Please do not upload this copyright pdf document to any other website. Breach of copyright may result in a criminal conviction.

This pdf document was generated by me Colin Hinson from a Crown copyright document held at R.A.F. Henlow Signals Museum. It is presented here (for free) under the Open Government Licence (O.G.L.) and this pdf version of the document is my copyright (along with the Crown Copyright) in much the same way as a photograph would be.

The document should have been downloaded from my website https://blunham.com/Radar, or any mirror site named on that site. If you downloaded it from elsewhere, please let me know (particularly if you were charged for it). You can contact me via my Genuki email page: https://www.genuki.org.uk/big/eng/YKS/various?recipient=colin

You may not copy the file for onward transmission of the data nor attempt to make monetary gain by the use of these files. If you want someone else to have a copy of the file, point them at the website. (https://blunham.com/Radar). Please do not point them at the file itself as it may move or the site may be updated.

It should be noted that most of the pages are identifiable as having been processed by me.

I put a lot of time into producing these files which is why you are met with this page when you open the file.

In order to generate this file, I need to scan the pages, split the double pages and remove any edge marks such as punch holes, clean up the pages, set the relevant pages to be all the same size and alignment. I then run Omnipage (OCR) to generate the searchable text and then generate the pdf file.

Hopefully after all that, I end up with a presentable file. If you find missing pages, pages in the wrong order, anything else wrong with the file or simply want to make a comment, please drop me a line (see above).

It is my hope that you find the file of use to you personally - I know that I would have liked to have found some of these files years ago - they would have saved me a lot of time !

Colin Hinson
In the village of Blunham, Bedfordshire.

TELEVISION MONITORS TYPES RKBA \& RLBA

GENERAL, AND TECHNICAL INFORMATION

BY COMMAND OF THE DEFENCE COUNCIL
TT.Dunnett
(Ministry of Defence)
FOR USE IN THE
ROYAL AIR FORCE

NOTE TO READERS

The subject matter of this publication may be affected by Defence Council Instructions, Servicing schedules (Volume 4 and 5), or 'General Orders and Modifications' leaflets in this A.P., or even in some others. If possible, Amendment Lists are issued to correct this publication accordingly, but it is not always practicable to do so. When an Instruction, Servicing schedule, or leaflet contradicts any portion of this publication, the Instruction, Servicing schedule, or leaflet is to be taken as the overriding authority.

The inclusion of references to items of equipment does not constitute authority for demanding the items.

Each leaf, except the original issue of preliminaries, bears the date of issue and the number of the Amendment List with which it was issued. New or amended technical matter will be indicated by black triangles positioned in the text thus:- 4............... to show the extent of amended text, and thus:- to show where text has been deleted. When a Part, Section, or Chapter is issued in a completely revised form, the triangles will not appear.

4 The reference number of this publication was altered from A.P.101S-0202-1, Cover 5 to A.P.116T-1105-1 by A.L. action in Feb. 69.

CONRAC.

TELEVISION MONITOR MODELS

RKBA
RLBA

Covina, California

CONRAC

TELEVISION MONITOR

MODELS

RKBA
RLBA

TABLE OF CONTENTS

Page
TECHNICAL SUMMARY 5
Electrical Specifications 5
Mechanical Specifications 5
Tube Complement 5
Diodes 5
Transistor Complement 6
INSTALLING AND UNPACKING 7
Connections 7
External Sync 7
INITIAL ADJUSTMENTS 7
Centering 7
Focus 7
Width Control 7
CIRCUIT DESCRIPTION 7
Video Input System 7
Video Circuit Description 7
Synchronization 8
Vertical 8
Horizontal AFC System 8
High Voltage Regulation 8
25-Volt Power Supply and Regulator 9
Pulse Former and Rectifier 9
Focus 9
Spot Killer 9
120-Volt Supply 9
Retrace Blanking 9
Sawtooth Integrator 9
MAINTENANCE 9
25-Volt Power Supply 9
Horizontal Saturation and Drive Coil Adjustments 9
Horizontal Linearity, Horizontal Trim, High Voltage Regulation 10
Vertical 10
Horizontal 10
Video Alignment Instructions 10
REPLACEABLE PARTS 23
MANUFACTURERS OF REPLACEABLE PARTS 31
LIST OF ILLUSTRATIONS
PHOTOGRAPH 4
REPRESENTATIVE WAVEFORMS 11
SCHEMATIC DIAGRAM \#452159, Block Diagram 15
SCHEMATIC DIAGRAM \#452277, Pulse Former and Rectifier Board \#162180-1 16
SCHEMATIC DIAGRAM \#452128, Video Amplifier Board \#162093-1 17
SCHEMATIC DIAGRAM \#452129, 25-Volt Regulator Board \#162091-1 18
SCHEMATIC DIAGRAM \#452130, Sync Chain Board \#162096-1 19
SCHEMATIC DIAGRAM \#452236, Vertical Deflection Board \# 162158-1 20
SCHEMATIC DIAGRAM \#452141, Horizontal Multivibrator \& Driver Board \#162108-1 21
SCHEMATIC DIAGRAM \# 452155, High Voltage Regulator Board \#162098-1 22

MODEL RLB14A

TECHNICAL SUMMARY

ELECTRICAL SPECIFICATIONS

Inpuł Power:

Video Signal:

Video Input Impedance:

Video Response:
DC Restoration:
External Sync:

Linearity:

65 watts nominal at $120 / 240$ volts, 60 Hz ($525 / 60$ U.S.), or 50 Hz ($625 / 50$ CCIR). All performance specifications will be met while the line voltage varies from 100 to 130 volts AC or 200 to 260 volts AC at any rate. 3 -wire line cord, 6 feet long.
0.3 volt peak-to-peak (minimum for 50 volts at kinescope). Sync negative at input.
High impedance bridging (equivalent to 50 K in parallel with 15 pF) can be terminated by an internal 75 ohm load $(\pm 1 \%)$ through a switch located on rear apron.
$10 \mathrm{MHz} \pm 1 \mathrm{db}$. Differential gain below 5% with 75 volts kinescope drive.
100% or zero, sync tip clamp.
1 to 8 volts. Parallel connectors. Operation from either composite video and sync signals or separate external composite sync.
Within 2% of picture height.

MECHANICAL SPECIFICATIONS (Dimensions do not include feet, handles and knobs.)

MODEL	WIDTH	HEIGHT	LENGTH	SHIPPING WEIGHT
RKB14A/C (Cabinet)	$13-13 / 16^{\prime \prime}$	$121 / 8^{\prime \prime}$	$185 / 8^{\prime \prime}$	76 Lbs.
RLB14A/R (Rack)	$19^{\prime \prime}$	$101 / 2^{\prime \prime}$	$173 / 8^{\prime \prime}$	68 Lbs.
RLB14A/RS (Rack Slide)	$19^{\prime \prime}$	$101 / 2^{\prime \prime}$	$173 / 8^{\prime \prime}$	67 Lbs.

