistive load, $Z_{I}=Z_{0}$, there is a steady travelling wave passing down the line to the load. There is then no reflection.
(b) When a line is terminated in a resistive load, $\mathrm{Z}_{\mathrm{L}}>\mathrm{Z}_{\mathrm{O}}$, there is partial absorption and partial reflection without phase reversal. The amplitude of the reflected wave increases as the ratio of $\mathrm{Z}_{\mathrm{L}}: \mathrm{Z}_{0}$ increases.
(c) When a line is open-circuited, $Z_{L}=\infty$, and the wave is completely reflected without phase reversel, i.e., the reflected wave has an anplitude equal to that of the incident wave and is in phase with it at the termination.
(d) When the line is terminated in a resistive load, $\mathrm{Z}_{L}<Z_{O}$, there is partial absorption and partial reflection with a phase reversal. The amplitude of the antiphase reflected wrave increases as the ratio of $Z_{0}: Z_{工}$ increases.
(e) When the line is short-circuited, $Z_{L}=0$, and the amplitude of the antiphase reflected wave is equal to that of the incident wave so we have total reflection.

## Standing Waves

1144. If a piece of steel wire or gut is suitably bowed, it will show standing waves, i.e., certain points are practically at rest while points half-way between are vibrating through a wide amplitude. The stationary points are called nodes and the points of maximum displacement are called antinodes. The distance between nodes or antinodes is a half wavelength. Such standing waves are produced whenever we have two travelling waves going in opposite directions, i.e., an incident wave and a reflected wave.
1145. We have noted that on a transmission line we have a direct wave and a reflected wave when the resistive termination $Z_{L}$ is not equal to $Z_{0}$. The two waves travelling in opposite directions will interfere to form a standing wave on the line. If $Z_{L} \quad Z_{0}$, the reflected voltage wave and the incident voltage wave are in phase at the termination and we have a voltage maximum or voltage antinode at the termination. A quarter wavelength back there will be a voltage minimum or voltage node. At the termination the current is low so there is a current node and a quarter wave back there is a current maximum or antinode. Voltage and current maxima and minima are then displaced by $90^{\circ}$ in a standing wave.
1146. If the line is open-circuited the amplitude of the voltage maxiraun at the open end will be $2 V$ where $V$ is the amplitude of the direct wave. The anplitude of the voltage a quarter wavelength back fron the open end will be zero as the direct wave and reflected wave are $130^{\circ}$ out of phase. This follows since the direct wave is $90^{\circ}$ short of the in-phase point and the reflected wave is $90^{\circ}$ beyond the in-phase point at the open end. The amplitude of the standing wave then varies between $2 V$ and zero on the open-circuited line.
1147. In the general case of a teruination $Z_{L}>Z_{0}$, the armpitude of the standing wave varies between $V i+V R$ and $V i=V R$, where $V i$ is the amplitude of the incident and $V R$ the anplitude of the reflected wave. Voltage maxima or antinodes occur at the termination and at half-wave intervals back toward the generator. Voltage minima occur at odd quarter wavelengths from the termination. Current maxima occur with voltage ininima and vice versa.
1148. In the case of the short-circuited line the amplitude of the reflected wave is equal to that of the incident wave at the short-circuited end and is in antiphase. The amplitude of the standing voltage wave is then zero at the shorted end as one would logically expect. The current will, of course, be a maximum. We then have current maxina and voltage minima at half wavelength intervals from the shorted end and voltage maxima and current minima at odd quarter wavelength intervals from the shorted end.
1149. If the resiative termination $\mathrm{Z}_{\mathrm{L}}<\mathrm{Z}_{0}$, the voltage amplitude is Vi - VR at the termination and Vi + VR at half wavelength intervals from the termination.

## Standing Wave Ratio

115. The degree of mismatch present on a line is indicated by the ratio of the voltage amplitude at the nodes and antinodes. We may define the standing wave ratio as

$$
\frac{V i+V R}{V i-V R} \text { or } \frac{V_{\max }}{V_{\min }}
$$

In the extreme case of total reflection, the ratio is infinite. If there is a perfect match and $V R=0$, the standing wave ratio is 1 . Hence, as the standing wave ratio fells towards 1, we progress from total reflection and zero absorption of power, to zero reflection and total absorption. Any method of measuring the standing wave ratio then provides an indication of the degree of mismatch present at the ternination. On an open wire line, neon bulbs may be used to indicate standing waves. If the glow set up varies as the neon is moved along the line, the voltage must be varying along the line and standing waves are present. If the glow remains at a constant intensity the R.MS. voltage value is constant along the length. There is then only a travelling wave and complete absorption and a perfect inatch between line and load.

## Flat Lines and Resonant Innes

1151. A line which is matched to its termination and shows no standing waves is called a flat line. A line which shows standing waves because it is not matched to its termination is called a resonant line.

## Losses on Resonant Lines

1152. If a generator is matched to a line the maximm power is taken from the generator to the line.' Obviously, we want the maximum possible transfer
of power from the line to the termination. We know that the power will flow steadily into the temination if $\mathrm{Z}_{\mathrm{L}}$ (resistive) $=\mathrm{Z}_{0}$. The question arises as to what happens to the power that is reflected at the termination. One effect will be a tendency to cause flashover at the voltage antinodes or maxima. These flashovers, and corona discharges from rough edges or tiny projections due to a surface that is not perfectly smooth, will cause heating of the air dielectric in either an open wire line or in a coaxial line with air dielectric. In dielectric-filled lines, flashover is improbable but there will be heating and softening of the dielectric. In each case power is wasted. Furthermore, flashover and discharges will tend to be more troublesome as altitude increases. With dielectric-filled lines dielectric breakdown is more likely at bends where there is an added mechanical strain on the dielectric.
1153. Whenever standing waves are present, there is also a tendency for energy to be radiated. This effect becomes more and more pronounced in open wire lines as the wavelength becomes comparable with the spacing of the lines. In shielded lines of the coaxial or embedded pair type, no radiation should be possible if the outer sheath could be kept at a true R. F. earth potential. At very high frequencies some radiation seems to escape even from such lines.
1154. It follows then that standing vaves result in rasted power, reduced efficiency and reduced output. In addition, flashover and conona discharges in air dielectric line tends to cause noise and interference and a much impaired signal to noise ratio. It is, theref'ore, imperative to avoid standing waves as much as possible in radar work.

## Composite Lines

1155. In radar work it is frequently impossible to connect a generator to its load by means of a single continuous section of transmission line. In general, the line nay have to include several sections of different dimensions, dielectric and design. These different sections will have usually different characteristic impedances. Where the two sections meet we shall encounter the same problem that appears when the line terminated in a load whose resistiv value is different from the $Z_{0}$ of the line. That is, reflections occur either in phase or in antiphase, depending on whether the $Z_{0}$ of the next section is greater or less than that of the preceding section. The amplitudes of the se reflected waves and the resultant standing waves will depend on the degree of mismatch just as before.

## Fumctions of Matching Devices

1156. Wc see then that the maximum power output from a radiating array depends on fulfilment of the following conditions:-
(a) The generator must be matched to the line to get the maximum power from the generator into the line.
(b) Where a composite line is required the various sections must be matched to each other to prevent progressive reflection at each discontinuity.
(c) The final line section must be matched to the radiating array.

We are, therefore, faced with the requirement of finding impedance transfomers and other matching devices to fulfil these conditions.

## Impedance Transformations by Transmission Iines

## The Correctly Terminated Line

1157. We have noted in para. 1152 that if a generator of internal resistance $R$ is connected to a load given by $Z_{L}=R$ by means of any length of transmission line of $Z_{0}=R$, there is no standing wave on the line but the steady maximum flow of power to the load. It follows then that when a line is termunated

STANDING WAVES ON OPEN CIRCUITED LINE
(a) voltage

(b) CRRENT
(c) IMPEDANCE


STANDING WANES ON SHORT CIRCUITED LSNE
(a) Voltacie

in a resistive load equal in value to $Z_{0}$, the effect is the same as if the line were absent. We note, therefore, that any length of line of characterlstic impedance $Z_{0}$ will act as a 1 : 1 mpedance transformer when terminated in a resistive load $\mathrm{ZL}=20$. We also noted im para. 1151 that such a line is a flat line. That is, that if a neon bulb or other form of R.F. voltmeter were moved along the lane, it would show the same R.M.S. voltage at all points along the line. This voltage would be given by $V=$ IZo where I is the R.M.S. value of the A.C. cument taken from the generator. The value of $I$ would be given by $I=\frac{E}{Z_{0}+R}=\frac{E}{2 Z_{0}}$ or $\frac{E}{2 R}$ where $E$ is the E.M. F. developed by the generator. Also, since the effect is the same as if the generator were coupled directly to the resistive load, voltage and current are in phase at all times at all points along the line.

## The Open Circuited Line

1158. In para. 1141 we noted that when a line of characteristic impedance Zo is open circuited the incident wave is reflected without phase change at the termination and that the amplitude of the reflected wave $1 s$ equal to that of the incident wave. The two waves interfere to give a standing wave with voltage mexina and current minima at the open end at halr-wave intervals, i.e., even multiples of a quarter wavelength. The voltage minima and current maxima occur at odd quarter wavelength intervals from the open end. Since all the power is reflected such a line obviously acts like a pure reactance. The value of the reactance it presents at any point will be given in magnitude sense by $Z=\frac{V}{I}$ where $V$ and $I$ are the R.MS. voltage and current at the point. If we plot the $v$ alues of 2 found fron this rule against values of $\ell$ measured from the open end, we get a graph as shown in fig.167. The impedance is a capacitive reactance varying betwreenoond zero in the first quarter wavelength and an inductive reactance varying betweeno and zero in the second quarter wavelength. All following half-wavelengths repeat the same cycle. Hence, a half wavelength of open line can be used to provide any value of either capacitive or inductive reactance by tapping in at the appropriate point.

## The Short Circuited Line

1159. In para. 1148 ve noted that a short-circuited line differs only from the open-circuited line in having the voltage minimum and current maximum at the shorted end and at even multiples of a quarter vavelength while the voltage maxima and current minina occur at odd quarter wavelengths from the shorted end. The impedance curve for the shorted line then appears as in fig. 168 which is just fig. 168 moved a quarter wavelength. Since all power is reflected the line again acts likc a pure reactance. The first quarter wrevelength gives all values of inductive reactance between 0 and coand the second quarter wavelength gives all values of capacitive reactance between $\infty$ and 0 . Hence, a half wave-length of shorted line also shows the full range of reactance variation but in a different seguence to the half wavelength of open line.

The Line with $\mathrm{Z}_{\mathrm{L}}$ (Resistive) $>$ Zo.
1160. We noted in para. $1 y_{+} 7$ that such a line absorbs some power and reflects the balance. The resultant standing wave has a voltage maximum and current minimum at the termination and at even quarter wavelengths from the end. The voltage minima and current maxima occur at odd quarter wavelengths fron the termination. Since we have both absorption and reflection the effect is similar to what happens when a generator is coupled directly to a load containing both a reactive and a resistive component. At all quarter wave points the impedance offered is a pure resistance. At the odd quarter wavelength points the value or this resistance is given by $\frac{\mathrm{Z}_{0}}{\mathrm{ZI}_{\mathrm{I}}}$. At the even guarter wavelength points the value is the same as the termination, $\overline{i . e}, \mathrm{Z}_{L^{*}}$ In the first quarter wavelength the impedance consists of resistance +2 capacitive term, corresponding to the capacitive value shown by the open-circuited line in the first quarter wavelength. In the

## STANDING WAVES ON LINE WITHZL (RESISTIVE) $>\mathbf{Z O}$

(a) Voltage
(b) CuraEnt

$\lambda$
$33_{4} \lambda \quad H_{2}$
$\lambda$


FIG. 169
$\mathrm{Vr}<\mathrm{Vi}$ ano in
Same phase
$\frac{V_{\text {max }}}{V_{\text {MIN }}} \cdot \frac{z_{L}+z_{0}}{Z_{L}-z_{0}}$
$Z$
$I R<\operatorname{Li}$ AND $\mathbb{N}$ same fihase
$\frac{I_{\text {max }}}{I_{\text {MIN }}}=\frac{Z_{1}+Z_{0}}{Z_{1}-Z_{0}}$
(C)IMPEOANCE

2. 7l - pure resistance at even avarter wave points

## STANDING WAVES ON LINE WITH ZL (RESISTIVE) < ZO

FIG.I70
(a) Yoltace

(b) CURRENT

(C)impedance

2. Zl at even quarter wave points

If LOAD is $R+X C$ the maxima and minima are not at quarter WAVE POINTS GVT ShFT To The RIGHT
If LOAD IS $R+X_{L}$ THE MAXIMA AND miñima are not at quarter wave points but shift to the left
second quarter wavelength the impedance consists of resistance + an inductive tern, corresponding to the inductive value during the second quarter wavelength of the open-circuited line.

The Line with $\mathrm{Z}_{\mathrm{J}}$ (Resistive) $<\mathrm{Z}_{0}$
1161. When $Z_{L}$ was a pure resistance $<Z$ o we also had absorption and reflection, but the voltage minima and current maxima occurred at the termination and even quarter wavelength intervals, while the voltage maxima and current minima occurred at the odd quarter wavelength intervals. Since we again have both reflection and absorption the effect is the same as if we had both resistive and reactive components in the load. The line will again offer a pure resistance at the quarter wavelength points. At the odd quarter wavelengths the value of this resistance is again given by $\frac{Z_{0} 2}{Z_{2}}$ value is a gain given by $Z_{L}$. This transformation holds good, then, for any resistive mismatch. The reactive components in this case may logically be expected to correspond to the shorted line, i.e., resistance + inductance in the first quarter wavelength, and resistance + capacitance in the second quarter wavelength.
1162. We have not previously discussed loads which consisted of both reactance and resistance. If we have a load containing a resistive component plus a reactive component, the essential difference is that the whole standing wave is shifted bodily by an amount which depends on the amount of reactance present. The direction of the shift is to the right if the reactance is capacitive and to the left if the reactance is inductive. The irpedance variations along the line will be the same as before if we use as a reference point the first voltage maximum for the case when $Z_{L}>Z_{o}$ and the first voltage minimum for $\mathrm{z}_{\mathrm{L}}<\mathrm{Z}_{\mathrm{O}}$.

## Sumary

2163. We may gather up the following major points about impedance transformations by transnission lines:-
(a) Any length of line terminated in a resistive load equal in value to the characteristic impedance of the line acts as a l: 1 transformer. That is, the input impedance is always equal to the load and to $\mathrm{Z}_{0}=\mathrm{Z}_{\mathrm{L}}=\mathrm{R}_{0}$
(b) Any length of open-circuited line acts as pure reactance. Lencths up to a quarter wavelength act like a condenser and lengths between a quarter and a half wavelength act like an inductance. For the first quarter wavelength we may substitute any odd number of quarter wavelengths, and for the second quarter wavelength, we may substitute any even number of quarter wavelengths.
(c) Ary length of short-circuited line acts like a pure reactance. The odd quarter wavelengths act like an inductance and the even quarter wavelengths like a condenser.
(d) If we take a shorted quarter wavelength or an open half wavelength the impedance is infinite as either of these acts like a rejector circuit ( $L$ and $C$ in parallel).
(e) If we take a shorted half wavelength or open quarter wavelength, the impedance is zero, so these act like an acceptor cirouit ( L and C in series)
(f) Lines with unmatched loads, whe ther purely resistive or a combination of resistance and reactance, show a pure resistive impedance at voltage maxima and voltage minima. The range of variation is from $\frac{Z_{0}}{2}$ to ZL . Between the quarter wavelength points the iupedance shows $\frac{{ }_{2}}{2_{1}}$ both resistive and reactive components. Proceeding from the ternination toward the generator from any voltage minimm (current maximma) to the next voltage maxinum (current minimum) the reactance is always inductive. Passing from the voltage maxiraum to the next voltage minimum the reactance is always. capacitive.
(g) All impedance values are repeated at half-wavelength intervals. Any integral number of half wavelengths of line will, therefore, act as a 1 : 1 transformer since the input impedance is equal to the termination.
( h ) The input impedance a quarter wavelength from the termination is always given by $\frac{Z_{0}{ }^{2}}{\mathrm{ZIL}^{2}}$. We may rearrange thas in the form of $Z_{\text {imput }}=\frac{Z_{0}{ }^{2}}{Z_{\text {output }}}$ or
$Z_{\text {input }} x Z_{\text {output }}=Z_{0} 2$. This is true at any odd number of quarter wavelengths from the termination.

