Please do not upload this copyright pdf document to any other website. Breach of copyright may result in a criminal conviction.

This document was generated by me Colin Hinson from a document held at Henlow Signals Museum. It is presented here (for free) and this version of the document is my copyright (along with the Signals Museum) in much the same way as a photograph would be. Be aware that breach of copyright can result in a criminal record.

The document should have been downloaded from my website https://blunham.com/Radar, if you downloaded it from elsewhere, please let me know (particularly if you were charged for it). You can contact me via my Genuki email page:
https://www.genuki.org.uk/big/eng/YKS/various?recipient=colin
You may not copy the file for onward transmission of the data nor attempt to make monetary gain by the use of these files. If you want someone else to have a copy of the file, please point them at the website (https://blunham.com/Radar).

Please do not point them at the file itself as the file may move or be updated.

I put a lot of time into producing these files which is why you are met with this page when you open the file.

In order to generate this file, I need to scan the pages, split the double pages and remove any edge marks such as punch holes, clean up the pages, set the relevant pages to be all the same size and alignment. I then run Omnipage (OCR) to generate the searchable text and then generate the pdf file.

Hopefully after all that, I end up with a presentable file. If you find missing pages, pages in the wrong order, anything else wrong with the file or simply want to make a comment, please drop me a line (see above).

It is my hope that you find the file of use to you personally - I know that I would have liked to have found some of these files years ago - they would have saved me a lot of time !

Colin Hinson
In the village of Blunham, Bedfordshire.

TRATNEE NOTES

```
F.G.R.I. 18119
TACAN (BRITISH)
```

This training note is is blif for the guidnnce of traineos during training at RoA.F. Locking. No amendments will be issued in respect of modifications introduced to the equipment referred to in this note.

This note is not intended as a substitute for the relevant Air Publication and must not be regorded as authority for modifications, servicing procedures, etc.

1. Function. Tacan is a short range ground transponder beacon working in the 962 to $1213 \mathrm{Mc} / \mathrm{s}$ frequency band. It is used for tactical and general navigation purposes with a range of approx. 200 nautical miles. It will oniy function with, its complimentary airborne installation ARI 18107 (British) or AN/ARN-21 (American.) The pilot of an aircraft is provided with the follcwing information:-
(a) Continuous meter indications of the beacon bearing w.r.t. the aircraft.
(b) Continuars meter indication of the beacon distance.
(c) Aural confirmation of the identity of the beacon.
2. Concise Details.

Frequency Coverage. 126 channels in the following frequency bands. Transmitter 962 to $1024 \mathrm{Mc} / \mathrm{s}$ and 1151 to $1213 \mathrm{Mc} / \mathrm{s}$. Receiver 1025 to $1150 \mathrm{Mc} / \mathrm{s}$. Interrogation and reply frequencies differ by $63 \mathrm{Mc} / \mathrm{s}$.
Intermediate Frequency. $63 \mathrm{Mc} / \mathrm{s}$ with a hand width of $3.5 \mathrm{Mc} / \mathrm{s}$.
Transmitter. Peak power output 5 KW . Modulation of pulse pairs spaced 12μ s apart. Pulse width $3.5 \mu \mathrm{~s}$. Duty cycle 3600 ± 90 pulse pairs per second.

Video Reference Pulses. The North reference pulse train consists of 12 pulse pairs spaced 30μ apart and transmitted once every revolution of the aerial. The hamonic reference pulse train consists of 6 pulse pairs spaced 24μ s apart aind transmitted eight times for every revolution of the aerial.

Beacon Identification. The beacon identity aodeis derived from a keying wheel, and is transmitted in the form of a Morse signal which can be recognised by the pilot.

Handling Capacity. Bearing information is available to any number of aircraft. The beacon will respond to 95 aircraft in the "track" condition and 5 in the "search" condition.

Power Supply. 416 or $440 \mathrm{~V}, 3$ phase at a frequency between 45 and $65 \mathrm{c} / \mathrm{s}$.

Power Consumption. Approximately 8 KVA .
Monitor. Monitoring equipment provides continuous visual and aural indication of certain fault conditions.

GENERAL DISCRIPTION OF OPERATION.
3. Basic Principlos. The Tacan system provides the following facilities:-
(a) Distance information of the aircraft from the beacon provided by interrogator - transponder - responsor circuits.

TL/488.
JUNE, 1962.
(b) Bearing indications of the airuruft tiom the surface beacon, provided by the technique of a rotating amplitude - modulated radiation pattern which contains reference pulse signals.
(c) Identification information. At regular intervals the beacon transmits a series of pulse-pair signals which are keyed in Morse code. These signals are finally fed to the pilot's headset as a Morse coded signel at $1350 \mathrm{c} / \mathrm{s}$.
4. Distance Information. Interrogating pulse-pairs are transmitted by the aircraft equipment. The beacon on receipt of the pulses transmits distance reply pulse-pairs back to the aircraft. Special circuits in the responsor measure the time'interval between the transmission and reception of the pulse - pairs, and convert this time into nautical miles. Range is displayed to the pilot in the centre window of the bearing indicator.
5. Code Identification. This is provided by pulse-pairs separated by the normal $12 \mu s$ and transmitted at a repetition rate of $1350 \mathrm{c} / \mathrm{s}$. To mairtain the duty cycle of the beacon transmitter each pair is followed by a second pulse-pair spaced $100 \mu \mathrm{~s}$ later. The identification pulses provide a $1350 \mathrm{c} / \mathrm{s}$ tone in the pilot's headset, consisting of dots of 0.125 seconds duration and dashes of 0.375 seconds duration. The dots and dashes are keyed in the beacon by a mechanical coder which produces the beacon call sign every 37.5 second.s.
6. Bearing Information. All signals transmitted from the beacon are amplitude modulated by a set of rotating parasitic elements which rotate round the beacon central aerial array at 900 r.p.m. The parasitic elements consist of a single reflector inounted in an inner fibreglass cylinder, and nine equally spaced directors mounted in an outer cylinder, the whole rotating at 900 r.p.m.

The resultant polar diagram due to these parasitic elements produces a modulation of all transmitted signals as follows:-
(a) Due to the single reflector $\frac{200 \mathrm{r} \cdot \mathrm{pem}}{60 \mathrm{secs}}$.
(b) Due to the nine directors $\frac{2 \times 900 \text { r.p.m. }}{60 \text { secs. }}=135 \mathrm{c} / \mathrm{s}$.

The combined amplitude modulation. will appear as a $135 \mathrm{c} / \mathrm{s}$ sine wave superimposed on a $15 \mathrm{c} / \mathrm{s}$ sinewave.

TL/488.
JUNE, 1962.
7. Aerial Polar Diagrans.
 the reflector is rotated round the aerial.

Fig. 2. Variation of signal strength at any point round the beacon when the nine directors are rotated round the aerial at the sane spoed as above.
(o) Combined 'polar diaframs'of (a) and (b).

Fig. 3. Variation of signal strongth at any point round the beacon whon the single reflector and nine directors are rotated round tho aerial.

8. Bearing Reforonce Bursts.

Fig. 4.
Detected waveform observed

Detectod wavoform obsorved due West of Beacon.

Detected waveform
obsorved duo East of Beacon.

NOTE.
(a) All figures show the same point in timo as illustrated in the centre.
(b) X indicates the datur point whore both waveforms are going positivo togethor at their mean level.
(c) indicatos $15 \mathrm{c} / \mathrm{s}$ reference signal bursts.
(d) indicater $135 \mathrm{c} / \mathrm{s}$ reforence sienal bursts.

TI/488.
JUNE, 1962.
9. The detected wavefoms for one rotation of the beacon aerial system are illustrated in fig. 4, which shows how the same succession of pulses is received at the four cardinal points. Between successive $15 \mathrm{c} / \mathrm{s}$ reference signals (represented by double vertical lines), eight equally spaced $135 \mathrm{c} / \mathrm{s}$ reference signals are transmitted (represented by single vertical lines). In the waveform at a point due South of the beacon it will be seen thet both the $15 \mathrm{c} / \mathrm{s}$ and $135 \mathrm{c} / \mathrm{s}$ components are increasing at the time the $15 \mathrm{c} / \mathrm{s}$ reference'signal is received. At the point due North the waveform is inverted, and both components are decreasing when the $15 \mathrm{c} / \mathrm{s}$ reference signal is received. Due East both components are at a maximum and due West both components are at a minimum when the $15 \mathrm{c} / \mathrm{s}$ reference signal is received. At intermediate points the waveform is changing progressively.
10. The function of the bearing circuits in the aircraft equipment is to adjust the phase of the $15 \mathrm{c} / \mathrm{s}$ and $135 \mathrm{c} / \mathrm{s}$ components with respect to their respective reference signals until the waveforms and reference signals are related as in the due South position of fig 4, whatever the position of the aircraft. In this position the datum point X which corresponds to where both the $15 \mathrm{c} / \mathrm{s}$ and $135 \mathrm{c} / \mathrm{s}$ waveforms are increasing (the since wave is going positive) is coincident with the $15 \mathrm{c} / \mathrm{s}$ reference signal. The amount of phase shift necessary to achieve this pattern is a measure of the bearing of the aircraft relative to the beacon.
11. The accuracy of bearing obtained by this $15 \mathrm{c} / \mathrm{s}$ coincidence. is of a low order, and greater accuracy is obtained by employing the $135 \mathrm{c} / \mathrm{s}$ waveforms and $135 \mathrm{~s} / \mathrm{s}$ reference signal bursts. The $15 \mathrm{c} / \mathrm{s}$ coincidence circuits in the aircraft equipment select the correct 40° sector of bearing, and as nine degrees of electrical phase of the $135 \mathrm{c} / \mathrm{s}$ system correspond to one electrical phase of the $15 \mathrm{c} / \mathrm{s}$ system, both equal to one degree in azimuth, the $135 \mathrm{c} / \mathrm{s}$ coincidence circuits provide a vernior nino times more accurate than the $15 \mathrm{c} / \mathrm{s}$ circuits.
12. $15 \mathrm{c} / \mathrm{s}$ Reference Signal Burst. In order that the aircraft equipment can distinguish ohe reforonce signals from distance reply signals, the $15 \mathrm{c} / \mathrm{s}$ reference signal burst consists of 12 pulsepairs spacod $30 \mu s$ apart.

Fin. $515 \mathrm{c} / \mathrm{s}$ Reference Signal Burst.
13. $\quad 135 \mathrm{c} / \mathrm{s}$ Reforence Signal Burst. This reforence signal, called the harmonic reference pulse train consists of six pulso-pairs spaced at 24 us.

6 pulse pairs spaced 24μ s apart.

L/488 UNE, 1962.
14. As the aerial array rotates through oertain "fixod" points of the compass these reference signal bursts are transmitted through the action of the iron slugs mounted in the Phonic Wheel, shown in fig 7. During installation the Coil Mounting assombly (para 16) is orientatod so that the $15 \mathrm{c} / \mathrm{s}$ reference signal burst is transmitted when the reflector in the inner cylinder is due West of the dipole stack.

Aerial Construction.
Fig 7. Aorial and Phonic Whoel.

TI/488.
JUNE, 1962.
15. The contral fadiating array consists of seven biconical dipoles stacked vertically, and mountod in a fixed fibre-glass cylinder." The two outer cylinders rotate round the contrel axray at $900 \mathrm{r} . \mathrm{p} . \mathrm{m}$. , and as can be scen'in fig. 7 the $15 \mathrm{c} / \mathrm{s}$ reflector is anbedded in the inner cylinder, and the nine directors making the $135 \mathrm{c} / \mathrm{s}$ modulation pattern are onbedded in the outcr cylinder.
16. "The non-forrous phonic wheel serves three purposes as it rotates at 900 r.p.m, namely:-
(a) Genorates a $1350 \mathrm{c} / \mathrm{s}$ waveform from a serios of 90 iron segments which stand vertically on top of the phonic wheel. This waveform is used to check the speed of acrial rotation and also to generato identity tone signals. A coil is used to pick up those signals.
(b) Gonerates the $135 \mathrm{c} / \mathrm{s}$ reference trigger pulse in coil L . by action of eight iron slugs in lowor edgo of wheol as they ${ }^{1}$ pass through the polo pieces.
(c) Gencrates the $15 \mathrm{c} / \mathrm{s}$ reference trigger in coil L 3 which picks up a pulse oach time the iron slug passes the pole pieces.
17. Acrial Speod Control. The speed of rotation of the acrial parasitic elomonts must bo maintainod at 900 r.p.m. ± 0.2. As each of the 90 iron scgmonts mounted on tho phonic wheel passos through the coil L_{2} a pulsc of current, is producod. Since the whoel is rotating at 900 r.p.m. (i.o. $15 \mathrm{r} . \mathrm{p} . \mathrm{second}$) these current pulses will be at a frequency of $90 \times 15=1350 \mathrm{c} / \mathrm{s}$. If the phonic wheol changes speed the $1350 \mathrm{c} / \mathrm{s}$ incroases or decreases accordingly, and the acrial specd control unit produces a variation in the current flowing in a magnetic ooupling betweon the driving and the driven shafts.

IT $/ 488 . \cdots$
JUNE, :962.

Introduction.
18. The Cabinet electrical equipment (TR) is the right-hand cabinet of the beacon and in it are housed almost ontirely the units comprising tho trensmitter - receiver. The units whose code lettors are prefixed X are mounted on the right-hand inner door, the remaindor are in the right-hand bay except Z which straddles both cabinots. Table 1 givos the title and unit code of cach unit and fig. 8 shows the simplificd block diagram of the transmitter-recoiver. Fig. 9 illustratos the dotailed block diagram.

Table 1. Title And Code Of Units.

Pre-heating relay	G	Meter panel	XA
-15 kV. power unit.	N	Beacon coder unit	XB
Modulator	0	Vidoo decoder	XC
I.F. Amplifier	P	Delay line unit	XD
Klystron assombly	Q	Priority mixer	XE
I.F. pre-amplificr	R	R.F. drive unit	XF
Thermistor unit	U	Frequency multiplier unit	XG
Duplexor	V	Identity pulse generator	XH
Control unit	W	Marker gato gonerator	XJ
Distribution box	Z	Fan distribution block	XK

TL/488.
JUNE, 1962.

FIG: '8. TRANSMITYER-RECEIVER BLOCK DIAGRAM (SIGNAL).

19. Duplexer (V). The duplexing system separatos the interrogations and reply pulses on the basis of their $63 \mathrm{Mc} / \mathrm{s}$ frequency differonco, and enables the transmitter and rocoiver to use a common aərial and feeder systom.
20. I.F. Amplifiers (R and P). The incoming interrogation signals are fed to the I.F. pre-amplifier unit (R) from tho duplexer (V). The sigmals are applied to a balanced mixer which also receives the local oscillator signal from the R.F. drive unit (XF). The two signals are mixed producing an I.F. of $63 \mathrm{Mc} / \mathrm{s}$, which is amplified and passed to the main I.F. amplifier (P) which has seven stages. The gain of tho first two stagos is controlled by A.G.C. appliod from the video decoder unit (XC). The output from the final I.F. amplifying stage is fed to a Ferris discriminator, which is a detector, and by the use of broad and narrow band circuits coupled together, provides a high degree of adjacent channel rejection. The output is fed via a video amplifior to the video decoder unit (XC).
21. Video Decoder Unit (XC). This unit performs the following functions:-
(a) Docodos the intorrogation pulso pairs.
(b) Generates a blenking waveform for system operation.
(c) Gonoratos the A.G.O. (D.C. squitter voltage) to control the gain of the first two stagos of the main I.F , amplifier (P).

The boacon duty cycle is 3600 pulse pairs per scc, 900 of which are produced by the referenco bursts. The remaining 2700 aro made up of reply pulses and squitter. Squitter is the name given to pulse pairs produced by random noise pulsos in the roceiver. The docoded pulses are counted and produco the AGC bias to the receiver. Thus when interrogation is a minimum bias is a minimum and tho receiver producos maximum noise to provide the squitter "fill in" pulse pairs.
22. Delay Line Unit (XD). This unit consists of delay lines and amplifiers. It provides the boacon overall dolay, and supplios a pulse to foed back to the blanking gate generator in the video decoder unit (XC) in ordor to define the end of the blanking period (knock-off pulse). The delays provided by this unit are highly stable.
23. Identity Pulse Generator (XH). . The input to this unit is provided by the aerial phonic wheel and is a $1350 \mathrm{c} / \mathrm{s}$ sinewave. From it is produced the idontity signal consisting of two pulses spaced $100 \mu \mathrm{~s}$ apart, at a repotition rate of 1350 p.p.s. The identity signal is dependent upon the aerial rotation, thus it has a fixed phase relationship with the $15 \mathrm{c} / \mathrm{s}$ and $135 \mathrm{c} / \mathrm{s}$ marker jursts.
24. Marker:Gato Generator (XJ). This unit provides twote gated to provide two reference pulso trains namely:-
(a) The $15 \mathrm{c} / \mathrm{s}$ North roforenco pulso train.
(b) The $135 \mathrm{c} / \mathrm{s}$ hamonic referenco pulse train.
25. The reference pulsos originate from a rotating non-forrous disc bearing an iron slug. The disc is attached to the aorial. As the aerial pattorn maximum passos through a given point (East), the iron slug passes a magnetic coil system and produces a pulse. The aerial is rotating at 900 r.p.m., thus the magnotic coil produces 15 pulses per second. Also mounted on the disc are a further eight slugs to produce a 135 p.p.s. signal. Both the $15 \mathrm{c} / \mathrm{s}$ and $135 \mathrm{c} / \mathrm{s}$ signels aro fed to the marker gate gonorator.
TIL/488. - :
JUNE, 1962.
26. Tho $15 \mathrm{c} / \mathrm{s}$ pulso is used to trigger a phantastron which produces a rectangular gate having a length corresponding to 12 marker pulses of 30μ spacing. The $135 \mathrm{c} / \mathrm{s}$ trigger pulse is used in a similar way and producos a gato longth equal to 6 marker pulses spaced $24 \mu \mathrm{~s}$ apart. The $15 \mathrm{c} / \mathrm{s}$ and $135 \mathrm{c} / \mathrm{s}$ gating wavoforms are fod to the priority mixer (XE). In addition the two signals produce a blanking pulse which is also fed to the priority mixer (XE).
27. Priority Mixer (XE). The priority mixer performs two main functions namely:-
(a) Produces from the $15 \mathrm{c} / \mathrm{s}$ and $135 \mathrm{c} / \mathrm{s}$ reference gates, phase coherent marker pulse trains.
(b) Mixos the marker pulse trains, squitter and reply, and identity signals in the correct order of priority for application to tho beacon codor unit (XB).
28. The ordor of priority required for system operation is as follows:-
(a) $15 \mathrm{c} / \mathrm{s}$ and $135 \mathrm{c} / \mathrm{s}$ marker pulse trains.
(b) Idontity signal.
(c) Roply and squittor pulsos.
29. The information fed into the priority mixer is produced by the circuits described in para. 22 to 26 and is as follows:-
(a) $15 \mathrm{c} / \mathrm{s}$ refcronce gate from marker gate generator (XJ)
(b) $135 \mathrm{c} / \mathrm{s}$ roference gate from marker gate generator (XJ).
(c) A combined $15 \mathrm{o} / \mathrm{s}$ and $135 \mathrm{c} / \mathrm{s}$ blanking waveform from the markor gato generator (XJ).
(d) The identity signal from the idontity pulse generator (XH)
(e) Squitter and reply pulses from the delay line unit (XD).
(f) Keying from tho identity keyor (MD).
30. The $15 \mathrm{c} / \mathrm{s}$ reforence'gate is applied to a recycling circuit consisting of an amplifien, cathode follower and delay lines, which produce a pulse every 30μ s until the end of the gating period. The $135 \mathrm{c} / \mathrm{s}$ referonce gate is fod to a similar circuit producing a pulse every 24 ps until the end of the gating period. The two pulse trains arc fed out through a mixor circuit to the beacon coder unit (XB).
31. The identity signol and the reply and squitter signals are fed to a double gating circuit, which is operated by the identity keying from the identity keycr (MD). Normally the double gate passes the reply and squitter pulses, but once cvery 37.5 scconds the identity keyor switches the double gate and allows the identity signal of the appropriate beacon code to be transmitted. This systom causes a continuous stream of roply and squitter pulses or idontity signals to be applied to the mixer circuit.
32. Howover, the $15 \mathrm{c} / \mathrm{s}$ and $135 \mathrm{c} / \mathrm{s}$ roference pulses are also applied to the mixer circuit so a furthor pulse is applied to the double gate to cut it off during reforenco pulso bursts. Tho cuttingmoff pulse is tho combinod blanking wave form from tho marker gate generator (XJ), . The output of the mixor circuit is fed out via an amplifier-inverted to the beacon coder unit (XB).

TL/488.
JUNE, 1962.
33. Beacon Coder Unit (XB). The compusitu video oubput of the priority mixer (XX) is applied to the beacon codor unit. The function of this unit is to convert each single pulse input into a pulse pair spaced at 12μ s at a level suitable : for driving the modulator (0). This is achicved by triggering a bi-stable rultivibrator and a cathode followor simulatanoously. The cathode followor outpui is appliod via a $12 \mu \mathrm{~s}$ delay line back to the other side of the bi-stable multivibrator: This rosults in a $12 \mu \mathrm{~s}$ rectangular pulse which is differentiated, and the resultant wavoforms are shaped and amplifiod and applied to the modulator unit (0).
34. Modulator (0). Tho coded pulse pairs are fed into the modulator unit and applicd simultaneously to three modulator valvos. Those valves produco a controllod output pulsc-pair of the order of 5 kV peak. The output pulses aro fod to the Klystron modulation electrode.
35. ReF. System (XG and XF). The RF drive to the klystron is(CW, and is producod by the Multiplior unit (XG) and the RF drive unit (XF). The beacon transmittor frequency is dotermined by ono of 3 quartz crystals mounted in a temperature controllod ovon. The crystals are of the ovortone type and resonate at $\frac{1}{27}$ of tho beacon output frequency.