Finish: Deep Umber Gray, Textured Vinyl

TUBE COMPLEMENT

$\begin{aligned} & \mathrm{V} 1 \\ & \mathrm{~V} 2 \end{aligned}$	$\begin{aligned} & 1 \mathrm{G} 3 \\ & 14 \mathrm{BDP} 4 \end{aligned}$	High Voltage Rectifier $14^{\prime \prime}$ Kinescope with Laminated Safety Shield
DIODES		
```D1, D2 D3 1D1 1D2 to 1D4 1D5 2D1, 2D2 2D3 2D4 2D5 3D1, 3D2 4D1, 4D2 5D1 6D1 6D2 6D3 7D1 to 7D3```	$\begin{aligned} & \text { 1N1613R } \\ & \text { 1N4785 } \\ & \text { SC6 } \\ & \text { SC6 } \\ & \text { SC6 } \\ & \text { 1N755 } \\ & \text { 1N751 } \\ & \text { 1N67A } \\ & \text { 1N3255 } \\ & \text { 1N751 } \\ & \text { 1N456A } \\ & \text { 1N456A } \\ & \text { 1N67A } \\ & \text { 1N751 } \\ & \text { SC6 } \\ & \text { 1N456 } \\ & \hline \end{aligned}$	25 Volt Supply Rectifier   Horizontal Damper   Pulse Shaper   Voltage Supply Rectifiers   DC Gate   Zener   Zener   Video Clamp Sensing   DC Restorer   Zener   Clamp   Clamp   Temperature Compensating   Zener   Zener   Shaper

TRANSISTORS COMPLEMENT

Symbol	Type	Function
Q1	2N3055	Low Voltage Regulator
Q2	2N3055	Vertical Output
Q3, Q4	2N3731	Horizontal Output (Select for Beta 40 or more)
		Video Amplifier Board \# 162093-1
2Q1	2N3565	Feedback Amplifier
2Q2	2N3643	Video Amplifier
2Q3	2N4122	Video Amplifier
2Q4	40354	Video Output Amplifier
		25 Volt Regulator Board \# 162091-1
3Q1	2N3565	Current Amplifier
3Q2, 3Q3	SA2206	Differential Amplifier
3Q4	2N3053	Current Amplifier
		Sync Chain Board \# 162096-1
4Q1	2N3643/2N3565	Sync Amplifier, Inverter
4Q2	2N3643/2N3565	Sync Amplifier
4Q3	2N3565	Sync Clipper
4Q4	2N3566	Phase Splitter
4Q5	2N3565	Vertical Sync Separator, Inverter
4Q6	2N3643	1st Video Current Amplifier
		Vertical Deflection Board \#162158-1
5Q1	2N2646	Vertical Oscillator, Unijunction
5Q2	2N3565	Feedback Amplifier
5Q3	2N3566	Vertical Current Amplifier
		Horizontal Multivibrator \& Driver Board \#162108-1
6Q1, 6Q2	2N3565	Multivibrator
6Q3	2N3565	Current Amplifier
6Q4	2N3643	Current Amplifier
6Q5	2N2891/S17862	Current Amplifier
		High Voltage Regulator Board \# 162098-1
7Q1	2N3565	Beam Current Amplifier
7Q2	2N3638	Beam Current Amplifier, Inverter

## CONRAC MODEL RKB14A AND RLB14A

The Conrac RKB14A and RLB14A are transistorized broadcast quality video monitors designed for continuous operation in broadcast and industrial television applications. Each unit employs a $14^{\prime \prime}$ high resolution kinescope with laminated safety shield, type 14BDP4. Each is a complete self-contained unit which may be operated (a) from a line containing composite video and sync, or (b) from separate lines, one carrying video and one carrying composite sync.

## INSTALLING AND UNPACKING

Carefully remove all packing material from the equipment received and inspect it for possible damage incurred during shipment. Report any shortage or damage to the carrier. Before applying power to the monitor, make sure that the kinescope components are properly positioned. In addition, check to see that all cable connectors are secure.

## CONNECTIONS

The units are connected for 120 volt operation at the factory unless otherwise specified. For operation from 200 to 260 volt source, see schematic for required changes in wiring at terminal strip. Use $3 / 8$ ampere Slo-Blo fuse after changing for 200/260 volt operation.
200/260 VOLT AC OPERATION (Refer to Schematic Diagram, page 15).

1. On transformer $T 1$, remove the jumper between terminal A (blue-yellow) and terminal B (blackred).
2. Remove the jumper between terminal $C$ (blue) and terminal D (black).
3. Place a jumper between terminals $B$ and $C$ of the transformer. (Use the same type of wire as that removed in step 1 or 2).
4. Replace fuse F1 ( $3 / 4$ ampere Slo-Blo) with a $3 / 8$ ampere Slo-Blo.

Plug into appropriate power source and feed composite video signal into the video input jack marked IN. The line may be terminated by moving SW 2 to 75 ohms. It should now be possible to see a picture on the screen.

## EXTERNAL SYNC

Parallel connected external sync jacks are provided on the rear apron. When a non-composite video signal is fed to the monitor, a composite sync source from 1 to 8 volts must be connected to one of the sync input jacks located on the rear panel, and the sync switch operated to the EXTernal position.

## INITIAL ADJUSTMENTS

## MAKE NO ADJUSTMENTS UNTIL THE MONITOR has been operating for at least 15 MINUTES.

## CENTERING

Using a standard test pattern or grating bar pattern, check picture centering. If centering is off, adjust HEIGHT and VERTical LINearity for best vertical linearity. Center the picture by repositioning the centering tabs on the rear cover of the deflection yoke. For horizontal linearity and secondary vertical linearity adjustments, see MAINTENANCE.

## FOCUS

The unit employs a high resolution electrostatic focus picture tube with a focus control mounted on the front control panel. Adjust the FOCUS control for maximum resolution in the high-light areas near the center of the screen.

## WIDTH CONTROL

The WIDTH control is a front panel adjustment. The width can be adjusted from underscan (for observing raster corners) to full scan.

## CIRCUIT DESCRIPTION

## VIDEO INPUT SYSTEM

Two input jacks are wired for loop-through operation to facilitate multiple connection of monitors. The video line at the input may be terminated by moving SW2 to " 75 ohms."

