Please do not upload this copyright pdf document to any other website. Breach of copyright may result in a criminal conviction.

This pdf document was generated by me Colin Hinson from a Crown copyright document held at R.A.F. Henlow Signals Museum. It is presented here (for free) under the Open Government Licence (O.G.L.) and this pdf version of the document is my copyright (along with the Crown Copyright) in much the same way as a photograph would be.

The document should have been downloaded from my website https://blunham.com/Radar, or any mirror site named on that site. If you downloaded it from elsewhere, please let me know (particularly if you were charged for it). You can contact me via my Genuki email page: https://www.genuki.org.uk/big/eng/YKS/various?recipient=colin

You may not copy the file for onward transmission of the data nor attempt to make monetary gain by the use of these files. If you want someone else to have a copy of the file, point them at the website. (https://blunham.com/Radar). Please do not point them at the file itself as it may move or the site may be updated.

It should be noted that most of the pages are identifiable as having been processed by me.

I put a lot of time into producing these files which is why you are met with this page when you open the file.

In order to generate this file, I need to scan the pages, split the double pages and remove any edge marks such as punch holes, clean up the pages, set the relevant pages to be all the same size and alignment. I then run Omnipage (OCR) to generate the searchable text and then generate the pdf file.

Hopefully after all that, I end up with a presentable file. If you find missing pages, pages in the wrong order, anything else wrong with the file or simply want to make a comment, please drop me a line (see above).

It is my hope that you find the file of use to you personally - I know that I would have liked to have found some of these files years ago - they would have saved me a lot of time !

Colin Hinson
In the village of Blunham, Bedfordshire.

Wundt. $+\frac{c .7=0895}{}$
CORY. No.
CONFIDENTIAL.
SECRET
(PROVISIONAL)
CD O895 CHAP. 12
(Attention is called to the penalties attaching
Official Secrets Acts.)
This document is the property of His Majesty's Government.
this intended for the use -of ehe-recipient only, and for communication to such Officers under him-as-may-require-to be acquainteduwith the fontente of the in the course- of their duties: The-Officers exercising this power of communication -will be held responsible that such information is imparted with due caution and reserve.

> Any person other than the authorised holder upon obtaining possession of this document by finding or otherwise should forward it, together with his name and address, in a closed envelope, to THE UNERSECRETARY OF STATE, AIR MINISTRY, LoNDON, W.C. 2 . Letter postage need not be prepaid; other postage will be refunded.
> All persons are hereby warned that the unauthorised retention or destruction of this document is an offence against the of ficial Secrets Acts, $1911-1920$.

EQUIPMENT, TYPE 7,000 (GROUND)
 CHAPTER 12
 (2): RECEIVER R1363B

THIS DOCUMERTIS ON
REGISTERED CHARGE.
PREPARED BY DIRECTION OF THE MINISTER OF AII.CRAFT PI ODUCI ON

NOTE: This document is of a provisional character. It is issued in this form to ensure early promulgation of the information.

THIS COPY (NO.I) SIGNED BY THE AUTHOR.
Jon. Conan g

AMENDMENT RECORD SHETT

Incorporation of an Amendment List in this publication should be recorded by inserting the Amendant List number, signing the appropriate colurn, and inserting the dato of making the amendments.

A.a.i.No.	Areneniment made try	Date	A.L. .No.	Amondment made by	Date
$\begin{aligned} & 1 \\ & 3 . \end{aligned}$	T.M.T.Eacen Degainomas	$\begin{aligned} & 6 / 1 / 44 \\ & 30 / 1 / 45 . \end{aligned}$			

LIST (GATENTS

Para. Para.

IPPENDICES

LIST OF ILLUS "IONS

	Fig.	
General view		Diviuer wavef
Control desk	2	Divider III circuit
Receiver unit and diode recolver front view	3	Phase shifter 4 circuit
Recefver unit and diode receiver, rear view ..	4	Phase shifter 3 cirrit
Block diagram	5	Phase shiftors-vecus diagr
R.F.units 31 and 32	6	Phase shifter 3 laycut
I.F. anplifier and diode rocelver cireuit	7	Phase shifter 4 laycut
Strobe gain control unit circuit	8	Tire base unit circuit
Strobe gain ecntrol-unit waveforms	9	Time base waveforms and layout
Strobe gain control unit laycut	18	$1.5 \mathrm{Mc} / \mathrm{s}$ calibration unit circuit
Filter input unit circuit	11	$1.5 \mathrm{mc} / \mathrm{s}$ calioration unit layout
Filter input unit waveforms	12	C.R.T. unit circuit ..
Filtor input unit layout	13	Not used
Filter strobe unit circuit	14	oscillograph unit - circuit ..
Filter strobe unit waveforms	15	Power packs P.P.I, P.P. 2 and P.P. 3
Filter strobe unit layout	16	Fuse and Irdicator pancl circuit
A.V.C. unit circuit	17	Power packs P.P. 5 and P.P. 6
h.V.C. unlt wave forms	18	P.P.7-circuit
a.V.C. mit layout	19	Valve base conrections
R.F.Units 26 and 27	20	C.R.T. indications
Oporation of Back-bias I.F. stages	21	Torminal reference
Not used	22	
Divider II circuit	23	The blocking oscillator Delay network

IATRODUCTICN

1. The Mk.IIB receiver R1363B is a modified version of the Mk.II receiver Rl363. The modifications, besides allcwing operation on a number of wavebands and increasing the phasing accuracy, adapt the rocelver
 vien of the receiver is shown in Figure 1.

109 type 52

2. The receiver RI363B can be installed at both Slave and Monitor Stations, although sone units are not used at the menitor station. There is no special menftor version of this recelver as was the case with the Mark I and Mark II receivers.
3. Interchangeable R.F. units are provided so that the receiver may be operated on scveral wavebends. snti-jaming circuits are also incorporated in the l.F. amplifior.
4. $23 C$ volt 50 cycle mains are normally u'ed to supply the receiver, but for erergency use a Dlesel generator ray be employed. The current consumption is $2 \frac{1}{2}$ amps.
5. A number of sets will be mcunted in "Park Rcyal" lorries for use as mobile reserves, in case stations are disabled by bombing.

GINRIL DESCRITTION

E. The purpose of the RI363B is to recelve pulses from the Master station and Slave Stations and display then on a special accurately calibrated time base. When the receiver is installed at a slave staticn a positive locking pulse is sent down a line to the local Slave transmitter. The R.F. pulse radiated by this trensmitter is observed on the cathode ray tube together with the other recelved pulses. is block diagram is shawn in Fig. 5.
7. By reans of controls on the receiver the local pulse can be made to appear in any desired position on the t ime base rolative to the other pulses displayed upon it, l.e. since the length of the time base reresents a definite period of time, the irterval between the arrival of the Master pulse and the emission of the Slave pulse can be controlled to within a fraction of a microsecond. The operation of setting the slave pulse in the correct position on the tine base is called "phasirg". once the transmitter has been phased correctly, the setting can be automatically controlled by the F.C. 0 . to within ± 0.01 microseconds. ilternatively the F.C.O. may be manually controlled either fron the Monitor station by means of Remote Control apparatus (see S.D.0295, Ch. $/ 3$) or by the operator at the slave Station. The condition in which the F.C.O. operates in chosen by reans of a selector koy (Remote - Local - Auto) mounted on the control Desk. A second key is provided by means of which the F.C.O. is manually controlled from the recelver. This key is shown in Figure 2 to the left of the selector key.
8. The following units are fitted to R1363B:-

Receiver Unit (I.F. amplifior with interchangeable R.F. Units)
Diode Receiver Unit (on same panel as I.F. amplifier)
Strobe Gain Control Unit
Filter Input unit
Filter Strobe Unit (Filter Gate unit)
L.V.C.Unit

Divider II

* Divider III
* Phase Shifter 3

Phase Shifter 4 (with separato control box)
Phase Shifter 5 (used with $2.5 \mathrm{nc} / \mathrm{s}$ calibration unit)
Time Base Unit
$1.5 \mathrm{Mc} / \mathrm{s}$ calibration unit
Cathode Ray Tube unit (with ecntrols on separate panel)
Cscillograph Unit ("O" Unit)
Power Packs: PPI
PP2
Pi3
iP5
PP6
P27
Fuse and Indicator Panel

* The R1363B MUST be used with an F.C.O. rack
* Not used at Monitor stations

9. The Units are mounted on a three bay rack as shown in Figure I. A wooden desk is fitted at a convenient height. The screen of the cathcde ray tube is observed through a hole in the desk and certain controls which may require constant attention are also mounted therecn so as to be convenicntily near at hand.
10. Each unft has as its basis a Post office standard panel, and ir the majority of cases there is a further sub-panel upon which the components are mounted. In some cases, for example the cathode Ray Tube Unit and Fuse and Indicator Panel, the components are mounted directly on the front panel. power packs 1 , 2,3 and 7 have horizontal trays bolted to the rear of the front panel.
11. Many of the component valueg given on the drawings have large tolerance. In some cases resistances and condensors may not have exactly the same noninal value or rating as is given in this publicaticn: this applies especially to some decoupling condensers, which may have higher capacities than those specified.
12. The approximate maximum dimensions are:-

He ight 6 leet 6 inches
Depth 3 feet 4 inches
Width 6 feet 4 inches
The weight is about 15 cwt.

RECEIVER UNIT

13. The Recelver unft consists of an I.F. amplifier with four interchangeable plug-in R. F. Units wrering the following frequency bandmem

$$
\begin{array}{ll}
\text { R.F. Unit No.32: } & 20-30 \mathrm{mc} / \mathrm{s} \\
\text { R.F. Unit No.31: } & 40-52 \mathrm{mc} / \mathrm{s} \\
\text { R.F. Unit NO. } 26: & 50-65 \mathrm{mc} / \mathrm{s} \\
\text { R.F. Unit No. } 27: & 65-60 \mathrm{mc} / \mathrm{s}
\end{array}
$$

The frequency coverages given are approximate oriz. The overall bendwidth of the receiver $1 \mathrm{~s} \pm 0.5 \mathrm{mc} / \mathrm{s}$ at 6 db down each side of resonance. A diode recelver used for recelving the local pulse at slave staticns is mounted on the same panel as the I.F. amplifier. Figure 3 shows a front view of the receiver panel and Figure 4 a rear view of the same panel. The latter photograph shows an early type of receiver in which terminal blocks were mounted on the I.F. amplifier and Liode recefver in place of the Jones plugs J2 and J3. To make servicing easy a pair of extra flexible leads terminated at each end by 6 pin and 8 pin plugs and sockets are provided so that the complete recelver unit (including Diode Receiver) can be removed from the rack and connected by means of these extonsion leads to the jones plugs $J 2$ and J3.
14. R.F.Unit NO. 31 .- The circuit diagram of R.F. Unit No. 31 , which covers the band from 40 to $52 \mathrm{mc} / \mathrm{s}$ approximateiy, is show in Figure 6. It contains one stage of R.F.amplification, VI, which is a pentode Type VR65 mounted in the frcnt compartment of the R.F. Unit. V2, the mixer is also a VR 65 and is mounted in the middle compartment. The rear compartment contains the oscillator stage V. 3 which is another VR65 The output from the oscillator valve is inje cted into the cathode circuit of V2 through Ti which has a band-pass of more then $10 \mathrm{mc} / \mathrm{s}$. The frequency of the oscillator 15 controlled by L4 and C22, L5 being an R.F. choke.
15. The inductance L_{3} is fitted with an adjustable iron duat core by means of which the coil is tuned to $7.7 \mathrm{mc} / \mathrm{s}$. This coll together with IL in the I . F. amplifier (also tuned to $7.7 \mathrm{mc} / \mathrm{s}$) form a band pass coupling of which Clo forms the coupling capacity and Clg the tuning capacity. Cle is the screened lead to the output plug JI which is built into the unit. NO ATTEMPT SHOULD BE MADE TO ADJUST THE TUNING OF LS UNLESS THE NECESSARY INSTRUNENTS ARE AVAILABLE.
16. RoF, Unit NO. 32_{0}^{-}The circuit diagram of R.F.Unit No. 32 which covers the $20-30$ me/s band is shown in Figure 6. It is sinilar to No. 31. The R.F. tuned circuits are damped by R3, R4 and R23, R24. The mixer stage V_{2} is similar to that in R.F.Unit $N O .31$, 44 being the oscillator output transeormer. The oscillator stage V_{3} is scmewhat different. A cathode tapoircuit is employed, $L 5$ being the tuning coil and C_{21} the tuning condenser.
17. R.F. Units Nos. 26 and 27. The circuit diagram of R.F. Units Nos. 26 and 27, covering 50-65 and $65-80 \mathrm{mc} / \mathrm{s}$ respectively are shcwn in Figure 20. The R.F. and Mixer stages use VR136 (RL7) valves which are special high frequancy pentcdes having four separate cathode connections to reduce the inductance of the cathode lead. The oscillator valve V3 is a VRI37 (RLI6) high frequency triode connected in a Colpitts circuit. The R.F. mixer and oscillator circuit are tuned by a threemanged condenser C4. C5: C32 with the associated trimming and padding condensers. 67 is an externally adjustable trimmer. The output from the oscillator is applied to the grid of the mixer (V2) via Ci8 together with the R.F. input.
18. I. F.Amplifier. The circuit diagram is shown in Figure γ together with that of the Diode Receiver which is mounted on the same panel. There are five I.F. stages, V1 to V5, employing VR65 valves. V6 Is the diode detector type VR92. V7 is a pulse-frequency amplifier and V8 and Vg are cathode follcwer out put valves. Thd grid ifirciit of vit consisting of the variable inductance L_{1} and the coupling condenser cl. forms part of the bandpass coupling between the R.F. Unit and I.F. amplifler and is tuned to $7.7 \mathrm{mc} / \mathrm{s}$. All the other I.F. circuits are tuned to $7.5 \mathrm{rc} / \mathrm{s}$.
19. The first two valves V_{1} and V_{2} are provided with variable cathode bias through the resistances R3* R4, R57 and the variable resistance (Gain Control) R29 mounted on the strobe Gain Control Unit. Strobe Gain and $\therefore . V . C$. pulses are also f ed on to the cathodes of the first two valves. $S t a g e s V 3$, $V 4$ and V5 are fittod with a specis. "back blas" circuit to enable the slgnals to be read through jaming. A switch is
provided to enable certain circuit elements to be altered to deal with different forms of jaming. There are four positions, namely N, X, Y and $Z 0$, the operation of which is described in paragraphs 22 to 22.
20. With the switch in position "N" the condensers $\mathrm{C}_{15}, \mathrm{C}_{23}$ and C_{32} are shorted out by the switch contacts S_{2}, S_{5} and S_{8} which also short the negative H.T. 1 ine supply to earth. In this position grid bias to $\mathrm{V}_{3}, \mathrm{~V}_{4}$ and V_{5} is provided by the resistors R17, R27 and R35• A dropping resi stance R42 is int roduced inte the screen H. T. circuits of $V 3$ and V_{4} to limit the gain of these stages to a reasonable value. In this position of the switch the resistor RS is introduced in series with the Galn Control (mounted on the strobe gain control Unit) to reduce the maximum amplification available, which is unnecessarily large. Strobe Gain pulses are fed in viapin 3 on the 8 pin Jones plug J2 to cut of f the I.F. amplifier for the duration of the B or C strobe upon which the local pulse appears (see para. 36 to 42).