The crystal oscillator output is amplifiod and multiplied in the multiplier unit (XG), and at a frequency of $\frac{1}{3}$ the output frequency is applied to the RF drive unit (XF). This $\overline{3}$ unit triples and amplifies the input and feads a CW signal at approximately 15 W to the klystron input cavity. A small anount of signal is extracted for use as the local oscillator signal in the mixer stage of the IF pro-amplifier (R).
36. Kiystron Assembly (Q). Tho output from the RF drive unit (XF) is :
fed to the klystron which raises the RF signel to approximately 7 kW peak. Tho klystron has three extornal cavities and is magnotically focused; it is pulse modulated by signals appliod to its control grid from the modulator. E.H.T. is appiiod to the klystron cathode from the - 15KV power unit. The output from the klystron is fod out to the aerial system via the duplexer (V).

TI/488. .
JUNE, 196?.

Fic.' 10 'Duplexer and Recoiver Sub-Assembly' Block Diagram.
37. Introduction. The duplexer (V) and the receivor sub-assembly (R) are physically integrated. The duploxer separates the outgoing and incoming pulses on the basis of thoir froquency differenco. The receiver sub-assembly accepts the incoming pulses and.by mixing them with the L.O. signal produces the required I.F. of $63 \mathrm{mc} / \mathrm{s}$. This is amplified and fed to the video signal.
38. Duplexer (V.) Interrogetion pulses from the aerial are fed into a coaxial line and transmitter pulsos are fed into the other ond of the line. Attached to this lino are two stubs. The first stub feeds into three resonant cavities in series; those are tuned to the interrogation frequency and transmitter pulses aro rejected. The socond stub is open-onded and varidile. I.t is adjusted to an odd number of quarbor wavolengths long at KX frequency and an even number at TX frequency, thus prosenting a short circuit at RX frequency and an opon circuit at TX froquoncy. This will not offoct the transmitted power while proventing loss of rocoivod energy to klystron.

The directional couplers provide a means of chocking pulso shape and mean output powor.

The buffer cable is to match the R.F. drivo unit output into the klystron input circuit and in doing so attenuatos the signal by 3 db .

TIL/488.
JUNE, 1962.
39. I.F. Pre-Amplifier. (R)Intorrogation pulses at beacon froquency $\pm 63 \mathrm{Mc} / \mathrm{s}$ are fed from the reconant cavities in the duplexer to the balanced mixer, consisting of a hybrid ring and two crystal diodos of opposite polarity. The local oscillator signal at boecon froquency is also fed into the mixer from the R.F. drivo unit (XF.) The two signals are mixed providing an I.F. of $63 \mathrm{mc} / \mathrm{s}$ which is amplified by V1 and V2, a cascode amplifier. This circuit providos wide band low noise amplification with the gain of a pentolde but the low noiso factor of a grounded grid tiode. V3 is an output amplifior. The H.T. and heator supplies aro extensively docoupled to prevent foedback and instability.

SRI. 18118, FGRI.18119 - IF pre-amplitier - circuit
Fig. 2.

Fig. 12. Block Diagram of IF Amplifier, Video Decoder and Delay Line Units
I.F. AMFL IFIER P, VIDEO DECODER XC AND DELAY LINE UNTT XD.

Introduction.

40. The i.f. amplifier, video decoder and delay line unit are associated together because they contain the video circuits required to produce tho squitter and reply pulses from the interrogations, and the overall time delay roquired for distance measuring facilities. The sequence of valvo stages is shown in the block diagram (fig 12).

I.F.Amplificr (P)

41. The input signal from the i.f. promamplifier R is applied to fivo amplifier stages in cascade which raiso the lovel by approximately 60 db . These stages are all tuned to $63 \mathrm{Mc} / \mathrm{s}$ and the resistive damping of the tunod circuits produces a handwidth of $3.5 \mathrm{Mc} / \mathrm{s}$. Each stage is oxtensivoly docouplod to provent foedback and instability, and each valve is provided with two combinations of cathode bias and decoupling. This is because the valve cathodes have two external connections and tho r.f. impedonce to earth is mado as small as possible which is important for a low noiso factor.
42. An a.g.c. voltago is applied to V1 and V2 from the video decoder XC. This voltago controls the gain of tho first two stages and honce the noise lovel. The system requires that the number of interrogations and random noise pulses above a cortain amplitudo (squittor) shall be constant. Hence as the number of intorrogation pulses received drops, the a.g.c. voltage is increased to raise the noise level and vice versa.
43. Ferris discriminator V6. Tho output from V5 is coupled to a Ferris discriminator which serves a dual purpose; it acts as a detector and at the same time reduces the intorforence caused by an adjacent channel signsi.

44. The operation of the circuit may bo oxplainod with reference to fig 13. V6a togothor with L6, C48 and R30 form a broadband positive detector which produces the rosponse ourvo shown in fig 13 (a). V6b and its associated components C45, C46, C47, L7, C43 and R29 form a narrow band negative detector which produces the rosponse curve shown in fig. 13 (b). The detoctor loads $R 29$ and R30 are in sories, henco the final rosponse curve will bo that show in fg. 13 (c).
45. I6 matches V5 output to the low input impodence of V6a. I6 has a very flat response and is tuned to a centro frequency of $63 \mathrm{Mc} / \mathrm{s}$ with a handwidth of $3 \mathrm{Mc} / \mathrm{s}$ at 3 dB down. Tho broadband circuit is couplod to tho high Q narrow band negativo detoctor by C41 and C42.
46. For an on-channol signal of $63 \mathrm{Mc} / \mathrm{s}$ a negative output is obtainod. On either side of $63 \mathrm{Mc} / \mathrm{s}$ the output signal amplitudo docreases to zero and then increases positively. Tho froquency soparation between zero points should be botweon 1.0 and $1.25 \mathrm{Mc} / \mathrm{s}$, and is adjustod by tuning c42.
47. As tho subsequont circuits will only respond to negative going signals from the discriminator it can be soen that signals at a frequency outside these zero points will be positive going and rejected.
48. Output Amplifier V7. This circuit forms a double triodo amplifior. The diode MR1 is included to prevent large positive signals rostoring on V7b grid and causing C52 to chargo thus causing grid current. The amplified signals are fed via C53 to the vidoo decodor XC.

Video Decoder (XC)
49. The function of the viden docodor is to nocupt the nutput of the i.f. amplifier and to perform the following functions:-
(a) To decodo the interrogation and random pulse pairs.
(b) To generato a stablo blanking wavoform for systom oporation.
(c) To generate the a.g.c. ("squitter" control voltage) to control. the gain of the first two stages of the i.f. amplifier (P).

The sequonce of the valve stages can be followed by referonce to the block diagram (fig.12) and tho component reforences on the circuit diagram (fig. 15).
50. Arplifior and adjacont pulse supprossion stagos (V1 to V3). The incoming pulso pairs are negativo going for on-channol signals and positive going for adjacent channol'signals. Thesc signals are fod to V1 grid which amplifies and invorts, and the output is fod two ways:-
(a) Via C28 to the adjacent channel pulse supprossion circuit.
(b) Via C1to amplifior/gating circuit V2.
51. The ad'jecont'channel pulso suppression circuit consists of MR6, MR9, R73, R49, R74 and C29. The purpose of the circuit is to eliminate interferonco caused by:-
(1) Negative ovorshoot on on-channel pulses.
(2) Positivo overshoot on large amplitude adjacent channel pulses.
52. Whon an adjacent channol pulso appoars at V1 output it will be of opposite polarity to an on-channel pulse, i.e. negative going main pulse followed by small positive overshoot. This combination will be fed via MR6 and MR9 to 029 which will charge negatively (bocause pulses are predominantly negative). This nogative voltage will be passed via the gating diode MR7 to V2 supprossor which will be held cut off for the period of the positive overshoot;
53. When an on-channel pulse is received it will be a large positive pulse with a small negative overshoot. Tho wholo combination will be passod by MR6 and MR9 and the rosultant charge on C29 will be positive. This will be blockod by MR7 and V2 will conduct normally. All pulses fed to the suppression circuit are fed simultanoously to V2 grid circuit, thus it can be soen that on-channel pulses will bo passed by V2 to subsequent circuits whilst adjacent channel pulses will be rejocted.
54. V2 is an amplifior/Gating valve, and tho gating pulsos whioh aro all negative going are applied to tho suppressor grid as follows:-
(a) The adjacent channel supprossion pulsos.
(b) The receiver supprossion pulsos from tho beacon coder unit (XB). These pulses (in the form of a pulse pair spacod by $12 \mu s$) are fod via isolating diode MR4 to cut off V2 while the boacon is transmitting, in ordor to provent the trensmittor power triggoring the recoiver.
(c) The $50 \mu \mathrm{~s}$ blanking waveform from V8 output circuit which is ' gnerated whenever a corroctly coded pulse pair has boen docoded, and the waveform is fed back to de-sensitizo $V 2$ immodiately aftor it has passed a pulse pair to provent squitter pulses simulating north ($15 \mathrm{c} / \mathrm{s}$) or harmonic ($135 \mathrm{c} / \mathrm{s}$) markor trains.
55. Tho signal is fod to V2 grid via clippor MR5. Diodo.MR5 is normally conducting and the notwork R6, MR5 and R16 holds V2 cut off. The positivo input pulso causes $V 2$ to conduct the larger pulsos being clipped by MR5 and any negative overshoot drives grid furthor negative.
56. V3 amplifies and inverts tho pulsos which are coupled to tho decoding circuit by $\mathrm{C7}$ and $\mathrm{C8}$.
57. Pulso pair decoding circuit (V4 and V5). Valve V4 is normally cut off at both control and suppressor grids. The positivo going pulse pair from V3 is fod direct to V4 suppressor and also via a $12 \mu s$ delay line to $V 4$ grid. It can be soen that the first pulse of the pulse pair after being dolayod by 12 us dolay line will be fed to the control grid of V4 coincident with the socond pulso of the pulso pair which will be fed to the supprossor of V4. Hence a single negativogoing pulso will bo producod at V4 anode for evory corroctly spaced pulse pair appearing at V3 anode, irrespoctive of whether the pulse pair is an interrogation pair or random noisc pulses with the same $12 \mu s$ spacing.
58. A $2700 \mathrm{c} / \mathrm{s}$ signal from the test oquipmont can be epplied to V4 grid in order to check the 2700 pulses per second squitter rate indicating systom.
59. V4 anodo is coupled'to V5a grid via C11 and MR1. V5 is a cathode couplod flip-flop, and as MR1 cathode is hold at +40V, only negativo triggers above a cortain amplitude will fire V5. A. positivo pulsc of fixed amplitude and width is fod from V5a anode to tho grids of V6a and V6b.
60. Cathode followor and phase-splittor (V6). V6a provides a spare output. V6b providos a positive output pulso from tho cathodo to the dolay line unit (XD) where it is dolayed by $50 \mu \mathrm{~s}$ before boing fod back as a "knock-off" pulse to the gate generator V7. The output from V6b anodo provides a negative pulso which is fod as a "knock-on" pulse to tho gate gonerator V7.
61. Gate gonerator. This circuit consists of V7, V10a, V8, MR2 and MR3. V7 is a cathode coupled flip-flop, while V10a and V8 are amplifiers. As MR2 cathodo is biasod positively to about +36 V , only "knock-on" pulses above this amplitude will fire V7. Initially V7a is conducting because the grid is at cathode potential and tho "knockon" pulse from V6b will start flip-flop action. Tho "knock-off" pulse, now delayed by 50 us in the dolay unit (XD); is fod back into the video decodor, amplified and inverted by V1Oa and appliod to V7b grid. This will stop flip-flop action and a 50 us positive gate is fod via 017 to V8. MR3 is a d.c. restorer.
62. V8 is normally held cut off by bias. Tho $50 \mu \mathrm{~s}$ positive gate drivos it into grid current. Thus the valve is either fully conducting or cut-off, and since tho anodo waveform will bo a train of pulsos of constant amplitudo and longth the average anode current will be a true moasure of the moan rate of pulsos docoded.
63. V8 has throo outputs as follows:-
(a) Via isolating diodo MR8 to V2 suppressor as a blanking pulso (para 54 (c))
(b) From RV2 (Sot Counter) slider to the squitter rato metor on panel XA. Thore is a smoothing circuit mountod on tho meter panel to give a steady indication.
(c) To the a.g.c. output circuit.

TIL/488.
JNNE, 1962.

C4. A.G.C: output circuit. The a.c.0. nircuit ornsintes of V9a a d.c. restorer, V9b a limiter and V1Ob a cathode followor. The negative going 50 us pulses are d.c. restored by V9a nogativoly with rospoct to the lovel set by RV1 (Sct Squittor) botweon +18 V and +34 V . From V9a tho pulses pass through a smoothing circuit R59, R60, C24 and C25 to limitor V9b. Tho cathode of V 9 b is held at about -1 V , so tho valvo limits tho a.g.c. voltage fod to the i.f. strip should the squittor fail for any roason. The signal is finally fed through cathodo follower V1Ob whoso output is the a.E.c. voltage to control the gain of the first two i.f. stages in the i.f. amplificr (P). The cathode load R64 is returned to the -150 V line to maintain V 10 b output reference level at about earth potential.

TL/488. - :
JUNE, 1962.

DELAY I,INE UNIT (XD).
65. The function of the delay linc unit is to accept the positivo pulses from V6b in the video decoder (para 60) and from thom produce the following pulses with the appropriate dolays:-
(a) The squittor and reply pulses for inclusion in the compositc beacon signal.
(b) The pulso to defino tho ond of the blanking period in the video decoder (knock-off pulsc).
66. Attonuator and main dolay linc. Tho input pulsos are applicd to an attenuator R 2 to R 7 and C 1 , which is included to sharpon the pulse. The attenuator has an adjustable tap, and the output is fed to the main delay line DL1. which has connections giving $24 \mu \mathrm{~s}, 28 \mu \mathrm{~s}, 32 \mu \mathrm{~s}$ and 36 us delays. Two outputs are used:-
(a) From the $36 \mu s$ tapping a connection to V1b. This is the "knock-off" pulse feed.
(b) From the $28 \mu s$ tapping a conncotion to V1a. This is the main output pulse to produce reply pulses.
67. "Knock-off" pulse dolay chain. Tho pulso in (a) above is fod from DL1 to V16 grid which is an amplificr. V1b feods into a further delay lino DL4 which providos a maximum delay of 20 $\mu \mathrm{s}$. An output from the $14 \mu s$ tap is amplified by V4, and fod to V1Oa in the video decoder (XC) giving a total dolay of $50 \mu \mathrm{~s}$.
68. Repiy pulso delay chain. Tho 28μ s tapping on DL1 (para 66 (2)) is connected to amplifior V1a whose grid leak R12 is returned to junction of R13, R14 to provide negativo foodback and roduce Bias on tho valve. V1a output is connectod to delay lino DL2 which gives a maximum dolay of 4 us. 'Tho pulse output from DL2 is cathode followod by V2 and fod into $D L 3$ a "vornior" dolay lino which has a maximum dolay of $1 \mu s$. DL 2 ($4 \mu s$ maximum) and $D L 3$ ($1 \mu s$ maximum) are adjustod so that together with the 28 us delay in DL1, the ovorall dolay of the delay. line unit is about 32μ and the overall delay of the beacon is $50 \mu \mathrm{~s}$.
69. -The output from DL3 is amplified by V3, and the positive pulses appoaring at the anode are fod to the priority mixer (XE).

IDENTHTY PUSSE GENERATOR (XH) AND MARKER GATE GENERATOR (XJ)

Introduction.
70. The identity pulso generator (XH) and the marker gate genorator (XJ) are grouped togother because thoy recoive their input signals from the acrial system and togethor gonerato those parts of the beacon output signal not produced by tho video system.

Identity Puise Genorator (XHI)

Fig. 17. Block Diagram of Idontity Pulse Gonerator.
71. The circuit sequence can be follorred by roforence to the block diagram (fig. 17) and the component referencos to the circuit diagram (fig. 18)
72. Phase splitting and pulse shaping notworks. Tho $1350 \mathrm{~d} / \mathrm{s}$ sine wave from the aerial phonic wheol is applicd to a phaso splitter V1a. The $1350 \mathrm{c} / \mathrm{s}$ identity signal applied to the identity pulse generator and tho markor trigger pulsos applied to the marker gato genorator both dopend on aerial rotation, thoy are thiorofore, in a fixed phasc relationship (phaso cohorent). The idontity pulsos and the initial pulses in the marker trains need to coincido, it is thorefore, nocessary to have some degree of phase adjustmont betwoen the $1350 \mathrm{c} / \mathrm{s}$ signal and the marker trigger pulses.
73. The sine-waves appoaring at the anode and cathode of V1a are 180 degroes out of phase, they aro appliod to n phase shifting network C2, RV1' and R7 resulting in an adjustable phase sincwave appearing across RV1, with a rango of about 110 degrees of phase shift. This is fed to amplifier V16.
74. V1b output is fed to clipper V2a which runs into grid curront thus cutting off the positive peaks of tho sinewave. V2b performs a similar function thus clipping tho other poak of the sinowave. The resultent "squarod" waveform is then appliod to the primary of transformer ti, the low frequency response of which is very poor and the sharp rise and fall of V2b anodo curront rosults in a "difforontiated" wavoform appoaring across the secondary winding. This waveform is fed to V3 whero the negative part is used as a trigger for the phantastron circuit.
75. Phantastron circuit (V3 and V4). V3 is a doublo diodo which together with V4, a pentode, forms a phantastron circuit. This circuit, generates a stablo $100 \mu \mathrm{~s}$ rectangular wavoform on the screon grid of V4. Tho trigger is applicd to V3a cathode whose d.c. potential is determined by the potentiometor chain R18 to R21 betwoen +300 V and oarth.

TL/488. -
JUNE, 1962.
76. In the quioscont stato V4 control grid is held at cathode potential of V3b by the flow of current through R22 to R26, V3b and R2O, R21. V4 cathode is held positive with respect to suppressor by cathode bias. Under these conditions V4 anode current is cutmoff and cathode curront is the sum of the screen and control grid curronts. Tho anodo is hold at V3a cathode potential by curront through R27 and V3a.
77. When the negative triggor is appliod to V4 control grid via V3a and C9 tho cathode voltage falls, and is instantancously lowerod rolative to suppressor voltago which allows anode current to flow. Anode voltage falls and this fall is coupled back to control grid by C9; reducing grid voltago causos cathode voltage to fall further. This action is comulative until the anode - grid feedback balances the grid potontial dorived from the potentiometer chain R22 to R26.
78. Tho circuit now acts as a "Miller" timebase. The control grid voltage risos at a rato dotermined by the time constant of R22-R26 and condonsor of capacity $C 9(1+a)$ whore A is stago gain, and the anodo rundow comnences and falls lincarly until the anode voldage bottoms, whon "Miller" effoct coascs. The control grid voltage continues to rise'but now at a much faster rato. The cathode voltace increases, and consequently becomos more positivo with respect to the suppressor grid voltagce and anode current falls while screon curront increases. This action is again cumulative until anode current is cut-off by suppressor bias with rospoct to cathode. The anode voltage then risos exponentially as C9 charges through R27 and V3b, until diode V3a conducts so limiting the anode voltage of V4.
79. The waveforms produced by this circuit consist of a negative going haystack waveform at the anodo and a positive square wave at the screon. In this particular casc only the positive going 100 us squaro wave from the scroon is used. It is fod to tho primary of transformer T2 which "difforentiates" tho leading and trailing edges of the waveform, and the resultant waveforms are applied to a mixer circuit MR1 and MR2. The negative going portions are removed in the mixer and the output consisting of two pulsos spacod 100 us apart at a repetition rato of 1350 per sec. is fed out to the priority mixer (XE) for inclusion in the composite beacon signal.
$\mathrm{TL} / 488$.
JUNE, 1962.

SRI. 18118, FGRI. 18119
Fig. 5
Identity pulse generator $(X H)$-circuit

Markor Gate Generator (XJ).

Fig. 17. Block Diagram of Marker Gato Generator.

80. The circuit sequence can be followed by reference to the block diagram (fig. 19), and component references identified on the circuit (fig. 20).
81. The $15 \mathrm{c} / \mathrm{s}$ and $135 \mathrm{c} / \mathrm{s}$ pulse'signals are both derived from the pulse plate assembly in the aerial, which consists of a non-ferrous wheel bearing one iron slug in the upper edge of periphery. There are a further eight slugs on the lower edge at 40 degree intervals leaving a space where the slug is mounted in the upper edge. When the aerial pattern maximum passes through East (at this point the single reflection on the innor fibre-glass cylinder is due West of the radiating array), the slug on the upper odge passos through a magnetic coil systom and producos a pulsc. As the aerial rotates at 900 r.p.m. the magnctic coil produces 15 p.p.s. Similarly the eight slugs on the bottom of the plate produce the $135 \mathrm{c} / \mathrm{s}$ pulse signal. (For reference to aerial systom see paras. 14 to 17).
82. North $(15 \mathrm{c} / \mathrm{s})$ markor gato Generator. The $15 \mathrm{c} / \mathrm{s}$ pulse signal is fed to V3, a double triode amplifier. The negative going portion of the trigger pulso is amplificd by V 3 a and further amplified by V 3 b resulting in a negative going pulse of about 90 V amplitude being applied to the phantastron circuit V2 and V1. This circuit functions in a similar manner to the circuit usod in the identity pulse generator (XH) described in para. 75 to 79.

TLT/488.
JUNE, 1962.
83. The duration of the rootangrlar wavefom produced at V 1 screen grid is controlled by a tupping on the resistor chain R5 and R37 to R40. This tapping is set to produce a pulse of about 340μ duration, i.e. allowing for 12 pulses of $30 \mu \mathrm{~s}$ spacing. The north gating pulse is fed two ways as follows:-
(a) To the priority mixer (XE)
(b) To V7a the gate combining stage.
84. Harmonic ($135 \mathrm{c} / \mathrm{s}$) marker gate genorator. This circuit consisting of amplifier V6 and phantastron V4, V5 operates in a similar manner to the North ($15 \mathrm{c} / \mathrm{s}$) marker gate generator circuit described in paras. 82 and 83. The phantastron producos a positive going gate of $130 \mu \mathrm{~s}$, i.e. allowing for 6 pulses of $24 \mu s$ spacing. This waveform is fed to priority mixer (XE) and to V76 the gate combining stage.
85. Gate combing stage. The North (15 c/s) and the harmonic (135 c/s) gates are fed to V7a and V7b grids respectively. The two halves of the valve shere a common anodo load and when a gate is fed to either grid that half of the valve conducts producing a negative gato at the anode. This combined gating waveform is d.c. couplod to the priority mixer (XE). R35 and R36 set the d.c. level of the waveform and $C 4$ serves to retain the sharpness of the leading edge.