The first video stage employs a 2 N 3643 , 4 Q 6 , as an emitter follower, located on sync chain Board \#162096-1. The emitter follower is connected to Video Amplifier Board \#162093-1 through the CONTRAST control.

The mismatched stages, involving 2 Q2 and 2 Q3 combine to form a voltage amplifier. Feedback for stability purposes is derived through the use of 2 R8, 2R6, 2 R7 and 2R10. The actual gain of this doublestage amplifier is essentially controlled by these resistors. The output of 2 Q 3 provides a voltage source to drive the output stage, 2 Q 4 .

## VIDEO CIRCUIT DESCRIPTION

The circuit between the base of 2 Q2 and the collector of 2Q4 always functions as a DC amplifier. The operating point of the amplifier is controlled by the sync tip clamp circuit, using the active elements, 2D4 and 2Q1. With no input signal, the three amplifier transistors operate at minimum current. When a composite video signal is applied, negative-going sync
pulses at the emitter of 2Q4 cause 2D4 to conduct which results in increased collector voltage of 2Q1 which in turn raises the current operating point of the amplifier to a new level, yet maintaining the sync tips at the same DC level. The time-constant involved in the system is long enough to allow the lowest usable frequencies, including hum, to be displayed. The negative feedback provided by the clamp circuit also serves to correct for any drift or change in the amplifier.
Frequency response is controlled by adjusting 2C2 and series peaking coil 2 L 2.4 C 12 on the sync chain board is normally adjusted for best square-wave response.

DC coupling to the CRT may be removed by moving the DC restoration switch, SW4, to OUT position.

## SYNCHRONIZATION

For internal sync operation, sync information is derived from the output of the first video stage, sync chain board \#162096-1. 4Q1 and 4Q2 amplify the composite video (or sync signal where external sync is used) to drive the sync clipper, 4Q3. The clipped sync drives the phase splitter, 4Q4, which in turn drives the phase detector and the vertical sync separator inverter, 4 Q 5 .
The SYNC gain control, 4 P 1 , is set at the factory for best operation from standard EIA sync. For operation from unusually small signals, or from industrial type sync chains, readjust for best operation.

## VERTICAL

A unijunction, 5Q1, is used for the vertical oscillator on board \#162158-1. The unijunction is essentially a switch that turns on when the emitter voltage reaches a predetermined fraction of the interbase voltage. At the beginning of each sweep the emitter is reverse-biased and hence non-conducting. As the series combination of 5C4 and SC5 is charged through resistor 5R5, the emitter voltage rises exponentially towards the supply voltage +25 volts. At the end of the vertical trace, the emitter becomes forward-biased and the dynamic resistance between the emitter and $\mathrm{B}_{1}$ drops to a low value. Capacitors 5C4 and 5C5 discharge through 5Q1. When the emitter voltage has dropped to approximately 2 volts, the unijunction rapidly turns off again. The voltage across 5C4 and 5C5 again starts to rise, starting the next vertical sweep. The voltage at 5 C 4 and 5 C 5 is applied to the base of 5 Q2, which in turn drives 5Q3. Voltage appearing at the emitter of $5 Q 3$ is applied through the HEIGHT control, P6, to Q2, vertical output transistor.
The voltage at the emitter of 5 Q3 is applied back to the base of 5Q2 through the Vertical LINearity control, P5.

The collector of 5 Q 2 is tied to the collector of 5Q3 as a linearity correction. The amount of this correction is determined by the setting of 5P2 mounted on Vertical board \#162158-1.

## HORIZONTAL AFC SYSTEM

The HORIZontal HOLD, P7, located on the front panel, controls the AFC voltage and is used for a fine adjustment of horizontal frequency. The HORizontal FREQuency control, P12, located on the chassis, is used for a coarse frequency adjustment by controlling the turn-off time of 6 Q 1 .

The emitter followers, 6Q3, 6Q4 and 6Q5, serve as current amplifiers to provide sufficient drive to the horizontal output stage, consisting of Q3 and Q4. P8 is used to adjust for proper saturation of Q3 and Q4. See MAINTENANCE for correct adjustment method.

Q3 and Q4 are saturated during horizontal trace time, allowing current to flow through the deflection yoke and in the primary of the flyback transformer. When reverse drive turns Q3 and Q4 off, the rapid flux collapse causes a large negative pulse to appear across Q3 and Q4 and the flyback primary. Energy is also induced into the tertiary where the ultor voltage is derived. Third harmonic tuning is used. When the resonant primary voltage returns to the supply voltage level, the damper diode, D3, conducts, thus preventing further oscillation.
Horizontal linearity control is achieved with a resonant tank circuit in series with the flyback primary. This circuit adds a sawtooth and a parabolic component to the sawtooth current in the yoke. L4 determines linearity by controlling the amount and shape of the correction voltage wave.
The horizontal width control, L2, employs a series and a parallel coil coupled with a movable core. As width is varied by moving the core, the impedance of one coil is increased while the other is decreased. Thus width can be varied while presenting a constant load to the flyback and, therefore, maintaining constant high voltage. See MAINTENANCE.

