Please do not upload this copyright pdf document to any other website. Breach of copyright may result in a criminal conviction.

This pdf document was generated by me Colin Hinson from a Crown copyright document held at R.A.F. Henlow Signals Museum. It is presented here (for free) under the Open Government Licence (O.G.L.) and this pdf version of the document is my copyright (along with the Crown Copyright) in much the same way as a photograph would be.

The document should have been downloaded from my website https://blunham.com/Radar, or any mirror site named on that site. If you downloaded it from elsewhere, please let me know (particularly if you were charged for it). You can contact me via my Genuki email page: https://www.genuki.org.uk/big/eng/YKS/various?recipient=colin

You may not copy the file for onward transmission of the data nor attempt to make monetary gain by the use of these files. If you want someone else to have a copy of the file, point them at the website. (https://blunham.com/Radar). Please do not point them at the file itself as it may move or the site may be updated.

It should be noted that most of the pages are identifiable as having been processed by me.

I put a lot of time into producing these files which is why you are met with this page when you open the file.

In order to generate this file, I need to scan the pages, split the double pages and remove any edge marks such as punch holes, clean up the pages, set the relevant pages to be all the same size and alignment. I then run Omnipage (OCR) to generate the searchable text and then generate the pdf file.

Hopefully after all that, I end up with a presentable file. If you find missing pages, pages in the wrong order, anything else wrong with the file or simply want to make a comment, please drop me a line (see above).

It is my hope that you find the file of use to you personally - I know that I would have liked to have found some of these files years ago - they would have saved me a lot of time !

Colin Hinson
In the village of Blunham, Bedfordshire.

AP 116T-1118-1

TELEVISION MONOCHROME MONITOR 81/2" Pye type 081

GENERAL AND TECHNICAL INFORMATION

BY COMMAND OF THE DEFENCE COUNCIL
T.Dunntet

FOR USE IN THE
ROYAL AIR FORCE

Prepared by the Procurement Executive, Ministry of Defence

PYE $8 \frac{1}{2}-$ INCH VIDEO MONITOR

Type 081

(Part Number 848008)

This service manual is for the maintenance of Pye T.V.T. equipment. The performance figures quoted are typical and are subject to normal manufacturing and service tolerances.
The right is reserved to alter the equipment described in this manual in the light of future technical development.

SERVICE MANUAL

ISSUE 2 (MAY 1967)
CHAPTER 1 GENERAL DESCRIPTION AND SPECIFICATION 1
CHAPTER 2 TECHNICAL DESCRIPTION 3
Video Amplifier 3
Synchronising Circuits 4
Vertical Scan Timebase 5
Horizontal Scan Timebase 6
E.H.T. and H.T. Generation 7
L. T. Stabiliser 8
CHAPTER 3 INSTALLATION AND OPERATION 9
General Information 9
Installation 9
Power Input Adjustment 9
Power Supply Connections 9
Input Signal Connections 10
Setting-up Procedure 10
Normal Operation 11
Notes on Adjustment of Controls 11
On-off Push Button 11
Brightness and Contrast 11
Vertical Hold 11
Horizontal Hold 12
CHAPTER 4 MAINTENANCE 13
Transistors - general 13
Transistor Testing 13
Continuity Checking 15
Soldering 15
Transistor and Diode Replacement 15
Test Equipment (use of) 16
Printed Circuitry 16
Monitor Testing and Readjustment of Controls 17
Mechanical Information 21
PARTS LIST 23
Ordering and Special Notes 23
Resistors 24
Capacitors 27
Semiconductors, Lamps, etc. 29
Plugs and Sockets 30
Wound Assemblies 31
Holders, Cradles, Heat Sinks 32
Miscellaneous 32
APPENDIX I 082 Switchable - Standards Version, Parts List,Circuit Changes and Description

Fig. No.
1
2

14

Title
Incorrect and Correct Pictures
Transistor Continuity Checks
Block Schematic Diagram
Circuit Diagram Part 1 (Type 081)
Circuit Diagram Part 2 (Type 081)
L. T. Stabiliser Panel

Video Output Panel
Sync Separator and Video Panel
Horizontal and Vertical T.B. Panel
Horizontal Output and E.H.T. Panel
D. C. Resistance and Connections (of wound assemblies)

Component Location R.H. Side
Component Location L.H. Side
Circuit Diagram (Type 082)

Location

Page 12
Page 14
Foll. last page
Foll. last page
L.H. of rear cover
L.H. of rear cover
L. H. of rear cover
R.H. of rear cover

Appendix I

Note: The data throughout this description is given as a supplement to information provided by the circuit diagram which provides waveform and voltage analysis. Circuit techniques in common use are not normally described.

Video Amplifier

The video input signal required for the amplifier can be either video plus blanking or composite video (peak white positive, sync negative). Provision is made for the signal to be 'bridged through' to other monitors, or terminated in 75Ω by means of a 2 -position link (PL6) on the rear panel of the monitor.

The video signal is fed into the first amplifier stage via the circuits of the protection diodes Dl and D2. These diodes are forward biassed so that signals which do not exceed the specification upper limit pass through unchanged. Signals above the upper limit bias the diodes into the 'off' condition. This prevents damage to TRl occurring through the application of excessive signals.

TR1, the first video stage, is connected in an emitter follower circuit with bootstrap components C 2 and C3. The bootstrap increases the input impedance to a value required by the 'bridged' condition. Video gain (contrast) is controlled by R152 (on the monitor front panel). This potentiometer is connected as the emitter load of TRI with the slider feeding the signal to the base circuitry of TR2 which also functions as an emitter follower. Voltage gain is provided by TR3 in a grounded emitter stage which in turn feeds into the emitter follower circuit of TR4.

TR2, TR3 and TR4 are all d.c. coupled. To prevent d.c. drift, reduce distortion, and to produce the required frequency response, a combination of $a . c$. and d.c. feedback is employed. High frequency feedback from TR4 to TR2 is made variable by the trimmer C 7 which acts as a peaking control, and this is preset for optimum response. The feedback also ensures that any hum present in the input signal is greatly reduced.

In order to drive the clamp transistor, TR6, more a.c. efficiency is required than is normally obtained from a simple emitter follower where efficiency is limited by power loss in the low value load resistor. This increased efficiency is provided by TR 5 which is a constant current device, and acts as a large a.c. impedance in the emitter circuit of TR4. TR5 bias stabilisation is provided by potential divider R19, R20.

The clamp transistor, TR6, restores the d.c. and low frequency components of the video signal which have been lost by earlier a.c. couplings. Negative going line pulses of approximately $2 \mu \mathrm{~S}$ duration are applied to the

GENERAL DESCRIPTION AND SPECIFICATION

The Pye $8 \frac{1}{2}$ " solid-state Monitor has been designed for use in closedcircuit television systems, and in general studio installations. Model 081 is suitable for 625 line or 525 line standard scanning systems. Inputs can be either a composite video or non-composite video with separate synchronising signal. Changeover is provided by a two-position link on the rear panel.

The E.H.T. supply of 15.5 kV is stabilised, and the C.R.T. is fitted with a dark screen filter ensuring pictures of excellent contrast even in high ambient lighting conditions. Picture black level clamping circuits are also employed.

There is provision for either high impedance 'bridging' through or low impedance termination of the video line by a two-position link plug. Similar links are used to select internal or external sync condition, and also for 'bridging' or termination of the external sync line.

Controls available on the front panel include normal operator controls of on/off switch, brightness, and contrast, and also presets for vertical and horizontal hold.

A socket is fitted so that brightness and/or other functions may be remotely controlled if required.

General use of high quality components, and careful choice of the optimum performance semiconductor devices, ensure stability of operation, high picture quality, and long service.

SPECIFICATION (For 082 see Appendix 1)

Scanning System

Picture Dimensions

Input Signals

Input Impedance

525/625 lines, 50/60 fields per second.
$5.3^{\prime \prime} \times 7.1^{\prime \prime}(13.5 \times 18 \mathrm{~cm})$
0.25 - 2 V p-p composite video waveform (peak white positive, sync negative), or
$0.25-2 V \mathrm{p}-\mathrm{p}$ video and blanking (peak white positive) and $0.2-5 \mathrm{~V} p-\mathrm{p}$ negative going complete synchronising waveform.

75 ohms $\pm 5 \%$ or high (bridged).

Video Bandwidth
$8 \mathrm{Mc} / \mathrm{s}$ minimum.

Scanning Linearity
Power Supply

Power Consumption

Max, Ambient Operating Temperature

Connectors

Semiconductor Complement

Valve Complement

Display Tube

Overall Dimensions

Unpacked Weight

Packaging Data

Less than 2% departure from the ideal.
$90-150 \mathrm{~V}$ a.c. r.m.s. and $180-240 \mathrm{~V}$ a.c. r.m.s. at $47-70 \mathrm{c} / \mathrm{s}$. Range and voltage adjustable by selector plugs.

60 watts approximately.
$50^{\circ} \mathrm{C}$.

Power input - Bulgin P429.
Video \& Sync - Films \& Equipment type SO-239.