TI/488.
JUNE, 1962.

SRI.I8II8, FGRI. I8II9 - Marker gate generator (XJ)-circuit
Fig. 6

Fig. 21 Priority Mixer (XE) - BIock Diagram.
Introduction.
86. The priority mixer (XE) performs two main functions:-
(a) Produces marker pulso trains from the $15 \mathrm{c} / \mathrm{s}$ and $135 \mathrm{c} / \mathrm{s}$ reference gatos.
(b) Mixes the marker pulse trains, identity signal and squitter and reply signals in the correct ordor of priority which is as follows:-
(i) Marker pulso trains.
(ii) Identity signai.
(iii) Squitter and reply signals.

The sequence of the stages can be followod by referonce to the block diagram (fig. 21) and component referonces can be seen on the circuit diagram (fig. 22).
87. $135 \mathrm{c} / \mathrm{s}$ markor burst generator. V 1 is normaliy cut-off by negative bias applied to the suppressor and the grid. The $130 \mu \mathrm{~s}$ duration, positive going $135 \mathrm{c} / \mathrm{s}$ markor gate from the marker gate gencrator is applied to V 1 as follows:-
(a) To the suppressor grid lifting the suppressor bias for the gating poriod.
(b) To the differentiation circuit C1, R4 which produces a positive spike followod'by a negative spike. MR1 will only pass the positive spike, which is fod to the grid of the valve so lifting grid bias for the duration of the spike.
88. Due to the negative bias on both suppressor and grid being lifted V1 will conduct and a negative spike will be produced at the anode and applied to the primary of transformer T1. The positive pulse appearing across the secondary is fed two ways:-
(a) To MR5 as the first pulse of the harmonic pulse train.
(b) To a delay line DL1 for re-cycling. Immediately the first pulse is produced by $V 1$ the valve is again cut-off at the control grid by negative bias, but the suppressor remains held on by the harmonic gato.
89. The pulso applied to DLI (sub-para (2) above) is dolayed by $20 \mu s$ and is then appliod to e further dolas line DL2 where it is delayed by $3.5 \mu \mathrm{~s}$. . The pulse, now delayed by 23.5μ s is then applied to the grid of V3a, a cathode follower. The pulse is fed from the cathode of V3a to delay line DL5, which is a "vernier" delay and is adjusted to give exac y 24μ overall delay.
90. The pulse omerging from DL5 is applied to V1 control grid via MR2, and once again the valve conducts and a pulse is applied to the anode transformer T1. Another re-cycling action will take place, and the action as described in paras. 88 and 89 will continue until the harmonic gate closes, when V1 will be cut-off by negative bias on the suppressor. Thus as the harmonic gate is set to about $13 \mu \mathrm{~s}$, a pulse train of 6 pulses spaced at 24μ will be produced by each harmonic gate appliod to V1.
91. $15 \mathrm{c} / \mathrm{s}$ marker burst generator. The $15 \mathrm{c} / \mathrm{s}$ (north) marker pulse train is generated in a similar manner to the $135 \mathrm{c} / \mathrm{s}$ marker pulse train. The circuit conditions of V2 are identical to those of $V 1$ except that the duration of the north marker gate is about $340 \mu s$. The transformer $\mathbb{T} 1$ is the common anode load of both V1 and V2 so the pulsos from V2 anode are also fed to MR5 and DL1. The pulso fod to DL1 passes through the delay line chain DL1, DL 3 and DL4 giving a total delay of $29.5 \mu \mathrm{~s}$. The pulse is then cathodo followed by V3b into a "vernier" delay line DLW which is variable and preset to give an overall delay of $30 \mu \mathrm{~s}$. The pulse is then applied to V2 control grid via MR4. Thus as the north marker gate is set to about 340μ and the delay lines produce a preset delay of $30 \mu \mathrm{~s}$, a pulse train of 12 pulses spaced by $30 \mu \mathrm{~s}$ will be produced by each north marker gating waveform applied to V2.
92. From the foregoing it can be soen that the pulse spacing within the marker gates is accurately controlled by delay lines and the duration of the bursts by the width of tho gates. Both pulse trains are fed from T1 socondary to MR5, which togother with MR6 forms a mixer circuit whose function is to "mix" the signals from the marker burst generators and the double gate for application to the amplifier V6. It should be noted that although both the north and harmonic marker re-oycling pulses pass through the dolay lines and V3 they will only trigger the appropriate valve, because the north and harmonic gatos aro never generated at the same time.

TIT/488.
JUNE, 1962.
93. The double gate circuit (V4 and V5). This circuit controls the priority of the component signals in the cumprate output signal. V4 and V5 are two pentode amplifiers with a common anode load transformer 12. There are three distinct states of operation as follows:-
(a) V5 only conducting.
(b) V4 only conducting.
(c) Both V4 and V5 cut-off.
94. V5 is nomally conducting but every 37.5 seconds the identity keyer (MD) transfers an earth connection from the cathode of V5 to the cathode of V4, so that V5 becomes cut-off and V4 conducts. As the identity signal input from the identity pulse generator (XH) is applied to V 4 grid , the identity signal will be doveloped across the anode transformer T2 as a series of dots and dashes for a period of 7.5 seconds, due to the identity keyer (MD) earthing the cathodo of V4 in a series of dot and dash lengths.
95. Squitter and reply pulses are fed to V5 control grid from the delay line unit (XD). Tho cathode bias resistor of V5 is nomally short circuited by tho earth connection in the idontity keyor (MD) and consequently V5 will conduct and produco squittor and roply pulsos.
96. As the transformer $T 2$ is the common anode load of V4 and V5 the signal appearing across its primary will consist of squitter and reply pulses which will be cut off and roplaced by tho identity signal every 37.5 seconds thus giving the identity signal priority over tho squittor and roply pulses. The output of tho doublo gate is taken to MR6 which forms part of the mixer circuit MR5, MR6 (para. 92).
97. The reference pulse trains are also fod to tho mixer circuit, so to avoid squittor and reply pulses interfering with the reference marker trains the double gate V4 and V5 is cut off during the passage of the pulse trains. This is achieved by applying tho blanking waveform from the marker gate generator (XJ) to tho common supprossor connection of V4 and V5. As the blanking waveform is produced whenevor either the $15 \mathrm{c} / \mathrm{s}$ or $135 \mathrm{c} / \mathrm{s}$ reforence gates are opon, it can bo seen that the marker pulse trains will reccive priority over both the identity signal and the squitter and reply pulses, resulting in the priority laid down in para. 86.
98. Output amplifier V6. The combined signal from tho mixer circuit is applicd to an amplifier inverter V6, and the negative going pulses appearing at the anode aro coupled out to the beacon coder unit (XB).

SRI. 18118. FGRI. 18119 : Priority mixer (XE)-circuit
Fig. 3

BEACON' CODER UNTT (XB)

Fici 23 Beacon Codor Unit - Block Diagram.
Introduction.
99. The function of the beacon coder unit (XB) is to accept the composite signal from the priority mixer (XE) and convort cach single pulse into a pulse pair spaced at $12 \mu \mathrm{~s}$ at a level suitablo for driving the modulator. The composite input signal contains the following information:-
(a) $15 \mathrm{c} / \mathrm{s}$ and $135 \mathrm{c} / \mathrm{s}$ markor pulso trains.
(b) Itentity signal.
(c) Squitter and roply pulses.
100. The pulse pairs of uniform amplitude and shape are fod out to the modulator unit (0). The sequence of the stages can bo followed by reference to the block diagram (fig. 23) and component reforences scen on the circuit diagram (fig. 25).
101. Production of Pulse pairs. The negative going input pulses aro applied to V1a which togethor with V1b forms a cathore coupled flip-flop. It produces at $V 1 a$ anodo positive going $7 \mu s$ constant ampliture pulsoc which are fed out two ways as follows:-
(a) To V3a grid via MR1.
(b) To V2a grid.

TI/488. -
JUNE, 1962.
102. The singln. pulse produced by V1 is converted into ai pulse pair spaced at 12μ sy the action of a circujt consisting of V3, V2a and DL1: V3 is a bi-stablo mativibutor (Eonles-Tordan) and V2a is a cathode follower which feeds into a $12 \mu s$ delay line (DL1).
103. The pulse appliod to V2a is cathode followod to delay lino DL1 which is preset to give an ovorall delay of $12 \mu s$. The pulso emerging from DL1 is then applied to V3b grid via $C 4$ and MR2. In the quiescent state V3b is conducting because its grid is hold at about +6 volts, while V3a is cut-off by the bias developed across the common cathode load'R1O. The valvos are directly couplod between anode and opposite grid, thoreforc, a voltage change at ono anode will cause a smallcr voltage change at the opposite grid. There is no discharging capacitor to allow tho grid to rise abovo cut-off potential so voltage changes can only be producod by oxternal trigger pulsos.
104. When the positive pulse arrives at V3a grid via MR1, the valve conducts and the anode voltage falls, pulling down V3b grid causing V3b anode voltage to riso and V3a grid with it. This action is instantaneous and brings V3a into full conduction and cuts off V3b. The circuit romains in this condition until $12 \mu s$ later tho pulse from DL1 is appliod to V3b grid and tho reverse action takes'place. The rosulting pulses at $V 3 a$ and $V 3 b$ anodes are roctangular, of $12 \mu s$ duration and opposito polarities. Diodos MR1 and MR2 aro grid isolaturs.
105. Both anode outputs are differentiated and fod to mixer circuit MR3 and MR4 which removes the negative parts of the waveforms and combinos the positive spiked pulses. Thus tho signal appliod to V4 grid is two positivo pulsos spaced 12 us apart. From the forogoing it can be soen that a pulso pair spacod by $12 \mu s$ will be produced for every input pulso fod into tho unit bocausc the delay line is fod with constant amplitudo pulses.

Fig. 24 Beacon Coder Unit (XB)-Wavoforms.

106. Pulso pair shaping circuit (V4, V5 and V2b). The pulse pair fed to $\overline{\mathrm{V}}$ are gonerally of unnequal amplitudo and are not the correct shape, so the next four stagos are used to produce corrootly shaped pulses of oqual amplitude. Tho stages are an amplifier V4, a cathode couplod flip-flop V5, a cathode-followar V2b and a shaping filter.
107. The pulse pair are amplified and inverted by V4, and the amplified negativo-going pulses aro coupled to V5a grid via MR5. The tapping of R26 and R29 connected to MR5 cathodo is held at about +20 V so that nogativo triggor pulses will have to ovorcome this standing bias lovel before MR5 will conduct.
108. V5 is a cathodo-coupled flip-flop and in the stable condition V5a isconduoting and cathode bias holds V5b out-off. Eaoh negative trigger pulse from MR5 cuts off V5a, then V5b conduots. The discharge time of 09 is set so that $6 \mu s$ elapse before V5a grid voltage allows V5a to conduct again. This action results in two positive pulses of equal height and width spaced $12 \mu s$ apart being produced from $V 5$ a anode.
109. V2h is a cathode-follower which matches the output of the flipwflop into tho shaping filter. In the quiescent state V2b is cut off by about -25 V grid bias, R32 and MR7 acting as a d.c. restorer circuit. The positive input pulses causo V2b to conduct heavily, while R35 acts' as a grid limiter. The pulses developed across the cathode load R36 are fed into the shaping filter, which is a low-pass network and its function is to convert the pulses into the shape required. by removing the higher harmonics. The filter consists of L1 to L3 and C11 to C19 inclusive, and MR6 limits overswing. The output puls from the filter aro of $7 \mu \mathrm{~s}$ width at the base and about 11V in amplitude. The pulse pair is applied to V6.
110. Amplifying and output stages (V6 to V8). V6 is an amplifier inverter, raising the amplitude to about 40V. The anode load provides two outputs as follows:-
(a) V1a C20 and C21 in parallel and RV2 to V7.
(b) Via 026 and MR8 to video decoder (XC) as a receiver suppression gato.
111. The suppression pulses, (b) abovo, are coupled from V6 anode by C26 and developed across R47 the positive portions of the waveforms are removed by MR8, the nogative pulse pairs boing fed out to the video decoder (XC) to de-sensitize the roceiver while the beacon is transmitting. This is to prevent the transmitted pulses triggering the receiver.
112. The main output from V6 (para. 110 (a)) is applied to a further amplifior stage V7. The input potentiometer RV2 serves to set the amplitude of the pulses fed to V7 and consequently the peak amplitude of the pulses fed to the klystron although the klystron drive will in practice be limited by the operating characteristise of the modulator valves. $V 7$ acts as an amplifiar inverter and the output pulse pairs are positive going and of an amplitude of about 200 V peak. The pulsos are then cathode - followod by V8, tho output being directly coupled to the grids of the modulator valves. As RV3 is connected between the -150 V line and earth, and is used to sot the d.c. lovel of the grid and honce the cathode of V8, it will also set the standing bias level of the modulator valves. The pulse pairs are fod directly from the cathode of V8 to the modulator (0).

TIL/488. JUNE, 1962.

FREQUENCY MULTIPLIER UNIT (XG) AND R.F. DRIVE UNTTT (XF).
Introduction.
113. The frequency multiplior unit (XG) and the R.F. drive unit (XF) are associated in this chapter because together they produce the r.f. drive and local oscillator signal. The sequence of the circuits can be followed by reforence to the block diagram (fig. 26). The initial frequency at 1 . of the boacon output frequency, is generated in a special $\frac{17 \text { th }}{}$ broadband oscillator which is frequency controlled from a crystal mounted in an oven. The signal is thon amplified and multiplied before application to tho output klystron.

Fig. 26. Frequency Multiplior Unit and R.F. Drivo Unit - Block Diagram.

Froquency Multiplior Unit (XG).

114. The crystal oven. This ovon is of cylindrical form and contains threc orystans. It is fittod with a thormostat which regulatos the tomperature to $75^{\frac{7}{-}} 2$ dogreos contigrade. The oven is mounted on a 14-pin base with a contral spigot, so arranged that any one of the throe crystals can bo brought into servico by pulling out the oven, slightly rotating it to another position and pushing it back again. The crystals are of the overtone typo and the third overtono is used. The crystals will oscillate at their fundemontal froquency and at other higher odd overtones, but tho gain of the circuit in which thoy are used is vory low at these frequencios.

TL/488. JUNE, 1962.

115. Butlor oscillator V1. The two sections of the double triode V1, together form a Butior oscillator, which is a special broadhand cathode - coupled oscillator whose frequency is dotorminod by the quartz crystal connocted betwoon its cathodos. Tho circuit produces a signal within the band $35.5-45 \mathrm{Mc} / \mathrm{s}$. V1b functions as a groundod grid amplifier with a broadband anodo tuned circuit L 1 which is tuned to resonate at the crystal frequoncy. $C 2$ couplos V1b anode to the grid of V1a which acts as a cathodo followor, tho R.F. onorgy boing devcloped across its cathodo load R3. This R.F. onergy is couplod to V1b cathodo via tho crystel which providos a low impodence path at its marked froquoncy.
116. Tho circuit oporation rolios on rogenorativo feedback i.e. the two cathodes must bo in phase, and since the crystal oporation at series resonance requiros zero phaso slift around tho circuit loop, tho various stray capacitios must bo componsated for in the circuit. The cathode followor is alsmost froo of phasc shift duo to extremoly low grid cathode capacitanco and at rosonance V1a cathodo is virtually d.c. coupled to V1b cathodo by the crystal. The anodo-cathodo capacitanco of V1b is oxtromely small duo to the grounded grid, and V1b anode circuit is rosonatod at crystal froquency and couplod to V1a grid. Thus phase shift around the circuit loop is nogligiblo and oscillations occur at the marked frequoncy of the orystal.
117. The impodenco offered by the crystal is high at frequencies on eithor sido of orystal resonanco and thus the gain of the groundod grid amplifier is low. This ensures that oscillations are only possible at the marked froquoncy of tho crystal, thus the Butlor oscillator output is a highly stablo signal containing littlo ir no oscillations at unwantod froquoncios. The oscillator ortput is coupled from V1b anode to V2 control grid via capacitor 55.
118. Trebler amplifier chain (V2 to V5). V2 is a pontodo buffer amplifior which amplifics the sienal from V1 for application to the first trebler stage V3. V3 is a beam-totrodo trobler which raises the signal to 1 of the beacon output frequoncy. In V3 anode circuit is a centre9th tappod inductor $L 4$ which is tuned to tho third hermonic of tho input frequency by a split stator capacitor C21; this provides a push-pull output for applicadion to V4. Capacitors C43 and C2O are included to balanco the inputs to V4.
119. V4 is a doublo-pontodo, push-pull driver amplifior whose function is to amplify tho signal and provido a push-pull output for the troblor stage V5. Bias is providod by R17 and the parallol combination of R19 and R41. The centro-tapped anode inductor L 5 is fod from tho 300 V lino via, tho anti-parasitic rosistor R 53 , and is tunod by tho srlit-stator capacitor C31 to provide a balanced output to $V 5$. Two presctcapacitors 032 and C33 in V5 grid circuits balanco the inputs to the valve.
120. V5 is a doublo-pontodo, push-pull triplor amplifier, which raisos the signal to 1 rd of tho bencon output frequency. V5 anodes are are supplicd $\overline{3}$ with. H.T. of 500 V via a tuninf unit. The tuning unit is a self-contained itom, with a tunable lechor line in the anode circuit of V5. Couplod to the locher lino anodo circuit is a broadband circuit providing an unbalanced output at low impodonco to R.F. drive unit (XF).
121. Output lovel'control valve (V6). The screen grid potential of V5 is controlled by V6, whose anode is connocted to the 500 V supply and whose cathode is connected to V5 screon via R54. The impodence of V6 can be varied by its control grid voltage, thus the potentiometer RV1 in V6 control grid circuit is used to ndjust V5 screen potontial and consequently the output lovel of the multiplicr unit. RV1 is marked RAISE OUTPUT POWER and the voltage at the slider may be varied from zero to about 210 V .
122. Decounling and Metering arrangements. All stages in the unit are extonsivoly docouplod to prevont feodback and instability. Comprohensive motoring arrangemonts are provided by S1, a threebank, $12-$ way switch. It is connocted to $M 2$ on the meter panel (XA), and the metoring systom provides facilitios for tuning the variable controls I1, L3, C21 and C31 whon the crystal has been changed.
$T \mathrm{~L} / 448$.
JUNE, 1962.

RoF. Drive Unit (XF)
123. The signol at $1 / 3 \mathrm{r}$. of the beanun oulpul froquency is fed in from the multiplier unit, and the fumntion of the R.F. drive unit is to acaept this signal and raise it in both frequency and power for application to the klystron (Q). The unit also provides the local oscillator signal for mixing with incoming interrogations in the I.F. pre-amplifier unit (R) (pare. 39).
124. The unit has two valves, which are of the "lighthouse" type enclosed in tunable cavities and both are forced air-cooled.
125. The input from the multiplier unit is fed directly into the gridcathode cavity of V1, a triode grounded-grid, trebler-amplifier. The input is coupled via a capacity probe into the grid-cathode cavity which is broadband and untuned. The anode cavj.ty is tuned to the third harmonic of the input signal by moans of a dialectric ring which can be moved up and down parallel to the axis of the valve. The signal at beacon transmitt frequency is coupled from V1 anode cevity via a loop to V2 grid-cathode cavit:
126. L probe in V1 anode cavity provides the local oscillator signal for application to the mixer in the i.f. pre-amplifier. Cathode bias of V1 is provided by one of three resistors R1, R2 or R3, the resistor giving the best results under test being selected. This system is to avoid the use of a potentiometer.
127. V2 is a triode grounded-grid amplifier which raises the signal power to the level equired for the klystron to function efficiently - between 10 and 15 watts. The signal from V1 is injected by a capacity probe into the grid-cathode caviby which is broadband and untuned. V2 anode cavity is tuned in the some manner as $\mathrm{V1}$; the two motions being ganged together and controlled by a single knob. A loop in the anode cavity couples the anode cavity couples the output to the klystron (Q).
128. Both V1 and V2 have independent, isolated hoator supplies of 6.3 V.A.C. In the case of $V 2$ the heater supply passes through two parallel resistors (R10 and R11) which aro normally short circuited by the contacts of relay RL1. The coil of RL1 is incorporated in V2 cathode circuit so that when the $R_{0} V$. drive is applied to the valve, the increase in current causes tho relay to be energiscd and to open its contcots, this reducing heater voltage at the filoment by placing R10 and R11 in series with the filament supply. This is done to offsot the cathode bombardment which takes place at the frequencios in use and thus prolong the life of the valve. Resistor R9 is across the relay coil to minimise relay chatter.
129. Metering Arrangements. Metoring facilities are provided by S1 a fine-position switch, and connections are faken to meter MI on the meter panel (XA).

REFERENCE: A.P. 2534L, Vol. 1, Part 2, Section 2, Chapter 7.

Fig. 4
(A.L.11. Nor. 58)

MODUTATOR IND KLYSTRON ASSEABLY (0 and Q)

Introduction

130; The modulator and the klystron assembly are associated together as they form the transmitter. The modulator receives the composite signal from the beacon coder unit (XB) and amplifies it to a suitable level for modulation of the klystron, valve. A voltage proportional to the klystron beam current is fed back to the modulator to assist in the maintainance of constant amplitude baocon output pulses. The circuit sequence can bo followed by reference to the block diagram (fig. 29), and component reforences cen bo seen on the circuit diagrams (figs. 30 and 31).