Matching By Means of Transmission Line Impedance Transformations.
1164. From para. 1163(a) it follows that we can couple any generator of internal impedance $R$ to a resistive load of the same value by any length of cable if its characteristic impedance is also equal to R. Such a system is matched at all frequencies.
1165. From para. 1163 (g) it follows that we can couple any generator of internal resistance $R$ to a resistive load of the same value by a line of any character istic impedance if its length is an integral number of half wavelengths. Such an arrangement is matched only at the frequency for which the line length is an integral number of half wavelangths. This method of matching is termed half-wave transformer matching. It is accompanied by phase inversion as in a normal mutual transformer.
1166. From para. $1163(\mathrm{~h})$ it follows that we can match a length of line of characteristic impedance $Z_{1}$ to a line of characteristic impedance $Z_{2}$ by means of an odd number of quarter wavelengths of line of characteristic impedance $Z_{o}$
where the value of $Z_{o}$ is determined by the equation $Z_{1} \times Z_{2}=Z_{0}{ }^{2}$. This method of matching is called quarter wave transformer matching. The principle is essentially that a reflection occurs at the input end of the transformer. An equal amplitude reflection occurs at the output end. Since the second wave has travelled forwari a quarter wavelength and back a quarter wavelength it is a half wavelength or $180^{\circ}$ out of phase with the first reflected wave. The two reflections are then equal in amplitude and in antiphase, so cancel out. There is then no effective reflection so there is an effective match.
1167. Fron para. $1163(f)$ it follows that between any maximum and minimum there will be a point where the resistive component of the impedance into which the line has transformed the load is equal to $Z_{0}$. This follows since the resistive component varies between $\frac{Z_{0}{ }^{2}}{Z_{L}}$ and $Z_{L}$. If $Z L>Z_{0}$ then $\frac{Z_{0}{ }^{2}<Z_{O_{0}} \text {. }}{Z_{L}}$. Hence, the resistive component passes through the value $Z_{0}$ in its range of variation. If $Z_{L}<Z_{0}$ then $\frac{Z_{0}{ }^{2}>Z_{0}}{Z_{\mathrm{L}}}$ so the resistive component again passes through the value of $Z_{0}$ in its range of variation. In general, there will also be a reactive component at this point. That is, the load looks like a resistance $R=Z_{0}$ shmited by either a condenser or an inductance. If we could connect in parallel with this reactive component the opposite reactance which would resonate it at the frequency in use, we should have $R=Z_{0}$ now shmted by a rejector circuit which would be equivalent to an infinite shme resistance, i.e., an open circuit across $R=Z_{0}$. We could thus eliminate the umwanted reactive component completely. The line from the generator to the matching point will then be working into a matched impedance at the matching point, so there will be no reflected wave back to the generator and hence no standing waves on this part of the line. If the matching is done near the load, standing vrave losses are eliminated from most of the line.

## Stub Matching

1168. We know from para. 1163 (c) that we can obtain any desired value of inductive reactance from a shorted length of line up to a quarter wavelength long and any value of capacitive reactance from a shorted length between a quarter and a half wavelength long. INence, if we can find the first point

THE QUARTER WAVE MATCHING TRANSFORMER


Rules for stub matching
FIG.I72
(a)


MATCHING STUB is InIJUGTIVE TO MATCN OUT CRPACITRTIVE REACTANCE
(b)


MATCHING STUB is CAPACTIATIVE TO MATTH OUT intuUCTIVE REACTANCE
(c)


STUE IS EQUIVALENT TO A REACTANCE HHICN TUNES OUT REACTINCE PRESENT RT THE TRPPING POINT EY RESONATING IT TO PUTRN INFINTTE IMPETANCE REJECTOR CIRCNIT ACROSS THE LOAD RESISTRNCE.
THE LOAD THEN LOOKS LIKE R PURE RESISTANEE AND THERE ARE TO REFLECTIONS BETWEEN TX AND THE TAPPING POINT.
back from the load where the resistive component of the impedance presented to the line is equal to $\mathrm{Z}_{0}$, and can tap in at that point a shorted stub of the length which will resonate the reactive component at that point, we shall have matched the line to the load. This is the principle of stab matching. What we have really done is so adjusted the stub length that the wave travelling down the stub, reflecting with a $180^{\circ}$ phase change at the shorted end and coining back up and reflecting back toward the generator, is equal in amplitude and opposite in phase to the wave reflecting at the tapping point. The two reflected waves returning toward the generator then cancel out so there is no effective reflected wave and only a travelling wave from the generator to the load. There is, however, a standing wave on the stub.
1169. From para. 1163 (b) it follows that the appropriate length of opencircuited stub might also be used. In general, it is easier to work with an open stub and vary the position of a shorting bar to get the desired length of shorted stub.

A general rule for stub matching may be stated as follows:-
(a) Locate the first current maximm or voltage minimum back from the load (generaliy a radiating array). Somewhere within the $1^{1}$ th wavelength towards the aerial a match can be made with a length of shorted stub less than a quarter wavelength long.
(b) Alternatively, a match can be made with a length of open stub less than a quarter wavelength long within the $\frac{1}{6}$ th wavelength from the current maximun back toward the transuitter.

These rules are equally applicable to coaxial and open wire lines but more difficult to achieve in the case of coaxial lines.

## Matching a Generator to a Line

1270. We have seen that a line can be matched to an aerial by some form of stub matching. Ye have also noted that different sections of a composite line can be matched to one another by means of quarter wave transformers. We have not, hovever, discussed the problein of matching a generator to the first section of the line. This matching involves an impedance transformation that will make the $Z_{0}$ of the line offer a resistive impedance to the generator that inatches the internal resistance of the generator. If the generator has any internal reactance, the transformation must also present an equal and opposite reactance. If the internal impedance of the generator is
a pure resistance the latter problem does not arise. In so far as the transmitters familiar to the radar mechanic are concerned, the method used for the transmitters in the $1 \frac{1}{2}$ metre band is usually to take off aorial taps on the transmitter lecher lines. What is then effectively being done is that the lecher line is being used as a transformer. Since it is an oscillatory circuit, it is effectively a coil and condenser tank circuit with the high irppedance end of the tank circuit connected to the oscillator volves. Tapping the aerial feeders in towards the botton end of the lechers is equivalent to tapping down on a coil at the point where the tank circuit dymamic resistance matches the impedance of the feeder. If the feeder is correctly ratched to the aerial the maximam power flow goes to the aerial.
1271. In the case of transmitters using actual coil and condenser tank circuits, the aerial feeder may be transformer-coupled by means of another tuned circuit or merely tapped in at the appropriate point on the main tank coil. The impedance transformation is then the same as that achieved by any transforner. The basic rule is

where $T$ aerial coil is the turns on the aerial coil and ' $I$ tank coil is the turns on the tank coil.

Where a tapped coil is used the action is that of an auto-transformer.
(a)

POINT X SHONS
VOLTAGE ZERO CURRENT MAXIMUM IMPEDANCE ZERO

(b) POINTX SHOWS VOLTAGE MINIMUM CURRENT MAXIMUM IMPEDANCE SMALL pure resistrance


OPEN ENDD SHOWS SOME RADIRTION SOME REFLECTION REDUCED VOLTAGE MAXIMUM CURRENT MINIMUM IMFEDRNCE FRLLING AND PARTIIY RESISTIVE, PARTLI RERCTIVE
1172. If the aerial is mot correctily matched to the feeder there will be reflections from the derial and a standing wave on the feeder. This 13 equivalent to saying tiat input impedance on the feeder now contains a reactive component. When the generator is an sscillator it automatically adjusts its frequency to the value where the net reactance of the tuned circuit and the reactance effectively coupled in by virtue of the standing wave becons sero. lence, a variation in the standing wave will cause frequency changes. For fre.juency stability the minimasing of standing waves on feeders becomes essential. In the case of airborne transinitters the impedance presented $b y$ an aerial to the feeder :nay vary as guns are swmg, or, in the case on aerials near propellors, as the propellors turn. These changes ray result in fre uency shifts due to reactance coupled back into the oscillatory carcuit.
1173. In the case of tightly coupled circuits, i.e., when a tank circuit is tapped or transformerncoupled to get the uaxmun power from the transnitter to the feeder, there moj be two frequencies at which the net reactance inay be zero, depending on the anount of aerial current. Hence, as the curent builds up and decays, the frequency uy junp between the two values, do avoid this difficulty it is necessary to reduce coupling, 1.e., work with a coupling that takes less power from the trans.nitter. We then have a musuatch between transmitter and feeder. This does not cause any standing waves. The result is only to reduce the power applied to the feeder. 'The loading of the transnitter is reduced and its freyuoncy stability is improved.
1174. In the case of ch. equipuent like the ldari IIC H. 2.S. installation, the matching of the coaxial feeder to the aagnetron transmatter is done by coabinin, the principle of the quarter wave transformer and impedance transformations by transaission lanes of other lengths. Jetalls are discussed in paras. 262-266.

## Matching a Cable to a Heceiver

1175. The problen $0^{\circ}$ natching a feeder to a load also crops up in radar recelvers. When signals cone from the aerial or other stage to an amplifier on a coaxial feeder, the power must be transferred to the tmed input circuit. The coil of this input circuit is normally used as the impedance transformer. As the impedance of the tuned circuit will normally be higher than that of the feeder used the feeder will usually be tapped down on the coil. The tapping point that results in the greatest power transfer to the input circuit will be given by

$$
\sqrt{\frac{Z}{\text { jnput eircuit }}}=\frac{T \text { feeder coil }}{1 \text { input coil }}
$$

T feeder coil will be the turns between the tap and the earthy end of the coil. I input coil will be the full coil turns.

The action is again that of an auto-transforwer. The tapping point which gives the best power transfer will not necessarily give the best signal-to-noise ratio due to the relation between nose generated in an input circuit and bandwidth of input circuit.

## The Half-Have Dipole

1176. The properties of the half-wave dapole may be deduced from the opencircuited transmission line. Suppose we consider first fig.173(a). We know that we shall have in-phase reflection at the end of the line to produce a voltage maximun and current minimun. At the quarter wavelength point $X$ we shall have a voltage minumua and current maximun. The open end is an infinite impedance point and the quarter wavelength point $X$ is a zero impedance point. We also know that all the energy is reflected. There will be standing waves on the line but if the wires are close together the fields of one wire will largely cancel those of the other, so there will be little net radiation.
1177. If we bend back the quarter wavelength at the end of the line as in fig. 173 (b), this cancellation whll no longer hold. Hence, there is some

## VOLTAGE FEEDING



## CURRENT FEEIING

FIG.I75
(a)


COAXIAL FEED TO HRLF. WAVE TIPOLE
(a)

(b)


SATISFACTORY
BALANCED
radiation from each of the bent sections. This neans that some power is actually being taken fron the generator and we are obtaining the same effect as if we had a high resistance as a ternination. The anplitude of the reflected wave therefore falls and the standing wave is reduced. The voltage at $X$ is then no longer zero. ie see then that as the ends are bent back the impedance at $X$ rises (because the voltage rises) and the impedance at the end falls as the voltage fails.
1178. If we continue the bending until the two quarter wavelengths are at right angles to the line there is considerable radiation as cancellation between the two fields is now a minimum. The impedance at $X$ then reaches its highest value of around 72 onns. The sections $X Z$ and $X Y$ now constitute a half-wave dapole radiating element or aerial which offers a resistive load of about 72 ohas to the line. since the energy is being radiated into space, the effect, in so far as the generator is concerned, is the same as if a 72 orm resistor were connected across the line. We say then that the half-wave dipole has a radiation resistance of about 72 otras when in free space. This value will be aodified if it is in a dipole stack or associated with reflectors or directors.
1179. To feed such a dipole with a travelling wave the characteristic impedance of the line should obviously be 72 ohns if the line length is not to be critical. at one particular frequency it would, of course, be possible to use a line an integral number of half wavelengths long and obtain a travelling wave regardless of the $Z_{o}$ of the line. In general, it is preferable to match the line to the aerial by some form of stub matching employing the principles discussed in para. 1169.

## Yoltage Feeding

1180. Fig. 174 shows a voltage-fed half-wave dipole. By voltage feedang we mean feeding at a point of high voltage and low current, i.e., at a hagh impedance point. The free end of the dipole will be a current minimum or voltage maximum. The same condition holds at the input end, back a half wavelength, since the impedance cycle always repoats every half wavelength. Hence the input end is a high impedance or hagh voltage point. If the one side of the line were linked directly there would be a mismatch uless the $Z_{o}$ of the line matched the aerial. Matching may be done conveniently by fitting the aerial to a shorted ouarter wave stub and then tapping the feeder in at the point on the stub which results in a negligible standing wave on the line. The portion of the stub below the tap then becomes the matching stub and the balance of the stub becomes part of the feeder. As the end of the feeder is a current minimum the first current maximum would occur a quarter wavelength bdek along the feeder. Our stub is between this point and the aerial so we are using the rule in para.1169(a). This case must not be regarded as a 72 ohm load across the line as the aerial is not being centre fed but is being endfed, i. $\theta_{\text {. }}$, at a point where it presents a high irpedance. The considerations are then those that apply when a line feeds a resistive load of value greater than $Z_{0}$. The first quarter wavelength of line shows resistance plus capacitive reactance. The stub is therefore an inductive reactance.
1181. An alternative way of looking at the shorted quarter wave stub is to regard it as a rejector circuit. The aerial is tapped in at the high impedance end of the equivalent coil and the feeder is tapped down so that the feeder impedance is stepped up to match the aerial.

## Current Feeding

1182. Current feeding a dipole means that the feeder is connected at a low voltage, high current point, i.e., at a low iupedance point. This suggests the 72 ohns offered by a centre-fed half-wave dipole. This is illustrated in Pig. 175. Assuming a 200 ohm line and a 72 ohm load, we have $\mathrm{Z}_{\mathrm{L}}<\mathrm{Z}_{0}$. The centre of the dipole is then a current maximun. The first current maximm on the feeder will be back half a wavelength. According to the rule in para.1169(a), a match can be obtained within the - th wavelength towards the aerial with a shorted stub less than a quarter wavelength long. This condition is obtained by feeding the aerial from a shorted half-wave stub and tapping the feeder in as shown.

## Current Feeding with Coaxial Feeder for ificrowave Dipole

1183. When using a parallel wire line to centre-feed a half-wave dipole the two sides of the line are balanced with respect to earth by some form or syametrical or centre-tapped feed at the input end. The fields of the two wires will then essentially cancel out both in so far as current flow to the aerial is concerned and insofar as fields induced on the feeder by electrom magnetic waves in space. The only effective radiating and receiving elenent is then the dipole. When a coaxial line is used one side of the dipole is connected to the inner and the other to the outer which is earthed. We then have an unbalanced arrangement in which the potential fluctuations are all on the inner. Radiation from the aorial orother waves in space may induce voltages on the outside of the outer which are applied to the dipole section attached to the outer in addition to the voltage induced in the dipole itself. No such components will appear $n$ the half of the dipole connected to the inner. This will destroy the directional properties of the aerial. To overcome these difficulties it is merely necessary to convert the unbalanced arrangement to a bolanced one in which there is no tendency for power to flow from the dipole section attached to the outer dom the outer surface, nor for voltages induced on the outer to reappear at the aerial. This condition is achieved by means of a shorted quarter wave arrangcizent. surrounding the outer is a cylinder a quarter wavelength long making metallic contact with the outer of the feeder. As such a shorted stub offers a high impedance or acts as a rejector circuit, there is no tendency for any power to flow down the outside of the feeder. Conversely, any voltage appearing on the outside of the can would likewise be rejectod at the routh of the stub so would not reach the dipole section. This principle $3 s$ also employed in the capacity joint in the scanner type 63 to prevent loss of IF . down the outside of the coaxial feeder.