## high voltage regulation

The high voltage regulator assembly board \#162098-1, located in front of the high voltage box, employs a saturable reactor in parallel with the flyback primary winding.
As the kinescope anode current increases, the regulator senses this increased current through the bottom of the tertiary winding. 7Q1 and 7Q2 amplify the current to drive the control winding of L5. As control winding current increases, the saturable winding inductance is reduced, thereby allowing the winding to store more energy during trace time.

This stored energy, delivered to the flyback transformer during retrace time, produces additional volttage at the plate of the high voltage rectifier, V1/ 1G3, thus maintaining the kinescope anode voltage at a constant level.

## 25-VOLT POWER SUPPLY AND REGULATOR

A full-wave rectifier is used to supply power through a series-type regulator. The differential amplifier, an SA2206 transistor, senses output voltage changes, due to load variance, in the first half ( 3 Q 3 ) and compares it to a fixed reference voltage (developed across 3D1 and 3D2) which is connected to the base of 3 Q2, the second half of SA2206. The error or difference is amplified by $3 Q^{2}$ and is coupled to $3 \mathrm{Q} 1 /$ 2N3565 which drives 3Q4, an emitter follower, controlling Q1, the 2N3055 regulator. The error-voltage is adjusted by the setting of 3P1, 25 -volt adjustment potentiometer, mounted on power supply board \#162091-1.

## PULSE FORMER AND RECTIFIER

Board \#162180-1 is used to obtain the necessary miscellaneous voltages not available from the regular power supply.

## FOCUS

A high-peak pulse from the horizontal output transformer is coupled to terminal $R$ and is rectified by 1D4 and 1D2, supplying approximately 600 volts for the focus, a portion of which is divided across 1R8 and $1 R 9$ for coupling to $G_{2}$ of the kinescope.

## SPOT KILLER

1D5 serves as a DC gate to keep $\mathrm{G}_{2}$ positive when the unit is turned OFF, causing the kinescope to draw current momentarily, thereby discharging the high voltage and eliminating a bright spot on the kinescope.

## 120-VOLT SUPPLY

A medium amplitude pulse from the horizontal output transformer is coupled to terminal $U$ and rectified by 1D3. The 120 -volt DC drives the video output stage on board \#162093-1 and is connected to the BRIGHTNESS potentiometer, as bias for the kinescope.

## RETRACE BLANKING

A pulse from the vertical output, coupled to terminal X , and a pulse from the horizontal output, coupled to terminal V, are mixed, clipped by 1D1 and coupled to $\mathrm{G}_{1}$ (grid) of the kinescope, as retrace blanking.

## SAWTOOTH INTEGRATOR

The horizontal pulse is integrated by 1R3 and 1C4 with 1R6 and 1C5, forming a sawtooth, which is coupled to sync board \#162096-1 as an AFC reference.

## MAINTENANCE

## THE VOLTAGES EMPLOYED IN THIS EQUIPMENT ARE SUFFICIENTLY HIGH TO ENDANGER LIFE. MAKE CERTAIN POWER IS OFF AND CAPACITORS ARE DISCHARGED BEFORE TOUCHING ANY COMPONENT.

Plug line cord into the appropriate line voltage source and turn monitor ON. Connect a source of composite video (test pattern or grating bar signal preferred) into one of the input jacks marked IN and move the termination switch to " 75 ohms."

## 25-VOLT POWER SUPPLY

Connect an accurate DC meter to point A on regulator board \#162091-1, and adjust potentiometer 3P1, 25 volt adjustment, on the board until the meter reads 25 volts.

## HORIZONTAL SATURATION AND DRIVE COIL ADJUSTMENTS

Normally the horizontal saturation control, P8, and boost coil, L7, being adjusted at the factory, do not require adjustment. In the event that one or both output transistors, Q3/2N3731 or Q4/2N3731, is replaced, the control adjustments should be checked as follows:

1. After replacing the transistors, turn set ON .
2. Connect an oscilloscope to the collector of Q3 (or pin 10 of the flyback transformer). Adjust oscilloscope to observe voltage variations during trace time, i.e., time between negative pulses.
3. Adjust BRIGHTness and CONTRAST controls fully clockwise.
4. Adjust saturation control, P8, located in the high voltage box, until the collector voltage at the end of trace time, i.e., just prior to the negative pulse, drops about one volt from the saturation level.
5. Connect oscilloscope to point CC on Horizontal Driver board \#162108-1 and adjust horizontal boost coil, L7, to produce a peak voltage of about 60 volts. Refer to waveform 10 on page 12.
6. Check high voltage regulator adjustment.

## HORIZONTAL LINEARTIY, HORIZONTAL TRIM, HIGH VOLTAGE REGULATION

## Horizontal Linearity

There are two positions of the core in L4 where good linearity can be obtained. The correct position is where the coil has the higher inductance (screw turned into the coil).

## Width Trim Coil Adjustment

A high voltage meter capable of measuring at least 20 KV is needed for this adjustment.

1. Adjust the WIDTH control for maximum width, and note the high voltage measured at the picture tube or at C7 located in the high voltage box.
2. Adjust the WIDTH control for minimum width, and then adjust the width trim coil until the high voltage returns to the value measured in step 1.
3. Repeat steps $\mathbf{1}$ and 2 as often as necessary to obtain good tracking.
4. Check high voltage regulator adjustment.

## High Voltage Regulator

1. Turn the BRIGHTness control and regulator control, 7P1, on Regulator board \#162098-1 to minimum.