Fig. 29. Modulator and Klystron Assembly - Block Diagram
Modulator Unit (0)
131. The composito bcacon signol is fed from the coder unit (XB) to three parallel-connected modulator valves V1, V2 and V3. It consists of positive pulses and is fed to the valves via on internal feedback potentiometer RV1 and grid stoppers R1, R4 and R7. The positive pulses applied to the grids of the modulator valves cause them to conduct heavily and the negative pulses produced at the anodes are fed to tho primary of T 1 . The secondary of T , has terminal 4 connected to earth, and positive-going pulses of about 5 KV . amplitude appear at terminal 5 and these aro fed out to modulate the klystron.
132. A tapping to terminal 3 from $T 1$ secondary provides a foodback potential to V1 V2 and V3. This feodback potential is developed across resistors R18, R19, which also serve as a resistive load for T1 secondary, and they flatten the pulse trains to provide minimum droop.
133. The high voltage pulses are soupled from T1 torminal 5 to the klystron assenibly via a cepacitor C13. Also fed out on this lead is the "hold off" bias supply. This is about - 180 V in amplitude and is fed from the e.hot power unit (N) to the klystron via this unit, the modulator.
134. Feedback Level Control Valve. The level of the feedback derived from the klystron beam current is cortrolled by a tetrode V4, which acts as a variable shunt impedance across T1 secondary. The feedback pulses which are negative-going are applicd to V_{4} cathode, which increases valvo current so decreasing the impedance of the velve. The extent to which ourrent is increased depends upon the arplitude of the feedback pulses, and the shunting effect will be constant for constant amplitude pulses; the system therefore assists in maintaining a constant amplitude of output pulses from the beacon.

Klystron Assembly (0)

135. The klystron assembly houses the klystron valve which is the transmitting valve for the beacon. It contains three r.f. cavitios and four focussing coils which surround the valve V4. The klystron collector connection is at the top of the ossembly and is forced-air cooled.
136. RoFo System. The r.f. circuitconsista of the threo cavities and their associated tuni, circuits, the modulation circuit and beam current feedback network. When the cavities are clamped in position they make contact with the rings on the valve and, together with the internal elements of the valve, form resonant cavities which are tuncd by plungers adjusted by knobs on the iront of the assembly.
137. The C,W. enorgy from the R.F. drive unit (XF) (paras 123 to 128) is coupled into the bottom cavity by an inductive loop. The midale cavity has no external rof. connoctions. The amplified pulsed r.f. is extractod from the output cavity at the top by anothor inductive loop and fed out to the duplexer (V) for tronsmission. The throe ecvities aro tuned separctely but in a similar mannor by scrowing plungers in or out. Moter 05 on the control urit (W) indicatos the current extracted from the cavity by an inductive loop (rectified by a crystal diode). The current. passes via a microswitch (S1, S2 or S3) which has to be depressed whilst timing. The microswitch earths the crystel detoctor to tho frame when not in use.
138. The modulation of the C.W. r.f. power fod into the bottom onvity is effected by the pulses fed to the modulation electrode from the modulator. The modulation pulses are of about +5 KV peak amplitude, a "hold-off" bias of about - 180 V amplitude is also applied to the modulation olectrode. The cathode is supplied with e.h.t. of about - 15 KV and the collector electrode is earthy. Thus when the modulation pulses are applied the valvo conducts heavily producing pulsos of 5 IWI pook minimum. Tho "hold-off" bias ensures a definito cut-off aftor each transmitter pulse and provents any spurious transmission between pulses.
139. Tho voltage derived from the beam curront is devoloped across R1 and R2, and used as feedback voltage controlling the output level control valve on tho modulator (para 134).
140. Focussing Systeme An eloctro-mogretic system is employod which maintains the electron beam accurately aligned along the axis of the valve. There aro four focussing coils which aro interleaved with the three cavities. When the beacon is in the standby or operational mode the coils are supplied from the 250 V power unit (K), When the beacon is switched off a $230 \mathrm{~V} . \mathrm{L} . \mathrm{C}$. supply from the unregulatod mains is fed to tho coils to maintain the temperature of the assembly. The d.c. and a.c. supplies are switched by the pre-hoating rolay (G).

SRI. I8II8, FGRI. $18 \| 19$
Modulator (O): circuit

SRI. 18118, FGRI.18119 - Klystron assembly (Q) - circuit

MISCELILNEOUS TTEIS

Introduction

141. The units comprising the transmitter-receiver have been individually described in previous sections. However there are a numbor of items mounted in the right-hand cabinet which do not fall within the scope of these sections. Thereforo these items are covered in this section.
142. Heater Transformors. There are four huater transformers mounted on the lef't-hand side of the inner bay. Thoy are mountod one above the other and are numbered T7, T6, T5 and T4 from top to bottom. Thoy aro fed in parallel from the regulatod moins.
143. The units supplied by oach tronsformer are detailed bolow:-
(a) I4 (1) Pins 4 and 5 supply $6.3 V$ at 34 to R.F. drive unit (XF) (isolated supply for V1).
(2) Fins 6 and 7 supply 6.3 V at 1.6 f to R.F. drive unit (XF) (isolated supply for V2).
(3) Pins 8 and 9 supply 6.3 V at 1.04 to frequency multiplier unit (XG) (isolated supply for V6).
(b) T5, pins 4 and 5 supply 6.3 V at 7.84 to the following units:-
(1) Video decoder (XC).
(2) Delay line unit (XD).
(3) Identity pulse gencrator (XH).
(4) I.F. pro-amplifior (R)
(c) T6, pins 4 and 5 supply 6.3 V at 7.8 A to the following units:-
(1) Beacon coder unit (XB).
(2) Marker gite generator (XJ).
(3) I.F. amplifier (P).
(d) T7, pins 4 and 5 supply 6.3 V at 7.8 A to the following units:-
(1) Priority mixer (XE).
(2) Froquoncy multiplier (XG).
144. Meter Panel (XA). The metor pancl is situated in the middle of tho right-hand inner door. On it are mounted three meters, a distribution block, and the "over-on" lamp cheok circuit.
145. The three meters arl used as follows:-
(1) M1 calibrated 0-150 mA for R.F. drive unit motoring.
(2) M2 colibratod 0-10 mA for frequency multiplior metering.
(3) M3 tho squittor rate indicator. This moter has an associated smoothing circuit to provide a steady roading, and is supplied from tho vidoo decoder (XC).

TL/488
JUNE, 1962
146. The distribution hJonc has ten torminnts which act as distribution points for all a.c. and dac. H.T. supplios to tho units mounted on the inner door oxoept the blower supplios.
147. The oven lamp check circuit (fig. 32). Normally IIP1 is in serios with the heater eloment in the crystal oven on the frequency multiplier unit (XG) through controts 1 and 2 on S1. Thus when tho thormostat contaot in the crystal oven is closed tho ovon hoator and lamp are connocted across tho $230 \mathrm{~V} . \mathrm{Koc}_{0}$. supply and the lamp will light. When the thormostat opens the lamp will go out, but by depressing S 1 the lamp will light up and can bo checked.

148. Pro-Heating Relay (G). This reloy is situated to the loft of the bottom of the klystron asscmbly (0). The unit consists of a relay whose two contacts switch the supplies to the klystron focussing coils. When the beacon is switched off, phaso 1 of the unrcgulntod mains is fod via the prehoating relay to the klystron asscmbly to maintain the tomperature of the klystron. Whon in the standby or operational mode $a+250 \mathrm{~V}$ d.c. from the 250 V power unit (K) encrgises the relay, which disconnocts the aso. supply and connocts the +250 V d.c. to the focussing coils. The connoctions of the focussing coils are detailed in fig. 31.
149. Anti-Condensetion Hecter. The heater is mounted on the bottom lefthand side of the TR cabinct. It is fed with a 230 V or 115 V a.c. supply from on externol source to make the hoeter independent of beacon supplies.
150. Air Blowers, There ere three air blowers mounted in the TR cabinet, all are fed with 230 V.A.C. from phasc 3 of the unregulated mains. Blower No. 1 is the klystron collector cooling blower and is mounted in the top right-hand corner of the $T R$ cabinet. It is connectod to the klystron assembly by a detachablc flexible hose. Blowers 2 and 3 are mounted on the bottom of the inner door, and the air expelled from both blowers is fed into a common duct. The air is ductad on to the cooling fins of the CV2516 valves in the R.F. drive unit (XF) and through holes to the front of the inner door. Thus when the outer door is closed this cooling air is circulated around the valves on the units mounted on the inner door.

REFERENCE: A.P. 2534I, Vo1. 1, Part, 2, Section 2, Chapter 9.
AERIAL SYSTEM
AERIAL CONTROL CABINET

Introduction

151. Tho aerial control cabinet contains the tiree-phase rogulating equipment, rogulator control unit (YN) and voltage regulator (YO), terminal blocks (IA to YE) and isolating switch (YH). Hinged to the top of the door is the meter panel (YJ). Mounted on the door of the cabinet are the aerial speed control unit (YR) and the aerial speed roctifier unit (YS).
152. Royal Navy installations are cquipped with an aerial sorvo system but these items are not dealt with in this trainoe note.

Voltage Regulator (YO) and Control Unit (YN)
153. The circuit diagram of the voltage regulator and control unit can be seen in Fig. 33. The 3-phase supply is regulated by motor driven sliders in regulator (YO) to betweon $\ddagger 3$ volts. The motor control circuits are contained in control unit (YN). Unregulated 3-phase power is made available hy isolating switch (YH). The rugulating circuit is switched on and off by the stand-by switch SW8 in the control unit (V), this causes the unregulated phase two to be fod to PL1.8. The principle of operation, after the initial running up period, is for the power to the regulating motor to be controlled by relays which rely on a twowoy voltage scrsitive relay VR for their energising curronts.
154. The relay conditions at various stages of the voltage regulation are tabulated on the circuit diagram (fig. 33). The modes of operation are as follows:-
(1) Regulator witched OFF. The motor has previously driven the sliders on the regulator to the bottom of the autotronsformer rosistors so that all three slidors ere at neutral line potential. The MIN. limit switch is open and the motor is de-energised. There is therefore no regulated voltage.
(2) Regulator running up. The motor is energised in a manner to drive the sliders up the auto-transformer resistors. The MIN. switch is closed and the output voltages gradually increasc.

TL/488
JUNE, 1962
(3) Fully regulatod. The motor has stoppod driving the rogulator sliders bocousc the VR relay contacts have opened. Thereaftor tho direction in which tho motor drives the sliders depends on whethor VR1 or VR2 contacts are closed. When VR2 contacts are closed the sliders are being driven up and when VR1 contacts are closed the sliders are being driven down.
(4) Regulator running down. The motor now drives the slider down to the neutral line potential.

Regulator switched OFF. Tho sliders are driven down to tho position where the MIN. switch opens, this de-energises tho motor only when the control switch is OFF.
155. When the regulator is switched off all relays in the $Y N$ control unit are de-onergised and LP7 in the metor unit (YJ) is out. In this modo the phase one unregulated supply is almays available not torminal PI1.13. of YN provided the mains isolating switoh YH is closed. Tho circuit for the relays in $Y \mathbb{N}$ cannot be comploted until unregulated phase two is fed to the unit via the control unit (W) SW8. When this switch is closed the unregulated phase two is rectified in the bridge rectifier $\mathbb{M} 4$ and relay RL_{4} is эnergised via PL1. 1 of YN .
156. When RL4 is onergised, contects RI4/2 close and contcots RI4/1 and RI4/3 open. RI4/2 completos the circuits for relay RL2 to onergise from unregulated phase ono via FS1, MR2, contocts $R L 3 / 2, R I L_{4} / 2$ and contacts VR2 to neutral PL1.1. Contects VR2 aro closed beccuse the relay is spring londed to take up VR2 position in the absence of power. When RL2 is enorgised contacts $R L 2 / 1, R L 2 / 2$ and $R L 2 / 3$ open and contacts $R L 2 / 4$ close, thus completing wae motor circuit via PL1.13, FS1, contacts RI5/2, PL1.2, TSI. 4 , motor winding, MAX limit switoh TSL. 1 of YO, PLI: 5, contacts RL2/4 to noutral.
157. The motor will now drivo the rogulator slider up, a low voltage will appear on TS2 tormincls 13 to 15 of $Y 0$ and the ITN limit switch will close. Torminal TS2. 13 is connocted via PL1.14, FS3, and RV3 to the MR1 bridge circuit which will energiso relays RL1 and VR. nLt operates when the phase one voltago is about 100. When RL1 is enorgised contcots RL1/1 close and ensure that the motor circuit phase onc voltage is maintained when both RId $/ 1$ and RLS/2 are open.
158. When the regulated phase one voltage reachos 240 V , contacts VR2 open and relay RL2 is de-enorgised. Thereforc, contacts RL2/1 close and relay RL5 is energised ond locked on via contects RL5/1. Contacts RL5/2 open and leave the motor circuit closed by contocts RI1/1. Contocts RL5/3 and 4 oloso so that the indicator lamp LP7 in the YJ meter unjt is energisod from the unrogulated 140 V phase one supply via RL2 or RL3. Contects RL2/2 close and short out the high boost resistor RV1. Contacts RL2/3 close and prepare relay RL3 circuit for use when VR1 contacts are closed. Contects RI2/4 broak the neutral line so thit motor stops driving the rogulating sliders.
159. With relays RL1, RI4 and RL5 all energised and relays RL2 and RL3 both de-onergisod, the voltage relay VR in the MR1 bridge circuit controls the regulating circuit. Whon the voltage is below 240 V , contacts VR2 will be clojed and relay RL2 energised. When contects RL2/4 aro closed the motor is onergised to turn in tho direction to increaso the regulated voltage. When the voltage is above 14.0 V , contacts VR1 will be closed and relay RL3 onergised. Whon contacts RL3/1 are closed the low boost rosistor RV2 is shortod out. When contacts RI3/2 cro open roley MI,2 connot energisc. When contacts RL3/3 are closed the notor is enorgised to turn in a direction to decreaso tho reguleted voltage. Both motor contacts heve spark quench components across thom, i.e. R1 and C2 are across contacts RL2/4 and R2 and C3 across RL3/3.

TL/488

JUNE, 1962
160. When the oquipmont is switchod OFF in the control unit (W), the phase two unregulatod is removed from $\mathbb{R} 4$ bridge circuit, relay RI4 is therefore de-energised. Contacts $R I L^{2} / 1$ close to complete the notor run-down cycle. Contacts RI4/2 open to ensure that RL2 cannot be erergised. Contacts RI4/3 close to complete the enorgising circuit for relay RL3, evon whon VR1 contacts are open, via contacts RL2/3, RL4/3, PL1.3, TS1.3 in YO and MIN limit switch to neutral. The motor is now in the run-down mode and will continue to decrease the voltage until releys RI1 and RL5 become de-enorgisod. Contacts RL5/3 and 4 opon the circuit to LP7 in unit YJ. Finally the motor circuit is de-onergisod by the MIN limit switch contacts opening, this also deenergises the final energised relay RL3.
161. The roley operation of control unit (YN). The function of each relay contact is provided in tho following sub-paragraphs to show the four main modes of operation of the control systom, i.e. OFF, running-up, fully regulated and running-down.

(c)

VR to Position 1.
RL3 Operated
(4) RUNNITNG Down

Relay State
RL1, RL4, RL5
Opernted. RL2 and RL3
de-energised.
RI4 de-energised.

RL3 Operated.

TI $/ 488$
JUNE,
1962

Contact 4 closes completing neutral "running up" lino to tho motor. Motor will move slider up resistors until relay contacts VR move off position 2 when neutral line to RL2 will be broken, RL2 is then de-energised, the motor stops and returns to condition (3a)

Rogulatod voltege incroases above $240+3 V$. Relay VR contact moves to position 1. Oporates RL3 from unregulated phase one.

Contact 1 closcs shorting RV2 LOW BOOST.
Contact 2 opens ensuring RL2 cannot operate.
Contact 3 closes completing the neutral
"running-down" lino to motor.
Motor will move slider down the resistors until relay contrcts VR move off position 1 whon the neutrol line to RL3 will bo broken. RI3 is thon de-energisod, the motor stops and the unit returns to condition (3a).

NOTE:- RV1 HIGH BOOST and RV2 LOW BOOST sottings togother with contacts RL2/2 and RL3/1 ensure the novement of the slider up the auto-transformer will send the contact of rolay VR into the mid-position between its two contacts. RV3 sets the regulated voltage value.

Aotinn

Standby switoh (SW8) in control unit (W) OFF, unregulated phase two mains removed. from PL1.8. RL4 now de-energised.

Contect 1 closes maintaining unregulated phase one to the motor.

Contoct 2 opens prevonting kL2 from operating when regulated voltage drop causes contact VR to move to position 2.

Contact 3 closes completing neutrel linc to RL3 via MTN IIMIT \cdot switch.

Contact 4 not used.
Contact 1 closes shorting RV2 LOW BOOST.
Contact 2 opens ensuring RL2 neutral line remains broken.

Contact 3 closes comploting neutral "running down" linc to the motor.

$T I / 488$
JUNE, 1962

METER PLNEL (YJ)

162. This panel conteins two moters M1 and M2 (M2 has a controlling switch SW1 to vary the inguts), six fuses and their associnted indionting lamps, and six indopendint lamps. The purpose of cach circuit. is as follows:-
(a) M1 indionts tho contrcl winding current of the sorvo drive motor.
(b) M2 indicates the potentials of the three phases, both regulated and unregulatod.
(c) FS1 to FS6 protect the following circuits:-
(1) FS1, 10A. Phaso ono unrogulatod to contactor (YF).
(2) FS2, 10A. Phosc two unregulated to contactor (YF).
(3) FS3, 104. Phase throe unregulatod to contactor (YF).
(4) FS/4, 3A. Magnetic coupling current.
(5) FS5, 3A. Phase threo unregulated to lighting transformer (YK).
(6) FS6, 3A. Noutral to lighting transformer (YIr).
(d) IP7 to IP12 provide the following information:-
(1) LP7. Lights whon control unit YN has reached the fully rogulating condition.
(2) IPB. Not connectod.
(3) LP9. Lights when signels at approx. 1.5 deg. are being fed to the sorvo-amplifier.
(4) IP10. Lights whon 6.3 V is fod to time delay relay SW4 in the acrial control unit (YR).
(5) IP11. Lights when power is fed to the neriol speed roctifier unit (YS).
(6) LP12. Lights whon powor is fod to the aeriel spin motor.

REFERENCE: A.P. 2534L, Vol. 1, Port 2, Section 1, Chaptor 1.

TI/488
JUNE, 1962

Introduction
163. The acricl systom for TACAN beacons are divided into two frequency bends es follows:-
(1) FGRI 18119 aerinl systom (high band) 1151 to $1213 \mathrm{Mc} / \mathrm{s}$.
(2) FGRI 18119 acrial systom (Iow band.) 962 to $1024 \mathrm{Hic} / \mathrm{s}$.

The height is different for the two bands:- high band is 69.5 inches and low band is 77.5 inches. The Royal Navy version contains a servo loop for use with tho ships composs.

Aerial System

164. Central discone cylingor. The aerial construction can be seen in fig. 7, and reforences to the oporation in para 16 of this trainee note. The central radiating array consists of a stack of seven discones which produce the following radiation choractoristics:-
(1) Circulnr within +5 per cent up to an engle of 60 deg . to the perpondicular to the axis of the aerial.
(2) A maximum radiation in the vertical plane of about 6 deg. above the horizontal and approx. 60 per cont of the maximun amplitude transmitted in the horizontal plano.
(3) Signols tronsmitted betwoen the gorizontal and on angle of 50 deg. to the gorizontal never fall bolow 25 db less then maximum.
165. The purpose of the aerial is to accept the pulsed r.f. signal from the transmitter and radiate it efficiently into space, also to receive the redinted signals from the intorrogating aircraft transmitturs and feed them into the receiver. The aerial must prosont a matched irpedence ovor the whole frequency band to maintain radiation efricioncy. In addition the central array must gunerato the required vortical pattern. The vortical lobe of the antenna pattern is directed slightly upwards (uptilt) so that a rapid gradient of signal exists at the horizon, this pormits greater freodom in the choice of sites by providing a high direct/reflected signal ratio. This is illustrated in fig. 35.

Fig. 35. Ràdiation Pattern Diagram
TL/488
JNEE, 1962
166. The central array is composed of seven biconical dipoles stacked vertioally. The distribution systom is sclf-contained in the array and consists of a number of serios - driven transmission lines. The main tronsmission line proceeds to the centre of the array at which point it divides into the distribution notwork which conteins matching trensformers at all junctions. A block diagram of the systom is shown in fig. 36.
167. In the lower six elements of the array, the central two elements are each supplied with 9 units of power, the two adjacent elements receive 4 units of power and finally the end clements receive ono unit of power each. This distribution tends to repress minor lobes. To obtain uptilt the elements are phased so that the lower two lead in current and the upper two lag in current with respoct to the central elements. This is illustrated in fig. 37.
168. The 7th or top eloment is introduced to improve the vertical angle covorage of the aerial. This elonont receives 9 units of power and contributes to the uptilt because its current is lagging. A counter-poise is fitted between the sixth and seventh elements; at high vertical angles this tends to mask the radiation from the lower six elements and the energy is predominatly from the top element.

Antenna	1	2	3	4	5	6	7
Power	1	4	9	9	4	1	9
Current	1	2	3	3	2	1	3
Phase	+45	+45	0	0	-45	-45	-45

Fig. 36. Power Distribution and Impodence Matohing of Central Array
TL/488
JUNE, 1962

Fig. 37. Production of Uptilt of Lobe
169. Spinning Cylinders. The spinning fibreglnss cylinders hove wires unhodued in the walls. Ihn oylinders are shown in fig. 7. The outor cylinder has ninc vertical wires which act as directors to form the $135 \mathrm{c} / \mathrm{s}$ radiation pattorn. The inner cylinder has three closely-spaced wires to provide a coarse pattorn, thesc act as a reflector to form the $15 \mathrm{c} / \mathrm{s}$ radiation pattern. The relativo positions of the two cylinders are fixed and both are driven at $900 \mathrm{r} . \mathrm{p} . \mathrm{m}$.
170. Phonic Wheel. Koyed to the top end of the aeriel support assembly shaft is the non-ferrous phonic wheel which serves throo purposes as it rotates at 900 r.p.m. namely:-
(1) Generates a $1350 \mathrm{c} / \mathrm{s}$ wevoform from \AA series of 90 iron segments which stand vertically on top of the phonic wheel. This weveform is used in a discrininator circuit to dotormine the speed of aerial rotation and also to generate identity tono signals. Coil L2 is used to pick up theso signals.
(2) Gonerates the $135 \mathrm{c} / \mathrm{s}$ reforence trigger pulses in coil L1, which picks up a pulso each time ono of the eight iron slugs, which are in the lower odge of the phonic wheel perineter, passes the coil.
(3) Generates the $15 \mathrm{c} / \mathrm{s}$ rofurunce trigger in coil. L3, which picks up a pulse occh time the iron slug in the upper edge of the phonic wheel perimeter passcs between the pole pioces.