Ancillary Facility - Electro Methods M7S-LR-N.

33 transistors, 40 diodes.

Two EY 86.
$8 \frac{1}{2}$ inch (21.5 cm) diagonal; 90°
electrostatic focus (Mullard type M2l-11W)
$\begin{array}{ll}\text { Width } & 10 \text { in }(25.4 \mathrm{~cm}) \\ \text { Height } & 9 \frac{1}{2} \text { in }(24.1 \mathrm{~cm}) \\ \text { Depth } & 17 \text { in }(43.2 \mathrm{~cm})\end{array}$
$30 \mathrm{lbs}(13.6 \mathrm{~kg})$

Carton Sizes: Width 16 in (40.6 cm) Height $15 \frac{1}{2}$ in (38.8 cm) Depth 22 in (55.9 cm)

TR11, in a grounded emitter stage, has its base d.c. potential stabilised by a conventional potential-divider network (similar to that of TR10), and in the no-signal condition is just conducting. Under conditions where a composite video signal has to be accepted, the positive portion biasses the transistor off, thus permitting only the amplified negative sync pulses to appear in the output. This biassing is provided by the self-bias components. With low level signals, however, the sync separation is not always complete and TR 12 circuit, which is completely self biassing is employed to remove any residual video. The decoupling components, including Zener diode D6, obviate positive feedback which might otherwise occur via the positive supply line to TRll emitter. Amplified composite sync pulses across the load of TR 12 are fed out to the time base circuits.

TR13 is fed from Ll, part of the composite load R50/L1 of TR12. The waveform across Ll consists of differentiated line pulses, and D7 removes part of this waveform to ensure that only negative going pulses are applied. Output of TR13 across R53 consists of sharp negative going line pulses which are used to switch the video and sync clamps (TR6 and TR9).

Vertical Scan Timebase

Composite sync signals from TR 12 are applied to the CR network, R58/ C 35 , in the base circuit of TR 14 . The time constant is such as to reduce substantially the line pulse amplitude and to pass with little change the frame pulses. Interlace diode D8 circuit provides self-bias at a level which permits only the frame pulses to pass to TR14. The output pulses of TR14 are fed to the blocking oscillator via injection components R16, R63 and D9 which ensure suitable triggering level and shape.

TR15 is a conventional blocking oscillator with transformer coupling between collector and base. The variable R 153 (VERTICAL SPEED) sets the vertical speed by its effect on the time constant of TR 15 base circuit. Dl0 provides reverse spike suppression.

Frame pulse integration is performed by R65, D11, C37 and C38. When TR 15 conducts Dll is biassed so as to conduct simultaneously thus completing the discharge path for C37 and 38. During the interval between pulses C 37 and 38 charge again via R65. Overall linearity is controlled by the variable R168 (VERTICAL LIN. 1) which with C 37 provides feedback between TR 16 emitter and base. A separate control R 166 (VERTICAL LIN. 2) controls the top portion of the picture only, and is part of the network C39, R69, R166 from the collector of TR16 and chassis.

The input to TR17 is controlled by the variable R167 (VERTICAL AMPLITUDE): the title being self explanatory. R74 (VERTICAL OUTPUT SET-UP) in the base circuit of TR17, is preset to provide the optimum output waveform by removing any small residual distortion.

TR18 is a straightforward emitter follower, which feeds the vertical output stage TR24. The frame output is applied from L5, in TR24 collector circuit, to the frame coils L11. Diodes D23 and 24 across L5 restrict the reverse voltage amplitude which would otherwise apply an excessive potential to TR24 collector.

Both a.c. and d.c. feedback are applied to the vertical amplifier stages. A. C. feedback is developed across R 120 which is in series with the frame coils Lll. This voltage is applied across R74 in the emitter circuit of TR17 and is used to counteract the variations of resistance with temperature in the wire of the frame coils. Thus if the coil resistance increases, the voltage across R120 drops and the output of TR17, and hence of TR 18 and 24, rises to compensate. D.C. feedback is applied from the emitter of TR24 to the base of TR17 and minimises the effects of any drift in d.c. conditions. D12 in series in the d.c. loop mainly compensates for any temperature effects on TR17.

Blanking pulses are supplied from the collector of TR24 via D21 to the cathode of the C.R.T. to blank out the trace during the frame flyback period. D2l prevents the line blanking pulses, which are also on the C.R.T. cathode, from feeding back into the frame circuit. Clipping of the frame pulses is also effected by D21 with the level determined by R113 and 164.

Horizontal Scan Timebase

The line timebase, prior to the output stage of TR28, comprises a phase splitter TR19, frequency discriminator D14 to 17, frequency regulator TR20, horizontal oscillator TR21, and a driver stage TR27. The first 3 stages form an a.f.c. circuit for the line oscillator.

Synchronising pulses are applied to the base of TR9. Outputs in opposite phase are fed via C 47 and 48 to opposite points of the bridge circuit formed by Dl4 to 17. A reference sawtooth waveform is also applied to another point on the bridge circuit discriminator. The resultant d.c. output controls part of the bias on the frequency control transistor TR20. The reference sawtooth originates in pulses from the horizontal efficiency circuit transformer T4 which are integrated by C49, R 126.

TR20, the frequency control transistor, has two sources of d.c. bias. One is derived from the variable R154 (HORIZONTAL SPEED) and this sets the initial frequency. A second source is the phase dependent d.c. from the frequency discriminator. This latter varies in amplitude and polarity depending on the phase relationship between the sawtooth reference and the sync signals. Thus it modifies the mean value of bias on TR20 base. R93, in the emitter of TR20, carries the resultant output voltage and this modifies the effective impedance of C54. This capacitor forms part of the tuning capacitance of the horizontal oscillator TR2l, the other half being C56. The apparent changes in C54 serve to reset the frequency. A primary advantage of the system is its stability of operation.

L2, C54 and 56, form the tuned circuit between base of TR21 and chassis with feedback to the emitter from a tapping on L2. Output is sinusoidal and hence the self-biassed diode Dl8 in the collector circuit is used to clip the waveform into a suitable shape for driving TR27 via T2.

The driver stage, TR27, is transformer coupled on its input to the collector of TR21, and on its output to the base of TR28. The current pulse
amplitude, on its leading edge, required to switch TR 28 off completely and rapidly during the flyback period is about 3 amps . L7, the horizontal pulse choke, R27 and C78, all in the collector circuit of TR27, have the combined effect of sharpening the rise time and increasing the amplitude of the turnoff pulse to ensure a really fast and complete cut-off. D25, D26, C79 and R128 in the same circuit ensure that the transistor is reverse biassed for the entire turn off period.

TR28 feeds the deflector coils Ll0, from its emitter via the 'S' correction capacitor C94 and the saturated reactor L8 (HORIZONTAL LINEARITY). Control of linearity is effected by an adjustable permanent magnet which controls the degree of polarisation of the saturated inductance. C74 is the main tuning capacitor for the stage across emitter and collector. Third harmonic tuning provided by L6 and C 75 serves mainly to reduce peak voltage across TR28, and the amount of third harmonic permitted is controlled by the ratio of C74, C75. D37 is also employed to damp peak volts across TR28. R 158 (HORIZONTAL AMPLITUDE) controls the supply volts to the output stage.

During the finish of the flyback period, energy stored in the deflector coils drives the emitter of TR28 negative with respect to chassis. At this time efficiency diode D38 conducts, charges C 96 through T4 and thus produces the boost volts required for peak scanning amplitude. The charge on C96 supplies an initial part of the scanning power when TR28 is still nonconducting, thus increasing the efficiency of the stage.

E.H.T. and H. T. Generation

The generation of all high level voltages is performed in one stabilised circuit which incorporates both overload protection to limit low voltage current consumption, and protection for the C.R.T. in the event of a failure in the scanning circuit.

TR29 and 30, with the associated components, form a Class C push-pull oscillator with feedback maintained by the transformer T5. Initial start-up of the oscillator is ensured by R135. Stabilisation is effected through the reference voltage which is taken from the collector circuit of TR 30 . Effectively one half of the primary of T6 (the E.H.T. output transformer) is across the network D29, 30 and the filtering components. The rectified and smoothed output is applied across the potential divider R131, R132 (SET E.H.T.) and the reference diode D28. R132 sets the initial bias on TR 26 and hence the initial E.H.T. level. TR26 is connected in an a.c. sense, between primary and secondary of T5 and hence its conductance modifies the oscillator feedback circuit. Changes in load on the secondary of T6 are reflected back into the primary, seen as bias changes by TR26, and thus change the oscillator feedback and reset the E.H.T. level. Without TR26, feedback is insufficient to support oscillation, thus TR 26 provides the true drive for the oscillator.

R162 (OVERLOAD PROTECTION) is preset so that the current from the low voltage supply feeding the oscillator transistors cannot rise above 2 amps if the load on the oscillator should be sharply increased. This protects TR29,

TR30 from damage. The change in conditions is such as to cut off TR26 and the oscillator ceases to function.