 $\cdot V_{8}$ via P_{3} to the Y_{1} plate of the C.R.T. through the contacts of the relay (F.S.I) on the Filter Strobe Unit and $\operatorname{trcm} V_{9}$ via P_{4} to the Filter Input Unit and a.V.C. Unit. Separate cathode followers are used to preserve good pulse shape on the tube by reducing the capacity loading on the output to Y_{1} -
22. Operation of Anti-Jaming circuits.- Referring to the circuit diagram Figure 7, the anode circuit of V_{3} has a resistance R_{22} in series with the normal anode load R21. R_{22} is 100 K and R_{21} SK. The junction point of the two resistors is connected to the botton end of the grid coll L3 thrcugh the 500 K resistor R20. L9 and Li2 are R.F. chokes. The bct tcm end of the grid coil is then connected through anothor 500 K resistor Ris to the negative H.T. IIne which is at 130 or 230 voiss negative with respect to earth, depending upon the position of the $\mathrm{A}-\mathrm{J}$ switeh. The junction of R_{21} and R_{22} is decoupled by the con' anser C_{16} and the lower end of the grid coil by the condenser Cl3. Additional decoupling condensers Cl7 and C_{15} are included in the circuit in certain positions of the A-J switch, as shown by the letters on the diagrang, to increase the decoupling timemconstants. A condenser Cl4 is connected across R20, thus completing a concienscr potentiometer between the grid and anode of V3. The circuits for V4 and'V5 are similar except that some of the components are of different values.
23. Consider the operation of V3 with the $1-J$ switch in position 2 , which is the position for dealing with C.W. and low-prequency modulated C.W. In this position a resistor R_{41} is connected across the negative rail biesif. supply and since the power pack has poor regulation this reduces the voltage from -230 volts to -130 volts approximately. NCW the positive H.T. line is at +350 volts so that the potential at the junction of R2l and R22 will depend upon the drop in potential across R_{22} due to the anode current of V3. The current drawn by R_{20} can be neglected. In position $Z \mathrm{~V} 3$ draws 2.3 mA and this will cause a drop of 230 volts across R22. thus putting the junction of R21 and R_{22} at 120 volts positive. R_{20} and R_{18} are equal so that the grid of V3 will take up a potential midway between +120 and -130 volts, which is -5 volts with respect to carth.
24. The Ia - Vg curves of Figure 21 help to explain the operation of the stage. Consider the curve of Figure 21 A where a small C.W. Jeming signal is applied to the grid of V3 together with the required pulse signal. The C.W. signal will tend to make the valve take more anode current due to the curvature of the valve characteristic. An fncrease in anode current causes a greater voltage drop across R22 which in turn will rake the voltage at the junction of R2o and Rl8 more negative with respect to earth. The feedback arrangenent thus allows the anode current to increase slightly and this increase automatically increases the negative blas applied to the grid so thst the point on the valve curve about which the input signal and jaming is applied is shifted sufficiently far to the left so that the required pulse signal can pass through the valve. Figure 21B iliustrates the case of a very large C.W. jamming signal. It will be seen that the blas volts have been shifted so far negative that the pulse signal is still able to pass thrcugh the valve on top of the famming signal. The decoupling condensers Cl6 and C13 are large encugh to prevent any change in the blas conditions for the duration of the pulse.
25. If the farming signal is modulated by a low-frequency sine wave, a waveform similar to the modulation envelope will appect across the anode deccupling condenser C_{16} since this is of comparatively small capacity and so presents a fairly high impedance to modulation irequencies up to abcut $4 \mathrm{kc} / \mathrm{s}$. This voltage is fed back to the grid circuit through the condenser potentiometer C_{14} and C_{13} causing a reduction in the modulation percentage of the jaming signal which passes through V3. Further reduction in the percentage modulation ocours in V_{4} and V5
26. The cperation of the scheme for "railing" jamming is slightly different. Figure 2lc will help to explain this. In the case illustrat ed the jarining signal consists of square pulses of somewhat greator width than the required pulse. The A-J switch should be in position X for this type of jaming. This means thet the potential of the negative rall will be approximately -230 volts and the anode current taken by $V_{3} V_{4}$ and V_{5} will be about 1.35 mA each with no signal coming through. Extra condensers (C_{17} and C_{15} in V_{3} circuit) are switched in on all three back biassed stages, making the timeconstants long in the anode and grid circuits.
27. During the period of the "railing" pulses the bias applied to the grid of the valve will not change apprectably owing to the large condensers in the grid and ancde circuits. If the required signal pulse happer. to occur at the sare time as the "railing" pulse, it will be received satisfactorily on top of the jaming pulse as shown. During the gaps in the jamming no pulses will be received but this is not important unless the jaming is locked to some multiple of the recurrence frecuency of the signal. Normally the recurrence frequency of the jaming will drift with respect to the signal, so that signals will be received whenever a jarming pulse coincides with the signal.
28. The small arcunt of the modulation envelope of the jarming signal which cones through the I.f. amplifier is illtered out by C42 and R44* R44 is a high resistance sc the charge accurnulated by C42 when V_{6} passes current can cnly leak away slowly. Thus the voltage across c42 becomes nearly equal to the peak voltage of the "railings". The diodo will therefore pass very little of the jamming but will let through the signals.
29. Position Y on the $A-J$ switch is sinilar to position X except that the condensers in the grid circuits cf the three back blassed stages are reduced in value, allowing sone negative feedback to take place between the grid and anode circuits. This position is helprul if scme low-frequency modulated C.W. is superinpesed upen railing jarming. The back bias arrangements will alsc operate if the jaming signal has sine wave modulation instead of square pulses, but the improverent will not be sc good, as owing to the wavefcra there is less time at the peaks during which signals can be received.

DIORE RECEIVER
30. The Diode Recelver, which is mounted on the same panel as the If amplifier, is wed for receiving the pulse from the local transmitter. It is used in preference to blassing back the I. F. anplifler by strote gain control because in the latter case cnly the top of the local pulse is amplifled by the receiver, and any jitter or unsteadiness is thus magnified, making accurate phasina difficult. owing to the absence of tuned circuits distortion of the pulse shape due tc freçuency discrinination is avoided. Two oupats are taken from the Diode Receiver, one to the cathcde ray tube (connected in parallel with the output of V_{8} on the I.F. amplificr chassis) and the other to a line running to the transmitter hut so that the rectified pulse may be inspected on a monitor, thus showing the shape of the actual pulse transmitted fron the aerial.
31. Rererring to the circuit diagran Figure 7, the aerial is brought to a pye plug Py (shown in the Fhctograph Figure 4) which leads to the cathode of the dode Vl. The negative pulse out put frcm the ancle is passed through the R.F. filter, $\mathrm{Cl}_{1}, \mathrm{~L}_{1}, \mathrm{C}_{2}, \mathrm{~L}_{2}$ to the grids of V_{2} and V 4 via the amplitude controls Rig and R_{22}. The latter contrcl is presct and is mounted behind the removabie panel.
32. V_{2} and V_{4} amplify and invert the pulse and pass it to the cathode followers V_{3} and V_{5}, the formor beins a VR91 valve which feeds the pulse on to the cathode of V_{8} in the I.F. amplifier and thence to the cathode ray tute. V5.is a VT75, the cutput from which is taken to the line leading to the transnitter hut via the Pye Pluss P_{8} and P_{13}
33. The anplitude of the pulses must aiways be kept snall encugh br means of Rly and R 22 to avold cvorlcac ing the amplifiers, otherwise distortion will be introduced. The height of the local pulse on the tute shculd be aproxinately equal to that of the other received julses.
34. The tine delay experienced by the signals in passing through the I. F. anplifier is abcut 1.2 microseconds greater than the delay introcuced by the Diode Receiver. The exact delay must be detcrmined for each individual receiver and a correction applied to the phasing number.
35. Under certain conditions it may not be possible to receive the transmitter pulse on the Diodo Receiver. In this case, the strobe gain control must be adjusted so that the pulse is received on the nomal receiver and the amplitude. control Rlg on the Dicde Recefver shouid be turned to zero. In this aase the ccrroction factor mertionod in parásty shculd be ienoredonote that since the signal is small, cnly a small cmount of strobe gain is recuired, thus no jitter is introduced on the peak of the local pulse.

> rexfuctcos

STROBE GAIN CCHTROL UNIT
36. This unit provides a controlled increase or decrease of the gain of the receiver for a period of about 100 microseconds coincident with either the B CC C strobe time base. It is effective on both main and strope time bases, at slave staticns the l.F. amplifier is normaliy cut off for the curation of either the B or C strobe, upon whichever the local pulse appears, and the local pulse is then recelved by the Diode Receiver. on some sites however, the diode is not surficiently sensitive, in which case the gain of the f.f. amplifler must be made just gurficient to receive the local transmitter pulse satisfactorily. at monitor stations an increase in gain may be required to equalise the amplitudes of the pulses being monitored.
37. The Strobe Gain pulses are applied together with the A.V.C. pulses to the cathodes of $V 1$ and $V 2$ in the 1.F. amplifier (fig.7). Thus a positive polse supplied by the Strobe Gain control unit reduces the i.F. gain and a negative pulse increases it.
38. The circuit diagram, waveforms and layout are shown in figs.8, 9, and 10 respectively. 71 and y2 (fig.8) form a multivibrator (ar iflip-flap") locked to the B or C strobe edge (figo9A) from the Time Base unit. VI is normally cut off, but is brought on by the positive pulse (fig.9c) developed in the anode circuit of V2 when the grid of the latter is cut off by the synchronising pulse (fig.sp).
39. When 71 is brought on, a positive pulse (Ifge9p) is produced across the cathode load R13 and a similar
negative puise appears at the anode of the valve. These pulses are applied across a variable potentiometer (nl2)
through an 8 microfarad electrolytic condenser c4. The slider of the poteatiometer is connected to the grid.
of the cathode follower Y3 and from the cathode of this valve an output is taken through c8 to the cathodes
of the f irst two valves in the I.F. amplifier, together with the A.V.C. pulses which are ted from the A.V.C.
unit directly on to the cathode of v3 in the strobe cain unit.
40. The amplitude of the Strobe Gain pulses may be set to any value in between the limits of the positive and negative output from γ_{1} by adjusting R_{12}, which thus provides a control of strobe gain.
4. \mathbf{R}_{29} is the normal gain control for the receiver. It is the cathode blas resistor for v_{1} and v_{2} in the L.F. amplifier and is mounted on the strobe gain mit for convenience. $R_{2 s}$ is in series with $\mathbf{R}_{2 \boldsymbol{s}}$ to prevent the blas from being reduced too much.
42. The baters on this unit are earthed through a centre-tapped pair of resistors. this helps to prevent hum trom being introduced into the output. The heaters of all the other units connected to the same LT supply must of course be unearthed. The HT aupply for the Strobe cain and A.V.C. units is taken from a stabilising valve on P.P.2."