## Physical Lengths of Half-Wave inpoles

1134. A resonant half-wave dipole, that is, a dipole that acts like a pure resistance at some frequency, is slightly shorter than the physical half wavelength because of a small anount of capacity between the ends and ground or other adjacent surfaces. If an aerial is too short for the frequency applied it acts like a resistence + capacity. If it, is too long it acts like a resistance plus inductance. In either case the standing wave shifts as discussed in para.1162. The position of a matchine stub is therefore also shifted. Its length will also be affected. To effectavely correct aerial lengths loading units are used (as in Gee) instead of stubs at the longer waveleng ths.

## Parasitic Aerial Elements

1185. There it is desired to concentrate all the energy radiated by an aerial in a suall arc parasitic aerial elenents are introduced. These are excited by the radiation from the driver element and re-radiate in such a way that the combined effect of their radiation and that of the driver element is to achieve cancellation in all but tinc reguired sector where reinforcement is obtained. This calls for a spacing that yrill. result in antiphase relations between the waves travelling where no radiation is wanted, and in-phase relations in the direction where radiation is wanted.
1186. A reflector will be places behind the raliator and a director is placed in front of it. Reflectors are normally about $5 \%$ longer than the radiator and directors rather shorter. Spacing and lencths must be adjusted to give the desired type of beam.

## The Shorted Querter-Wave Stuo as an Insulator

1187. Since a shorted quarter wave stub acts as a rejector cirouit it can be used to support transmission lines in preference to the usual type of insulator which will tend to show leakage and losses due to dielectric heating.


 the coil tusus. Fur urtres recuctions in $\sqrt{0} \hat{0}$ we nust reduce $L$ by usind swaller and sumijure insis. 'mas, involves at reiuction in the value oi' the dymame

 in output voltage $-\vec{T}$ for a given X . F. current. The fall in the $\&$ value means a reduced frequency stabolity. To get over these difficulties sections of trensmission line auy be used as tuned circuits. 'the feniliar push-pull lecher bar tank cirruit is essentalaly a half wavelencth of line but round and centremtanced to eatro. It thus becumes entectively the shorted quarter wave stub rejector circuif. By ceatre-torping to earth the open ends oscillate $180^{\circ}$ out of phase whach is the sa ie result as is obtained in the nomal pushpull oscillator using un L. C . tank circuit wh th a centre-tapped coil. The large surface area that can be provided to carry R.F. currents inakes it possible to keep the resistive losses down and thus obtain a high 'd and righ frequency stability.

## Line Resonators

1189. In general, a shorted quarter wavelength and an open half wavelength of line have the property of acting as a resonant circuit at the frequency which makes them an electrical ruarter or half wavelensth, respectively. Capacitive effects to ground or other surfaces will norually result in electrical lengths which are shorter than the corresponding physical lengths. The nixer line used in lark IIC H. 2.S. is ar. example of a reounant coaxial line section. How such resonance cones about can be visualised by realizing that in the case of the shorted line whose lengtn is an odd nubiber of quarter wavelengths, a wave travels to the shorted end, rerlects with a phage change of $130^{\circ}$, and returns
to the mouth where it is in phase with the inconins wave. This phase relation arises out of a travel path which is an even nuber of quarter wavelengths (i.e., an odd nubber of half wavelengths) + a phase change of $180^{\circ}$ at reflection. Since the two waves are in phase at the input end the voltages add to give a high voltage acruss the mouth of the stub or a high impedance joint.
1190. The same type of axgument holds for an open carcuited line whose length is any integral number of nalf wavelengtis since there is no phase change on reflection. In both cases the voltage is high at the input end and suitable for matching to a high impedance source or load. Other i.apedances can be matched by tapping in at a suitable point.

## Limitations of the guarter-ilave Jatching Transfor, ier

1191. We noted in para. 1166 that two line sections of characteristic impedance $z_{1}$ and $Z_{2}$ could be matched by a section of line a quarter wavelength long of characteristic impedance $Z_{0}=\sqrt{2_{1} 2_{2}}$. This same method can, of course, be used to match a line to an aerial or other load. Then used to match aerials to the main feeder, the tern $d$-bars is sonetimes applied to the quarter-wavc transformer section. Such a transformer can only match at the frequency for which its length is a quarter wavelength. Where frequency tends to vary sonething less selective is called for. This is sometines achieved by a section of line of gradually varying $Z_{0}$. In the case of the open line the spacinz is gradually varied. In the case of the coaxial line the diameter of the outer is gradually changed. Where such a section is introduced, it is possible to pass gradually from a load impedance or a cenerator unpedance to a line impedance without heavy reflections over a range of frequencies. Ihis idea is utilised in the flared coaxial line section witich is attached to the nagnetron in the taris IIC transmitter mit.

## Keeping Returned ignals out of the Ix in ommon $T$. and R. Systems

1192. A transmission line problem that ailses in radar equipments where a common aerial is used for transaission and reception is the effective prevention of interference between slgnals coning directly into the receiver channel, and signals that travel down the transuitter chamel to the cold transaitter where they reflect and come back in such a phase as to partially cancel the sicnals
coming straight into the receiver channel. This may be achieved by so selecting the line lengths that the cold transintter impedance is transformed to a high value at the junction point in comparison with the matched inpedance presented by the receiver.

## Limitations of the Co axial Line for Microwaves

1193. When the 9 cm and of wavelength is reached dielectric losses and softening of dielectric due to R. F. heating, in addition to R. F. heating of the skin of the inner, render the use of coaxial feeders for high power wrork rather wasteful. Once the 3 cm . band is reached such feeder losses become prohibitive. Obviously, the R.F. skin resistance losses would be reduced if the surface of the conductor avdilable for carrying the R. F. currents could be increased. Dielectric losses would not be serious if air dielectric could be used. Those two requirements are achieved when waveguide transmission is used instead of the familiar "go" and "return" type of transmission.

## The Inosphere and the Earth's Surface as a Haveguide

1194. Long range radar transmission is achieved at low Prequencies by directing radiation toward the finosphere where it reflects back to the earth's surface. The electromagnetic waves travel around the earth in the form of successive reflections between the inosphere and the earth's crust. These two surfaces may thus the visualised as a gigantic waveguide which serves to guide the wave around the earth.

## Waveguide Equivalents of Voltage and Current

1195. It has been found that e.m. waves can be set up and guided from one place to another by means of metallic tubes of suitable dimensions. A wave is launched at one end and travels inside the guide to the required load. Since we no longer have two conductors the ideas of voltage and current are no longer very appropriate in the way we normally think of them. We must go back to the ideas behind voltage and current.
1196. We know that an electric field exists between two surfaces that are at a different potential, i.e., have a voltage across them. Hence, in so far as waveguides are concerned, we shall use the electric field concept instead of voltage. If wo have an eleotric field or $E$ vector of a given frequenct wo can detect its presence and variations in intensity by means of a pea lamp whose filament leads are brought out as little dipole elements to form a half-wave dipole which is resonant at the frequency involved. The direction of the $E$ vector at ans point in a guide is given by the direction of the dipole when the lamp glows most brightly.
1197. We also know that a moving magnetic field causes an induced current in a conductor placed perpendicular to the magnetic field. He can therefore use our pea lamp to detect an alternating magnetic field. When the dipole is held to give the maximum brilliance in an R. F. magnetic field the dipole is perpendicular to the $H$ vector. The $H$ vector is the waveguide analogue of current.

## The Electromagnetic Have in Free Space

1198. When an e.m. wave travels in space we have a moving magnetic field and a moving electric field. At any point in the path of the wave the E vector rises and falls sinusoidally at the frequency of the wave, in a direction at right angles to the direction of propagation. The H vector does likewise but in a direction perpendicular to the plane containing the $E$ vector and the direction of propagation. This plane is called the plane of polarisation. There is no $E$ or $H$ vector present in the direction of propagation. Such a wave is called a trensverse wave as the $E$ and $H$ vectors are perpendicular or transverse to the direction of propagation.

(b)

intensity of e varies
SNU SOIDALLY FROM MAX AT CENTRE To ZERo AT Top AND BOTTOM.

(c)

instantaneous longitudinal distribution of h in the vertical plane

H WAVE IN A CIRCULAR GVIDE
FIG.I78

## Cross section



EO WAVE IN A CIRCULAR GVIDE
FIG. 179

(...stantaneous travellino e pattern)
1199. In the guided wave we find a new component in addition to the transverse E and H components appearing in the free space wave. In some cases a dipolefitted pea lamp held in a guide with the dipole along the longitudinal axis of the guide will light up. This means that there is an R. F. variation in the $E$ vector, along the length of the guide. That is, the wave in the guide has an E component in the direction of propagation. Such a wave is called an $E$ wave in Angland and a transverse magnetic or T.M. wave in America. The term T.K. indicates that there is a travelling R. F. magnetic field associated with the travelling electric field whose $H$ vector is perpendicular or transverse to the direction of propagation.
1200. Another type of wave is found in guides where the pea lamp remains lighted if the dipole is held perpendicular to the longitudinal axis of the guide. This indicates that there is an R.F. H component perpendicular to the dipole, i.e. along the guide axis, and a transverse $E$ component. Such a wave is called an $H$ wave in England and a transverse electric or T. E. wave in America,
1201. We see then that guided waves have a longitudinal E or H component which we regard as transferring the R.F. power along the guide. If the longitudinal component is electrical we shall call the guided wave an E wave and look for it with the dipole pea lamp along the guide axis. If the longitudinal component is magnetic we shall call the guided wave an $H$ wave, and look for it with the pea-lamp dipole perpendicular to the guide axis.
1202. An altermative method of detecting guided waves is by means of crystal rectifiers. If a crystal is fitted with a probe and connected in series with a meter it will work in the same way as the pea-lamp. If the crystal is fitted with a coupling loop it must be held at right angles to the R. F. H vector. Hence, the plane of the loop will be parallel to the guide axis when it picks up an $E$ wave, and perpendicular to the guide axis when picking up an H wave.

## Guide Shapes

1203. Guides in practical use are in general either rectangular or circular. Guides of elliptical cross-section have been investigated but have not eppeared in equipment.

## Erciting Guides

1204. If a probe is taken from a magnetron along the axis of a guide it will start an $E$ wave in the guide. If the launching probe is introduced at right angles to the guide axis we shall obtain an $H$ wave in the guide.

## The $\mathrm{H}_{\mathrm{e}} 10$ Wave in Rectangular Guides

1205. To produce an $H$ wave in a rectangular guide, it would appear possible to introduce the launching probe at right angles to the guide axis in either the horizontal or vertical plane. Suppose we consider first the case when the probe is horizontal. If the dimension "b" in fig. 177 (a), is progressively reduced, it will be found that when $b$ becones less than a half wavelength the waves will die out. This means that we cannot pass an $H$ wave down the guide unless we make the dimension perpendicular to the launching probe at least a half wavelength wide. He say then that $b=\lambda / 2$, where $\lambda$ is the free space wavelength, is the cut-off or critical dimension. If $a=\lambda / 2$ or greater; we could put the probe in vertically as well as horizontally and the wave would be passed down the guide in two ways. If $a / \lambda / 2$, there is only one way in which we can launch the wave and propagate it down the guide. The wave then obtained is the simplest $H$ wave that can be formed in a rectangular guide. It is called an H .10 wave.
1206. Since the H. 10 wave is the wave we most comonly use we shall be interested in the field patterns across the mouth of the guide and along its length. These patterms are shown in fig. 177. The end view shows that we have a distribution of $E$ that is a maximum at the centre and falls off sinusoidally to zero at the top and bottom. This can be demonstrated by moving
the dipole-fitted pea-lamp across the end with the dipole held horizontally. This pattern mould appear in any section along the guide length. The top view and side view are instantaneous views of the E and H distributions along the length of the guide in the horizontal and vertical longitudinal sections. These patterns travel along the guide when it is correctly matched to some load. If a mismatch exists there will be a stationary longitudinal pattern. Where the E vector has its maximum distribution across the guide walls in this stationary pattern there will be danger of flash-over. The minimum width i.e., minimm value of "a" is fired by this factor.
1207. The subscript "1" in the name H. 10 indicates that we have one halfwave E pattern across the longer dimension "b". The subscript "O" indicates that number of half-wave E patterns across the shorter dimension "a". Since there is no E pattern across "a", we usually drop the subscript "O" and merely speak of H .1 waves in the rectangular guide.
1208. If the guide dimensions are such that " b " lies between $\lambda / 2$ and $\lambda$ and " $a$ " is less than $\lambda / 2$ the H .1 wave is the only type that can be propagated in the guide. The appearance of unwanted modes can be prevented by using this cut-off or filtering property of waveguides.

The H. Wave in the Circular Guide
1209. If a launching probe is inserted along the diameter of a circular guide an $H$ wave will appear in the guide. If radius is between $\lambda / 3.42$ and $\lambda / 1.64$, where $\lambda$ is the free space wavelength, we obtain the simplest $H$ wave that can be produced in a circular guide. The E pattern across a section of the guide is showm in fig. 178(a). The travelling $H$ pattern in a vertical section through the guide axis is shown in fig. 178 (b). The E distribution in the cross sectio would show the same sınusoidal fall in the value of the $E$ vector as in the rectanguiar guide if tested with the dipole-fitted pea lardp held with the dipole horizontal. This wave is terned an $\mathrm{H}_{0} I l$ wave when given its full name. It is usually called an H.I wave in a circular wave guide. It is worth notina that the pattern is very similar to the H .1 wave in a rectangular guide. It is the wave that calls for the smallest circular guide. A circular guide can therefore be made large enough to pass the $H_{0} 1$ wave but no other form of Fave whatever. For this reason, as well as the saving in material, the H. 1 wave is usually used in circular guides uless other considerations call for a different wave type.
1210. If a dipole-fitted pea-lamp is inserted along the axis of a circular guide passing an H Il wave, or a rectangular guide passing an H .10 wave, no glow will appear. This indicates that there is no axial or longitudinal E component in these waves.

## The Eo Wave in a Circular Guide

1211. If a laumching probe is inserted along the axis of a circular guide an $E$ wave will be set up. If the guide radius lies between $\lambda / 2.61$ and $\lambda / 1.6$ the I wave obtained will have field patterns as shown in fig. 179. In this case we have a radial E vector which is symmetric in the crossesection but always in antiphase along opposite sides of the same diameter. There is also a travelling $E$ component along the guide axis. If the dipole-fitted pea lardp is inserted along the axis the lamp will glow. If the guide is properly terminated the glow will be uniform along the axis. If standing waves are present, the glow will vary in intensity as the lanp is noved, keeping the dipole parallel to the axis.
1212. The H vector distribution in the cross-section appears in the form of concentric circles whose density diminishes from the centre toward the circum ference. If the pea-lamp detector is inoved along a radius with the dipole parallel to the longitudinal axis the intensity of the glow will fall sinusoidally from a maximun at the centre to zero at the circumerence.
1213. It should be noted that the size of the guide required to pass the Eo wave is sufficientiy large to permit passage of the $H_{0} 1$ wave at the same time It will therefore be necessary as a mule to provide some form of filter to elininate the Ii. wave when it is necessary to use the go wave in a circular $-2$
1214. The Eo wave is manly used in rotating waveguide joints where its circular symaetry with respect to the axis of rotation is an advantage, particularly if there is to be a bend beyond the rotating joint.

## Wavelengths in Guides

1215. Wavelengths of guided waves are longer than in free space. In the TR. 3555 series transmitter unit the 3.2 cm . radiation in the form of the H. 1 wave has a wavelength of $4.1_{4}$ cms. in the rectangular gurde, and a wavelength of 5.95 cms , in the circular guide.

## Have Impedance of Guides

1216. The term applied to waveguides which corresponds to the characteristic impedance of a transunission line is wave impedance. For a loss-free guide the wave impodance is a pure resistance. The value of this wave impedance depends on:-
(a) Whether the guide is circular or rectangular, and its dimensions.
(b) Frequency used.
(c) Whether $H$ wave or E wave.
(d) Kind of H or L wave.

In a circular waveguide the lowest impedance is about 350 olms. In a rectangular waveguide the impedance may take any value depending on the ratio of the two dinensions. The value is proportional to the narrow dimension. For a fixed wide dimension and a fixed frequency, the impedance may be varied between 0 and about 465 ohas by varying the narrow dimension.