2. Note the value of high voltage. It should be at least 17 KV nominal.
3. Turn the BRIGHTness control fully clockwise, and note value of high voltage.
4. Adjust the regulator control until the high voltage returns to the value measured in step 2.
5. Turn the BRIGHTness control down again, and repeat steps 2, 3, and 4, if necessary. Regulation should be within $2 \%$ to 200 microamperes.
6. Check horizontal SATURATION control adjustment.

## VERTICAL

## Frequency Range Adjustment

1. Adjust the VERTical HOLD control to the extreme counterclockwise position.
2. Adjust the frequency range, 5 P1 on vertical board \#162158-1, until the picture rolls down slowly. Readjust so that the picture locks-in.
3. Adjust the VERTical HOLD control clockwise as necessary for most stable operation.

## Vertical Linearity Adjustment

If good vertical linearity cannot be obtained with the front panel control, it will be necessary to adjust 5P2 on the vertical board. The board linearity potentiometer controls linearity only on the upper portion of the picture; therefore, use the front control to change linearity on the bottom portion of the picture, and the board control to change linearity on the top portion of the picture until good over-all linearity is obtained. Recheck vertical frequency range adjustment.

## HORIZONTAL

## Frequency Range Adjustment

The HORizontal FREQuency control, P12, located on chassis, is used for a coarse setting of horizontal frequency. This control should be adjusted with the HORIZontal HOLD control, P7, located on the front panel, set at mid-range so that the picture remains "locked-in" at any serting of P7.

## VIDEO ALIGNMENT INSTRUCTIONS

## Equipment Required

1. Video sweep generator capable of producing flat sweep to 12 MHz .
2. Oscilloscope with suitable low frequency response.
3. Low capacitance detector probe.
4. Window generator or square-wave generator.

## Procedure

1. Turn on monitor and allow to operate for 15 minutes. Set controls as follows:
a. CONTRAST control between $25 \%$ and $50 \%$ rotation
b. BRIGHTness control at minimum.
c. Input termination switch to " 75 ohms."
2. Connect window generator or square-wave generator to the video input jack marked IN. Connect oscilloscope to pin L of the sync chain board \# 162096-1 and adjust 4 C 12 for best square-wave response.
3. Remove window or square-wave generator and connect sweep signal. Connect oscilloscope to cathode of CRT (pin H on video board \#162093-1) and adjust 2C2 and 2L2 for best frequency response.

CAUTION: FOR VIDEO AMPLIFIER ALIGNMENT SYNC MUST BE ADDED TO SWEEP SIGNAL.


1. Base Voltage, 4Q1 $.5 \mathrm{~V} / \mathrm{cm}, 10 \mathrm{microsec} / \mathrm{div}$.

2. Collector Voltage, 4Q3 10 microsec/div.

3. Base Voltage, $4 Q 5$ $5 \mathrm{msec} / \mathrm{div}$.

4. Base Voltage, 4 Q 3
$.5 \mathrm{~V} / \mathrm{cm}, 10 \mathrm{mic}$ rosec/div.

5. Collector Voltage, 4Q4 10 microsec/div.

6. Collector Voltage, 4Q5 $5 \mathrm{msec} / \mathrm{div}$.

7. Base Voltage, 6Q2 10 microsec/div.

8. Base Voltage, 6Q5 $10 \mathrm{microsec} / \mathrm{div}$.

9. Voltage at BB, H. Board 10 microsec/div.

10. Collector Voltage, 6Q2 10 microsec/div.

11. Voltage at CC, H. Board 10 microsec/div.

12. Base Current (Amps.) Q3, Q4 10 microsec/div.

13. Collector Voltage, Q3

10 microsec/div.

15. Base 2 Voltage, 5Q1 $400 \mathrm{microsec} / \mathrm{div}$.

17. Base Voltage, Q2
$2 \mathrm{msec} / \mathrm{div}$.

14. Flyback Voltage \#2 10 microsec/div.

16. Emitter Voltage, 5Q1 $2 \mathrm{msec} /$ div.

18. Collector Voltage, Q2 $2 \mathrm{msec} / \operatorname{div}$.






NOTES:
I ALL RESISTORS IN OHMS, $10 \%$, $\frac{1}{2}$ WATT UNLESS OTHERWISE NOTED.
2 all capacitors in picofarad́s unless otherwise noted.

COMRAC DIVISION		
$\begin{aligned} & \text { SCHEMATIC } \\ & \text { PULSE FORMER AND } \\ & \text { RECTIFER } \end{aligned}$		
	452277	A



$$
\begin{aligned}
& \text { dc voltages } \\
& \text { No Signal }
\end{aligned}
$$

## NOTES:

1. ALL RESISTORS IN OHMS, $10 \%$, $1 / 2$ WATT, UNLESS

OTHERWISE NOTED
2 ALL CAPACITOFRS IN PICOFARADS, UNLESS
OTHERWISE NOTED.

COMRACDINSION


DC VOLTAGES
Normal Operating Conditions
$\begin{array}{llll}\frac{301}{21.5} & \frac{302}{16.0} & \frac{303}{12.5} & \frac{304}{33.0}\end{array}$ $\begin{array}{lllll}\mathrm{C} & \frac{21.5}{} & 16.0 & 12.5 & 33.0 \\ \text { B } & 16.0 & 10.0 & 10.0 & 24.5 \\ \text { E } & 15.5 & 9.5 & 9.5 & 24.5\end{array}$ $\begin{array}{lllll}\text { E } & 15.5 & 9.5 & 9.5 & 24.5\end{array}$
TERMINAL D -33.5
TERMINAL B- -34.5

NOTES:

1. ALL RESISTORS iN OHMS, $10 \%$, $1 / 2$ WATT, UNLESS

OTHERWISE NOTED. PICOFARADS, UNLESS
OTHERWSE NOTED.

CONRAC Division		
$\begin{aligned} & \text { SCHEMATIC } \\ & \text { S5OT REGLATOR } \\ & \text { BOARD RO } 16209010 \end{aligned}$		
1-20-65	452129	$\square$





Varies with Sync Gain Adjustment

$\begin{gathered} \text { SCHEMATIC } \\ \text { SYNG CHAN } \\ \text { (BOARD NO } 162096 \text { ) } \end{gathered}$		
21-65	452130	F



NOTE:
I. ALL RESISTORS IN OHMS, $10 \%$, I/2 WATT UNLESS OTHER WISE NOTED.
2. ALL CAPACITORS IN PICOFARADS UNLESS OTHER WISE NOTED.

COMRAC DIVISION		
SCHEMATIC		
VERT. D	EFLECTION	
4-7-66	452236	D



$\begin{array}{lll}\text { C } & \frac{7 Q}{23.0} & \frac{102}{7.0} \text { to } .25 x \\ \text { B } 18.0 \text { to } 22.5, & 17.5 \text { to } 22.5,\end{array}$
E 17.0 to $22.5 \% 18.0$ to $23.0 \%$