(1.L., 1)

43. The Filter Input Unit has two functicns
(1) As a gate to arevent unwanted pulses fron reaching the Frequency Selector on the F.C.O.
(ii) To produce a clean pulse of constant amplitude and suitable lenath to operate the crystal filtcr on the frequency Selector, irrespective of the amplitude and shape of the pulse recelved from the Master Station.

It is thus necessary for rellable operation of the F.C.O.
44. The circuit diagram waveform and layout are shown in Figures 11,12 and 13 respectively.
45. The pulses from the r ecelver unit are applied to the grid of V_{l} through the limiting resistance R2. These pulses are shown in Figure 12_{A}. VI is normally biassed off by the resistance network $\mathrm{R}_{6}, \mathrm{R}_{5}, \mathrm{R}_{3}$ and the input pulses drive the valve into grid current. This produces a negative pulse of about 200 volts amplitude in the anode circuit. The back of this pulse is lengthened by the time constant of R_{4} and the stray capacities across it. This time constant is of the order of $3 \mu s$ and thus lengthens the pulse as shown in in Figure 12B, as V_{2} will not operate correctly if the received pulse is too short.
46. V_{2} works with zero blas and has a shorted delay network in its anode circuit. is described in \therefore apendix 2, a waveform as shown in Figure 12 is produced in the anode circuit. The constants of the network are chosen so that the positive and negative pulses produced are each $3 \frac{1}{3} \mu \mathrm{~s}$ longe The front of the negative pulse (which is not used) corresponds with the rear edge of the pulse shown in Figure $1, B$, so it is clear that this latter pulse rust not be too short. The pulse is made $3 \frac{1}{3}$ us long as this is ، the most effective length for energlsing the $150 \mathrm{kc} / \mathrm{s}$ crystal filter in the Frequency Selector on the F.C.O.
47. V_{3} (Type VRII6) is the Gate valve. The valve is biassed negatively on the control grid and the suppressor erid is heavily blassed so that the valve is completely cut off on $63 * 500 \mathrm{c} / \mathrm{s}$ gate pulses frot. the filter Strobe Unit are applied to G3 Sc that the cut off bias is neutralised for the duration of this pulse - that is for about 5 us. The position and width of the Filter strobe pulse can be adjusted so that it "opens the gate" just before the positive pulse from V_{2} arrivos the grid^{2} of V_{3} and cuts the valvo off again on C3 immediately after the end of the positive $3 \frac{1}{3} \mu \mathrm{~S}$ pulse. This is shown in Figures 12 D and E .
48. The diode V_{5} and R_{28} serve to square off the $t c p$ of the incoming filter strobe pulse. V3, which is a type VRil6 valve, has a specially designed suppressor grid which euts off at about $=10$ volts. a stancinc buas of 20 volts is applied to $G 3$, and the gate pulse is of considerably greater amplitude. Thus the gate valve is brcught on very sharply and when the amplitucle of the Filter strobe pulse exceeds the bias voltage on G_{3} the diode V_{5} concucts and the excess voltage is then dropped in R_{28}. This gives a square tos to the gate pulse and prevents the flow of suppressor current.

49, When the contacts of the relay RELI are closed the suppressor erfd of V3 is taken diroctly to the cathode so that there is no bias on it and the gate is permanently open. The vaive then acts merely as an inverting staze.
50. V_{4} inverts the pulse again. The valve works with a positive bias which remcves any kinks which my have been developed in the gate valve. The output from $V 4$ is a square $3 \frac{1}{3} \mu \mathrm{~s}$ pulse (Figure 12F) which is passed to the Frequency selector in the F.C.O. and is used to "ring" the crystal.

EILTER STROBE UNIT

51. The purpose of the Filter strobe unit is to provide the $500 \mathrm{c} / \mathrm{s}$ gate pulse to operate the gate valve V_{3} in the Filter input Unit as explained in para. 47 to 49 . This allows only those pulses producod from the Master Station slgnals to pass through and energise the Frequency Selectcr. The gate pulse is also applied to V_{1} in the i.V.C. unit, whore it allows only the Master pulses to pass through and cporate the A.V.c. circuit.
52. The circuit diagram, waverorms and chassis laycut are show in Fisures 14, 15 and 16 respectively.
V_{I} and V_{2} form a multivibrator circuit, V_{2} being normally concucting while $V 1$ is biassed off by R_{1} and R_{2}. A negative synchronizing pip (Figure 15A) from Divider II is fed on to the grid of V2. This shuts off the ancde current sc the anode voltage of V_{2} sbarts to rise as the condenser C_{2} charges up through R8 (Figure 15B). This rise in veltage is comunicated tc the grid of Vl, making this valve conduct. Therefore the ancde voltage of V1 falls sharply and this fall in voltage is comrunicated thrcugh c3 to the grid of V2. Thus a cumalative action is set up and the pulse produced at the anode of $V 1$ has a sharp front (Figure 15C).
53. When the negative sync. pulse has ended, V2 remains cut off, due to the negative charge on C3. This charge leaks away throukh Ry and PI and when the voltage on the grid end of C3 has risen to the cut off blas voltage of $V 2$ the valve starts to conduct. The ancde voltage of V2 falls rapidly an-apethemongermand this fall in voltage is communicated to the grid of Vl setting up a curulative action which cuts VI off and brings V_{2} on sharply, thus giving a steep rear edgo to the pulse shown in Figure 15B. This process is repeated every time a negative sync. pip arrives at the grid of V 2 .
54. The amplitude of the pulse fed back fron V_{1} to V_{2} can be controlled by P2. The time taken by C3 to discharge depends upon the amplitude of this negative pulse, so $?_{2}$ provides a co arse control of the multivibrator pulse width. P_{1} by controlling the rate of discharge of c3 provides a fine control.
55. The positive pulse (Figure $15 B$) from the ancde of $V 2$ is passed to the grid of V3 throuch a short time constant elrcuit $\mathrm{C}_{6} \mathrm{R}_{22}, \mathrm{R}_{22}$ is taken to the slider of P_{3} so that the positive voltage at the earthy end cf R_{22} can be adjusted, thus rarying the width of the differentiated pulse (Figure lED) applied to the grid of V_{3}. V_{3} works with zerc bias and sc the negative pulse appears at the anode as a square positive pulse cf variable width (Figure 15).
56. Since the position of the Filter strobe pulse correspends to the rear edge of the multivibrator pulse, altering the langth of the mitivitrator pulse by P_{2} and P_{1} will cause the filter strcbe pulse to meve along the tire base. As shown in Figure 15F and G, it should be set so that it will just cover the recelved Master station pulses when they are phased to zerc cn the time base. The length of the filter strobe pulse is set to approxinately 5 or 6 microseconds, as required, by Pre
57. The screen of V_{3} is loaded with $84,7 x$ resistor and is connected to the T_{2} plate of the cathoderay tube through a small condenser C_{12} This feeds a small positive pulse on to the I 2 plate ana so produces a shallow "trough in the time base, corresponding to the position of the Filter strobe pulse. This helps in the preliminary adjustments to the F.C,O. The twoway changeover relay in the anode circuit of V 3 which was used to allow the Filter strobe pulse to be inspected is now no longer needed.
-**********
58. The circuit, waveforms and layout are shown in Figures 17, I8 and 19. This mit provicies nutcmatic Gain Control on the Master station pulses. The unit only oporates when the Master Pulse is inside the Filter Strobe Gate pulse but for convenience the receiver gain is controlled during the period from the start of the A trace to the end of the step and for an equivalent period imediately belcw on the C trace.
59. The output from the receiver output valve V_{g} is applied to the grid of VI in the $A \cdot V$. C. unit, which is strobed on the suppressor grid by the Gate pulse from the Filter strobe unit fed in through C3. The dlode V2 A prevents the suppressor grid frcm going positive with respect to cathode, thus squaring the top of the Gate pulsc. This arrangement is similar to that employed on $V \mathbf{V}$ in the filter input Unit. The Master station pulses cnly (Sce Figure 18\& and B) appear inverted at the anode of V1 (Figure 18c), their amplitude being controlled by $R 7$, and charge the condenser C_{14} through $V_{2 B}$ to a negative potential nearly equal to the peak amplitude of the pulses. The resistance R10 is too high to cause the charge to leak away appreciably between pulses (Figure 18D). This negative potential on Cl4 is applied to the grid cf V3 via the smoothing filter R11, C5, C Cow thus controling the D.C. anode current of the valve.
60. V_{4} and V_{5} form a Multivibrator which is locked from a $500 \mathrm{c} / \mathrm{s}$ negative synchronising pip irem Divider D.II. This pip (figmomentry is also used to lock the time base, so it corresponds with the start of the A and C traces of the time base. The multivibrator pulse has a length of about 200 microseconds (adjustablo by R24) which is sufficiont to cover the step on the time base, allowing for the initial black out pericd. The Multivibrator gives a positive pulse (Figure 18J) at the anode of V4. (This ancde is connected to the anode of V_{3}).
61. The standing ancde current of V_{3} is controlled by tho amplitude of the Master station pulses (see para. 59) and so the pctential to which the anodes of V_{3} and V_{4} rise during the multivibrater pulse is contrclled by the amplitude of the input signal. In other words, the working $H . T$. voltage on the anode of V4 is controlled by the grid voltage on V_{3}, which is in turn determined by the amplitude of the received pulses. Thus if the amplitude of the Master pulses increases, the bias on V_{3} increases, its anode current f fills and the anode voltage rises. Therefore the positive pulse on the anodes of V_{3} and V_{4} due to the multivibrator action will increase in amplitucie. Similarly if the amplitude of the input sicnal falls the aluiftude of the pulse on the ancde of $V 3$ decreases.
62. This pulse is fed via the cathode follower V_{6} to the cathodes of the first two I.F. Valves, thus providing a bias pulse which will maintain the receiver output constant during the reception of the master Station pulses. once the amplitude of the pulse on the tube has been set to approximately tirce quarters of the saturation level by adjusting $R 7$ on the h.V.C. unit (2 to 3 cm deflection should be allowed), the A.V.C. circuit will maintain it at this level.
63. The upper terminal block on the chassis of the A.V.C. unit carries the connections to the post office keys operating the relays on the Filter Input Unit, Filter Strobe Unit and Calibration Unit (See Table 3).

FINE PHASE SHIFTERS 3 and 4

64. The purpose of the Fine Phase Shifters 3 and 4 (so numbered because they replace the Rhase shifters 2 and 1 respectively used on R1363) is to move continuously by means of handles the phase of the $150 \mathrm{kc} / \mathrm{s}$ sine wave from the crystal oscillator on the F.C.O. The inputs to the Phase shifters are fed in parallel from the oscillator, the output frcm P.S. 4 being taken to D.II and from P.S.3. to D.III.
65. The effect of turning the phase shifter controls is as follows:-

When P.S.4. is turned all the pulses seen on the cathode ray tube move along the time base, since the time Base unlt is locked to the output from Divider D.II. When P.S. 3 is turned, only the local iransmitter pulse moves, as this is locked from Divider "DoIII. Tho circuit diderem of P.S. 4 and a are shom in Figures 26 andrat and the laycuts in figures 30 and 29 respectively. ' in explanatory Vector Dlagram is given in Figune 20.

$$
27
$$

66. P.S.40- The input from the F.C.O. crystal oscillator is fed into a transformer coil Li, which is mount ed in the control box under the desk (See Flgure 2). Two resistors are connected in serles across the secondery and the comon point/s earthod. The output from the coil is connected acioss two comers of a phase splitting network $\mathrm{C}_{1}, L_{2}, \mathrm{R}_{3}, \mathrm{R}_{4}$. This output is represented by $A B$ in Figure 28 , and is applied to plates A and B. of the special condenser Cg. This condenser has four stator plates and one rotor. The output from the other two corners of the phase splitting network is applied to plates C and D of the condenser Cg. This output is 90 degrees out of phase with respect to the input voltage and is represented by CD in Figure 28.
67. Now for any position of the rotor plate of Cg (which has no stof to lilit its rotation) a certain voltage will be induced upon it from the stator plates. suppose the rotor is between plates A and D of the stator, rather more under A than under D, then a voltage Al will be induced upon it from A and also a voltage D_{1} lagging by 90 dege frcii plate D.The resultant of these two voltages is shown as El in Figure 28. Now suppose the rotor is rotated to 1 ie between D and B. Then, referring to Figure 28, a voltage D_{2} will be induced on $1 t$ from D and a voltage $B 2$ from B, the resultant voltage being E2*
68. Similarly when the rotor is further rotated to lie between B and C and C and A voltages $E 3$ and $E 4$ respectively will be induced upon it. Thus the effect of manually turning the rotor is to continually alter the phase of the $150 \mathrm{kc} / \mathrm{s}$ sine wave induced on the rotor plate with respect to the input signal $A B$. This voltage is amplifled by the valve Vl and takon out to Divider D.II. via the transformer coil L4, the primary of which is tuned by C7. The grid circuit of the valve is similarly tun ed by L3 and C2.
69. The connections of the phase-splitting network to in P.S. 4 are made so that a clockwise rotation of the k mob advances the phase of the $150 \mathrm{kc} / \mathrm{s}$ output. This effectively nspeeds up" the time base so that the received pulses travel towards the right hand end of the time base.
70. P.S.3.- The operation of P.S. 3 is similar to that of P.S.4. The connectionsto the condenser C9 are, however, transposed so that a clockwise rotation of the control knob retards the output. Thus a clockwise rotation "slows down" the operation of Divider III so that the local transmitter pulse moves to the right.
71. The control knob of P.S.3. is mounted on the front panel of the unit, whereas the phase shifting condenser and network of P.S.4. are mounted in a separate box under the desk. A microameter, which is fitted with a flexible lead terminating in a jack, is mounted on P.S.3. and a clock is mounted on the corresponding place on P.S.4. P.S. 3 is not used at Monitor stations.