## Wavequate Matching Froblems

1217. then using waveguides as transmission lines the following matching problens arise:-
(a) Matching a generator to a guide.
(b) Matching different sections of guide to each other.
c) Matching a guide to a load.
(d) Matching out the reactance introduced by any form of discontinuity.
1218. The primary radar applications coming under (a) will be the question of matching an oscillator of the magnetron or kiystron type to a guide.
1219. Under (b) we shall come up against the problem of establishing matches where it is necessary to change from rectangular to circular guides and vice versa. These problems arise in the H. 2. S. Mark IIIA transaitter unit and an the scanner.
1220. Under (c) the chief applications are matching a guide to a mixer and matching a guide to free space. The latter problen arises when we use the mouth of a waveguide as a radiator. As the guide is supplying power to free space we must consider free space as constituting a load. This load is 377 ohns resistance provided there are no capacitive effects due to adjacent surfacos wiach introduce reactance.
1221. Under discontinuities we must consider such things as breaks in the guide walls, sharp bends, branch lines, and obstacles of any description such as filters, etc. Where such discontinuities occur there will be reflections. As in transmission lines we may regard any such reflection as due to a reactance in parallel with the guide.

## How to Tell when Matching Is Achieved

1222. A generator will be matched $t$ " a guide or a load when the maximun
power is taken from the generatar.
1223. A guide will be matched to a load when there is no standing wave on the guide.

## C.D. 0896 L



CONTROLS
1224. Sections of guide will be matched if there are no standing waves on the guide.
1225. In the case of a transaitter the best match to the guide will be foumd when the matching adjustrents cause the maximum power output to appear at the radiating end of the guide or in some load inserted in the guide.

## The Fundanental Problem of Hatching a Generator to a Guide

1226. This problem is the same as in the case of the transmission line:-
(a) The wave impedance of the guide mast be transformed to be equal to the resistive impedance of the generator.
(b) Any reactive component in the output impedance of the generator must be matched out by means of an equal and opposite reactanco.

## Watching a Magnetron Launching Probe to a Guide

1227. When the output probe of a magnetron is introduced into a guide at right angles to the longitudinal guide axis to lamch an H. 1 wave, the probe is operating as a dipole radiating element. The energy radiated makes the probe show a radiation resistance. The more energy actually radiated the greater will be this radiation resistance. The problem of matching for maximum output into the guide then becomes a matter of making this radiation resistance match the wave mpedance of the guide. According to a mathematical development by Slater this radiation resistance can be varied by means of a noveable piston behind the probe. This corresponds to varying the distance of a reflector behind a dipole in an ordinary aerial array. The position of the reflector will modify the radiation resistance of the aerial. This type of matching adjustment is used in the TR. 3555 series of transmitter units.
1228. If a dipole is sufficiently close to other surfaces to show capacitive effects it also shows a reactive component in its impedance which should be matched out. In the same way the presence of the guide walls makes a leanching probe show a reactive component which should be matched out. He may think of this reactive component as alternately pushing power out and getting it back in the same way as when an alternator feeds a transformer on no load. If we can introduce a reflected wave that is equal in amplitude and opposite in phase we can eliminate the reflection due to a reactive component. This is done in the older TR. 3555 units by means of an adjustable quarter wave matching iris. This iris is merely an adjustable guide section of spaller diameter inside the main guide. The inside diameter of this iris must, of course, be greater than the K. 1 cut off dimension. By sliding this irls the reactive component is matched out. The two adjustments are not independent since the position of the piston relative to the probe varios the reactive component to be matched out. Alternative adjustments are therefore required until the maximum porer is fed down the guide.
1229. In later TR. 3555 mits, the matohing dovice consists of an adjustable carriage which moves two silica rods projecting into the guide. These silica rods are separated by a quarter wavelength and the distance they project into the guide is variable. By varying the distance the rods project into the guide a reflected wave of any amplitude can be set up. By varying the position of the carriage relative to the probe the phase of this reflected wave can be varied. Iy using the two adjustments a reflected wave can be introduced which is equal in aroplitude and opposite in phase to that appearing between the probe and the fixed end of the guide due to both resistive and reactive mismatch factors. Hence a match is obtainable.

## Matching Guide Sections to Each Other

1230. There a guide section of one wave impedance is joined to a guide section of another wave impedance we have reflection without power absorption, i.e., we have a reactance. Matching out this reactance is done by introducing something that causos a reflected wave of the same amplitude but opposite phase. Any form of obstacle or discontinuity will introduce some reactance. If it is rescistrye it will also absorb power and cause losses. What we wish to

IRIS DIAPHRAGMS AS REACTANCES
(a)

inductive iris for $H_{1}$ wave in rectangular guide
(c)


INOUCTIVE IRIS FOR H OR capacitive iris for Eo wave in circular guide
(b).


CAPACITIVE tRIS for Hi wave in rectangular cuide
(d)


CAPACITIVE IRIS FOR HT OR inductive iris for Eo wave in circular quide
bends in waveguides
FIG. 182
(a)


POLARISATION SHFTER
FIG.I 83

achieve is reflections without $103 s$ of power. A screw tapped into a guide wall so as to cut the travelling magnetic field will serve to introduce a reactance. Plates inserted through the guide wall will achieve the same result. If they cut across a travelling transverse $E$ vector they act as capacitive reactances. If they are across the path of the travelling $H$ vector they act as inductances. Such reactive diaphragms are called irises. Types for both circular and rectangular guides are shown in fig. 181.

## Filters as Reactances

1231. Where a guide dimension is sufficiently large to pass more than one mode or wave pattern it is necessary to introduce filters. This may be rings or diaphragms that reduce the guide dimensions below the cut-off for the unwanted wave while pernitting the flow of the wanted wave. Since such obstacles are discontinuities they will introduce reflections. By inserting two separated by an odd number of quarter wavelengths, the second reflected wave will have travelled an additional odd number of half-wavelengths (from lst and 2nd filter and back). The two waves will then be in antiphase so will cancel out.

Yatching out the Reactance Due to Bends
1232. Where a sharp bend occurs there is a tendency for part of the wave to reflect back along the path already traversed and then return and partially cancel out the wave passing directiy into the second guide section. To annul the effect of this reflected wave, a shorted extension may be introduced at the bend which will also introduce a reflected wave. Ey correctly choosing the length of this shorted section the phase of its reflection will be such as to cancel the other reflection. Alternatively, some form of iris diaphragm arrangement may be employed.

## Design of Bends to Avoid Reflections

1233. The introduction of fixed natching adjustments for bend reflections is frequency sensitive so it is preferable, where possible, to design bends that will not produce reflections. These methods involve either the use of inclined corner plates as showm in fig. 182(a), or rounded bends whose radius of curvature is large in comparison with a wavelength. The rounded bench is used in the feed to the mirror of the scanner type 63 and 71. The inclined plate is used in the TR. 3555 transmitter unit series at the junction of the circular and rectangular guides. The perpendicular from the inner side of the bend on the corner plate should equal or exceed the narrow dimension of the guide. If this condition is fulfilled no reflection occurs when the E vector is perpendicular to or in the plane of the bend. The Eio wave is umdisturbed by bends since the transverse i' vector is radial.

## Matching a Guide to Free Space

1234. If a circular or rectangular guide is left open at the output end it will not show complete reflection as in the case of the open-circuited line. Some energy will be radiated and some will be reflected. A waveguide can therefore be used as a radiator, but unless some form of matching is used, the reflections will set up standing waves in the guide. To minimise such standing waves the impedance of the guide is altered gradually by flaring out the guide mouth in the form of a horn. By suitably choosing the horn dimensions a reasonable freedom from reflections is attainable.

## The Waveguide as a Radiator

1235. The shape of the beam radiated from the horn termination of a waveguide will depend on the hom design. Some patterns produced by horn terminations are shown in fig. 134. In the case of the H.2.S. scanners the

horn is used to radiate into the paraboloid mirror to obtain a much sharper beam than could be obtained with the horn alone. It will be noted that the beam has its minimum width in the plane at right angles to the plane of polarisation. The paraboloid mirror serves to produce a 900 rotation to give us a narrow beam in the horizontal plane with horizontal polarisation.

## Polarisation Shiffing

1236. In many cases it is necessary to twist a guide in order to bring the horn termination into the position which gives the desired polarisation for feeding a scanner. This can be done without introducing appreciable reflections if the twist is gradual.

## Rotating Joints and Waveguide Transformers

1237. In the H.2.S. scanners type 65 and 71, a waveguide feed is employed. One part must rotate with the scanner but the other section must remain stationary. To keep the two sections opposite each other, a circular guide must be used for the rotating joint. Furthemore, to prevent reflections due to distortion of the field pattern by the rotation, it is necessary to use the Eo wave in this circular section because of the symmetry of the pattern about the axis of rotation. We shall, however, want an H.l wave again to obtain a horizontally polarised beam, and we also feed an H. 1 . wave to the scanner. We are thus faced with the problem of transforming the H.l wave to an Eo and the Eo back to the H.1. The basic details of the transformations are shown in fig. 185. The H.l. wave is brought into the circular guide with a vertical polarisation. Since the circular guide is in the vertical plane, the E vector is along the guide axis. The wave is then transformed partly into the Eo wave and partly into the H.l circular or H. 11 form which will exist on a circular guide smaller than that required for an Eo wave. Suitable filters are inserted to remove the $\mathrm{H} . l l$ wave. A fixed matching section is used at the junction to match out the bend reactance.
1238. At the other end the procedure is exactly reversed. The rectangular guide taps into the circular guide at right angles to the longitudinal axis of the circular guide. The axial E components of the EO wave then appears across the narrow dinension of the rectangular guide and an HCl wave is set up in the rectangular guide. A suitable matching section is incorporated at the junction.
1239. The two circular sections are separated by a gap 1 mm . wide. This is so narrow that the escape of energy is negligible.

## Vibration Joints

1240. To allow for vibration or tolerances in the size of components it may be necessary to breek guide sections. Such breaks constitute possible sources of loss due to radiation. To prevent such losses we must effectively close the gap while leaving it physically in existence. This can be done by fitting rlanges and cutting ditches a quarter wavelength deep at right angles to the $E$ vector and a quarter wavelength from the guide wall as shown in fig. 180. The R.F. currents flowing in the upper flange beyond the ditch will be a half wavelength out of phase with those beyond the ditch in the lower flange. This follows since the currents in the lower flange had to flow down one wall of the ditch and up the other, i.e., a path of an extra half wavelength. The fields therefore neutralise beyond the ditch and there is no escape of energy. The arrangement therefore acts like an R.F. choke. When the primary purpose of the joint is to allow for tolerances in the dimensions of components the terin choke jointris commonly used to designate this type of joint.

## Resonant Irises

1241. We noted in para. 1230 that the metal diaphragras placed across guide walls could act as either condensers or inductances in parallel with the guide, i.e., in parallel with the resistive wave inmedance of the guide. This suggests that if we suitably conbined the two types we could produce a resonant circuit across the guide. Such a combined iris then gives us a resonant iris.

C.D. O896L

TUNED OR RESONANT IRIS FOR HI WAVES COMBINES INDUCTIVE ANO CAPACITIVE ELEMENTS IN CORRECT

FIO. 186

GAP PASSES RF ENEROY AS IF IRIS WERE NOT PRESENT


TUNED OR RESONANT RIS FOR H WAVES in CIRCULAR (b) Guioe


RESONANT IRIS WHICH ARCS over due to hoh voltace

## FIG. 187

WHEN SLOT IN HC 186 () IS REPLACED BY METAL ring much of enercy in hi wave is reflecteo. does not affect fo wave. useo to fliter Hi waves from Eo in rotating Joint if tipped through $90^{\circ}$ will pass $H_{1}$ waves so can be used as a wavequide switch by using it in a transverse plane to cut

METAL RING CORRESPONDING To SLot in () above


Guipe wall off $H_{1}$ waves and in axial plane to pass $H_{1}$ waves

DUMMY LOAOS


FISHTAIL OF 'LOSSY' MATERIAL for rectangular guide

CONE OF LOSSY " MATERIAL FOR CIRCULAR GUIDE

The CV. 115 used in the TR. 3555 series transaitter units is an application of this principle. When set into violent oscillation by the transmitter pulse the voltage across the slot becomes so great that the argon filling flashes over and the slot becomes a conducting path which effectively seals the guide wall.
1242. When there is no ionisation the iris acts like a very high impedance rejector circuit in parallel with the relatively lor resistive inpedance of the guide. There is then no loss of power in the iris and the result is the sane as if the iris were not present.
1243. Another form of the resonant iris for circular guides is show in fig.186. Such an iris of the correct dimensions has no effect on the flow of energy if the supports for the centre section are perpendicular to the transverse $E$ vector. As both metallic portions act as reflectors it must be the gap which is passing the energy. Hence, if we insert a metal ring of the same dimensions as the gap with its supports parallel to the transverse $E$ vector, it will completely reflect $H .1$ waves. In the case of Eo waves the transverse $E$ component is radial so it is always perpendicular to the ring so the Eo wave will not be affected.

## The Ring Filter

$124 \mu_{0}$ This property is employed to separate the $\mathrm{H}_{0} 11$ ( $\mathrm{H}_{0}$ I) wave from the Eo wave in the rotating joint used in the scanner type 71. Filter rings of the correct dimensions are mounted on trolitul supports in the two circular sections of the rotating joint.

## Ring Switches

1245. If provision is made to throw such a blocking ring across the guide when it is desired to effectively seal off the guide, and to drop the ring so it lies along the guide axis when the guide is to be opened, we have a waveguide power switch. Such an arrangement is used in the TS. 205 input switch.
1246. Another application of the same principle is in aerial switching.

## Haveguides as Resonant Cavities

1247. The radar mechanic will be familiar with the acoustic resonance that can be set up in tubes and other cavities. Similar resonance properties appear in sections of waveguide. A familiar example is the mixer cavity used in the TR. 3555 transuitter units. Less obvious examples are the resonant cavity to the Klystron and the soft rhumbatron. These cavities are effectively distorted shorted half wavelength guide sections. Echo boxes constitute another application of the waveguide as a resonant cavity. If a calibrated moveable piston is fitted, an echo box can be used as a waverneter.

## Sealing off Branch Lines

124.8. In common T. and R. working, it is necessary to seal off the received branch line wisile the transaitter pulses. This can be achieved by putting a short across the branch line any integral nuaber of half wavelengths from the junction. When such a short is introduced the wave passing into the branch line reflects back into the main guide. It will have travelled an integral number of wavelengths so will be in phase with the direct wave in the main line and will not therefore cause any interference or standing waves. The effect is then the same as if branch line were completely sealed off. To introduce such a short it is possible to use either a resonant iris type of valve like the CV. 215 or a resonant cavity type like the CV. 114 . In either case, resonance results in ionisation and an effective short at some integral number of half wavelengths from the guide. The shorted half wavelength of waveguide thus serves the saiae purpose as the shorted quarter wave stub in transmission lines.

## Coupling Into and Out of Resonant Cavities

1249. Coupling may be by means of probes or coupling loops. Probes must be parallel to the E vector and loops mast have their plane perpendicular to the H vector for snaximum coupling.
1250. In the case of loop coupling, the tightness of coupling can be varied by moving the loop awdy from the position where the concentration of magnetic flux is a maximun by rotating the plane of the loop, by changing its size or placing a shield around part of it to effectively short it out.
1251. In the case of probe coupling, the coupling can be varied by varying the distance the probe projects into the field, the angle relative to the E vector, or the position of the loop relative to the part of the field where the E vector has its maximun value.

## Effectively Sealing off the Transmitter for Returned Signals

1252. The common T. and R. problem of preventing loss of returned signal power due to a flow into the transmitter channel arises in waveguide systems as in transuission line systems. The problem nay be viewed as a matter of interfering waves. The inconing signal divides at the jumction, part going into the receiver channel and part into the transuitter channel. it the end of the transmitter channel reflection occurs and the wave returns to reach the junction in some phase that depends on the length of path. If this length were such that the reflected signal would be in phase with the direct signal as it passes into the receiver line, no adjustant would be required. Normally, this is not the case and interference occurs to reduce the effective input to the receiver channel. To elininate this difriculty provision is made to introduce another reflected wave to cancel out the wave which passes into the transmitter channel. This calls for a second branch line of adjustable length so that the phase of the deliberately introduced reflection can be controlled. This is the function of the antimT. R. chamber in the TR. 3555 series transaitter units. Details are discussed in Shapter 5.