TL/488
JUNE, 1962
171. Coil Mounting Assembly. The three piok up ooils L1, L2, and L3 are mounted on an arm which forms part of the coil mounting assembly. This assombly carrics the servo link goaring and associnted equipment, terminals and slip-ring, starting at the top are as follows:-
(a) Earth, common to all threo coils.
(b) $135 \mathrm{c} / \mathrm{s}$ reference coil L1 via yellow lead,
(c) Phonic wheel $1350 \mathrm{c} / \mathrm{s}$ coil L2 via green lead.
(d) $15 \mathrm{c} / \mathrm{s}$ reforence coil L 3 via red leod.

Connections from the slip-rings are taken to coaxial plugs.
172. During installation the pick up coils are oriontated so that the $15 \mathrm{c} / \mathrm{s}$ reference coil generates a pulse at the monont that the three closely spaced reflector wircs in the inner parasitic cylinder are due west of the central aerinl array.
173. Acrial Spin Motor and Magnotic Coupling. The specd of rotation of the aerial parasitic elenents must be maintained at 900 r.p.m. ∓ 0.2 per cont i.e. within 901.8 to 898.2 r.p.1. to obtain this speed control the acrial spin motor shaft is driven at a greater specd than is required for the aerial driving shaft. The correct driving torque is achieved through a magnotic Heonan and Froude coupling which has the energy applied to its magnotic coils from the acrial specd roctifior unit (YS); the power to this rectifier is controlled by an oloctronic circuit in the aerial speed control unit (YR). Both these units aro situated on the aerial control cabinet door. The datum for assessing the corroct speed is the $1350 \mathrm{c} / \mathrm{s}$ waveform which is generated by the phonic wheel coil L2. This waveform is fod to a duscriminotor circuit which controls the curront to the magnetic clutch so that when the spoed of tho phonic whoel is too high the current is reduced and when the spocd is too low the curront is increased.
174. The Heenan coupling consists essentially of two parts, one rotating within the other. The outer part of the coupling is boltod to the motor driving shafts by means of a contral fixing bolt, this part consists of a magnetic metal ring. The innor part of the coupling is mounted on two bearings so as to bo froe to rotato indopentantly of tho outer part. The magnetic coil is clamped within the central part. About 1.0 A is required to flow in the coil to give full magnotic coupling botween the inner and outer parts, while slip conditions for nornal running require between 0.4 to 0.5 A .

REFTHZNCE: L.P. 2534L, Vol. 1, Part 2, Section 1, Chapter 2.

AERTAL SPEED MECTIFIER UNIT (YS)

175. The moter which indicates the current flow in the coupling coil is contained in this unit which is fitted in the door of the aerial control cabinet. It consists of a transformer, whose primary completes the anode circuit to the continuous control valve V1 in the aerial speed control unit (YR), metal rectifiers MR1 and MR2 which rectify the output from TR1, and a sot of parallel resistors $R 1$ to $R 5$ whioh carry the d.c. from the rectifiers to the magnetic coupling. The meter M1 is connected in series with the resistor R 5 . The remaining resistors R 1 to R_{4} are the meter shunts. The circuit diogram can be seen in fig. 39.

REFERMCE: A.P. 2534L, Vol. 1, Part 2, Section 1, Chapter 2.
176. The control unit contains three basic circuits all of which can be soen in fig. 40. They are namely:-
(a) Λ continuous control valve V 1 which roceives its control potential from a discriminator circuit fed from the phonic wheel via PL2. The curront in this stage energises the magnetic coupling coil.
(b) The power control valve V2 and the associated circuits controlled by relays RL1 to RL5.
(o) The locally genorated $1350 \mathrm{c} / \mathrm{s}$ signals in crystal oscillator V3, used for checking the specd of the aerial.
177. Control Valve V1 and Discriminator. The control valve V1 is a gas fillod tetrode whose anode curront is fed to the aerial speed rectifier unit (YS) where it passes through a transformor and roctificd to provide the magnetic clutch current. Thus tho clutch current is proportional to the $\mathrm{n}_{\mathrm{ol}} \mathrm{c}$ anode current of V1. The anode of V1 is fed vio its output trensformer in YS from the a.c. moins. The control grid is also fed from the mains, the voltage being reduced by the potentiometer chain R13-R14 and further reduced and phase shifted by R12-C9. The control grid voltage lags that on the anode by about 70 degrees.
178. The point at which V1 fires depends upon both control and soreen grid voltages. By varying the d.c. voltage on the scrcen the valve may be made to fire at any point on the + ve going portion of the grid waveform. Once it has fired the valve will conduct until the anode voltage falls to zero. Honce the length of the pulse of anocic current may be controlled by varying the d.c. level on the soreen grid. These pulses occur at the mains frequency so the longer they aro, the greater the a.c. component of the anode current and hence the greater the clutch current. Summing up, the clutch current may be varied by varying the d.c. level on the screen grid of V1, an increase of voltage causing an increase of current and therefore an increase of clutch coupling.
179. There are two states of operation in which the screen grid is fed with different voltages, these are switched by RL2b:-
(a) In the run up state a fixed negative voltage adjusted by RV1 between 0 and approx. -7 V , provides a fixed clutch current which is preset to about 0.6 L . The negetive voltage across RV1 is produced by the 6.3 V a.c. from TR1 boing roctified by MR1 and smoothed.
(b) In the speed control state, the screen voltage is fed from the discriminator whose action is described in the following paragraphs.
180. The output of the phonic whecl is fod in on PL2, reduced by RV3 and fed to identical transformers TR2 and TR3. These feed respectively, tuned circuits L1 - C5 and L2 - C7 via isolating resistors R3 and R4. The tuned circuit outputs are rectified by $\mathbb{R} 2$ and $M R 3$ smoothed by $C 6$ and $C 8$ and appear as + ve and - ve d.c. voltages across the loods $R 8$ and R9. $L 1$ and $C 5$ resonate at $1300 \mathrm{c} / \mathrm{s}$ and L2 and $C 7$ at about $1420 \mathrm{c} / \mathrm{s}$, so that the outputs across R8 and R9 will take the form of curves "a" and "b" in fig. 38. These outputs are added to get the discriminetor cherecteristic, "c" and " d " is the type of curve obtained when the mean bias of the screen grid is plotted agrinst frequency. The point where " C " and " a " inter gives the speod at which the aerial will stabilize.

TL/488
JUNE, 1962
181. If only the discriminctor output is applied to the screen grid tho aorial specd will be too high so a - ve voltage from RV2 is added which lowers discriminator charactoristic "c" until it intersects "d" at the correct frequency, RV2 acts as a fine frequency control. As well as feoding $\mathbb{R} 3$ the $1420 \mathrm{c} / \mathrm{s}$ discriminator circuit also feeds the control grid of V2. MR8 rectifics the voltago across L2 and produces a - ve dnc. voltage which will vary with spood as curve "b" of fig. 38 and applied to V2 which is part of the switching circuits.

Fig.38. Discriminator Circuit-Curves
182. Switching Circuits. The switching circuits comprise power control valve $\overline{\mathrm{V} 2,}$ rolays RL1 to RL5, $3 W 4$ and thoir associated components. The sequence of operations is as follows:- Beacon is switched on and $240 \mathrm{~V} . \mathrm{A} . \mathrm{C}$. is fed through torminals C and B of PL1 to:-
(a) Light PL1 to show fuses FS1 and FS2 are serviceable.
(b) Energise the heator supply transformer TR1.
(o) Food RL3 and RI4 which are d.c. relays and are consoquontly provided with bridge rectifior networks NR11 and MR12, and limiting resistors R30 and R32. Neither relay is onergised because RL4 hes no carth return and RL3 is short-circuitod by contacts RIL 4 b.
183. TR1 supplies V1, V2 and V3 heaters, thormal delay switch SW4 and the lomp on the notor panel. After 30 soconds SWL closes applying a.c. to V2 which conducts, there being no bias supplied to it from R10. This energises RL1, RL2 and RL5 whose contacts perform the following operations:-

TI/488
JUNE, 1962

RL1 a is openod．
b earths V2 bias potontial divider．
RL2 a romoves earth from RL3 and puts it on RI4 thus energising this relay．
b applies a stoody bias to V1（ g 2 ）from RV1．
RI5 a connects oscillator V3 output to beaonn identity oircuits． b applios h ．t．to V 3 ．

RL4 having energised through RL2a，performs the following operations：－
RI4 a applies a．c．mains to V1 via RL3a and the primary of TR1 in rectifier unit（YS）．
b removes the short circuit from RL3 and locks RI4 on．
184．Tho running up state has now been reached．i constant clutch current is applied to the aeriol which acceleratos steadily until it is going faster thon normel，by such on amount that the bias produced across R10 cuts off V2．RL1，RL2 and RL5 then de－energise performing the following operation：－

RL1 a connocts a．c．to RL4a indepondantly of RL3a．
b opens increasing the bias on V2 so that it remains cut off
until the aerial speed falls woll below normal speed．
RL2 a switches earth to RL3 from RI4（which remeins locked on by RI4b）．RL3 is cnorgisod．
b removes steady bias from V1（g2）and replaces it with the discriminator output．
RL5 a switchos the phonic wheel output to the beacon identity circuits． b removes h．t．from V3．

RL3 having been enorgiscd through RL2a，performs the following operations：
RL3 a removes a path for a．c．mains to get to V1（a path being left via RLIa）and short circuits SW4．
b romoves the heator supply from SW4 and puts oarth on RLJ making its operation indepentent of RL2．

185．The aerial speed now drops until correct specd is reached，where upon the speed control becomes offective，maintaining the speed until the beacon is switched off．When the spring－loaded switch SW3 is depressed，RL3 and RL4 are de－enorgised．Whon SW3 is reloased the aerial run－up procedure recommonces．

186． $1350 \mathrm{c} / \mathrm{s}$ Oscillator．The function of V 3 is to produce $1350 \mathrm{c} / \mathrm{s}$ oscillation，when roquired． $\mathrm{V} a$ is a crystal oscillator feeding an amplifier V3b．The output from V3b anode is fod to transformer TR4 and also to rectificr $\mathbb{N R} 9$ which prorides a bias potential to V3 a grid．The output from TR4 is fod to：－
（a）PL4 when oither RL5 is orcrgised or SW2 is depressed．
（b）SW16 position 3 for metering purposos．
H．T．is provided by $\mathbb{M R 1 0}$ and smoothing circuit C19，R31 and C20；it is switched to V3 as appropricte by SW1，SW2 or RL5b．

187．Metering，M is used to measure three a．c．voltages which indicate whether or not the aericl drive system is working correctly．These voltages are switched in by SW1 and are as follows：－

Position 1．A voltage proportional to aerial motor current．
Position 2．The phonic whocl output as applied to the discriminator．
Position 3．Both the phonic wheel output and the $1350 \mathrm{c} / \mathrm{s}$ oscillator output in serios．These voltages beat togother to give a visual indication of the aerial speed error．

[^0]| MISCELLANEOUS SKI | | RS R1 | R2 | M1 MRIa | MR2a |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | TR1 | R3 R4 | | MRIO | MR20 |

Fig. 3. SRI. $18118, F G R I$. 18119

AIR DIAGRAM $6264 A A / M I N$.	
ISSUE 1	PREPARED BY MINISTRY OF SUPPLY FOR PROMULGATION BY

SRI. 18118, FGRI.18119 - Aerial speed control unit (YR)-circuit
Fig. 5
(A.L.I5,Dec. 58)

CONTROL SYSTEM

CONTROL UNIT (T) 'ND ILEMOTE CONTROL UNIT (RC)
Introduction
187. Tho function of the control unit (W) is to provide the sequential switching and doloys required by the boecon when it is being switched on. The unit conteins all tho overload, intorlock and switching circuits concornod with the application of powor in tho beacon. It also contains a recyoling systom which automatically switches off and resets H.T, and E.H.T. power supplics should an overlond occur. Also contained in the unit are some metering circuits associated with tho E.H.T. power unit, the klystron assembly crystal detectors and the thormistor R.F. power maasuring unit. Other units associated in tho buacon control are the pulse gencrator (M_{2}) which carries the built in test equipment control switch and the romoto control unit (RC).
188. The control unit is mounted at the top of the right hand cabinet above tho doors, and the front pancl carrics the switches, indicating lamps and metors required to switch on the beacon and give indication of some overloads and othor circuit conditions. Mounted on the chassis are 20 relays, a timo delay switch unit and a motor (XI) used in the recycling circuit. The circuit roferences con be seon on fig. 42 , which also shows thoexternal connoctions of PL1.
189. The beacon has three stable states :- OFF, STMNDBY and OPERATIONAI and is put in tho appropriate mode by throe spring-loaded switohes S 7 , S8 and S9. Thore is also a. fourth interim stage known as "warming up" which occurs betweon OFF and SMiNDBY; the length of this period, which is preset, governs the minimum time between application of the filament supplies and $H . \therefore$ voltages.

Switching From OFF to ST/ANDBY
190. In the OPF position the switches and rolays arc all in the positions shown in $f_{\perp g} .42$. The unregulated mains supply is on and the 50 V supply is confirmed by IIP11 50 V LINE lamp lighting up. When the STANDBY switch S8 is momentarily deprossed the following switching sequence takes place:-
(a) 50 V is momentarily applied to one coil of relay RL8 which energisos and closes contact RI8/I.
(b) RL8/1 enorgisos RLG closing its two contacts. RL6/2 conncets $50, V$ to two points:-
(1) To PL1/Y where it passes via $Z 1 / 89$ to onergise main contactor ZRL1 in the distribution box (Z); phase 3 unregulated mains is then fed via one of ZRL1 contacts, to PL1/J of control unit via, $21 / 63$ and 65 . As the neutral line is permenently conncotod to PLIFK a 240 V a.c. supply is therefore applied to the hour metor (M1) and to SK1 pins B and C.
(2) To SKI/F wherc it passes via switch $S 2$ to $S K I / D$.
(c) RL6/1 connects the 50 V from SKI/D to IIP6 WhRMING UP lamp to indicatc that the warming up time is in progress, the 50 V is also applied to PLI/C as a remote control output.

TL/488
JUNE, 1962
191. Time Dcley Switch Unit. This unit provides a proset time delay between pressing the STiNDBY switch and the equipment coming into the standby condition, i.e. its action detormines tho length of the warming up time. The dolay introduced is adjustoble between 2 and 16 minutes and is sot by a colibrated timing dicl. This allows for the wido varicty of tomperaturo and humidity conditions in which the beccon may bo required to oporate.
192. The time delay functions as follows:- the unrogulated 240 V.A.C. supply appliod to pins B and C (para. 190 (2a)) is f'ed to a split phase motor and a bridge rectifior circuit. The motor starts to turn and at the samo time the output from the bridge roctifier onergises a solonoid rhich causes a set of gears to bo connectod to the motor. While the motor is running it is also winding up a spring attached to a ratchet and balance whecl system similar to a clock. fiftor the preset time has elapsed a lever attached to the gearing actuctes two micro-switches S1 and S2; S 2 is actuatod just bofore $S 1$. $\$ 2$ switches the beacon from warming up to standby and S1 switches off the motor. Since the solonoid remains onergised while the beacon is switched on, the gearing remains in the final position at which the motor stops running. If the beacon is switched off tho solonoid is de-energisod and tho goaring is driven back by the spring at the same rate as it was ariven by tho motor, this is to save time if the beacon is switchod off accidentally or for a minute or two for adjustment, i.e. if the beacon is off for a minute it will only take a minute to como on again.
193. When S 2 on the tine delay unit is actuated it remeves 50 F from $\mathrm{SKI} / \mathrm{D}$ and plooes it on SKI/E. Thus IIPG WARMING UP lamp is extinguished and 50 V is removed from PLI/C. The 50 V now availoblo at $\mathrm{SKI} / \mathrm{E}$ is distributed os follows:-
(a) Via RLiv/2 to light IIP7 STANDBY lamp and to PLI/4 for romote indication.
(b) To PLI/M for intorlock and switching cirouits.
(c) To the contects of spring-loadod switch S10 (INTERLOCK OVER-RIDE).
194. Door Intorlocks and Over-Ride Switch. The 50 V at PLI/M is fed out to the loft-hand bay door interlock (S1) via terminal block $Z 1$ pins 70 and 35. Provided the loft-hand boy door is shut the 50 V is fed bock to the right-hand boy door interlock (S2) via Z, pins 36 and 71. Whon tho right-hand door is closed it is fod to PLI/ N on the control unit, and then to the power unit switching and intorlock circuits via contacts RL19/1 and RL19/2. An override switch S 10 is provided for the door intorlocks. When S10 is depressed one of its contects feeds 50 V from $\mathrm{SKI} / \mathrm{E}$ to one side of the coils of relays RL11 and RL7 which are in parallel; the othor contect connects PLI/M to PLI/N. While S10 is still depressed one of the doors is opened and its interlock opens, putting an carth on PL1/L which causes RL11 and RL7 to be energised. S10 may now be reloesed since the 50 V supply to RL 11 and RL7 is maintained by RL11/2. RLII/1 connects PII/N to PLI/M thus shorting out the door interlock circuit and maintaining the 50 V supply to the two contacts of RL19. When RL7 is energised contacts RLT/2 change over and prevent the CHECK lanp IIP9 from flashing whilst either door is open.
195. Power Unit Interlock Switching and Overload Circuits. The 50 V energising supply to the powor units interlock, switching and uverload circuits passes via the two normally olosod contects of RL19. Switches S1 to 56 are normally in the $0 N$ position and function as follnws:-
(a) S1 switches the E.H.T. power unit (N).
(b) S2 switohes the modulator E.H.T. power unit (B).
(c) S 3 switches the +500 V power unit (A).
(d) S 4 switches the +250 V power unit (K).
(e) S 5 switches the -150 V power unit (J).
(f) S6 switches the recycling circuit.

If any of these switches are loft in the OFF position or the extornal switches fed from PLI/Q are left open, a warning is given by a flashing CHECK lamp IIPG. This warning circuit is described in para. 207.
196. The 50 V passing via contact RL19/1 is fed to S 4 (250 V on) only; from there it is fod to PLI/W, passing via contact RL/ $/ 2$ and the 50 ohm coil ($\mathrm{a}-\mathrm{b}$) of the +250 V overload indicator relay RL4. While current is flowing in the 50 ohm coil the contacts will remain in the position shown. From PLI/W the 50 V is fed to PL2/2 on the +250 V power unit (K) via terminel board 21 pins 75 and 40. The 50 V energises contactor RL1 in unit K and RL1 contacts complete thecircuit for the H.T. transformer mai suppiy; RL1 is eorthed via a contact of the overload relay RL2 in unit K.
197. The 50 V passing via contact $\mathrm{KJ19/2}$ is fed three ways:-
(a) To 55 the -150 ON switch.
(b) To PLI/U for the -150 V , +250 V and +500 V power unit intorlock circuits and subsequently for +2.5 KV and - 15 KV E.H.T. power unit switching when tho beacon is in the OPFRATIONAL mode.
(o) To onergise RL 14 in the recycling circuit when on overlood occurs.
198. The 50 V supply to S 5 follows a similar course to that taken by the supply to S4 (para. 196). It enorgises contactor RL101 in the - 150 V power unit (J) and RL101 contacts connect tho $2^{\prime \prime} 0$ V.A.C. supply to the H.T. transformer. RL101 coil is earthed by a contact of the overload relay RLiO3 in unit J.
199. The 50 V fed to PLI/U (para. 197 (2)) pesses via 21 pins 73 and 38 to tho - 150 V powor unit (J) PL101/5. In powor unit J it passes through RL102/2 back to PL101/7. RL102 is energised when the -150 V has reached its operating lovel. The 50 V is then fod back to PLi/V via Z 1 pins 39 and 74. From PL1/V the 50 V is fed two ways:-
(a) To PLI/O for the +250 V interlock.
(b) To $\mathrm{S} 3+500 \mathrm{~V}$ ON switch.

The 50 V to switch on the +500 V power unit has to pass through the -150 V interlock first, thus onsuring that bios supplies are fully operational beforo H.T. is applied to units.
200. The 50 V at PL1/0 is fed to PL2/7 on the +250 V power unit (K) via $Z 1$ pins 76 and 41. On powor unit K it passes through RL3/1 back to PL2/8. RL3 is enorgised when the +250 V has ruached its operational level, the 50 V is then fod back to PL1/P via 21 pins 42 and 77.
TL/488
JUNE, 1962

From PIT/P it pances through RI, $3 / 1$ ton oontrat RL10/1 which remains open in the STANDBY node. Thus the -150 V and +250 V supplies must be on before the -15 KV and +2.5 KV E.H.T. supplies ann be switohed on, because the 50 V to energiso the switching circuits of the E.H.T. power units N and B passes through the -150 V and +250 V powor units.
201. The 50 V fed to S 3 (pera 199 (2)) is applied to PL1/T via RL3/2 and the $50 \mathrm{Ohm}(\mathrm{a}-\mathrm{b})$ of RL3; it then passes vis terminal board $Z 1$ pins 79 and 44 into the loft-hand bay where it passes thromph ai cht worrind montante on six units before reaching the +500 V power unit (a) to switch it on. The sequence of units the 50 V passes through is as follows:-
(a) Monitoring unit L (contacts RL3/1, RL2/1, RL1/1 out on PL2/3)
(b) Regulating unit DF (contact RLI/1 out on PL1/14).
(o) Regulating unit DE (contact RL1/1 out on PLI/15).
(d) Regulating unit DC (contact RLI/l out on PLI/14).
(e) Regulating unit $D B$ (contact RL1/1 out on PL1/15).
(f). Regulating unit DA (contact RL1/1 out on PLI/14).

The 50 V energing from PLI/14 on DA is fod to PL1/2 on the +500 V power unit (Λ) where it energises contactor RL1 whose 3 contacts connoct the 3 - phase mains input to tho H.T. transformer. RL1 on Λ is eorthod via contact RJ, $2 / 1$ of the overload rolay. Thus if any of the nine overload contacts open, the +500 V supply is switched off. When the +500 V supply reaches its operati nal level the beacon is in the STLNDBY mode.