Scan failure protection for the C.R.T. also relies on the operation of TR26. Normally D27 in the emitter circuit of TR26, is made conductive by a negative d.c. supply derived from D25 which is drsven by a winding on the efficiency transformer T4. If horizontal scan fasls the D25 supply is cut off, D27 becomes non-conductive, TR26 is cut off and the oscillator ceases to function until line scan is restored.

The output of T6 is voltage doubled by V1, V2 rectifier circuits giving a final output of about 16 kV . Half or full value E.H.T. can be measured across C99, Clll respectively.

A further secondary winding on T6 provides via voltage doubler circuits of D33 to D36, a 400V line for C.R.T. brightness (set by R155), a 510 V line for focus (set by Rl16), and a l00V line for TR22, 23, and 24.

L.T.Stabiliser

Almost all transistor supplies are drawn from an approximately liV line. This is stabilised by fairly normal series regulators.

TR31 and 32 circuits form the feedback amplifier, the emitters of which are tied to the $+11 V$ line by reference diode D39. Across the stabilised output is a potential divider R146, D40, R148 (SET D.C.) and R149. D40 compensates for any temperature drift effects in TR32. R148 sets the initial d.c. level. Incremental changes in output appear across the emitter/ base circuit of TR32. Thus if the voltage tends to increase TR 32 becomes more conductive and the collector volts will rise. This causes TR3l to become less conductive driving the collector more negative. The collector change is passed to the base of TR33, the series regulator, via TR25, decreasing the conductance and thus bringing the output back to normal by reason of the increased voltage drop.

The IIV supply originates in the mains transformer Tl and the full wave rectifiers D41, 42. C 106 is chosen for its good power factor, low impedance and high ripple rating. Substitutes must be checked to ensure that characteristics are the same as for the item in the equipment.

INSTALLATION AND OPERATION

GENERAL INFORMATION

Power Supplies

The monitor operates on A.C. supplies at $90-150$ volts and $180-240$ volts r.m.s. 47-70 c/s.

Different fuse ratings are required for the two ranges. The l Amp fuse normally fitted is suitable for the 180-240 volts a.c. range, whilst a 1. 5 A fuse is required for the $90-150 \mathrm{~V}$ a.c. range. It is essential that a fuse of the correct rating be fitted should the need for replacement arise.

INSTALLATION

Check carefully that no damage has occurred in transit and that any loose shipping items have not been discarded.

Power Input Adjustment

Adjust the two voltage selector plugs at rear of monitor (see Fig. 4) so that the sum of the two figures equals, or corresponds as nearly as possible to the voltage of the local supply. (For example, with a supply of 110 V a.c. the plug settings should be ' 90^{\prime} ' and ' 20^{\prime} '; for 240 V the settings would read ' 180^{\prime} and ${ }^{\prime} 60^{\prime}$.

If operating on the $90-150 \mathrm{~V}$ a.c. range, replace the fuse, Fl, (Fig. 4) for one of the correct rating, i.e. 1.5A.

To ensure adequate ventilation for the monitor it is important that the air space beneath the monitor and immediately above the top louvres is unobstructed.

Power Supply Connections

Power should be applied by means of the detachable three-contact socket supplied with the monitor.

Use a length of colour-coded three-core cable suitable for the installation and connect the 'Live' core (e.g. RED) to the terminal marked 'L'; the 'Neutral' core (e.g. BLACK) to the terminal marked 'N'; and the 'Earth'
core (e.g. GREEN) to the terminal marked ${ }^{\prime} E$ '. Connect a suitable plug (preferably 3-pin or contact) to the free end of the lead, ensuring that the Live, Neutral and Earth connections are in correspondence with those made at the monitor socket. The 'Earth' lead should not be left detached since its connection constitutes an important safety measure.

Input Signal Connections

If a single monitor only is required fed from a composite video source connect the video lead to the Video 'In' socket and plug the associated link into the 'Term' position. Also check that the sync plug PL5 is in the 'Internal' position.

When more than one monitor is required in a composite video system the video 'In' and 'Out' lines should be connected by means of a ' T ' adaptor (F and E Part No。M358 or Greenpar 15008) which is plugged into the 'Video In' socket, and the link PL6 moved into the 'Bridge' position. The final monitor in the line should be adjusted to the 'Term' position.

When a separate sync signal is available and one monitor only is in use, the plug PL5 is set to the 'External' position, PL6 is set to 'Term' position, and the sync lead plugged into 'Sync In'. If a number of monitors are in use, sync in and out lines are plugged into the same type of ' T ' adaptor mentioned above, the adaptor being plugged into 'Sync In'. Also the plugs PL4/PL6 are set to the 'Bridge' position except for the last monitor where they are left in the 'Term' position.

SETTING-UP PROCEDURE

1. 'Turn 'Contrast' and 'Brightness' controls fully anti-clockwise to minimum.
2. Switch on by depressing the 'On-Off' push button. Wait approximately 2 mins. to allow the picture tube to heat up before attempting adjustments.
3. Advance the 'Brightness' control to the point at which a raster (lines) become visible on the picture tube, then turn back to the point at which the raster just ceases to be visible.
4. Adjust the 'Contrast' control to provide a picture of satisfactory contrast, or, if setting up in preparation to operate a camera, adjust to approximately $\frac{3}{4}$ of maximum.
5. Adjust 'Horizontal' and 'Vertical' Hold controls (presets on front panel) if necessary, to 'lock' the picture - or the raster if no picture is available but the camera is switched on.
6. Finally adjust 'Contrast' and 'Brightness' slightly to provide optimum results.

Switch 'on' and allow the monitor to warm up.

Adjust 'Contrast' if necessary to accommodate slight changes of signal strength.

Switch 'Off' by re-pressing and releasing the 'On-Off' push-button.

NOTES ON ADJUSTMENT OF CONTROLS

Upon initial installation all auxiliary controls will be checked and/or adjusted for their correct settings, and further adjustment will not normally be required. Customers who carry out their own installation and find adjustment necessary should consult the maintenance section of this book.

Pictures illustrating some effects from incorrect adjustment of readily accessible auxiliary controls, together with an 'all-correct' picture, are however given in Fig. 1.
'On' - 'Off' Push-Button

This controls the power supply to the monitor. Depress to switch on; press again and release to switch off.

Brightness and Contrast
The precise setting of the se controls may be a matter for individual preference. In general the aim of their combined adjustment is to produce a picture of correct or acceptable contrast. A sound method of obtaining this is to first set the Brightness control in the absence of a signal (i.e. Contrast at minimum) to the point at which raster lines are just invisible, followed by an adjustment of the Contrast control for optimum results.

Incorrect settings of these controls will most likely result in inaccurate reproduction of shades between black and white. A comparative graduation scale is shown by the 5 -square column at the centre of the test card.

Vertical Hold

Adjust to the point where the picture is locked and where slight movement of the control in either direction is possible without movement in the vertical direction.

Horizontal Hold

Turn to left or right until a complete picture appears, and adjust to the point giving least sideways movement of the picture. Check that the correct position has been obtained by switching off the monitor for a brief time and then switching on again - the picture should reappear locked.

Incorrect Adjustment of Horizontal Hold

Incorrect Adjustment of Vertical Hold

All Controls Correctly Adjusted

Fig. 1 Incorrect and Correct Pictures

PRECAUTIONS

TRANSISTORS

General

Transistors are mechanically robust and have not so far exhibited any limit to useful service life when operated under correct circuit and specified rating conditions. Due to a very low resistance, however, irreparable damage may be caused by the inadvertent application of quite low potentials. It should be noted that such potentials may exist at the terminal or between terminals of a meter or other item of test equipment, or between a soldering iron and chassis, or across an undischarged capacitor.

Non-observance of this and also of the following procedural precautions in the maintenance of transistor circuitry and in the testing of suspect units may result in their destruction.

1. Always ensure that the monitor is switched off before any other circuit connection is made or broken, and before any repairs are carried out.
2. Make sure that not only the monitor itself, but also all items of test equipment (Sig. Gen., Oscilloscope, etc.) and the soldering iron are earthed properly.
3. Observe correct polarity. The potential applied to the collector of $\mathrm{p}-\mathrm{n}-\mathrm{p}$ type transistors is always negative, to $\mathrm{n}-\mathrm{p}-\mathrm{n}$ type always positive, with respect to emitter.
4. Avoid excessive heating (see sub-section 'Soldering').

TR ANSISTOR TESTING

Commercial transistor testers on which comprehensive test schedules may be performed are available in a variety of makes and types, but where this facility is not available the rough continuity test of Fig. 2, may be found useful.

1. Do not use a megger or other equivalent form of test-circuit in testing transistor continuity.

(a) $\mathrm{P}-\mathrm{N}-\mathrm{P}$ Type

(b) N-P-N Type

Fig. 2 Transistor Continuity Checks
2. Ascertain, in the ohmmeter intended for the test, the polarity of the test terminals, or if a range-switched instrument, whether the polarity of the terminals is reversed on the resistance ranges (in the standard 'Avometer' the Red Terminal is Negative) and also whether the test voltages differ on the different ranges.
3. Use a safe ohmmeter to check continuity of transistors as shown in the figure, taking care not to apply any test voltage or current in excess of the permitted maximum (as shown by the relevant specification data of the transistor) particularly in the reverse base-emitter and collectoremitter tests.