## Vuayy Loads for Wavezuides

1253. In experimental or test work it is sometimes necessary to lave a non-reflecting, i.e., a resistive ternanation, to absorb the R. F. power in a waveguide. For this purpose, various types of duimy load are used. One type used in rectangular guides is a fish-tail cut in piece of wood. For circular guides, a wooden cone may be used. Such terninations serve to break up the wave front and the whole energy is used to heat the dundy load. Other forms of dumy load use resistive plates or resistive irises which absorb the R.F. power.

## CHAPIER 14 - LUCERO

## Outline of the Iucero System

12540 The H. 2. S. installations as used in Bomber Comand are designed to provide for the inclusion of the Mark II Incero interrogator system whenever this may be desirable. The additional items required are :-
(a) The main Incero unit - TR. 3160 or TR. 3160 A (Mark IIC:) or
TR. 3566 (Mark IIlA)
(b) The push-button control unit - Type 222A
c) The TR. beacon aerial system - Type 184 (port and starboerd)
d) The BABS receiving aerial - Type 308
(e) Aerial change-over svitch - Type 78A

The Lucero unit contains a push-puil lecher-Iine transmitter. If the Iucero switch on the switch unit is set to $B+h, B$ or BA, this transmitter is indirectly triggered fran the 20 microsecond pulse frum one of the violet Pye plugs on the modulator 64e The pulse is applied to a counting down circuit (or frequency divider stage) which divides by 3 to develop a 5 microsecond modulating pulse on the back edge of every third 20 microsecond pulse. The Lucero transmitter is thus operated in aynchronime with the $\mathrm{H}_{0}$ 2. S. transmitter but only on a p.r.f. of aiout 220. The 5 microsecord pulse, radiated from vertical type 284 port and starboard aerials, can be used to trigger any one of the following :-
(a) Lucero blind approach (BABS) Tunway beacons
(b) Long range responder beacons
(c) Light portable beacons of the Eurelca type
(d) Mark III I. F. F. sets
1255. The triggered equipment re-transmits and ofter a time determined by its range from the aircraft, the response is received on the same aerial as was used for transmission The system thus is of the common T. and R- type. The received signals are fed to a switch motor which connects the aerials alternately to the receiver section of the Incero unit at a changeover rate of 40 times per second. These switched signals pass through one stage of R.F. amplification and are fed into a mixer along with an $L_{0} O_{0}$ signal whose Prequency is such as to give an I. F. output at the same frequency as that used in the H. 2. S. installation The I. F. signal passes through one stage of I. F. amplification and is then delivered to a brown Pye plug on the Lucero panel.
1256. From the brown Fye plug on the Lucero unit the I. F. output is taken to the brown pye plug on the H.2.S. receiver-timing unit and thence into the If F. strip. If the Lucero switch on the switch unit is set to E + H, Ho T. will be applied to the $\mathrm{H}_{\mathrm{e}} 2 . \mathrm{S}$. head amplifier and the $\mathrm{H}, 20$ S. aignals will aimultaneously be applied to the I. F. strip via the green Pye pluge the receiver output valve will then deliver to the receiver-timing unit mixer stage the $\mathrm{H}_{0} 2 . \mathrm{S}$. signals, the responses from the Lucero-triggered equipment, and the heading or track marker. If the Jucero switch is set to "B", the H. T. supply to the head amplifier is cut off and only Lucero signals are fed into the I.F. strip. If the control unit type 222A is not fltted and a Jumper socket is fitted to the 18-way plug on the Lucero panel, the I. $a$ and mixer frequency will be changed automatically (see parae 1264) to receive responses from BABS rumway beacons if the Lucero owitch is set to BA. If the control unit type 222 A is fitted, the appropriate push-butitons are used to make this change-over. The range marker is added in the receiver-timing unit mixer whose output goes via the slate Pye plug to the waveform generator. The signals are fed from the slate Pye plug to the red pye plug via a condenser and thence to the red Pye plus on Lucero.

1257. The iryut at the red Pye plug on Incero is fed back into the switch motor which feeds the signele alternately to the fellow and orange pluga.
2258. The outputs from the yellow and orange Pye plugs on Iucero are applied to the corresponding plugs on the indicator 184 and thence to the grids of the height tube paraphase amplifier valvese Since the signals appear alternately on opposite grids the beight tube display now becomes double-sided. The noise and range marker will appear as deflections to both right and left. Howing beacon responses will likewise appear as wide double-sided blips. Their distance up the tube will be a measure of the range which can be measured with the range marker and the range control. The relative amplitudes of the two sides will indicate whether the beacon is to port, starboard or dead abead. This is possible because the switch motor operation is such that signals picked up on the port aerial appear as deflections to the left on the beight tube while signals picked up on the starboard aerial appear as deflections to the right. With a symmetric polar diagram the two deflections will be of equal emplitude if the beacon is dead ahead. If a blip gives a larger deflection to the left the port aerial is receiving a stronger signal then the starboard aerial which is partly shielded by the aircraf't. The beacon must then be to port. By altering course until the amplitudes become equal it is possible to home on the beacon Different beacons can be identifiod by having then radiate their responses so as to give the visual impression of a morse signal on the height tube.
1259. When the Iucero switch on the switch unit is set to $B+H, B$ or $B A$, a relay is energised in the Lucero unit which disconnects the white Pye plug from the yellow one and thus cuts off the height marker from the height tube.

## Incero and Blind Approach

1260. Lucero blind approach (RABS) rumray beacons can be used in conjunction with Iucero to assiat aircraft in making rurway approaches in conditions of bad visibility. If the aircraft carries scme form of absolute altimeter auch as the A. Y. D. to give accurate height indications, landings can be made under bad operating conditions. Iucero + BABS alone, however, can only give the range and runway direction The BABS tranmaitter when triggered by Lucero, foeds equal signals alternately to two directional merials which provide two broad, diverging beams of radiation one aerial radiates a 1,2 miarosecond pulse while the other is arranged to radiate a 5 microsecond pulse. The eerials are switched so that each is connected $50 \%$ of the time and the awitching rate is 20 changeovers per second ise. half the airborne switching frequency. The height tube display will then show a narrow blip inside a broad one, the two having a common base line.
1261. Due to propeller modulation these blips may show flickering tips, If the port and starboard beacon aerials are used to provide a double-sided display. Since great steadiness is required for accurate linding up of the tips of the two blips it is unsatisfactory to use the homing aerials for blind approach purposes. $A$ third aerial is therefore fitted which can be connected to one side of the switch motor by means of an aerial change-over aritoh. As signols are then applied to only one side of the awitch motor a single-sided display is obtained on the height tube.
1262. The Lucero blind approach (BABS) beacon is located at the erd of the rupray in use. Then properiy aligned, the lobes from the two beacon aerials will overlap just down the centre of the ruraray. If the aircraft is approaching atraight down the centre, $i_{\bullet} e_{0}$, in the equisignal region, the BABS aerial will receive equal strength aignals from both beacon tranemissions The amplitudes of the wide and narrow blips on the height tube display will then be equal and their tips will therefore coincide If the aircraft is to either side of the rummay the one blip will be wider than the other. In making an approach it is then necessary to alter course until the tips of the two blipa coincide when the aircraft will be plying straight dowa the centre of the rumway.

T.R. 3160. FRONT VIEW


## T.R. 3160 COMPLETE ASSEMBLY

FIG.I90
FIG. 190
1263. The range of the beacon can be determined by means of the range control. An indication of height is given by the height marker. for accurate indications at low altitudes same form of absolute altimeter is required. Some form of glide path indicator may also be employed to give the correct angle of descent from a-known height at a known range.
1264. To eliminate ground returns as much as possible the BABS signals are transmitted on a frequency differing from that of the transmitted signal by several megacycles, pifferent tuned circuits are therefore required in the Lucero receiver section. The changeover can be made by means of the appropriate pusk-buttons on the control unit type 222A. If the C.U.222A is not fitted only two of the four possible receiver channels and one of the transmitter channels are usable. As normally connected up these are the Coastal Command frequencies 177 Mcs and 173 Mcs for reception and 176 Mcs for transmission. In Bamber airaraft the Control Unit will always be used. In Coastal aircraf't the change is effected, as with Lacero $M k$, $I$, by changing from either the $H+B$ or the $B$ switch position, to the BA position.

## Multiple Band Facilities

1265. The Lucero transmitter is tuned by means of a series of four condensers mounted on a motor-driven mechanim called a turrot. The Ra F. amplifier and local oscillator in the Lucero receiver section have four preset tuning circuits which also are mounted on motor-driven turrets. The 4 condensers for the transmitter tuning and the inductances in the receiver tuned circuits provide frequency coverages as listed in the table below. The table also gives the pusb-buttons on the control unit to bring these channels into operation

Push-Button	Transmit	Receive
$A$	$171-181 \mathrm{Mc} / \mathrm{s}$	$171-181 \mathrm{Mc} / \mathrm{s}$
B	$212-226 \mathrm{Mc} / \mathrm{s}$	$168.5-178.5 \mathrm{Mc} / \mathrm{s}$
C	$222-236 \mathrm{Mc} / \mathrm{s}$	$210-228 \mathrm{Mc} / \mathrm{s}$
D	$222-236 \mathrm{Mc} / \mathrm{s}$	$220-238 \mathrm{Mc} / \mathrm{s}$
E	Inoperative	Inoperative

1266. (a) The A buttons are intended to cover the $176 \mathrm{Mc} / \mathrm{s}$ homing beacon channel and also to provide I. F. F. interrogation.
(b) The combination of button A (transmit) and B (receive) is designed to take care of the $176 / 173.5 \mathrm{Mc} / \mathrm{s}$ BABS chanmel.
(c) The various available combinations of $B, C$ and $D$ (transmit) with $C$ and $D$ (receive) provide beacon and BABS channels on various combinations of $214,219,224,229$ and $234 \mathrm{Mc} / \mathrm{s}$.
(d) The E buttons are inoperative. When either E button is accidentally pressed the frequency remains unchanged.

## The Iacero Equipment

1267. Mark II Lucero is built on the "brick" or sub-assembly principle. Any particular Mark II Lucero will include the following sub-assenblies :-
(a) Chassis assembly
(b) Transmitter unit
c) Receiving unit
(d) Waveform generator
e) Power unit

Switch unit
These individual sub-sections will differ according to the requirements of the A. ReI. installation into which the particular composite Mark II Lucero unit is to be usode Differences arise mainly over the following points :-
(a) Whether the aircraft supply is 12 or 24 V .
(b) Whether the $A_{0} R_{0} I_{\text {. }}$ intermediate frequency is 13.5 $\mathrm{Mc} / \mathrm{s}_{*}, 30 \mathrm{Mc} / \mathrm{s}_{\varphi}$, or $45 \mathrm{Mc} / \mathrm{s}_{0}$

FRONT


## CHASSIS CONNECTIONS <br> (TR.316O.TR.3566)

(c) R. F. coverage demanded of the receiver
(d) Ro F. coverage demanded of the transaitter
1268. Bonber Command requirements are tabulated below :-

Unit Ref. $\mathrm{KO}_{0}$	Chassis Assembly	Tx-Unit	Br-Unit	W. F.G	Fower Unit	$\begin{aligned} & \text { Sivo } \\ & \text { Unit } \end{aligned}$
TR. 3160 10DB/868	Type 101	Type 105	Type 159	TyP	Type	10
for	$10 \mathrm{DB} / 6100$	10DB/6099	10DB/6098	30	532	115
H0 2. So		RF ( $171-178 \mathrm{mc} / \mathrm{s}$	IF. $13.5 \mathrm{Mc} / \mathrm{s}$	10VB/	10KB/	10FB/
Mark		$(212-236 \mathrm{Mc} / \mathrm{s}$	$\operatorname{Rr}(171-181 \mathrm{mc} / \mathrm{s}$	6007	6035	$556$
IIC 24Y.			(210-238 ${ }^{\text {c/8 }}$			
T2. 3566 10DB/6348	Type 127	Type 127	$\text { Type } 161$	Type	Type	
for	10 $1 \mathrm{BB} / 6545$	$100 \mathrm{DB} / 6099$	$10 \mathrm{DB} / 6106$	$30$	532	115
H. 2. So		$\operatorname{RF}(171-181 \mathrm{Mc} / \mathrm{s}$	IF. $45 \mathrm{Mc} / \mathrm{s}$	I0VB/	10kB/	10 FB/
Mark		(212-2364c/s	RP( 171-181Mc/s	6007	6035	556
IIIA $24 \pm$			(210-2389\%/8			
1269. 200 pre-production models are called TR. 3160A, ref. 10DB/6636. These have minor differences in the chassis assembly, $13.5 \mathrm{Mc} / \mathrm{s}$ receiver, and transuitter. These sub-units carry type and reference numbers as follows:-						

(a) Chassis Assembly Type 123 - Ref. 10DB/5689
(b) Receiver Unit Iype 194 - Ref. 10DB/6688
(c) Transmitter Unit Type 117 - Ref. 10DB/6690

Pave Form Generator Type 30 (Fig. 197 )
1270. Performs the following functions :-
(a) Divides the repetition frequency of the 20 microsecond irput pulse from the modulator 64 violet Pye by 3 to give an output of about $220 \mathrm{c} / \mathrm{s}$.
(b) Generates the five microsecond modulating pulse for the tramamitter at the counted down porofo
(c) Generates the "gating" waveform used to bring the receiver into operation for about 1300 microseconds after the termination of each transmitter pulse.
(d) Develops a waveform suitable for suppressing a Mark III I. F. F. set in the same aircrafto This suppression waveform will be at the counted down repetition rate.

The Receiving Unit Type 159 or 161 (Figs. 201 and 202)
1271. Has four stages as follows :-
(a) $\mathrm{R}_{0} \mathrm{~F}_{0}$ amplifier atage
(b) Local oscillator with four preset tuming circuits selected by the push-buttons on the control unit. The selected tuned circuit is connected into cireuit by means of a motor-driven "turret" mecharism.
(c) Mixer stage
(d) I. F. amplifier stage at $13.5 \mathrm{Mc} / \mathrm{s}$ in type 159 and $45 \mathrm{Mc} / \mathrm{s}$ in type 161.
(e) It also includes the selector drive unit and turret mechanism for switching the $R P_{0}$ amplifier and If $Q$ tuned circuitse

Transmitter Unit Type 105 (Fig. 200)
1272. Comprises the following stages :-
(a) Series moulator valve stage
(b) Pusb-pull lecher line transmitter whose power output is about 0.5 KF . at p.r.f. of about 220 and pulse width of 5 microseconds.
(c) Also includes the tuning condenser turret and the selector drive unit.

## C. 0.0896 L



## CONTROL UNIT, TYPE 222 A , CIRCUIT

FIG.I92

Power Unit Type 532 (Fig. 196)
1273. Includes the following :-
(a) VU. 120 half-wave rectifier $-2.5 \mathrm{KV}+(15 \%-0 \%), 3 \mathrm{ma}$ for the transmitter R. H. T.
(b) 524 G full-wave rectifier $250 \pm 25 \mathrm{~V}$, 40 ma . for the H.T. supply.
(c) Heater supplies of (i) $2 \pm 0.1 \mathrm{~V}_{0}, 2 \mathrm{man}$, for the VO .120 (ii) $5 \pm 0.25 \nabla_{0}, 2 \mathrm{man}$, for the 524 G.
(iii) $6.3 \pm 0.3 \mathrm{~V}_{0} 8 \mathrm{man}$, for other valves
(d) Relay C which is energised when the "Irrans.-ON" switch on the control unit type 222A is pressed after $\mathrm{k} 2 . \mathrm{S}$. is switched on at the switch unit.

Chassia Assembly Type 101 (Pigs. 190-191)
1274. The chassis assembly serves to connect the various units and to mount them. It also provides for the connections to the control unit type 222 A and to the H. 2.S. units. B relay, which switches the signals to the rod and orange plugs, is mounted on the chassis. The common T. and Re lincs and their junction box are mounted on the chassis external to the transmitter and receiver sub-units.