DIVIDER D.II

72. The purpose of Divider D.II is to produce pulses at $500 \mathrm{c} / \mathrm{s}$ rigidly locked in phase to the $150 \mathrm{ke} / \mathrm{s}$ sine wave from the F.C.O. crystal oscillator. These pulses are then used to lock the time base. Locking pulses at $500 \mathrm{c} / \mathrm{s}$ are also taken from D.II to the Filter strobe unit and A.V.C. unit. $150 \mathrm{kc} / \mathrm{s}$ plps from D.II are used to produce the $1.5 \mathrm{Mc} / \mathrm{s}$ calibration wave from the calibration Unit and pips at 15 and $150 \mathrm{kc} / \mathrm{s}$ from DeII are fed on to the cathode of the C.R.T . to give bright calibration marks.
73. Figure 23 shows the circuit diagram and Figure 24 the waveforms and chassis layout. The input to the divider is a $150 \mathrm{kc} / \mathrm{s}$. sine wave of about 5 volts peak to peak amplitude. This is fed into the first valve V_{1} through the tuned autometransformer coil $T 1$ which has a stepmp ratio of $1: 10$. Since the signal at the grid of $V_{1, ~ i s ~ o f ~ g r e a t e r ~ a m p l i t u d e ~ t h a n ~ t h e ~ v a l v e ~ i s ~ c a p a b l e ~ o f ~ h a n d i n g, ~ t h e ~ a n o d e ~ w a v e f o r m ~ o f ~ t h i s ~}^{\text {a }}$ valve is ifstorted into a square wave with rather sloping sides due to stray capacities across the anode lead R4 (Figure 2AB).
74. V_{2} is a squegging valve. The square wave from V_{1} is fed through a short time constant circuit $\mathrm{C}_{4}, \mathrm{R}_{5}$ on to the grid so that a positive pip is passed. This makes V_{2} draw a pulse of anode current
through Tr which is conected so that this drives the grid more positive. Grid current is frawn from C4 and C_{6} and the grid of V_{2} is driven negative ty the joint action of the overswing of the grid voltage tue tc the oscillatory character of the transicrmer winding and the discharge of C_{4} and C_{6} duc to grid current. Thus the valve is rapdily cut off and C_{4} begins to charge up again. (Figure 2 L).
75. The time constant $\mathrm{C}_{4} \mathrm{R}_{5}$ is chosen so thet the grid voltage has nearly riscn to aarth actential by the time the next $150 \mathrm{kc} / \mathrm{s}$ pip arrives at the grid cI V 2 . Thus the ancde current of V 2 consists of a number of pulses of current very quickly shut of f. These pips which are of about $\frac{1}{4}$ fs duration oniy, aro taken as positive pulses from the cathcde of V_{2} to the squaring valve V_{14} whence they are fed to the cathode of the C.R.T. to provide $150 \mathrm{kc} / \mathrm{s}$ bright calibration pirs. An outfut is also taken from the cathodo of V2 to lock the $1.5 \mathrm{Mc} / \mathrm{s}$ calibration unit. The cathode waveform is shown in Figure 24D. A more detailed treatment of the blocking (or "squeggin马") oscillator is given in Appendix 2.
76. V3 is the first divider oscillatcr stage. This consists of a triode valve arranged as a squegger, the anode and grid circuits being tightly coupled by T2. V3 is normally biassed off by the voltage on its cathode developed across R17. In the grid circuit cy charges up through R9 and R10 and superimposed uron this steady rise in voltage are the $150 \mathrm{kc} / \mathrm{s}$ pips from the cathode of V2. When this voltage has risen sufficiently, V_{3} conducts and draws a pulse of current through $T 2$. This transformer is so connccted that the grid is driven more positive and grid current is drawn from Cr.
77. Grid current continues tc flow until the grid voltage swings negative due to tho joint acticn of the overswing of the grid voltage caused by the oscillatory character of the transformer windings and the discharge of C7. The negative voltage on C 7 is rapidly removed by the diode Vl2A. and so the grid ond of C . c Is restcred to carth potential. $\dot{C} 7$ thon begins to charge up acain through Rg and Rje. Tho completo cyele of operation is shown in Figure 2 理.
78. The voltage on the H.T. end of Rg can be varied by adjusting P.l. This controls the rate of charging of Cr and is set so that the arrival of every tenth $150 \mathrm{kc} / \mathrm{s}$ pip causes the valve to squegg. Thus V3 produces $15 \mathrm{kc} / \mathrm{s}$ pips at its anode locked to the $15 \mathrm{c} \mathrm{kc} / \mathrm{s}$ pips fed on to its grid. The waveform here is shown in Figure 24 F . Positive plps can be seen coming from the cathode of V_{2} and a negative pip is seen overy time $V 3$ squeggs and draws grid current. To set up the divider stage, this waveform is obsorved on the oscillograph Unit and Pl is adusted so that one negative pip occurs for every ten positivo pips, as shom in figure 24.0 .
79. The valve V4 has two functicns: as a burfer to prevent interaction botween the twe divider stages V3 and V_{5} and as bias regulat $C r$ for $V 3$. The bias for $V 3$ is taken from the cathcde of $V 4$ g and the grid of the latter valve is taken to a potential divider R15, RI6, P_{1} across the H. T. supply. Thus if the H. T. voltage rises, the cathode potential of $V 4$ rises (being a cathode followor) and hence the hold-off bias of V 3 increases. Therefore, since the rate of charging of $C 7$ also increases due to the higher charging voltage, the var icus factors tend to balance out and the operation of the divider stage is maintained constant over a fairly wide range of H. T. voltage. In fact, the divider will not slip if the $H . T$. voltage varies by es much as plus or minus 50 volts.
80. The third winding on $T 2$ feeds positive $15 \mathrm{kc} / \mathrm{s}$ pulses through $C 10$ and the limiting resistance $R 66$ on to the grid of V4. The output from V4 is taken frcm the cathode (F ifure 24 J) and is used to synchronise the next division stage (consisting of V_{5}, V_{6} and V_{7}) tho operation of which is similar to that of the first stage. P_{2} provides the adjustrent of the division ratio, which is 5 .
81. The third stage consists of V8, $V 9$ and $V 7 B$. $P 4$ is the division ratio control which is adjusted to divide by 6 . V14 is the calibration valve which supplies 150 and $15 \mathrm{kc} / \mathrm{s}$ trightening pulses to the cathode ray tube. As described in para. $75150 \mathrm{kc} / \mathrm{s}$ positive pips from the cathode of V_{2} are fed on to the grid of V14. $15 \mathrm{kc} / \mathrm{s}$ pips from T 2 are fed cn to the ancde (F igure 24 K and L). When the T ine Basc changeover switch is at "Strobe" or "High Sfeed" a pair of contacts on the switch short out R53 via the terminal orange 233 so that VI4 amplifies the $150 \mathrm{kc} / \mathrm{s}$ pips on 1 ts gric. These then appear at the anode tozether with the $15 \mathrm{kc} / \mathrm{s}$ pips and both are applied to the cathode of the cathcde ray tube (Figure 24M). In the "Main" position of the time base switch the contacts aro open so that Vif is biassed of f by R53; thus only the $15 \mathrm{kc} / \mathrm{s}$ pips are seen on the trace.
82. The valves $V_{10,}, V_{11}, V 12 B$ and V13 make up the Coarse Phase Shifter. This works in the same way as a divider stage. A potentiometer Ps fitted with a switch is mounted on the front pancl. When this switch is open Vll is cut off by the bias voltage across R43, but when the switch is closed Vll starts to take ancde current and since the grid and anode circuits are tishtly coupled by T5 a cumulative act ion is set up and the valve squegss. The squegging frecuency is locked by the $15 \mathrm{kc} / \mathrm{s}$ pips fed on to the grid of Vll via the cathode follower V19 so that the coarse phase shifting is regular (Figure 24JJ).
83. The anode waveform (Figure 24KK) consisting of a negative pulse followed by a positive "ring" is passed from the third winding of TS throuth the diode of V1zB. only the positive part of this waverorm appears at the cathode of the diode, is difforentiated by the variable short time constant circuit c C_{24}, C25, R45 (Figure 24LL) and reaches the grid of V13 via the limiting resistance R46e This produces negative pulses (Figure 24 MM) at the anode of V13 which are fed to the junction of Rg and Rio through which Cr is charged. Thus every time the nogative pulse from V13 arrives the charging of cr is checked (Figure 24 NN).
84. C24 is adjusted so that the duration of the negative pip from the anode of V13 is sufficient to retard the charging of C 7 to such an extent that V 3 squeggs after the arrival of eleven $150 \mathrm{kc} / \mathrm{s}$ pips instead of ten. This therefore retards the phase of the $15 \mathrm{kc} / \mathrm{s}$ pips leaving V_{3} by $62 / 3 \mu \mathrm{~s}$ every time V1l fires. The number of times V3 fires per second is determined by the setting of P 5 so the rate of phase shift can be controlled.
85. The circuit diagram of D.III, which is not used at Monitor Stations, is shown in Figure 25 and the waveforms in Figure 24. The circuit is similar to that of Divider D.II with the follcwinc cxceeticns:-
(i) The $150 \mathrm{kc} / \mathrm{s}$ squessing valve V_{2} is replaced by a cathode follcwer with a short time ccnstant C_{4} R_{5} in the grid circuit.
(ii) The division ratio of the second stage is 10 instead of 5 , thus givin a $250 \mathrm{c} / \mathrm{s}$ output instead of $500 \mathrm{c} / \mathrm{s}$. A fine division control P_{3} is provided for the second stage.
(i11) The callbration pip valve (V14 in D.II) is not required.
(iv) Three valves V16, V_{15} and V_{14} are provided to prociuce a pulse of about 400μ wide and 120 volts amplitude. This is fed thrcugh the cathode follower vi4 to the transmitter hut to trip the transmitter.
86. VI6 is the Pulse widener. The input from V8 (Figure 24 AA) is applicd to the cathode of V16 thich conducts during the negative part of the cycle and so charges Gzo. When the pegative part of the cycle hes ended C30 discharges through the high resistance R53. This gives a waveform, shown in Figure 24 BB , which cutsoff V_{15} thus producing a 400μ sositive pulse at the anode of this valve. This pulse is then passed to the cathcde follower VI4.
87. From the cathode of V_{14} an output is takcn to a three-position key. with the key in the uppar position (OFF) the outjut is disconnected. In the middle position (INSPECT) a marker pulse is taken through a small condenser C35 via a terminal on the Filter strobe Unit to the Yl plate of the C.R.T. and in the lower position (SEND) the locking pulse is sent down the line to the transmitter hut.

ITEE BASE UNIT

88. The circuit diagran of the Time Base Unit is shown in Figure 31 and the waveforms and chassis laycut in Figure 32. The traces produced on the cathode ray tube are shown in Fizure 43. There are tiree different time bases available, the Main, the Strobe and the Hizh SFe ed Strobe time bases respectivoly. All are produced by the same unit.
89. Main Time Basc.- The appearance of the Main Tim Base on the cathode ray tube is shown in Figure 43. The circuit diagram is shown in Figure 31 where all the contacts of the changeover switch are shown in position M. The $500 \mathrm{c} / \mathrm{s}$ input to VI is jaken from Divider II. This input pulse (shown in Figure 32A) is applied to the suppressor grid of V1, which is connected in a Transitron circuit. The positive pis causes $V_{2 A}$ to conduct and draw current from C_{1}, so that at the end of the positive pip C_{1} will be negatively ahargedand as G_{3} of V_{1} is connected to C_{1} this diverts some of the anode current of V_{1} to the sereen so that the screen voltage falls due to the arop across R3. The screcn is connected to the suppressor via C3 so that the drop in voltage is commicated back to the suppressor so that a cumulative effoct is set up and V1 is cut off sharply.
90. The condenser $C 3$ now discharges through $R 3$ and R_{4}, the rate of discharge being adjustable by R4 ("Square wave") so that the next positive synchronising pulse brings the supressor voltage above cut off. The process is now reversed and V_{l} is brought on sharply. The waveforms at V_{1} screen, suppressor and anodo are shown in $\mathrm{Fig}_{\mathrm{g}} \mathrm{3ZB}, \mathrm{C}$ and D . It will be seen that a square wave is produced at screen and ancde. This square wave is not symatrical, as the negative zoing edge is produced by the rear edge of the locking pulse and the positive going edge by the front cdge of the pulse, but this assymactry is not important.
NOTE:- A more detailed explenation of the Transitron is given in appendix 1.
91. The square w ave from the ancde of V_{1} is fod to the srid of V_{6} via C15 and the limiting resistance
R_{32}. V6 is cut off during the negative part of the square wave so the sereen potential 1 s oquel to the H.T - voltage but when the positive part arrivos the valve conducts and the suppressor voltafe falls below cut off due to the Transitron action alroady described. sill the cathode current of the valve flows to the sereen, which therefore takes up a very low potential (Figure 32E and F).
92. Cl7 then starts to discharge, the rate of discher; being controllable by R7l ("A step, positicn"). As soon as the suppressor voltage rises above cut off (Figure 32E) the anode starts drawing current so the screen voltage and hence also the suppressor voltage rise sharply. The valve now conclucts until the arrival of the negative wavefront from V_{1} which cuts V_{6} off completcly, so that the screan voltage again rises to full H.T. potential. The complete waveform generated on the screen in this manner is shown in figure 3af. The langth of the "Step" cen be varied by R7l and the armlitude ock be adjusted by R72 ("Strobe Space"). This waveform is applied to the Y_{2} plate of the cathoderay tube to produce the stepped double tine base.
93. The input to $V 2 B$ consists of a positive pulse followed by a negative "ring" (Figure 320). The positive part of this waveform charges C_{4} throush $V_{2 B}$ and this charge then leaks away throuth R_{5} which is a high resistance. The time constant R5 C4 is large so that the pulse at the cathode of $\mathrm{V}_{2 B}$ is longer than the pulso applied to its anode (See Figure 32 C and H).