Use an AVO meter Model 8 on the ' R^{\prime} resistance range only (not on either of the $\div 100$ or $\times 100$ ranges), or any other ohmmeter on a range with f.s.d. not greater than $\operatorname{lm} A$ and output not greater than 1.5 volts.

Substitution of the suspect component by a new, or still better a proven good part, is a most satisfactory method of checking, particularly since certain dynamic performance defects may not be traceable by any other method. See section on soldering before proceeding.

CONTINUITY CHECKING

It will be appreciated that the precautions given in connection with transistor continuity tests above, apply equally to continuity checks in transistorised circuits and external wiring.

1. When checking wiring external to a unit it is safer to unplug the unit whenever possible.
2. When it is required to check resistors, capacitors, etc. and these components are shunted across the whole or part of a semi-conductor, meter readings may be affected. In these cases disconnect one end of each component under test.

SOLDERING

Poor insulation on the soldering iron can give a sufficient level of a.c. leakage to cause permanent damage to transistors. Check with a meter for the existance of a potential between the bit of the iron and the circuit earth. If present, repair the earthing of the iron, or replace.

1. Semi-conductors are temperature sensitive: do not apply an iron to the terminal wire or pin for longer than is necessary.
2. Never solder with the monitor switched on; this can lead to short-circuits disastrous to transistors, e.g. across emitter resistor.
3. Use a thermal shunt when soldering/unsoldering any transistor or diode by firmly clamping the terminal wire or pin close to the point of application, with either:-
(a) A suitable size of approved heat-sink clip, or
(b) Cool, smooth-jawed pliers or tweezers.

TRANSISTOR (and DIODE) REPLACEMENT

Various cooling clips are used to permit increased power dissipation. When replacing ensure that the same clip, or same size of clip, is refitted and makes close contact with the case of the semiconductor. Where mica insulating washers are used these must not be damaged (or if damaged, must be replaced - but not by any other material since this would affect adversely the transfer of heat from case to heat-sink or chassis).

A thin, even smear of silicone (and only silicone) grease on the washer prevents sticking and makes a more intimate heat bond with the sink. Insulating bushes must not be forgotten since they isolate the collector from
chassis. Tighten all mounting screw nuts evenly and hard down for good contact, since this again affects heat transfer, but take care not to strip threads. Some diodes are mounted in cradles to space the component from the panel on which it is mounted. The cradle should be retained whenever replacements of the diode is needed.

TEST EQUIPMENT

1. Earth all test equipment.
2. Some signal generators may give outputs in excess of the transistor rating. Care should be taken to reduce the output to minimum before connecting, and ensure that the safe level is not subsequently exceeded.
3. Connect test equipment earth lead first and then touch the other lead to earth (to discharge any capacitor that may be charged) before connecting it into the equipment on test.
4. Discharge test capacitors also in the same way.

PRINTED CIRCUITRY

The techniques employed in the servicing of printed circuit boards are basically similar to those in use with wired chassis. The following points should, however, be noted and the warning concerning the soldering of semiconductors always observed.

1. The copper circuitry is covered with a protective layer of polyurethene and to avoid damage to this, needle point test probes should be used when making measurements from this side of the board.
2. When soldering, care should be taken to avoid the application of excessive heat which will soften the thermoplastic adhesive under the copper foil. Best results are obtained by the use of a hot iron (rating below 50 watts) applied for the shortest possible time.
3. Use as little force as possible in removing faulty components. Wires bent over against the copper foil should be gently levered up - the solder being molten during this operation to prevent lifting of the copper foil from the board.
4. The leads of replacement components should be carefully cleaned before being inserted through the holes in the panel. They should then be cut to length and bent over against the copper foil. Soldering should be as rapid as possible using 60/40 resin-cored solder.
5. Avoid excessive deposits of solder; these may cause short-circuits and intermittent faults difficult to locate.
6. Should it be necessary to clean the circuitry before soldering, a small glass fibre or wire brush should be used. After soldering, the exposed copper foil should be re-coated with polystyrene dope or similar preservative (e.g. Durofix) to keep out moisture.
7. Microscopic cracks may be satisfactorily repaired with solder, but in general tinned copper wire should be used to bridge the damaged circuitry.

MONITOR TESTING AND READJUSTMENT OF CONTROLS

General

When servicing the equipment, the usual precautions should be taken to avoid accidental contact with high voltages, and especially with the E.H.T. voltage.

In handling the c.r.t., e.g. during replacement, care should be exercised to avoid the danger of implosion, and eyes should be protected by industrial safety spectacles or goggles.

Voltages and Waveforms

This information, and the conditions under which they are obtained, is set out on the circuit diagram. Most normal faults can be traced from this data. The information which follows deals with points which are not always obvious from the circuit.

Controls

The controls available are listed below together with their general location in the monitor.

Code Function
R26 Clamp Set-up
R74 Vertical Output Set-up
Rll6 Focus
R132 Set E.H.T.
R148 Set D.C. (IIV)
R152 Contrast
R153 Vertical Hold
R154 Horizontal Hold
R155 Brightness
R157 Preset Brightness
R158 Horizontal Amplitude
R162 Overload Protection (E. H. T.)
R166 Vertical Linearity 2
R167 Vertical Amplitude
R168 Vertical Linearity 1

Location
Video \& Sync Separator Panel
Hor. \& Vert. Timebase Panel
By L. T. Stabiliser Panel
E. H. T. \& Hor. Output Panel
L. T. Stabiliser Panel

Monitor Front Panel
Monitor Front Panel
Monitor Front Panel
Monitor Front Panel
Monitor Right Hand - tube mount
Monitor Rear Panel
E. H. T. \& Hor. Output Panel

Monitor Rear Panel
Monitor Rear Panel
Monitor Rear Panel

Code (Cont)	Function
C7	H. F. Peaking (Video)
L1	Clamp Pulse Width L2
L6 Horizontal Oscillator	
L8	Third Harmonic tuning (line flyback control) Horizontal Linearity control
	Centring \& correction magnets

Video \& Sync Separator Panel
Video \& Sync Separator Panel Hor. \& Vert. Timebase Panel
E. H. T. \& Hor. Output Panel On metal screen near C.R.T.

Parts of Deflector Coil Assembly

Note: Presets will not require adjustment unless some component failure has affected the value of associated components, or replacements are made.

Simpler Servicing Adjustments

The following adjustments are those which will be necessary after the c.r.t. has been replaced, or after the replacement of one of the controls mentioned. For most of these a linear test pattern source is needed, with composite video input (or with separate syncs) within the monitors specification limits (see Chapter 1).

1) Vertical Hold (R153) Adjust to centre of arc in which no up or down movement of the picture occurs.
2) Horizontal Hold (R154) Control has a range over which picture remains locked by reason of the a.f.c. circuit: set to the centre of this range. Check that lock is still satisfactory after monitor is switched off and then on again.
3) Picture Orientation Loosen deflection coil assembly clamp and adjust without allowing coils to move back along the neck. Tighten clamp.
4) Centring Magnets (M1, M2) See Fig. 11. With correctly orientated picture adjust M1, M2 independently to achieve optimum centring.
5) Raster Correction Magnets (M3-6) With linear test pattern and with foregoing adjustments completed, set the magnets by gentle bending or twisting to give best geometry on each appropriate edge of the picture.

Replacement magnets must be positioned with the correct polarity as shown in Fig. 11.
6) Focus Control (R116) This is positioned inside the monitor on the left hand side, close to the L. T. Stabiliser Panel. Adjust slide contact for best focus.
7) Vertical Amplitude and Linearity R167 controls amplitude, R 166 controls the top picture linearity only, and R168 controls overall linearity. Foregoing adjustments should be completed.

Some interdependance exists between the three controls, therefore, set R166, 168 initially to mid-position, adjust R167, and linearity controls last.
8) Horizontal Amplitude and Linearity R 158 controls amplitude. L8, positioned on metal screen just above stem of c.r.t., controls linearity. The knurled ring is held between finger and thumb, and pushed or pulled to move on the centre rod. A twisting motion makes small movements easier to obtain.

Video Tests

Test Equipment

(a) Video Oscillator. Minimum frequency range $100 \mathrm{kc} / \mathrm{s}$ to $9 \mathrm{Mc} / \mathrm{s}$. Attenuator range to -40 dB approx. (on 1 V p-p). Suitable item Wayne Kerr, type 0.22B.
(b) High Impedance Crystal Voltmeter to read between 0 and 100 volts peak-peak. Accurate over frequency range as in (a).
(c) 27 k ohm resistor with leads and miniature clips.

Sensitivity

Temporarily disconnect lead to tag 18 on rear of Video and Sync Separator Panel. Cover end of lead to prevent short circuits. Clip 27 k ohm resistor between slider of R26 (on this panel) and base of TR7-top end of Cll is a convenient point. Connect Crystal Voltmeter between c.r.t. grid (pin 2) and chassis.