Varies with Brightness and
Contrast Control Setting
NOTE
ALL RESISTORS IN OHMS, $10 \%$, 1/2 WATT UNLESS OTHERWISE NOTEO.

		description		
106002 N	NExT	couliac puvisiow		
walters'r	checkeo ar	clenoora california		
material		SCHEMATIC H.V. REGULATOR		
FiNish		$\begin{array}{\|l\|} \hline \text { arz } 6-19-65 \\ \text { nepoved by } H^{\prime} J \end{array}$	452155	$B$

## REPLACEABLE PARTS

## CAPACITORS

Cl
C2
C3, C4
C5, C6
C7
C8
C9
Clo, Cll
Cl2
C18
Cl 9
C21
C28

D1, D2
D3
Silicon Rectifier
Germanium

## COILS

Video Input
L2
L2
L3
L4
L5
L7
L9

Pl
Pl
P2
P2
P3
P3
P4
P4
P5
P5
P6
P6
P7
P7
P8
Pl2

## POTENTIOMETERS

Electrolytic, $5000 \mathrm{mF}, 50 \mathrm{~V}$
Ceramic Disc, $33 \mathrm{pF}, 10 \%$, 500 V
Electrolytic Tubular, $500 \mathrm{mF}, 3 \mathrm{~V}$
Electrolytic Metallized, $2 \mathrm{mF}, 200 \mathrm{~V}$
Ceramic, $500 \mathrm{pF}, 30,000 \mathrm{~V}$
Electrolytic Tubular, $250 \mathrm{mF}, 50 \mathrm{~V}$
Paper Mylar, $330,000 \mathrm{pF}, 10 \%, 200 \mathrm{~V}$
Paper Mylar, $82,000 \mathrm{pF}, 10 \%, 400 \mathrm{~V}$
Paper Mylar, $330,000 \mathrm{pF}, 10 \%, 200 \mathrm{~V}$
Ceramic Disc, $10,000 \mathrm{pF}, 20 \%, 1600 \mathrm{~V}$
Electrolytic Metallized, $2 \mathrm{mF}, 200 \mathrm{~V}$
Ceramic Disc, $100,000 \mathrm{pF}, 75 \mathrm{~V}$
Mica, $120 \mathrm{pF}, 5 \%, 500 \mathrm{~V}$

## DIODES

DCM5M/50539-264081 SP
N150 DI
30Dl20Al SP
H2-205E PE
TM300T5 CD
TC50025 MAL
WMF2P33 CD
PKM-4S82 CD
WMF2P33 CD
DD16103 CRL
H2-205E PE
DDA-104 CRL
DM15-121J ELM

1N1613R
RCA
1 N4785
RCA

770094
770144
770124
770125
770126
106022
770132
994023

CONRAC
CONRAC
CONRAC
CONRAC
CONRAC
CONRAC
CONRAC
CONRAC

| P1 | Composition, 1000 ohms (Contrast) RKBA Only | 928033 | CONRAC |
| :--- | :--- | :--- | :--- | :--- |
| Pl | Composition, 1000 ohms (Contrast) RLBA Only | 928097 | CONRAC |
| P2 | Composition, 500,000 ohms (Brightness) RKBA Only | 928205 | CONRAC |
| P2 | Composition, 500,000 ohms (Brightness) RLBA Only | 928089 | CONRAC |
| P3 | Composition, 5 megohms (Focus) RKBA Only | 928107 | CONRAC |
| P3 | Composition, 5 megohms (Focus) RLBA Only | 928090 | CONRAC |
| P4 | Composition, 25,000 ohms (Vertical Hold) RKBA Only | 928131 | CONRAC |
| P4 | Composition, 25,000 ohms (Vertical Hold) RLBA Only | 928130 | CONRAC |
| P5 | Composition, 5000 ohms (Vertical Linearity) RKBA Only | 928132 | CONRAC |
| P5 | Composition, 5000 ohms (Vertical Linearity) RLBA Only | 928035 | CONRAC |
| P6 | Wirewound, 100 ohms (Vertical Height) RKBA Only | 928105 | CONRAC |
| P6 | Wirewound, 100 ohms (Vertical Height) RLBA Only | 928088 | CONRAC |
| P7 | Composition, 1000 ohms (Horizontal Hold) RKBA Only | 928109 | CONRAC |
| P7 | Composition, 1000 ohms (Horizontal Hold) RLBA Only | 928104 | CONRAC |
| P8 | Composition, 3000 ohms (Horizontal Saturation) | 928103 | CONRAC |
| P12 | Composition, 50,000 ohms (Horizontal Frequency) | 928093 | CONRAC |

*See Manufacturers of Replaceable Parts List On Last Page.

## TRANSISTORS

Q1, Q2
Q3, Q4

R1 Composition, 150 ohms, $10 \%$, $\frac{1}{2} \mathrm{w}$
R2
R3
R4
R. 5

R6
R7
R10
R13
R15
R16
Silicon
Germanium Power

## RESIS TORS

## TRANSFORMERS

Tl
T2
T4

J1, J2
J4, J5

Fl
Fl

J8
SWl
SW1
SW2, SW 3
SW4
SW4

Power
Flyback
Horizontal Driver
Vertical Choke

## MISCELLANEOUS

Cap: Yoke and Centering Magnet
Connector: Anode (Neoprene Cap and Button)
Connector: Video-Sync
Connector: Video-Sync
Cord: Line
Feet: (RKBA Only)
Fuse: 3/4 Ampere, Slo-Blo (For 120 V Operation)
Fuse: 3/8 Ampere, Slo-Blo (For 240 V Operation)
Handle: Carrying (RKBA Only)
Handle: Control Panel Cover, Black (RLBA Only)
Holder: Fuse
Knob: Control (RKBA Only)
Knob: Control, Black, (RLBA Only)
Mask: (RKBA Only)
Mask: (RLBA Only)
Socket: Transistor
Socket: Yoke
Socket: Tube (lG3)
Switch: Toggle, S.P.S. T., Ball Handle (RKBA Only)
Switch: Slide, D.P.D.T. (RLBA Only)
Switch: Slide, D. P. D. T.
Switch: Slide, D. P. D. T. (RKBA Only)
Switch: Toggle, S.P.S.T., Ball Handle (RLBA Only) $A B$
Composition, 10,000 ohms, $10 \%, \frac{1}{2} \mathrm{w}$ AB
Wirewound, . 47 ohms, $5 \%$, $\frac{1}{2} \mathrm{w}$ BWH IRC
Composition, 470,000 ohms, $10 \%, \frac{1}{2} \mathrm{w}$ AB
Wirewound, 1.8 ohms, $5 \%$, $\frac{1}{2}$ w BWH IRC
Composition, $100,000 \mathrm{ohms}, 10 \%, 1 \mathrm{w}$ AB
Composition, 75 ohms, $1 \%, \frac{1}{2} \mathrm{w}$ AB
Composition, 47 ohms, $10 \%$, $\frac{1}{2} \mathrm{w}$ AB
Composition, 150 ohms, $10 \%$, $\frac{1}{2} \mathrm{w}$ AB
Composition, $120,000 \mathrm{ohms}, 10 \%$, $\frac{1}{2} \mathrm{w}$ AB
Wirewound, $1 \mathrm{ohm}, 10 \%, 3 \mathrm{w}$ VAL 3 TO

965025
782020
965030
965028

CONRAC CONRAC CONRAC CONRAC

Pulse Former and Rectifier Board \#162180-1

## CAPACITORS

1 Cl	Dipped Mylar, 22,000 pF, 1600 V
lC 2	Mylar, 47,000 pF, 200 V
IC 3	Mylar, 220,000 pF, 200 V
1 C 4	Paper Mylar, $100,000 \mathrm{pF}, 10 \%, 100 \mathrm{~V}$
1 C 5	Mylar, $10,000 \mathrm{pF}, 200 \mathrm{~V}$
1 C 6	Dipped Mylar, 22,000 pF, 1600 V
1 C 7	Paper, 220,000 pF, $10 \%, 600 \mathrm{~V}$
1 C 8	Electrolytic, $2 \mathrm{mF}, 150 \mathrm{~V}$
1 C 9	Mica, $3900 \mathrm{pF}, 10 \%$


$16 \mathrm{DP} 5-223$	ELM
WMF-2S47	CD
WMF-2P22	CD
1 DP-2-104	ELM
WMF-2S1	CD
$16 D P 5-223$	ELM
$220 P 22496$	SP
$40 D 205 F 150 C C 4$	SP
DM19-392K	ELM

## DIODES

Silicon Rectifier
SC 6
SEM

1R1
1R2
1R3
1R4
1R5
1R6
1R7
1R8
1R9
1R10
1R11
1R12

2 Cl
2C2
2C3
2C4
2C5
2C6
2 C 7
2C8
2C9

2D1, 2D2	Zener, 7.5 V
2D3	Zener, $5.1 \mathrm{~V}, 5 \%, 400 \mathrm{ma}$