S.D.0295(1), Chap. 12

21.

94. V3 is normally biassed off by the voltage across R12, but the positive pulses developed across R_{5} make the valve conduct for about $150 \mu \mathrm{~s}$. The anode and screen potentials of V3 therefore fall sharply as C_{8} discharges through the valve. When V_{3} is again cut off, the anode potential rises slowly as C_{8} charges up through Rio (Figure 32 I) and the screen potential rises imediately to its original value as show in Figure 32 J. The anode circuit time constant $\mathrm{R}_{10}, \mathrm{C}_{8}$ is $25,000 \mu \mathrm{~s}$ and C_{8} is allowed to charge up through R10 for about 1800 us only so the rise in anode potential is nearly linear. The variable resistance 66 ("Main T.B.Gmp.") controls the potential towards which C_{8} charges $u p$ when $V 3$ is cut off and this determines the amplitude of the saw-tooth waveform produced at the anode of the valve. The negative pulise on the screan of VZ (Figure 32J) is taken to the grid of the cathode ray tube and is used to black out the flyback stroke of the time base.
95. The sawwtooth wave generated by V3 is only of about 15 volts amplitude, so it is therefore amplified by the paraphase amplifier valves $V 4$ and $V 5$ in order to provide a large enough deflecting voltage to apply to the Y plates of the cathode ray tube. V4 amplifies the saw-tooth and feeds it to the XI plate. a fraction of its output is tapped off by R19 and R20 and is fed to the grid of V_{5}, which feeds the X_{2} plate. The variable cathode resistor R68 (uparaphase") of V5 is adjusted until V5 is giving an out put voltage of equal amplitude (but opposite sign) to that given by V4. (Figure 32 K and L).
96. Negative feedback is provided by R_{17} in V_{4} and R_{23} in V_{5} in order to improve the linearity. R_{69} provides an X shift control by controlling the mean D.C. level of the output to the X plates. The production of the bright Strobe markers is described in para. 99 and 100.
97. Strobe Time Base- The strobe time base is produced when all the switch contacts on the circuit diagram (Figure 31) are in position "S". The action of V_{1} and V_{6} is unchanged. V_{7}, V_{8} and V_{9} are the A, B and C strobe producing valves respectively. The input to $V 7$ is the same as the input to V6 (Figure 3aN) but the output.from this transitron is taken from the anode. When the positive going square wave is applied to the grid both the anode and screen will start to take current, but since the screen resistance R4o is so high (220 K) the screen voltage will fall rapidly thus cutting off the supprossor grid and preventing the anode from drawing current until c39 has discharged sufficiently (Figure 32.0). The anode waveform (Figure 32p) is thus a negative "spike" coinciding with the arrival of the positive-going edge of the square wave on the grid, a short waft the length of which depends upon the setting of C39, and then, when the condenser has discharged sufficiently to allow the anode to draw current, a square negative pulse lasting until the locking waveform goes negative again. "The position of the front of the negative pulse depends upon the setting of C39. ("A strobe position").
98. V_{8} and V_{9} operate similarly to $V 7$ except that the square locking wave applied to the grid of V_{9} is taken from the screen of V_{1} instead of from the anode, so that this input is effectively in anti-phase. This confines the C strobe produced by $V 9$ to the lower trace of the time base. The anode waveforms of V_{8} and $V 9$ are shown in Figure 32R and U_{0}. The switch S3 ("B strobe position coarse") which connects different capacities into the transitron circuit and by the fine control C40. The C strobe edge is similarly controlled by 54 (coarse) and C46 (fine).
99. The outputs from V7, V_{8} and V_{9} are differentiated by the condensers C_{31}, C30 and C_{26}, each condensor forming a short time constant with R62 and R78 ("strobe T.B. period"). The mixed differentiated outputs are shown in Figure 32V. When these are applied to the suppressor grid of V10, which is another Transitron, square negative pulses are produced at the suppressor and screen and smaller positive pulses at the anode, by the usual Transitron action. A condenser C27 is connected between anode and grid of Vlo so that the anode waveform (Figure 32Y) is fed back to the grid thus cutting the valve on and off more sharply. These pulses can be moved along by the coarse and fine position controls so that the a strobe pulse can be set anywhere on the step, the B pulse anywhere on the B trace and the C pulse similarly anywhere on the C trace.
100. The durations of all the strobe pulses are varied by R78 ("Strobe T. Be period") which control the discharge time of the condenser C32. The screen waveform of Vio (Figure 32X) is tapped down by R61 and R60 and applied to the cathode of the cathode ray tube. This protides brightening for the strobe time bases to overcome the faintness due to the high speed of writing, and on the Main time base indicates the positions of the strobes by bright markers which can be made to move alond the time base by means of the strobo position controls. When the time base switch S_{1} is switched to "Strobell those portions of the maln time base lying inside the strobe markers are expanded.
101. V_{3} provides the actual deflecting waveform for the strobe time base. In the "strobell position its cathode is earthed and the grid is taken to H.T. via the leak R90. The square negative strobe polses from the screen of V_{10} are fed through C_{3} on to the grid of V3, thus cutting the valve off. This allows C7 to charge up through R10. The time constant $R_{10} C_{7}$ is 500μ and the valve is cut off for about 80μ s only, so the rise of voltage ac' oss C7 is nearly linear. When v3 again draws current, at the end of the negative strobe pulse, C_{7} is discharged. The time after which V_{3} is cut on again is determined by R78 ("Strobe T. B. period") which controls the length of the strobe pulses and hence the duration of the strobe time bases.
102. Figure $32 Z$ shows the waveform at the anode of the time base valve V3. Note that on strobe time base the anode potential of V_{3} is held down and "pushed up" to produce the deflecting waveform, whereas on Main Time Base the anode voltage is "pulled down" and then allowed to rise back to its original level. The paraphase amplifiers V4 and V5 work in the same way in the "Main" position except that V4 has its blas increased by the introduction of R_{18} and R_{67} into the cathode circuit so that it can deal with the positive-going input and V5 has its bias resistor shorted out so that it cen handle the negative zoing input from V4. (Figure 32 AA and BB). R 70 is the X shift control which alters the mean D.C. level of the X plates.
103. High speed strobe time base.- An extra fast strobe Time Base is available with the switch on the upper position. In this case the $0.001 \mu \mathrm{~F}$ condenser C 7 is replaced by C 38 which is $0.0003 \mu \mathrm{~F}$ thus giving a more rapid sweep as the voltage on the anode of V3 rises more quickly because of the shorter tire constant C38 R_{10}. There is no change in the rest of the circuit.

$1.5 \mathrm{Mc} / \mathrm{S}$ CALIBRATION UNIT

104. The $1.5 \mathrm{Mc} / \mathrm{s}$ Calibration Unit provides a fine calibration scale for use on the H igh Speed Strobe time base. It can give either $1.5 \mathrm{Mc} / \mathrm{s}$ pips or sine waves as required. It is locked from the $150 \mathrm{kc} / \mathrm{s}$ source feeding Divider II. The phase of the output from the calibration unit can be shifted by ineans of phase Shifter 5 which is mounted under the control desk. The scale of the Phase shifter knob is divided into lo divisions (each phase shifter is indiviciually calibrated) so that the phasing of any pulse on the time base can be measured to within about 0.0002 or 0.0003 of a division which is 0.01 to0.02 of a microsecond approxinately, by balancing the trough of the sine wave on the peak of a triangular pulse (see figure 43j). Alternatively a pip can be balanced on the peak of the pulse.
105. The circuit of the calibration Unit and P.S. 5 is showi in Figure 33 and the layout in figure 34. $150 \mathrm{Kc} / \mathrm{s}$ positive pips from the cathode of V2 in Divider II are fed on to the grid of VI via Pye Plug $\mathrm{P}_{\mathrm{I}} \mathrm{II}$. This valve is biassed back by the voltage developed across the 220 K grid leak R4, due to grid current, (sce S.D.0169, Chap.2) instead of by the normal cathode resistor and only the peaks of the input pulses are passed. These make the tuned primary winding of L_{1} "ring" at $1.5 \mathrm{Mc} / \mathrm{s}$. The oscillations induced in Ll decay fairly rapidly between each $150 \mathrm{kc} / \mathrm{s} \mathrm{pip}$, so they are applied through a short time constant circuit c 7 R8 to the grid of V2, which has a coil L2 in its anode circuit which is also tuned to l. $5 \mathrm{Me} / \mathrm{s}$ by Cll. This gives a sinusoidal voltage of nearly constant amplitude on the secondary of L_{2}, whence it is fod to Phase Shifter 5 through the 4 pin plug mounted on the front panel.
106. The operation of P.S.5. Is exactly similar to that of P.S. 3 and 4. The output from the rotor of the condenser C2 is fed into an amplifylng valve V3 via the Pye plugs P22 and P23. The anode load of V3 is the tuned circuit L3 C13 $\mathrm{C}_{17} \mathrm{C}_{16}$, and this feeds the sine wave to the grid of V4 through C_{19}. The cathodes of V3 and V4 are taken to earth via a pair of contacts on the "Cal oi'ps" Post Office key mounted on the desk. In the "OFF" position of this switch (away from operator) these contacts are oponed and V3 and V4 are blassed off by Rl8. In the two "UN" positions (Cal. Pips and Sine Waves) the contacts are short-circuited.
107. V4 has a twoway changeover relay in its anode and screen circuits. This is shown in the unenorgised position in Figure 33, in which condition the unit gives $1.5 \mathrm{Mc} / \mathrm{s}$ pips. It will be seen that in this case V4 works with its anode and screen connected together. The anode load is R_{20} and this together with the snall condenser C25 differentiates the output, giving sharp negative pips which are applied to the Y Y plate of the cathode ray tube. In the sine wave position (switch towards operator) V4 works as a pentode, the anode load being the transformer coil L4.
108. The relay is show in the diagram in the standard symbolic notation, being shown as a rectangle mith its D.C. resistance in ohms (2000) written inside. The reference number RELI beside it incicates that it is relay No. 1 on this particular unit, and has three pairs of contacts designated RELI 1, RELI 2 and RELI 3.
109. Ne description of the operational method of using this unit is given as the technique is liable to be constantly modified.

CATHODE RAY TUBE UNIT

110. The C.R.T. consists mainly of the various resistance networks for applying the correct working potentials to the cathode ray tube and the input circaits through which the deflecting and brightening waveforms are applied to the appropriate clectrodes. The circuit diagram and chassis layout are shown in Figure 35. The following controls are provided:-
(i) Y shift (Rll). This controls the standing potential applied to $Y 1$ and Y_{2} increasing tho potential applied to one as the other is decreased.
(ii) Astig (R10)- in input from the stabilised H.T. supply from PP3 is tapped down by Rlo and applied to AB and the graphite shield of the tube. By suitably adjusting the voltage the spot astignatism can be reduced to a minimum and the overall focus of the tube improved.
(iii) Focus (Rl2) om The spot is focussed sharply by altering the E.H.T. voltage on 2 until best definftion is obtained. The settings of "Focus" and "istig" are mutually interdependent.
(iv) Brilliance. (R9).- Brilliance is controlled by varying the bias voltage between grid and cathode of the tube, thus controlling the density of the electron beam.
111. The controls are all mounted on the C.R.T. controls panel irmediately above the C.R.T. pancl. diode valve VI is mountel on the unit to provido D.C. restoration, which is necessary to kecp the brightness of the tube fairly constant on both Main and strobe time bases.
112. 4 small Oscillograph is provided for general monitoring and in particular for setting up the Dividers. The conventional thyratron circuit is shown in Figure 37 , together with the chassis layout. It will be seen that the time base speed is adjusted by the selector switch si and the "Velocity" control R8. In position 1 of the selector a high speed time base is produced by magnetic deflecticn. L_{1} and L_{2} being the deflector coils. In switch positions $2,3,4$ and 5 the time base swecp is obtained by electrostatic deflection. In this case the positivemoing sawtooth on the anode of $V 2$ is amplifled and inverted by V3 before being fed to the X2 plate of the cathode ray tube.
113. The time base must be synchronised by feeding a signal onto the grid of the thyratron. i valvo VI is provided to amplify the locking signal and to act as a buffer between the thyratron and the circuit uncer examinat ion. The cathode bias on V2 may be varied by means of a variable resistance Rio. This det ormines the potential which must be applied to the grid to make the valwe strike and thus provides synchronising control.
114. It is neeessary to allow the thyratron about a minute in which to warm up before the H. T. is applied. A diode $V 5$ in series with a relay coll and a resistor is connected between $H . T$. + and earth. The reley switches H.T. on to the thyratron. When the unit is first switched on V5 is cold and passes no current so the relay remains open and no $H . T$. is applied to V_{2}, but when the valves have warmed up V5 will pass sufficiont sufficient current to close the relay and switch H. T. onto the thyratron.