Switch Unit Type 115 (Figs. 204 and 205)
1275. This is the Iucero switch motor which connects the aerials alternately to the transmitter and receiver, and simultaneously switches the receiver output alternately to the two paraphase amplifier grids to get the two-sided homing beacon presentation with por't signals to the left and starboard signals to the righto The port and starboard aerials are connected direct to the switch which connects one or other of than to the transmitter and receiving unitsat a changeover rate of 40 times per second Relay type contacts are used which are operated by cams and push rods. The cams are mounted on a common shaft rotating at 600 r.pome and driven by a $6: 1$ reduction gear from the motor shaft which runs at 3,600 r. p.m. The output contacts on the switch overlay in angular duration of contact. The aerial changeover occurs during the output overlay to avoid undesirable effect on the height tube.
1276. The switch unit section shows six Pye plugs on the front of the Lucero panel (fig. 190), of which only the red/white and green/white are used. The red/white is connected to the port and the green/white to the starboard aerial.

The Control Unit Type 222A (Fig. 192)
1277. (a) This unit houses the transmitter and receiver frequency selector push-buttons which serve to operate the selector drive unitso The drive units rotate turret mechanikms to bring the desired components into circuit.
(b) The unit also carries the "Transe-ON" switcho This switch must be closed in order to energise $C$ relay in the power unit type 532 and connect the H.T. supply to the W. F.G. type 30 . Until this supply is completed no modulating pulse is developed from the 20 microsecond input from the modulator 64 and the transmitter remains therefore inoperative.

The Aerial System, Type 184 (Fig. 203)
1278. This Gerial system comprises two vertical helf-wave dipoles, one on the port and one on the starboard side of the aircrart. The dipoles are provided with directors

1279. This is the eerial system used for receiving the rumway beacon signals. A changeover switch is used to disconnect the port and starboard homing beacon aerials and to connect this aerial instead when a landing approach is being made to a rumay with a BABS beacon. The aerial is of the quarter wave type and is provided with a director. The signal input is so applied as to obtain deflections to the right.

## The Common To end Rn System

1280. To use the same aerials for both transmission and reception, it is necessary to make the following arrangements :-
(a) That the minimum of transmitter output gets into the receiver
(b) That the receiver is suppressed while the transaitter is pulsing to prevent overloading on transmitter breakthrough.
(c) That the minimum of receiver signal power is lost into the transmitter.

To meet the (a) and (c) requirements as well as possible, the transmitter output line and receiver irput line are taken to a junction box (see fig. 193) on the chassis assembly. From the Junction box, a transsitter output link goes to the switch motor which feads the signal alternately to the two aerials. The returned signals picked up on the aerials come back on this link to the function box and then pass to the receiver. The length of link from the transmitter to the junction box is so cbosen that it looks like a high impedance stub to incoming signals which then go mainly to the receiver. The link from the junction box to the receiver imput is chosen to look like a relatively high inpedance compared with the output path to the switoh motor. The greater part of the transmitter output is thus applied to the aerials.
1281. To meet condition (b) a suitable receiver suppression wavefora is developed in the waveform generator section of the TR 3160.

## Cabling Installation

1282. The panel of the Mark II Incero unit is shown in fige 190. Figse 13 ani 14 show how the TR 3160 and control unit type 222A are fitted into the aircraft installation.

## The Lucero Circuit

1283. (a) The TR 3160 circuit containing the sub-units appropriate to H. 2.S. Mark IIC is given in Pige 193.
(b) For H. 2. S. Mark IIIA the receiver unit type 159 must be replaced by type 161. The type 161 circuit is shown in fige 202.
(c) The control unit type 222A is abom in fige 192.

## Power Switching

1284. To appreciate how the Lucero switch on the switch unit 207 B and the "Trans. ON" and "Main ON" switches on the control unit type 222A are interrelated it is necessary to study fig. 194. Then Ho 2.S. is switched on, +24 V . is applied to pin 7 and -24 V . to pin 8 of the Lucero 12-way. Pin 8 applies -24 V . to one side of both B and C relays and the switch motor, -24 V . is also applied to one side of the control unit push brittons via 18/13 and one side of the "Irans. ON" switch via relay $C$ and $18 / 15$ of the 18 -way from Lucero to the control unit 222A.
1285. The +24 V . line comes in on pin 7 of the Incero 12-way to one of the contacts ( $B / 2$ ) on B relay. This line is also conmected to the Lucero switch on the switch unit.
1286. Contacts B $+H$ and B on the Lncero switch are strapped and linlod to

## C.D.O896L


the other side of $B$ relay via pin 9 of the Lacero 12-way. The BA contact on the Lucero switch is returned to pin 10 of the Lucero 12-way and thence to another wnding on relay B. Hence, when the Lucero switch is set to $\mathrm{B}+\mathrm{H}$, $B$ or BA, relay B is energised. If the Lucero switck is set to "OFF" the D. C. supply to relay B is not completed. The changeover contacts, $B / 3$ and $B / 4$, shown in the upper right-hand corner of fig. 193, then connect the red Pye to the orange and the white to the yellowo The nomal $H_{0} \mathrm{~L}_{\mathrm{s}} \mathrm{S}$. presentation is then obtained. As soon as B relay is energised by setting the Lucero switch to ony of the other three positions the contacts change over. The red Pye is then connected to the switch motor which switches the output frow the receiver-timing unit mixer, V41l, between the orange and yellow Pye plugse Signals from the port aerial go to the yellow and signals from the starboand aerial to the orange Pye plugs, When $B / 4$ changeover contact comects the yellow Pye plug to the switch motor the white pye plug is floating and there is no height marker imput to the height tube.
1287. Referring now to fig. 194, we note that when relay B is energised, contact $B / 1$ connects $+24 V$. from $12 / 7$ to $F R .4$ on the receiver and thence to the other side of the switch motor (see fig. 193).

1288, $B / 1$ also connects +24 V . via pin 14 of the 18 -way to the control unit to "Transe OX", "Main ON" and push-buttons. If the "Trans. ON" switch is closed, +24 V . is connected to the other side of C relay which now becomes energised.
1289. To appreciate the function of $C$ relay we must first consider the 80 V . A. C. channel. This supply comes to TR 3160 on pins 4 and 6 of the Lucero 12-way from the main Junction box. Prom fig. 193 we see that $12 / 4$ and $12 / 6$ feed to P. 4 and P. 5 and then to the power transformer in the power unit type 532. The 250V. E. T. and -2.5KV. E. H. T. supplies are then developed. The +250v. passes Via P. 3 and $B / 2$ to the receiver which now becomes operative. The -2.5 KV . supply passes via $\mathrm{P}_{\mathrm{A}} 10$ to T .8 and the CV .73 modulator valve. $\mathrm{K}_{0} 7, \mathrm{R}_{0} 9, \mathrm{R}_{0} 4, \mathrm{R}_{0} 3$ and $\mathrm{R}_{0} 2$ form a bleeder between -2.5 kV . and earth, which bolds the modulator cathode so positive to the grid that the modulator valve is cut off until a positive modulating pulse is applied to the grid. This pulse comes from the anode of V. 2 in the Iucero waveform generator via W. 5 and T. $4_{0}$ But the $E_{0} T_{0}$, to the waveform generator is completed via relay C. Hence, until relay $C$ is energised there is no $\mathrm{H}_{0} \mathrm{~T}_{\text {. }}$ to the waveform generatcr and no modulating pulse, as soon as the "Trans. ON" switch is closed, the waveform generator develops the modulating pulse which renders the modulator valve conducting for 5 microseconds after the back edge of every third 20 microsecond pulse applied via the violet Pye plug to the grid of V.l in the waveform generator.
1290. The heater supply for the CV. 63 transmitter valves is obtained from the isolating heater transformer in the transmitter undt. The supply to the primary is obtained via T. 2 and P. 2 from the power unit transformer. This supply is completed as soon as H. 2. S. is switchod on. The transmitter is thus ready to go into operation as soon as the "Trans. ON" switch is closed to energise relay $C$ and bring the waveform generator into operation to develop the modulating pulse.

## 1291. Suming up, we have the following major points :-

(a) When $\mathrm{H}_{0} \mathrm{Z}_{0} \mathrm{~S}$. is switched on, the 80V. supply to the power unit is completed via $13 / 4$ and $12 / 6$ and $+250 V_{0},-25 \mathrm{KV}$. , and heater supplies are developed. The modulator valve is held biassed to cut off and the transaitter is inoperative. The -24V. supply is completed to :-
(i) One side of relays $B$ and $C$ via $12 / 8$
(ii) One side of the "Trans, $\mathrm{ON}^{W}$ switch via C
relay solenoid and 18/15.
(iii) One side of the switch motor.
(c) The +24 V . supply is completed via $12 / 7$ to the back contact of $B / 1$.
(d) When the Lucero switch on the awitch unit is set to $B+H$ or $B$, the +24 . supply is completed to the other side of

relay $B$ via $12 / 9$ and relay $B$ is energised Fith the following results :-
(i) $B / 1$ closes and connects $+24 V$. to the push buttons and the other side of the mirans ON" switch and puts +24 V . on the switch motor via FRe 4. $B / 2$ closes and connects +250 V . to the contact on relay C .
(iii) $\mathrm{B} / 3$ changes over and connects the red Pye to the switch motor and via the switch motor to the orange pye for signals from the starboard aerial.
(iv) $B / 4$ changes over (leaving the height maxker floating) and connects the red Pye via the switch motor to the yellow Pye for signals frow the port aerial.

The whole equipment is now ready to go into operation on horaing beacons when the $H_{0} T$. supply to the waveform generator is completed.
(e) If the "Trans. ON" switch is closed the 24V. sapply to $C$ relay solenoid is canpleted and $C$ relay is energised. The contact closes and puts $\mathrm{H}_{0} \mathrm{~T}$. on the waveform generator which now develops the modulating pulse to bring the modulator valve and transmitter into operation
(f) If the Lucero switch is set to BA, the +24 V . supply is completed to another winding on relay B via 12/10. This second winding is incorporated to permit use of independent Jumper socket channels for automatic frequency selection by means of the Lucero switch for either homing beacons or blina approach beacons. Its significance does not appear if the control unit type 222A is used. In this case the appropriate frequency selection must be done by means of the push-buttons on the control unit. All the lucero switch then does is to onergise B relay, regardless of whether the B or BA position is used. The push buttons determine the frequency selection

## Prequency Saiection

1292. The mechanical details of the selector drive unit mechamion are shown in fige 195. The essentials of the operation can be gathered from fig. 1940 wich shows what the conditions would be if both A push-buttons had been pressed. We note the following points :-
(a) -24 V . is applied to the pilot lamps via $12 / 8 \mathrm{and} 18 / 13$.
(b) -24 V . is applied via the lamps of the free buttons and the open contacts of these buttons to the 3-sector diac and thence to one side of the electromagnet solenoid, $G$
(c) -24V. is applied via FT. 9 and FRe 3 to the other side of the electromagnets via the S. D.M. contacts.
(d) +24 V . is applied via $12 / 7, B / 1$ and $18 / 14$ to the pushbuttons in series.
(e) The $24 V$. supply is completed through the pilot lamps of the two closed buttons.
(f) The +24 V . contacts fram the closed push-buttons to the sector discs are floating.
(g) +24 V . is comnected via $\mathrm{B} / 1$ to FT .8 and the F contact (normally open) of the transmitter selector drive unit. The corresponding connection to the receiver is made via $\mathrm{FR}_{4} 4$
(h) The turrets will be so rotated as to put the A frequency condenser into circuit in the transmitter and the $A$ frequency tuned circuits into the $R_{0} F_{0}$ amplifier and local oscillator in the recaiver.
1293. Suppose that now button $B$ is pressed for the transmitter. The following events will occur :-
(a) The mechanical interlocking of the transmitter buttons will release the A button which will fall back into the open position, breaking the supply through the pilot lamp which goes out. -24 V . is now applied to the sector contact, San
(b) The $+24 V_{0}$ supply is connected to $B$ lamp which now lights.
(c) The +24 V . supply is connected through B lamp, 18/2 and FI. 4 to Sb , and thence through the sector disc to the one aide of the solemoid.
(d) The electranagnet is energised and attracts the anmature
(e) The movement of the armature rotates the ratchet, the ring $D$, the sector disc $B$ and the turret.
(f) The S.DoMo contact breaks and the annature flies back under the tension of the retractor spring to camplete the contact again and give the ratchet another pull.
(g) When the contact Sb slides off its sector, the +24V. line via the sector disc is broken. The channel is, however, completed via the contact which will be out of its notch and completing the supply via FT. 8 and $B / 1$.
(h) Movenent continues until F contact drops back into its notch wher Sb is opposite the blank aection of B . There is then no further energising of the electramagnet and the turret is stationary with the B Prequency condenser in the transmitter circuit.
1294. The operation of the receiver push-buttons is identical.
1295. If E button is pressed nothing happens as it has no connection to the sector disc.
1296. The connections shown dotted in fige 294 are made with a jumper socket fitted on the 18 -way when the control unit is not used. pins 1 , 6 and 11 are strapped so that when the Iucero switch is set to B or B $+H$, the transmitter and receiver automatically tune to frequency A. Similarly pins 7 and 12 are strapped so that when the H. 2 S . switch is in the BA position the transmitter remains on frequency $A$ but the receiver tunes to frequency $B$.
1297. Since the "Prans. ON" switch brings the transmitter on via C relay, it can be used as a morse key for cathode ray signalling with Lucero. If the jumper socket is fitted, pins 14 and 15 of the 18 -way are comnected so that $C$ relay is energised by $B$ relay. The morse facility is then lost unless this strapping is broken and a morse key or switch fitted in its place.


FIC 196

The Power Urit Type 532
1298. The circuit is show in fig. 196 and mechanical details in fig. 208.
1299. The following voltages should appear on the terminals, measured on load :-

Terminals	Avometer Range	Reading
1 to chassis	Iow okns	Zero ohms
2 to chassis	l2V. AC.	$6.3 \mathrm{~V}( \pm 0.3)$
3 to chassis	$750 V_{0}$ DC.	$250 V_{*}( \pm 25)$
4 and 5	120V. AC.	$83 V_{*}$

1300. The E. H. T. voltage at $P_{.} 10$ can be measured with an electrostatic voltmeter. The reading should be $-2.5 \mathrm{KV},+15 \%-0 \%$
1301. Care must be taken in checking the heater voltage of V. 2 as the heater is 205 KV . below earth.


FIG 197

The Waveform Generator Type 30
1302. (a) The circuit is shown in fige 197 and mechanical details in fig. 206.
(b) Theoretical waveforms are shown in fige 198.
(c) Waveforms as observed on the monitor 28 are shom in fig. 199.

## The Counting-Down Circuit

1303. The Taveforn Generator should count down, with stability, by two, three or four with an irput of 670 per second recurrence frequency and three, four and five at 1200 recurrence Prequency. $R 5$ is adjusted so that it counts down by three for a 670 recurrence frequency imput. V.l (VR, 116) and half of V. 3 (VR.54) perform the function of counting down. The 20 microsecond $40-50 \mathrm{~V}$. positive pulse from the violet Pye plug is applied to V.l grid through the time constant, $C_{0} I R_{0} 1$, with a value of about 12,000 microseconds. The grid current flow into C.l during the pulse period develops an autobias across Rel that holds the valve cut off on the grid except during the pulse periods. When V.l goes into conduction the flow of anode current through T.l primary causes point $F$ to swing positive. C. 2 (.025) then takes current through the diode, V. 3. On the back edge of the 20 microsecond pulse V.l cuts off due to grid current bias and point $F$ swings negative and drives $V .1$ suppressor about 120V. below earth Anode current in V. 1 is then cut off until the negative charge on $C_{0} 2$ can leak away through $R_{0} 3$ and R. 5 to H. T. By adjusting Ro 5,

the discharge period can be adjusted so that V.l can only pass anode current on every third 20 microsecond pulse (p.r.f. of 670 ). The counted down waveform fran $F$ at about 220 ds is applied to the grids of both $V .2$ and $V .3$.