2D4	Germanium


$150 \mathrm{D} 226 \mathrm{X0015B2}$	SP
PC-428	ELM
5 HKPl0	DI
	DI
DM15-821 J	ELM
DM15-331J	ELM
5 HKP10	DI
4 DP-5-224	ELM
40 D	CD


1 N755	TI
1N751	TI
1N67A	SYL
1N3255	RCA

COILS
2L1
Peaking
770117
CONRAC
2 L 2

2Q1
2Q2
2Q3
2Q4

2R1
2R2
2R3
2R4
2R5
2R6
2R7
2R8
2R9
2R10
2R11
2R12
2R13
2R14
2R15
Composition, 100 ohm
2R18 Composition, 3300 ohms, $10 \%$, $\frac{1}{2} \mathrm{w}$
2N3565
FC
Silicon Planar
Silicon Planar
2N3643
FC
Silicon PNP
Silicon
RESISTORS
Composition, 3900 ohms, $10 \%$, $\frac{1}{2} \mathrm{w}$
2N4122
MOT
40354
RCA

AB
Composition, 47,000 ohms, $10 \%$, $\frac{1}{2} \mathrm{w}$ AB
Composition, 22,000 ohms, $10 \%$, $\frac{1}{2} \mathrm{~W}$ AB
Composition, $100 \mathrm{ohms}, 10 \%$, $\frac{1}{2} \mathrm{w}$
Composition, 1500 ohms, $10 \%, \frac{1}{2} \mathrm{w}$ AB
Composition, 100 ohms, $5 \%$, $\frac{1}{2} \mathrm{w}$ AB
Composition, 10,000 ohms, $5 \%$, $\frac{1}{2} \mathrm{w}$ AB
Composition, 100 ohms, $5 \%$, $\frac{1}{2} \mathrm{w}$ AB
Composition, 180 ohms, $10 \%$, $\frac{1}{2} \mathrm{w}$ AB
Composition, 6200 ohms, $5 \%$, $\frac{1}{2} \mathrm{w}$ AB
Composition, $330 \mathrm{ohms}, 10 \%$, $\frac{1}{2} \mathrm{w}$ AB
Composition, 680 ohms, $10 \%$, $\frac{1}{2} \mathrm{w}$ AB
Composition, 82,000 ohms, $5 \%$, $\frac{1}{2} \mathrm{w}$ AB
Composition, 10,000 ohms, $5 \%$, $\frac{1}{2} \mathrm{w}$ AB
Composition,
$\rightarrow$ AB
2R19 Composition, 3000 ohms, $5 \%, 2 \mathrm{w}$ AB
2R20 Composition, 68 ohms, $10 \%, \frac{1}{2} \mathrm{w}$ AB
2R21, 2R22 Composition, 680,000 ohms, $10 \%, \frac{1}{2} \mathrm{w}$ AB
25 Volt Regulator Board \#162091-1
CAPACITORS
$\begin{array}{lllc}3 \mathrm{Cl} & \text { Electrolytic, } 100 \mathrm{mF}, 50 \mathrm{~V} & \text { 30D107G050DH4 } & \mathrm{SP} \\ 3 \mathrm{C} 2 & \text { Electrolytic, } 50 \mathrm{mF}, 50 \mathrm{~V} & \text { 30D506G050DD4 } & \mathrm{SP} \\ 3 \mathrm{C} 3 & \text { Ceramic Disc, } 1000 \mathrm{pF}, 10 \%, 500 \mathrm{~V} & \mathrm{DI} \\ & & & \\ & \text { DIODES } & & \text { 1N751 }\end{array}$

## POTENTIOMETER

3 Pl
Wirewound, 1000 ohms ( 25 Volt Adjustment)
928125
CONRAC

## TRANSIS TORS

[^0]Silicon Planar
2N3565
FC
Differential Pair, NPN, Silicon SA2206
Silicon Planar 2N3053
AML
RCA

## RESISTOR

3R1 Composition, l000 ohms, $10 \%$, $\frac{1}{2} \mathrm{w}$ AB

3R2
3R3
3R4
3R5
3R6
3R7
3R8
3R9
3R10
3RII
3R12

4 Cl
4 C 2
4 C 3
4C4
4 C 5
4C6
4C8
4C9, 4Cl0
4Cll
4 Cl 2
4 Cl 3
4C14

4Dl, 4D2

4P1
$4 \mathrm{Ql}, 4 \mathrm{Q} 2$
4Q3
4Q4
4Q5
4Q6

4R1
4R2
4R3
4R4

Wirewound, 1 ohm, $10 \%, 5 \mathrm{w}$, VAL 3
Composition, 1500 ohms, $10 \%$, $\frac{1}{2} \mathrm{w}$ TO
AB
Composition, 560 ohms, $5 \%$, $\frac{1}{2}$ w AB
Composition, 750 ohms, $5 \%$, $\frac{1}{2} \mathrm{w}$ AB
Composition, 56,000 ohms, $10 \%, \frac{1}{2} \mathrm{w}$ AB
Composition, 1200 ohms, $10 \%$, $\frac{1}{2} \mathrm{w}$ $A B$
Composition, 22,000 ohms, $10 \%$, $\frac{1}{2} \mathrm{w}$ AB
Composition, 33,000 ohms, $10 \%$, $\frac{1}{2} \mathrm{w}$ Wirewound, 910 ohms, $5 \%$, 1 w

IX910WL AB

Wirewound, $680 \mathrm{ohms}, 5 \%, 1 \mathrm{w} 1 \mathrm{X} 680 \mathrm{WL}$
Composition, 22 ohms, $10 \%, \frac{1}{2} \mathrm{w}$

Sync Chain Board \#162096-1

## CAPACITORS

Electrolytic, $10 \mathrm{mF}, 15 \mathrm{~V}$
Mica, $62 \mathrm{pF}, 5 \%, 500 \mathrm{~V}$
Paper Mylar, $220,000 \mathrm{pF}, 10 \%, 100 \mathrm{~V}$
Film, 20, $000 \mathrm{pF}, 100 \mathrm{~V}$
Ceramic Disc, $100,000 \mathrm{pF}, 500 \mathrm{~V}, \mathrm{GMV}$
Ceramic Disc, $2000 \mathrm{pF}, 20 \%$, 500 V
Electrolytic, $100 \mathrm{mF}, 15 \mathrm{~V}$
Mica, $1000 \mathrm{pF}, 5 \%, 100 \mathrm{~V}$
Electrolytic, $100 \mathrm{mF}, 15 \mathrm{~V}$
Trimmer, 4-25 pF
Ceramic Disc, $22 \mathrm{pF}, 10 \%, 500 \mathrm{~V}$
Electrolytic, $10 \mathrm{mF}, 15 \mathrm{~V}$
DIODES

Silicon
1N456A
SYL

## POTENTIOMETER

Wirewound, 1500 ohms (Sync Gain)
928121
CONRAC

## TRANSISTORS

Silicon Planar
Silicon Switching, NPN
Silicon Planar
Silicon Switching, NPN
Silicon Planar

2N3643 or	FC
2N3565	FC
2N3565	RCA
2N3566	FC
2N3565	RCA
2N3643	FC

## RESISTORS

Composition, 68, 000 ohms, $5 \%$, $\frac{1}{2}$ w
Composition, 18,000 ohms, $5 \%$, $\frac{1}{2}$ w
Composition, 3000 ohms, $5 \%$, $\frac{1}{2}$ w AB
Composition, 330 ohms, $10 \%$, $\frac{1}{2}$ w

4R5 Composition, 6800 ohms, $10 \%$, $\frac{1}{2} \mathrm{w}$ AB

5 C 1
5 C 2
5C3
5 C 4
5C5
5C6
5C7

5 Dl

5 Pl
5P2

5Q1
5Q2
5Q3

5R1
5R2
5R3
5R4
5R5
5R6, 5R
5R8
5R9
5R10
5R11
5R12

4R6 Composition, 330 ohms, $10 \%, \frac{1}{2} \mathrm{w}$ AB
4R7
4R8
4R9, 4R10
4R11
4R12
4RI 3
4 Rl
4R16, 4R17
4RI
4RI
4R20
4R21
Composition, 220, 000 ohms, $10 \%$, $\frac{1}{2} \mathrm{w}$ AB
4R23 Composition, 100 ohms, $10 \%$, $\frac{1}{2} \mathrm{w}$ AB

Vertical Deflection Board \#162158-1 CAPACITORS
Composition, 330 ohms, $10 \%$, $\frac{1}{2}$ w AB
Composition, 10,000 ohms, $10 \%$, $\frac{1}{2} \mathrm{w} \mathrm{AB}$
Composition, 8200 ohms, $10 \%$, $\frac{1}{2}$ w
$A B$
Composition, 1000 ohms, $5 \%$, $\frac{1}{2}$ w
AB
Composition, 56,000 ohms, $10 \%$, $\frac{1}{2}$ w
AB
Composition, 220, 000 ohms, $10 \%$, $\frac{1}{2} \mathrm{w}$ AB
Composition, 4700 ohms, $10 \%$, $\frac{1}{2} \mathrm{w}$ AB
Composition, 1200 ohms, $10 \%$, $\frac{1}{2} \mathrm{w}$ AB
Composition, 100,000 ohms, $5 \%$, $\frac{1}{2} \mathrm{w}$ AB
Composition, 220,000 ohms, $5 \%$, $\frac{1}{2}$ w AB
Composition, $100,000 \mathrm{ohms}, 5 \%$, $\frac{1}{2} \mathrm{w}$ AB