Inject $100 \mathrm{kc} / \mathrm{s}$ signal from Video Oscillator at SK2 (PL6 set to Terminate position). Set attenuator for a level of -37 dB on $1 \mathrm{~V} p-\mathrm{p}$.

Switch on. Set Contrast control to maximum. The level on the Crystal Voltmeter should be more than 20 V p-p, representing a minimum gain of 63 dB .

Frequency Response

Conditions are as for sensitivity check.
Adjust video oscillator attenuator for exactly 20 V p-p on Crystal Voltmeter.

Increase input by 10 dB and adjust R26 (Clamp Set-up) for maximum out put which should be about 60 V p-p.

Readjust attenuator to return output to exactly 20 V .
Set input frequency to $7 \mathrm{Mc} / \mathrm{s}$ and adjust trimmer C 7 (on same panel as R26) to give 20 V p-p output.

Check the video response between $100 \mathrm{kc} / \mathrm{s}$ and $7 \mathrm{Mc} / \mathrm{s}$, say at $100 \mathrm{kc} / \mathrm{s}$, $500 \mathrm{kc} / \mathrm{s}$ and in $1 \mathrm{Mc} / \mathrm{s}$ steps. This should be flat within $\pm 1 \mathrm{~dB}$. Check response at $8 \mathrm{Mc} / \mathrm{s}$ and $9 \mathrm{Mc} / \mathrm{s}$. This should be between +1 dB and -3 dB on the output at $100 \mathrm{kc} / \mathrm{s}$.

Switch off and disconnect all test items. Carefully resolder lead to tag 18.

Inject at SK2 a composite video signal, preferably from a linear test pattern source. Switch on. Adjust contrast control so that the signal is just visible. R26 (Clamp Set-up) is now reset so that it is just retarded from the position where black level clipping occurs.

Other Tests

The following abbreviated data is provided to cover tests required following the replacement of controls not dealt with in the check outlined above.

CONTROL

CONDITIONS

R157 As at completion of Video Tests. R 155 fully a.c.w.

LI

R 74

L6 Normal signal input. R 158 fully a.c.w. C.R.O. via X 10 probe to TR28 emitter and chassis.

L2 Normal signal input. Voltmeter to TR20 base and chassis. Lead to tag 39 disconnected (Timebase Panel).

R 162
R155, 157 fully a.c.w. R162
set to mid-position. 10 amp
meter in series with L9.
Note: R 26 may have to be adjusted to achieve $\overline{2}$ amps (or just over), if so readjust R26 after this check as in last paragraph of Video Tests.

Removing Covers

Each side cover is held by two screws, accessible on the bottom edge of the cover.

Remove these screws. Hinge side cover upwards until the top lip can be disengaged from its channel in the section carrying the monitor handle.

Access to Components (see Figs. 12 and 13)

On the left hand side the complete assembly holding the Video and Sync Separator, and the Horizontal and Vertical Timebase panel can be hinged outwards after merely pressing outwards the two springs into which the tapered spiggots engage.

The L. T. Stabiliser Panel will need removing only if access is needed to the printed copper wiring, or to $L 5$ which is mounted behind this panel. Remove the two screws holding the brackets which carry this panel. The assembly can then be drawn forward.

The Video Output Panel requires only to be drawn backwards off the end of the c.r.t. taking care not to exert pressure on the panels components in this process. It is fixed to the base connector.

On the right hand side of the monitor, access to E.H.T. output components is achieved by merely removing the four screws one at each corner of the metal screen over the rear compartment.

If it is necessary to gain access to the rear of the Horizontal Output and E.H.T. Panel, the four screws, one at each top corner and one on each edge towards the bottom must be removed.

Removing C.R.T.

Unplug e.h.t. cap connector.
Carefully remove c.r.t. base connector and the Video Output Panel.
Loosen the deflector coil clamp screw so that c.r.t. (when freed) will be able to slide forwards easily.

Loosen the c.r.t. band screw - at top of monitor just behind front panel.

Remove Brightness and Contrast control knobs on front panel. Turn monitor on to its right hand side.

Remove screws holding front panel to main assembly - two at top near handle assembly and two underneath chassis.

Front panel and c.r.t. can now be drawn forward until c.r.t. is clear of unit. C.R.T. and mask can now be withdrawn from the front panel.

Refitting C. R.T.
Before fitting mask to new tube ensure e.h.t. terminal is on the correct side (left hand viewed from rear).

Having seated the c.r.t. and its mask in the front plate, pass the c.r.t. stem into the main unit sliding deflector coils on to the neck in the process.

Turn monitor on to its right hand side. Replace fixing screws. Finger tighten top two then screw fully home the underneath screws. Finally tighten top two.

Turn monitor into normal position and fit Brightness and Contrast knobs.

Tighten c.r.t. band screw ensuring that rubber seating is flat and fitting correctly around c.r.t. Cl09 earthing tag is held by this band - take care that C 109 wire is not accidentally fractured.

Position deflection coils tightly up on to the flare of the c.r.t. and lightly lock clamp screw.

Refit e.h.t. cap connector, and place base connector and Video Output Panel back in position.

Ensure that satisfactory contact is made with Aquadag external coating by the spring provided.

Note: When this process is completed turn to Chapter 3, Setting-Up Procedure Section, then to Chapter 4, the section under Simpler Servicing Adjustments.

Screen Cleaning

Only the outer glass screen will need cleaning. Use a clean duster, lightly damped cloth, or sponge. This item should be kept for the purpose to ensure that it is free from abrasive material.

Ordering of Spare Parts

To avoid delays, and possible errors in the supply of spare parts, the Pye reference numbers shown in these parts lists should be quoted in all orders.

Special Notes

1) Many components in these lists are selected (in part) for their physical suitability on printed circuit boards. Plug-in types of resistors and capacitors used as replacements should be of the same size and type to avoid damaging the boards when resoldering.
2) Components denoted as "(epoxy)" are expoxy resin sealed to exclude moisture. Components marked "expoxy cased" should not be replaced by metal cased types.
3) At the time of compilation the capacitors used for C 97 and C106 are available from one manufacturer only. Unsuitable alternatives could severely affect performance and even produce damage to associated components.

RESISTORS

Code	Value (ohms)	Tolerance (\%) W	Watts at $70^{\circ} \mathrm{C}$	Remarks	Part No.
62	150k	10	1/5		NG15413
63	1. 2 k	10	$1 / 5$		NG 12213
64	10k	10	$1 / 5$		NG10313
65	100k	10	1/5		NG10413
66	8. 2 k	10	1/5		NG82213
67 \& 68	2. 2 k	10	1/5		NG22213
69	3. 9 k	10	1/5		NG39213
70	3.3 k	10	1/5		NG33213
71	1 k	10	1/5		NG 10213
72	330	10	$1 / 5$		NG33113
73	820	10	1/5		NG82113
74	500	Potentiometer	"Vertical	Output Set-up ${ }^{\text {" }}$	' PL03470
75	2. 2 k	10	1/5		NG22213
76	47	10	1/5		NG47013
77	1 k	10	1/5		NG 10213
78	1. 8 k	10	1/5		NG 18213
79	150	10	1/5		NG15113
80	100	10	1/5		NG10113
81	10k	10	$1 / 5$		NG10313
82		Not used			
83 (082)	2. 2 k	10	$1 / 4$		NG22204
84	3. 9 k	10	1/5		NG39213
85	4. 7 k	10	1/5		NG47213
86 \& 87	470	10	1/5		NG47113
88	47k	10	1/5		NG47313
89	3. 3 k	10	$1 / 5$		NG33213
	27k	10	1/5		NG27313
91, 92,93	1 k	10	1/5		NG 10213
94	220	10	$1 / 5$		NG22113
95	1. 2 k	10	1/5		NG12213
96	2. 7 k	10	$1 / 5$		NG27213
97 \& 99	220	10	1/5		NG22113
98	10k	10	1/5		NG10313
100	560	10	1/5		NG56113
101	10	10	1/5		NG 10013
102 (082)	15k	10	1/4		NG15304
103		Not used			
104	2. 7 k	5	6	Wirewound	PE27209
105	47	10	1/5		NG47013
106	47	10	1/5		NG47013
107	330k	10	1/5		NG33413
108	4.7 k	10	1/5 L3	wound onthis	NG47213
109	4.7k	10	1/5		NG47213
110	680k	10	$1 / 5$		NG68413
111	33k	10			NG33304
112	10k	10	1/5		NG 10313
113	47 k	10	$1 / 4$		NG47304
114	82	10	$1 / 4$		NG82004
115	15k	10	$1 / 4$		NG153, ${ }^{4}$
116	2M Pres	set potentiometer		"Focus" ic	PL03996.
117	1.2 M	10	$1 / 4$		NG12504