13040 Re5, the Iucero p*r* P* control, is a preset situated on the waveform generator chassis (see fig. 206).

Transuitter Modulation Pulse
1305. V.2, a 6V6G high current tetrode, is used to develop the modulating pulse. Its anode load is a permeability-tuned coil, $I_{s} I$, which resonates with its stray capacity at about $100 \mathrm{Kc} / \mathrm{s}$. A half-cycle will then take $5 \mathrm{micro-}$ seconds. The input to $V .2$ grid is the counted down ring at the point F. This ring has a positive swing of $60-80$ volts corresponiing to every third 20 microsecond pulse and a negative swing of $30-40$ voits on the back edge of these pulses. The positive swings carry V. 2 into heavy grid current which develops sufficient autobias to keop V. 2 out off between imputse During the conducting periods energy is stored in the magnetic field of In t. The negative overswing on the back edge of the input pulse serves to cut $V .2$ off very sharply. V. 2 anode potential then swings up several hundred volts as the magnetic field about I. 1 collapses. Ro 9 and Ro 10 serve to damp the ring out so that only the first positive swing is of consequential amplitude The setting of the core of Inl determines the pulse width. The position of In is shown in fig. 206.
1306. The anode waveform is taken out on W. 5 and applied to the grid of the modulating valve in the transmitter unit via T. 40

## The Receiver Suppression Waveform

1307. It is desirable to have the receiver suppressed at all times except for a period of approximately 1500 microseconds commencing on the back eage of the transmitted pulse. We require, therefore, a 1500 microsecond sensitising waveform which begins on the back edge of the output at V. 2 enode. This waveform is developed by V. 4 and the second half of V.3. It is epplied to the grid of the local oscillator.
1308. Approximately one fifth of the amplitude at V. 2 anode is tapped off across Ro 9 and applied across C. 5 and Rell. When V. 2 cuts off the positive swing applied to C. 5 carries the diode into conduction and a positive voltage is developed across the cathode load, R 12. This rise is applied to V. 4 grid via C. 9 and swings V. 4 into grid current which charges C. 9 negatively. when the modulating pulse at V. 2 anode collapsas, the diode is cut off and the cathode potential falls from aroum + لov. to OV. This fall is applied to V. 4 grid and carries the grid well below cut-off. The anode potential will then rise to $H_{0} T_{0}$ and will remain there until the charge of C. 6 leaka away through R2 23. This leakaway period is of the order of 1300 microseconds so we have the desired 1500 microsecond positive pulse at V. 4 anode commencing on the back edge of the modulating pulse. The anode output is tapped down across Ro 16 and taken to W. 4 via C. 8, Prom W. 4, it is taken to Ro 4 and the looal oscillator grid (see fig. 193). The first such pulse carries the local oscillator into grid current and charges c. 8 negatively. On the back edge the local oscillator grid is carried below cut-off. The effect is then that the waveform ia negatively $D_{0}$ C. restored at the locsil oscillator grid by grid current 80 serves only to lif't the grid to OV. for 1300 microseconds after the transmitter has pulsed and then takes it below cut-off until after the next transmitter pulse.

## The I. P. F. Suppression Haveform

1309. I. F. F. suppreasion involves two requirements :-
(a) The I. F. F. set must be rendered so insensitive during the transmitter pulse period that it cannot be triggered.
(b) After the transmitter pulse has teminated, the sensitivity of the set must be kept down sufficiently to prevent it from radiating a small amount of $R_{0} P_{\text {. }}$ modulated at the quonch frequency. Such radiation would act as interference.


These requirements call for a conposite waveform with one part of duration at least equal to the fulse period and a second part of much smaller anplitude for the duration of the 1300 microsecond sensitive period. This result is achieved by utilising the counted down ring from $F$ on T. 1 secondary and the positive-going 2300 microsecond waveform at V. 4 anode which are applied to V. 5 grid.
1310. The positive swing at $F$ when V.l cuts on puts a positive swing of about 50 V . on V. 5 gride This is followed by a small negative overswing which is of no consequence as the large positive pulse from V. 5 cathode will have rendered the I. F. F. set inoperative in this period via the I. F. F. suppression stage. The positive 1300 microsecond waveform from $V .4$ anode is tapped down across R. 17 and also applied to V. 5 grid to produce a corresponding 10 volt positive swing at $V .5$ cathode. The composite suppression waveform, shown in figs. 198 and 199, is taken to the yellow/black Pye from V. 5 cathode for application to the suppression plug on the I. F. F. set. A cathode follower output is used to permit matching to low iapedance cable wi thout distorting the waveshape.


The Transmitter Unit Type 105
1311. (a) Circuit details are shown in fig. 200
(b) Mechanical details are shown in fig. 209
1312. The modulator valve, V.3, is a CV. 73 beam tetrode. The push-pull oscillator, V.l, V.2, employs CV. 63 triodese The valves are connected as a series modulation circuit. The transmitter valve anodes are returred to earth through the lecher line. me cathodes are tied to the anode of the modulator valve. The 025 KV . H. T. from the Lucero power unit comes in on Frill and develops its output voltage across the bleeder formed by $\mathrm{R}_{0} 7$ (100x.), Re 9 (100K), R 4 (1M.), R 3 (1M.), and R 2 ( 47 ohms). This bleeder fixes the nonoperating D. C. levels of the electrodes of V. $3 . \quad$. 3 grid is held sufficiently negative to the cathode to keep the valve cut off when no modulating pulse is applied to the grid.
1313. When the grid of $V .3$ is carried up with the positive-going modulating pulse applied via C. $1, \nabla, 3$ passes a current of about 1 amp. which is drawa from C. 3, the E. $\mathrm{B}, \mathrm{T}$. reservoir condenser in the power unit. The 1 amp. of cathode current during the puise period charges up $\mathrm{C}_{\mathrm{a}} 3$ across the cathode load, R.7, and this effect added to the starding bleeder bias, bolds V. 3 grid about 250 V , negative to the cathode between modulating pulses. The effective $\mathrm{E}_{0} \mathrm{H}_{0} \mathrm{~T}$. across the transmitter during the pulse period is about 2 KV . The remaining drop is across the bleeder and V. 3.
1314. The frequency changing is done by mechanically changing the tuning condensers, C.5, C. 6, C. 7, C. 8 across the lecher lines. These condensers can be
preset to desired values within their respective coverage bands. Operating the transmitter push-buttons on the control unit type 222 A introances the selected condenser through the mechanical action of the transmitter selector drive unit.
1315. The transmitter vaives have their anode and grid leads brought to the top of the bulb. The anodes are connected to suitable lecher lines and the grids are strapped by a short flexible connection This link serves as the grid inductance which combines with the arode-grid valve capacities to form the grid tuned circuit. The cathodes are choke-fed from the modulator anode and are strapped to one side of the heaters. The chokes are provided to keep the R.F. out of the modulator and heater circuits. Since high voltages exist at the cathodes the heater supply is insulated from earth by an isolating transfonmer. The same transformer provides an insulated 402 V . supply for V .3.
1316. A negative 5 microsecond pulse is available across $\mathrm{R}_{\mathrm{t}} 2$ in the anode circuit of V.l and V.2. Its amplitude is about -50V. and it is fed out via T. 3. This pulse is not used in the circuit operation of the TR. 3160 .
1317. The R.F. pulse is coupled to the feeder system by a coupling loop on the anode lechers and is fed to the blue Pye plug on the underside of the transmitter unit. Thence it goes via the T-iink to the chassis junction box and the switch motor for application to the aerials. The degrec of coupling between the $100 p$ and anode lines is a compromise between the requirements of maximum power output and minimum change of frequency with variations in aerial loadinq. This comling is fixed and no attemot should be made to change it.


The Receiver Unit Type 159 (Mark IIC)
1318. The circuit diagram is shown in fig. 201 and the mechanical details in fig. 207.

## Local Oscillator

1319. The Lo valve is V.1, a VR 91 atrapped as a triode in a series fed Hartley circuit. The four tuning inductances, In 9, I. 10 , In 11, $I_{0} 12$ are switched in mechanically by means of the push-button controlied selector drive unit mounted in the receiver. The receiver suppression waveform is brought in from the waveform generator on R. 4 and applied to the grid across Rol. As pointed out in para. 1308, the waveform is negatively D. C. restored by grid current and keeps V.1 grid below cut-off for all but the desired 1300 microm second conducting period.

## The Ro Fo Arplifier

1320. V. 2, a CV. 66 grounded grid triode, serves as the R. F. amplifier. The $R_{a} F_{0}$ irput from the switch motor passes to the TR. Junction box and thence
via the receiver link to the black Pye input plug. The signel is applied via C. 3 and the input coil, I. 2 to V. 2 cathode. The grid is effectively carthed for RF. by means of the condensers C.6, C.7, C. 13, C. 14. The anode circuit is tuned by the turret-mounted inductances, $L_{n} 13$, In 14, In 15 and In 16. These can be preset to selected spot frequencies within their respective bands by adjustable brass eddy-current tuning slugso

## The Mixer

1321. V. 3 is the VR. 92 diode mixer stage. applied to the mixer anode by C. 12 and $C_{0} 9$. The outputs of V. 1 and V. 2 are The I. F. voltege is developed across the band-pass I. F. coils, I. 6, Io 7.

## The I. Fo Amplifier

1322. V. 4 (VR.65) provides one stage of I. F. emplification at $13.5 \mathrm{Mc} / \mathrm{s}$ before injecting the Iucero signals into the $\mathrm{H}_{0} 2 . \mathrm{S}$. I. F. strip. $\mathrm{L}_{0} 7$ is the input tuned circuit and Is 8 the anode tuned circuit. Eoth are permeability tuned. The overall bandwidth of the receiver unit type 159 and the $\mathrm{H} .2 . \mathrm{S}$. I. F. amplifier is $1.5 \mathrm{Mc} / \mathrm{s}$ for 6 db . drop. However, in certain cases adequate selectivity may not be available to separate beacon channels $4 \mathrm{Mc} / \mathrm{s}$ e epart. If this is so, filter unit 171 may be employed between TR. 3160 and the H. 2. S. I. F. amplifier. This filter unit has the effect of steepening the sides of the response curve The output is taken to the brown Pye plug in the panel and thence to the H2.S. I. F. amplifier.
1323. The range marker is mixed in at the mixer stage in the receivermiming unit whose output goes to the slate Pye and thence to the slate Pye on the W. F.G Condenser coupling takes the signal to the red Pye and thence back to the red Pye on Lucero for application to the switch unit which switches the video signals between the orange and yellow Pye plugs. Fron these, the video hamiag beacon signals are altermately applied to the two height tube amplifier stages and the height tube Y-plates. BABS signals are, of course, applied to only one height tube amplifier grido


FIG 202


## The Local Oscillator

1325. The local oscillator stage, V.1, eaploys a VRo 137 working in a series fed Hartley circuit and biassed by grid current through $\mathrm{R}_{\mathrm{R}} 2$. The tuning coils, I. 1, Le 2, Le3, Io 4 are switched mechanically to the selector drive unit. The suppression voltege is applied to V.l grid via R.l.

## The Ro $F_{0}$ Anplifier

1326. This stage uses a CV. 66 grounded grid triode. The signal input from the common T. R. Junction box is applied to V. 2 cathode via the tuned circuit In 14, C3. This circuit serves to reject direct I. F. pickop. The coupling condenser, $C_{0} 2$, taps into the imput $\infty$ il, $I_{0} 13$, which resonates flatly with strays and valve capacity at about $200 \mathrm{Mc} / \mathrm{s}$. The grid is held at R.F. earth by the condensers C. 4 , $\mathrm{C}_{0} 10, \mathrm{C} .6, \mathrm{C} .7$. The anode tuned circuits are $\mathrm{I}_{0} 6$, In 7, In 8 or Im 9, turret-mounted and switched mechamically. These coils are tuned by C. 14 and the anode/earth stray capacity. H. T. is fed to the valve through Lol2 which has a high impedance over the whole band covered.

## The Rixer

1327. The mixer stage is a VRo 136 operating as an anode bend detector. V.l output is applied to the grid via C. 13 and V. 2 output via C. 12. $\mathrm{R}_{0} 8$ is a grid leak which develops a suall negative bias from rectified oscillator irquat. The anode load is a band-pass filter tuned to $45 \mathrm{Mc} / \mathrm{s}$. A 4 m . dmping resistor, $\mathrm{R}_{0} 14$, is connected across the output winding, In 18. A pentode mixer is used to provide the additional gain required because the $45 \mathrm{Mc} / \mathrm{s}$. I. F. strip has a lower gain than its $13.5 \mathrm{Mc} / \mathrm{s}_{\mathrm{o}}$ oountexpart in H. 2. S. Mark IIC.

## The I. F. Amplifier

1328. A further VR. 136 stage is used for the I. F. amplifier, V. 40 The anode load is the permeability-tuned inductance, $I_{0} 21$, which resonates with C. 23 and anode/earth capacity. H.T. is fed to V. 4 anode through the high impedance choke, Is 19, shunted by Ro17. The output impedance at the white Pye plug is made accurately 100 orms by choice of $\mathrm{R}_{0} 17$, $\mathrm{I}_{0} 21$ and C. 23. The output goes to the brown Fye plug on the panel and thence to the H. $2 . \mathrm{S}$. I. F. strip. Para, 1323 outlines the remaining channels.

## The Aerial System, Type 184

1329. This aerial systen comprises two half-wave vertical dipoles provided with directors Assembly details are shown in fig. 203.
1330. Each aerial-director assembly is attached to the aircraft by a streamline section tube which contains a Pawsey stub comprising a quarter wave matching section and a quarter wave stub. The former connects the two halves of the dipole to the concentric feeder. The short tail of uniradio 4 has its braid renoved where it enters the Pawsey stub and continues through the brass tube therein to connect to the upper dipole. The brass tube itself is connected to the lower dipole. The pawsey stub assembly is secured mechanically to the dipoles by a guide tube and saddle clamp. The sadale clanp is secured by a 2BA bolt to a Permall cap. This cap is attached to the streamline section by $2 B A$ studs which are fixed to brackets inside the section The screw holes in the Permali cap and also the edges of the streanline section meeting it, are waterproofed by the application of Bostick compound. The director is attached to the streamline section by means of a welded steel tube.
1331. A rectangular box is fitted inside the aircraft on both port and starboard sides. The inside dimensions are sufficient to accommodate the section or fairing carrying the Pawsey stub The aerial is set up with the director pointing up and down and the steel tube connecting the director to the fairing parallel to the axis of the aircraft when in flight. The director must be in front of the radiating element. The distance from the dipole to the akin of the aircraft is adjusted to be exactly 25 cm . The assembly is then secured in position by means of 4 bolts passing through the box and the transverse steel tubes in the fairing. The mouth of the box in the aircraft skin is then closed by means of a steel plate cut to the shape of the fairing. The whole aerial system is painted but care is necessary that no paint be left on the dipole insulators or on the Permali cep.

## Switch Unit Maintenance and Servicing

1332. Details of the unit are shown in figs. 204 and 205.

Contacts
1333. Remove switch cover and examine all contacts carefully. The rounded contects should fit truly on one another. They should be clean and not contaminated with oil, graphite or flux. If they require cleaning use a Contact cleaner NO. 1 (1H/6). A solvent such as carbon tetrachloride or aviation spirit may be used with advantage.

## Coms and Push Rods

1334. The aams should not be over-lubricated as oil is then likely to get on the contacts. The lubricant to be employed is a mixture of anti-freezing oil (specification DTD. 201) and graphite oildag. The push rods should be clear in the holes in the springs through which they pass. If there is any fouling the motor should be replaced.