Switching From STA ADBY to OPERITIONAL

202. When the beacon is in the STANDBY mode all power suppies are available axoept the -15 KV and +2.5 KV E.H.T. voltrges. When the operattonal swi.tch S 9 is momentarily depressed 50 V is appliod to one coil of the polarisod relay RL9 and contact RL9/1 closes cousing RI10 to energiso. This relay has two contacts which perform the following functions:-
(a) RL10/1 connects the 50 V availablo from RL3/1 (via - 150 V and + 250 V interlock circuits) to S 1 via RL2/1 and to S 2 via RL1/1, E.H.T. and MOD. ON-OFF switches respectively.
(b) RL10/2 disconnects the 50 V from ILP 7 STINDBY lamp and connects it to IIP8 OPERATIONAL indicating lamp and to PLI/B for remote indication. It also makes the 50 V available to cnergise RL20 when RLI/ 1 and RL13/1 are closed.
203. Whon tho 50 V is applied to S 2 it is used to switch on the +2.5 KV modulator supply. With S 2 in the ON position the 50 V is fed to the 50 ohm $\operatorname{coil}(a-b)$ of RL2 via contrct RL2/2, it then passes through PL1/S to terminal block 11 pins 68 and 43. It is then fed to PL1/8 on power unit B; in unit B it passes through contactor RL1 coil and contact RL2/2 to earth. When RL1 is energised its contacts connect the regulated $230 \mathrm{~V} . \mathrm{A} . \mathrm{C}$. supply to the H.T. transformer. RL2 is the 2.5 KV overload relay which breaks the oarthing circuit of the switching rolay RL1 in the event of an overload.
204. Tho 50 V fod to S1 E.H.T. ON switch is used to switch on the -15 KV supply to the klystron. With S 1 in tho ON position the 50 V is fed to the 50 ohm coil (a-b) of RL1 via controt RL1/2, it thon passes through PL1/R to PL1/2 on power unit N. The - 15 KV is thon switched as follows:-

TL/488
JUNE, 1962
(a) 50 V from PL1/2 is applied to RL7 and contactor RL1. RL1 carth nirouit is completed by RL5/2, when RL1 is energised its contacts connent the 3 -phase mains supply to the E.H.T. transforner through voltnge dropping rosistors.
(b) Contact RL7/2 provides on oarth for RL4 hoater element.
(c) When RL4 contact closes, RL5 is energised, RL5/1 short circuits RI4 and RL5/2 competes the earth circuit for contactor RL2. At this point the lond of the power unit should be drawing sufficient current to energise RL6; if this is not the case, when RL5 is energised the earth is removed from RI1 and the a.c. mains are disconnocted from the E.H.T. transfromer.

S2 in unit N is a no-current over-ride switch which overcomes the effect of RL5 and RL6 by placing an oorth on RL1; there is also another contact of 52 which places on earth on the warning line to give an indication that this switch is closed. When the +2.5 KV and the -15 KV come on, the beacon is in the OPERNTIONAL mode. RL1 and RL2 in control unit (W) are the overload relays for the -15 KV and +2.5 KV supplies respectively. Contacts RL2/1 and RL1/1 ensure that in the event of an overiood on aither circuit both E.H.T. supplies aro broken.
205. The overload indicating circuits for the five power units (Λ, B, J, K and N) all operate in a similar fashion. The relays RL1 to RL5, inclusive, all have their contacts as shown in fig. 42. Consider the action of any one; while tho beacon is operating correctly current will flow in the 50 ohm coil ($a-b$), the 50 V from the appropriate switch will also cause a current to flow through the 2000 ohn ooil ($\mathrm{a}-\theta$) but in the opposite direction, so that the two ficlds cancel out and the relay is not operated. If an overload sccurs the circuit through the switching relay in the power unit is broken, the mains are renoved from the power unit HI transformer and the current through the 50 ohm coil ceases. The current still flowing through the 2000 ohm coil causcs the relay to operate. One contact connects the 50 V to the overlood indicating lamp (ILP1 to IIP5) and the other connects 50 V to RL14 to energise the recycling circuit.
206. It can be seen that the power supplies are always appliod in the following sequence:-
(a) When the main broaker is closed the a.c. mains is applied to the equipment and the hoater and 50 V supplies are switched on.
(b) $S 1$ to $S 6$ on tho control unit are put to the $O N$ position and $S 8$ STiNDBY switch is depressed. The sequence of voltagesis,then:-
(1) - 150 V .
(2) +250 V and +500 V .
(c) S9 OPERATIONLI Switch is depressed and the +2.5 KV and - 15 KV E.H.T. voltages are switched on. The E.H.T. voltages can not be switchod on until the power units detailed in sub.pare. (2) above are fully operational beccuse the 50 V to switch on the E.H.T. power units passes through the intorlocks on these units.

Chook Lamp Circuit

207. The check lamp circuit is included to provide a visual indication when a switch has been loft in the incorruct position aftor servicing or cheoking tho boacon. The circuit consists mainly of on indicoting lomp IIP9 marked CHECK and two slugged reloys RL12 and RL13. The visual indication is given by IIP9 flashing and an aural indication by the ticking sound of the relays. The warning line is connectod to one pole of the six two-pole ON OFF switches S1 to S 6 on tho control unit.

TL/488
JUNE, 1962

The line is also connected to PLI/Q and out to terminal block $Z 1$ pin 90. From there it is fed two ways:-
(a) To S1 in the remote control output in the distribution box (Z).
(b) To PL1/7 on the -15 KV power unit (N), where it is connected to one polo of the no current over-ride switch $S 2$.

If any of the switches mentioned above are left in the OFF position on earth will be put on the warning line and the check circuit will be energised.
208. RL12 and RL13 are connected in parallel, with a normally-closed contact RL13/2 in series with RL12 coil and a normally-open contact RL12/1 in series with RL13 coil. The contacte. RL12/1 and RL13/2 are shunted by spark quench capacitors C ć and $C 3$ respectively. The common connection from the contacts is token to the warning line and the normally-open contact of RL7/2. The other normally-closed contact of RL12 (RL12/2) is in series with the indicating lamp IIP9. The lamp is earthed on one side by the normally-closed contact of RL7/2.
209. The contact arm of RL12/2 and one side of the coils of RL12 and RL13 are permenantly connected to 50 V , so if an earth isplaced on the warning line RL12 will be energised, contact RL12/1 will complete the circuit for RL14 coil, causing it to be enorgised, and RL12/2 will connect 50 V to IIP9, causing it to light up. When RL14 is energised it opens its contact RL13/2 causing RL12 to bo de-onergisod, it's contacts open and RL13 is de-energised and IIP9 is oxtinguished. However, as RL12 and RL13 are slow operating rolays they continue to change over and IIPS will flash as long as the earth rem ins on the warning line.
210. It should be noted that if eithor of the doors is lof't open the lamp IIP9 will not light up as RL7 will be energised due to the action of the interlock over-ride switch S10 (para. 194). $\mathrm{RL} 7 / 2$ will then remove the earth connection from IIP9 and short circuit the warning linc. In this case relays RL12 and RL13 will be altornately energised but the CHECK lamp will not flash.
211. Contact RL13/1 is connocted in sories with the coil of RL20, contact RLT/1 and R10. RLT/1 will not closo until the interlock over-ride switch $\$ 10$ is prossed. Whon $\$ 10$ is pressed RL7/2 will be actuated and will complote the earth return for the check relays. Thus RL20 will be energised intermittently by RL13/1 contact. Only onc contact of RL2O is uscd, this is between PLI/J and PLI/Z. As PiI J has 240 V phase 3 on it this contact will put a flashing 240 V supply on PII/Z. This supply was intended to light up an extornal indicator to show that the equipment was on with the doors open. However, this facility is not used at the present time.

Re-cycling Circuit

212. In the event of an overload the function of the recycling circuit is to remove the 50 V energising supply from the power unit interlock and switching circuits for about 5 scconds, then to reapply it. If the ovorload is temporary the beacon will resume normal operation, if the overload persists, however, the appropriato ovorload indicating lamp will light and after the rocycling circuit has finished operating IIP10 RECYCLING lamp will also romain alight.
213. The recycling circuit functions as follows. In the normal state S6 RECYGLING stitch is in the ON position and the motor driven switch S 13 is in the picsition shown in fig. 42. When one of the overload rolays RL1 to RLL 5 is onergised 50 V is fed to RL14 coil which has two sots of contacts. RL14/1 is not uscd at this stage, RL14/2 closes and energises RL15 whose two sets of contacts are used as follows:-
(a) RL15/1 places an earth on RL16 and ILP10 RECYCLING lamp, this causcs RL16 to energisc and IIP10 to light up.
(b) RTA5/2, ir naranlol wito 2L14/2 locks \because RIf5.
214. When RL'6 is onergised (sub para (A) above) contact RL16/1 connects 240 V.A.C. from PL1/J to energiso motor X1 which starts to drive S13 in the direction indicatod by the arrow in fig. 42. Contact距16/2 clos33 and completes the carth oircuit for RL18 and RL19 in serios. The two sots of RL19 contacts which are normally closed, opon and ranove the 50 V onorgising supply from the power supply interlook end switching oircuits; RI14 is also de-cnergised at this point, $\mathrm{RL}^{\prime \prime} 8$ is a thermal rolay with only one contact, after about 5 seconds this contact closes shorting out RL19 coil thus restoring the 50 V onorfising supply to tho power supply switching circuits.
215. If the original ovorload was of a temporary nature and does not re-appen when the 50 V is re-applied the boacon will resumo normal oporation. While the recycling of the 50 V is taking place, motor X1 is driving switoh S 13 which takes about 10 minutes to make a full revolution. When the cut-out on $\$ 13$ roaches position 12 one of two things will have happener:-
(a) Thore has not beon another overload and RL 14 is de-energisode
(b) The original overload has recurred or anothor power supply has had on overload, in either casc RL14 and one of the overload relays RL1 to RL5 will be energisod.
216. If the condition in para. 215 (1) above prevails, RL14/1 will be open and no enorgising voltage will be open and no energising voltage villl be available for RL17. Thus the motor will continue to drive 313. When the cut-out on $\$ 13$ reaches position 1, RL15 will be de-enorgised but the motor will continue to rotato bocause $\$ 13$ provides an earth for RL16. When S 13 cut-out reaches position 2, RL16 and consequently RL18 are de-energised and IIP10 RECYCLING lamp is oxtinguished, tho whole rooycling systom is then brought to rest by the opening of RL16/1.
217. If the conditions specified in para 215 (2) prevail then RL14/1 will be closed and 50 V will be available to energise RL17 when S 13 cut-out reachos position 12. When RL17 is enorgised contact RL17/1 disconnocts the 240 V a.c. neutral line from the motor X1. The circuit will remain in this state for as long as RL14 is energised, thus the appropriate overload indicating lamp and the recyoling lamp ILP10 will be alight to indicate firstly on which power unit the overload has occurred and secondly that the recycling circuit has been brought into use.

Switching OFF

218. To switoh the beacon off, the switch marked OFF (S7) should be momentarily deprossed. This will causo the beacon to revert to the condition detailed in para 190, whatever mode it was in before the OFF switch was depressed.

TL/488
JUNE, 1962

219. Should a mains f"ailure oocur, the beacon will roturn automatically to the condition it was in prior to the failure as soon as the mains supply is restored. This is due to tho fact that relays RI8 and RL9 are polarized, and these relays initiate the chain of events which puts the boacon in the appropriate mode. The position of the contacts of RL8 and RI9 depends on switches 57 , S 8 and S 9 (OFT, STANDBY and OPERATIONAI respectively). Consequently when a mains failure occurs the relay contacts will remain in the position they were in before the failure, and upon resumption of the mains supply the beacon will return automatically to its provious condition in a time dependant upon tho proset delays.

Metering Circuits

220. The meters M2, M3, $M 4$ and M5 are mounted on the control unit for convenience and do not form part of the interlock and switching circuits. They are used as follows:-
(a) M2 is associatod with the thermistor unit (U) and is used to indicate mean RFi power.
(b) M3 is associatod with the E.H.T. power unit (N) and indicates E.H.T. volts.
(c) M4 is associated with the E.H.T. power unit (N) and indicatos the E.H.T. current.
(d) M5 is associated with the klystron assembly (Q). It works with S12 the KLYSTRON CAVITY SELECTOR SWITCH and indicates the three klystron cavity crystal currents.

Test Equipment Control

221. The H.T. supplies for the buiawin test equipment are switched on by S6 on the pulse generator (MA) marked TEST EQUIPMENT ONOOFF. The supplies concerned are the $+500 \mathrm{VC},+300 \mathrm{VC}$ and the +150 VB ; these supplies are all takon from the +500 V power unit (A), therefore switches S1 to 56 on the control unit must be ON and the beacon in the STANDBY or OPERATIONAL mode before the test equipment can be switched on. Test equipment switching and interconnections are shown in fig. 41.
222. Then the main isolator switch on the acrial control cabinet is put to the ON position, one phase of the unregulated mains and neutral are connected to the 50 V power unit (C). The 50 V then available at PL1/8 on this unit is fed to pin 32 on terminal block $Z 1$ in the distribution box (Z), there it is linked to pins 33 and 68 for distribution to the left and right-hand cabinets respectively. From $21 / 32$ tha 50 V is fed to PL1/8 on the 500 V power unit (A) where it passes through the coil of contactor RL3 to PL1/11. PL1/11 is connected to PL11/8 on the pulse genorator (MA).
223. When S6 TEST EQUIPMENT ON-OFF is switched to the ON position, on earth is put on PL11/8 on the pulsc generator (MA) thus completing the circuit to energise contactor RL3 in the 500 V power unit. RL3 closes its two contacts, which are in sories, thus connecting 500 V to PL1/12. This 500 V is fed three ways as follows:-
(a) To PL1/13 on the +150 B rcgulator (DF).
(b) To PL1/13 on the +300 V C rogulator (DC).
(c) To PL3/E on monitoring unit (L).

The distribution of these three voltages is shown in fig. 41. The test gear heaters come on when the SThNDBY switch is deprossod, the regulated mains supply to them passing through fuses ZF9 and ZF10 on the distribution box 2. It should be noted that other voltages are used on the test gear but as these are not switchod by $S 6$ on the pulse genorator (MA) they are not shown in Fig. 41.
TL/488
JUNE, 19 (2

Remote Contro (AC).
224. The remote control unit is provided to allow for control of the OFF-STANDBY-OPERATIONAL switchine of the beacon from distances up to about: a mile. The unit contains four indicating lamps and three switches which are shown in fig. 42. The remote control output box on the beacon is part of the distribution box (z), and mounted on the front of the box is a two-pole switch 51 marked RENOTE CONTROL ONT-OFF. When in the OFF position S1a is not used. S1b cormects an earth on the warning line (para. 207). In the ON position S1a connects 50 V to $\mathrm{Z} 2 / 4$ and S 1 b is not used.
225. The eight ins of $Z 2$ are connected to the corraspondingly numbered pins on TS1 on the remote control unit. Thus when S1 on the distribution box (Z) is in the oN ppsition, 50 V is fod from $\mathrm{Z} / 4$ to $\mathrm{TS} 1 / 4$. There it lights the blue indicating lamp ILP4(LIVE) and is also fed to the springloaded switches S1, S2 and S3 markod OPERATIONAL, STANDBY and OFF resiectively. Thus when $S 2$ is monentarily denressed the 50 V is fed out again on $T \mathbb{T} 1 / 6$ to PL1/F on control unit (W) via Z2/6 and Z1/87. On the control unit the 50 V enorgises RL8 and the same action ensues as detailod in para 190. While the beacon is warmine up 50 V is fed from PLi/C on the control unit (W) to TS $1 / 3$ on the remote control unit via $21 / 84$ and $Z 2 / 3$. On the remote control unit the white Fariaing up lamp 1IP3 lights. When the beacon comes into the stendiby condition the 50 V is removod from $\mathrm{PL} 1 / \mathrm{C}$ on the control unit (\mathbb{N}) and is fed to PL1/A (para 193 (d)); from there it is fed to $T S 1 / 1$ via $Z 1 / 82$ and $Z 2 / 1$ to light the amber lamp ILP1 marked STANDBY.
226. When momentarily depressed 51 on the remoto control unit has the samn effect as S9 on the control unit (T^{2}) (para 202). Thus 51 nuts the bercon in the OFERATINAL condition and the green indicating lamp ILPL light on in the remote control unit. It can be soen that the indiation on the remote control unit will be as follors:-
(a) With the beacon 2.c. main breaker olosed the blue LIVE lamp ILP4 will light. Thus when a.c. mains aro on and the beacon is in the OFF condition, IIPA only will be alight.
(b) Then 52 aTATDBY sutitch has been nomontarily depressed the white WARUITVG UP lamp IIP3 will licht for about 5 soconds, it is then extinguished and the amber STANDEY lamp ILPI will light.
(c) Wren S1 Cfirational switch is momentarily depressed ILPI STANDBY lamp will be extincuishod and the groen OPERATIONAL lamp ILP2 will light.

It should be noted that ILPA LIVE lamp will remain nlight during conditions (b) and (c).

REFERENCE: AP2534L, Vol 1, Book 2, Part 2, Section 5, Chanter 1.

Introduction
227. The power and test cabinct is the left-hand cabiret of the boacon, and it contains the powcr units and built-in test oquipment for the beacon. Tablo 2 provides the common name and unit code lettcr as marked on the units.

Table 2

+ 500 V power unit	A
+2.5 KV power unit	B
+ 50 V power unit	C
+300 V or +150 V voltago stabilizer	D
+250 V and - 150 V powor unit	K and J
Monitoring unit	L
Pulsemgencrator	M/
R.F. signal generator	MB
I.F. signel gonerator	MC
Identity keyer	ID
Filter unit	ME

Primary Power Circuits

228. The regulated and unregulated three-phaso power supplies are fed into the lefthand cabinet from the aerial control cabinot. Tho regulated throe-phase supply is fed from $Z 1 / 9$ to 11 to the following units:-
(a) The +250 V power unit (K) via ZF/6 to 8 and terminals Z1/17 to 19; the noutral is fed from Z1/49.
(b) The +500 V power unit (A) via ZF17 to 19 and torminals $Z 1 / 28$ to 30 ; the neutral is fed from $21 / 8$.
(0) The - 15 KV power unit (\mathbb{N}) in the right-hand cabinct via $2 F / 22$ to 24 and $2 / 13$, to terminals $Z 1 / 60$ to 62 ; the neutral is fed from $\mathrm{Z} 1 / 93$.
229. Whe regulated phese one, two and throe are fed from $Z 1 / 9,10$ and 11 respectively to the following:-
(a) Heator transformer $T 2$ and $T 3$, R.F. signal generator (MB) and monitoring unit (I) heater transformer via ZF9 and terminal $\mathrm{Z1} / 20$; the neutral is fed via ZF/10 and terminal $21 / 21$.
(b) Voltage stabilizers (D / L) to (DF) via $\mathrm{ZF} / 11$ and torminal $\mathrm{Z1} / 22$; the noutral is fod via $2 F / 12$ and terminal $21 / 23$.
(c) The +2.5 KV powor unit (B) via $\mathrm{ZF} / 13$ and terminal $Z 1 / 24$; the neutral is fed via $2 F / 14$ and terminal $21 / 25$.

TL/488

JUNE. 1962
(d) The modulator (0) and the heater transformers $T 4$ to $T 7$ in the right-hand cabinet via $Z F / 20$ and torminal $Z 1 / 58$; the neutral is fed via $Z F / 21$ and terminol $21 / 59$.
(e) The - 150 V power unit (J) via $\mathrm{ZF} / 4$ and terminal $21 / 15$, the neutral is fed via $Z F / 5$ and terminal $21 / 16$.
230. The unregulated phase one, two and three are fed from Z1/1, 2 and 3 respectively to the following:-
(a) Klystron heating rolay (g) and klystron assembly (Q) via ZF/1 and terminal Z1/102; the noutral is fod from terminal Z1/93.
(b) Crystal oven (XA) via 2F/15 and torminal 21/56, the neutral is fed from ZF/16 and terminal Z1/57.
(0) Lighting trensformer (T1) and powor unit (C) via ZF(15) and terminal Z1/26; the neutral is fed from $2 F / 16$ and terminal Z1/27.
(d) Identity keyer (MD) and control line to aerial cabinet via $\mathrm{ZF} / 2$ and terminal $\mathrm{Z1} / 12$; the neutral is fed from terminal 21/49.
(e) Fan distribution (XK), control unit (W) and acrial artificial load (DL) via $\mathrm{ZF} / 3$ and terminel $\mathrm{Z1} / 63$; the neutrol is fed from terminal $21 / 64$ or 66 .

Power Units - General

231. The beacon is fitted with a comprehensive overload and interlock system to provide protection against damage due to component failure or incorrect switching - on procedures. The 500 V supply cannot be switched on until the -150 V bias supply is operating, and the modulator and E.H.T. cannot bo switched on until all other supplics aro available. All the main power supplies have their own overload circuits and ench supply has its own ovorload and control rolays, these are tabulated in table 3 , for convenience.

Table 3. Power Supply Protection Relays.

Power Unit	Power Switching Relay	Overload Control. Relay	Power On, Warning Or Interlock Relay.	W Unit Warning Relay
P.U. (A) 500 V	RL1	RL2	RL 3	RL3
P.U. (B) 215 KV	RL1	RL2		$\mathrm{RL2}$
P.U. (C) 50 V	RL3	RL1	RL2	A11
P.U. (D) 3000r150V		RL1	RL2	RL3
P.U. (J) - 150 V	RL101	RL103	RL102	RL5
PıU. (K) 250 V	RL1	RL2	RL 3	RLH_{4}
P.U. (N) - 15 KV	RL1 \& RL2	RL 3	RI4 \& RLT	RL1

NOTE: In the main control unit (W) there are automatic restoration circuits associated with each power supply.