CAPACITORS

Code	Value	Tolerance(\%)	Working Voltage	e Type	Part No.
63	1000 pF	10	350	Polystyrene	PQ13010
64	$1 \mu \mathrm{~F}$	10	160 N	Min. Tubular (epoxy)	PR25508
65	$0.1 \mu \mathrm{~F}$	10	400 M	Min. Tubular (epoxy)	PR 19516
66	$5 \mu \mathrm{~F}$	$-20+50$	30 E	Electrolytic	PS 19041
67	$0.47 \mu \mathrm{~F}$	- 20	400 N	Min. Tubular (epoxy)	PR23507
68	$50 \mu \mathrm{~F}$	$-20+50$	150 E	Electrolytic	PS33078
69	$1 \mu \mathrm{~F}$	10	160 M	Metal Tubular(epoxy	PR25508
70	$0.01 \mu \mathrm{~F}$	10	160 M	Metal Tubular	PR 19540
71	$2000 \mu \mathrm{~F}$	$-20+50$	16 F	Electrolytic	PS53016
72 (082)) $0.1 \mu \mathrm{~F}$	$2 \frac{1}{2}$	350 P	Polystyrene	PQ32079
73 (082)	$16 \mu F$	$-20+50$	350 E	Electrolytic	PS25101
74	30 nF	$2 \frac{1}{2}$	350 P	Polystrene	PQ28006
75	20 nF	$2 \frac{1}{2}$	350 P	Polystrene	PQ26513
76	27 nF	$2 \frac{1}{2}$	350 P	Polystrene	PQ27701
77,78	0. $1 \mu \mathrm{~F}$	10	160	Min. Tubular (epoxy)	PR 19540
79	$50 \mu \mathrm{~F}$	$-20+100$	12 P	Plug-in Electrolytic	PS33086
80	$0.1 \mu \mathrm{~F}$	10	160 M	Min. Tubular (epoxy)	PR 19540
81, 82	$25 \mu \mathrm{~F}$	$-20+50$	15 M	Min. Flectrolytic	PS28054
83, 84	$5 \mu \mathrm{~F}$	$-20+50$	15 M	Min. Electrolytic	PS 19036
85	$1 \mu \mathrm{~F}$	10	160 M	Metal Tubular (epoxy)PR25508
86, 87	10 nF	20	750 S	Silvered Ceramic	PN50001
88	$1 \mu \mathrm{~F}$	10	160 M	Micropack Electrolytic	PR25508
89	$1 \mu \mathrm{~F}$	10	160 M	Min. Tubular(epoxy)	PR25508
90,91	10 nF	20	750 S	Silvered Ceramic	PN50001
92		Not used			
93(082)	$6 \mu \mathrm{~F}$	10	150		PR29002
94	$4 \mu \mathrm{~F}$	20	150 E	Electrolytic	PR28013
95	0. $1 \mu \mathrm{~F}$	10	160 M	Min. Tubular(epoxy)	PR 19540
96	$500 \mu \mathrm{~F}$	$-20+50$	40 E	Electrolytic	PS46074
97	$2000 \mu \mathrm{~F}$	$-20+100$	15 Alternat	tives NOT to be used	dPS53015
98	$2000 \mu \mathrm{~F}$	$-20+100$	16 E	Electrolytic	PS53016
99	$1000 \mu \mathrm{~F}$	$-20+50$	20 kV C	Ceramicon	PN26311
100	$l \mu . F$	10	160 M	Min. Tubular	PR25508
101		Not used			
102	$50 \mu \mathrm{~F}$	$-20+50$	30 M	Min. Electrolytic	PS33068
103	$1 \mu \mathrm{~F}$	10	160 M	Min. Tubular (epoxy)	PR25508
104	$250 \mu \mathrm{~F}$	$-20+50$	15 E	Electrolytic	PS41016
105	0. $1 \mu \mathrm{~F}$	10	400 M	Min. Tubular(epoxy)	PR 19516
106	$8000 \mu \mathrm{~F}$	$-20+50$	30 Alternati	ives must NOT be used	PS62000
107, 108	$2000 \mu \mathrm{~F}$	$-20+50$	16 E	Electrolytic	PS52016
109,110	0. $1 \mu \mathrm{~F}$	20	1 kV T	Tubular Paper	PR 19505
111	1000 pF	$-20+50$	20 kV C	Ceramicon	PN26311
112	$0.1 \mu \mathrm{~F}$	10	160 M	Min. Tubular (epoxy)	PR 19540
113	1. $0 \mu \mathrm{~F}$	10	160 M	Min. Tubular(epoxy)	PR25508
114	0. $1 \mu \mathrm{~F}$	$-20+50$	500		PN62306

Code	Type	Maker
TR 1	2S512	Texas
TR 2	2S512	Texas
TR3	2S512	Texas
TR4	2S512	Texas
TR 5	2S512	Texas
TR 6	2G302	Texas
TR 7	2S512	Texas
TR 8	40231	R.C.A.
TR 9	2G302	Texas
TR 10	2S512	Texas
TR11	2G302	Texas
TR 12	40231	R.C.A.
TR 13	2G302	Texas
TR 14	2S322C	Texas
TR15	2S512	Texas
TR 16	2S512	Texas
TR 17	40231	R.C.A.
TR18	40231	R. C. A.
TR19	40231	R.C.A.
TR 20	2S512	Texas
TR21	40231	R. C. A.
TR22	2N2102	Texas
TR23	U. $2154 / 1$	Fairchild
TR 24	40250	R. C. A.
TR25	40250	R.C.A.
TR26	2S512	Texas
TR27	2N2147	R.C.A.
TR28	2N3731	R.C.A.
TR29	2N2147	R. C. A.
TR 30	2N2147	R. C. A.
TR31	2S322C	Texas
TR 32	2S322C	Texas
TR 33	40251	R.C.A.
D 1	1 S 132	Texas
D2	1S 132	Texas
D3	15130	Texas
D4	1S 132	Texas
D5	1S 132	Texas
D6	1S2082A	Texas
D7	1S 130	Texas
D8	1 S 130	Texas
D9	1S 130	Texas
D10	1S 130	Texas
D11	1S 130	Texas
D12	1 S 130	Texas
D13		Not used
D 14	1S44	Texas
D15	1S44	Texas
D16	1544	Texas
D17	1S44	Texas

Function	Part No.
Video input stage	FV09837
Video amplifier	FV09837
Video amplifier	FV09837
Video amplifier feedback stage	FV09837
TR4 load circuit	FV09837
Video clamp	FV09779
Clamp buffer stage	FV09837
Sync input stage	FV07572
Sync clamp	FV09779
Clamp buffer stage	FV09837
Sync separator	FV09779
Sync separator	FV07572
Clamp pulse driver	FV09779
Sync amplifier	FV09836
Vertical blocking oscillator	FV09837
Phase inverter	FV09837
Vertical amplifier	FV07572
Vertical amplifier	FV07572
Sync phase splitter	FV07572
Line frequency controller	FV09837
Horizontal oscillator	FV07572
Video output stage	FV07562
Video output driver	FV07774
Vertical output	FV07563
L. T. regulator driver	FV07563
E.H.T. regulator	FV09837
Horizontal driver	FV07560
Horizontal output	FV07561
E.H. T. oscillator	FV07560
E.H. T. oscillator	FV07560
L. T. feedback amplifier	FV09836
L. T. feedback amplifier	FV09836
L. T. regulator	FV07559
Protection diode (video)	FV09076
Protection diode (video)	FV09076
D. C. compensation	FV09028
Protection diode (sync)	FV09076
Protection diode (sync)	FV09076
TR11 reference diode	FV09804
Sync separator clipper	FV09028
Interlace filter	FV09028
TR 15 catching diode	FV09028
Vertical clipping	FV09028
Vertical integration	FV09028
Vertical d.c. compensation	FV09028
Horizontal frequency discriminator FV09818 Horizontal frequency discriminator FV09818 Horizontal frequency discriminator FV09818 Horizontal frequency discriminator FV09818	

Code	Type	Maker	Function	Part No.
D18	IS 130	Texas	Horizontal clipping diode	FV09836
D19	IS 130	Texas	Video d.c. compensation	FV09836
D20		Not used		
D21	IS 134	Texas	Blanking diode (vertical)	FV09750
D22	IS 132	Texas	Blanking diode (horizontal)	FV09076
D23	IS 132	Texas	Vertical clipping	FV09076
D24	Z3B240. C	CFS.T.C.	Vertical clipping	FV09963
D25	IS 134	Texas	Scan failure protection	FV09750
D26	IS 920	Texas	Horizontal pulse forming	FV05129
D27	IS 130	Texas	Scan failure protection	FV09028
D28	IS2056A	Texas	E.H.T. reference	FV09796
D29	IS 920	Texas	E.H.T. regulator detection	FV09028
D30	IS 920	Texas	E.H. T. regulator detection	FV09028
D31	IN2071	Texas	-400V rectifier	FV09882
D32	IN2071	Texas	-400V rectifier	FV09882
D33	IN2069	Texas	100V rectifier	FV09877
D34	IN2069	Texas	100V rectifier	FV09877
D35	IN2071	Texas	510 V rectifier	FV09882
D36	IN2071	Texas	510 V rectifier	FV09882
D37	IN4785	R.C.A	Horizontal damping	FV07564
D38	BY. 118	Mullard	Efficiency diode	FV05125
D39	IS2056A	Texas	L. T. reference	FV09796
D40	IS 130	Texas	L. T. compensation	FV09028
D41	BYZ13	Mullard	L. T. rectifier	FV05000
D42	BYZ13	Mullard	L. T. rectifier	FV05000
D43(082)	IN2071	Texas		FV09882
D44	IS923		Diodes	FV09839
D45	IS923		Diodes	FV09839
Fl	L338/1A	Beswick	A. C. input ($200-240 \mathrm{~V}$)	FF00752
F2	L1055/5	Belling \&	LeellV supply (-ve line)	FF00823
F3	L1055/1	Belling \&	Lee +11V (main panels)	FF00816
F4	L1055/3	Belling \&	Lee +11V (EHT Osc.)	FF00821
F5	L1055/3	Belling \&	Lee +11V (Line output)	FF00821
V1,2	EY. 86	Muliard	E.H.T. rectifier	FV00620
1298.03	M21-11W	Mullard	Cathode Ray Tube	FV04575