## Springsets

1335. The adjustant of the springsets should be undertaken with great care and, in general, only if replacenents cannot readily be obtained.
1336. The two moving springs in each set which are operated directly by the push rods should sit on the insulating buffer blocks when not making contact with the actuated springset. When making contact they should be lifted clear of the buffer block. In general, this wrill ensure that adequate contact pressure is being maintained. If this condition is not found to be correct the springs concerned should be adjusted with the spring adjusters. Bending should be done by moving the adjuster snoothly along the spring blade with a stroling motion
1337. The second requirement is that angles over which contact is made should be correct for the springsets. The X and Y aerial contacts should make" for a period corresponding to $80-85^{\circ}$ of rotation of the camshaft. The $P$ and $Q$ output contacts should "maice" for $100-1100$ of rotation During the overlap period the aerial contacts must change over. To measure the angles of contact the switch must be renoved from the chassis. This involves unscrewing the 4 panel bolts and disconnecting the feeder Pron the transmitter socket. Switch tester (10SB/113) is supplied for testing the contact angles.
1338. This item is a circular plate mariked in degrees from 0-360 with a small transparent pointer and the necessary screws for fitting to the switcho



The black markings in the centre of the plate are for a stroboscopic check of the switch speed. This is not normally required for the switch unit type 115 where speed is not critical. The engraved plate is fired to the end of the camshaft on the side remote from the feeder outlet and held by the 8BA screw supplied. The pointer is screwed on to the switch frame and spaced from it by the special collar also provided. The closing and opening of the contacts should be observed on an Avometer set to the resistance range $0-1000$ obms, or by means of a battery and a larm contimity tester. The switch should be slowly rotated by hand, always in the sane direction, and the contact angles noted in a table, A table of results obtained in a typical test is given below :-

Contact	Ist quadrant	2 nc	Quadra		Vuacra	4 th	nuadr	onta	Feri
Red Aerial	From $80^{\circ}$	To	1630	From	2600	To	3120	83,	82
Green Aerial	To $73^{\circ}$	Prom	$170^{\circ}$	To	$253^{\circ}$	Fram	$350^{\circ}$	83.	83
P. 2 output	To $81{ }^{\circ}$	From	$160^{\circ}$	To	$264^{\circ}$	From	$338^{\circ}$	104 ,	103
P. 3 output	Fram $68^{\circ}$	To	$176^{\circ}$	From	$248^{\circ}$	To	$355^{\circ}$	108,	107

The other springsets are not used in TR, 3160. The table shows the fulfilment of the two requirements of limits $80-85^{\circ}$ for aerial contacts and $100-110^{\circ}$ for output contacts, and the completion of the aerial changeover in the overlap period. If a switch does not pass this test the contact angles should be adjusted by suitably bending the springs with spring adjusters. No attempt should be made to unlock the cams on the crankshaft. If adjustment of springsets does not give the required results the switch should be replaced.

## Governor

1339. This requires no adjustment or oiling and should not be interfered with.

## Bearings

1340. The two ball-races on the mainshaft and the bearings on the camshaft should be lubricated when necessary whth anti-freezing oil (DID. 201).

## Hormwheel

1341. One or two drops of oildag may be placed on the wormwheel when required. only the minimum quantity of lubricant must be used and care taken to ensure that it does not get on to the contucts.

## Motor

1342. The motor can be removed for inspection or replacement by removing the four countersunk bolts securing it to the switch frame. In general it is not recomended to adjust or service the motor. The following procedure is described for energency only.
(a) The drive shaft should rotate freely anc show no evidence of rough spots or stiffness. At the same time there should be no undue side or end play in the shaft.
(b) Before dismantling inspect the comnutator and carbon brushes. The brushes are mounted at the end remote from the shaf't in either paxcolin or bakelite bolders. They can be removed by undoing a screw. After removing the brushes inspect the comnutator through thesperture vith the aid of a bright light. If the commutator requires cleaning it may be possible to do it with a small piece of rag soaked in carbon tetrachloride introduced on the end of a match stick, Alternatively, very small pieces of fine glass paper may be used. Enery paper is not recommended. When replacing, take care that the brush is so put in that the concavity fits back on the commutator. When replaced, the brushes should move freely in their holders and not chafe the sides. The brush holder should not touch the comutator.

1343. To dismantle the motor for lubrication or checking of the internal wiring, undo the mats securing the end plate. The armature and end plate can then be withdrawn. To separate the armature from the end plate push out the small pin through the driving shaft. This allows the shoft to be drawn through the bearing. In making the witharawal collect the balls from the ballmace in a oloth or large paper. To lubricate the ball-race use a very small quantity of high melting point grease. Vaseline must not be used as it melts too easily.
1344. When reassembling make sure that the brushes have been removed before fitting the armature into position. The end plate must be done $u p$ tightly and the pin through the shaft replaced. Pinally the brushes should be replaced.
1345. When putting the motor back into the switch assembly, make sure that the pin through the ahaft engages correctly with the flexible insulating coupler which is keyed to accept it. It is important that the contacts on the motor make firm contact with the springs that aupply the current.

Bench Setting Up Procedurs
1346. (a) Switch on the equipmont and set the 4 position Lucero awitch on the H 2. $\mathrm{S}_{0}$ switch unit to ${ }^{{ }^{\prime} \mathrm{B}}{ }^{\prime \prime}$ so that $\mathrm{H}_{0} \mathrm{~T}_{0}$ to the head amplifier is cut off and no $\mathrm{K}_{0} 2 \mathrm{~S}$. signals are visible on the height tube.
(b) Set the gain control almost to maximum. The range marker and tail of the Incero transmitter pulae should appear on a couble-sided display. If the aerials are connected and there is a homing or beam approach beacon within range (a mile or so), 20cked and possibly unlocked beacon responses may appear. The noise amplitudes on the two sides should be equal.

Counting Dow Potentiometer, Re5
2347. Using Monitor 28 :-
(a) Trigger monitor from 20 microsecond pulse (Pye violet).
(b) Time base switch to "Frequency".
c) Monitor imput switch to "Direct".
(d) Transoitter switch on control unit 222A in "ON" position.
(e) Apply waveform at junction of Re 3 and R-5 to the monitor 28 and adjust R 5 to give 3 lines on monitor screen Set the control to the centre of the range which gives the 3 lines and lock in this position (see fig. 299a).

## 1348. Using phones :-

(a) Connect phones across the yellom/black I. F. F. suppression plug.
(b) By turning the counting down control, R.5, the 3 ranges of setting, corresponding to counting down ratios of 2,3 and 4 to one, will be made obvious by ohanges in pitch of note.
(c) The small unstable ranges are detectable by an unsteady pitch. Adjust the control to the centre of the range giving a steady note of the internediate frequency, showing that the counting down is 3:1. Lock the potentioneter Re 5 in this position.

Note : Faniliarity with this note enables a simple check of the counting down stage to be made on the daily inspection.

1349. (a) With the Lucero unit on its side detach the trimming tool from the side strut of the chassis. Set the 4 mposition Lucero switch on the H. 2.S. switch unit to the "B" position
(b) Press the "An BX button on the control unit 222A Check that the FX turrets rotate into position 1. The mumber of the turrets should be visible through the cut-out in the base-plate.
(c) Connect the "Sig.Gen" output on the W1649 to one of the aorial sockets through the attemsator provided. Set the appropriate frequency on the black dial scale (labelled "Sig. Gen") opposite the index. Set the incremental dial to zero. Plug in the head-set jack at the maveneter jack-point.
(d) Check the dial calibration against the wavemeter crystal as follows :-
(i) Set the wavemeter switch in the "Xtal" position
(ii) Rotate the main dial to bring the nearest multiple of $5 \mathrm{Mc} / \mathrm{s}$ under the index. For example, if the wanted frequency ware 177 Mc/s the dial would be set to $175 \mathrm{Mc} / \mathrm{s}$ on the black "Sig. Gen" " scale If the calibration is correct the beat note will be heard in the phones. The wavemeter dial will then be set to $177 \mathrm{Mc} / \mathrm{s}$ on the "Sig. Gen " scale and the receiver tuned as outm lined below.
(iii) If the beat note is not heard, rotate the main dial until it is obtained and note the reading. Suppose it is $175.5 \mathrm{Mc} / \mathrm{so}$ This means that 175.5 on the dial means $275 \mathrm{Mc} / \mathrm{s}$. That is, the dial reads $0.5 \mathrm{Mc} / \mathrm{s}$ high. Hence, if a signal of $177 \mathrm{Mc} / \mathrm{s}$ is wanted the dial must be set to $177.5 \mathrm{Mc} / \mathrm{s}$ on the "Sig. Gene" scale. Had the dial reed 174,8 when the beat note was heard the dial would read $0.2 \mathrm{Mc} / \mathrm{s}$ 10w. To get a $177 \mathrm{Mc} / \mathrm{s}$ output the required setting would be $176.8 \mathrm{Mc} / \mathrm{s}$ on the "Sig. Gen" scale.
(e) Set the wavemeter switch to "ON". Lock the main dial at the setting on the "Sig.Gen" scale that will give the required Prequency, as determined in (d). The height tube should now show C.W. interference. Set the gain control on the H 2 L . . awitch unit well below the level wich will cause saturation of the H. 2. S. Fx. With the trimoing tool adjust the Imoero In $\mathrm{O}_{0}$ tuning control No. 1 for maximum response. As tuning proceeds the Ho 2. S. gain should be checked to ensure that saturation is not occurring.
(f) Tune the RF turret condenser No. 1 in the same way.
(g) Repeat the same routine for the $B, C$ and $D$ positions of the Pax pusb-buttons on the control unit.

Tranemitter-Tuning
1350. (a) Oniy preliminary approximate tuning can be done on the bench Press the "A" Tx button on the control unit 222A. Cheak that the IX turret stops in position 1.
(b) Set up the w1649 as a wavemeter, on the appropriate fraquency as follows :-
(i) Set the waveneter awitch to the "Xtal" position
(ii) Suppose the required frequency is $176 \mathrm{Mc} / \mathrm{s}$. Set the nearest multiple of $5 \mathrm{Mc} / \mathrm{s}$, i. e. 175 $\mathrm{Mc} / \mathrm{s}$, on the red wavemeter dial scale unier the
C. D. 0896L
> index. Set the increnental dial to zero. Rotate the main dial slightly until the beat note is heard in the phones. Jook the main dial in this position, which means that the W1649 oscillator is woricing at $160 \mathrm{Mc} / \mathrm{s}$ and the mixer IF coil is tuned to $15 \mathrm{Mc} / \mathrm{m}$.
(iii) Set the incremental dial to $+l_{\text {. This means }}$ that the mixer IF coil is now tuned to 16 Mc/a. If an external pulsed aignal at a frequency of $176 \mathrm{Mc} / \mathrm{s}$ is now applied to the mixer valve, the signal will beat with the $160 \mathrm{Mc} / \mathrm{s}$. 1649 oscillator signal to produce pulses at the IF of $16 \mathrm{Kc} / \mathrm{s}$, to which the mixer anode load is tuned. The mixer output voltage is applied to the cathode follower detector grid. The 10 Microsecond $C R$ in the cathode of the CF detector will follow the envelope of the pulses and apply video pulses of a frequency equal to the Iucero p.r.f. to the grid of the output vaive. The por.f. note will then appear in the phones. If the external aignal applied to the M1649 does not differ from the -1649 oscillator signal frequency by the IF, the mixer output will not be at its maximum value and the p.r.f. note in the phones will not be at maximua intensity.
(c) Sot the waveneter switch to "ON" and set up the 11649 aerial rod (or apply a signal to the irput Pye plug). Tune the transmitter condenser No. 1 for maximum signal in the phones.
(d) Repeat the same routine for the "B", "C" and "D" $T X$ pusb-buttons or the control unit 222A.

Installation in dircrapt
1351. (a) Connect up the installation and check that all Pye plugs are firmiy in their sockets and secured by their wire olipse
(b) Connect up the P.E. set and switch on K. 2. S. L. T.

## Checking Tranmitter Prequency

1352. Set up the wavemeter 1649 in the aircraft. Tune the tranamitter coniensers to the eppropriate frequencios.

## Checling the Displays

1353. Check the appearance of the displays on the height tube when set for $\mathrm{H}_{0}$ 2.S. only, $\mathrm{H}_{0} 2 . \mathrm{S}_{0}$ + beacons, beacons only, BABS only, otc., to ensure that the awitch notor, aerials and changeover switch are operating correctily.

## Chocining DP

1354 If there is a beacon in the vicinity responses should be visible on the timebase These can be used to chock the sonse of the D. F. aerials. If the beacon is to port, the lef't wing of the response should be larger than the right wing. If the senae is wrong, check that the aerial feeders are correctly comected.

Daily Inspection Recomended by T. Re E. for normal Blind Approach Use of Lucero

2355. (a) Connect P. F set and switch on the equipment. | Set Iucero switch to "OFF" and normal Ho $2 . S$ display |
| :--- |
| should be obtained. |

(c) Set Lucero switch to $B+H_{0}$ The local homing beacon signal should appear on the display. If the control unit 222A is used the appropriate push-buttons must be operated.
(d) Set Iucero switch to B. Beacon display alone and local ground returns diminished.
(e) Set Incero switch to BA (if Jumper socket used) or operate appropriate push-buttons for the local BA signals. Set changeover switch for BA signals. Check that all ground returns disappear and only BA aignals appear.
1356. Check operation of gain control, scan-marker switch and range control.
1357. Check that no undue or unusual amount of interference appears on the trace. If such interference appears check whether it is due to the switch motor or external pick-upo If it is still present when both aerial feeders are disconnected from the TR. 3160, the switch motor is at fault.
1358. Check transmitter frequencies with the wavemeter and adjust if necessary.
1359. Check aerials for continuity and insulation with an Avoneter and 500 volts megger.
1360. Check all Pye sockets for tightness of gland nut and small grub screw in the centre.

Note :- If Lucero BA is to be used for accurate location of the beginning of rumway and for blind landing in conjunction with other equipment such as a glide path indicator, a precision method of setting up the H 2.S. markers, will be incorporated in the $D$. I. and bench aligment.



> TRANSMITTER UNITS, TYPES IO5, DETAILS




general views
MODULATOR TYPE 64




INTERFERENCE SUPPRESSOR






TR 3555



FIG. 224


SWITCHES SHOWN IN MAX. ANTICLOCKWISE POSITION
AS VIEWED FROM FRONT
ALL SWITCHES CANCED TOCETHER

## CONTROL UNIT TYPE 446, WIRING DIAGRAM



## SWITCH UNIT, TYPE 2O7B. CIRCUIT DIAGRAM

FIG. 226
FIG. 226


SWITCH UNIT TYPE 207B
INTERNAL VIEW








> INDICATOR UNIT TYPE I62 SIDE VIEW

## EE己'リIJ



INDICATOR UNIT TYPE 162
TOP AND BOTTOM VIEWS


TUNING UNIT TYPE 207
CIRCUIT DIAGRAM.


CDOB26L

 $\qquad$ $\mathrm{C}_{42}$ $\qquad$ ${ }_{6440}^{\mathrm{C}_{32}}$ $\begin{array}{llll}C_{34} & C_{39} C_{36} & C_{36} \\ C_{441} & C_{442} & \end{array}$ $\mathrm{C}_{463}$




R. 3515 CIRCUIT

FIG.237
FIG. 237




UNDER VIEW OF RECEIVER UNIT TYPE $35 I 5$
DETAILS OF TIMING CHASSIS


R 3516 RECEIVER-CIRCUIT.


FIG. 242





[^0]:    521. The square wave input from V. 500 anode via C. 523 serves to cut off V. 506 grid at the end of the working stroke of the sawtooth, and thus brings on V. 507 to terminate the brightmup pulse at V. 507 anode. V. 509 (b) serves to D.C. restore the square wave input negatively with respect to the common cathode potential.
[^1]:    804 (a) Cheok Tose 202 dividers as per paras 801

[^2]:    859. At the same time some RoF. power leaks past the waveguide awitch into the wavemeter channel. By tuning the wavemeter cavity to the magnetron frequency the maximum imput will be applied to the crystal, V.10. If the P/I.F. (pulse/I. F.) switch is set to "P." the negative-going rectified pulse envolope is applied to the grid of V.I, $V$, and $\nabla .2$ operate as a video amplifiex. The negativemgoing anplified video palses are applied to the diode V. 3 which passes bursts af current into C. 15. These are amoothed by the long time constant, $\mathrm{R}_{\mathrm{m}} 2$ and C.15, to impress on V. 4 (magic oye) grid a negative D.C. voltage which is a maximm when tho orystal outpat is a maximum, $i_{\text {, }} e_{0}$, whon the waveneter oavity is tuned to resonate the magnetron frequency. The wavemeter dial sotting thon indicates the frequenoy of the matohed magnetron. The acale reads from 0.5 to 3.5 indicating wavelongths from 3.05 cas. to 3.35 cms.