TL/488

JUNE, 1962
232. This unit is situated at the bottom of the power supply cabinot and contains six valvos. The supply from this unit has sufficient capacity for all the 500 V unstabilized, 300 V and 150 stabilized supplies used in the boacon circuits. These supplies are obtained from a 3-phase transformer TR1 having a deltaconnected primary and a star connected secondary. V1 to V6 are conventionally connected as a full-wave, three-phase rectifier providing a nominal 500V output. A choke H2 and condensers 01 and C2 form a smoothing circuit. The circuit referonces can be seen in fig. 43.
233. Two relays and a contactor are included to perform the following functions:-
(a) Contactor RL1 is onergised via the interlock circuit. Contacts RL1 a to oclose the power circuit to the primary of TR1.
(b) Relay RL2 is the overload relay, and is connected in parallel with R3 to R5 in the earth return for the 500V supply. It will operate on overload and contacts 2 and 3 of RL2 de-energise RL1.
(c) Relay RL3 switches the supply to test equipment. The 50 V supply for RL3'is completed via SW6 in the pulse generator (MA). Contacts 2, 3 and 22, 23 of RL3 switch unstabilizod +500 V to the monitoring unit (L).
+2.5 kV Power Unit (B).
234. This unit is fitted below the voltage stabilizers, and consists of a conventional full wave rectifier with a smoothing circuit. A voltage meterins point is provided from the bleeder network via PL1/5 to the monitorine unit (L). The regulatod supply is fod via terminels PL1/2 and 4 directly to the heater transformer TR2 and to tho EHT transformer TR1 via contacts a and c of RL1. The contacts are closod when RL1 is energised via the interlock circuit. Relay RLW is tho overload relay which opens contacts 21 and 22 of RL2 when excessive current is drawn connectod in parallel for 300 V output and in series for 150 V output. The alternative connections are made by the sockets in the beacon cabinet, so the rogulator automatically produces cither 300 V or 150 V according to the position in which it is placod. The circuit roferences can be seen in fig. 46.
238. The 500 V supply from unit A is fod from PL1/13 through the overload rolay RL1 and its shunts R17 to 19 before going to the regulating circuits. If excessive current is drawn RL 1 oporatos and performs two functions:-
(a) Contracts 1 and 2 break the 500V interlock circuit causing unit A to be switched off.
(b) Contacts 22,23 cause RL2 to operate, which locks on its own contacts 22, 23, whilc its contacts 2,3 cause the appropriato ovorload indicator lamp in the monitoring unit (L) to light. FL 2 romains operated until the reset switch in tho monitoring unit is dopressed.
239. The valvo heators aro supplied by TR1 which has three soparate windings because the threc valve cathodes are at widely difforent potentials.
240. The principlo of oreration is as follows. The ifupedence of tho serics regulator valve (or valves) is variod by a suitable control grid potential so as to maintain constan' output voltage. if the output voltage riess the sories valvo (s) grid voltage is lowored thus incroasing impedence; hence the output voltago is corrected. Sinco the roquirod grid signal is anti-phass with tho output voltago variations it may conveniently bo obtainod by a single stage d.c. amplifior whose grid is fod with the difforonco betwoen the output and a standard voltace. The higher the gain of this amplifier the bettor the regulation and the lowor tho output impodonce.
241. In this regulator V1 and V2 are the series rogulators and V3 is the d.c. amplifior. When tho unit is in tho 300 V position V1 and V2 are in parallel and both grids aro controlled by V3 anode. Whon in the 150 V position V1 and V2 aro connoctod in series and only tho erid of V2 is controllod by V3 anode, and the grid of V1 is set by potentiometor chain R6 R11 to half tho input voitacgo. The cathode of V3 is stabilizod at +80 V by noon roforence valvo $V 4$ which is shuntod by $C 3$ to by-pass the highor froquencios at which the noon impodonco is not nogligible. V3 is fod with two voltagos. The first is a fraction of the output voltago via potentiomoter chain R13, R14, R15, RV1, R16 for 300V and R15, RV1 and R16 for 150V. In each cosso C1 connocts the highor frequencios prosent in tho output diroctly to V3 grid thus partisily compensating for tho loss of gain of V3 at these frequoncies. Sccondly about 1 per cont of the input voltage from potontiomotor chain R2, R3, part of RV1 and R16 is fod to V3. This gives almost porfect compensation for variations in input voltage. The two voltagos aro fod to V3 grid via stoppor R9. The anode load fed from tho output line is fairly low to cvoid pheso shift at the highor froquoncios: Sinco V3 cathodo is hold at 80 V tho regulating action will keep its grid, henco RV1 slider at a volt or two below this. Honce varying RV1 will vary the fraction of tho output vol tago that is equal to 80 v and this wil: wary the output voltage. It givos sufficiont control to permit the output to be set to 300 V or 150 V dospite the effects of tolorances on component valves and valvo charactoristics.
-150V Power Unit (J).
242. This nowor unit is mounted on tho same chassis as the +250V power unit (K). The unit contains 4 valvos and the circuit references can be seen in fig. 47. Transformers TR101 and TR102 are fod from phase 3 regulated and noutral via PL101/2 and 4. TR102 is tho heater transformer and TR101 provides R.T. to the full wave rectifier V101. V104 is a cold cathode, gas filled, 85V reference valtago valve. V103 is a double triodo control valve with its grids conneoted to a potentiometer network R107, RV102 and R108. V102 is the serics control valve which rogulates the output voltage by moans of its internal impedonce. The circuit is conventional providing a regulated -150 V output at a maximum current of 200 mA .
243. The positive output from the regulating circuit is earthod via R106 and RL103 which are in parallel RL 103 is the overload relay which operates the warning circuits whon excoss current is drown from the power unit. RL103 contacts 21 and 22 de-enorgise contactor RL101 and the power is removed from TR101 primary winding. Relay RL102 is onergised when the -150 V becomos available. Contacts 22 and 23 of RL102 close an interlock circuit which allows the 500 v power unit (A) to bo oporated.
$\pm 250 \mathrm{~V}$ Power Unit (K).
244. The unit is mounted on tho same chassis as the -150 V power unit (T) . The output is norminally 250 V at 2.5 amps and is usod for tho klystron fiold coils. The circuit functions in conjunction with a 3 -phase transformer T8 and a smoothing choke H1. Circuit roferencos can bo soon in fig. 47.

TIL/488. JNNE, 1962.
245. The circuit consists of three xenon filled thyratron velves V1 to V3, a heator transformer TR1 fod from phase throe regulated and neutral and three control relays RL 1 to RL 3 . When the systom is switchod on contactor RL1 bocomos onergised. This causes RL1 a to c to close the primary circuit to the delta winding of T8. The outputs from the star winding of T8 are connected to PL171, 5 and 3. V1 to V3 rectify these supplics, and the output is smoothed by H1 and capacitors C5 and C6. Valves V1 to V3 have their grids individually controlled by belancing and curront control potentiometors RV1 to RV3 respoctively, which can be adjusted to fine limits. The potentiometers are fed with a negative voltage from R15 in the output circuit and apply a proportion of this voltage to the valvo grids for current control.
246. The current is fod from choko H1 brok to PL1/2 and further smoothing is providod by capacitors C 1 to C 4 which are bled by R16. The 250V d.c. supply is now fed to the output terminal. PL $2 / 5$ via RL 2 with R 5 to R 7 in parallol, RL3 in parallol with R8, and R1 to R4 in parallel. RL2 is the overlod relay which only operates when the current drain bocomos excessive, contacts 22 and 23 of RL2 then de-onergisc contactor RL1. RL3 is the interlock relay which is energised when the power output becomes avilable.
-15 kV Powor Unit (N).
247. This unit is mountod immediately below the modulator (0) in the right-hand cabinct. The high voltage components are mounted on an insulating gantry. Whon in position, the unit is fronted by a perforatod motal scroen with a highed door opening upwards. Both olectrical and mechanical interlocks are operated by this door as a safety device. When tho screen is openod, the oloctricid intorlock removes the main powor input to the unit via SW1 and rolay KLI. At the same time mechanical arm is roleased which operates SW101 placing R102 across the capacitor bank C101 to 104. All high voltage perts are shaped to roduce corona. Circuit references can be seen in fig. 48.
248. Tho power unit is fed from a 3-phaso transformor which has a dolte primery and a star secondary; the transformer is of the "c" cono type with the actual coils only in resin cast form. V1 to V6 are conventionally conncoted to form a 3 phase, full wavo rectifior providing a nominal 15 kV supply. Each valve has a scrios limiting resistor in its anode circuit'R4 to R9. A metering potential is provided by potontiomotor R15, R16 and fod out to control unit (W). The earth return is completed via RL6 with R23 in paralle, RL3 with R13 in parallel, and R14. RL6 is the "no -'current" relay whose contacts 22 and 23 close the circuit to $R L 1$, $R L 3$ is the overload rolay which opons tho circuit to RL1 and RLI when the current drain becomes too groat. Resistor R14 is used for current metering in the control unit (W).
249. The power is switchod on to transformer TR3 in two stages. First tho interlock line must bo complete beforo RL7 and'RL1 can be onergised, via contacts 22 and 21 of $R L 3$ and $S W 1$ for $R L 7$, and further via contacts 21 and 22 rf RL5 for RL1. Contacts 22 and 23 of RL7 close tho circuit to thormal dolay rolay $R L 4$ via contacts 2 and 1 of RL5, R17 and terminal PL1/11. When RL1 is enorgised contacts RL1a to c close and switch power to the primary of TR3 via R1 to R3. After the delay period of RLA, the thormal contact closos, RL5 is enerefised and locks itsclf in tho onorgisod condition via cohttacts 2 and 3, and simultaneously contacts 1 and 2 open the circuit to RL4. Contacts 22 and 23 of RL 5 onergise RL 2 and rosistors $R 1$ to R 3 are short circuitod by contacts RL2 a to c. This action applics power in two staces; after the first stage the powor output availablo energises relay RL6 and
TL/488.
JUNE, 1962.
contacts 22 and 23 of RL6 holt RL1 onergised. RL6 is the "no-ourrent"' relay whose contacts 22 and 23 may bo overriddon by SW2. Should an ovorload occur tho overload relay RL3 is energised and contacts 22 and 23 cause both RL7 and RL1 to become do-onergised, thus switching off the power to TR3 and do-onergising RL6, RL5 and RL2.
250. The valvo heaters are fed from transformor TR1 which is fed from phase three and noutrel. This supply also foeds TR2 which foeds both hoater voltage and power to tho full wave rectifier V7. The rectifier circuit provides about 200 V to the modulator as a hold off bias for the klystron. This d.c. potential is motered by M1 and smoothed by network C1, R20, R21. Tho klystron heator is also fod from TR2.

TTH/488.
JUNE, 1962.
A.P. 2534L, Vol.1, Part 2, Sect. 3, Chap. (A.L. 5)

SRI. 18118 , FGRI. 18119
Fig. 2
$+500 V$ power unit (A)-circuit

SRI. 18\|8, FGRI. 18119 +2.5KV power unit (B)-circuit

| RESISTORS | | | | | R1 | R2 | | R3 | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| CAPACITORS | | | | C1 | C2 | C3 | | | C4 | | |
| MISCELLANEOUS | PLI | TR1 | MR1 | MR2 | | L1 | | RL1 | RL3 | | RL2 |

SRI 18118,FGRI 18119
Fig. 4

+50 V power unit (C)-circuit

SRI. 18118, FGRI. I8119
Fig. 5
+300 V or +150 V voltage stabilizer (D) - circuit

RESISTORS		R16					R1	$\begin{aligned} & \text { R9 } \\ & \text { R10 } \\ & \text { R11 } \end{aligned}$	$\begin{aligned} & \mathrm{R} 5 \\ & \mathrm{R} 2{ }^{\mathrm{RB}} \end{aligned}$	$\begin{aligned} & \mathrm{R6} \\ & \mathrm{R} 3 \end{aligned}$	$\begin{aligned} & \mathrm{R} 7 \\ & \mathrm{RA} \\ & \hline \end{aligned}$	R12 R11 R19								$\begin{array}{r} \mathrm{R} 102 \\ \mathrm{R} 104 \mathrm{R} 103 \\ \mathrm{R} \\ \mathrm{R} 101 \\ \hline \end{array}$					R105	RV101		$\begin{aligned} & \text { R107 } \\ & \text { RV102 } \\ & \text { R108 } \\ & \hline \end{aligned}$	R106
CAPACITORS			cl	c2	c3	C4	C7	C8 c9	C5	C6											C101	C102		c105		${ }^{1} 103$			C104
MISCELLANEOUS	PL1 PL2	RL1		(10			RL2 RL3					1 12 12	TR1	TP1	PLIO1	$\begin{array}{r} \text { RL10 } \\ \text { RLLO1 } \end{array}$	$\begin{aligned} & \begin{array}{c} \text { RLe } \\ \text { RLO1 } \\ \text { RLOO10 } \\ \text { TR10 } \end{array} \end{aligned}$	TR101	V101	101		RL102	V102 vio3	V104					RL103

SRI. 18118,FGRI.18119 - +250 V and -150 V power unit (K and J) - circuit

SRI. 18118, FGRI. 18119 - - 15 KV power unit (N)-circuit

Fig. 7
(A.L.5,Oct.58)
251. The beacon is equipped with sufficient built-in test units to onablo all alignment and fault finding operations to be carrind out without ueing extornal test equipmont excopt for a mnttimoter. The items of test equipnent aro:-
(a) Pulse Gonerator Unit (MA)
(b) Monitoring Unit (L)
(c) R.F. Signal Gonerator Unit (MB)
(d) I.F. Signal Generator (MC)
(c) Thermistor Unit (U)
252. Pulse Gonerator Unit (MA). This unit is used to check the performanco of the beacon by comparing pulse sequences produced by the beacon with pulsc sequences (crystal controlled) produced by the generator: It can also bo used, in conjunction with the R.F. signal genorator, to simulate a/c interrogation pulses and check the beacon response.
253. Monitoring Unit (L). The following facilitios aro provided by this unit:-
(a) Voltage and current meter roadings of all D.C. power supplies.
(b) Ovorload indication lamps for the 500V, 300 V and 150 V D.C. supplios. Once lit these indicators remain alight until tho indicirtor reset switch is dopressed.
(c) The focus, brilliance and astignatism controls for the C.R.T.
(d) Time basc and gating circuits in a time-base sub-unit. There are five time base spoeds available and control is from the pulso generator unit (MA).
(c) Video amplifior and Y shift sub-unit controlled from the pulse gonerator unit (NA).
(f) Inspoction lights switch.
254. R.F. Simnal Generator (MAB) . This unit provides facilities to:-
(a) Gonerato R.F. signals tunable from 962 to $1213 \mathrm{mc} / \mathrm{s}$.
(b) Modulato tho R.F. output signals for C.W., square wave or pulse transmission.
(c) Control H.T. and bias supplica to the I.F. signal generator.
(d) Control amplitude of output signals using a calitrated attenuator.
255. I.F'. Signal Generator (MC). Usod to check the porformance of the beacon I.F. amplifier and the associated Ferris discriminator. A three position switcl solects output froquencies of 62,63 , or 64 Mc / s. The output stage H.T. is pulse controlled by signals from unit MA thus the output signals are pulse modulatod I.F.

```
TL/:88.
Ju\T, 1962.
```

256. Thermistor Unit (U). Is mounted on the duplexar unit in the right hand boacon cabinet. Is usod to chock:-
(a) R.F. power.
(b) During signal/noiso checks.
(c) To check R.F. signal gencrator output.

257. Pulse Conorator UnitMA. Four crystal controliod oscillator circuits can be soloctod by switah 1 which is the P.R.F. seloction switch. The six positions of this switch solect the following functions:-
(a) Pos. 1. EXT. B.F.O. Signals from and oxternal oscillator may bo fed to pulso forming circuits via input socket SHI4.
(b) Pos. 2. 150 e.p.is. A freomunning multivibrator (V4) genoratos sienals of approximatoly 150 cps . which aro fed to the pulso forming circuits. The genorator output is used to simulato intorrogntion pulso pairs from an airborne equipment in tho "senrch" condition.
(c) Pos. 3. $2.7 \mathrm{Kc} / \mathrm{s}$. A crystal controlled signal from V1a is fed to tho pulse forming circuits and to tho R.F. and I.F. signal generators. This position is uscd whon checking signal to noisc ratio. The output from V1a is fod continuously to the beacon video decoder unit to check the squitter rato when roquired.
(d) Pos. 4. $20 \mathrm{Kc} / \mathrm{s}$. Tho timo baso unit is triggorod at a P.R.F. of $20 \mathrm{Kc} / \mathrm{s}$ while the boacon is intorrogated at $2.5 \mathrm{Kc} / \mathrm{s}$. . This position is used to check the 50 micro second beacon delay.
(o) Pos. 5. $33.3 \mathrm{Kc} / \mathrm{s}$. A crystal controlled pulse train generatod by V3b is used to check the 30 microsecond spacing of tho North referonco train.
(f) Pos. 6. $41.7 \mathrm{Kc} / \mathrm{s}$. A crystal controlled pulso train generated by V3a is used to chock the 24 microsecond spacing of tho Hamonic referonce train and for chocking the 12 microsccond spacing of the beacon pulso pairs.

P.R.F. Scloction Switch (SWI) and Associatcd Circuits.

258. Selection of the generator P.R.F. is obtained by a six position 5 wafor switch.

Tho wafers control the following functions.
(a) 'SW1a'switchos 150V. H.T. to tho appropriato oscillator, V3a, V3b, V4 or V5a.
(b) SW1b switches the solectod input to the first amplifior and shaper V6.
(c) SW1c and SW1d are effective only in Pos. 4, whon they bring the count down phantastron (V7, V8) into the pulse forming circuits.
(d) SW1e is effective in positions 5 and 6 only. It switohes the appropriate pulse train to the gating valve V17.
259. Switch and Circuit Action. SW1 in position ono connects SK14 (Dxt. B.F.O.) to the grid of shoper valve (V6a) via 033 andR92. The amplified and squared output is connoctod via 034 and R94 to V6b whero it is furthor amplifiod. The anode load of $V 6 b$ is a transformer (TR2) with a low R.F. rosponse. This component differontiates the square weve and produces the trigers which are fod.
(a) From V6b anode via C60, SWIc and SW1d, 012 and MR9 to V9 grid.
(b) From TR2 secondary vìa C40, SW1e to V17, gating amplifier.
(c) From TR2 socondary to SW3 (mixer 1/P.1).
(d) From TR2 secondary to V18 (sync. Amplifier) via SW4c.
260. Swith 1 in position 2 connects the output of a froe-running multivibrator (V4) via SW1b, C33, R92 to the shaper stage V6.
The natural froquency of the symmetrioal square wave output from V4 is 150 c.p.s. Tho output from V6b is fod via C60, SW1c, SW1d, C12 and MR9 to V9 the C.R.O. delay stage.
261. SW1 position 3 connects the output of a crystel controlled oscillator V1a to shaper circuits V6. V1a circuit forms a flexural cyrstal oscillator with a froquency of $2.7 \mathrm{Kc} / \mathrm{s}$. The output waveform is rectified by $\mathbb{M R 1}$, filterod by C54, R3, R4 and C2 to provide the oscillator valve grid bias. V1a output signal is fed vie SW1b to the shaper circuit V6. and thence to CRO delay stage'V9. The output from V1a is also fed to V2a, shaper amplifior via C28, R77. 'V2a output is further shaped by V2b. The anode load of V2b is TR1, a poor H.T. response transformor, which produces the sharp triggers at $2.7 \mathrm{Kc} / \mathrm{s}$ which are cathodo followod by V1b to:-
(a) R.F. Signal genorator unit (MB)
(b) Video docoder unit (xc)

The signal to the video docoder is used to check beacon squitter rate at $2.7 \mathrm{Mc} / \mathrm{s}$.
262. SW1 in position 4 connects the output of a crystal controllod oscillator V5a to shaper circuit V6. V5a circuit forms a flexural crystal oscillator with a froquency of $20 \mathrm{Kc} / \mathrm{s}$. $\operatorname{MR} 4, \mathrm{R} 12, \cdot \mathrm{R} 11, \cdot \mathrm{C} 6$ form the bias circuit. Tho $20 \mathrm{Kc} / \mathrm{s}$ signal is fod via SW16, C34, R94 to shaper circuit V6. V6 output is fod via SW10 and SW1d to the count down phantastron V7 and V8. This circuit produces square pulses at a P.R.F. of $2.5 \mathrm{Kc} / \mathrm{s}$. Tho square waves are differentiated by C23, 055 to produco the short trigger pulses fed to the CRO delay oircuit V9.
263. SW1 in position 5 connocts tho output of a crystal controlled oscillator V3b to shapor circuits V6. V3b circuit forms a flexural crystal oscillator with a frequoncy of $33.3 \mathrm{Kc} / \mathrm{s}$. MR3, R11, R12 and 06 form the bias circuit. The sigmal produced by V3b is fod via SWIb to V6 shaping circuit. The trigger from TR2 is fed to V17 grid via C40 and SWie.
264. SW1 in position 6 connects the output of a crystal controlled oscillator V3a to shaper circuit V6. V3a circuit forms a flexural crystal oscillator with a frequency of $41.7 \mathrm{Mc} / \mathrm{s}$. MR2, R8, R7 and C4 form the bias circuit. The signal produced by V3a is fed via SW1b to V6 and V6 output is fed to V17 grid via C40 and SW10.
265. V17 gating stago and gate production circuits. Whon tho pulso generator is used to chock North and Harmonic reforence trains a nogative trigger from TP3 or TP8 on the Markor gate gonerator is used to initiate tho gate to the suppressor of V17. Negativo going triggers are fed via SK15, C48, WR17 to V15 a monostable multivibrator. V15a is normally conducting becauso its grid leak R101 is returnod to the common cathodo load. V15b is held cut off by tho voltago duveloped across R98. The positive going gato produced by V15a is difforentiatod by C37, R102 and fod to V16 via MR18 (a sories nogativo limiter) V16 is a cathode couplod multivibrator whoso output, a positive goine squaro wave is used to gate on V17 for a fixed period. The square wave duration is controllod by RV9 which is adjusted so that 12 pulses of the $33.3 \mathrm{Mc} / \mathrm{s}$ train or 6 pulscs of the $41.7 \mathrm{Mc} / \mathrm{s}$ train are' passed through the gating stago V17. V17 output is fod from TR3, the anode load to mixer switch 3. With this switch in the Reforence trains position the pulse generator train can be comparod with the beacon referenco train and tho beacon train checkod for discrepancies.