FUSE AND INDICATCR PANEL

115. The Fuse and Indicator (F and I) Panel carries the mains and H.T. switches and fuses with their indicator lamps and the mains voltmeter. The circuit diagram is shown in Figure 39. It will be seen that the neon lamps are arranged so that if a fuse blows the assoc iated lamp is extinguished.

POWER PACKS

116. There are six power packs on the recoiver. PP1, PP2, and PP3 are shown in Figure 38, PP5 and PP6 in Figure 40 and PP7 in Figure 41.

11\%. PPl supplies E.H.T. for the two cathode ray tubes and alsc various L.T. supplies. There are two transformers T1 and T2 each having E.H.T. winding and three L.T. windings. The E.H.T . windings give supplies of 1,700 volts and 800 volts which are rectified by the diodes V_{1} and V_{2} respectively. Each supply is snoothed by a resistance and two condensers.
118. PP2 consists of two similar H.T. power packs i. and B, which are fed from onc transformor which has also three L.T. windings. Each H.T . supply is smoothed by a louble filter circuit consisting of two chokes and three blocks of condensers. The second and third set of condensers of riz E are mounted on the chassis of iP3 owing to lack of space on PP2. A 500 ohn resistance is in series with L_{2} on iri2 A to linit than alltout uniman

A stablifing valve is mounted on P.P. 2 , which feeds part of the wal H.P. sapply to the strobe Gain and A.V.C. units. This stabilisar is similar to that on P.P.3, which is described in the next paragraph. The potentio meter R_{3} is adjusted for minimun hum on received signals.*

(ANTM)

output of the power pack with a resistance R2 in its anode circuit. The valve takes a constant drain from the power pack. Consider what happens if the H. T. voltuge tends to rise: the rise will be fod on to the grid of V2 through C7: This makes the valve take more current and so the voltage drop across R2 increases. Thus by sultably adjusting the potentiometor R1 the voltage iropped across R2 can be made equal to the rise of H. T. voltage, so that the output voltage.which is taken from the anode of V2 remains constant.
120. Similarly if the power pack voltage falls the valve takes less current so there is loss drop acruss R2. R4 applies negative feedback to the valve thus increasing the lincarity of its characteristic. $\overline{\mathrm{n}}$ I is adjusted by observing the High speed strobe time base and turning the potentiometer knob until all the time bases are iree from jitter. The choke L3 and condensers C_{3} and C 9 are part of the smocthing circuit of PP2 B, being mounted on PP3 because of lack of space on Pi2.
121. PP5 supplies H.T. to the Oscillograph unit, and PP6 provides energising current for the relays on the Filter Input Unit (F.S) Fllter Strobe Unit (F.S.I) and Calibration Unit (Cal.pips). No snoothine is . needed. The output voltage is about +100 volts.
122. PP7 supplies H.T . to the Receiver unit, together with a nogative H.T. supply for the anti-janming circuits. An L.T. winding is also provided. V_{1} is the normal $\mathrm{H}_{\mathrm{H}} \mathrm{T}$. rectifier. V2 is connectod acress one half of the secondary winding of $T 1$ and is arranged to give a negative output which can be set corroctly by means of the potentioneter P_{1}. This negative voltage. should be -230 volts in positions X and Y of the anti-jaming switch, measured with a voltmeter consuning not more than $1 \mathrm{~m}_{\mathrm{L}}$.

ADJUSTMENT GF DIVIDERS II AND III

124. Connect the terminals "YYl" and "Sync." on the 0 Unit and also connect the long wander lead to "Yl". "Y 2 " should be earthed. The waveforms at the various inspection points of D.II, shown in Figure 24 N to Q, are then observed by pluggirg the wander lead from "Yl" into the inspection point sockets. fit l.p. 1 on D.II we have the $150 \mathrm{kc} / \mathrm{s}$ sine wave from the crystal oscillator on the F.C.O. (Figure 24 N) which may be observed with the condenser switch on the 0 unit in position 2.
125. Inspection point 2 is used to set up the first divider stage, which divides by 10. The 3 unit "Velocity" and "Sync" contrcls areadjusted until a steady picture is obtaired and the potentiometer P1 ("Stage 1 divide by 100) is adjusted until the waveform is as shown in Figure 24.0 , that is until there are 10 positive pips between each pair of negative pips. It will be seen that stable operat ion is obtained over a renge of adjustment of the control. The best position is in the midde of this range.
126. This setting should be checked with the Time Base switch in both "main" and "Strobe" positions, as there nay be a small difference between the two readings because the colibration valve V14 may affect the operation of the first divider stage. "All the other stages may be set up in either position of the fime Base switch.
127. Stage 2 divides by 5 and is adjusted by inspectine the waveform at I.P.3. with the 0 unit swich in position 3. The weveform should be as seen in Figure 24 P . The control for this stage is marked "Stage 2 divide by $5^{\prime \prime}$, and should be set to the centre of the range of correct division.
128. Stage 3 is set up by inspecting the waveform at I.P. 4 with the 0 unit switch in position 4 . The waveform is as shown in Figure 24Q. P4, marked "Stage 3 divide "by $6 \|$ is set to the centre of the ranse over which division by 6 is obtained.
129. After adjustment of the division steges the cporation of the coarse phase shifter should be checked. Suppose the receiver has been tuned in and that pulses are visible on the time base. Turning the coarse phase shift control to the right, thus switching on V1l, should cause the pulses to move in steps of $62 / 3$ microseconds towards the leit of the time base. This is because every time Vll squeggs, the output of the divider is delayed by $62 / 3$ microseconds and so the stert of the time base, which is locked from D.II, is delayed by the same amount. The speed of travel of the pulses across the time base should increase as the coarse shift control is turned further clockwise, as this increases the frequency of operaticn of the phase shifter.
130. It may occasionally be necessary to adjust $C 24$ so as to ensure correct operaticn of the coarse phase shifter, which should work at both extremes of the setting of PI. With the divider controls properly adjusted set P_{I} so that the first stage is on the vorge of dividing by 11 and check that the coarse phase shifter works satisfactorily. Now turn PI until the first stage is about to divide by 9 and again operate
 phase shift. This can be done with a small sercwdriver. Reliable phase shifting will then be obtained at all settings of Pi.
131. The adjustment of D.III is carried out similorly to the method given in para. 124 to 129. The second stage, however, is set to divide by 10 so that the output pulse occurs at $253 \mathrm{c} / \mathrm{s}$ instead of $500 \mathrm{c} / \mathrm{s}$. 4 fine control P3 as well as the coarse control P2 is provided for the second stage. The waveform at inspection points 2 to 6 are shown in Figure $24 D D$ tc $H H$. un inspection foint for the $150 \mathrm{kc} / \mathrm{s}$ input is founted inside the removeable front cover, at the top left hand corner.
132. Coarse shift operation should be checked on D. II and this is most conveniontiy done with the "TXemod." switch on D.III in the "Inspect" position so that a merker pulse from the output valve is fed on to the Yl plate of the tube. In this case, the output cf the divider is delayed by $62 / 3$ microseconds overy time the ccarse phase shifter squeggs, so the marker pulse on the tube moves to the right. aciustment of the coarse phase shifter is the same as for D.II.

DJUSTMENT OF TIME BASE

133. The appearance of the Main, Strobe and High Speed time bases when correctly adjusted is shown in Fizure 43 a, D and E. There are in all sevonteen controls and a Post officc key switch on the Time base unit of which eleven are preset being mounted behind the removable cover. Imediately under the time base panel is a $1 \frac{3}{4}$ inch ;anel on which are mounted the Focus, Brilliance, astignation and Y shift controls for the cathocic ray tube. These should be adjusted before satting up the time base. Figure. 43 A shows the appearance of the Main Tire Base. This consists of two traces, the uppor one having a "step" at the beginning. Ech trace is calibrated by bright $15 \mathrm{kc} / \mathrm{s}$ pips obtained from the first divider stage via V14 in D.II. The time intorvol between these fips is $662 / 3$ microseconds and they should appear about $3 / 16$ inch apart on the tube.

13'. It is first necessary to set up the "square wave" control R 4 . This is mounted on the sub-panel inside the time base unit. By plugging the 0 Unit inspection lead into inspection point p2 the square wave at the anode of VI can be seen (Fl g .32 D). If R4 is incorrectly set the two halves of the square wave will not be of equal length and the time base will appear as in Figure 43 B or C . When R4 is correctiv set, which should occur over at least 900 rotation, the time base will be as shown in figure $43 / 4$.
135. i.fter seting up the "square wavell stage, the $15 \mathrm{kc} / \mathrm{s}$ coarse calibration pips can be chocked. These should be about twenty-seven on each trace, the othor three being lost in the ublack out". After this the "A stepl control R7l is set up. This varles the lensth of the stop at the beginning of the upper trace and should be set so that there are three coarse calibration pips upon it. The ster waveform may be observed at P_{6} (F iguife 32 F).
136. The spacing betwoen the time base traces (and hence the spacing betweon the strobe time bases) may be adjusted to a convenient size by varyins the amplitude of this step waveform by means of the "Strobo Space" control R72. The amplitucle of the main time base can be altered by moans of RGG (Main T. T . amp."). This should be set so that the trace just fills the screon of the tube. The deflecting waveform at the oncde of $V 3$ can be seen at P3 and is show in figure 32 I. R66 aujusts the amplitude of this sawmocth.
137. The output from the first paraphase aplifior $V{ }_{4}$ nay be chscrved at $P 4$; the correct wavofom is show in figure 32K. If the anplifier is overloai: the output will be distortad which will cause the time base to be non-linear. Should this cecur the umain T.B. Amp." control should be used to reduce the inpat to V4 until a good sawmtooth is obtainod at is.
133. At P5 we have the output from the socond pararhase arplifior V5s as shown in Figure 32 L. The "Paraphase" control R53 should bo adjusted so as to make the cutput from V5 of equal amplituce to the cutput from V4. This is best done by removins $V 5$ anc ncting the time base omitituce. Then replece the valve and adjust the "paraphase" control until the amplitudc of the tine base is double its previous value. .lso check the operation of Rg9 "Main (X) Shift".
16.
139. Three "Strobe Narkers" should be seen on the main time basc. Those are brisht patches which cover about 00 us (slightly more than the distance between two $15 \mathrm{c} / \mathrm{s}$ calibration pips) and their positions are controlled by mans of the three slow-motion dials giving fine control of the ag B and C strobes and the switches "B strobe position" and "C strobe position" which give coarse control of the B and C strobes. The A strobe marker can be moved ovor the A trace, that is the region to the left of the step on the uppor trace. The B strobe marker covers the region to the rifhtmand side of the step and the C strobe marker covers the 1 lower trace. R78 "Strobe period", varies the longth of the strobe time bases by controlling the time duration of each strobe. R67 ("Strobe amp") varies the length of the strcbe time bases by expanding or compressing them without altering the time duration of each.
140. The switch "Strobe Gain Select" (S2 on the circuit diagram) detormines whether strobe gain control is applied to the B or C strobe. The potontiometer RG4 ex R53 (MB Syn. or C syn. C) should be adjusted with recelver gain high enough to sec the "noisel and the strobe gain control at minimum, until the strobe gain control unit is synchronised corroctly. This control also permits a small variation in the loncth of the strobe gain control pulse to be cbtained.