Compositior, 1500 ohms, $10 \%$, $\frac{1}{2} \mathrm{w}$ AB
Composition, 12,000 ohms, $5 \%$, $\frac{1}{2} \mathrm{w}$ AB

Ceramic Disc, $4700 \mathrm{pF}, 20 \%, 500 \mathrm{~V}$
DI
Electrolytic, $1 \mathrm{mF}, 50 \mathrm{~V}$ 30Dl05G050BA4
SP
Electrolytic, $5.6 \mathrm{mF}, 35 \mathrm{~V} 150 \mathrm{D}$
Electrolytic, $2.7 \mathrm{mF}, 35 \mathrm{~V}$ 150D
Electrolytic, $1 \mathrm{mF}, 35 \mathrm{~V} 150 \mathrm{D}$
Mylar, $15,000 \mathrm{pF}, 10 \%, 200 \mathrm{~V}$
Electrolytic, $10 \mathrm{mF}, 20 \mathrm{~V} 150 \mathrm{D}$

DIODE

Silicon
lN45óA
SYI

## POTENTIOMETERS

Composition, 50, 000 ohms (Vertical Frequency Range)
Composition, 1000 ohms (Top Linearity)

## TRANSISTORS

Silicon Unijunction
Silicon Planar NPN

2N2646
GE
FC FC

## RESIS TORS

Composition, 390 ohms, $5 \%, \frac{1}{2} \mathrm{w}$
Composition, 220 ohms, $5 \%$, $\frac{1}{2}$ w
Composition, 3300 ohms, $10 \%$, $\frac{1}{2} \mathrm{w}$ AB
Composition, 100 ohms, $10 \%$, $\frac{1}{2} \mathrm{w}$ AB
Composition, 2000 ohms , $5 \%$, $\frac{1}{2} \mathrm{w}$ AB
Composition, 100 ohms, $10 \%$, $\frac{1}{2} \mathrm{w}$
Composition, 18, 000 ohms, $5 \%, \frac{1}{2}$ w
Composition, 470 ohms, $10 \%, \frac{1}{2} \mathrm{w}$

	Horizontal Multivibrator \& Driver Boar CAPACITORS		
6Cl, 6C2	Mica, $270 \mathrm{pF}, 5 \%, 500 \mathrm{~V}$	DM1 0E271J	ELM
6 C 3	Mica, $330 \mathrm{pF}, 5 \%, 500 \mathrm{~V}$	DM15C331J	ELM
6 C 4	Ceramic Disc, $100,000 \mathrm{pF}, 500 \mathrm{~V}$		DI
6 C 5	Electrolytic, $4.7 \mathrm{mF}, 15 \mathrm{~V}$ Tantalum	475X9015B2	SP
6 C 6	Ceramic Disc, $10,000 \mathrm{pF}, 20 \%$, 500 V		DI
6 C 7	Paper Mylar, 47,000 pF, 5\%, 100 V	WMF1S47	CD
6 C 8	Paper Mylar, 680,000 pF, $10 \%, 100 \mathrm{~V}$	WMF1P68	CD
6 C 9	Paper Mylar, 22,000 pF, $10 \%, 100 \mathrm{~V}$	WMF1S22	$C D$
6 Cl 0	Mica, $1000 \mathrm{pF}, 10 \%, 100 \mathrm{~V}$	DM15-102K	ELM
$6 \mathrm{Cl1}$	Mica, $100 \mathrm{pF}, 10 \%$, 500 V	DM10-101K	ELM
6 Cl 2	Ceramic Disc, $10 \mathrm{pF}, 500 \mathrm{~V}$		DI
	DIODES		
6 Dl	Germanium	1 N67A	SYL
6 D 2	Zener	1N751	TI
6 D 3	Silicon	SC6	SEM

## TRANSISTORS

6Q1 to 6Q3	Silicon Planar	2N3565	FC
6Q4	Silicon Planar	2N3643	FC
6Q5	Silicon Planar	2N2891/S17862	FC

RESISTORS
6Rl Composition, 470,000 ohms, $10 \%, \frac{1}{2} \mathrm{w}$ AB
6R2 Composition, 91,000 ohms, $5 \%$, $\frac{1}{2} \mathrm{w}$ AB
6R3 Composition, 10,000 ohms, $10 \%$, $\frac{1}{2} \mathrm{w}$ AB
6R4 Composition, 4700 ohms, $10 \%$, $\frac{1}{2} \mathrm{w}$ AB
R 5
6R6
6R7
6R8
6R9
6R10
6R11
Composition, $180 \mathrm{ohms}, 10 \%, \frac{1^{2}}{2} \mathrm{w}$
Composition, 47 ohms, $5 \%, \frac{1}{2} \mathrm{w}$
6Rl4 Wirewound, 100 ohms, $10 \%, 3 \mathrm{w}$, VAL 3
6R15
Composition, 100 ohms, $10 \%$, $\frac{1}{2}$ w
High Voltage Regulator Board \#162098-1 DIODES
7Dl to 7D3
Silicon
1N456

POTENTIOMETER

7Pl
Composition, 250, 000 ohms (H.V. Regulator)
928121

## TRANSISTORS

Silicon Planar

## RESISTORS

7R1 Composition, 47,000 ohms, $10 \%, \frac{1}{2} \mathrm{w}$ AB

7R2 Composition, 330,000 ohms, $10 \%$, $\frac{1}{2} \mathrm{w}$ AB
7R3 Composition, 47,000 ohms, $10 \%$, $\frac{1}{2} w \mathrm{AB}$

7R5
7R6
7R7
7R8

Composition, $220 \mathrm{ohms}, 10 \%$, $\frac{1}{2} \mathrm{w}$ AB
Composition, 47, 000 ohms, $10 \%, \frac{1}{2} \mathrm{w}$ AB
Composition, 10,000 ohms, $10 \%$, $\frac{1}{2} \mathrm{w} \quad \mathrm{AB}$
Composition, $820 \mathrm{ohms}, 10 \%$, $\frac{1}{2} \mathrm{w}$ AB

AB	Allen-Bradley Co.
AML	Amelco, Inc.
$C D$	Cornell-Dubilier Electronics
CONRAC	Conrac Division of Giannini Controls Corp.
CRL	Centralab
DI	Dilectron Div., Bestran Corp.
ELM	Electro-Motive Mfg. Co., Inc.
FC	Fairchild Semiconductor
GE	General Electric Co.
IRC	International Resistance Co.
LF	Littelfuse Inc.
MAL	P. R. Mallory \& Co., Inc.
MOT	Motorola Semiconductor Products Inc.
PE	Polycarbonate Electron Products
RCA	Radio Corporation of America
SEM	Semtech Corporation
SP	Sprague Electric Co.
SYL	Sylvania Electric Products
TI	Texas Instruments, Inc.
TO	Tru-Ohm Products
WL	Ward Leonard Electric Co.

## WARRANTY

The CONRAC Division, Giannini Controls Corporation, warrants each new broadcast and industrial product manufactured by it to be free from defective material and workmanship and agrees to remedy any such defect or to furnish a new part in exchange for any part of any unit of its manufacture which under normal installation, use and service discloses such defect, provided the unit is delivered by the owner to us or to our authorized dealer or wholesaler from whom purchased, infact, for our examination, with all transportation charges prepaid to our factory, within one year from the date of sale to original purchaser and provided that such examination discloses in our judgment that it is thus defective.

This warranty does not extend to tubes after six months, or to any of our products which have been subjected to misuse, neglect, accident, incorrect wiring not our own, improper installation, or to use in violation of instructions furnished by us, nor extend to units which have been altered outside of our factory, nor to cases where the serial number thereof has been removed, defaced or changed, nor to accessories used therewith not of our own manufacture.

This warranty is in lieu of all other warranties expressed or implied and no representative or person is authorized to assume for us any other liability in connection with the sale of our radio and television products.



[^0]:    3 Ql