PLUGS AND SOCKETS

PLUGS

Part No. and Description
FP00031 2pin
FPOl406 3pin

SOCKETS

Part No. and Description
FS 16064 Coaxial
FS43155 Remote Control 7 way

WOUND ASSEMB LIES

Part No.	Code	Description
AL22311	T1	Transformer (Vert. Block Osc.)
AL22310	T2	Transformer (Horizontal Pulse)
AL22309	T3	Horizontal Driver Transformer
AL22308	T4	Efficiency Circuit Transformer
AL22307	T5	E.H.T. Feedback Transformer
AL20 142	T6	Transformer (EHT)
AL2 1561	T7	Mains Transformer
AL06093	L1	Coil (Pulse Sharpening)
AL06403 (081)	L2	Coil (Horizontal Osc.)
AL06091	L3/R108	Video Correction Coil
790380 / A	L4	Choke
AL5 1100	L5	Choke (Vert. Output)
AL0 6092	L6	Third Harmonic Tuning Coil
AL5 1101	L7	Horizontal Pulse Choke
AL06095(081)	L8	Saturated Reactor
AL5 1102	L9	Choke
FT06040	L10, 11	Deflector Coil Assy
AL06404(082)	L12	Coil (Horizontal Osc. 625 line)
AL06405(082)	L2	Coil (Horizontal Osc. 405 line)
AL06403(082)	L8	Saturated Reactor

Note: For connections and d.c. resistance data see diagram at rear of this manual.

HOLDERS, CRADLES, HEAT SINKS, ETC.

Description

Transistor Mounting Pad
Nylon Diode Cradle
Heat Sink (TO. 18)
Heat Sink (TO. 5)
Tube Base
Heat Sink
Fuseholder 4-way (near C.R.T. Base)
Fuse Cover
Insulating Bush (For TO. 3)
Lampholder (Without Grommet)
Valveholder
E.H.T. Valve Cover

Valveholder
Clip
Clip
Heat Sink (Modified)

Part No.

QA05661
QA05669
EA15156
EA15164
FH02626
BJ21594
BT31974
430666
QA05675
FH03008
BG05 140
BG05 145
FH02593
$\therefore \rightarrow 00513$
QA00517
BJ21595

Video \& Sync Sep. Panel Assembly (Complete) No. AG. 26927

Washer I. D. 0.116" x O.D. $0.25 \times 1 / 16^{\prime \prime}$ thick
BE24010

Spacers 5/16" long O.D. 3/16" I. D. 0. 1285'
BQ12220
Spacer $\frac{1}{4}$ " long O.D. 3/16" I. D. 0. 1285"'
BQ12216
Full Nut 6BA
QAl1006/A
6BA Shakeproof Washer
QA13301/T
Screw 6BA $\times \frac{5}{8}{ }^{\prime \prime}$ CH. HD.
RWI1010/A

Vertical \& Horizontal T. B. Panel Assy (Complete) No. AG. 26929
Screening Can with tag retention
FC00099

Printed Panel Mtg. Frame Assy (Complete) No. AG. 26923
(For Video \& Sync Sep. and Vert. \& Horizontal T. B. Panels)
Support Frame
BC 26362
Spire Screw No. $4 \times \frac{1}{4}$ " Pan Hd QJ08135
Spire Nuts
QA00190
Pivot Pins
BA24517

Video Output Pane1 Assembly (Complete) No. AG. 26931
Full Nut 8BA
Washer Shakeproof 8BA
Screw 8BA x $\frac{3}{8}{ }^{\prime \prime} \mathrm{CH}$. HD

Vertical Output \& Blanking Assembly No. AG. 26922
R.H. Fixing Bracket Assembly AG27044
L. H. Fixing Bracket Assembly

AG27045
Tie Bracket Assembly
AG27046
Insulating Washer 4 BA
BE21957
Grommet
Feed Thru Bushes
FG02237
Turret Lug
Capacitor Clip 1" FJ00046 FT03811

Plastic Clip QA00065

Pins $1 / 16^{\prime \prime}$ Square $\frac{3}{4}{ }^{\prime \prime}$ long QA00501

Spire Screw No. $8 \times \frac{3}{8}$ " Pan Hd
E.H.T. \& Hor. Output Assembly (Complete) No. AG. 26924

Horizontal Output Screen Assembly	AG27050
Spacer	310742
E.H. T. Case Cover	BC26351

Screening plate	BC26356
Capacitor Clip $\frac{3}{4}{ }^{\prime \prime}$	QA00056
Capacitor Clip $1 "$	QA00065
Plastic Clip	QA00510
Anode Clip	QA00585
Valve Top Connector	QA00743
Anode Clip Cover	QA00586
Mica Washer	QA05676
Insulating Bushes	QA05677
Anode Top Cap	QA0

E.H.T. \& Hor. Output Panel Assembly (Complete) No. AG. 26933

Coil Adjusting Bracket
BC26346
Ferrox Rod
FC02362

Back Plate Assembly (Complete) No. AG. 26921
Voltage Selector Plug Assembly 730326
Video \& Sync Plate Assembly 744630
Voltage Tapping Plate Assembly 744631
$8 \frac{1}{2}$ " Monitor Back Panel Assembly AG27043
Preset Pot Assembly (Complete) AG26925
Knob Assembly (Black) AG25138
Spacer $1 \frac{5}{8}{ }^{\prime \prime} \times 4 \mathrm{BA}$
Label
Transformer Mtg Bracket
Plate (Insulation)
Transformer Shroud
Pot Mtg Plate
310625

Escutcheon
BC 26372

Escutcheon
BC26358
BT19311
FT02805
BC 26355
BC26349

Tube Clamp Support Assembly (Complete) No. AG. 26920
Tube Clamp Support Assy AG27052
Switch Assy
AG26016
Tube Rubber Band
430803
Washers
Knobs
BE22139
Springs (for Knobs)
Tube Support Bracket
BG10012
QA00052
Tube Clamp
BC 26357
Spark Gap Conaecto,
BC26363
FT10507

Video Monitor Main Assembly Items

$8 \frac{1}{2} "$ Monitor Base Assy
AG27051
R.H. Pivot Bracket Assy (Complete) AG27048
L. H. Pivot Bracket Assy (Complete)

Video Monitor Main Assembly Items (Cont.)

Monitor Front (Casting)
326271
Window Clip
430674
Capacitor Clip $1 \frac{3}{4}$ " 408092
Modified Foot
Spring (Tube Earth)
481202
R.H. Side Cover
L. H. Side Cover

708463
BC 26360
Front Nameplate
BC26361
Earthing Bar
BC 26343
$8 \frac{1}{2}$ " Window
BC 26352
Tube Mask
Wire Spill Connector
Strap Handle $10^{\prime \prime} \times \frac{3}{4}{ }^{\prime \prime}$ Fittings
Sleeve (P.T.F.E.)
BE22138
BJ21596 FC00673 FH00097 FS22568
Insulug 4BA
Turret Lug
Pivot Pin
Leaf Spring
Frame Catch
Pivot Bracket R. H.
Pivot Bracket L. H.
FT02147
FT03810
BA245 17
BC26344
BC26345
BC26337
BC26338
Embellishing Strip
Capacitor Clip l"
QA00065
Connector Clip (Side Entry)
QA00593
Connector Clip (Side Entry) Cover QA00594
Capacitor Clip $\frac{3}{4}{ }^{\prime \prime}$
QA04404
Full Nuts 4BA
Full Nuts 6BA
Full Nuts $\frac{1}{4}-20$ NC
Lokut Plastic Nut
Screw No. 10 x $5 / 16^{\prime \prime}$ Self Tap Rd. Hd.
QA11004/A
QAll006/A
QA11086/A
QA12717
Spire Screw No. $8 \times \frac{3}{8}$ " Pan Hd
QQ21505
Screw 4BAx $\frac{3}{4}$ " Mush Hd
Screw 4BA x $\frac{1}{2}{ }^{\prime \prime}$ Ch Hd
Screw 4BA x $\frac{3}{8}$ " Ch Hd
Screw 4BAx $3 / 16^{\prime \prime} \mathrm{ChHd}$
Screw 6BA $\times \frac{1}{4}{ }^{\prime \prime}$ Ch Hd
Screw 6BA x 5/16' Ch Hd
Screw 6BA x 6BA Inst. Hd
Screw 6-32x "Mush Hd
Top Tie Assembly (with Locating Plate
Ferroxcube Bead
QJ07019
RU61006/C
RU11008/A
RU11006/A
RU11003/A
RW 11004/A
RW11005/A
RW51006/C
UW61006/C
AG27042
FC0213877
LOOSE SHIPPING ITEMS
Coaxial Plugs
FP00136
Mains Socket

This Manual incorporates information previously contained in Amendments 1 and 2.