Main Pulse Shaping and Output Circuits (V2 to V14).
266. Thesc circuits perform the following functions.
(a) Dolay the pulso trains in the monostable multivibrator stage V9. The delay can be varied between 4 microseconds and 60 microseconds.
(b) Selects either single or pulse pairs by the introduction of a delay line by use of Pulse separation. switch (SW2)
(c) Shapes the pulses by filtering out the high harmonics in a Low pass filter circut and amplifiers V11a, V11b and V12.
(d) Selects pulse polarity (SW7) in stage V13a.
(c) Amplifios and sets the output levol in the final stages V14 and V13b.
267. V9, a doublo triode, is a monostablo multivibrator whose purpose is to produce a variable delay in the main pulse shaping circuits. This provides a pro-trigger facility for the monitoring unit 1 time-base which is fod via circuits with no artificial delay, V9a is normally conducting V9b cut off. The negative trigger to V9a grid fires the multivibrator producing a negative going square wave at the cathode load whose duration is controlled by RV2 (C.R.O. delay). This waveform is differentiated by 014, R32 and the positive spike co-incident with the trailing edge is fed via negative series limiter MR5 to V5b a cathode follower. MR6 short circuits the negative spikes of difforentiation. The positive going spikes are fed to V11a grid:-
(a) Via C17, MR10 (positive D.C.R.), MR13 (negativo serios limiter).
(b) Via delay line DL2 (with SW2 in appropriate position), C16, MR 11 (positive D.C.R.) MR12 (negative series limiter).

Thus dependant on position of SW2, the following negative going pulsc combinations can be produced at V11a anode.
(a) Singlo pulsos.
(b) Pulse pairs separatod by $10.5,11.0$ and 11.5 microseconds.

The delays produced by SW2 produce an overall delay of 12 ± 0.5 microsecs after the subsoquent stages have added an additional delay. When DL2 is switched into circuit two dissimilar negative going pulses are produced at V11a anode. These pulses arc fed via C19 and MR14 (positive sorios limiter) to trigeer V12, a monostable multivibrator. V12 output is two positive going pulsos of similar shape and amplitude and whose width is set by RV4. These pulses'are cathode'followed by V11b to the low pass filter circuit (L1 to L3, C22 to C24, R59, R61). MR7 in V11b grid circuit is a positive D.C.R. The cathode follower provides a low impedance matched input to the filtor. MR15 in the filter limits the "rest" potential to carth. The low pass filter removos the highor hamonics and produces tho gaussian shape requirod. The filtor output is fod to V13a, a phase splittor. Output is taken from V13a anode or cathodo dopondant on the position of the polarity select switch (SW7). The seloctod pulse is amplified by V14 and fed via C27, RV6 to cathode followor V13b. RV6 is the pulse amplitude control. V13b outputs aro fod to:-
(a) R.F. signal genorator unit MB via PLT.
(b) Pulse generator output terminal SK21.
(c) Video input select switch (SW202) via PL206.
(d) Mixer switch (SW3) contact 5 .
268. The purpose of SW3 is to select any one of five signels to be mixed with the signal from Mixer I/P 1 socket (SK18). Signals fed in at SK18 are fed via C43 to the bottom of RV3. Signals from tho test switch are fed to the top of this potentiometer which is used to control the rolativo amplitudes of tho sighals fed to tho display for comparison and checking. The wiper of RV3 is connectod to the Video input selcet switch (SW202).

Sti 3 positions. Pos. 1. Direct. Signals from oxtornal source are fed to the top of RV3 via mixer I/P2 socket (SK17).
Pos. 2. Dolayed. Signals from an oxtornal sourco are fod to the top of RV3 via mixer I/P2 delayed socket (SK17) and DL1, a delay lino with a delay equivalent to that of the aerial feedor on the boacon. Pos. 3. Roforonce Trains. The pulse gonerator produced reference trains are fed to RV3 from the gated amplifier V27.
Pos. 4. Pulse Generator. The shaped pulses from V13b are fod to RV3. Pos. 5. Pulso Generator Trigger. The pro-trigger pulses from TR2 in V6 circuit are fed to RV3.

Monitor Sync. Selection Switch (SWL).
269. The sync. select switch selects the input to and the output from V18 the sync. amplifior. V18 is a cathode biased amplifior which, with its associatod circuit and $S W 4$ produces a sync. pulso of positive polarity for any input sync. pulse. SW4 positions are:-
(a) Pos. 1. Pulso generator. Triggers at the pulso generator sot P.R.F. are fod to V18 from TR2 in V6 circuit via SW4C. V18 output from TRA is fed via SW4a, RV5 and PL5 to the Monitor time base unit. RV5 is the sync. amplitude control.
(b) Pos. 2 tvo Internal. The video signal for display is also used to sync. the time base. It is fod from V102 circuit in the main video amplifier (Mon. Unit L) via PL4 and SW4c to V18. Output connoctions arc as for Pos. 1.
(c) Pos. 3 rve Internal. Idontical to Pos. 2. except that the output pulse is taken from the opposite end of TR4 to maintain a positive output trigger pulse.
(d) Pos. 4 +ve External. An external source Trigger is fed to V18 via SK19 and SW4c. Tho output trigger is taken from TR4 via SW4a.
(e) Pos. 5 -ve External. Same as Pos. 4 except that the output trigger is taken from the opposite ond of TRA via SW4b to tho monitor timo base.
(f) Pos. 6 off. No input signal fod to $V \uparrow 8$ and both onds of TR4 secondary aro earthod by SW4'a' and 'b' segments.

Video'Amplifior'Attenuator.
270. This unit forms a sub-asssmbly of the pulse generator unit. The following inputs are selected by the video select switch (SW202).

[^1](b) Pos. 2. Diroct. Signals connceted to Direct video socket (SK20).
TL/488.
JUNE, 1962.
(c) Pos. 3. Cal Diroct. Signals from, the video oalibrator amplitude unit fed via PL. 304 and PL206: SW202a complotos the circuit of tho switohing rolay (RJ301) in the calibrator sub assombly. Usod to calibrato tho display for pulso amplitude measuroment.
(d) Pos: 4. Cal. Probe. Signals from tho calibrator are fod via R201, C202 to produco tho same attonuation as in the test probe position.
(e) Pos. 5. Test Probe. Signals from the probe unit fed via FL6, SK24 and PL201. The probe impedence can be checked against readings obtained in position 4.
(f) Pos. 6. Pulse generator. Signals from shaping circuits output stage V13b fod via SK25, PL202 and an attenuetor notwork consisting of C220, R231, C224 and C225.

The output fron SW2O2 is fed via video attenuator course switch (SW201), whiol solocts various C. and R. potential divider notworks for different values of attenuation. Signals are then fed to the video attenuator fine circuit V201.
271. The video attenuator fino control (RT201) is connected between the cathodes of the dual triode valve V201, a cathode follower pair. The grid of V2O1a is earthed while signals are fed to V2O1b grid. Maximum signals aro therefore developed across RV201. By adjustment of RV201 the required amplitude of signal can be produced. The action of V201a prevents and D.C. voltago changes being fed via the direct coupling to the amplifier V101 in monitoring unit I.

Video Amplitude' Cajibrator'Unit.
272. 'The calibration sub-unit is a peak voltage calibrator in which a square waveform is generated and used to calibrate the display for pusle amplitude measuremont. Tho 300 V H.T. and 6.3 V A.C. supply for the carpenter relay RL302'are completod by the contacts of RL301 which is energised when SW202, video input. solect switch, is switched to the cal. probe or cal. direct positions. V301, a pentocle, functions as a variable resistance whose value is controlled by SW301; which altors the resistance values in the cathode and screen circuits, and RV301 which is a fine control of screen potential. When the carpenter type relay is energised its contacts open and close at supply frequencys varying the amount of resistance in the cathode oircuit of V301 by switching an extra resistance in and out of parallel with the existing cathode resistor. A symmetrical squere waveform is producod whose amplitude'can be varied by SW301 or RV301. The square wave amplitude is shown by meter M3 or the monitoring unit L. and by manipulation of the calibrator controls and attenuator controls on the pulse gencrator the squares on the graticule over the C.R.T. can be made to represent a given number of volts.

TL/488.
JUNE, 1962.

Monitorine Unit L.

273. Provides the fullowing facilities.
(a) Voltage and current meter checks of beacon D.C. power supplies.
(b) Overload indications of D.C. supplies.
(c) Display C.R.T. With Focus, Brilliance and astignatism controls.
(d) Time basc and gating circuits.
(e) Main video amplifier and ${ }^{1} 7^{\prime}$ shift circuits.

274. Metering circuits:-

The three meters on the front panel provide the following information.

M1. D.C. power supply voltage switched by SW3, segments a to c.
M2. D.C. power supply currents switched by SW3 segments d to f.
M3. shows peak amplitude of signal from the calibrator unit in MA.
275. Overload waming circuits. These circuits are energised from the 50V supply: The 500V D.C. bulk supply is distributed on three different routos each one of which includes and overload relay and an associated warning relay and indicator lamp. The 300 V and 150 V D.C. supply circuits are similarly fitted. If an overload should occur the appropriate overload relay operates, breaking tho D.C. supply and energising the warning relay whose contacts complete the waming lamp circuit. Even hen the overload is removed and the supply restored the overload lamp will remain alight and the warning relay energised until the indicator reset switch (SW2) is dopressed.

Supply.	Relays.	Lamp.
500VA	RL1 RL/	IP6
500 VB	RL2 RL5	LPP7
500VC	RL3 RL6	LP8
300VA	RL2 (DA)	LP1
300 VB	RL2 (DB)	IP2
300VC	RL2 (DC)	LP3
150VA	RL2 (DE)	LP4
150 VB	BL2 (DF)	LP5

CRT 4KV. E. H. T. Power Unit.
276. The 4 KV E.H.T. power supply to the C.R.T. is producod by valve stages V to $V 7 . \quad V 3$ is a transitron rolaxation oscillator which produces a signal of approximately $2.2 \mathrm{kc} / \mathrm{s}$. In this oscillator the anode is hold at +300 V . The resonant circuit, L1, C3 and C4 is connected between the screen and suppressor grids. The output signal is coupled from the screen grid circuit of V3 to V4 via C6R15. V4 is a pentode amplifier strapped as a Triode and it amplifies the: signal which is then further amplified in a power amplified stage V5. The anode load of this stage is a step up transformer whose secondary is centre tapped to'earth. One half foeds V7, a half wave roctifier which produces +2 kV , developed across bloeder chain R21 to R25, C9 being the reservoir capacitor. This voltage is fed to the final anode of the C.R.T. (post deflection accelerator). The other half of the secondary supplies V6, a half wave rectifier which produces

TL/488.
JUNE, 1962.
-2KV, devoloped across a bleeder chain R26 to R30, RV4 and R31. C10 is the reservoir capacitor. This voltage is fed via RV2 and R5 to the CRT cathode. The cathode voltage is 1.9 KV approx.
278. Controls. RV1 Focus, controls potential to second anode. RV2 Brilliance,'sets the grid voltage w.r.t. cathode
RV3 Astigmatism, is connected between +500 V and earth. Is adjusted so that final anode potential is similar to mean deflection plate potential, i.e. minimum distortion on display CRT.
RV4 E.H.T. level adj. set for correct value of E.H.T. It. controls the value of negative voltage feed back to the grid of amplifier V4.

Time base sub-unit.
279. The time base unit consists of valve stages V201 to 209. SW201 alters time base speed, there is a choice of five speeds.

Circuit. In the quiescent state V203 and V205 are 'cut off' by grid'bias voltage derived from -150 V line and controlled by RV201. V201, trigger amplifier, is conducting but the cathode of V202a, series limiter, is positive w.r.t. its anode which is connocted to V2O3 anode circuit. Because V2O3 is cut off V204a grid is held positive, V204a is conducting heavily and V206 anode is at some positive voltage. The 'miller' capacitor C205 is charged. The incoming positive trigger is amplified and inverted by V201, passed by series limiter V202a to the grid of V201a. V204a is cut off and V206 anode potential falls (miller step). Simultaneously V206 screen potential rises sharply, this rise is fed to V203, V205 grids causing these valves to conduct. The fall im potential at V203 anode fed to V204a grid keeps this valve cut off when the trigger pulse ends. After this commulative action (step) miller run down commences as the capacitor discharges via the associated grid resistor. Run down continues until the potontial at V206, V204a anode/cathode junction falls below the potential at V204a grid. This produces the second unstable state of the circuit. V204a conducts holding V206 anode potential constant, miller effect ceases, V206 grid potential rises rapidly back to its quiesant value, screen current increases, screen volts fall consequently cutting off V203 V205. The rise in voltage at V203 anode takes V204a grid positive and the valve conducts heavily charging the miller capacitor and returning V206 anode potential to its quiescent value.

The positive square wave produced at V204a anode is used as bright up waveform and fed to the CRT. grid. L201 improves the leading edge of this waveform. V205 produces a negative gate at SK206 which is not used. RV201 is adjusted to produce a stable time base at all time base speeds.
280. The time base wavoform from V206 anode is cathode followed by V204b to the paraphase amplifiers V208, V209. The diode V207 in the grid circuit of V208 prevents the grid going positive w.r.t. earth. The time base shift voltage from unit MA is also fed to. V208 grid. The antiphase voltage waveforms from the anodes of V208, V209 are fed to the X deflection plates on the C.R.T.

281: Coarse and fine time base speed controls are mounted on unit MA. RV7, the fine speed control, affects the aiming potential in the grid circuit during miller run down. SW5, the coarse speed control, turns SW201 selecting the appropriate 'miller' capacitor. When a position

[^2]is selected by SW5 +50 V is connected to a Ledex coil unit in the monitor. The switch turns until it is in tho correct position relative to SW5 then a cut out portion of the wiper breaks the 50 V supply to the Ledex coil. SW201 is an eight position 5 wafer switch. In the first 6 positions wafers B1 and B2 select the grid resistor and appropriate capacitor for the different time base speeds. In position 7 wafer B1 connects -150 V to V206 grid preventing time base action: wafer B4 connects an external source of time base to V204b grid. In position 8, wafer B1 connects -150 V to V206 grid; wafer B4 connects +300 V to V204b grid, producing a large positive voltage R244, ensuring that V207 conducts clamping V208 grid to earth. This position is used to make accurate Y amplitude measurements with no time base.
282. Main Video Amplifier and Y Shift Circuit. This sub-unit contains the video amplifying stages V101 to V106 and the ' Y ' shift circuit V107. The signals to be amplified are fed via input plug PL102 to the grid of the first amplifier V101. The anode load consists of R109 in series with L101, the circuit is tuned for rosonance at $47 \mathrm{Mc} / \mathrm{s}$ to provide high frequency compensation - V101 output is fed to:-
(a) The second video amplifier V102 via C102, R110, while 0108 and R112 extend the frequency response of the grid circuit.
(b) Cathode follower stage V107 (a double triode) V102 is the intermal sync. amplifier and its output is fed via PL8 to the sync selection circuit (V18) in unit MA.
283. V107 is a double triode cathode follower, both anodes connected to H.T. Video signals from V101 are fod to V107b grid, video on Y shift volts from unit MA are fed to V107 a grid. V103 and V104 in parallel with V105 and V106 in parallel have a common cathode load and form a long tail pair. Video signals from V107b are applied to V103, V104 grids, shift volts from V107a are applied to V105, V106 grids. RV101 and RV302 (unit MA) are the video shift controls. RV101, an internal control is used to sut the trace at a convenient position on the CRT. while RV302 the external control varios the traco position about this point. The phase voltage waveforms produced by the long-tail pair circuit are fod to the ' Y ' deflection plates on the C.R.T.

284. Filtor Unit (ME). Thw unit is situatod at the berse of the left hard innor door. It is uand to provide extra filtering for the DC. supplics to certain units as follows.
(a) +500 V H.T. supply to the paraphase amplifiers V<08, V209 in monitoring unit L.
(b) $+300 V$ D.C. supply used in unit MA. is fed to this unil whem. it is dropped to +150 V by R2, R3, filtered by C2, 03 and used as H.T. for the video and sync. amplifier steges V101, V102 in tho monitoring Unit L 。

285. Thermistor Unit (U). This unit is mounted on the duplexer unit in the right hand cabinet. The unit is a form of wattmeter and contains a thermistor connocted in a bridgo circuit whose output is fod to a voltmeter mounted on control unit W. R.F. power is probe connocted into the thermistor head and the heat generated in the thormistor TH1, altors its resistanco and unbalances the bridge producing a reading on the voltmetor. Special compenseting circuits corroct for changos in ambiont tomperature. The disc type thermistor THZ is used for this purpose. The power metor sclector switch, SW11, on unit W is tssooiated with the thermistor unit. It is a 3 position switch.
(a) Off.
(b) Low sensitivity.
(c) High sensitivity.

In position (b) the H.T. Voltago fed to the bridge is reduced the H.T. of +300 V is fed to:-
(a) The bridge, consisting of R1 to R3 and thermistor TH1.
(b) A potontiometer network RV1 and RV2. The junction of RV1 and RV2 is connected to earth via TH2 which alters the value of H.7. fed to the bridge to compensate for ambient tomporature changes.

The thermistor characteristics aro:-
TH1. 2000 at $20^{\circ} \mathrm{c}$. falling to 60 when 20 mW are dissipatod across it.

TH2. 500 at $20^{\circ} \mathrm{C}$ falling to 50 at $80^{\circ} \mathrm{C}$.

RESISTORS	R1	R3	R2	RV 3	R4	RV1 RV 2
MISCELLANEOUS	PL 2	TH 1	TH 2	PL 1		

SRI.18\|8,FGRI.181|91-thermistor unit (U)

Fig. 3
(A.L.19,Jon.59)
286. R.f. Signal Generator MB. This unit is mounted on the left hand inner door and is used to:-
(a) Generate R.F. signals tunable over the band 962 to $1213 \mathrm{Mc} / \mathrm{s}$
(b) Modulate the R.F. output for c.W., square wave or pulse generation.
(c) Control H.T. and bias supplios to the IF. Signal generator.

TL/488.
JUNE, 1962.

287. Switch Functions. SW1 selsotio the oyerating conditions as follows

Pos. 1 Off.
Pos. 2 I.F. On. Signals from Unit MA are fed via SW1a to the i.f. signal generator unit MC. Power supplies for unit MC are fed from monitor unit L via SW1c in this position.

Pos. 3 I.F. and R.F. On. Signals from unit MA are fed to both signal generators and power supplies to both via SW1 segments c and d.

Pos. 4 R.F. On. Signals and power supplies fed to R.F. signal generator only.

Pos. 5 Off.
SW. 2 selects tho form of modulation.
Pos. 1 Pulse. The R.F. output valvo is fed with pulsod H.T. which is controlled by the signal pulses from unit MA. This is the normal working condition.

Pos. 2 Square Wave. V6 H.T. is modulated by a 1.1 square wave form from a bi-stable multivibrator which is fired by trigger pulses from unit MA. Used when checking the beacon signal to noisc ratio.

Pos. 3 C.W. +300V H.T. is connected directly to V6 anode and the stage produces continuous oscillations.
288. Modulation Circuits. The $2.5 \mathrm{Kc} / \mathrm{s}$ trigger pulses from unit MA are fod via PL. 3 and SW1b to the grid of V1, an amplifior invorter. V1 and V2, a bistable multivibrator share a cormon anode load R3. and the trigger pulses are coupled viz this and the grid oircuit connections to the grids of V2. V2 output is a symetrical square wave at half the P.R.F. of the input triggers. This wavaform is cathode followed by V3a to V4a and V4b. Thees two valves form a non-inverting amplifier stage and the waveform is fed to V5'grid. V5 is normally cut off by the negative potential produced by R19, R125 and selected resistor R24, R28, R27. The input waveform positively D.C. rostored by V3b cuts on V5 and the resultant voltage developed across R2O, cathode load, is the H.T. for oscillator valve V6. When tho unit is used for pulse modulation V1 and V2a are switched out of circuit and the pulses from unit MA are connected via SW2a to the non-invorting amplifier V4, thence to the modulator V5.
289. R.F. Circuit. V6 is a grounded grid triode. The anode-grid circuit is a $\frac{3}{4}$ Xlecher line and the cathode circuit is a $K / 4$ line. Feedback between anode and grid circuits is by means of a capacitivo couple between the lines. V6 grid is at earth potential and R23, C7, 08 produce the cathode bias. A detector probe is coupled into tho anode/grid cavity to feed V7, a detector, whoso output is fed to PL8 on the front of the unit for monitoring. Both lecher lines are ganged and tune together. The R.F. output is loop coupled from the anode/grid cavity and attenuation is controlled by the depth of the loop in the cavity.
$\pi \mathrm{T} / 488$. JUNE, 1962.

SRI.18118, FGRI.18119-RF signa generator (MB) - circuit
Fig. 2
290. I.F. Signal Generator. WC. The purpose of the Unit is to produce modulated I.F. signals at 62,63 and $64 \mathrm{Mc} / \mathrm{s}$ carrier froquency for checking the efficiency of the I.F. Stages and the ferris discriminator. It is mounted on the loft hand inner door.
291. Circuit dotails. V1 is a cathodo coupled crystal oscillator. SW1 selocts one of throe crystals The crystals are connected between the cathodes of tho two triodes and aro used in a series mode of oscillator. Overtone mode crystals are uscd to produco oscillator frequencies of $31,31.5$ and $32 \mathrm{mc} / \mathrm{s}$. The output coupling transformer is tuned to the fundemental frequency of $31.5 \mathrm{mc} / \mathrm{s}$ (L 1 C 4). The secondary is damped by R7 to produce a broad band pass circuit. The signal is fed to doubler/amplifier V2 whose tuned anode load is adjusted to produco the transmittod frequencies 62,63 and $64 \mathrm{mc} / \mathrm{s}$. V2 output is fed via finc and coarse resistive attenuators to the output terminal PL3. V2 is normally cut off by the negative potential at the junction of R16, R17. (L9, C15 prevent pulses being fed back to the D.C. supply line) which is fod to the suppressor. Positive pulses from unit MA, fed via unit MB, lift the suppressor bias thus producing the requirod modulated output.

MR1, C22, R15, L12, C23 form a detector ond filter nutwurk whese output is fod to TP13 for monitoring.

TL/ 48 \&
JUNE, 1962.

SRI. 18118,FGRI. 18119 - IF signal generator (MC)-circuit
Fig. 4

[^0]: REFFRENCE：A．P．2534I，Vol．1，Part 2，Section 1，Chapter 2. TI／488 TTMTG 1のにの

[^1]: (a) Pos. 1. Mixor. Sighals from the Mixer balanco potentiometer RV3, fed via SK26 and PL203.

[^2]: TL/488. JUNE, 1962 .