METER READINGS

14. An 0- 250 micreamp meter is mounted on the panel of Phase Shifter 4. It is equipped with a flexible lead and jack plug which can be plugged in to any of the sockets on the units. Each sooket is shunted by an accurate wirewound resistor which is one of three standard values, 15.4, 6.07 or 3.02 ohms. The resistance of the meter is 600 ohns so that a simple calculation shows that the multiplying factors are as follows:-

Shunt	X Factor	Full scale Deflection
15.4	40	10 mi
6.07	100	$25 \mathrm{mi}_{\mathrm{i}}$
3.02	200	50 mA

142. i list of nominal current readings for each jack is given in table 4. The readings may differ slishtly in individual receivers. The values given are actual indications on the meter in microamps $=$ to obtain the current reading in milliamps multiply by the multiplication factor and divide by 1000: 0.5 . a current of 50 microanps through a 15.4 ohm shunt (multiplying factor 40) indicates an actual current
$01 \frac{50 \times 40}{1000}=2 \mathrm{mis}$

TAELE 4						
TYPICAL METER READINGS						
NSCIVER UNIT						
	N	X	Y	Z		
H.F.	120	120	120	12 C	200	
V1 V_{2}	30	100	100	100	100	(Max sain)
$\mathrm{V}_{3} \quad \mathrm{~V}_{4} \quad \mathrm{~V} 5$	110	40	40	80	100	
V7	180	180	180	180	100	
V_{3}	50	50	50	50	100	(Min. Gain)
V_{9}	40	40	40	10	100	(Min. Gain)

DIODE RECEIVER

V_{2}	V_{3}	70
V_{4}	V_{5}	100

FILTER INPUT_UNIT

V_{1}	60	40	
V_{2}	110	100	
V_{3}	20	40	$(F, S:=19)$
V_{4}	200	100	

17.

TARLE 4 (CONTD.)
Jack No. Nominal reading X.Factor Remarts
FILTER STRODE UNIT

V_{1}	15 tc 30	40	(Depending cn setting of "F.S. iosition")
V_{2}	75	100	
$\mathrm{~V}_{3}$	170	100	

STROBE GATN CONTROL UNIT

V_{1}	5	20
$\mathrm{~V}_{2}$	60	100
V 3	35	200

P. ${ }^{2} .3$ and 4
$\begin{array}{lll}\mathrm{V}_{1} & 120 & 100\end{array}$
TUE $工$ SUE UNIT

	Main	Strobe	
V_{1}	95	95	
V_{3}	60	115	100
$V_{i 4}$	50	23	100
V_{5}	60	100	40
V_{6}	180	100	40
V_{7}	60	60	40
V_{8}	100	100	40
V_{9}	150	120	40
V_{10}	195	205	40

$\xrightarrow{\square} \cdot \mathrm{V} . \mathrm{C} \cdot \operatorname{THIT}$

V_{1}	30	100
V_{3}	100	100
V_{4}	45	100
V_{5}	40	100
V_{6}	5	100

LILATIGY UNLT

V_{1}	20	40
V_{2}	60	40
V_{3}	60	40
V_{4}	$150 / 120$	60

DIVIDER D.II

V_{1}	95	102
V_{2}	140	<0
V_{3}	130	40
V_{4}	140	40

TunE $:$ (CONTD.)

Jack NC.	Nominal reading		X Factor	Remarks
DIVIDER D.II (CONTD.)				
	Main St	Strobe		
V_{5}	105		100	
V_{6}	120		40	
V_{8}	105		100	
V_{9}	185		40	
$\mathrm{V}_{10} \quad \mathrm{~V}_{11}$	150		40	
V_{14}	70/120		40	(Main/Strobe T.L.)
DIVITER D.III				
V1	85		100	
V_{2}	95		100	
V_{3}	130		40	
V4	130		40	
V_{5}	95		100	
V_{6}	140		40	
V_{8}	95		100	
V_{9}	200		40	
V_{10}	200		40	
V_{11}	10		40 (Se Shift)
V_{14}	155		100	
V_{15}	100		40	

T/BLE 2
INTER UNIT CADLING

21.

TABLE 2 (CONTD.)
INTER UNIT CADLING

$\begin{aligned} & \text { PYE PLUG } \\ & \text { NO } \end{aligned}$	TLPE COLOUR	TO	TAPE CCLOUR	$\begin{gathered} \text { PYE PLUG } \\ \text { NO. } \end{gathered}$
P. 15	Orange		Orange	P. 7
P. 16	Dlack		Dlack	P. 8
P. 1	Blue		Blue	P. 20
3.14	Green		Green	P. 5
P. 5	Green		Green	P. 6
P. 14	Green		Orange	P. 15
P. 22	Yellow		Yellow	P. 23

NC. CN BLOCK	SLEEVE COLOUR	TO	NO. CN BHONE JHCK
246	Grean		
245	YelICW		1
243	Red		2
244	White		3
243	Black		4 A

KEY NO. 198 (REMOTE /LCCLL/LUTO)				
NO. © BLOCK	COLCUR	T0	LEAF NO. ON KEY	CCLOUR OF LEd
235	Orange		1	White
236	Red		2	Diack
237	White		3	Red \& Black
238	Yellow		5	orange \& Diuc
239	Green		32	Slate
240	Blue		31	creen
241	Black		30	Orange \& ned
221	Dlack		29	Dlue \& Red
222	Dlue		23	Brown \& Red
223	Grcen		27	Blue \& White
224	Yellow		25	Red \& White
225	White		24	Lrown
226	Red		22	Red \& Green
227	Orange		21	Red

KEY NO. 216 (LOC.L M Minum Control key)		
$\begin{aligned} & \text { LEAF GN KBY NO. } 190 \\ & (\text { R.L.A }) \end{aligned}$	T0	$\underset{\substack{\text { Lis } \\ \text { ON KEY NO. } \\ \text { (L.M* }}}{ } 216$
29 32 5		$\begin{gathered} 1 \\ 6 \\ 2 \& 5 \end{gathered}$

KEY NO. 237 (CLLILRATICN PIPS)			
$\begin{aligned} & \text { NO. ON } \\ & \text { DLOCK } \end{aligned}$	SLIEVE COLOUR	TO	LEIF UN KEY NO. 287 (C,LA.PIPS)
223 231 232	Black Yellow White		$\begin{gathered} 3,3,12 \& 17 \\ 9 \& 18 \\ 2 \& 11 \end{gathered}$

KEY NO.60(A) (FILTER STRODE)						
NO. ON DLOCK	SLEEVE COLOUR	TO	LEAF CN KEY NO. 60(i.)			
(F.S.)						

$\begin{aligned} & \text { NO. ON } \\ & \text { ILOCK } \end{aligned}$	SLEEVE COLOUR	T0	LEAF ON KEY NO. 60(D) (F.S.I)
223	Dlack		$2 \& 5$
230	Green		$3 \& 6$

The imransitron' is a single valve circuit deponding for its oporaticn on the suppressor grid characterm istics of a pentode. Its chief use is to generate a square wave from a synchrirising pulse and in this respect the Transitron resembles the better known multivibrator.

Fig.la shows the effect of variations of suppressor grid potontial upon the anode and screen current of a pentode valve, the control grid being supposed to be connected to cathode, and the anode and screen voltages kept fixed. A fall in suppressor grid potential decreases the anode current and increases the screen current, the total valve current remaining approximately constant since this is dotermined by the control and screen grid potontials.

Suppose that the anode and screen are loaded by moans of resistance R1 and R2. Fig. lb lllustrates typical potential levels to which the electrodes will adjust themselves when the suppresscr is at cathode potential, and fig.le the corresponding levels when the suppressor is below the anode current cutmoff point. In fig.lb most of the valve current is passing to the anode so that there is a large drop of potential across the anode load; the screen current is small. In fig.lc the anode corrent is cut off by means of the suppressor grid so that the anode is at H.T. potential and the whole valve current flows to the screen. The screon potential thus adjusts itsclf to a very low value and the valve takes only a few milliamps of current, the behaviour of the first three electrodes being similar to that of a triode. During operation the transitron alternates between conditions (b) and (c).

Consider now the circuit of figeld and suppose a small negative synchronising pip fod thr cugh C2 to the suppressor grid of the valve. Before the arrival of the pip the valve was in condition (b) with the suppressor $2 t$ cathode potential, but the synchronising input takes it below cathode level and causes a decrease of anode current and an increase of screen current. The screen potential therefore falls and drives the suppressor grid further negative since they are coupled by means of cl. This causes a further increase of screen current and a cumulative action is set up which rapidly brings the valve into condition (c) with the anode current cut off and the screen at a low level. The suppressor grid is driven negative to earth by an amount equal to the.fall in screen voltage. See fig.le.

The screen current now discharges C_{1} through R_{3} and the potential on the supprosscr grid rises towards earth. The discharge continues until the suppressor grid potential has risen sufficiantly to allow the anode to take current; the screen curront then falls allowing the screen potential to rise and carry the suppressor further towards cathode potential. This causes a further reduction in screen current and the action is cumulative. Most of the valve cument now. flows to the anode and so the anode and screen return to the levels shown in fig.lb. The suppressor grid is driven above earth potential by the sudden rise in screen voltage and the charge on Cl then leaks away until the grid is again at earth level. The discharge of the condenser is partially offected by the flow of suppressor current. When the suppressor grid has returned to cathode level the cycle is completc and is repeated on the arrival of the next symchronising pip. Negative synchronising pulses arriving before the positive suppressor potential has been removed have no effect.

It will be seen that the anode waveform is a positive square wave and the sereen a negative square wave. The width is determined by the discharge of C_{1} through R_{2} and R_{3} and may be varled by adjustment of the suppressor grid leak Rz.

In the circuit of f ig. If the width of the square wave output is varied by adjust ing the pctential at the end of the grid leak RZ. The more positive this potential, the faster is the initial rate of discharge of C_{1} so that the width is reduced by increasing the potential at the end of the leak. See fig.lge

The transitron action fails if the anode load is so large as to bring the anode potential ove" the knee of the . characteristics, for under these conditions the change in anode voltage affects the anche current and offsets the effect of the variation of suppressor potentials.

The stability of the Trensitmon may be improved by connecting a diode between suppessor 3 id and earth. With this arrangement it is also possible to symehronise the valve by means of positive pips as in fig.lj. For suppose the pentode removed, then the positive pip causes the diode to conduct and the condenser C_{2} becomes negatively charged by the diode current. At the end of the positive pip the ancde of the diode will be negative to earth since C_{2} has now charged up. Thus the positive synchronising signal produces a waveform as shown in fig.lk at the anode of the dode. The negative part of this wavefcrm serves to synchronise the transitron. The transitren cycle thus starts from the back edge of the positive synchronising pulse and the relation of the waveforms to the locking signal is shown in fig. 1 l.

APPENDIX II

The Blocking Oscillator ...
Consider the circuit of fig.2a. It will be seen that the arode and grid of valve V_{l} are ifghty coupled together by means of an ircn-cored transfomer, the polarity of which is arranged to give positive feedback to the valve.

Suppose the valve cut off by the nogative charge on the grid condenser C. The charge leaks away through R and the grid drifts slowly towards cathode potential until eventually tre valve starts to conduct. Anode current then flcws through the primary of the transformer and the cnode pctential falls rapidly, an E.M.F. is also induced in the secondary and this carries the grid further positive. A cumulative action is set up which drives the grid well above cathode potential and the anode voltage falls to a low value. The effect of the inductance of the transformer windings is to meke the growth of anode current slowor thar the fall of anode potatial; the waveforms are shom in fig. 2 b . When the grid is positive to cathode, a large grid current flows and negative charge accumulates on the condenser C so that the potential at A falls.

After a time the anode current reaches its maximum value and stops increasing. But the E.M.F. induced in the secondary of the transformer is proportional to the rate of change of anode current so that the positive drive in the grid is redueed and the grid potential ialls. This reduces the anode current and the anode potential rises rapidly; at the same time the grid is driven further negative. The valve is thus suddenly cut off so that the anode current falls almost instantaneously to zero and the resulting induced E.M.F. in the primary of the transformer carries the anode far above H.T. potential. At the sane time the grid potential is carried below that of A. As the energy stored in the magnetic field of the trensformer is dissipated the anode returns to $H . T$. potential and the grid to the potential at A.

The valve being cut off, the concenser is left with the negative charge accurulated during the conctuction period and this leaks away through the resistance R. The discharge of the condenser is expenential and the waveforms at A is shown in fig. $2 c$. The grid waveform is shown in fige 2 d and it is seen that during most of the rest period, the grid is at the same potential as point A. After a time detarmined by the time constant CR of the grid circuit and also by the extent to which A is initially driven negative, the grid approaches cathode potential and the valve again takes current. The cycle is then repeated.

In the circuit of fig. 2a the grid leak is taken to cathode so that the condenser discharges exponentially towards cathode potential. The valve does not start to draw current until the discharge is almost complete and the rate of rise of potential on the grid is then very slow. The recurrence frequency of the oscillator is therefore unstable. In fig.le the grid leak is taken to a positive potential V and the potential at A rises exponentially towards this level. The grid reaches cathode potential when the process is only about cne-third completed so that the rate of rise of potential at is is sill rapid and the stability of the recurrence frequency is improved.

The rate of discharge of C is always proportional to the potential diference between its plates. If the potential V on the grid leak is increased, the discharge is speeded up so the recurrence frequency is increased. Thus a convenient frequency control is obtained by taking the grid leak to the slider of a potentiometer as in fige 20.

The discharge time of C varies if the potential to which A is driven negative when $V 1$ conducts changes, is an important source of instability because variations in valve characteristics will affect the amount of grid current collected by the condenser and therefore the initial negative voltage at R. Variations of stray capacity on the grid of the valve, for example, offset the pulse width and so the amount of charge accumulated on the condenser. In order to stabilize the discharge pericd it is necessary to provide a means cf of regulating the potential through which C must discharge and to make it independent of the characteristics of V_{1}.