Circuit Changes in Type 082 Monitor

Switching of systems is achieved by a three positioned rotary switch having a central "Off" position.

Operational components on the 625 line system are similar to the standard 081 model with the exception of the horizontal oscillator. The required inductance of the tuning circuit is achieved by parallel connection of L2 (405 line osc. coil) with Ll2.

In order to protect the horizontal output transistor TR28 and switch contacts in the output stage, a break-before-make contact is used on the switch to remove horizontal drives, thus ensuring that switching of the output components is effected under a non-operational condition. To achieve a constant horizontal flyback ratio on both systems the flyback compacitor has to be increased in type 082 for 405 line operation.

Because of the lower flyback voltage required (approximately proportional to the drop in frequency) the third harmonic tuning circuit is not used. A short circuit is placed across C75, L6 \& C76, and this adds C72 to the existing tuning capacitor C74.

With the lower flyback and boost voltages required, a drop in d.c. voltage is arranged by adding a preset width control (R151) in series with the manual width control.

The 'S' correction capacitor needs increasing in order to maintain the same degree of correction on both systems, C93 is therefore paralleled with C 94 \& C 100.

A transient voltage suppression has been incorporated in the horizontal output stage to prevent peak voltages damaging TR28 during switching.

During normal operation on one system C73 is charged up by D43 to a potential equal to the amplitude of the flyback pulse. With the large time constant provided by C73 \& RI21, any short duration pulses presented across the circuit during switching and exceeding this flyback potential will be clipped by D43.

The adjustment of the biasing circuit for line scan failure protection is arranged by shunting R 124 with R 140 .

Note: This supplements the section "Monitor Testing and Adjustment of Controls" in the main book and follows on from this.

1. Disconnect the lead from tag (39) on the Vertical and Horizontal Timebase Panel.

Connect a voltmeter between the base of TR20 and chassis. Adjust the horizontal hold control R 154 to give +2 volts on the meter. Adjust the 405 line oscillator coil L2 so that the picture is just "running through" at line frequency.

Rotate standards switch into the 625 line position. Connect a 625 line grid pattern.

Adjust the 625 line oscillator coil Ll2 so that the picture is just "running through" at line frequency.

Reconnect the lead to tag (39).
Check the pull-in range, this should be better than $450 \mathrm{c} / \mathrm{s}$ either way on 625 lines, and better than $300 \mathrm{c} / \mathrm{s}$ either way on the 405 line system.
2. With the 625 line grid pattern connected and the standards switch in the 625 line position, adjust horizontal linearity and width controls to have a fully scanned picture set to optimum linearity.

Switch to 405 line position and connect the 405 line grid pattern.
Adjust R15l, 405 Preset Width Control to have the same scanning width as for 625 lines.

Item Changes additional to those marked "(082)" on main book

Parts List

R92	RESISTOR	680 ohms	$\pm 10 \%$	NG68113
R124	RESISTOR	330 ohms	$\pm 10 \%$	NG33114

Label BJ21245

SHAFT SUPPORT BC30241
SWITCH MOUNTING BRACKET BC30242
FEEDTHRU BUSHES FJ00046
6 POLE SWITCH FS02083
KNOB FK00053
BINDING SLEEVES FS22540
SCREEN CAN FC00144

Fig. 14 CIRCUIT DIAGRAM (TYPE 082)

Fig. 3 BLOCK SCHEMATIC DIAGRAM

Fig. 6 L.T. STABILISER PANEL

Fig. 7 VIDEO OUTPUT PANEL

Fig. 8 SYNC SEPARATOR \& VIDEO PANEL

Fig. 9 HORIZONTAL \& VERTICAL T.B. PANEL

Fig. 10 HORIZONTAL OUTPUT \& E.H.T. PANEL

TRANSFORMERS
T1,6.7 SEE DIAGRAMS TAG NUMBERS ARE in brackets t horizontal puis (1) BLACK - (2) BROWN (3) RED - (4) YROLLOW
-
${ }^{T} 3$ (1) BLACK (1) BLACK
(3) RED (2) BROWN

4 Efficiency circuit (1) BLACK - (2) BROW (4) BROWN - (3) RED (4) YELLOW - (5) ORANGE

T5 E...T. FEEDBACK
E.H.T. FEEDBACK
(1) BLACK (3) RED
BLAAK - (2) BROW (4) ORANGE-(6) GREEN (5) YELLOW IS HALFWAY TAP

T6 E.H.T. OUTPUT TRANSFORMER

T1 VERTICAL BLOCKING OSCILLATOR TRANSFORMER

T7 POWER SUPPLY TRANSFORMER

CHOKES
L1 PuLSE Sharpening
HORIZONTAL OSCILLATOR
TERMINALS
TERMINALS
T-
TER
$\begin{array}{ll} & \text { TERMINALS 1-2 } \\ \text { L3 } & \text { VIDEO CORRETIION (WOUND ON R108) } \\ \text { L4 } & \text { IOOV LINE DECOUPLING }\end{array}$
$\begin{array}{ll}\text { VERTICAL OUTPUT } & 0.870 H M S \\ \text { THIRD HARMONIC }\end{array}$
$\begin{array}{ll}\text { THIRD HARMONIC } & 0.050 \text { OHS } \\ \text { HORIZONTAL PULSE } & 0.43 \text { OHMS }\end{array}$ $\begin{array}{ll}\text { HORIZONTAL PILSE } & 0.43 \text { OHMS } \\ \text { HORIZONTAL LILEARITY } & 0.065 \text { OHMS }\end{array}$ L9 E.H.T. OSCILLATOR SUPPLY O.1OHMS

DEFLECTOR COILS L10 L11 VIEWED FROM REAR FACE

Fig. 12 COMPONENT LOCATION R. H. SIDE

Fig. 13 COMPONENT LOCATION L. H. SIDE

Part No. $848008 / 00, / 01$

Amendments
This data covers changes which will be found on some monitors, with the part numbers for alternative items for replacements.

Cl06 $10,0001 \mathrm{~F}$	30 V	PS64008	
Ll0, L11	Deflector Coil Assembly	FT06099	$\mathrm{sr}_{\mathrm{i}} \mathrm{i} / \mathrm{k}$

For Serial No. 696 onwards

R44	1.8 k ohm	10\%		NGl 8213
C20	$1 \mu \mathrm{~F}$	10\% 160		PR25508
R112	10k	New Part Num		PM00237
R113	47k	New Part Nu		PM00245
R114	82	New Part Nu.		PM00212
R115	15k	New Part Nu		PM00239
R117	1. 2 M	New Part Nu		PM00262
R118	33k	New Part Nu		PM00243
R164	330k	New Part Nu		PM00255
R141	47	New Part Num		PM00209
R110	680k	New Part Num		PM00259
R111	33k	New Part Nu		PM00243
R122	33	New Part Num		PM00207
R159	1 M	New Part Nu.		PM00261
R160b, R161b	120	New Part Nu.		PM00214
R172		Deleted		
R175, 176	1 k	$\pm 5 \%$		PL22364
R177	470	$\pm 5 \%$		PL22357
C83, 84	$5 \mu \mathrm{~F}$	25 V		PSI 9053
L10,11	Deflection Coil (new type) (Damping resistors are now provided with the coil Assembly).			821326300232
	Voltage Tapping Plate 744631 Pt. of AG. 26921 replaced by Fuse Plate AG58716			
D41, D42	BYX38	Mullard		FV05202
D46	1544	Texas (additi		FV09818
TR6, 9, 11, 12		NTG 302	Newmarket	FV06715
TR 33		NKT $3055 / 5 \mathrm{~B}$	Newmarket	FV06589
V3	M21-13W			FV04889
SGl-3	Spark Gap			FC01533

Changes and additions for $848008 / 01$ are as follows:
$\left.\begin{array}{cccc}\text { LPl } & \text { 6V } & 0.36 \mathrm{~W} & \text { FLl } 7752\end{array}\right)$ replaced by:

R179	$270 \pm 10 \%$	$1 / 4 \mathrm{~W}$	NG27104
R180	$2.2 \bar{M}$		NG22510
L13	$40 \mu \mathrm{H}$		CJ24358

This monitor is normally used only as a viewfinder for the studio camera, teletutor, Type 8006, part number $848006 / 00$