If the cathode of V_{I} is biassed above earth level as in fig. 2 g , then a diode V_{2} connected across the condenser as show ensures that the rise of potential at A always starts from earth level. For although during the conduction period of $V 1$ the heavy grid current may carry A below earth, the diode V2 returns A to earth as soon as the pulse has finished.

It is now necessary to stabilise the potential E at the cathode of VI. In the circuit of fig. 2 g , unless the current through the bleeder $\mathrm{R}_{3}, \mathrm{R}_{2}$ is large compared with the valve current, the blas E on the cathode will vary if the valve current varies. For example, suppose that V_{1} conducts for 3 microseconds in a period of 100 microseconds and that it takes 100 ma whon it conducts. Then the men current is 3 mA . Variations in pulse width or in the peak current will affect this mean current and cause a corresponding charge in E. If the permissible variation of E is I volt and the possible variation of valve current is I mA. then R2 mast not exceed 1000 ohms. In order to blas the cathode to 60 volts above earth it would therefore be necessary to pass 60 mA . of current through this resistance and such large bleeder currents cannot be provided by a normal H . T. supply. A 'cathode follower' or 'regulating valvet V3 is therefore introduced as in fig. 2 h and serves to stabilise the bias on V_{2}. Since the ouput impedance of the cathode follower is only about 200 ohms, a variation of 1 mA . in the current taken by VI will cause only about 0.2 volt change in bias.

In the circuit of fig. $2 h$ the recurcnce frequency is practically independent of valve characteristics. For the potential E on the cathode of $V 1$ is determined by the voltage on the grid of V3, that is by the potentiometer R4, RS. The time required for C to charge up to this voltage is determined by C, the grid leak R_{1} and the voltage V determined by P_{1} and R_{6}. These components alcne determine the rocurrence frequency and can be made of high quality materials. Wire wound resistor and silvered mica condensers are suitable.

APPFNDIX ILI
Delay Network
A delay notwork nay ${ }^{r}$ s regarded as an artifiolal length of transmission line. An eloctromagnctic wave is propagated down a trer.smission line with a definitc velocity V, almost exactly equal to the velocity of light. Suppose that at tice $t=0$, a positive voltage is suddenly applied to the end of an infinite line as in fig. 3 a . This rise of voltage travels down the line and reaches a point at distance x from the end at time $t=x / V$. If the 1 ine is of infiniter length the remenss will rontinun indofinitolyu

$$
\text { S.D.0295(1), Chap. } 12
$$

25.

If at any point P along the infinite line a measurement was made of the instantaneous current and voltage as in fig. 3 b , it would be possible to calculate the ratio $\mathrm{E} / 1=2$. This ratio represents the effective impedance of the plece of line to the right of P. Suppose now that the line was cut at P and the left-hand portion terminated by an impedance equal to Z. Then the current and voltage at P would be related in just the same way as if the transmission line continued past P and so the waveforms to the left of P are unaffected. Z is called the characteristic impedance of the transmission line, and a piece of line terminated by an impedance Z behaves as though it was of infinite length. Z is purely resistive.

The behaviour of a transmission line is due to the fact that the wires possess distributed fnductance and capacity. If L is the inductance per unit length and C the capacity per unit length the impedance is given by $Z=/ L / C$ which has the dimensions of a pure rasistance.

An artificial line may be produced as in fig. 3 c by means of lumped inductances and capacities. If we consider first an infinite chain then the behavicur is similar to that of an infinite line, that is, it transmits applied waveforms with a definite velocity. The velocity must now be expressed in telements per second instead of 'meters per second' in accordance with the fact that one element represents a short plece of line. The impedance R is still given by $R=\sqrt{L / C}$ obtained by substituting inductance per element and 'capacity per element' for inductance per unit length and 'capacity per unit length' in the previous formula.

Suppose that it is required to delay a pulse. The pulse may be fed in to one end of a delay network which is terminated at the other end by its characteristic impedance. The waveform travels thr ough the elements and after a definite time arrives at the other ond where its energy is completely absorbed by the terminating impedance which simulates a continuation of the network. A delayed but undistorted pulse is therefore produced at this point. The delay, of course depends on the number of elements in the network and on the delay produced by each element.

Consider a typical section element. The succeeding elements may be replaced by the characteristic impedance R of the network as in fig. 3f. It is clear that this element will attenuate high frequency components of the applied waveform because C prevents a small impedance at these frequencies. The impedance of L and C becomes equal at a frequency given by $2 \pi f_{0}=1 \sqrt{\text { LC and at higher frequencies the impedance of } c \text { is small compared }}$ with that of L, so that the element attenuates the applied waveform. The periodic time to corresponding to a frequency i_{0} is $t_{0}=1 / F_{0}=1$ zegLC and tis is the time required for the current through L to appreciably affect the charge on C. Thus if the waveform applied to the network rises instantaneously as in fig. 3 g , the output waveform will require about t_{0} seconds in which to rise because this is the time required to change the charge. on the condenser in the network. The values of inductance and capacity in a delay network must be chosen so as to permit the required rate of rise of the outcoming pulse.

The delay of the element may also be estimated. The back E.M.F. induced in the inductance opposes any sudden rate of change of current and therefore any sudden change of voltage across R. The time required for a major change in the current through L as a result of a change in the voltage applied at A is L / R seconds. Thus if the potential at A rises suddenly we expect a delay of about d / R seconds before the rise of potential at C is complete. It can be shown that the element produces a delay of exactly L / R seconds.

Collecting the previous results:-
Network impedance
Delay per element
Time of rise of output pulse

$$
\begin{aligned}
R & =\sqrt{L / C} \\
& =L / R \text { secs }=/ L C \operatorname{secs}
\end{aligned}
$$

$$
\text { Time of rise of output pulse } \quad=2 \pi \sqrt{L C}=t_{0} \sec .
$$

A delay network consists of an aggresate of elements such as those of fig.3f. In practice these are more conveniently wound as in fig. 3 j , the two end inductances being $\mathrm{L} / 2$.

Reflactioms

Suppose that a delay network is short circuited at one end B as in fig. 3 l, and that the potential at the other end A is suddenly raised to V volts above earth. The rise of potential is propagated along the network in the usual way and if there are n elements reaches B after $n T$ seconds, T being the lelay produced by each element. Since the network is short circuited at B no potential difference can exist at this point. When the positive going wavefront reaches B it is imediately reflected and inverted and the reflected wavefront starts to travel along the network towards A . The reflected wave is negative going and of the same amplitude as the incident; the two waveforms thercfore cancel out at B as is required. The negative going waveform leaves B at time $n T$ and arrives at A after a further $n T$ seconds, just $2 n T$ seconds after the rise of potential at B. The waveform at A is thus a positive square wave of V volts amplitude and 2 nT seconds duration. The potential at B is always zero and at interiediate points the applied and reflected waveforms combine to produce a positive square wave of width less than $2 n T$ scconls. It has been assumed that the returning wavefront suffers no further reflections at A; this is the case if the network is terminated at A by its characteristic impedance.

The reflection of a waveform by a short circuited network or plece of transmission line is similar to the reflection of a ray of 11 ght at the surface of a mirror. If P (fig .3 m) is a source of light in front of a mfrror then a ray such as $P R$ is reflected at R and continues along $R S$. The ray $P N$ which meets the mirror at right-angles is rellected back along NP. All the reflected rays appear to diverge from a point Q behind the mirror, P and Q are at equal distances from the reflector and Q is called the inage of P. Thus an observer in front of the mirror sees what appears to be a second source of light at Q, the light reflected from t he mirror seeming to be radiated from the imaginary source.

26.

The method of images may also be used to determine the behaviour of a short elrcuited line. Imagine the ine cont inued past B to C and that the sections $A B$ and $B C$ both contain the same number of elements. If at the instant $t=0$ the potential at \dot{A} is suddenly raised to V volts above earth and that at C lowered to V volts below earth, then a positive going wavefront will travel from A towards C and a negative going wavefront from C towards A. These two waveforms both arrive at B at the same instant $n T$ seconds after the start of the wave motion and cancel out. $4 t$ points in $A B$ the negative going wavefront propagated from C behaves in just the same way as that reflected from B in the circuit of fige 31 so that the waveforms at points in $A B$ are just the same as in the previous casc of a short circuited network.

It is seen that a short circuited delay network can be used to produce a pulse of width determined by the constants of the network. A practical circuit is shown in fig. 30 . The network is placed in the anode of a velve and a wide negative square wave is applied to the grid. The front edge $P Q$ of the grid waveform causes a rise $A B$ of anode potential; this is propagated down the network and the reflected wavefront brings the anode potential down along $C D$. The width of the pulse $A B C D$ is $2 n T$, the time taken for a wavefront to cross the network twice. The back edge RS of the grid waveform causes a fall EF in anode potential and $2 n T$ seconcs later the reflected wavefront roturns the anode to its normal level at H . It is seen that the front edge of the positive pulse $A B C D$ coincides with the front adge of the grid waveform but that the width of the pulse depends solely on the constants of the network.

(a) THe wave front ravels adowa $]_{\text {tox }}$
$\longrightarrow V$
(e)

WAVEFORMS ALONG THE NETWORK

(c)

(d)

(m)

THE WAVEFRONT TRAVELS ALONG THE NETWORK AS ALONG A LINE IN (a)

A enperpeplepecpocpopenpouplepseperpan-C
$\sqrt{\text { APPLIED }} \begin{aligned} & \text { WAVEFORM }\end{aligned}$ APPLIED
WANEFROM
(h)
(h) FRONT SLOWED DOWN BY
i To L NETWORK DISTORTION
L

DELAYED
WAVEFORM
(ii)
\square

(0)

DELAY NETWORK.

FIG. 7

FIG. 17 A.V.C. UNIT CIRCUIT

Ritand R24 mounted on front of panel

FIG. 19 A.V.C. UNIT LAYOUT

FIG. 18 A.V.C. UNIT WAVEFORMS

(A) (B) (c) \bigcirc © © (c) (${ }^{-}$	$150 \mathrm{kc} / \mathrm{s}$ sine wave from crystal osculutor an f.c.o monorouns somps seme wate is v, moos.	® (3) (1) (1) (1) © (1) (1) (1) (2)	$\overbrace{}^{\text {S. D. } 0295(1), G H A P \cdot .12]}$ NMNONNMNM	
(1) (1) (1)	150C. $/ \mathrm{P}$ PIPS, AS $\mathbb{N}($ (D) ABDVE APPLIED TO VIA GRID. $15 \mathrm{KC/s}$ PIPS FROM TE FED DIRECTLY TO CRT CATHODE VIA. YM ANODE WHEN TIME BASE SWITCH IS AT MAIN. CALIBRATION WAYE FORMS. D II.	(14) (18) (1)		
6	$\underbrace{}_{150} \underbrace{\text { T. }}_{\text {KC/B INPUT To T. }}$ \qquad n-renerparenerner stace $2+5$, $15 \mathrm{Kc} / \%$ ro $3 \mathrm{KC} /$? DII INSPECTION POINTS WAVE FORMS.	(2) (1) (1) ©		divider il chassis (rear view) DIVIDER III CHASSIS (REAR YIEW)
FIG. 2			ER WAVEFORMS	FIG. 24

GHASSIS LAYOUT-REAR VIEW

$\left.\begin{array}{l}\frac{R 9}{R I I} \\ \frac{R 11}{812}\end{array}\right\}$ MOUNTED ON BRIGHTNESS \& FOCUS PANEL
FIG. 35 (BiB)
C.R.T. UNIT CIRCUIT

CHASSIS LAYOUT ~ REAR VIEW,

FIG 37

POWER PACK PPP 7 CIRCUIT

(

MAIN TIME BASE SHOWING $15 \mathrm{Kc} / \mathrm{S}$ CAL.PIPS

INCORRECT ADJUSTMENT OF SQUARE WAVE (R_{4} TOO SMALL) CAL.PIPS NOT SHOWN

HIGH SPEED STROBE TIME BASE NOTE NON-LINEARITY

INCORRECT ADJUSTMENT OF "SQUARE WAVE (R_{4} TOO LARGE) CAL.PIPS NOT SHOWN

StRobe time base
SHOWING $15 \mathrm{Kc} / \mathrm{S}$ AND $150 \mathrm{Kc} / \mathrm{S}$ CAL. PIPS
F

ENLARGED VIEW OF STROBE TIME BASE G WITH $1.5 \mathrm{MC} / \mathrm{S}$ CAL.PIPS SWITCHED ON valunars
$1.5 \mathrm{MC} / \mathrm{S}$ SINE WAVE CALIBRATION WAVE

J

METHOD OF BALANCING $1.5 \mathrm{MC} / \mathrm{S}$ CALIBRATION WAVE ON PEAK DF "TRIANGULAR" PULSE.

MAIN TIME BASE AS SEEN AT"C" STATION NOTE REDUCED GAIN ON STEP (DUE TO AN.C) AND ON C STROBE DUE TO STROBE GAN CONTROL

FIG. 7
FIG. 7

